Chu, James C.H.; Hsi, Wen Chien; Hubbard, Lincoln; Zhang, Yunkai; Bernard, Damian; Reeder, Pamela; Lopes, Demetrius
2005-01-01
A hospital‐based magnetic guidance system (MGS) was installed to assist a physician in navigating catheters and guide wires during interventional cardiac and neurosurgical procedures. The objective of this study is to examine the performance of this magnetic field‐guided navigation system. Our results show that the system's radiological imaging components produce images with quality similar to that produced by other modern fluoroscopic devices. The system's magnetic navigation components also deflect the wire and catheter tips toward the intended direction. The physician, however, will have to oversteer the wire or catheter when defining the steering angle during the procedure. The MGS could be clinically useful in device navigation deflection and vessel access. PACS numbers: 07.55.Db, 07.85.‐m PMID:16143799
Yang, Chi-Lin; Yang, Been-Der; Lin, Mu-Lien; Wang, Yao-Hung; Wang, Jaw-Lin
2010-10-01
Development of a patient-mount navigated intervention (PaMNI) system for spinal diseases. An in vivo clinical human trial was conducted to validate this system. To verify the feasibility of the PaMNI system with the clinical trial on percutaneous pulsed radiofrequency stimulation of dorsal root ganglion (PRF-DRG). Two major image guiding techniques, i.e., computed tomography (CT)-guided and fluoro-guided, were used for spinal intervention. The CT-guided technique provides high spatial resolution, and is claimed to be more accurate than the fluoro-guided technique. Nevertheless, the CT-guided intervention usually reaches higher radiograph exposure than the fluoro-guided counterpart. Some navigated intervention systems were developed to reduce the radiation of CT-guided intervention. Nevertheless, these systems were not popularly used due to the longer operation time, a new protocol for surgeons, and the availability of such a system. The PaMNI system includes 3 components, i.e., a patient-mount miniature tracking unit, an auto-registered reference frame unit, and a user-friendly image processing unit. The PRF-DRG treatment was conducted to find the clinical feasibility of this system. The in vivo clinical trial showed that the accuracy, visual analog scale evaluation after surgery, and radiograph exposure of the PaMNI-guided technique are comparable to the one of conventional fluoro-guided technique, while the operation time is increased by 5 minutes. Combining the virtues of fluoroscopy and CT-guided techniques, our navigation system is operated like a virtual fluoroscopy with augmented CT images. This system elevates the performance of CT-guided intervention and reduces surgeons' radiation exposure risk to a minimum, while keeping low radiation dose to patients like its fluoro-guided counterpart. The clinical trial of PRF-DRG treatment showed the clinical feasibility and efficacy of this system.
Hybrid DynaCT-guided electromagnetic navigational bronchoscopic biopsy†.
Ng, Calvin S H; Yu, Simon C H; Lau, Rainbow W H; Yim, Anthony P C
2016-01-01
Electromagnetic navigational bronchoscopy-guided biopsy of small pulmonary nodules can be challenging. Navigational error of the system and movement of the biopsy tool during its deployment adversely affect biopsy success. Furthermore, conventional methods to confirm navigational success such as fluoroscopy and radial endobronchial ultrasound become less useful for the biopsy of small lesions. A hybrid operating theatre can provide unparalleled real-time imaging through DynaCT scan to guide and confirm successful navigation and biopsy of difficult-to-reach or small lesions. We describe our technique for DynaCT image-guided electromagnetic navigational bronchoscopic biopsy of a small pulmonary nodule in the hybrid operating theatre. The advantages, disadvantages and special considerations in adopting this approach are discussed. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Güler, Özgür; Yaniv, Ziv
2012-01-01
Teaching the key technical aspects of image-guided interventions using a hands-on approach is a challenging task. This is primarily due to the high cost and lack of accessibility to imaging and tracking systems. We provide a software and data infrastructure which addresses both challenges. Our infrastructure allows students, patients, and clinicians to develop an understanding of the key technologies by using them, and possibly by developing additional components and integrating them into a simple navigation system which we provide. Our approach requires minimal hardware, LEGO blocks to construct a phantom for which we provide CT scans, and a webcam which when combined with our software provides the functionality of a tracking system. A premise of this approach is that tracking accuracy is sufficient for our purpose. We evaluate the accuracy provided by a consumer grade webcam and show that it is sufficient for educational use. We provide an open source implementation of all the components required for a basic image-guided navigation as part of the Image-Guided Surgery Toolkit (IGSTK). It has long been known that in education there is no substitute for hands-on experience, to quote Sophocles, "One must learn by doing the thing; for though you think you know it, you have no certainty, until you try.". Our work provides this missing capability in the context of image-guided navigation. Enabling a wide audience to learn and experience the use of a navigation system.
Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation
Kim, Terrence T.; Johnson, J. Patrick; Pashman, Robert; Drazin, Doniel
2016-01-01
We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy. PMID:27213152
Hofstad, Erlend Fagertun; Amundsen, Tore; Langø, Thomas; Bakeng, Janne Beate Lervik; Leira, Håkon Olav
2017-01-01
Background Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation. PMID:28182758
[Clinical study on the coronary artery interventions guided by the magnetic navigation system].
Li, Chun-jian; Wang, Hui; Wang, Lian-sheng; Zhu, Tie-bing; Yang, Zhi-jian; Cao, Ke-jiang
2010-03-01
To investigate the efficacy and safety of the magnetic navigation system used in the real world percutaneous coronary artery intervention. All lesions detected by the coronary artery angiography in the magnetic-navigation catheter lab indicated for percutaneous coronary artery intervention (PCI) were included and treated under the guidance of the magnetic navigation system. The characteristics of the target lesion, process of the procedure, time and dosage of the X-ray exposure, and procedure-related complication were recorded and analyzed. One hundred and twenty one patients with 138 lesions were recruited and intervened by PCI during the period from April 2006 to June 2008. Thirty lesions were classified as type A, 50 as type B1, 36 as type B2, 22 as type C (including seven total occlusions). The average stenosis of the target lesions was (85.3 +/- 10.0)%, mean length was (21.1 +/- 10.0) mm. Under the guidance of the magnetic navigation system, 134 target lesions were passed by the magnetic guide-wires, the lesion passing ratio was 97.1%. The X-ray exposure time, X-ray dosage and the contrast volume used during the period of the wire placement were (55.9 +/- 35.4) seconds, (98.0 +/- 86.1) mGy/(490.0 +/- 422.2) microGym(2) and (8.0 +/- 5.4) ml, respectively. A total of 164 stents were implanted in the vessels where the target lesions were passed by the magnetic wires. There was no magnetic navigation system associated complication. Magnetic guide-wires failed to pass four target lesions, two of which were chronic total occlusions (CTOs), and the other two were calcified subtotal occlusions. It is feasible and safe to adopt the magnetic navigation system for the real-world coronary artery intervention. The magnetic guide-wire possesses a high lesion-passing ratio. The CTOs and calcified subtotal occlusions are not ideal lesions for use of the magnetic navigation system.
Rouchy, R C; Moreau-Gaudry, A; Chipon, E; Aubry, S; Pazart, L; Lapuyade, B; Durand, M; Hajjam, M; Pottier, S; Renard, B; Logier, R; Orry, X; Cherifi, A; Quehen, E; Kervio, G; Favelle, O; Patat, F; De Kerviler, E; Hughes, C; Medici, M; Ghelfi, J; Mounier, A; Bricault, I
2017-07-06
Interventional radiology includes a range of minimally invasive image-guided diagnostic and therapeutic procedures that have become routine clinical practice. Each procedure involves a percutaneous needle insertion, often guided using computed tomography (CT) because of its availability and usability. However, procedures remain complicated, in particular when an obstacle must be avoided, meaning that an oblique trajectory is required. Navigation systems track the operator's instruments, meaning the position and progression of the instruments are visualised in real time on the patient's images. A novel electromagnetic navigation system for CT-guided interventional procedures (IMACTIS-CT®) has been developed, and a previous clinical trial demonstrated improved needle placement accuracy in navigation-assisted procedures. In the present trial, we are evaluating the clinical benefit of the navigation system during the needle insertion step of CT-guided procedures in the thoraco-abdominal region. This study is designed as an open, multicentre, prospective, randomised, controlled interventional clinical trial and is structured as a standard two-arm, parallel-design, individually randomised trial. A maximum of 500 patients will be enrolled. In the experimental arm (navigation system), the procedures are carried out using navigation assistance, and in the active comparator arm (CT), the procedures are carried out with conventional CT guidance. The randomisation is stratified by centre and by the expected difficulty of the procedure. The primary outcome of the trial is a combined criterion to assess the safety (number of serious adverse events), efficacy (number of targets reached) and performance (number of control scans acquired) of navigation-assisted, CT-guided procedures as evaluated by a blinded radiologist and confirmed by an expert committee in case of discordance. The secondary outcomes are (1) the duration of the procedure, (2) the satisfaction of the operator and (3) the irradiation dose delivered, with (4) subgroup analysis according to the expected difficulty of the procedure, as well as an evaluation of (5) the usability of the device. This trial addresses the lack of published high-level evidence studies in which navigation-assisted CT-guided interventional procedures are evaluated. This trial is important because it addresses the problems associated with conventional CT guidance and is particularly relevant because the number of interventional radiology procedures carried out in routine clinical practice is increasing. ClinicalTrials.gov identifier: NCT01896219 . Registered on 5 July 2013.
Grosse-Wortmann, Lars; Grabitz, Ralf; Seghaye, Marie-Christine
2007-04-01
Cardiovascular catheterization can be challenging whenever a stenosis or an abnormal vascular course interferes with probing the target vessel. This study addresses the feasibility of navigating a guide wire with a magnetic tip by an external magnetic field through pulmonary and systemic arteries in an experimental porcine model. We investigated six piglets using magnetic guide-wire navigation. Two pulmonary arteriograms were taken from different angles in order to reconstruct the three-dimensional vessel anatomy. A computer interface then calculated three-dimensional coordinates for the vessel in space. Using these coordinates, two external magnets were positioned to create magnetic vectors along the expected vessel course. Magnetically enabled guide wires were then navigated into the vessels using the magnetic field to orient the guide-wire tips. Aortic and renal branches were addressed in a similar fashion. Difficulty in reaching the target vessel was reflected by the number of attempts that were necessary. After 10 failed attempts, the maneuver was recorded to have failed. Thirty-five of 37 (94.6%) arteries with branches at acute angles were reached successfully using magnetic navigation. In two pigs, the left upper lobe artery could not be probed. Peripheral arteries of small diameter were easier to reach than large central arteries, requiring less attempts. Magnetic guide-wire navigation is feasible in the arteries of the lungs, the head and neck, and the kidneys. It is particularly useful in entering small arterial branches at acute angles and may facilitate interventional therapy in a variety of vascular diseases in children and adults.
Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Freudlsperger, Christian; Eisenmann, Urs; Dickhaus, Hartmut; Engel, Michael; Hoffmann, Jürgen; Seeberger, Robin
2017-10-01
Because of the inaccuracy of intermaxillary splints in orthognathic surgery, intraoperative guidance via a real time navigation system might represent a suitable method for enhancing the precision of maxillary positioning. Therefore, in this clinical trial, maxillary repositioning after Le Fort I osteotomy was guided splintless by an electromagnetic navigation system. Conservatively planned maxillary reposition in each of 5 patients was transferred to a novel software module of the electromagnetic navigation system. Intraoperatively, after Le Fort I osteotomy, the software guided the maxilla to the targeted position. Accuracy was evaluated by pre- and postoperative cone beam computer tomography imaging (the vectorial distance of the incisal marker points was measured in three dimensions) and compared with that of a splint transposed control group. The repositioning of the maxilla guided by the electromagnetic navigation system was intuitive and simple to accomplish. The achieved maxillary position with a deviation of 0.7 mm on average to the planned position was equally accurate compared with that of the splint transposed control group of 0.5 mm (p > 0.05). The data of this clinical study display good accuracy for splintless electromagnetic-navigated maxillary positioning. Nevertheless, this method does not surpass the splint-encoded gold standard with regard to accuracy. Future investigations will be necessary to show the full potential of electromagnetic navigation in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Understanding the Social Navigation User Experience
ERIC Educational Resources Information Center
Goecks, Jeremy
2009-01-01
A social navigation system collects data from its users--its community--about what they are doing, their opinions, and their decisions, aggregates this data, and provides the aggregated data--community data--back to individuals so that they can use it to guide behavior and decisions. Social navigation systems empower users with the ability to…
Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Engel, Michael; Freudlsperger, Christian; Hoffmann, Jürgen; Seeberger, Robin
2018-05-01
Reproduction of the exact preoperative proximal-mandible position after osteotomy in orthognathic surgery is difficult to achieve. This clinical pilot study evaluated an electromagnetic (EM) navigation system for condylar positioning after high-oblique sagittal split osteotomy (HSSO). After HSSO as part of 2-jaw surgery, the position of 10 condyles was intraoperatively guided by an EM navigation system. As controls, 10 proximal segments were positioned by standard manual replacement. Accuracy was measured by pre- and postoperative cone beam computed tomography imaging. Overall, EM condyle repositioning was equally accurate compared with manual repositioning (P > .05). Subdivided into 3 axes, significant differences could be identified (P < .05). Nevertheless, no significantly and clinically relevant dislocations of the proximal segment of either the EM or the manual repositioning method could be shown (P > .05). This pilot study introduces a guided method for proximal segment positioning after HSSO by applying the intraoperative EM system. The data demonstrate the high accuracy of EM navigation, although manual replacement of the condyles could not be surpassed. However, EM navigation can avoid clinically hidden, severe malpositioning of the condyles. Copyright © 2017 Elsevier Inc. All rights reserved.
Design of a laser navigation system for the inspection robot used in substation
NASA Astrophysics Data System (ADS)
Zhu, Jing; Sun, Yanhe; Sun, Deli
2017-01-01
Aimed at the deficiency of the magnetic guide and RFID parking system used by substation inspection robot now, a laser navigation system is designed, and the system structure, the method of map building and positioning are all introduced. The system performance is tested in a 500kV substation, and the result show that the repetitive precision of navigation system is precise enough to help the robot fulfill inspection tasks.
Sieskiewicz, A; Lyson, T; Mariak, Z; Rogowski, M
2008-05-01
Histopathological diagnosis of intraorbital tumours is of crucial value for planning further therapy. The aim of the study was to explore clinical utility of image-guided endoscopy for biopsy of orbital tumours. Trans-nasal endoscopic biopsy of intraorbital mass lesions was performed in 6 patients using a neuro-navigation system (Medtronic Stealth Station Treon plus). The CT and MRI 1 mm slice images were fused by the system in order to visualise both bony and soft tissue structures. The anatomic fiducial registration protocol was used during the procedure. All lesions were precisely localised and the biopsies could be taken from the representative part of the pathological mass. None of the patients developed aggravation of ocular symptoms after the procedure. The operative corridor as well as the size of orbital wall fenestration could be limited to a minimum. The accuracy of neuro-navigation remained high and stable during the entire procedure. The image-guided neuro-navigation system facilitated endoscopic localisation and biopsy of intraorbital tumours and contributed to the reduction of surgical trauma during the procedure. The technique was particularly useful in small, medially located, retrobulbar tumours and in unclear situations when the structure of the lesion resembled surrounding intraorbital tissue.
Navigation concepts for MR image-guided interventions.
Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald
2008-02-01
The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.
Raut, Anant; Thapa, Poshan; Citrin, David; Schwarz, Ryan; Gauchan, Bikash; Bista, Deepak; Tamrakar, Bibhu; Halliday, Scott; Maru, Duncan; Schwarz, Dan
2015-12-01
Patient navigation programs have shown to be effective across multiple settings in guiding patients through the care delivery process. Limited experience and literature exist, however, for such programs in rural and resource-constrained environments. Patients living in such settings frequently have low health literacy and substantially lower social status than their providers. They typically have limited experiences interfacing with formalized healthcare systems, and, when they do, their experience can be unpleasant and confusing. At a district hospital in rural far-western Nepal, we designed and implemented a patient navigation system that aimed to improve patients' subjective care experience. First, we hired and trained a team of patient navigators who we recruited from the local area. Their responsibility is exclusively to demonstrate compassion and to guide patients through their care process. Second, we designed visual cues throughout our hospital complex to assist in navigating patients through the buildings. Third, we incorporated the patient navigators within the management and communications systems of the hospital care team, and established standard operating procedures. We describe here our experiences and challenges in designing and implementing a patient navigator program. Such patient-centered systems may be relevant at other facilities in Nepal and globally where patient health literacy is low, patients come from backgrounds of substantial marginalization and disempowerment, and patient experience with healthcare facilities is limited. Copyright © 2015 Elsevier Inc. All rights reserved.
Autonomous navigation and mobility for a planetary rover
NASA Technical Reports Server (NTRS)
Miller, David P.; Mishkin, Andrew H.; Lambert, Kenneth E.; Bickler, Donald; Bernard, Douglas E.
1989-01-01
This paper presents an overview of the onboard subsystems that will be used in guiding a planetary rover. Particular emphasis is placed on the planning and sensing systems and their associated costs, particularly in computation. Issues that will be used in evaluating trades between the navigation system and mobility system are also presented.
Navigational Guidance and Ablation Planning Tools for Interventional Radiology.
Sánchez, Yadiel; Anvari, Arash; Samir, Anthony E; Arellano, Ronald S; Prabhakar, Anand M; Uppot, Raul N
Image-guided biopsy and ablation relies on successful identification and targeting of lesions. Currently, image-guided procedures are routinely performed under ultrasound, fluoroscopy, magnetic resonance imaging, or computed tomography (CT) guidance. However, these modalities have their limitations including inadequate visibility of the lesion, lesion or organ or patient motion, compatibility of instruments in an magnetic resonance imaging field, and, for CT and fluoroscopy cases, radiation exposure. Recent advances in technology have resulted in the development of a new generation of navigational guidance tools that can aid in targeting lesions for biopsy or ablations. These navigational guidance tools have evolved from simple hand-held trajectory guidance tools, to electronic needle visualization, to image fusion, to the development of a body global positioning system, to growth in cone-beam CT, and to ablation volume planning. These navigational systems are promising technologies that not only have the potential to improve lesion targeting (thereby increasing diagnostic yield of a biopsy or increasing success of tumor ablation) but also have the potential to decrease radiation exposure to the patient and staff, decrease procedure time, decrease the sedation requirements, and improve patient safety. The purpose of this article is to describe the challenges in current standard image-guided techniques, provide a definition and overview for these next-generation navigational devices, and describe the current limitations of these, still evolving, next-generation navigational guidance tools. Copyright © 2017 Elsevier Inc. All rights reserved.
Nova, Igor; Kallus, Sebastian; Berger, Moritz; Ristow, Oliver; Eisenmann, Urs; Freudlsperger, Christian; Hoffmann, Jürgen; Dickhaus, Hartmut
2017-05-01
Modifications of the temporomandibular joint position after mandible osteotomy are reluctantly accepted in orthognathic surgery. To tackle this problem, we developed a new navigation system using miniaturized electromagnetic sensors. Our imageless navigation approach is therefore optimized to avoid complications of previously proposed optical approaches such as the interference with established surgical procedures and the line of sight problem. High oblique sagittal split osteotomies were performed on 6 plastic skull mandibles in a laboratory under conditions comparable to the operating theatre. The subsequent condyle reposition was guided by an intuitive user interface and performed by electromagnetic navigation. To prove the suitability and accuracy of this novel approach for condyle navigation, the positions of 3 titanium marker screws placed on each of the proximal segments were compared using pre- and postoperative Cone Beam Computed Tomography (CBCT) imaging. Guided by the electromagnetic navigation system, positioning of the condyles was highly accurate in all dimensions. Translational discrepancies up to 0,65 mm and rotations up to 0,38° in mean could be measured postoperatively. There were no statistically significant differences between navigation results and CBCT measurements. The intuitive user interface provides a simple way to precisely restore the initial position and orientation of the proximal mandibular segments. Our electromagnetic navigation system therefore yields a promising approach for orthognathic surgery applications. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Is Surgical Navigation Useful During Closed Reduction of Nasal Bone Fractures?
Kim, Seon Tae; Jung, Joo Hyun; Kang, Il Gyu
2017-05-01
To report the case of a 42-year-old woman with a nasal bone fracture that was easily treated using a surgical navigation system. In this clinical report, the authors suggest that intraoperative surgical navigation systems are useful diagnostically and for localizing sites of nasal bone fractures exactly. The patient underwent successful closed reduction of the nasal bone fracture. Surgical navigation is a useful tool for identifying nasal bone fracture locations and for guiding closed reduction. Surgical navigation is recommended when nasal bone fractures are complicated or not well reduced using the ordinary method.
NASA Astrophysics Data System (ADS)
Kim, Younsu; Kim, Sungmin; Boctor, Emad M.
2017-03-01
An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.
Development of the navigation system for visually impaired.
Harada, Tetsuya; Kaneko, Yuki; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige
2004-01-01
A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without the help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for their correct route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination is used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and make notice to an user by vibration. This system recognizes the line of the color stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.
Image-guided laparoscopic surgery in an open MRI operating theater.
Tsutsumi, Norifumi; Tomikawa, Morimasa; Uemura, Munenori; Akahoshi, Tomohiko; Nagao, Yoshihiro; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Maehara, Yoshihiko; Hashizume, Makoto
2013-06-01
The recent development of open magnetic resonance imaging (MRI) has provided an opportunity for the next stage of image-guided surgical and interventional procedures. The purpose of this study was to evaluate the feasibility of laparoscopic surgery under the pneumoperitoneum with the system of an open MRI operating theater. Five patients underwent laparoscopic surgery with a real-time augmented reality navigation system that we previously developed in a horizontal-type 0.4-T open MRI operating theater. All procedures were performed in an open MRI operating theater. During the operations, the laparoscopic monitor clearly showed the augmented reality models of the intraperitoneal structures, such as the common bile ducts and the urinary bladder, as well as the proper positions of the prosthesis. The navigation frame rate was 8 frames per min. The mean fiducial registration error was 6.88 ± 6.18 mm in navigated cases. We were able to use magnetic resonance-incompatible surgical instruments out of the 5-Gs restriction area, as well as conventional laparoscopic surgery, and we developed a real-time augmented reality navigation system using open MRI. Laparoscopic surgery with our real-time augmented reality navigation system in the open MRI operating theater is a feasible option.
Huang, Meng; Barber, Sean Michael; Steele, William James; Boghani, Zain; Desai, Viren Rajendrakumar; Britz, Gavin Wayne; West, George Alexander; Trask, Todd Wilson; Holman, Paul Joseph
2018-06-01
Image-guided approaches to spinal instrumentation and interbody fusion have been widely popularized in the last decade [1-5]. Navigated pedicle screws are significantly less likely to breach [2, 3, 5, 6]. Navigation otherwise remains a point reference tool because the projection is off-axis to the surgeon's inline loupe or microscope view. The Synaptive robotic brightmatter drive videoexoscope monitor system represents a new paradigm for off-axis high-definition (HD) surgical visualization. It has many advantages over the traditional microscope and loupes, which have already been demonstrated in a cadaveric study [7]. An auxiliary, but powerful capability of this system is projection of a second, modifiable image in a split-screen configuration. We hypothesized that integration of both Medtronic and Synaptive platforms could permit the visualization of reconstructed navigation and surgical field images simultaneously. By utilizing navigated instruments, this configuration has the ability to support live image-guided surgery or real-time navigation (RTN). Medtronic O-arm/Stealth S7 navigation, MetRx, NavLock, and SureTrak spinal systems were implemented on a prone cadaveric specimen with a stream output to the Synaptive Display. Surgical visualization was provided using a Storz Image S1 platform and camera mounted to the Synaptive robotic brightmatter drive. We were able to successfully technically co-adapt both platforms. A minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) and an open pedicle subtraction osteotomy (PSO) were performed using a navigated high-speed drill under RTN. Disc Shaver and Trials under RTN were implemented on the MIS TLIF. The synergy of Synaptive HD videoexoscope robotic drive and Medtronic Stealth platforms allow for live image-guided surgery or real-time navigation (RTN). Off-axis projection also allows upright neutral cervical spine operative ergonomics for the surgeons and improved surgical team visualization and education compared to traditional means. This technique has the potential to augment existing minimally invasive and open approaches, but will require long-term outcome measurements for efficacy.
Servat, Juan J; Elia, Maxwell Dominic; Gong, Dan; Manes, R Peter; Black, Evan H; Levin, Flora
2014-12-01
To assess the feasibility of routine use of electromagnetic image guidance systems in orbital decompression. Six consecutive patients underwent stereotactic-guided three wall orbital decompression using the novel Fusion ENT Navigation System (Medtronic), a portable and expandable electromagnetic guidance system with multi-instrument tracking capabilities. The system consists of the Medtronic LandmarX System software-enabled computer station, signal generator, field-generating magnet, head-mounted marker coil, and surgical tracking instruments. In preparation for use of the LandmarX/Fusion protocol, all patients underwent preoperative non-contrast CT scan from the superior aspect of the frontal sinuses to the inferior aspect of the maxillary sinuses that includes the nasal tip. The Fusion ENT Navigation System (Medtronic™) was used in 6 patients undergoing maximal 3-wall orbital decompression for Graves' orbitopthy after a minimum of six months of disease inactivity. Preoperative Hertel exophthalmometry measured more than 27 mm in all patients. The navigation system proved to be no more difficult technically than the traditional orbital decompression approach. Electromagnetic image guidance is a stereotactic surgical navigation system that provides additional intraoperative flexibility in orbital surgery. Electromagnetic image-guidance offers the ability to perform more aggressive orbital decompressions with reduced risk.
A Low-Cost, Passive Navigation Training System for Image-Guided Spinal Intervention.
Lorias-Espinoza, Daniel; Carranza, Vicente González; de León, Fernando Chico-Ponce; Escamirosa, Fernando Pérez; Martinez, Arturo Minor
2016-11-01
Navigation technology is used for training in various medical specialties, not least image-guided spinal interventions. Navigation practice is an important educational component that allows residents to understand how surgical instruments interact with complex anatomy and to learn basic surgical skills such as the tridimensional mental interpretation of bidimensional data. Inexpensive surgical simulators for spinal surgery, however, are lacking. We therefore designed a low-cost spinal surgery simulator (Spine MovDigSys 01) to allow 3-dimensional navigation via 2-dimensional images without altering or limiting the surgeon's natural movement. A training system was developed with an anatomical lumbar model and 2 webcams to passively digitize surgical instruments under MATLAB software control. A proof-of-concept recognition task (vertebral body cannulation) and a pilot test of the system with 12 neuro- and orthopedic surgeons were performed to obtain feedback on the system. Position, orientation, and kinematic variables were determined and the lateral, posteroanterior, and anteroposterior views obtained. The system was tested with a proof-of-concept experimental task. Operator metrics including time of execution (t), intracorporeal length (d), insertion angle (α), average speed (v¯), and acceleration (a) were obtained accurately. These metrics were converted into assessment metrics such as smoothness of operation and linearity of insertion. Results from initial testing are shown and the system advantages and disadvantages described. This low-cost spinal surgery training system digitized the position and orientation of the instruments and allowed image-guided navigation, the generation of metrics, and graphic recording of the instrumental route. Spine MovDigSys 01 is useful for development of basic, noninnate skills and allows the novice apprentice to quickly and economically move beyond the basics. Copyright © 2016 Elsevier Inc. All rights reserved.
Guiding Blind Pedestrians with a Personal Navigation System
NASA Astrophysics Data System (ADS)
Dodson, A. H.; Moon, G. V.; Moore, T.; Jones, D.
With the assistance provided by the white cane or guide dog, most blind pedestrians can find their way to known destinations along familiar routes. Finding new or known destinations along unfamiliar routes is more challenging. Before such a journey is attempted, detailed instructions must be acquired. The difficulty of obtaining and then reliably following such instructions deters many blind pedestrians from travelling alone in unknown areas. This paper demonstrates a technological approach, by way of field trials, that supplements the existing aids and eliminates the need for sighted guides. The approach has the potential to offer greater independence to the blind person. The investigation suggests that the methodology used in personal navigation systems for the sighted is sub-optimal for guiding the blind pedestrian. Suitable extensions are introduced, and the results show the proposed methodology is efficient for guiding the blind individual to unknown destinations in the chosen field trial environment.
Gröbe, Alexander; Weber, Christoph; Schmelzle, Rainer; Heiland, Max; Klatt, Jan; Pohlenz, Philipp
2009-09-01
Gunshot wounds are a rare occurrence during times of peace. The removal of projectiles is recommended; in some cases, however, this is a controversy. The reproduction of a projectile image can be difficult if it is not adjacent to an anatomical landmark. Therefore, navigation systems give the surgeon continuous real-time orientation intraoperatively. The aim of this study was to report our experiences for image-guided removal of projectiles and the resulting intra- and postoperative complications. We investigated 50 patients retrospectively; 32 had image-guided surgical removal of projectiles in the oral and maxillofacial region. Eighteen had surgical removal of projectiles without navigation assistance. There was a significant correlation (p = 0.0136) between the navigated surgery vs. not-navigated surgery and complication rate, including major bleeding (n = 4 vs. n = 1, 8% vs. 2%), soft tissue infections (n = 7 vs. n = 2, 14% vs. 4%), and nerval damage (n = 2 vs. n = 0, 4% vs. 0%; p = 0.038) and between the operating time and postoperative complications. A high tendency between operating time and navigated surgery (p = 0.1103) was shown. When using navigation system, we could reduce operating time. In conclusion, there is a significant correlation between reduced intra- and postoperative complications, including wound infections, nerval damage, and major bleeding, and the appropriate use of a navigation system. In all these cases, we could present reduced operating time. Cone-beam computed tomography plays an important role in detecting projectiles or metallic foreign bodies intraoperatively.
Brighton, Caroline H.; Thomas, Adrian L. R.
2017-01-01
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus, attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best—and exceedingly well—modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant (N). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. PMID:29203660
Brighton, Caroline H; Thomas, Adrian L R; Taylor, Graham K
2017-12-19
The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus , attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best-and exceedingly well-modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant ( N ). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. Copyright © 2017 the Author(s). Published by PNAS.
Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and Applications.
Luo, Xiongbiao; Mori, Kensaku; Peters, Terry M
2018-06-04
Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seebauer, Christian J., E-mail: christian.seebauer@charite.d; Bail, Hermann J., E-mail: hermann-josef.bail@klinikum-nuernberg.d; Rump, Jens C., E-mail: jens.rump@charite.de
Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesionsmore » of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.« less
A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum
NASA Astrophysics Data System (ADS)
Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.
2013-11-01
3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.
[Experience of Fusion image guided system in endonasal endoscopic surgery].
Wen, Jingying; Zhen, Hongtao; Shi, Lili; Cao, Pingping; Cui, Yonghua
2015-08-01
To review endonasal endoscopic surgeries aided by Fusion image guided system, and to explore the application value of Fusion image guided system in endonasal endoscopic surgeries. Retrospective research. Sixty cases of endonasal endoscopic surgeries aided by Fusion image guided system were analysed including chronic rhinosinusitis with polyp (n = 10), fungus sinusitis (n = 5), endoscopic optic nerve decompression (n = 16), inverted papilloma of the paranasal sinus (n = 9), ossifying fibroma of sphenoid bone (n = 1), malignance of the paranasal sinus (n = 9), cerebrospinal fluid leak (n = 5), hemangioma of orbital apex (n = 2) and orbital reconstruction (n = 3). Sixty cases of endonasal endoscopic surgeries completed successfully without any complications. Fusion image guided system can help to identify the ostium of paranasal sinus, lamina papyracea and skull base. Fused CT-CTA images, or fused MR-MRA images can help to localize the optic nerve or internal carotid arteiy . Fused CT-MR images can help to detect the range of the tumor. It spent (7.13 ± 1.358) minutes for image guided system to do preoperative preparation and the surgical navigation accuracy reached less than 1mm after proficient. There was no device localization problem because of block or head set loosed. Fusion image guided system make endonasal endoscopic surgery to be a true microinvasive and exact surgery. It spends less preoperative preparation time, has high surgical navigation accuracy, improves the surgical safety and reduces the surgical complications.
Navigated MRI-guided liver biopsies in a closed-bore scanner: experience in 52 patients.
Moche, Michael; Heinig, Susann; Garnov, Nikita; Fuchs, Jochen; Petersen, Tim-Ole; Seider, Daniel; Brandmaier, Philipp; Kahn, Thomas; Busse, Harald
2016-08-01
To evaluate clinical effectiveness and diagnostic efficiency of a navigation device for MR-guided biopsies of focal liver lesions in a closed-bore scanner. In 52 patients, 55 biopsies were performed. An add-on MR navigation system with optical instrument tracking was used for image guidance and biopsy device insertion outside the bore. Fast control imaging allowed visualization of the true needle position at any time. The biopsy workflow and procedure duration were recorded. Histological analysis and clinical course/outcome were used to calculate sensitivity, specificity and diagnostic accuracy. Fifty-four of 55 liver biopsies were performed successfully with the system. No major and four minor complications occurred. Mean tumour size was 23 ± 14 mm and the skin-to-target length ranged from 22 to 177 mm. In 39 cases, access path was double oblique. Sensitivity, specificity and diagnostic accuracy were 88 %, 100 % and 92 %, respectively. The mean procedure time was 51 ± 12 min, whereas the puncture itself lasted 16 ± 6 min. On average, four control scans were taken. Using this navigation device, biopsies of poorly visible and difficult accessible liver lesions could be performed safely and reliably in a closed-bore MRI scanner. The system can be easily implemented in clinical routine workflow. • Targeted liver biopsies could be reliably performed in a closed-bore MRI. • The navigation system allows for image guidance outside of the scanner bore. • Assisted MRI-guided biopsies are helpful for focal lesions with a difficult access. • Successful integration of the method in clinical workflow was shown. • Subsequent system installation in an existing MRI environment is feasible.
Development of the navigation system for the visually impaired by using white cane.
Hirahara, Yoshiaki; Sakurai, Yusuke; Shiidu, Yuriko; Yanashima, Kenji; Magatani, Kazushige
2006-01-01
A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for there correcting route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination are used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and makes notice to a user by vibration. This system recognizes the color of the line stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.
Electromagnetic navigation diagnostic bronchoscopy for small peripheral lung lesions.
Makris, D; Scherpereel, A; Leroy, S; Bouchindhomme, B; Faivre, J-B; Remy, J; Ramon, P; Marquette, C-H
2007-06-01
The present study prospectively evaluated the diagnostic yield and safety of electromagnetic navigation-guided bronchoscopy biopsy, for small peripheral lung lesions in patients where standard techniques were nondiagnostic. The study was conducted in a tertiary medical centre on 40 consecutive patients considered unsuitable for straightforward surgery or computed tomography (CT)-guided transthoracic needle aspiration biopsy, due to comorbidities. The lung lesion diameter was mean+/-sem 23.5+/-1.5 mm and the depth from the visceral-costal pleura was 14.9+/-2 mm. Navigation was facilitated by an electromagnetic tracking system which could detect a position sensor incorporated into a flexible catheter advanced through a bronchoscope. Information obtained during bronchoscopy was superimposed on previously acquired CT data. Divergence between CT data and data obtained during bronchoscopy was calculated by the system's software as a measure of navigational accuracy. All but one of the target lesions was reached and the overall diagnostic yield was 62.5% (25-40). Diagnostic yield was significantly affected by CT-to-body divergence; yield was 77.2% when estimated divergence was
Designing a wearable navigation system for image-guided cancer resection surgery
Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald
2015-01-01
A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure. PMID:24980159
Designing a wearable navigation system for image-guided cancer resection surgery.
Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald
2014-11-01
A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.
Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abi-Jaoudeh, Nadine, E-mail: naj@mail.nih.gov; Kruecker, Jochen, E-mail: jochen.kruecker@philips.com; Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca
2012-10-15
Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methodsmore » of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.« less
SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voros, L; Cohen, G; Zaider, M
Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan imagemore » study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures. While limited to a handful of patients, our experience shows navigation and fluoroscopy guided placement yield similar results.« less
Luz, Maria; Manzey, Dietrich; Modemann, Susanne; Strauss, Gero
2015-01-01
Image-guided navigation (IGN) systems provide automation support of intra-operative information analysis and decision-making for surgeons. Previous research showed that navigated-control (NC) systems which represent high levels of decision-support and directly intervene in surgeons' workflow provide benefits with respect to patient safety and surgeons' physiological stress but also involve several cost effects (e.g. prolonged surgery duration, reduced secondary-task performance). It was hypothesised that less automated distance-control (DC) systems would provide a better solution in terms of human performance consequences. N = 18 surgeons performed a simulated mastoidectomy with NC, DC and without IGN assistance. Effects on surgical performance, physiological effort, workload and situation awareness (SA) were compared. As expected, DC technology had the same benefits as the NC system but also led to less unwanted side effects on surgery duration, subjective workload and SA. This suggests that IGN systems just providing information analysis support are overall more beneficial than higher automated decision-support. This study investigates human performance consequences of different concepts of IGN support for surgeons. Less automated DC systems turned out to provide advantages for patient safety and surgeons' stress similar to higher automated NC systems with, at the same time, reduced negative consequences on surgery time and subjective workload.
Theodoraki, M N; Ledderose, G J; Becker, S; Leunig, A; Arpe, S; Luz, M; Stelter, K
2015-04-01
The use of image-guided navigation systems in the training of FESS is discussed controversy. Many experienced sinus surgeons report a better spatial orientation and an improved situational awareness intraoperatively. But many fear that the navigation system could be a disadvantage in the surgical training because of a higher mental demand and a possible loss of surgical skills. This clinical field study investigates mental and physical demands during transnasal surgery with and without the aid of a navigation system at an early stage in FESS training. Thirty-two endonasal sinus surgeries done by eight different trainee surgeons were included. After randomization, one side of each patient was operated by use of a navigation system, the other side without. During the whole surgery, the surgeons were connected to a biofeedback device measuring the heart rate, the heart rate variability, the respiratory frequency and the masticator EMG. Stress situations could be identified by an increase of the heart rate frequency and a decrease of the heart rate variability. The mental workload during a FESS procedure is high compared to the baseline before and after surgery. The mental workload level when using the navigation did not significantly differ from the side without using the navigation. Residents with more than 30 FESS procedures already done, showed a slightly decreased mental workload when using the navigation. An additional workload shift toward the navigation system could not be observed in any surgeon. Remarkable other stressors could be identified during this study: the behavior of the supervisor or the use of the 45° endoscope, other colleagues or students entering the theatre, poor vision due to bleeding and the preoperative waiting when measuring the baseline. The mental load of young surgeons in FESS surgery is tremendous. The application of a navigation system did not cause a higher mental workload or distress. The device showed a positive effort to engage for the trainees with more than 30 FESS procedures done. In this subgroup it even leads to decreased mental workload.
Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor
NASA Astrophysics Data System (ADS)
Xiao, Peng; Luan, Yiqing; Wang, Haipeng; Li, Li; Li, Jianxiang
2017-01-01
In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.
Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study.
Putzer, D; Arco, D; Schamberger, B; Schanda, F; Mahlknecht, J; Widmann, G; Schullian, P; Jaschke, W; Bale, R
2016-05-01
We compared the targeting accuracy and reliability of two different electromagnetic navigation systems for manually guided punctures in a phantom. CT data sets of a gelatin filled plexiglass phantom were acquired with 1, 3, and 5 mm slice thickness. After paired-point registration of the phantom, a total of 480 navigated stereotactic needle insertions were performed manually using electromagnetic guidance with two different navigation systems (Medtronic Stealth Station: AxiEM; Philips: PercuNav). A control CT was obtained to measure the target positioning error between the planned and actual needle trajectory. Using the Philips PercuNav, the accomplished Euclidean distances were 4.42 ± 1.33 mm, 4.26 ± 1.32 mm, and 4.46 ± 1.56 mm at a slice thickness of 1, 3, and 5 mm, respectively. The mean lateral positional errors were 3.84 ± 1.59 mm, 3.84 ± 1.43 mm, and 3.81 ± 1.71 mm, respectively. Using the Medtronic Stealth Station AxiEM, the Euclidean distances were 3.86 ± 2.28 mm, 3.74 ± 2.1 mm, and 4.81 ± 2.07 mm at a slice thickness of 1, 3, and 5 mm, respectively. The mean lateral positional errors were 3.29 ± 1.52 mm, 3.16 ± 1.52 mm, and 3.93 ± 1.68 mm, respectively. Both electromagnetic navigation devices showed excellent results regarding puncture accuracy in a phantom model. The Medtronic Stealth Station AxiEM provided more accurate results in comparison to the Philips PercuNav for CT with 3 mm slice thickness. One potential benefit of electromagnetic navigation devices is the absence of visual contact between the instrument and the sensor system. Due to possible interference with metal objects, incorrect position sensing may occur. In contrast to the phantom study, patient movement including respiration has to be compensated for in the clinical setting. • Commercially available electromagnetic navigation systems have the potential to improve the therapeutic range for CT guided percutaneous procedures by comparing the needle placement accuracy on the basis of planning CT data sets with different slice thickness. Citation Format: • Putzer D, Arco D, Schamberger B et al. Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study. Fortschr Röntgenstr 2016; 188: 470 - 478. © Georg Thieme Verlag KG Stuttgart · New York.
Assessment of the OsteoMark-Navigation System for Oral and Maxillofacial Surgery
Peacock, Zachary S.; Magill, John C.; Tricomi, Brad J.; Murphy, Brian A.; Nikonovskiy, Vladimir; Hata, Nobuhiko; Chauvin, Laurent; Troulis, Maria J.
2015-01-01
Purpose To assess the accuracy of a novel navigation system for maxillofacial surgery using human cadavers and a live minipig model. Methods We describe and test an electromagnetic tracking system (OsteoMark Navigation) that uses simple sensors to determine position and orientation of a hand held pencil-like marking device. The device can translate 3-dimensional computed tomographic data intraoperatively to allow the surgeon to localize and draw a proposed osteotomy or the margins of a tumor on the bone. The accuracy of OsteoMark-Navigation in locating and marking osteotomies and screw positions in human cadaver heads was assessed. In Group 1 (n=3, 6 sides), Osteomark-Navigation marked osteotomies and screw positions were compared to virtual treatment plans In Group 2 (n=3, 6 sides), marked osteotomies and screw positions for distraction osteogenesis devices were compared to those carried out using fabricated guide-stents. Three metrics were used to document precision and accuracy. In Group 3 (n=1), the system was tested in a standard operating room environment. Results For Group 1, the mean error between points was 0.7mm (horizontal) and 1.7mm (vertical). When compared to the posterior and inferior mandibular border the mean error was 1.2 and 1.7mm, respectively. For Group 2, the mean discrepancy between points marked by Osteomark-Navigation and the surgical guides was 1.9 mm (range 0-4.1 mm). The system maintained accuracy on a live minipig in a standard operating room environment. Conclusion Based on this research OsteoMark-Navigation is potentially a powerful tool for clinical use in maxillofacial surgery. It has accuracy and precision comparable to existing clinical applications. PMID:25865717
Kundnani, Vishal; Dutta, Shumayou; Patel, Ankit; Mehta, Gaurav; Singh, Mahendra
2018-01-01
Study Design Prospective cohort study. Purpose To compare intraoperative parameters, radiation exposure, and pedicle screw perforation rate in navigation-guided versus non-navigated fluoroscopy-assisted minimal invasive transforaminal lumbar interbody fusion (MIS TLIF). Overview of Literature The poor reliability of fluoroscopy-guided instrumentation and growing concerns about radiation exposure have led to the development of navigation-guided instrumentation techniques in MIS TLIF. The literature evaluating the efficacy of navigation-guided MIS TLIF is scant. Methods Eighty-seven patients underwent navigation- or fluoroscopy-guided MIS TLIF for symptomatic lumbar/lumbosacral spondylolisthesis. Demographics, intraoperative parameters (surgical time, blood loss), and radiation exposure (sec/mGy/Gy.cm2 noted from C-arm for comparison only) were recorded. Computed tomography was performed in patients in the navigation and non-navigation groups at postoperative 12 months and reviewed by an independent observer to assess the accuracy of screw placement, perforation incidence, location, grade (Mirza), and critical versus non-critical neurological implications. Results Twenty-seven patients (male/female, 11/16; L4–L5/L5–S1, 9/18) were operated with navigation-guided MIS TLIF, whereas 60 (male/female, 25/35; L4–L5/L5–S1, 26/34) with conventional fluoroscopy-guided MIS TILF. The use of navigation resulted in reduced fluoroscopy usage (dose area product, 0.47 Gy.cm2 versus 2.93 Gy.cm2), radiation exposure (1.68 mGy versus 10.97 mGy), and fluoroscopy time (46.5 seconds versus 119.08 seconds), with p-values of <0.001. Furthermore, 96.29% (104/108) of pedicle screws in the navigation group were accurately placed (grade 0) (4 breaches, all grade I) compared with 91.67% (220/240) in the non-navigation group (20 breaches, 16 grade I+4 grade II; p=0.114). None of the breaches resulted in a corresponding neurological deficit or required revision. Conclusions Navigation guidance in MIS TLIF reduced radiation exposure, but the perforation status was not statistically different than that for the fluoroscopy-based technique. Thus, navigation in nondeformity cases is useful for significantly reducing the radiation exposure, but its ability to reduce pedicle screw perforation in nondeformity cases remains to be proven. PMID:29713413
Electromagnetic navigation versus fluoroscopy in aortic endovascular procedures: a phantom study.
Tystad Lund, Kjetil; Tangen, Geir Arne; Manstad-Hulaas, Frode
2017-01-01
To explore the possible benefits of electromagnetic (EM) navigation versus conventional fluoroscopy during abdominal aortic endovascular procedures. The study was performed on a phantom representing the abdominal aorta. Intraoperative cone beam computed tomography (CBCT) of the phantom was acquired and merged with a preoperative multidetector CT (MDCT). The CBCT was performed with a reference plate fixed to the phantom that, after merging the CBCT with the MDCT, facilitated registration of the MDCT volume with the EM space. An EM field generator was stationed near the phantom. Navigation software was used to display EM-tracked instruments within the 3D image volume. Fluoroscopy was performed using a C-arm system. Five operators performed a series of renal artery cannulations using modified instruments, alternatingly using fluoroscopy or EM navigation as the sole guidance method. Cannulation durations and associated radiation dosages were noted along with the number of cannulations complicated by loss of guidewire insertion. A total of 120 cannulations were performed. The median cannulation durations were 41.5 and 34.5 s for the fluoroscopy- and EM-guided cannulations, respectively. No significant difference in cannulation duration was found between the two modalities (p = 0.736). Only EM navigation showed a significant reduction in cannulation duration in the latter half of its cannulation series compared with the first half (p = 0.004). The median dose area product for fluoroscopy was 0.0836 [Formula: see text]. EM-guided cannulations required a one-time CBCT dosage of 3.0278 [Formula: see text]. Three EM-guided and zero fluoroscopy-guided cannulations experienced loss of guidewire insertion. Our findings indicate that EM navigation is not inferior to fluoroscopy in terms of the ability to guide endovascular interventions. Its utilization may be of particular interest in complex interventions where adequate visualization or minimal use of contrast agents is critical. In vivo studies featuring an optimized implementation of EM navigation should be conducted.
Ganji, Yusof; Janabi-Sharifi, Farrokh; Cheema, Asim N
2011-12-01
Despite the recent advances in catheter design and technology, intra-cardiac navigation during electrophysiology procedures remains challenging. Incorporation of imaging along with magnetic or robotic guidance may improve navigation accuracy and procedural safety. In the present study, the in vivo performance of a novel remote controlled Robot Assisted Cardiac Navigation System (RACN) was evaluated in a porcine model. The navigation catheter and target sensor were advanced to the right atrium using fluoroscopic and intra-cardiac echo guidance. The target sensor was positioned at three target locations in the right atrium (RA) and the navigation task was completed by an experienced physician using both manual and RACN guidance. The navigation time, final distance between the catheter tip and target sensor, and variability in final catheter tip position were determined and compared for manual and RACN guided navigation. The experiments were completed in three animals and five measurements recorded for each target location. The mean distance (mm) between catheter tip and target sensor at the end of the navigation task was significantly less using RACN guidance compared with manual navigation (5.02 ± 0.31 vs. 9.66 ± 2.88, p = 0.050 for high RA, 9.19 ± 1.13 vs. 13.0 ± 1.00, p = 0.011 for low RA and 6.77 ± 0.59 vs. 15.66 ± 2.51, p = 0.003 for tricuspid valve annulus). The average time (s) needed to complete the navigation task was significantly longer by RACN guided navigation compared with manual navigation (43.31 ± 18.19 vs. 13.54 ± 1.36, p = 0.047 for high RA, 43.71 ± 11.93 vs. 22.71 ± 3.79, p = 0.043 for low RA and 37.84 ± 3.71 vs. 16.13 ± 4.92, p = 0.003 for tricuspid valve annulus. RACN guided navigation resulted in greater consistency in performance compared with manual navigation as evidenced by lower variability in final distance measurements (0.41 vs. 0.99 mm, p = 0.04). This study demonstrated the safety and feasibility of the RACN system for cardiac navigation. The results demonstrated that RACN performed comparably with manual navigation, with improved precision and consistency for targets located in and near the right atrial chamber. Copyright © 2011 John Wiley & Sons, Ltd.
Jeron, Andreas; Fredersdorf, Sabine; Debl, Kurt; Oren, Eitan; Izmirli, Alon; Peleg, Alexander; Nekovar, Anton; Herscovici, Adrian; Riegger, Günter A; Luchner, Andreas
2009-11-01
To investigate the safety and feasibility of a newly developed magnetic navigation system for intracoronary tracking. The MediGuide Medical Positioning System (MPS) is a navigation system that was developed to facilitate the navigation of enabled devices within the coronary tree using a magnetic tracking technology. The current prospective, non-randomised, single-centre, first-in-man study was conducted at Universitätsklinikum Regensburg (UKR), Germany on an MPS-enabled AXIOM Artis dFC coronary angiography system (Siemens AG, Forchheim, Germany). We enrolled 20 patients who required IVUS assessment or treatment of a single de novo target lesion in a native coronary artery. The performance was evaluated on a semi-quantitative one-to-five scale where a score of five indicates an excellent superimposition with the vessel and a score of one an unacceptable performance. The mean score for tracking as assessed by projection on life fluoroscopy was 4.89 and 3.58 as assessed by projection on recorded cine-loop. Length measurement of a 20 mm distance was significantly better with the MPS (mean deviation of 0.6 mm=3%) as compared to standard QCA (1.5 mm=8%, p<0.05). Creating a 3D reconstruction was possible in 13 out of 20 cases with an average score of 4.68. No adverse events occurred. The MediGuide Medical Positioning System is safe and feasible in man, facilitates intracoronary navigation and allows 3D reconstruction of the investigated coronary segment.
The accuracy of image-guided navigation for maxillary positioning in bimaxillary surgery.
Sun, Yi; Luebbers, Heinz-Theo; Agbaje, Jimoh Olubanwo; Lambrichts, Ivo; Politis, Constantinus
2014-05-01
The aim of our study was to evaluate the accuracy of image-guided maxillary positioning in sagittal, vertical, and mediolateral direction. Between May 2011 and July 2012, 17 patients (11 males, 6 females) underwent bimaxillary surgery with the use of intraoperative surgical navigation. During Le Fort I osteotomy, the Kolibri navigation system was used to measure movement of the maxilla at the edge of the upper central upper incisor in sagittal (buccal surface), vertical (incisor edge), and mediolateral (dental midline) direction. Six weeks after surgery, a postoperative CBCT scan was taken and registered to the preoperative cone-beam computed tomography scan to identify the actual surgical movement of the maxilla. Student 2-tailed paired t test was used to evaluate differences between the measured result from navigation system and actual surgical movement of the maxilla, which were 0.44 ± 0.35 mm (P = 0.82) in the sagittal, 0.50 ± 0.35 mm (P = 0.85) in the vertical, and 0.56 ± 0.36 mm (P = 0.81) in the mediolateral direction. Our finding demonstrates that intraoperative computer navigation is a promising tool for measuring the surgical change of the maxilla in bimaxillary surgery.
CT-Guided Interventions Using a Free-Hand, Optical Tracking System: Initial Clinical Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubert, Tilman, E-mail: TSchubert@uhbs.ch; Jacob, Augustinus L.; Pansini, Michele
2013-08-01
PurposeThe present study was designed to evaluate the geometrical accuracy and clinical applicability of a new, free-hand, CT-guided, optical navigation system.MethodsFifteen procedures in 14 consecutive patients were retrospectively analyzed. The navigation system was applied for interventional procedures on small target lesions, in cases with long needle paths, narrow access windows, or when an out-of-plane access was expected. Mean lesion volume was 27.9 ml, and mean distance to target measured was 107.5 mm. Eleven of 15 needle trajectories were planned as out-of-plane approaches regarding the axial CT plane.ResultsNinety-one percent of the biopsies were diagnostic. All therapeutic interventions were technically successful. Targetingmore » precision was high with a mean distance of the needle tip from planned target of 1.98 mm. Mean intervention time was 1:12 h. A statistically significant correlation between angular needle deviation and intervention time (p = 0.007), respiratory movement of the target (p = 0.008), and body mass index (p = 0.02) was detected. None of the evaluated parameters correlated significantly with the distance from the needle tip to the planned target.ConclusionsThe application of a navigation system for complex CT-guided procedures provided safe and effective targeting within a reasonable intervention time in our series.« less
Navigation with Electromagnetic Tracking for Interventional Radiology Procedures
Wood, Bradford J.; Zhang, Hui; Durrani, Amir; Glossop, Neil; Ranjan, Sohan; Lindisch, David; Levy, Eliott; Banovac, Filip; Borgert, Joern; Krueger, Sascha; Kruecker, Jochen; Viswanathan, Anand; Cleary, Kevin
2008-01-01
PURPOSE To assess the feasibility of the use of preprocedural imaging for guide wire, catheter, and needle navigation with electromagnetic tracking in phantom and animal models. MATERIALS AND METHODS An image-guided intervention software system was developed based on open-source software components. Catheters, needles, and guide wires were constructed with small position and orientation sensors in the tips. A tetrahedral-shaped weak electromagnetic field generator was placed in proximity to an abdominal vascular phantom or three pigs on the angiography table. Preprocedural computed tomographic (CT) images of the phantom or pig were loaded into custom-developed tracking, registration, navigation, and rendering software. Devices were manipulated within the phantom or pig with guidance from the previously acquired CT scan and simultaneous real-time angiography. Navigation within positron emission tomography (PET) and magnetic resonance (MR) volumetric datasets was also performed. External and endovascular fiducials were used for registration in the phantom, and registration error and tracking error were estimated. RESULTS The CT scan position of the devices within phantoms and pigs was accurately determined during angiography and biopsy procedures, with manageable error for some applications. Preprocedural CT depicted the anatomy in the region of the devices with real-time position updating and minimal registration error and tracking error (<5 mm). PET can also be used with this system to guide percutaneous biopsies to the most metabolically active region of a tumor. CONCLUSIONS Previously acquired CT, MR, or PET data can be accurately codisplayed during procedures with reconstructed imaging based on the position and orientation of catheters, guide wires, or needles. Multimodality interventions are feasible by allowing the real-time updated display of previously acquired functional or morphologic imaging during angiography, biopsy, and ablation. PMID:15802449
Image navigation as a means to expand the boundaries of fluorescence-guided surgery
NASA Astrophysics Data System (ADS)
Brouwer, Oscar R.; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L.; Wendler, Thomas; Valdés-Olmos, Renato A.; van der Poel, Henk G.; van Leeuwen, Fijs W. B.
2012-05-01
Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.
Visual Landmarks Facilitate Rodent Spatial Navigation in Virtual Reality Environments
ERIC Educational Resources Information Center
Youngstrom, Isaac A.; Strowbridge, Ben W.
2012-01-01
Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain…
A Kalman Approach to Lunar Surface Navigation using Radiometric and Inertial Measurements
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Welch, Bryan W.; Sands, O. Scott; Nguyen, Binh V.
2009-01-01
Future lunar missions supporting the NASA Vision for Space Exploration will rely on a surface navigation system to determine astronaut position, guide exploration, and return safely to the lunar habitat. In this report, we investigate one potential architecture for surface navigation, using an extended Kalman filter to integrate radiometric and inertial measurements. We present a possible infrastructure to support this technique, and we examine an approach to simulating navigational accuracy based on several different system configurations. The results show that position error can be reduced to 1 m after 5 min of processing, given two satellites, one surface communication terminal, and knowledge of the starting position to within 100 m.
Multiple Coaxial Catheter System for Reliable Access in Interventional Stroke Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulcsar, Zsolt, E-mail: kulcsarzsolt22@gmail.com; Yilmaz, Hasan; Bonvin, Christophe
2010-12-15
In some patients with acute cerebral vessel occlusion, navigating mechanical thrombectomy systems is difficult due to tortuous anatomy of the aortic arch, carotid arteries, or vertebral arteries. Our purpose was to describe a multiple coaxial catheter system used for mechanical revascularization that helps navigation and manipulations in tortuous vessels. A triple or quadruple coaxial catheter system was built in 28 consecutive cases presenting with acute ischemic stroke. All cases were treated by mechanical thrombectomy with the Penumbra System. In cases of unsuccessful thrombo-aspiration, additional thrombolysis or angioplasty with stent placement was used for improving recanalization. The catheter system consisted ofmore » an outermost 8-Fr and an intermediate 6-Fr guiding catheter, containing the inner Penumbra reperfusion catheters. The largest, 4.1-Fr, reperfusion catheter was navigated over a Prowler Select Plus microcatheter. The catheter system provided access to reach the cerebral lesions and provided stability for the mechanically demanding manipulations of thromboaspiration and stent navigation in all cases. Apart from their mechanical role, the specific parts of the system could also provide access to different types of interventions, like carotid stenting through the 8-Fr guiding catheter and intracranial stenting and thrombolysis through the Prowler Select Plus microcatheter. In this series, there were no complications related to the catheter system. In conclusion, building up a triple or quadruple coaxial system proved to be safe and efficient in our experience for the mechanical thrombectomy treatment of acute ischemic stroke.« less
NASA Astrophysics Data System (ADS)
Walker, M.
2012-05-01
Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.
3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation
NASA Astrophysics Data System (ADS)
Dekoulis, George
2016-07-01
This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.
Accuracy of image-guided surgical navigation using near infrared (NIR) optical tracking
NASA Astrophysics Data System (ADS)
Jakubovic, Raphael; Farooq, Hamza; Alarcon, Joseph; Yang, Victor X. D.
2015-03-01
Spinal surgery is particularly challenging for surgeons, requiring a high level of expertise and precision without being able to see beyond the surface of the bone. Accurate insertion of pedicle screws is critical considering perforation of the pedicle can result in profound clinical consequences including spinal cord, nerve root, arterial injury, neurological deficits, chronic pain, and/or failed back syndrome. Various navigation systems have been designed to guide pedicle screw fixation. Computed tomography (CT)-based image guided navigation systems increase the accuracy of screw placement allowing for 3- dimensional visualization of the spinal anatomy. Current localization techniques require extensive preparation and introduce spatial deviations. Use of near infrared (NIR) optical tracking allows for realtime navigation of the surgery by utilizing spectral domain multiplexing of light, greatly enhancing the surgeon's situation awareness in the operating room. While the incidence of pedicle screw perforation and complications have been significantly reduced with the introduction of modern navigational technologies, some error exists. Several parameters have been suggested including fiducial localization and registration error, target registration error, and angular deviation. However, many of these techniques quantify error using the pre-operative CT and an intra-operative screenshot without assessing the true screw trajectory. In this study we quantified in-vivo error by comparing the true screw trajectory to the intra-operative trajectory. Pre- and post- operative CT as well as intra-operative screenshots were obtained for a cohort of patients undergoing spinal surgery. We quantified entry point error and angular deviation in the axial and sagittal planes.
Open-source platforms for navigated image-guided interventions.
Ungi, Tamas; Lasso, Andras; Fichtinger, Gabor
2016-10-01
Navigation technology is changing the clinical standards in medical interventions by making existing procedures more accurate, and new procedures possible. Navigation is based on preoperative or intraoperative imaging combined with 3-dimensional position tracking of interventional tools registered to the images. Research of navigation technology in medical interventions requires significant engineering efforts. The difficulty of developing such complex systems has been limiting the clinical translation of new methods and ideas. A key to the future success of this field is to provide researchers with platforms that allow rapid implementation of applications with minimal resources spent on reimplementing existing system features. A number of platforms have been already developed that can share data in real time through standard interfaces. Complete navigation systems can be built using these platforms using a layered software architecture. In this paper, we review the most popular platforms, and show an effective way to take advantage of them through an example surgical navigation application. Copyright © 2016 Elsevier B.V. All rights reserved.
Real Time Navigation-Assisted Orbital Wall Reconstruction in Blowout Fractures.
Shin, Ho Seong; Kim, Se Young; Cha, Han Gyu; Han, Ba Leun; Nam, Seung Min
2016-03-01
Limitation in performing restoration of orbital structures is the narrow, deep, and dark surgical field, which makes it difficult to view the operative site directly. To avoid perioperative complications from this limitation, the authors have evaluated the usefulness of computer-assisted navigation techniques in surgical treatment of blowout fracture. Total 37 patients (14 medial orbital wall fractures and 23 inferior orbital wall fractures) with facial deformities had surgical treatment under the guide of navigation system between September 2012 and January 2015. All 37 patients were treated successfully and safely with navigation-assisted surgery without any complications, including diplopia, retrobulbar hematoma, globe injury, implant migration, and blindness. Blowout fracture can be treated safely under guidance of a surgical navigation system. In orbital surgery, navigation-assisted technology could give rise to improvements in the functional and aesthetic outcome and checking the position of the instruments on the surgical site in real time, without injuring important anatomic structures.
Guiding Students to Answers: Query Recommendation
ERIC Educational Resources Information Center
Yilmazel, Ozgur
2011-01-01
This paper reports on a guided navigation system built on the textbook search engine developed at Anadolu University to support distance education students. The search engine uses Turkish Language specific language processing modules to enable searches over course material presented in Open Education Faculty textbooks. We implemented a guided…
[Principles of MR-guided interventions, surgery, navigation, and robotics].
Melzer, A
2010-08-01
The application of magnetic resonance imaging (MRI) as an imaging technique in interventional and surgical techniques provides a new dimension of soft tissue-oriented precise procedures without exposure to ionizing radiation and nephrotoxic allergenic, iodine-containing contrast agents. The technical capabilities of MRI in combination with interventional devices and systems, navigation, and robotics are discussed.
Tsopra, Rosy; Jais, Jean-Philippe; Venot, Alain; Duclos, Catherine
2014-02-01
It is important to consider the way in which information is presented by the interfaces of clinical decision support systems, to favor the adoption of these systems by physicians. Interface design can focus on decision processes (guided navigation) or usability principles. The aim of this study was to compare these two approaches in terms of perceived usability, accuracy rate, and confidence in the system. We displayed clinical practice guidelines for antibiotic treatment via two types of interface, which we compared in a crossover design. General practitioners were asked to provide responses for 10 clinical cases and the System Usability Scale (SUS) for each interface. We assessed SUS scores, the number of correct responses, and the confidence level for each interface. SUS score and percentage confidence were significantly higher for the interface designed according to usability principles (81 vs 51, p=0.00004, and 88.8% vs 80.7%, p=0.004). The percentage of correct responses was similar for the two interfaces. The interface designed according to usability principles was perceived to be more usable and inspired greater confidence among physicians than the guided navigation interface. Consideration of usability principles in the construction of an interface--in particular 'effective information presentation', 'consistency', 'efficient interactions', 'effective use of language', and 'minimizing cognitive load'--seemed to improve perceived usability and confidence in the system.
Diagnostic and therapeutic aspects in the treatment of gunshot wounds of the viscerocranium.
Gröbe, A; Klatt, J; Heiland, M; Schmelzle, R; Pohlenz, P
2011-02-01
Gunshot wounds of the viscerocranium are a rare occurrence during times of peace in Europe. The removal of projectiles is recommended; in some cases, however, this is controversial. The material properties of projectiles and destruction of anatomical landmarks make it difficult to determine their precise location. Therefore, navigation systems and cone-beam computed tomography (CT) provide the surgeon with continuous intraoperative orientation in real-time. The aim of this study was to report our experiences for image-guided removal of projectiles, the use of cone-beam computed tomography and the resulting intra- and postoperative complications. We investigated 50 patients with gunshot wounds of the facial skeleton retrospectively, 32 had image-guided surgical removal of projectiles in the oral and maxillofacial region, 18 had surgical removal of projectiles without navigation assistance and in 28 cases we used cone-beam CT in the case of dislocated projectiles and fractured bones. There was a significant correlation (p = 0.0136) between the navigated versus not navigated surgery and complication rate (8 vs. 32%, p = 0.0132) including major bleeding, soft tissue infections and nerve damage. Furthermore, we could reduce operating time while using a navigation system and cone-beam CT (p = 0.038). A high tendency between operating time and navigated surgery (p = 0.1103) was found. In conclusion, there is a significant correlation between reduced intra- and postoperative complications including wound infections, nerve damage and major bleeding and the appropriate use of a navigation system. In all these cases we were able to present reduced operating time. Cone-beam CT plays a key role as a useful diagnostic tool in detecting projectiles or metallic foreign bodies intraoperatively.
Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator Knowledge Test Guide
DOT National Transportation Integrated Search
1995-01-01
The Flight Standards Service of the Federal Aviation Administration (FAA) has developed this guide to help applicants meet the knowledge requirements for airline transport pilot, aircraft dispatcher, and flight navigator certification. This guide con...
NASA Astrophysics Data System (ADS)
Bates, Lisa M.; Hanson, Dennis P.; Kall, Bruce A.; Meyer, Frederic B.; Robb, Richard A.
1998-06-01
An important clinical application of biomedical imaging and visualization techniques is provision of image guided neurosurgical planning and navigation techniques using interactive computer display systems in the operating room. Current systems provide interactive display of orthogonal images and 3D surface or volume renderings integrated with and guided by the location of a surgical probe. However, structures in the 'line-of-sight' path which lead to the surgical target cannot be directly visualized, presenting difficulty in obtaining full understanding of the 3D volumetric anatomic relationships necessary for effective neurosurgical navigation below the cortical surface. Complex vascular relationships and histologic boundaries like those found in artereovenous malformations (AVM's) also contribute to the difficulty in determining optimal approaches prior to actual surgical intervention. These difficulties demonstrate the need for interactive oblique imaging methods to provide 'line-of-sight' visualization. Capabilities for 'line-of- sight' interactive oblique sectioning are present in several current neurosurgical navigation systems. However, our implementation is novel, in that it utilizes a completely independent software toolkit, AVW (A Visualization Workshop) developed at the Mayo Biomedical Imaging Resource, integrated with a current neurosurgical navigation system, the COMPASS stereotactic system at Mayo Foundation. The toolkit is a comprehensive, C-callable imaging toolkit containing over 500 optimized imaging functions and structures. The powerful functionality and versatility of the AVW imaging toolkit provided facile integration and implementation of desired interactive oblique sectioning using a finite set of functions. The implementation of the AVW-based code resulted in higher-level functions for complete 'line-of-sight' visualization.
Ajeesh, Sunny; Luis, Rustveld
2018-06-01
The purpose of this concept paper is to propose an innovative multifaceted patient navigation module embedded in the Electronic Health Record (EHR) to address barriers to efficient and effective colorectal cancer (CRC) care. The EHR-based CRC patient navigation module will include several patient navigation features: (1) CRC screening registry; (2) patient navigation data, including CRC screening data, outcomes of patient navigation including navigation status (CRC screening referrals, fecal occult blood test (FOBT) completed, colonoscopy scheduled and completed, cancelations, reschedules, and no-shows); (3) CRC counseling aid; and 4) Web-based CRC education application including interactive features such as a standardized colonoscopy preparation guide, modifiable CRC risk factors, and links to existing resources. An essential component of health informatics is the use of EHR systems to not only provide a system for storing and retrieval of patient health data but can also be used to enhance patient decision-making both from a provider and patient perspective.
Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei
2016-01-01
Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients’ time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries. PMID:27305855
Efficacy of a novel IGS system in atrial septal defect repair
NASA Astrophysics Data System (ADS)
Mefleh, Fuad N.; Baker, G. Hamilton; Kwartowitz, David M.
2013-03-01
Congenital heart disease occurs in 107.6 out of 10,000 live births, with Atrial Septal Defects (ASD) accounting for 10% of these conditions. Historically, ASDs were treated with open heart surgery using cardiopulmonary bypass, allowing a patch to be sewn over the defect. In 1976, King et al. demonstrated use of a transcatheter occlusion procedure, thus reducing the invasiveness of ASD repair. Localization during these catheter based procedures traditionally has relied on bi-plane fluoroscopy; more recently trans-esophageal echocardiography (TEE) and intra-cardiac echocardiography (ICE) have been used to navigate these procedures. Although there is a high success rate using the transcatheter occlusion procedure, fluoroscopy poses radiation dose risk to both patient and clinician. The impact of this dose to the patients is important as many of those undergoing this procedure are children, who have an increased risk associated with radiation exposure. Their longer life expectancy than adults provides a larger window of opportunity for expressing the damaging effects of ionizing radiation. In addition, epidemiologic studies of exposed populations have demonstrated that children are considerably more sensitive to the carcinogenic effects radiation. Image-guided surgery (IGS) uses pre-operative and intra-operative images to guide surgery or an interventional procedure. Central to every IGS system is a software application capable of processing and displaying patient images, registration between multiple coordinate systems, and interfacing with a tool tracking system. We have developed a novel image-guided surgery framework called Kit for Navigation by Image Focused Exploration (KNIFE). In this work we assess the efficacy of this image-guided navigation system for ASD repair using a series of mock clinical experiments designed to simulate ASD repair device deployment.
Greco, Francesco; Cadeddu, Jeffrey A; Gill, Inderbir S; Kaouk, Jihad H; Remzi, Mesut; Thompson, R Houston; van Leeuwen, Fijs W B; van der Poel, Henk G; Fornara, Paolo; Rassweiler, Jens
2014-05-01
Molecular imaging (MI) entails the visualisation, characterisation, and measurement of biologic processes at the molecular and cellular levels in humans and other living systems. Translating this technology to interventions in real-time enables interventional MI/image-guided surgery, for example, by providing better detection of tumours and their dimensions. To summarise and critically analyse the available evidence on image-guided surgery for genitourinary (GU) oncologic diseases. A comprehensive literature review was performed using PubMed and the Thomson Reuters Web of Science. In the free-text protocol, the following terms were applied: molecular imaging, genitourinary oncologic surgery, surgical navigation, image-guided surgery, and augmented reality. Review articles, editorials, commentaries, and letters to the editor were included if deemed to contain relevant information. We selected 79 articles according to the search strategy based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis criteria and the IDEAL method. MI techniques included optical imaging and fluorescent techniques, the augmented reality (AR) navigation system, magnetic resonance imaging spectroscopy, positron emission tomography, and single-photon emission computed tomography. Experimental studies on the AR navigation system were restricted to the detection and therapy of adrenal and renal malignancies and in the relatively infrequent cases of prostate cancer, whereas fluorescence techniques and optical imaging presented a wide application of intraoperative GU oncologic surgery. In most cases, image-guided surgery was shown to improve the surgical resectability of tumours. Based on the evidence to date, image-guided surgery has promise in the near future for multiple GU malignancies. Further optimisation of targeted imaging agents, along with the integration of imaging modalities, is necessary to further enhance intraoperative GU oncologic surgery. Copyright © 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved.
An indoor navigation system for the visually impaired.
Guerrero, Luis A; Vasquez, Francisco; Ochoa, Sergio F
2012-01-01
Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment.
Alderliesten, Tanja; Loo, Claudette; Paape, Anita; Muller, Sara; Rutgers, Emiel; Peeters, Marie-Jeanne Vrancken; Gilhuijs, Kenneth
2010-06-01
The aim of this study was to investigate the feasibility of image-guided navigation approaches to demarcate breast cancer on the basis of preacquired magnetic resonance (MR) imaging in supine patient orientation. Strategies were examined to minimize the uncertainty in the instrument-tip position, based on the hypothesis that the release of instrument pressure returns the breast tissue to its predeformed state. For this purpose, four sources of uncertainty were taken into account: (1) U(ligaments): Uncertainty in the reproducibility of the internal mammary gland geometry during repeat patient setup in supine orientation; (2) U(r_breathing): Residual uncertainty in registration of the breast after compensation for breathing motion using an external marker; (3) U(reconstruction): Uncertainty in the reconstructed location of the tip of the needle using an optical image-navigation system (phantom experiments, n = 50); and (4) U(deformation): Uncertainty in displacement of breast tumors due to needle-induced tissue deformations (patients, n = 21). A Monte Carlo study was performed to establish the 95% confidence interval (CI) of the combined uncertainties. This region of uncertainty was subsequently visualized around the reconstructed needle tip as an additional navigational aid in the preacquired MR images. Validation of the system was performed in five healthy volunteers (localization of skin markers only) and in two patients. In the patients, the navigation system was used to monitor ultrasound-guided radioactive seed localization of breast cancer. Nearest distances between the needle tip and the tumor boundary in the ultrasound images were compared to those in the concurrently reconstructed MR images. Both U(reconstruction) and U(deformation) were normally distributed with 0.1 +/- 1.2 mm (mean +/- 1 SD) and 0.1 +/- 0.8 mm, respectively. Taking prior estimates for U(ligaments) (0.0 +/- 1.5 mm) and U(r_breathing) (-0.1 +/- 0.6 mm) into account, the combined impact resulted in 3.9 mm uncertainty in the position of the needle tip (95% CI) after release of pressure. The volunteer study showed a targeting accuracy comparable to that in the phantom experiments: 2.9 +/- 1.3 versus 2.7 +/- 1.1 mm, respectively. In the patient feasibility study, the deviations were within the 3.9 mm CI. Image-guided navigation to demarcate breast cancer on the basis of preacquired MR images in supine orientation appears feasible if patient breathing is tracked during the navigation procedure, positional uncertainty is visualized and pressure on the localization instrument is released prior to verification of its position.
Rosenfeld, Alan L; Mandelaris, George A; Tardieu, Philippe B
2006-08-01
The purpose of this paper is to expand on part 1 of this series (published in the previous issue) regarding the emerging future of computer-guided implant dentistry. This article will introduce the concept of rapid-prototype medical modeling as well as describe the utilization and fabrication of computer-generated surgical drilling guides used during implant surgery. The placement of dental implants has traditionally been an intuitive process, whereby the surgeon relies on mental navigation to achieve optimal implant positioning. Through rapid-prototype medical modeling and the ste-reolithographic process, surgical drilling guides (eg, SurgiGuide) can be created. These guides are generated from a surgical implant plan created with a computer software system that incorporates all relevant prosthetic information from which the surgical plan is developed. The utilization of computer-generated planning and stereolithographically generated surgical drilling guides embraces the concept of collaborative accountability and supersedes traditional mental navigation on all levels of implant therapy.
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-05-01
Beginning his scientific career as an engineering student at PSG College of Technology, in Coimbatore, India, Sundar A. Christopher has negotiated and navigated the higher-education system to become the chairman of the Department of Atmospheric Sciences at the University of Alabama in Huntsville. Drawing on his own experiences and on insights gleaned from the students who have passed through his graduate-level professional development course, Christopher takes a lighthearted look at peer review, proposal writing, managing budgets, and making the most of conferences in the AGU bookNavigating Graduate School and Beyond: A Career Guide for Graduate Students and a Must Read for Every Advisor. In this interview, Eos speaks to Christopher about overcoming the bureaucratic, logistical, and personal hurdles that too often lead students to disillusionment and conflict.
Noriega, David C; Hernández-Ramajo, Rubén; Rodríguez-Monsalve Milano, Fiona; Sanchez-Lite, Israel; Toribio, Borja; Ardura, Francisco; Torres, Ricardo; Corredera, Raul; Kruger, Antonio
2017-01-01
Pedicle screws in spinal surgery have allowed greater biomechanical stability and higher fusion rates. However, malposition is very common and may cause neurologic, vascular, and visceral injuries and compromise mechanical stability. The purpose of this study was to compare the malposition rate between intraoperative computed tomography (CT) scan assisted-navigation and free-hand fluoroscopy-guided techniques for placement of pedicle screw instrumentation. This is a prospective, randomized, observational study. A total of 114 patients were included: 58 in the assisted surgery group and 56 in the free-hand fluoroscopy-guided surgery group. Analysis of screw position was assessed using the Heary classification. Breach severity was defined according to the Gertzbein classification. Radiation doses were evaluated using thermoluminescent dosimeters, and estimates of effective and organ doses were made based on scan technical parameters. Consecutive patients with degenerative disease, who underwent surgical procedures using the free-hand, or intraoperative navigation technique for placement of transpedicular instrumentation, were included in the study. Forty-four out of 625 implanted screws were malpositioned: 11 (3.6%) in the navigated surgery group and 33 (10.3%) in the free-hand group (p<.001). Screw position according to the Heary scale was Grade II (4 navigated surgery, 6 fluoroscopy guided), Grade III (3 navigated surgery, 11 fluoroscopy guided), Grade IV (4 navigated surgery, 16 fluoroscopy guided), and Grade V (1 fluoroscopy guided). There was only one symptomatic case in the conventional surgery group. Breach severity was seven Grade A and four Grade B in the navigated surgery group, and eight Grade A, 24 Grade B, and one Grade C in free-hand fluoroscopy-guided surgery group. Radiation received per patient was 5.8 mSv (4.8-7.3). The median dose received in the free-hand fluoroscopy group was 1 mGy (0.8-1.1). There was no detectable radiation level in the navigation-assisted surgery group, whereas the effective dose was 10 µGy in the free-hand fluoroscopy-guided surgery group. Malposition rate, both symptomatic and asymptomatic, in spinal surgery is reduced when using CT-guided placement of transpedicular instrumentation compared with placement under fluoroscopic guidance, with radiation values within the safety limits for health. Larger studies are needed to determine risk-benefit in these patients. Copyright © 2016 Elsevier Inc. All rights reserved.
NSLDS Training Workshop: Participant's Guide.
ERIC Educational Resources Information Center
Department of Education, Washington, DC. Student Financial Assistance.
These training materials were designed to be used by participants at a National Student Loan Data System (NSLDS) workshop which explains how to use the NSLDS Web site. Following an overview, the guide is organized into four sessions: (1) students' access and use of the NSLDS Web site; (2) navigating the financial aid professional Web site; (3)…
Ali, Mohammad Javed; Naik, Milind N; Kaliki, Swathi; Dave, Tarjani Vivek; Dendukuri, Gautam
2017-06-01
To demonstrate the techniques and utility of 3-dimensional reconstruction (3DR) of the target pathologies for subsequent navigation guidance in ophthalmic plastic surgery. Prospective interventional case series. Stereotactic surgeries using 3D reconstruction of target lesions as the intraoperative image-guiding tool were performed in 5 patients with varied etiopathologies. All the surgeries were performed using the intraoperative image-guided StealthStation system in the electromagnetic mode. 3DR was performed using StealthStation 3D model software. The utility of 3D reconstruction for extensive orbital mass lesions, large orbital fractures, intraconal foreign body, and delineation of perilesional intricate structures was studied. The intraoperative ease and usefulness for the navigation of a 3D lesion at crucial phases of the surgery were noted. Intraoperative geometric localization of the 3D lesions was found to be enhanced and precise. 3D reconstruction of the lesion along with the major vessels and nerves in the vicinity helped the surgeon to prevent potential injuries to these structures. The fracture defects could be navigated in a 3D plane and this helped in moderate customization of the implants intraoperatively. Foreign body located in difficult access positions could be accurately targeted for geometric localization before safe retrieval. Detailed preoperative 3D reconstruction by the surgeon was found to be beneficial for successful outcomes. Three-dimensional navigation is very useful in providing detailed anatomical delineation of the targets and enhances the precision in certain complex cases in ophthalmic plastic surgery. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Eisenmann, Urs; Freudlsperger, Christian; Seeberger, Robin; Hoffmann, Jürgen; Dickhaus, Hartmut
2017-03-01
Inaccuracies in orthognathic surgery can be caused during face-bow registration, model surgery on plaster models, and intermaxillary splint manufacturing. Electromagnetic (EM) navigation is a promising method for splintless digitized maxillary positioning. After performing Le Fort I osteotomy on 10 plastic skulls, the target position of the maxilla was guided by an EM navigation system. Specially implemented software illustrated the target position by real-time multistage colored three-dimensional imaging. Accuracy was determined by using pre- and postoperative cone beam computed tomography. The high accuracy of the EM system was underlined by the fact that it had a navigated maxilla position discrepancy of only 0.4 mm, which was verified by postoperative cone beam computed tomography. This preclinical study demonstrates a precise digitized approach for splintless maxillary repositioning after Le Fort I osteotomy. The accuracy and intuitive illustration of the introduced EM navigation system is promising for potential daily use in orthognathic surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom.
Tavallaei, M A; Lavdas, M K; Gelman, D; Drangova, M
2016-08-01
To facilitate MRI-guided catheterization procedures, we present an MRI-compatible remote catheter navigation system that allows remote navigation of steerable catheters with 3 degrees of freedom. The system consists of a user interface (master), a robot (slave), and an ultrasonic motor control servomechanism. The interventionalist applies conventional motions (axial, radial and plunger manipulations) on an input catheter in the master unit; this user input is measured and used by the servomechanism to control a compact catheter manipulating robot, such that it replicates the interventionalist's input motion on the patient catheter. The performance of the system was evaluated in terms of MRI compatibility (SNR and artifact), feasibility of remote navigation under real-time MRI guidance, and motion replication accuracy. Real-time MRI experiments demonstrated that catheter was successfully navigated remotely to desired target references in all 3 degrees of freedom. The system had an absolute value error of [Formula: see text]1 mm in axial catheter motion replication over 30 mm of travel and [Formula: see text] for radial catheter motion replication over [Formula: see text]. The worst case SNR drop was observed to be [Formula: see text]3 %; the robot did not introduce any artifacts in the MR images. An MRI-compatible compact remote catheter navigation system has been developed that allows remote navigation of steerable catheters with 3 degrees of freedom. The proposed system allows for safe and accurate remote catheter navigation, within conventional closed-bore scanners, without degrading MR image quality.
Tsopra, Rosy; Jais, Jean-Philippe; Venot, Alain; Duclos, Catherine
2014-01-01
Context It is important to consider the way in which information is presented by the interfaces of clinical decision support systems, to favor the adoption of these systems by physicians. Interface design can focus on decision processes (guided navigation) or usability principles. Objective The aim of this study was to compare these two approaches in terms of perceived usability, accuracy rate, and confidence in the system. Materials and methods We displayed clinical practice guidelines for antibiotic treatment via two types of interface, which we compared in a crossover design. General practitioners were asked to provide responses for 10 clinical cases and the System Usability Scale (SUS) for each interface. We assessed SUS scores, the number of correct responses, and the confidence level for each interface. Results SUS score and percentage confidence were significantly higher for the interface designed according to usability principles (81 vs 51, p=0.00004, and 88.8% vs 80.7%, p=0.004). The percentage of correct responses was similar for the two interfaces. Discussion/conclusion The interface designed according to usability principles was perceived to be more usable and inspired greater confidence among physicians than the guided navigation interface. Consideration of usability principles in the construction of an interface—in particular ‘effective information presentation’, ‘consistency’, ‘efficient interactions’, ‘effective use of language’, and ‘minimizing cognitive load’—seemed to improve perceived usability and confidence in the system. PMID:24008427
A Kinect™ camera based navigation system for percutaneous abdominal puncture
NASA Astrophysics Data System (ADS)
Xiao, Deqiang; Luo, Huoling; Jia, Fucang; Zhang, Yanfang; Li, Yong; Guo, Xuejun; Cai, Wei; Fang, Chihua; Fan, Yingfang; Zheng, Huimin; Hu, Qingmao
2016-08-01
Percutaneous abdominal puncture is a popular interventional method for the management of abdominal tumors. Image-guided puncture can help interventional radiologists improve targeting accuracy. The second generation of Kinect™ was released recently, we developed an optical navigation system to investigate its feasibility for guiding percutaneous abdominal puncture, and compare its performance on needle insertion guidance with that of the first-generation Kinect™. For physical-to-image registration in this system, two surfaces extracted from preoperative CT and intraoperative Kinect™ depth images were matched using an iterative closest point (ICP) algorithm. A 2D shape image-based correspondence searching algorithm was proposed for generating a close initial position before ICP matching. Evaluation experiments were conducted on an abdominal phantom and six beagles in vivo. For phantom study, a two-factor experiment was designed to evaluate the effect of the operator’s skill and trajectory on target positioning error (TPE). A total of 36 needle punctures were tested on a Kinect™ for Windows version 2 (Kinect™ V2). The target registration error (TRE), user error, and TPE are 4.26 ± 1.94 mm, 2.92 ± 1.67 mm, and 5.23 ± 2.29 mm, respectively. No statistically significant differences in TPE regarding operator’s skill and trajectory are observed. Additionally, a Kinect™ for Windows version 1 (Kinect™ V1) was tested with 12 insertions, and the TRE evaluated with the Kinect™ V1 is statistically significantly larger than that with the Kinect™ V2. For the animal experiment, fifteen artificial liver tumors were inserted guided by the navigation system. The TPE was evaluated as 6.40 ± 2.72 mm, and its lateral and longitudinal component were 4.30 ± 2.51 mm and 3.80 ± 3.11 mm, respectively. This study demonstrates that the navigation accuracy of the proposed system is acceptable, and that the second generation Kinect™-based navigation is superior to the first-generation Kinect™, and has potential of clinical application in percutaneous abdominal puncture.
Enabling cost-effective multimodal trip planners through open transit data : [summary].
DOT National Transportation Integrated Search
2011-01-01
Electronic navigation systems are now common : and widely used -- via Internet services, handheld : devices, and devices in vehicles -- to guide drivers : using instructions and maps. Next generation : systems will plan trips by other modes, includin...
Minimally invasive surgical video analysis: a powerful tool for surgical training and navigation.
Sánchez-González, P; Oropesa, I; Gómez, E J
2013-01-01
Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.
Pilot factors guidelines for the operational inspection of navigation systems
NASA Technical Reports Server (NTRS)
Sadler, J. F.; Boucek, G. P.
1988-01-01
A computerized human engineered inspection technique is developed for use by FAA inspectors in evaluating the pilot factors aspects of aircraft navigation systems. The short title for this project is Nav Handbook. A menu-driven checklist, computer program and data base (Human Factors Design Criteria) were developed and merged to form a self-contained, portable, human factors inspection checklist tool for use in a laboratory or field setting. The automated checklist is tailored for general aviation navigation systems and can be expanded for use with other aircraft systems, transports or military aircraft. The Nav Handbook inspection concept was demonstrated using a lap-top computer and an Omega/VLF CDU. The program generates standardized inspection reports. Automated checklists for LORAN/C and R NAV were also developed. A Nav Handbook User's Guide is included.
Zoccali, Carmine; Rossi, Barbara; Ferraresi, Virginia; Anelli, Vincenzo; Rita, Alessandro
2014-08-13
In muscular skeletal oncology aiming to achieve wide surgical margin is one of the main factors influencing patient prognosis. In cases where lesions are either meta or epiphyseal, surgery most often compromises joint integrity and stability because muscles, tendons and ligaments are involved in wide resection. When lesions are well circumscribed they can be completely resected by performing multi-planar osteotomies guided by computer-assisted navigation. We describe a case of low-grade chondrosarcoma of the distal femur where a simple but effective technique was useful to perform complex multiplanar osteotomies. No similar techniques are reported in the literature. A 57 year-old Caucasian female was referred to our department for the presence of a distal femur chondrosarcoma. A resection with the presenting technique was scheduled. The first step consists of inserting several K-wires under CT-scan control to delimitate the tumor; the second step consists of tumor removal: in operative theatre, following surgical access, k-wires are used as guide positioning; scalpels are externally placed to k-wires to perform a safe osteotomy. Computed assisted resections can be considered the most advantageous method to reach the best surgical outcome; unfortunately navigation systems are only available in specialized centres. The present technique allows for a multiplanar complex resection when navigation systems are not available. This technique can be applied in low-grade tumours where a minimal wide margin can be considered sufficient.
Vision for navigation: What can we learn from ants?
Graham, Paul; Philippides, Andrew
2017-09-01
The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Wood, Martin; Mannion, Richard
2011-02-01
A comparison of 2 surgical techniques. To determine the relative accuracy of minimally invasive lumbar pedicle screw placement using 2 different CT-based image-guided techniques. Three-dimensional intraoperative fluoroscopy systems have recently become available that provide the ability to use CT-quality images for navigation during image-guided minimally invasive spinal surgery. However, the cost of this equipment may negate any potential benefit in navigational accuracy. We therefore assess the accuracy of pedicle screw placement using an intraoperative 3-dimensional fluoroscope for guidance compared with a technique using preoperative CT images merged to intraoperative 2-dimensional fluoroscopy. Sixty-seven patients undergoing minimally invasive placement of lumbar pedicle screws (296 screws) using a navigated, image-guided technique were studied and the accuracy of pedicle screw placement assessed. Electromyography (EMG) monitoring of lumbar nerve roots was used in all. Group 1: 24 patients in whom a preoperative CT scan was merged with intraoperative 2-dimensional fluoroscopy images on the image-guidance system. Group 2: 43 patients using intraoperative 3-dimensional fluoroscopy images as the source for the image guidance system. The frequencies of pedicle breach and EMG warnings (indicating potentially unsafe screw placement) in each group were recorded. The rate of pedicle screw misplacement was 6.4% in group 1 vs 1.6% in group 2 (P=0.03). There were no cases of neurologic injury from suboptimal placement of screws. Additionally, the incidence of EMG warnings was significantly lower in group 2 (3.7% vs. 10% (P=0.03). The use of an intraoperative 3-dimensional fluoroscopy system with an image-guidance system results in greater accuracy of pedicle screw placement than the use of preoperative CT scans, although potentially dangerous placement of pedicle screws can be prevented by the use of EMG monitoring of lumbar nerve roots.
Verma, Suzanne; Gonzalez, Marianela; Schow, Sterling R; Triplett, R Gilbert
This technical protocol outlines the use of computer-assisted image-guided technology for the preoperative planning and intraoperative procedures involved in implant-retained facial prosthetic treatment. A contributing factor for a successful prosthetic restoration is accurate preoperative planning to identify prosthetically driven implant locations that maximize bone contact and enhance cosmetic outcomes. Navigational systems virtually transfer precise digital planning into the operative field for placing implants to support prosthetic restorations. In this protocol, there is no need to construct a physical, and sometimes inaccurate, surgical guide. The report addresses treatment workflow, radiologic data specifications, and special considerations in data acquisition, virtual preoperative planning, and intraoperative navigation for the prosthetic reconstruction of unilateral, bilateral, and midface defects. Utilization of this protocol for the planning and surgical placement of craniofacial bone-anchored implants allows positioning of implants to be prosthetically driven, accurate, precise, and efficient, and leads to a more predictable treatment outcome.
Vercruyssen, Marjolein; Cox, Catherine; Coucke, Wim; Naert, Ignace; Jacobs, Reinhilde; Quirynen, Marc
2014-07-01
To assess the accuracy of guided surgery (mucosa and bone-supported) compared to mental navigation or the use of a surgical template, in fully edentulous jaws, in a randomized controlled study. Fifty-nine patients (72 jaws), requiring four to six implants (maxilla or mandible), were consecutively recruited and randomly assigned to one of the following treatment groups; guidance via Materialise Universal(®)/mucosa, Materialise Universal(®)/bone, Facilitate™/mucosa, Facilitate™/bone, or mental navigation or a pilot-drill template. The precision was assessed by matching the planning computed tomography (CT) with a post-operative cone beam CT. A significant lower mean deviation at the entry point (1.4 mm, range: 0.3-3.7), at the apex (1.6 mm, range: 0.2-3.7) and angular deviation (3.0°, range: 0.2-16°) was observed for the guiding systems when compared to mental navigation (2.7 mm, range: 0.3-8.3; 2.9 mm, range: 0.5-7.4 and 9.9°, range: 1.5-27.8) and to the surgical template group (3.0 mm, range: 0.6-6.6; 3.4 mm, range: 0.3-7.5 and 8.4°, range: 0.6-21.3°). Differences between bone and mucosa support or type of guidance were negligible. Jaw and implant location (posterior-anterior, left-right), however, had a significant influence on the accuracy when guided. Based on these findings, guided implant placement appears to offer clear accuracy benefits. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hoffmann, Michael; Schröder, Malte; Lehmann, Wolfgang; Kammal, Michael; Rueger, Johannes Maria; Herrman Ruecker, Andreas
2012-07-01
Distal locking marks one challenging step during intramedullary nailing that can lead to an increased irradiation and prolonged operation times. The aim of this study was to evaluate the reliability and efficacy of an X-ray-radiation-free real-time navigation system for distal locking procedures. A prospective randomized cadaver study with 50 standard free-hand fluoroscopic-guided and 50 electromagnetic-guided distal locking procedures was performed. All procedures were timed using a stopwatch. Intraoperative fluoroscopy exposure time and absorbed radiation dose (mGy) readings were documented. All tibial nails were locked with two mediolateral and one anteroposterior screw. Successful distal locking was accomplished once correct placement of all three screws was confirmed. Successful distal locking was achieved in 98 cases. No complications were encountered using the electromagnetic navigation system. Eight complications arose during free-hand fluoroscopic distal locking. Undetected secondary drill slippage on the ipsilateral cortex accounted for most problems followed by undetected intradrilling misdirection causing a fissural fracture of the contralateral cortex while screw insertion in one case. Compared with the free-hand fluoroscopic technique, electromagnetically navigated distal locking provides a median time benefit of 244 seconds without using ionizing radiation. Compared with the standard free-hand fluoroscopic technique, the electromagnetic guidance system used in this study showed high reliability and was associated with less complications, took significantly less time, and used no radiation exposure for distal locking procedures. Therapeutic study, level II.
An Indoor Navigation System for the Visually Impaired
Guerrero, Luis A.; Vasquez, Francisco; Ochoa, Sergio F.
2012-01-01
Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment. PMID:22969398
Should Animals Navigating Over Short Distances Switch to a Magnetic Compass Sense?
Wyeth, Russell C.
2010-01-01
Magnetoreception can play a substantial role in long distance navigation by animals. I hypothesize that locomotion guided by a magnetic compass sense could also play a role in short distance navigation. Animals identify mates, prey, or other short distance navigational goals using different sensory modalities (olfaction, vision, audition, etc.) to detect sensory cues associated with those goals. In conditions where these cues become unreliable for navigation (due to flow changes, obstructions, noise interference, etc.), switching to a magnetic compass sense to guide locomotion toward the navigational goals could be beneficial. Using simulations based on known locomotory and flow parameters, I show this strategy has strong theoretical benefits for the nudibranch mollusk Tritonia diomedea navigating toward odor sources in variable flow. A number of other animals may garner similar benefits, particularly slow-moving species in environments with rapidly changing cues relevant for navigation. Faster animals might also benefit from switching to a magnetic compass sense, provided the initial cues used for navigation (acoustic signals, odors, etc.) are intermittent or change rapidly enough that the entire navigation behavior cannot be guided by a continuously detectable cue. Examination of the relative durations of navigational tasks, the persistence of navigational cues, and the stability of both navigators and navigational targets will identify candidates with the appropriate combination of unreliable initial cues and relatively immobile navigational goals for which this hypothetical behavior could be beneficial. Magnetic manipulations can then test whether a switch to a magnetic compass sense occurs. This hypothesis thus provides an alternative when considering the behavioral significance of a magnetic compass sense in animals. PMID:20740070
A Google Glass navigation system for ultrasound and fluorescence dual-mode image-guided surgery
NASA Astrophysics Data System (ADS)
Zhang, Zeshu; Pei, Jing; Wang, Dong; Hu, Chuanzhen; Ye, Jian; Gan, Qi; Liu, Peng; Yue, Jian; Wang, Benzhong; Shao, Pengfei; Povoski, Stephen P.; Martin, Edward W.; Yilmaz, Alper; Tweedle, Michael F.; Xu, Ronald X.
2016-03-01
Surgical resection remains the primary curative intervention for cancer treatment. However, the occurrence of a residual tumor after resection is very common, leading to the recurrence of the disease and the need for re-resection. We develop a surgical Google Glass navigation system that combines near infrared fluorescent imaging and ultrasonography for intraoperative detection of sites of tumor and assessment of surgical resection boundaries, well as for guiding sentinel lymph node (SLN) mapping and biopsy. The system consists of a monochromatic CCD camera, a computer, a Google Glass wearable headset, an ultrasonic machine and an array of LED light sources. All the above components, except the Google Glass, are connected to a host computer by a USB or HDMI port. Wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A control program is written in C++ to call OpenCV functions for image calibration, processing and display. The technical feasibility of the system is tested in both tumor simulating phantoms and in a human subject. When the system is used for simulated phantom resection tasks, the tumor boundaries, invisible to the naked eye, can be clearly visualized with the surgical Google Glass navigation system. This system has also been used in an IRB approved protocol in a single patient during SLN mapping and biopsy in the First Affiliated Hospital of Anhui Medical University, demonstrating the ability to successfully localize and resect all apparent SLNs. In summary, our tumor simulating phantom and human subject studies have demonstrated the technical feasibility of successfully using the proposed goggle navigation system during cancer surgery.
SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Zhao, S; Chen, Y
2014-06-01
Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method whilemore » the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and quality of 3D reconstruction, the efficiency in dose planning and accuracy in navigation all can be improved simultaneously.« less
Reactive navigation for autonomous guided vehicle using neuro-fuzzy techniques
NASA Astrophysics Data System (ADS)
Cao, Jin; Liao, Xiaoqun; Hall, Ernest L.
1999-08-01
A Neuro-fuzzy control method for navigation of an Autonomous Guided Vehicle robot is described. Robot navigation is defined as the guiding of a mobile robot to a desired destination or along a desired path in an environment characterized by as terrain and a set of distinct objects, such as obstacles and landmarks. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Neural network and fuzzy logic control techniques can improve real-time control performance for mobile robot due to its high robustness and error-tolerance ability. For a mobile robot to navigate automatically and rapidly, an important factor is to identify and classify mobile robots' currently perceptual environment. In this paper, a new approach of the current perceptual environment feature identification and classification, which are based on the analysis of the classifying neural network and the Neuro- fuzzy algorithm, is presented. The significance of this work lies in the development of a new method for mobile robot navigation.
The sensory ecology of ocean navigation.
Lohmann, Kenneth J; Lohmann, Catherine M F; Endres, Courtney S
2008-06-01
How animals guide themselves across vast expanses of open ocean, sometimes to specific geographic areas, has remained an enduring mystery of behavioral biology. In this review we briefly contrast underwater oceanic navigation with terrestrial navigation and summarize the advantages and constraints of different approaches used to analyze animal navigation in the sea. In addition, we highlight studies and techniques that have begun to unravel the sensory cues that underlie navigation in sea turtles, salmon and other ocean migrants. Environmental signals of importance include geomagnetic, chemical and hydrodynamic cues, perhaps supplemented in some cases by celestial cues or other sources of information that remain to be discovered. An interesting similarity between sea turtles and salmon is that both have been hypothesized to complete long-distance reproductive migrations using navigational systems composed of two different suites of mechanisms that function sequentially over different spatial scales. The basic organization of navigation in these two groups of animals may be functionally similar, and perhaps also representative of other long-distance ocean navigators.
Navigators for motion detection during real-time MRI-guided radiotherapy
NASA Astrophysics Data System (ADS)
Stam, Mette K.; Crijns, Sjoerd P. M.; Zonnenberg, Bernard A.; Barendrecht, Maurits M.; van Vulpen, Marco; Lagendijk, Jan J. W.; Raaymakers, Bas W.
2012-11-01
An MRI-linac system provides direct MRI feedback and with that the possibility of adapting radiation treatments to the actual tumour position. This paper addresses the use of fast 1D MRI, pencil-beam navigators, for this feedback. The accuracy of using navigators was determined on a moving phantom. The possibility of organ tracking and breath-hold monitoring based on navigator guidance was shown for the kidney. Navigators are accurate within 0.5 mm and the analysis has a minimal time lag smaller than 30 ms as shown for the phantom measurements. The correlation of 2D kidney images and navigators shows the possibility of complete organ tracking. Furthermore the breath-hold monitoring of the kidney is accurate within 1.5 mm, allowing gated radiotherapy based on navigator feedback. Navigators are a fast and precise method for monitoring and real-time tracking of anatomical landmarks. As such, they provide direct MRI feedback on anatomical changes for more precise radiation delivery.
Intra-operative reliability of ShapeMatch cutting guide placement in total knee arthroplasty.
Clark, Gavin; Leong, Anthony; McEwen, Peter; Steele, Robert; Tran, Ton; Trivett, Adrian
2013-01-01
Custom cutting guides based on pre-operative imaging have been introduced for total knee arthroplasty (TKA). The aim of this prospective cohort study was to assess the reliability of repeated placement of custom cutting guides by multiple surgeons in a group of patients undergoing TKA. Custom cutting guides (ShapeMatch®, Stryker Orthopaedics) were designed from pre-operative MRI scans. The treating surgeon placed each guide on the femur and tibia of each patient three times without pinning the block. The three-dimensional position and orientation of the guide was measured for each repetition using a computer navigation system. The surgeon was blinded to the navigation system display. Data from 24 patients and 6 surgeons were analyzed. Intraclass correlation coefficients for all measurement parameters were in the range 0.889-0.997 (excellent), and all comparisons were statistically significant (p < 0.001). The range for femoral varus/valgus was 0.0-1.5°, with 96% of patients being within 0.5°. For femoral flexion/extension the range was 0.0-3.5° (92% within 2.5°). On the tibia, varus/valgus had a range of 0.0-1.0° (92% within 0.5°), and for slope the range was 0.0-3.5° (92% within 2.5°). The high degree of agreement indicated that intra-surgeon variation was minimal and that the technique is reliable.
Design and Development of a Mobile Sensor Based the Blind Assistance Wayfinding System
NASA Astrophysics Data System (ADS)
Barati, F.; Delavar, M. R.
2015-12-01
The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.
Bolton, William David; Cochran, Thomas; Ben-Or, Sharon; Stephenson, James E; Ellis, William; Hale, Allyson L; Binks, Andrew P
The aims of the study were to evaluate electromagnetic navigational bronchoscopy (ENB) and computed tomography-guided placement as localization techniques for minimally invasive resection of small pulmonary nodules and determine whether electromagnetic navigational bronchoscopy is a safer and more effective method than computed tomography-guided localization. We performed a retrospective review of our thoracic surgery database to identify patients who underwent minimally invasive resection for a pulmonary mass and used either electromagnetic navigational bronchoscopy or computed tomography-guided localization techniques between July 2011 and May 2015. Three hundred eighty-three patients had a minimally invasive resection during our study period, 117 of whom underwent electromagnetic navigational bronchoscopy or computed tomography localization (electromagnetic navigational bronchoscopy = 81; computed tomography = 36). There was no significant difference between computed tomography and electromagnetic navigational bronchoscopy patient groups with regard to age, sex, race, pathology, nodule size, or location. Both computed tomography and electromagnetic navigational bronchoscopy were 100% successful at localizing the mass, and there was no difference in the type of definitive surgical resection (wedge, segmentectomy, or lobectomy) (P = 0.320). Postoperative complications occurred in 36% of all patients, but there were no complications related to the localization procedures. In terms of localization time and surgical time, there was no difference between groups. However, the down/wait time between localization and resection was significant (computed tomography = 189 minutes; electromagnetic navigational bronchoscopy = 27 minutes); this explains why the difference in total time (sum of localization, down, and surgery) was significant (P < 0.001). We found electromagnetic navigational bronchoscopy to be as safe and effective as computed tomography-guided wire placement and to provide a significantly decreased down time between localization and surgical resection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving Ground Command, U.S. Air Force... Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving...
Lee, Clara; Bolck, Jan; Naguib, Nagy N.N.; Schulz, Boris; Eichler, Katrin; Aschenbach, Rene; Wichmann, Julian L.; Vogl, Thomas. J.; Zangos, Stephan
2015-01-01
Objective To investigate the accuracy, efficiency and radiation dose of a novel laser navigation system (LNS) compared to those of free-handed punctures on computed tomography (CT). Materials and Methods Sixty punctures were performed using a phantom body to compare accuracy, timely effort, and radiation dose of the conventional free-handed procedure to those of the LNS-guided method. An additional 20 LNS-guided interventions were performed on another phantom to confirm accuracy. Ten patients subsequently underwent LNS-guided punctures. Results The phantom 1-LNS group showed a target point accuracy of 4.0 ± 2.7 mm (freehand, 6.3 ± 3.6 mm; p = 0.008), entrance point accuracy of 0.8 ± 0.6 mm (freehand, 6.1 ± 4.7 mm), needle angulation accuracy of 1.3 ± 0.9° (freehand, 3.4 ± 3.1°; p < 0.001), intervention time of 7.03 ± 5.18 minutes (freehand, 8.38 ± 4.09 minutes; p = 0.006), and 4.2 ± 3.6 CT images (freehand, 7.9 ± 5.1; p < 0.001). These results show significant improvement in 60 punctures compared to freehand. The phantom 2-LNS group showed a target point accuracy of 3.6 ± 2.5 mm, entrance point accuracy of 1.4 ± 2.0 mm, needle angulation accuracy of 1.0 ± 1.2°, intervention time of 1.44 ± 0.22 minutes, and 3.4 ± 1.7 CT images. The LNS group achieved target point accuracy of 5.0 ± 1.2 mm, entrance point accuracy of 2.0 ± 1.5 mm, needle angulation accuracy of 1.5 ± 0.3°, intervention time of 12.08 ± 3.07 minutes, and used 5.7 ± 1.6 CT-images for the first experience with patients. Conclusion Laser navigation system improved accuracy, duration of intervention, and radiation dose of CT-guided interventions. PMID:26175571
Zhu, Ming; Chai, Gang; Lin, Li; Xin, Yu; Tan, Andy; Bogari, Melia; Zhang, Yan; Li, Qingfeng
2016-12-01
Augmented reality (AR) technology can superimpose the virtual image generated by computer onto the real operating field to present an integral image to enhance surgical safety. The purpose of our study is to develop a novel AR-based navigation system for craniofacial surgery. We focus on orbital hypertelorism correction, because the surgery requires high preciseness and is considered tough even for senior craniofacial surgeon. Twelve patients with orbital hypertelorism were selected. The preoperative computed tomography data were imported into 3-dimensional platform for preoperational design. The position and orientation of virtual information and real world were adjusted by image registration process. The AR toolkits were used to realize the integral image. Afterward, computed tomography was also performed after operation for comparing the difference between preoperational plan and actual operational outcome. Our AR-based navigation system was successfully used in these patients, directly displaying 3-dimensional navigational information onto the surgical field. They all achieved a better appearance by the guidance of navigation image. The difference in interdacryon distance and the dacryon point of each side appear no significant (P > 0.05) between preoperational plan and actual surgical outcome. This study reports on an effective visualized approach for guiding orbital hypertelorism correction. Our AR-based navigation system may lay a foundation for craniofacial surgery navigation. The AR technology could be considered as a helpful tool for precise osteotomy in craniofacial surgery.
The accuracy of an electromagnetic navigation system in lateral skull base approaches.
Komune, Noritaka; Matsushima, Ken; Matsuo, Satoshi; Safavi-Abbasi, Sam; Matsumoto, Nozomu; Rhoton, Albert L
2017-02-01
Image-guided optical tracking systems are being used with increased frequency in lateral skull base surgery. Recently, electromagnetic tracking systems have become available for use in this region. However, the clinical accuracy of the electromagnetic tracking system has not been examined in lateral skull base surgery. This study evaluates the accuracy of electromagnetic navigation in lateral skull base surgery. Cadaveric and radiographic study. Twenty cadaveric temporal bones were dissected in a surgical setting under a commercially available, electromagnetic surgical navigation system. The target registration error (TRE) was measured at 28 surgical landmarks during and after performing the standard translabyrinthine and middle cranial fossa surgical approaches to the internal acoustic canal. In addition, three demonstrative procedures that necessitate navigation with high accuracy were performed; that is, canalostomy of the superior semicircular canal from the middle cranial fossa, 1 cochleostomy from the middle cranial fossa, 2 and infralabyrinthine approach to the petrous apex. 3 RESULTS: Eleven of 17 (65%) of the targets in the translabyrinthine approach and five of 11 (45%) of the targets in the middle fossa approach could be identified in the navigation system with TRE of less than 0.5 mm. Three accuracy-dependent procedures were completed without anatomical injury of important anatomical structures. The electromagnetic navigation system had sufficient accuracy to be used in the surgical setting. It was possible to perform complex procedures in the lateral skull base under the guidance of the electromagnetically tracked navigation system. N/A. Laryngoscope, 2016 127:450-459, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
2014-01-01
Background In muscular skeletal oncology aiming to achieve wide surgical margin is one of the main factors influencing patient prognosis. In cases where lesions are either meta or epiphyseal, surgery most often compromises joint integrity and stability because muscles, tendons and ligaments are involved in wide resection. When lesions are well circumscribed they can be completely resected by performing multi-planar osteotomies guided by computer-assisted navigation. We describe a case of low-grade chondrosarcoma of the distal femur where a simple but effective technique was useful to perform complex multiplanar osteotomies. No similar techniques are reported in the literature. Case presentation A 57 year-old Caucasian female was referred to our department for the presence of a distal femur chondrosarcoma. A resection with the presenting technique was scheduled. The first step consists of inserting several K-wires under CT-scan control to delimitate the tumor; the second step consists of tumor removal: in operative theatre, following surgical access, k-wires are used as guide positioning; scalpels are externally placed to k-wires to perform a safe osteotomy. Conclusions Computed assisted resections can be considered the most advantageous method to reach the best surgical outcome; unfortunately navigation systems are only available in specialized centres. The present technique allows for a multiplanar complex resection when navigation systems are not available. This technique can be applied in low-grade tumours where a minimal wide margin can be considered sufficient. PMID:25123066
Navarro-Ramirez, Rodrigo; Lang, Gernot; Lian, Xiaofeng; Berlin, Connor; Janssen, Insa; Jada, Ajit; Alimi, Marjan; Härtl, Roger
2017-04-01
Portable intraoperative computed tomography (iCT) with integrated 3-dimensional navigation (NAV) offers new opportunities for more precise navigation in spinal surgery, eliminates radiation exposure for the surgical team, and accelerates surgical workflows. We present the concept of "total navigation" using iCT NAV in spinal surgery. Therefore, we propose a step-by-step guideline demonstrating how total navigation can eliminate fluoroscopy with time-efficient workflows integrating iCT NAV into daily practice. A prospective study was conducted on collected data from patients undergoing iCT NAV-guided spine surgery. Number of scans, radiation exposure, and workflow of iCT NAV (e.g., instrumentation, cage placement, localization) were documented. Finally, the accuracy of pedicle screws and time for instrumentation were determined. iCT NAV was successfully performed in 117 cases for various indications and in all regions of the spine. More than half (61%) of cases were performed in a minimally invasive manner. Navigation was used for skin incision, localization of index level, and verification of implant position. iCT NAV was used to evaluate neural decompression achieved in spinal fusion surgeries. Total navigation eliminates fluoroscopy in 75%, thus reducing staff radiation exposure entirely. The average times for iCT NAV setup and pedicle screw insertion were 12.1 and 3.1 minutes, respectively, achieving a pedicle screw accuracy of 99%. Total navigation makes spine surgery safer and more accurate, and it enhances efficient and reproducible workflows. Fluoroscopy and radiation exposure for the surgical staff can be eliminated in the majority of cases. Copyright © 2017 Elsevier Inc. All rights reserved.
Atrial Fibrillation Ablation Guided by a Novel Nonfluoroscopic Navigation System.
Ballesteros, Gabriel; Ramos, Pablo; Neglia, Renzo; Menéndez, Diego; García-Bolao, Ignacio
2017-09-01
Rhythmia is a new nonfluoroscopic navigation system that is able to create high-density electroanatomic maps. The aim of this study was to describe the acute outcomes of atrial fibrillation (AF) ablation guided by this system, to analyze the volume provided by its electroanatomic map, and to describe its ability to locate pulmonary vein (PV) reconnection gaps in redo procedures. This observational study included 62 patients who underwent AF ablation with Rhythmia compared with a retrospective cohort who underwent AF ablation with a conventional nonfluoroscopic navigation system (Ensite Velocity). The number of surface electrograms per map was significantly higher in Rhythmia procedures (12 125 ± 2826 vs 133 ± 21 with Velocity; P < .001), with no significant differences in the total procedure time. The Orion catheter was placed for mapping in 99.5% of PV (95.61% in the control group with a conventional circular mapping catheter; P = .04). There were no significant differences in the percentage of PV isolation between the 2 groups. In redo procedures, an ablation gap could be identified on the activation map in 67% of the reconnected PV (40% in the control group; P = .042). The measured left atrial volume was lower than that calculated by computed tomography (109.3 v 15.2 and 129.9 ± 13.2 mL, respectively; P < .001). There were no significant differences in the number of complications. The Rhythmia system is effective for AF ablation procedures, with procedure times and safety profiles similar to conventional nonfluoroscopic navigation systems. In redo procedures, it appears to be more effective in identifying reconnected PV conduction gaps. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Filgueiras-Rama, David; Estrada, Alejandro; Shachar, Josh; Castrejón, Sergio; Doiny, David; Ortega, Marta; Gang, Eli; Merino, José L
2013-04-21
New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate.
Filgueiras-Rama, David; Estrada, Alejandro; Shachar, Josh; Castrejón, Sergio; Doiny, David; Ortega, Marta; Gang, Eli; Merino, José L.
2013-01-01
New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate. PMID:23628883
A Kinect(™) camera based navigation system for percutaneous abdominal puncture.
Xiao, Deqiang; Luo, Huoling; Jia, Fucang; Zhang, Yanfang; Li, Yong; Guo, Xuejun; Cai, Wei; Fang, Chihua; Fan, Yingfang; Zheng, Huimin; Hu, Qingmao
2016-08-07
Percutaneous abdominal puncture is a popular interventional method for the management of abdominal tumors. Image-guided puncture can help interventional radiologists improve targeting accuracy. The second generation of Kinect(™) was released recently, we developed an optical navigation system to investigate its feasibility for guiding percutaneous abdominal puncture, and compare its performance on needle insertion guidance with that of the first-generation Kinect(™). For physical-to-image registration in this system, two surfaces extracted from preoperative CT and intraoperative Kinect(™) depth images were matched using an iterative closest point (ICP) algorithm. A 2D shape image-based correspondence searching algorithm was proposed for generating a close initial position before ICP matching. Evaluation experiments were conducted on an abdominal phantom and six beagles in vivo. For phantom study, a two-factor experiment was designed to evaluate the effect of the operator's skill and trajectory on target positioning error (TPE). A total of 36 needle punctures were tested on a Kinect(™) for Windows version 2 (Kinect(™) V2). The target registration error (TRE), user error, and TPE are 4.26 ± 1.94 mm, 2.92 ± 1.67 mm, and 5.23 ± 2.29 mm, respectively. No statistically significant differences in TPE regarding operator's skill and trajectory are observed. Additionally, a Kinect(™) for Windows version 1 (Kinect(™) V1) was tested with 12 insertions, and the TRE evaluated with the Kinect(™) V1 is statistically significantly larger than that with the Kinect(™) V2. For the animal experiment, fifteen artificial liver tumors were inserted guided by the navigation system. The TPE was evaluated as 6.40 ± 2.72 mm, and its lateral and longitudinal component were 4.30 ± 2.51 mm and 3.80 ± 3.11 mm, respectively. This study demonstrates that the navigation accuracy of the proposed system is acceptable, and that the second generation Kinect(™)-based navigation is superior to the first-generation Kinect(™), and has potential of clinical application in percutaneous abdominal puncture.
Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F; Musen, Mark A
The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.
Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F.; Musen, Mark A.
2015-01-01
The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks. PMID:26568745
Navigation for fluoroscopy-guided cryo-balloon ablation procedures of atrial fibrillation
NASA Astrophysics Data System (ADS)
Bourier, Felix; Brost, Alexander; Kleinoeder, Andreas; Kurzendorfer, Tanja; Koch, Martin; Kiraly, Attila; Schneider, Hans-Juergen; Hornegger, Joachim; Strobel, Norbert; Kurzidim, Klaus
2012-02-01
Atrial fibrillation (AFib), the most common arrhythmia, has been identified as a major cause of stroke. The current standard in interventional treatment of AFib is the pulmonary vein isolation (PVI). PVI is guided by fluoroscopy or non-fluoroscopic electro-anatomic mapping systems (EAMS). Either classic point-to-point radio-frequency (RF)- catheter ablation or so-called single-shot-devices like cryo-balloons are used to achieve electrically isolation of the pulmonary veins and the left atrium (LA). Fluoroscopy-based systems render overlay images from pre-operative 3-D data sets which are then merged with fluoroscopic imaging, thereby adding detailed 3-D information to conventional fluoroscopy. EAMS provide tracking and visualization of RF catheters by means of electro-magnetic tracking. Unfortunately, current navigation systems, fluoroscopy-based or EAMS, do not provide tools to localize and visualize single shot devices like cryo-balloon catheters in 3-D. We present a prototype software for fluoroscopy-guided ablation procedures that is capable of superimposing 3-D datasets as well as reconstructing cyro-balloon catheters in 3-D. The 3-D cyro-balloon reconstruction was evaluated on 9 clinical data sets, yielded a reprojected 2-D error of 1.72 mm +/- 1.02 mm.
Hardesty-Moore, Molly; Deinet, Stefanie; Freeman, Robin; Titcomb, Georgia C; Dillon, Erin M; Stears, Keenan; Klope, Maggie; Bui, An; Orr, Devyn; Young, Hillary S; Miller-Ter Kuile, Ana; Hughey, Lacey F; McCauley, Douglas J
2018-05-19
Recent increases in human disturbance pose significant threats to migratory species using collective movement strategies. Key threats to migrants may differ depending on behavioural traits (e.g. collective navigation), taxonomy and the environmental system (i.e. freshwater, marine or terrestrial) associated with migration. We quantitatively assess how collective navigation, taxonomic membership and environmental system impact species' vulnerability by (i) evaluating population change in migratory and non-migratory bird, mammal and fish species using the Living Planet Database (LPD), (ii) analysing the role of collective navigation and environmental system on migrant extinction risk using International Union for Conservation of Nature (IUCN) classifications and (iii) compiling literature on geographical range change of migratory species. Likelihood of population decrease differed by taxonomic group: migratory birds were more likely to experience annual declines than non-migrants, while mammals displayed the opposite pattern. Within migratory species in IUCN, we observed that collective navigation and environmental system were important predictors of extinction risk for fishes and birds, but not for mammals, which had overall higher extinction risk than other taxa. We found high phylogenetic relatedness among collectively navigating species, which could have obscured its importance in determining extinction risk. Overall, outputs from these analyses can help guide strategic interventions to conserve the most vulnerable migrations.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Song, Sang-Eun; Tokuda, Junichi; Tuncali, Kemal; Tempany, Clare; Hata, Nobuhiko
2012-02-01
Image guided prostate interventions have been accelerated by Magnetic Resonance Imaging (MRI) and robotic technologies in the past few years. However, transrectal ultrasound (TRUS) guided procedure still remains as vast majority in clinical practice due to engineering and clinical complexity of the MRI-guided robotic interventions. Subsequently, great advantages and increasing availability of MRI have not been utilized at its maximum capacity in clinic. To benefit patients from the advantages of MRI, we developed an MRI-compatible motorized needle guide device "Smart Template" that resembles a conventional prostate template to perform MRI-guided prostate interventions with minimal changes in the clinical procedure. The requirements and specifications of the Smart Template were identified from our latest MRI-guided intervention system that has been clinically used in manual mode for prostate biopsy. Smart Template consists of vertical and horizontal crossbars that are driven by two ultrasonic motors via timing-belt and mitergear transmissions. Navigation software that controls the crossbar position to provide needle insertion positions was also developed. The software can be operated independently or interactively with an open-source navigation software, 3D Slicer, that has been developed for prostate intervention. As preliminary evaluation, MRI distortion and SNR test were conducted. Significant MRI distortion was found close to the threaded brass alloy components of the template. However, the affected volume was limited outside the clinical region of interest. SNR values over routine MRI scan sequences for prostate biopsy indicated insignificant image degradation during the presence of the robotic system and actuation of the ultrasonic motors.
A Visual-Cue-Dependent Memory Circuit for Place Navigation.
Qin, Han; Fu, Ling; Hu, Bo; Liao, Xiang; Lu, Jian; He, Wenjing; Liang, Shanshan; Zhang, Kuan; Li, Ruijie; Yao, Jiwei; Yan, Junan; Chen, Hao; Jia, Hongbo; Zott, Benedikt; Konnerth, Arthur; Chen, Xiaowei
2018-06-05
The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Magnetic navigation in ultrasound-guided interventional radiology procedures.
Xu, H-X; Lu, M-D; Liu, L-N; Guo, L-H
2012-05-01
To evaluate the usefulness of magnetic navigation in ultrasound (US)-guided interventional procedures. Thirty-seven patients who were scheduled for US-guided interventional procedures (20 liver cancer ablation procedures and 17 other procedures) were included. Magnetic navigation with three-dimensional (3D) computed tomography (CT), magnetic resonance imaging (MRI), 3D US, and position-marking magnetic navigation were used for guidance. The influence on clinical outcome was also evaluated. Magnetic navigation facilitated applicator placement in 15 of 20 ablation procedures for liver cancer in which multiple ablations were performed; enhanced guidance in two small liver cancers invisible on conventional US but visible at CT or MRI; and depicted the residual viable tumour after transcatheter arterial chemoembolization for liver cancer in one procedure. In four of 17 other interventional procedures, position-marking magnetic navigation increased the visualization of the needle tip. Magnetic navigation was beneficial in 11 (55%) of 20 ablation procedures; increased confidence but did not change management in five (25%); added some information but did not change management in two (10%); and made no change in two (10%). In the other 17 interventional procedures, the corresponding numbers were 1 (5.9%), 2 (11.7%), 7 (41.2%), and 7 (41.2%), respectively (p=0.002). Magnetic navigation in US-guided interventional procedure provides solutions in some difficult cases in which conventional US guidance is not suitable. It is especially useful in complicated interventional procedures such as ablation for liver cancer. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Augmented Reality Based Navigation for Computer Assisted Hip Resurfacing: A Proof of Concept Study.
Liu, He; Auvinet, Edouard; Giles, Joshua; Rodriguez Y Baena, Ferdinando
2018-05-23
Implantation accuracy has a great impact on the outcomes of hip resurfacing such as recovery of hip function. Computer assisted orthopedic surgery has demonstrated clear advantages for the patients, with improved placement accuracy and fewer outliers, but the intrusiveness, cost, and added complexity have limited its widespread adoption. To provide seamless computer assistance with improved immersion and a more natural surgical workflow, we propose an augmented-reality (AR) based navigation system for hip resurfacing. The operative femur is registered by processing depth information from the surgical site with a commercial depth camera. By coupling depth data with robotic assistance, obstacles that may obstruct the femur can be tracked and avoided automatically to reduce the chance of disruption to the surgical workflow. Using the registration result and the pre-operative plan, intra-operative surgical guidance is provided through a commercial AR headset so that the user can perform the operation without additional physical guides. To assess the accuracy of the navigation system, experiments of guide hole drilling were performed on femur phantoms. The position and orientation of the drilled holes were compared with the pre-operative plan, and the mean errors were found to be approximately 2 mm and 2°, results which are in line with commercial computer assisted orthopedic systems today.
Clinical performance of dental fiberscope image guided system for endodontic treatment.
Yamazaki, Yasushi; Ogawa, Takumi; Shigeta, Yuko; Ikawa, Tomoko; Kasama, Shintaro; Hattori, Asaki; Suzuki, Naoki; Yamamoto, Takatsugu; Ozawa, Toshiko; Arai, Takashi
2011-01-01
We developed a dental fiberscope that can be navigated. As a result we are able to better grasp the device position relative to the teeth, aiming at the lesion more precisely. However, the device position and the precise target setting were difficult to consistently ascertain. The aim of this study is to navigate the position of tip of the dental fiberscope fiber in the root canal with our navigation system. A 3D tooth model was made from the raw dental CT data. In addition, the optical position of the measurement device, OPTOTRAK system was used for registration of the 3D model and actual teeth position and to chase the scope movement. We developed exclusive software to unify information. We were subsequently able to precisely indicate the relation of the position between the device and the teeth on the 3D model in the monitor. This allowed us to aim at the lesion more precisely, as the revised endoscopic image matched the 3D model. The application of this endoscopic navigation system could increase the success rate for root canal treatments with recalcitrant lesion.
Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current
Johnson, Nicholas S.; Miehls, Scott M.
2014-01-01
Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.
Technician-free system for image-guided bronchoscopy
NASA Astrophysics Data System (ADS)
Khare, Rahul; Bascom, Rebecca; Higgins, William E.
2013-03-01
Previous studies have shown that guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. However, most of these systems suffer from one or more of the following limitations: 1) an attending technician must carefully keep the system position synchronized with the bronchoscope position during the procedure; 2) extra bronchoscope tracking hardware may be required; 3) guidance cannot take place in real time; 4) the guidance system is unable to detect and correct faulty bronchoscope maneuvers; and 5) a resynchronization procedure must be followed after adverse events such as patient cough or dynamic airway collapse. Here, we propose an image-based system for technician-free bronchoscopy guidance that relies on two features. First, our system precomputes a guidance plan that suggests natural bronchoscope maneuvers at every bifurcation leading toward a region of interest (ROI). Second, our system enables bronchoscope position verification that relies on a global-registration algorithm to establish the global bronchoscope position and, thus, provide the physician with updated navigational information during bronchoscopy. The system can handle general navigation to an ROI, as well as adverse events, and is directly controlled by the physician by a foot pedal. Guided bronchoscopy results using airway-tree phantoms and human cases demonstrate the efficacy of the system.
Gan, Qi; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Hu, Chuanzhen; Shao, Pengfei; Xu, Ronald X.
2016-01-01
We propose a projective navigation system for fluorescence imaging and image display in a natural mode of visual perception. The system consists of an excitation light source, a monochromatic charge coupled device (CCD) camera, a host computer, a projector, a proximity sensor and a Complementary metal–oxide–semiconductor (CMOS) camera. With perspective transformation and calibration, our surgical navigation system is able to achieve an overall imaging speed higher than 60 frames per second, with a latency of 330 ms, a spatial sensitivity better than 0.5 mm in both vertical and horizontal directions, and a projection bias less than 1 mm. The technical feasibility of image-guided surgery is demonstrated in both agar-agar gel phantoms and an ex vivo chicken breast model embedding Indocyanine Green (ICG). The biological utility of the system is demonstrated in vivo in a classic model of ICG hepatic metabolism. Our benchtop, ex vivo and in vivo experiments demonstrate the clinical potential for intraoperative delineation of disease margin and image-guided resection surgery. PMID:27391764
Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.
Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig
2017-06-01
Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.
Optimizing Spacecraft Placement for Liaison Constellations
NASA Technical Reports Server (NTRS)
Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.
2011-01-01
A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.
78 FR 36478 - Accessibility of User Interfaces, and Video Programming Guides and Menus
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-18
... equipment: ``digital apparatus'' and ``navigation devices.'' Specifically, section 204 applies to ``digital... apparatus, including equipment purchased at retail by a consumer to access video programming, would be..., and video programming guides, and menus provided by digital apparatus and navigation devices are...
78 FR 77209 - Accessibility of User Interfaces, and Video Programming Guides and Menus
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-20
... user interfaces on digital apparatus and video programming guides and menus on navigation devices for... apparatus and navigation devices used to view video programming. The rules we adopt here will effectuate...--that is, devices and other equipment used by consumers to access multichannel video programming and...
Image fusion and navigation platforms for percutaneous image-guided interventions.
Rajagopal, Manoj; Venkatesan, Aradhana M
2016-04-01
Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions.
Development of voice navigation system for the visually impaired by using IC tags.
Takatori, Norihiko; Nojima, Kengo; Matsumoto, Masashi; Yanashima, Kenji; Magatani, Kazushige
2006-01-01
There are about 300,000 visually impaired persons in Japan. Most of them are old persons and, cannot become skillful in using a white cane, even if they make effort to learn how to use a white cane. Therefore, some guiding system that supports the independent activities of the visually impaired are required. In this paper, we will describe about a developed white cane system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines that include IC tags and an intelligent white cane that has a navigation computer. In our system colored navigation lines that are put on the floor of the target space from the start point to the destination and IC tags that are set at the landmark point are used for indication of the route to the destination. The white cane has a color sensor, an IC tag transceiver and a computer system that includes a voice processor. This white cane senses the navigation line that has target color by a color sensor. When a color sensor finds the target color, the white cane informs a white cane user that he/she is on the navigation line by vibration. So, only following this vibration, the user can reach the destination. However, at some landmark points, guidance is necessary. At these points, an IC tag is set under the navigation line. The cane makes communication with the tag and informs the user about the land mark pint by pre recorded voice. Ten normal subjects who were blindfolded were tested with our developed system. All of them could walk along navigation line. And the IC tag information system worked well. Therefore, we have concluded that our system will be a very valuable one to support activities of the visually impaired.
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.
Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas
2016-10-17
Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Navigation-guided optic canal decompression for traumatic optic neuropathy: Two case reports.
Bhattacharjee, Kasturi; Serasiya, Samir; Kapoor, Deepika; Bhattacharjee, Harsha
2018-06-01
Two cases of traumatic optic neuropathy presented with profound loss of vision. Both cases received a course of intravenous corticosteroids elsewhere but did not improve. They underwent Navigation guided optic canal decompression via external transcaruncular approach, following which both cases showed visual improvement. Postoperative Visual Evoked Potential and optical coherence technology of Retinal nerve fibre layer showed improvement. These case reports emphasize on the role of stereotactic navigation technology for optic canal decompression in cases of traumatic optic neuropathy.
Hook, Ann; Ware, Laurie; Siler, Bobbie; Packard, Abbot
2012-07-01
To explore patient satisfaction among newly diagnosed patients with breast cancer in a rural community setting using a nurse navigation model. Nonexperimental, descriptive study. Large, multispecialty physician outpatient clinic serving about 150 newly diagnosed patients with breast cancer annually at the time of the study. 103 patients using nurse navigation services during a two-year period. A researcher-developed 14-item survey tool using a Likert-type scale was mailed to about 300 navigated patients. Nurse navigation and patient satisfaction. The majority of participants (n = 73, 72%) selected "strongly agree" in each survey statement when questioned about the benefits of nurse navigation. Patients receiving nurse navigation for breast cancer are highly satisfied with the services offered in this setting. Findings from this study offer insight regarding the effectiveness of an individualized supportive care approach to nurses and providers of oncology care. That information can be used to guide the implementation of future nurse navigation programs, determine effective methods of guiding patients through the cancer experience, and aid in promoting the highest standard of oncology care.
Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain
NASA Astrophysics Data System (ADS)
Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.
2017-03-01
MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.
Local navigation and fuzzy control realization for autonomous guided vehicle
NASA Astrophysics Data System (ADS)
El-Konyaly, El-Sayed H.; Saraya, Sabry F.; Shehata, Raef S.
1996-10-01
This paper addresses the problem of local navigation for an autonomous guided vehicle (AGV) in a structured environment that contains static and dynamic obstacles. Information about the environment is obtained via a CCD camera. The problem is formulated as a dynamic feedback control problem in which speed and steering decisions are made on the fly while the AGV is moving. A decision element (DE) that uses local information is proposed. The DE guides the vehicle in the environment by producing appropriate navigation decisions. Dynamic models of a three-wheeled vehicle for driving and steering mechanisms are derived. The interaction between them is performed via the local feedback DE. A controller, based on fuzzy logic, is designed to drive the vehicle safely in an intelligent and human-like manner. The effectiveness of the navigation and control strategies in driving the AGV is illustrated and evaluated.
Kobayashi, Hiroshi; Akiyama, Toru; Okuma, Tomotake; Shinoda, Yusuke; Oka, Hiroyuki; Ito, Nobuaki; Fukumoto, Seiji; Tanaka, Sakae; Kawano, Hirotaka
2017-12-01
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome usually caused by phosphaturic mesenchymal tumors. Segmental resection has been recommended for these tumors in the bones because curettage was found to be associated with a high local recurrence rate. Navigation-assisted surgery provides radiological information to guide the surgeon during surgery. No previous study has reported on the efficacy of navigation-assisted surgery for tumors in patients with TIO. Therefore, the present study aimed to evaluate the efficacy of navigation-assisted surgery for tumors in patients with TIO. The study included seven patients with TIO who were treated between January 2003 and December 2014 at our hospital. All patients underwent surgical treatment with or without the use of a 3-dimensional (3D) fluoroscopy-based navigation system. The laboratory data and oncological outcomes were evaluated. The follow-up period was 8-128 months. The tumors were located at the femur (n = 4), ischium, spine and ilium (n = 1). Of the seven patients, five underwent navigation-assisted surgery and two underwent surgery without navigation assistance. In the two patients who underwent surgery without navigation assistance, a complete cure was not obtained and osteomalacia did not resolve. One of these two patients and the other five patients who underwent navigation-assisted surgery, one patient had incomplete resection due to massive invasion of the tumor into the spinal canal, but five patients achieved complete excision and recovered from osteomalacia. Navigation-assisted surgery using a 3D fluoroscopy-based navigation system is effective for tumors in patients with TIO.
Photoacoustic image-guided navigation system for surgery (Conference Presentation)
NASA Astrophysics Data System (ADS)
Park, Sara; Jang, Jongseong; Kim, Jeesu; Kim, Young Soo; Kim, Chulhong
2017-03-01
Identifying and delineating invisible anatomical and pathological details during surgery guides surgical procedures in real time. Various intraoperative imaging modalities have been increasingly employed to minimize such surgical risks as anatomical changes, damage to normal tissues, and human error. However, current methods provide only structural information, which cannot identify critical structures such as blood vessels. The logical next step is an intraoperative imaging modality that can provide functional information. Here, we have successfully developed a photoacoustic (PA) image-guided navigation system for surgery by integrating a position tracking system and a real-time clinical photoacoustic/ultrasound (PA/US) imaging system. PA/US images were acquired in real time and overlaid on pre-acquired cross-sectional magnetic resonance (MR) images. In the overlaid images, PA images represent the optical absorption characteristics of the surgical field, while US and MR images represent the morphological structure of surrounding tissues. To test the feasibility of the system, we prepared a tissue mimicking phantom which contained two samples, methylene blue as a contrast agent and water as a control. We acquired real-time overlaid PA/US/MR images of the phantom, which were well-matched with the optical and morphological properties of the samples. The developed system is the first approach to a novel intraoperative imaging technology based on PA imaging, and we believe that the system can be utilized in various surgical environments in the near future, improving the efficacy of surgical guidance.
Sensor-Based Electromagnetic Navigation (Mediguide®): How Accurate Is It? A Phantom Model Study.
Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Brkic, Amir; Semmler, Verena; Lennerz, Carsten; Kaess, Bernhard; Kottmaier, Marc; Kolb, Christof; Deisenhofer, Isabel; Hessling, Gabriele
2015-10-01
Data about localization reproducibility as well as spatial and visual accuracy of the new MediGuide® sensor-based electroanatomic navigation technology are scarce. We therefore sought to quantify these parameters based on phantom experiments. A realistic heart phantom was generated in a 3D-Printer. A CT scan was performed on the phantom. The phantom itself served as ground-truth reference to ensure exact and reproducible catheter placement. A MediGuide® catheter was repeatedly tagged at selected positions to assess accuracy of point localization. The catheter was also used to acquire a MediGuide®-scaled geometry in the EnSite Velocity® electroanatomic mapping system. The acquired geometries (MediGuide®-scaled and EnSite Velocity®-scaled) were compared to a CT segmentation of the phantom to quantify concordance. Distances between landmarks were measured in the EnSite Velocity®- and MediGuide®-scaled geometry and the CT dataset for Bland-Altman comparison. The visualization of virtual MediGuide® catheter tips was compared to their corresponding representation on fluoroscopic cine-loops. Point localization accuracy was 0.5 ± 0.3 mm for MediGuide® and 1.4 ± 0.7 mm for EnSite Velocity®. The 3D accuracy of the geometries was 1.1 ± 1.4 mm (MediGuide®-scaled) and 3.2 ± 1.6 mm (not MediGuide®-scaled). The offset between virtual MediGuide® catheter visualization and catheter representation on corresponding fluoroscopic cine-loops was 0.4 ± 0.1 mm. The MediGuide® system shows a very high level of accuracy regarding localization reproducibility as well as spatial and visual accuracy, which can be ascribed to the magnetic field localization technology. The observed offsets between the geometry visualization and the real phantom are below a clinically relevant threshold. © 2015 Wiley Periodicals, Inc.
A projective surgical navigation system for cancer resection
NASA Astrophysics Data System (ADS)
Gan, Qi; Shao, Pengfei; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Xu, Ronald
2016-03-01
Near infrared (NIR) fluorescence imaging technique can provide precise and real-time information about tumor location during a cancer resection surgery. However, many intraoperative fluorescence imaging systems are based on wearable devices or stand-alone displays, leading to distraction of the surgeons and suboptimal outcome. To overcome these limitations, we design a projective fluorescence imaging system for surgical navigation. The system consists of a LED excitation light source, a monochromatic CCD camera, a host computer, a mini projector and a CMOS camera. A software program is written by C++ to call OpenCV functions for calibrating and correcting fluorescence images captured by the CCD camera upon excitation illumination of the LED source. The images are projected back to the surgical field by the mini projector. Imaging performance of this projective navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex-vivo chicken tissue model. In all the experiments, the projected images by the projector match well with the locations of fluorescence emission. Our experimental results indicate that the proposed projective navigation system can be a powerful tool for pre-operative surgical planning, intraoperative surgical guidance, and postoperative assessment of surgical outcome. We have integrated the optoelectronic elements into a compact and miniaturized system in preparation for further clinical validation.
Developments in Acoustic Navigation and Communication for High-Latitude Ocean Research
NASA Astrophysics Data System (ADS)
Gobat, J.; Lee, C.
2006-12-01
Developments in autonomous platforms (profiling floats, drifters, long-range gliders and propeller-driven vehicles) offer the possibility of unprecedented access to logistically difficult polar regions that challenge conventional techniques. Currently, however, navigation and telemetry for these platforms rely on satellite positioning and communications poorly suited for high-latitude applications where ice cover restricts access to the sea surface. A similar infrastructure offering basin-wide acoustic geolocation and telemetry would allow the community to employ autonomous platforms to address previously intractable problems in Arctic oceanography. Two recent efforts toward the development of such an infrastructure are reported here. As part of an observational array monitoring fluxes through Davis Strait, development of real-time RAFOS acoustic navigation for gliders has been ongoing since autumn 2004. To date, test deployments have been conducted in a 260 Hz field in the Pacific and 780 Hz fields off Norway and in Davis Strait. Real-time navigation accuracy of ~1~km is achievable. Autonomously navigating gliders will operate under ice cover beginning in autumn 2006. In addition to glider navigation development, the Davis Strait array moorings carry fixed RAFOS recorders to study propagation over a range of distances under seasonally varying ice cover. Results from the under-ice propagation and glider navigation experiments are presented. Motivated by the need to coordinate these types of development efforts, an international group of acousticians, autonomous platform developers, high-latitude oceanographers and marine mammal researchers gathered in Seattle, U.S.A. from 27 February -- 1 March 2006 for an NSF Office of Polar Programs sponsored Acoustic Navigation and Communication for High-latitude Ocean Research (ANCHOR) workshop. Workshop participants focused on summarizing the current state of knowledge concerning Arctic acoustics, navigation and communications, developing an overarching system specification to guide community-wide engineering efforts and establishing an active community and steering group to guide long-term engineering efforts and ensure interoperability. This presentation will summarize ANCHOR workshop findings.
NASA Astrophysics Data System (ADS)
Gupta, Shaurya; Guha, Daipayan; Jakubovic, Raphael; Yang, Victor X. D.
2017-02-01
Computer-assisted navigation is used by surgeons in spine procedures to guide pedicle screws to improve placement accuracy and in some cases, to better visualize patient's underlying anatomy. Intraoperative registration is performed to establish a correlation between patient's anatomy and the pre/intra-operative image. Current algorithms rely on seeding points obtained directly from the exposed spinal surface to achieve clinically acceptable registration accuracy. Registration of these three dimensional surface point-clouds are prone to various systematic errors. The goal of this study was to evaluate the robustness of surgical navigation systems by looking at the relationship between the optical density of an acquired 3D point-cloud and the corresponding surgical navigation error. A retrospective review of a total of 48 registrations performed using an experimental structured light navigation system developed within our lab was conducted. For each registration, the number of points in the acquired point cloud was evaluated relative to whether the registration was acceptable, the corresponding system reported error and target registration error. It was demonstrated that the number of points in the point cloud neither correlates with the acceptance/rejection of a registration or the system reported error. However, a negative correlation was observed between the number of the points in the point-cloud and the corresponding sagittal angular error. Thus, system reported total registration points and accuracy are insufficient to gauge the accuracy of a navigation system and the operating surgeon must verify and validate registration based on anatomical landmarks prior to commencing surgery.
2018-06-19
A tool that has helped guide sailors across oceans for centuries is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation tests use of a hand-held sextant aboard the space station. Sextants have a telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. NASA’s Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a navigation backup in the event the crew lost communications from their spacecraft. Jim Lovell demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. Astronauts conducted additional sextant experiments on Skylab. Read more about the Sextant experiment happening aboard the space station: https://www.nasa.gov/mission_pages/station/research/news/Sextant_ISS HD Download: https://archive.org/details/jsc2018m000418_Navigating_Space_by_the_Stars
Navigating Space by the Stars - 16x9
2018-06-18
A tool that has helped guide sailors across oceans for centuries is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation tests use of a hand-held sextant aboard the space station. Sextants have a telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. NASA’s Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a navigation backup in the event the crew lost communications from their spacecraft. Jim Lovell demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. Astronauts conducted additional sextant experiments on Skylab. Read more about the Sextant experiment happening aboard the space station: https://www.nasa.gov/mission_pages/station/research/news/Sextant_ISS HD Download: https://archive.org/details/jsc2018m000418_Navigating_Space_by_the_Stars
[Magnetic navigation for ablation of cardiac arrhythmias].
Chen, Jian; Hoff, Per Ivar; Solheim, Eivind; Schuster, Peter; Off, Morten Kristian; Ohm, Ole-Jørgen
2010-08-12
The first use of magnetic navigation for radiofrequency ablation of supraventricular tachycardias, was published in 2004. Subsequently, the method has been used for treatment of most types of tachyarrhythmias. This paper provides an overview of the method, with special emphasis on usefulness of a new remote-controlled magnetic navigation system. The paper is based on our own scientific experience and literature identified through a non-systematic search in PubMed. The magnetic navigation system consists of two external electromagnets (to be placed on opposite sides of the patient), which guide an ablation catheter (with a small magnet at the tip of the catheter) to the target area in the heart. The accuracy of this procedure is higher than that with manual navigation. Personnel can be quickly trained to use remote magnetic navigation, but the procedure itself is time-consuming, particularly for patients with atrial fibrillation. The major advantage is a considerably lower radiation burden to both patient and operator, in some studies more than 50 %, and a corresponding reduction in physical strain on the operator. The incidence of procedure-related complications seems to be lower than that observed with use of manually operated ablation catheters. Work is ongoing to improve magnetic ablation catheters and methods that can simplify mapping procedures and improve efficacy of arrhythmia ablation. The basic cost for installing a complete magnetic navigation laboratory may be three times that of a conventional electrophysiological laboratory. The new magnetic navigation system has proved to be applicable during ablation for a variety of tachyarrhythmias, but is still under development.
Positioning accuracy in a registration-free CT-based navigation system
NASA Astrophysics Data System (ADS)
Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.
2007-12-01
In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.
[First clinical experience with extended planning and navigation in an interventional MRI unit].
Moche, M; Schmitgen, A; Schneider, J P; Bublat, M; Schulz, T; Voerkel, C; Trantakis, C; Bennek, J; Kahn, T; Busse, H
2004-07-01
To present an advanced concept for patient-based navigation and to report on our first clinical experience with interventions in the cranium, of soft-tissue structures (breast, liver) and in the musculoskeletal system. A PC-based navigation system was integrated into an existing interventional MRI environment. Intraoperatively acquired 3D data were used for interventional planning. The information content of these reference data was increased by integration of additional image modalities (e. g., fMRI, CT) and by color display of areas with early contrast media enhancement. Within 18 months, the system was used in 123 patients undergoing interventions in different anatomic regions (brain: 64, paranasal sinus: 9, breast: 20, liver: 17, bone: 9, muscle: 4). The mean duration of 64 brain interventions was compared with that of 36 procedures using the scanner's standard navigation. In contrast with the continuous scanning mode of the MR system (0.25 fps), the higher quality as well as the real time display (4 fps) of the MR images reconstructed from the 3D reference data allowed adequate hand-eye coordination. With our system, patient movement and tissue shifts could be immediately detected intraoperatively, and, in contrast to the standard procedure, navigation safely resumed after updating the reference data. The navigation system was characterized by good stability, efficient system integration and easy usability. Despite additional working steps still to be optimized, the duration of the image-guided brain tumor resections was not significantly longer. The presented system combines the advantage of intraoperative MRI with established visualization, planning, and real time capabilities of neuronavigation and can be efficiently applied in a broad range of non-neurosurgical interventions.
Towards image-guided atrial septal defect repair: an ex vivo analysis
NASA Astrophysics Data System (ADS)
Kwartowitz, David M.; Mefleh, Fuad N.; Baker, George H.
2012-02-01
The use of medical images in the operating room for navigation and planning is well established in many clinical disciplines. In cardiology, the use of fluoroscopy for the placement of catheters within the heart has become the standard of care. While fluoroscopy provides a live video sequence with the current location, it poses risks the patient and clinician through exposure to radiation. Radiation dose is cumulative and thus children are at even greater risk from exposure. To reduce the use of radiation, and improve surgical technique we have begun development of an image-guided navigation system, which can deliver therapeutic devices via catheter. In this work we have demonstrated the intrinsic properties of our imaging system, which have led to the development of a phantom emulating a childs heart with an ASD. Further investigation into the use of this information, in a series of mock clinical experiments, will be performed to design procedures for inserting devices into the heart while minimizing fluoroscopy use.
Cognitive load of navigating without vision when guided by virtual sound versus spatial language.
Klatzky, Roberta L; Marston, James R; Giudice, Nicholas A; Golledge, Reginald G; Loomis, Jack M
2006-12-01
A vibrotactile N-back task was used to generate cognitive load while participants were guided along virtual paths without vision. As participants stepped in place, they moved along a virtual path of linear segments. Information was provided en route about the direction of the next turning point, by spatial language ("left," "right," or "straight") or virtual sound (i.e., the perceived azimuth of the sound indicated the target direction). The authors hypothesized that virtual sound, being processed at direct perceptual levels, would have lower load than even simple language commands, which require cognitive mediation. As predicted, whereas the guidance modes did not differ significantly in the no-load condition, participants showed shorter distance traveled and less time to complete a path when performing the N-back task while navigating with virtual sound as guidance. Virtual sound also produced better N-back performance than spatial language. By indicating the superiority of virtual sound for guidance when cognitive load is present, as is characteristic of everyday navigation, these results have implications for guidance systems for the visually impaired and others.
Coastal Piloting & Charting: Navigation 101.
ERIC Educational Resources Information Center
Osinski, Alison
This curriculum guide for a beginning course on marine navigation describes marine navigation (the art of and science of determining position of a ship and its movement from one position to another in order to keep track of where the ship is and where it is going) and defines dead reckoning, piloting, electronic navigation, and celestial…
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico, south from... Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving... Mexico south from Choctawhatchee Bay within an area described as follows: Beginning at a point five...
A guide to onboard checkout. Volume 1: Guidance, navigation and control
NASA Technical Reports Server (NTRS)
1971-01-01
The results are presented of a study of onboard checkout techniques, as they relate to space station subsystems, as a guide to those who may need to implement onboard checkout in similar subsystems. Guidance, navigation, and control subsystems, and their reliability and failure analyses are presented. Software and testing procedures are also given.
A magnetic-resonance-imaging-compatible remote catheter navigation system.
Tavallaei, Mohammad Ali; Thakur, Yogesh; Haider, Syed; Drangova, Maria
2013-04-01
A remote catheter navigation system compatible with magnetic resonance imaging (MRI) has been developed to facilitate MRI-guided catheterization procedures. The interventionalist's conventional motions (axial motion and rotation) on an input catheter - acting as the master - are measured by a pair of optical encoders, and a custom embedded system relays the motions to a pair of ultrasonic motors. The ultrasonic motors drive the patient catheter (slave) within the MRI scanner, replicating the motion of the input catheter. The performance of the remote catheter navigation system was evaluated in terms of accuracy and delay of motion replication outside and within the bore of the magnet. While inside the scanner bore, motion accuracy was characterized during the acquisition of frequently used imaging sequences, including real-time gradient echo. The effect of the catheter navigation system on image signal-to-noise ratio (SNR) was also evaluated. The results show that the master-slave system has a maximum time delay of 41 ± 21 ms in replicating motion; an absolute value error of 2 ± 2° was measured for radial catheter motion replication over 360° and 1.0 ± 0.8 mm in axial catheter motion replication over 100 mm of travel. The worst-case SNR drop was observed to be 2.5%.
Yang, Xiaofeng; Wu, Wei; Wang, Guoan
2015-04-01
This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.
Kaneyama, Shuichi; Sugawara, Taku; Sumi, Masatoshi
2015-03-15
Clinical trial for midcervical pedicle screw insertion using a novel patient-specific intraoperative screw guiding device. To evaluate the availability of the "Screw Guide Template" (SGT) system for insertion of midcervical pedicle screws. Despite many efforts for accurate midcervical pedicle screw insertion, there still remain unacceptable rate of screw malpositioning that might cause neurovascular injuries. We developed patient-specific SGT system for safe and accurate intraoperative screw navigation tool and have reported its availability for the screw insertion to C2 vertebra and thoracic spine. Preoperatively, the bone image on computed tomography was analyzed and the trajectories of the screws were designed in 3-dimensional format. Three types of templates were created for each lamina: location template, drill guide template, and screw guide template. During the operations, after engaging the templates directly with the laminae, drilling, tapping, and screwing were performed with each template. We placed 80 midcervical pedicle screws for 20 patients. The accuracy and safety of the screw insertion by SGT system were evaluated using postoperative computed tomographic scan by calculation of screw deviation from the preplanned trajectory and evaluation of screw breach of pedicle wall. All templates fitted the laminae and screw navigation procedures proceeded uneventfully. All screws were inserted accurately with the mean screw deviation from planned trajectory of 0.29 ± 0.31 mm and no neurovascular complication was experienced. We demonstrated that our SGT system could support the precise screw insertion in midcervical pedicle. SGT prescribes the safe screw trajectory in a 3-dimensional manner and the templates fit and lock directly to the target laminae, which prevents screwing error along with the change of spinal alignment during the surgery. These advantages of the SGT system guarantee the high accuracy in screw insertion, which allowed surgeons to insert cervical pedicle screws safely. 3.
Wyeth, Russell C; Woodward, Owen M; Willows, A O Dennis
2006-04-01
Progress in understanding sensory and locomotory systems in Tritonia diomedea has created the potential for the neuroethological study of animal navigation in this species. Our goal is to describe the navigational behaviors to guide further work on how the nervous system integrates information from multiple senses to produce oriented locomotion. Observation of T. diomedea in its habitat has suggested that it uses water flow to navigate relative to prey, predators, and conspecifics. We test these hypotheses in the field by comparing slug orientation in time-lapse videos to flow direction in circumstances with and without prey, predators, or conspecifics upstream. T. diomedea oriented upstream both while crawling and after turning. This trend was strongest before feeding or mating; after feeding or mating, the slugs did not orient significantly to flow. Slugs turned downstream away from an upstream predator but did not react in control situations without an upstream predator. These data support the hypothesis that T. diomedea uses a combination of odors (or some other cue transported downstream) and water flow to navigate relative to prey, predators, and conspecifics. Understanding the context-dependent choice between upstream and downstream crawling in T. diomedea provides an opportunity for further work on the sensory integration underlying navigation behavior.
Lossnitzer, Dirk; Seitz, Sebastian A; Krautz, Birgit; Schnackenburg, Bernhard; André, Florian; Korosoglou, Grigorios; Katus, Hugo A; Steen, Henning
2015-07-26
To investigate if magnetic resonance (MR)-guided biopsy can improve the performance and safety of such procedures. A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging (MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance (imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists. MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.
Evidence for discrete landmark use by pigeons during homing.
Mora, Cordula V; Ross, Jeremy D; Gorsevski, Peter V; Chowdhury, Budhaditya; Bingman, Verner P
2012-10-01
Considerable efforts have been made to investigate how homing pigeons (Columba livia f. domestica) are able to return to their loft from distant, unfamiliar sites while the mechanisms underlying navigation in familiar territory have received less attention. With the recent advent of global positioning system (GPS) data loggers small enough to be carried by pigeons, the role of visual environmental features in guiding navigation over familiar areas is beginning to be understood, yet, surprisingly, we still know very little about whether homing pigeons can rely on discrete, visual landmarks to guide navigation. To assess a possible role of discrete, visual landmarks in navigation, homing pigeons were first trained to home from a site with four wind turbines as salient landmarks as well as from a control site without any distinctive, discrete landmark features. The GPS-recorded flight paths of the pigeons on the last training release were straighter and more similar among birds from the turbine site compared with those from the control site. The pigeons were then released from both sites following a clock-shift manipulation. Vanishing bearings from the turbine site continued to be homeward oriented as 13 of 14 pigeons returned home. By contrast, at the control site the vanishing bearings were deflected in the expected clock-shift direction and only 5 of 13 pigeons returned home. Taken together, our results offer the first strong evidence that discrete, visual landmarks are one source of spatial information homing pigeons can utilize to navigate when flying over a familiar area.
NASA Technical Reports Server (NTRS)
2004-01-01
This pair of pieced-together images was taken by the Mars Exploration Rover Spirit's left navigation camera looking aft on March 6, 2004. It reveals the long and rocky path of nearly 240 meters (787 feet) that Spirit had traveled since safely arriving at Gusev Crater on Jan. 3, 2004.
The lander can still be seen in the distance, but will never be 'home' again for the journeying rover. This image is also a tribute to the effectiveness of the autonomous navigation system that the rovers use during parts of their martian drives. Instead of driving directly through the 'hollow' seen in the middle right of the image, the autonomous navigation system guided Spirit around the high ridge bordering the hollow. In the two days after these images were taken, Spirit has traveled roughly 60 meters (197 feet) farther toward its destination at the crater nicknamed 'Bonneville'.Advanced electrophysiologic mapping systems: an evidence-based analysis.
2006-01-01
To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation has not been found to be effective for the treatment of complex arrhythmias such as chronic atrial fibrillation or ventricular tachycardia. Advanced nonfluoroscopic mapping systems have been developed for guiding the ablation of these complex arrhythmias. Four nonfluoroscopic advanced mapping systems have been licensed by Health Canada: CARTO EP mapping System (manufactured by Biosense Webster, CA) uses weak magnetic fields and a special mapping/ablation catheter with a magnetic sensor to locate the catheter and reconstruct a 3-dimensional geometry of the heart superimposed with colour-coded electric potential maps to guide ablation. EnSite System (manufactured by Endocardial Solutions Inc., MN) includes a multi-electrode non-contact catheter that conducts simultaneous mapping. A processing unit uses the electrical data to computes more than 3,000 isopotential electrograms that are displayed on a reconstructed 3-dimensional geometry of the heart chamber. The navigational system, EnSite NavX, can be used separately with most mapping catheters. The LocaLisa Intracardiac System (manufactured by Medtronics Inc, MN) is a navigational system that uses an electrical field to locate the mapping catheter. It reconstructs the location of the electrodes on the mapping catheter in 3-dimensional virtual space, thereby enabling an ablation catheter to be directed to the electrode that identifies abnormal electric potential. Polar Constellation Advanced Mapping Catheter System (manufactured by Boston Scientific, MA) is a multielectrode basket catheter with 64 electrodes on 8 splines. Once deployed, each electrode is automatically traced. The information enables a 3-dimensional model of the basket catheter to be computed. Colour-coded activation maps are reconstructed online and displayed on a monitor. By using this catheter, a precise electrical map of the atrium can be obtained in several heartbeats. A systematic search of Cochrane, MEDLINE and EMBASE was conducted to identify studies that compared ablation guided by any of the advanced systems to fluoroscopy-guided ablation of tachycardia. English-language studies with sample sizes greater than or equal to 20 that were published between 2000 and 2005 were included. Observational studies on safety of advanced mapping systems and fluoroscopy were also included. Outcomes of interest were acute success, defined as termination of arrhythmia immediately following ablation; long-term success, defined as being arrhythmia free at follow-up; total procedure time; fluoroscopy time; radiation dose; number of radiofrequency pulses; complications; cost; and the cost-effectiveness ratio. Quality of the individual studies was assessed using established criteria. Quality of the overall evidence was determined by applying the GRADE evaluation system. (3) Qualitative synthesis of the data was performed. Quantitative analysis using Revman 4.2 was performed when appropriate. Quality of the Studies Thirty-four studies met the inclusion criteria. These comprised 18 studies on CARTO (4 randomized controlled trials [RCTs] and 14 non-RCTs), 3 RCTs on EnSite NavX, 4 studies on LocaLisa Navigational System (1 RCT and 3 non-RCTs), 2 studies on EnSite and CARTO, 1 on Polar Constellation basket catheter, and 7 studies on radiation safety. The quality of the studies ranged from moderate to low. Most of the studies had small sample sizes with selection bias, and there was no blinding of patients or care providers in any of the studies. Duration of follow-up ranged from 6 weeks to 29 months, with most having at least 6 months of follow-up. There was heterogeneity with respect to the approach to ablation, definition of success, and drug management before and after the ablation procedure. Evidence is based on a small number of small RCTS and non-RCTS with methodological flaws.Advanced nonfluoroscopy mapping/navigation systems provided real time 3-dimensional images with integration of anatomic and electrical potential information that enable better visualization of areas of interest for ablationAdvanced nonfluoroscopy mapping/navigation systems appear to be safe; they consistently shortened the fluoroscopy duration and radiation exposure.Evidence suggests that nonfluoroscopy mapping and navigation systems may be used as adjuncts to rather than replacements for fluoroscopy in guiding the ablation of complex arrhythmias.Most studies showed a nonsignificant trend toward lower overall failure rate for advanced mapping-guided ablation compared with fluoroscopy-guided mapping.Pooled analyses of small RCTs and non-RCTs that compared fluoroscopy- with nonfluoroscopy-guided ablation of atrial fibrillation and atrial flutter showed that advanced nonfluoroscopy mapping and navigational systems:Yielded acute success rates of 69% to 100%, not significantly different from fluoroscopy ablation.Had overall failure rates at 3 months to 19 months of 1% to 40% (median 25%).Resulted in a 10% relative reduction in overall failure rate for advanced mapping guided-ablation compared to fluoroscopy guided ablation for the treatment of atrial fibrillation.Yielded added benefit over fluoroscopy in guiding the ablation of complex arrhythmia. The advanced systems were shown to reduce the arrhythmia burden and the need for antiarrhythmic drugs in patients with complex arrhythmia who had failed fluoroscopy-guided ablationBased on predominantly observational studies, circumferential PV ablation guided by a nonfluoroscopy system was shown to do the following:Result in freedom from atrial fibrillation (with or without antiarrhythmic drug) in 75% to 95% of patients (median 79%). This effect was maintained up to 28 months.Result in freedom from atrial fibrillation without antiarrhythmic drugs in 47% to 95% of patients (median 63%).Improve patient survival at 28 months after the procedure as compared with drug therapy.Require special skills; patient outcomes are operator dependent, and there is a significant learning curve effect.Complication rates of pulmonary vein ablation guided by an advanced mapping/navigation system ranged from 0% to 10% with a median of 6% during a follow-up period of 6 months to 29 months.The complication rate of the study with the longest follow-up was 8%.The most common complications of advanced catheter-guided ablation were stroke, transient ischemic attack, cardiac tamponade, myocardial infarction, atrial flutter, congestive heart failure, and pulmonary vein stenosis. A small number of cases with fatal atrial-esophageal fistula had been reported and were attributed to the high radiofrequency energy used rather than to the advanced mapping systems. An Ontario-based economic analysis suggests that the cumulative incremental upfront costs of catheter ablation of atrial fibrillation guided by advanced nonfluoroscopy mapping could be recouped in 4.7 years through cost avoidance arising from less need for antiarrhythmic drugs and fewer hospitalization for stroke and heart failure. Expert Opinion Expert consultants to the Medical Advisory Secretariat noted the following: Nonfluoroscopy mapping is not necessary for simple ablation procedures (e.g., typical flutter). However, it is essential in the ablation of complex arrhythmias including these:Symptomatic, drug-refractory atrial fibrillationArrhythmias in people who have had surgery for congenital heart disease (e.g., macro re-entrant tachycardia in people who have had surgery for congenital heart disease).Ventricular tachycardia due to myocardial infarctionAtypical atrial flutterAdvanced mapping systems represent an enabling technology in the ablation of complex arrhythmias. The ablation of these complex cases would not have been feasible or advisable with fluoroscopy-guided ablation and, therefore, comparative studies would not be feasible or ethical in such cases. (ABSTRACT TRUNCATED)
Hey, Small Spender: An Insider's Guide to Navigating ALA's Chicago Conference on the Cheap
ERIC Educational Resources Information Center
School Library Journal, 2009
2009-01-01
This article presents an insider's guide to navigating the American Library Association's (ALA) annual conference in Chicago on July 9-15. As for the extracurricular activities, Chicago has a lot to offer. This article provides tips from the arts and entertainment bible "Time Out Chicago" on where to go and what to do (on a limited…
Electromagnetic navigation system for CT-guided biopsy of small lesions.
Appelbaum, Liat; Sosna, Jacob; Nissenbaum, Yizhak; Benshtein, Alexander; Goldberg, S Nahum
2011-05-01
The purpose of this study was to evaluate an electromagnetic navigation system for CT-guided biopsy of small lesions. Standardized CT anthropomorphic phantoms were biopsied by two attending radiologists. CT scans of the phantom and surface electromagnetic fiducial markers were imported into the memory of the 3D electromagnetic navigation system. Each radiologist assessed the accuracy of biopsy using electromagnetic navigation alone by targeting sets of nine lesions (size range, 8-14 mm; skin to target distance, 5.7-12.8 cm) under eight different conditions of detector field strength and orientation (n = 117). As a control, each radiologist also biopsied two sets of five targets using conventional CT-guided technique. Biopsy accuracy, number of needle passes, procedure time, and radiation dose were compared. Under optimal conditions (phantom perpendicular to the electromagnetic receiver at highest possible field strength), phantom accuracy to the center of the lesion was 2.6 ± 1.1 mm. This translated into hitting 84.4% (38/45) of targets in a single pass (1.1 ± 0.4 CT confirmations), which was significantly fewer than the 3.6 ± 1.3 CT checks required for conventional technique (p < 0.001). The mean targeting time was 38.8 ± 18.2 seconds per lesion. Including procedural planning (∼5.5 minutes) and final CT confirmation of placement (∼3.5 minutes), the full electromagnetic tracking procedure required significantly less time (551.6 ± 87.4 seconds [∼9 minutes]) than conventional CT (833.3 ± 283.8 seconds [∼14 minutes]) for successful targeting (p < 0.001). Less favorable conditions, including nonperpendicular relation between the axis of the machine and weaker field strength, resulted in statistically significant lower accuracy (3.7 ± 1 mm, p < 0.001). Nevertheless, first-pass biopsy accuracy was 58.3% (21/36) and second-pass (35/36) accuracy was 97.2%. Lesions farther from the skin than 20-25 cm were out of range for successful electromagnetic tracking. Virtual electromagnetic tracking appears to have high accuracy in needle placement, potentially reducing time and radiation exposure compared with those of conventional CT techniques in the biopsy of small lesions.
Anand, Rishi; Gorev, Maxim V; Poghosyan, Hermine; Pothier, Lindsay; Matkins, John; Kotler, Gregory; Moroz, Sarah; Armstrong, James; Nemtsov, Sergei V; Orlov, Michael V
2016-08-01
To compare the efficacy and accuracy of rotational angiography with three-dimensional reconstruction (3DATG) image merged with electro-anatomical mapping (EAM) vs. CT-EAM. A prospective, randomized, parallel, two-center study conducted in 36 patients (25 men, age 65 ± 10 years) undergoing AF ablation (33 % paroxysmal, 67 % persistent) guided by 3DATG (group 1) vs. CT (group 2) image fusion with EAM. 3DATG was performed on the Philips Allura Xper FD 10 system. Procedural characteristics including time, radiation exposure, outcome, and navigation accuracy were compared between two groups. There was no significant difference between the groups in total procedure duration or time spent for various procedural steps. Minor differences in procedural characteristics were present between two centers. Segmentation and fusion time for 3DATG or CT-EAM was short and similar between both centers. Accuracy of navigation guided by either method was high and did not depend on left atrial size. Maintenance of sinus rhythm between the two groups was no different up to 24 months of follow-up. This study did not find superiority of 3DATG-EAM image merge to guide AF ablation when compared to CT-EAM fusion. Both merging techniques result in similar navigation accuracy.
An assessment of auditory-guided locomotion in an obstacle circumvention task.
Kolarik, Andrew J; Scarfe, Amy C; Moore, Brian C J; Pardhan, Shahina
2016-06-01
This study investigated how effectively audition can be used to guide navigation around an obstacle. Ten blindfolded normally sighted participants navigated around a 0.6 × 2 m obstacle while producing self-generated mouth click sounds. Objective movement performance was measured using a Vicon motion capture system. Performance with full vision without generating sound was used as a baseline for comparison. The obstacle's location was varied randomly from trial to trial: it was either straight ahead or 25 cm to the left or right relative to the participant. Although audition provided sufficient information to detect the obstacle and guide participants around it without collision in the majority of trials, buffer space (clearance between the shoulder and obstacle), overall movement times, and number of velocity corrections were significantly (p < 0.05) greater with auditory guidance than visual guidance. Collisions sometime occurred under auditory guidance, suggesting that audition did not always provide an accurate estimate of the space between the participant and obstacle. Unlike visual guidance, participants did not always walk around the side that afforded the most space during auditory guidance. Mean buffer space was 1.8 times higher under auditory than under visual guidance. Results suggest that sound can be used to generate buffer space when vision is unavailable, allowing navigation around an obstacle without collision in the majority of trials.
An Adaptive Navigation Support System for Conducting Context-Aware Ubiquitous Learning in Museums
ERIC Educational Resources Information Center
Chiou, Chuang-Kai; Tseng, Judy C. R.; Hwang, Gwo-Jen; Heller, Shelly
2010-01-01
In context-aware ubiquitous learning, students are guided to learn in the real world with personalized supports from the learning system. As the learning resources are realistic objects in the real world, certain physical constraints, such as the limitation of stream of people who visit the same learning object, the time for moving from one object…
Hassfeld, S; Mühling, J
2000-12-01
The aim of an intraoperative instrument navigation system is to support the surgeon in the localization of anatomical regions and to guide the use of surgical instruments. An overview of technical principles and literature reports on various navigation systems is provided here. The navigation accuracy (tested on a plastic phantom under simulated operating room conditions) of the mechanical Viewing Wand system and the optical SPOCS system amounts to 1 to 3 mm for computerized tomography (CT) data, with a significant inverse dependence on the layer thickness. The values for magnetic resonance tomography (MRT) data are significantly higher. In regard to the choice of registration points, a statistically inverse dependence exists between the number of points and the distance between the points. During the time period between autumn 1993 and mid-1999, more than 120 clinical applications were performed. The intraoperative accuracy was in the range of < or = 3 mm. Registering the patient position with preoperatively inserted screw markers achieved accuracy values of < or = 2 mm. The instrument navigation technique has proved to be very advantageous for the spatial orientation of the surgeons. The possibility of checking resection borders has opened up new perspectives in tumor surgery. A quality improvement and a reduction of the operational risks as well as a considerable decline in the stress placed on the patient can be expected in the near future due the techniques of computer-assisted surgery.
Precision of computer-assisted core decompression drilling of the knee.
Beckmann, J; Goetz, J; Bäthis, H; Kalteis, T; Grifka, J; Perlick, L
2006-06-01
Core decompression by exact drilling into the ischemic areas is the treatment of choice in early stages of osteonecrosis of the femoral condyle. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision-navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. 20 sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany). Ten sawbones were drilled by fluoroscopic control only. A statistically significant difference with a mean distance of 0.58 mm in the navigated group and 0.98 mm in the control group regarding the distance to the desired mid-point of the lesion could be stated. Significant difference was further found in the number of drilling corrections as well as radiation time needed. The fluoroscopic-based VectorVision-navigation system shows a high feasibility and precision of computer-guided drilling with simultaneously reduction of radiation time and therefore could be integrated into clinical routine.
3D Computer aided treatment planning in endodontics.
van der Meer, Wicher J; Vissink, Arjan; Ng, Yuan Ling; Gulabivala, Kishor
2016-02-01
Obliteration of the root canal system due to accelerated dentinogenesis and dystrophic calcification can challenge the achievement of root canal treatment goals. This paper describes the application of 3D digital mapping technology for predictable navigation of obliterated canal systems during root canal treatment to avoid iatrogenic damage of the root. Digital endodontic treatment planning for anterior teeth with severely obliterated root canal systems was accomplished with the aid of computer software, based on cone beam computer tomography (CBCT) scans and intra-oral scans of the dentition. On the basis of these scans, endodontic guides were created for the planned treatment through digital designing and rapid prototyping fabrication. The custom-made guides allowed for an uncomplicated and predictable canal location and management. The method of digital designing and rapid prototyping of endodontic guides allows for reliable and predictable location of root canals of teeth with calcifically metamorphosed root canal systems. The endodontic directional guide facilitates difficult endodontic treatments at little additional cost. Copyright © 2016. Published by Elsevier Ltd.
Sohns, Christian; Bergau, Leonard; Seegers, Joachim; Lüthje, Lars; Vollmann, Dirk; Zabel, Markus
2014-10-01
In ablation of atrial fibrillation, the single-ring method aims for isolation of the posterior wall of the left atrium (LA) including the pulmonary veins (PVs) but avoiding posterior LA lesions. The aim of this randomized prospective study was to evaluate safety and efficacy of remote magnetic navigation (RMN)-guided single-ring ablation strategy as compared to standard RMN-guided circumferential PV ablation (PVA). Eighty consecutive patients undergoing PVA were enrolled prospectively and randomized equally into two study groups. RMN using the Stereotaxis system and open-irrigated 3.5-mm ablation catheters were used with a 3D mapping system in all procedures. Forty patients underwent RMN-guided single-ring ablation, and 40 patients received RMN-guided circumferential PVA. In the circumferential group, 3.3 ± 1.1 PVs were successfully isolated at the end of the procedure as compared to 3.1 ± 1.3 in the single-ring (box) group (p=0.38). All patients in the box group required additional posterior lesions in order to achieve electrical isolation of the PVs. Single-ring ablation was associated with longer procedure duration (p=0.01) and ablation time (p=0.001). After a single procedure, the proportion of patients free of any atrial tachycardia (AT)/atrial fibrillation (AF) episode at 12-month follow-up was 57 % in the box group and 58 % in the circ group. Using RMN, only minor complications have been observed. RMN-guided single-ring PVA provides comparable acute and long-term success rates as compared to RMN-guided circumferential PVA but requires additional posterior lesions to achieve PV isolation and increased procedure and ablation time. Procedural complication rates are low when using RMN.
Navigation and Alignment Aids Concept of Operations and Supplemental Design Information. Revision A
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Cryan, Scott P.
2016-01-01
The IDSS Navigation and Alignment Aids Concept of Operations and Supplemental Design Information document provides supplemental information to the IDSS IDD. The guide provides insight into the navigation and alignment aids design, and how those aids can be utilized by incoming vehicles for proximity operations and docking. The navigation aids are paramount to successful docking.
[Methods of resolution for haptic assistance during catheterization].
Kern, T A; Herrmann, J; Klages, S; Meiss, T; Werthschützky, R
2005-01-01
During catheterization navigation within the patient is mainly dependent on a live x-ray image on the screen. Although methods for 3D visualisation and remote navigation of the catheter are discussed and tested still precise positioning is merely the result of intense training and a high skill and level of training of the performing surgeon. This article refers to a system which can be considered as an add-on for existing procedures of catheterization. It compromises of a miniaturised force sensor located at the tip of guide-wires whose prototype is shown here. The measured forces will be presented to the surgeon amplified by an external actuator described in this article. As a result a haptic perception of the forces between the tip of the guide-wire and the vessels walls will be available and enable the surgeon to gain an impression which is comparable to palpation of living vessels from the inside
The GuideView System for Interactive, Structured, Multi-modal Delivery of Clinical Guidelines
NASA Technical Reports Server (NTRS)
Iyengar, Sriram; Florez-Arango, Jose; Garcia, Carlos Andres
2009-01-01
GuideView is a computerized clinical guideline system which delivers clinical guidelines in an easy-to-understand and easy-to-use package. It may potentially enhance the quality of medical care or allow non-medical personnel to provide acceptable levels of care in situations where physicians or nurses may not be available. Such a system can be very valuable during space flight missions when a physician is not readily available, or perhaps the designated medical personnel is unable to provide care. Complex clinical guidelines are broken into simple steps. At each step clinical information is presented in multiple modes, including voice,audio, text, pictures, and video. Users can respond via mouse clicks or via voice navigation. GuideView can also interact with medical sensors using wireless or wired connections. The system's interface is illustrated and the results of a usability study are presented.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise
2017-01-01
Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Improved obstacle avoidance and navigation for an autonomous ground vehicle
NASA Astrophysics Data System (ADS)
Giri, Binod; Cho, Hyunsu; Williams, Benjamin C.; Tann, Hokchhay; Shakya, Bicky; Bharam, Vishal; Ahlgren, David J.
2015-01-01
This paper presents improvements made to the intelligence algorithms employed on Q, an autonomous ground vehicle, for the 2014 Intelligent Ground Vehicle Competition (IGVC). In 2012, the IGVC committee combined the formerly separate autonomous and navigation challenges into a single AUT-NAV challenge. In this new challenge, the vehicle is required to navigate through a grassy obstacle course and stay within the course boundaries (a lane of two white painted lines) that guide it toward a given GPS waypoint. Once the vehicle reaches this waypoint, it enters an open course where it is required to navigate to another GPS waypoint while avoiding obstacles. After reaching the final waypoint, the vehicle is required to traverse another obstacle course before completing the run. Q uses modular parallel software architecture in which image processing, navigation, and sensor control algorithms run concurrently. A tuned navigation algorithm allows Q to smoothly maneuver through obstacle fields. For the 2014 competition, most revisions occurred in the vision system, which detects white lines and informs the navigation component. Barrel obstacles of various colors presented a new challenge for image processing: the previous color plane extraction algorithm would not suffice. To overcome this difficulty, laser range sensor data were overlaid on visual data. Q also participates in the Joint Architecture for Unmanned Systems (JAUS) challenge at IGVC. For 2014, significant updates were implemented: the JAUS component accepted a greater variety of messages and showed better compliance to the JAUS technical standard. With these improvements, Q secured second place in the JAUS competition.
Real-time continuous image-guided surgery: Preclinical investigation in glossectomy.
Tabanfar, Reza; Qiu, Jimmy; Chan, Harley; Aflatouni, Niousha; Weersink, Robert; Hasan, Wael; Irish, Jonathan C
2017-10-01
To develop, validate, and study the efficacy of an intraoperative real-time continuous image-guided surgery (RTC-IGS) system for glossectomy. Prospective study. We created a RTC-IGS system and surgical simulator for glossectomy, enabling definition of a surgical target preoperatively, real-time cautery tracking, and display of a surgical plan intraoperatively. System performance was evaluated by a group of otolaryngology residents, fellows, medical students, and staff under a reproducible setting by using realistic tongue phantoms. Evaluators were grouped into a senior and a junior group based on surgical experience, and guided and unguided tumor resections were performed. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores and a Likert scale were used to measure workloads and impressions of the system, respectively. Efficacy was studied by comparing surgical accuracy, time, collateral damage, and workload between RTC-IGS and non-navigated resections. The senior group performed more accurately (80.9% ± 3.7% vs. 75.2% ± 5.5%, P = .28), required less time (5.0 ± 1.3 minutes vs. 7.3 ± 1.2 minutes, P = .17), and experienced lower workload (43 ± 2.0 vs. 64.4 ± 1.3 NASA-TLX score, P = .08), suggesting a trend of construct validity. Impressions were favorable, with participants reporting the system is a valuable practice tool (4.0/5 ± 0.3) and increases confidence (3.9/5 ± 0.4). Use of RTC-IGS improved both groups' accuracy, with the junior group improving from 64.4% ± 5.4% to 75.2% ± 5.5% (P = .01) and the senior group improving from 76.1% ± 4.5% to 80.9% ± 3.7% (P = .16). We created an RTC-IGS system and surgical simulator and demonstrated a trend of construct validity. Our navigated simulator allows junior trainees to practice glossectomies outside the operating room. In all evaluators, navigation assistance resulted in increased surgical accuracy. NA Laryngoscope, 127:E347-E353, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Evaluation of a patient specific femoral alignment guide for hip resurfacing.
Olsen, Michael; Naudie, Douglas D; Edwards, Max R; Sellan, Michael E; McCalden, Richard W; Schemitsch, Emil H
2014-03-01
A novel alternative to conventional instrumentation for femoral component insertion in hip resurfacing is a patient specific, computed tomography based femoral alignment guide. A benchside study using cadaveric femora was performed comparing a custom alignment guide to conventional instrumentation and computer navigation. A clinical series of twenty-five hip resurfacings utilizing a custom alignment guide was conducted by three surgeons experienced in hip resurfacing. Using cadaveric femora, the custom guide was comparable to conventional instrumentation with computer navigation proving superior to both. Clinical femoral component alignment accuracy was 3.7° and measured within ± 5° of plan in 20 of 24 cases. Patient specific femoral alignment guides provide a satisfactory level of accuracy and may be a better alternative to conventional instrumentation for initial femoral guidewire placement in hip resurfacing. Crown Copyright © 2014. All rights reserved.
Li, Xiang; Long, Qingzhi; Chen, Xingfa; He, Dalin; He, Hui
2017-04-01
SonixGPS is a novel real-time ultrasonography navigation technology, which has been demonstrated to promote accuracy of puncture in surgical operations. The aim of this study is to evaluate its application in guiding the puncture during percutaneous nephrolithotomy (PCNL). We retrospectively reviewed our experience in treating a total of 74 patients with complex kidney stones with PCNL, in which puncture in 37 cases were guided by SonixGPS system, while the other 37 by conventional ultrasound. The effectiveness of operation was evaluated in terms of stone clearance rate, operation time, time to successful puncture, number of attempts for successful puncture and hospital stay. The safety of operation was examined by evaluating postoperative complications. Our retrospective review showed that although there were no significant differences in stone clearance rates between the groups, SonixGPS guidance resulted in more puncture accuracy with shorter puncture time and higher successful puncture rate. Under the help of SonixGPS, most patients (92 %) had no or just mild complications, compared to that (73 %) in conventional ultrasound group. Post-operative decrease of hemoglobin in SonixGPS group was 13.79 (7-33) mg/dl, significantly lower than that 20.97 (8-41) mg/dl in conventional ultrasound group. Our experience demonstrates that SonixGPS is superior to conventional ultrasound in guiding the puncture in PCNL for the treatment of complex kidney stone.
Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.
Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo
2012-10-01
Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.
A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages
Wang, Sheng-Shih
2018-01-01
The continuous global increase in the number of cars has led to an increase in parking issues, particularly with respect to the search for available parking spaces and finding cars. In this paper, we propose a navigation system for car owners to find their cars in indoor parking garages. The proposed system comprises a car-searching mobile app and a positioning-assisting subsystem. The app guides car owners to their cars based on a “turn-by-turn” navigation strategy, and has the ability to correct the user’s heading orientation. The subsystem uses beacon technology for indoor positioning, supporting self-guidance of the car-searching mobile app. This study also designed a local coordinate system to support the identification of the locations of parking spaces and beacon devices. We used Android as the platform to implement the proposed car-searching mobile app, and used Bytereal HiBeacon devices to implement the proposed positioning-assisting subsystem. We also deployed the system in a parking lot in our campus for testing. The experimental results verified that the proposed system not only works well, but also provides the car owner with the correct route guidance information. PMID:29734753
[The operating room of the future].
Broeders, I A; Niessen, W; van der Werken, C; van Vroonhoven, T J
2000-01-29
Advances in computer technology will revolutionize surgical techniques in the next decade. The operating room (OR) of the future will be connected with a laboratory where clinical specialists and researchers prepare image-guided interventions and explore the possibilities of these techniques. The virtual reality is linked to the actual situation in the OR with the aid of navigation instruments. During complicated operations the images prepared preoperatively will be corrected during the operation on the basis of the information obtained peroperatively. MRI currently offers maximal possibilities for image-guided surgery of soft tissues. Simpler techniques such as fluoroscopy and echography will become increasingly integrated in computer-assisted peroperative navigation. The development of medical robot systems will make possible microsurgical procedures by the endoscopic route. Tele-manipulation systems will also play a part in the training of surgeons. Design and construction of the OR will be adapted to the surgical technology, and include an information and control unit where preoperative and peroperative data come together and from where the surgeon operates the instruments. Concepts for the future OR should be regularly adjusted to allow for new surgical technology.
A motorized ultrasound system for MRI-ultrasound fusion guided prostatectomy
NASA Astrophysics Data System (ADS)
Seifabadi, Reza; Xu, Sheng; Pinto, Peter; Wood, Bradford J.
2016-03-01
Purpose: This study presents MoTRUS, a motorized transrectal ultrasound system, to enable remote navigation of a transrectal ultrasound (TRUS) probe during da Vinci assisted prostatectomy. MoTRUS not only provides a stable platform to the ultrasound probe, but also allows the physician to navigate it remotely while sitting on the da Vinci console. This study also presents phantom feasibility study with the goal being intraoperative MRI-US image fusion capability to bring preoperative MR images to the operating room for the best visualization of the gland, boundaries, nerves, etc. Method: A two degree-of-freedom probe holder is developed to insert and rotate a bi-plane transrectal ultrasound transducer. A custom joystick is made to enable remote navigation of MoTRUS. Safety features have been considered to avoid inadvertent risks (if any) to the patient. Custom design software has been developed to fuse pre-operative MR images to intraoperative ultrasound images acquired by MoTRUS. Results: Remote TRUS probe navigation was evaluated on a patient after taking required consents during prostatectomy using MoTRUS. It took 10 min to setup the system in OR. MoTRUS provided similar capability in addition to remote navigation and stable imaging. No complications were observed. Image fusion was evaluated on a commercial prostate phantom. Electromagnetic tracking was used for the fusion. Conclusions: Motorized navigation of the TRUS probe during prostatectomy is safe and feasible. Remote navigation provides physician with a more precise and easier control of the ultrasound image while removing the burden of manual manipulation of the probe. Image fusion improved visualization of the prostate and boundaries in a phantom study.
Students' Navigation Patterns in the Interaction with a Mechanics Hypermedia Program
ERIC Educational Resources Information Center
Rezende, Flavia; de Souza Barros, Susana
2008-01-01
This study investigates the interaction of a group of freshmen enrolled in a Pre Service Physics Teacher Training Course with a mechanics hypermedia program. Data were obtained to discuss hypertextual navigation guided by the following questions: (i) How can the students' navigation in this hypermedia program be characterized? (ii) How does this…
Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Vogl, Thomas; Turner, J Francis; Browning, Robert; Linsmeier, Bernd; Huang, Haidong; Li, Qiang; Darwiche, Kaid; Freitag, Lutz; Simoff, Michael; Kioumis, Ioannis; Zarogoulidis, Konstantinos; Brachmann, Johannes
2014-01-01
Currently there are several advanced guiding techniques for pathoanatomical diagnosis of incidental solitary pulmonary nodules (iSPN): Electromagnetic navigation (EMN) with or without endobronchial ultrasound (EBUS) with miniprobe, transthoracic ultrasound (TTUS) for needle approach to the pleural wall and adjacent lung and computed tomography (CT) -guidance for (seldom if ever used) endobronchial or (common) transthoracical approach. In several situations one technique is not enough for efficient diagnosis, therefore we investigated a new diagnostic technique of endobronchial guided biopsies by a Cone Beam Computertomography (CBCT) called DynaCT (SIEMENS AG Forchheim, Germany). In our study 33 incidental solitary pulmonary nodules (iSPNs) (28 malignant, 5 benign; mean diameter 25 +/-12mm, shortest distance to pleura 25+/-18mm) were eligible according to in- and exclusion criteria. Realtime and onsite navigation were performed according to our standard protocol.22 All iSPN were controlled with a second technique when necessary and clinical feasible in case of unspecific or unexpected histological result. In all cases common guidelines of treatment of different iSPNs were followed in a routine manner. Overall navigational yield (ny) was 91% and diagnostic yield (dy) 70%, dy for all accomplished malignant cases (n=28) was 82%. In the subgroup analysis of the invisible iSPN (n=12, 11 malignant, 1 benign; mean diameter 15+/-3mm) we found an overall dy of 75%. For the first time we describe a significant difference in specifity of biopsy results in regards to the position of the forceps in the 3-dimensional volume (3DV) of the iSPN in the whole sample group. Comparing the specifity of biopsies of a 3D-uncentered but inside the outer one third of an iSPN-3DV with the specifity of biopsies of centered forceps position (meaning the inner two third of an iSPN-3DV) reveals a significant (p=0,0375 McNemar) difference for the size group (>1cm) of 0,9 for centered biopsies vs. 0,3 for uncentered biopsies. Therefore only 3D-centered biopsies should be relied on especially in case of a benign result. The diagnostic yield of DynaCT navigation guided transbronchial biopsies (TBB) only with forceps is at least up to twofold higher than conventional TBB for iSPNs <2cm. The diagnostic yield of DynaCT navigation guided forceps TBB in invisible SPNs is at least in the range of other navigation studies which were performed partly with multiple navigation tools and multiple instruments. For future diagnostic and therapeutic approaches it is so far the only onsite and realtime extrathoracic navigation approach (except for computed tomography (CT)-fluoroscopy) in the bronchoscopy suite which keeps the working channel open. The system purchase represents an important investment for hospitals but it is a multidisciplinary and multinavigational tool with possible access via bronchial airways, transthoracical or vascular approach at the same time and on the same table without the need for an expensive disposable instrument use.
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Allergies ▸ Anaphylaxis ... Anaphylaxis Overview Symptoms & Diagnosis Treatment & Management ...
Computer-based route-definition system for peripheral bronchoscopy.
Graham, Michael W; Gibbs, Jason D; Higgins, William E
2012-04-01
Multi-detector computed tomography (MDCT) scanners produce high-resolution images of the chest. Given a patient's MDCT scan, a physician can use an image-guided intervention system to first plan and later perform bronchoscopy to diagnostic sites situated deep in the lung periphery. An accurate definition of complete routes through the airway tree leading to the diagnostic sites, however, is vital for avoiding navigation errors during image-guided bronchoscopy. We present a system for the robust definition of complete airway routes suitable for image-guided bronchoscopy. The system incorporates both automatic and semiautomatic MDCT analysis methods for this purpose. Using an intuitive graphical user interface, the user invokes automatic analysis on a patient's MDCT scan to produce a series of preliminary routes. Next, the user visually inspects each route and quickly corrects the observed route defects using the built-in semiautomatic methods. Application of the system to a human study for the planning and guidance of peripheral bronchoscopy demonstrates the efficacy of the system.
Lüthje, Lars; Vollmann, Dirk; Seegers, Joachim; Dorenkamp, Marc; Sohns, Christian; Hasenfuss, Gerd; Zabel, Markus
2011-11-01
Only limited data exist on the clinical utility of remote magnetic navigation (RMN) for pulmonary vein (PV) ablation. Aim of this prospective study was to evaluate the safety and efficacy of RMN for PV isolation as compared to the manual (CON) approach. A total of 161 consecutive patients undergoing circumferential PV isolation were included. Open-irrigated 3.5 mm ablation catheters under the guidance of a mapping system were used. The catheter was navigated with the Stereotaxis Niobe II system in the RMN group (n = 107) and guided manually in the CON group (n = 54). Electrical isolation of all PVs was achieved in 90% of the patients in the RMN group and in 87% in the CON group (p = 0.6). All subjects were followed every 3 months by 7d Holter-ECG. At 12 months of follow-up, 53.5% (RMN) and 55.5% (CON) of the patients were free of any left atrial tachycardia/atrial fibrillation (AF) episode (p = 0.57). Free of symptomatic AF recurrence were 66.3% (RMN) and 62.1% (CON) of the subjects (p = 0.80). Use of RMN was associated with longer procedure duration (p < 0.0001), ablation times (p < 0.0001), and RF current application duration (p < 0.05). In contrast, fluoroscopy time was lower in the RMN group (p < 0.0001). Major complications occurred in 6 of 161 procedures (3.7%), with no significant difference between groups (p = 0.75). RMN-guided PV ablation provides comparable acute and long-term success rates as compared to manual navigation. Procedural complication rates are similar. The use of RMN is associated with markedly reduced fluoroscopy time, but prolonged ablation and procedure duration.
NASA Technical Reports Server (NTRS)
Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William
2008-01-01
Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ ... Library ▸ Allergy-friendly gardening Share | Allergy-Friendly Gardening ...
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Allergies ▸ Rhinitis Share | Rhinitis (Hay Fever) Overview Symptoms & Diagnosis ...
NASA Astrophysics Data System (ADS)
Jakubovic, Raphael; Gupta, Shuarya; Guha, Daipayan; Mainprize, Todd; Yang, Victor X. D.
2017-02-01
Cranial neurosurgical procedures are especially delicate considering that the surgeon must localize the subsurface anatomy with limited exposure and without the ability to see beyond the surface of the surgical field. Surgical accuracy is imperative as even minor surgical errors can cause major neurological deficits. Traditionally surgical precision was highly dependent on surgical skill. However, the introduction of intraoperative surgical navigation has shifted the paradigm to become the current standard of care for cranial neurosurgery. Intra-operative image guided navigation systems are currently used to allow the surgeon to visualize the three-dimensional subsurface anatomy using pre-acquired computed tomography (CT) or magnetic resonance (MR) images. The patient anatomy is fused to the pre-acquired images using various registration techniques and surgical tools are typically localized using optical tracking methods. Although these techniques positively impact complication rates, surgical accuracy is limited by the accuracy of the navigation system and as such quantification of surgical error is required. While many different measures of registration accuracy have been presented true navigation accuracy can only be quantified post-operatively by comparing a ground truth landmark to the intra-operative visualization. In this study we quantified the accuracy of cranial neurosurgical procedures using a novel optical surface imaging navigation system to visualize the three-dimensional anatomy of the surface anatomy. A tracked probe was placed on the screws of cranial fixation plates during surgery and the reported position of the centre of the screw was compared to the co-ordinates of the post-operative CT or MR images, thus quantifying cranial neurosurgical error.
The Financing How-to-Guide is intended to help manufacturers and their communities navigate financing and investment opportunities. While this guide provides an overview, there is no one-way to pay for E3 activities or attract investment.
Vision-Aided Autonomous Landing and Ingress of Micro Aerial Vehicles
NASA Technical Reports Server (NTRS)
Brockers, Roland; Ma, Jeremy C.; Matthies, Larry H.; Bouffard, Patrick
2012-01-01
Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.
Casino, Daniela; Martelli, Sandra; Zaffagnini, Stefano; Lopomo, Nicola; Iacono, Francesco; Bignozzi, Simone; Visani, Andrea; Marcacci, Maurilio
2009-02-01
Surgical navigation systems are currently used to guide the surgeon in the correct alignment of the implant. The aim of this study was to expand the use of navigation systems by proposing a surgical protocol for intraoperative kinematics evaluations during knee arthroplasty. The protocol was evaluated on 20 patients, half undergoing unicondylar knee arthroplasty (UKA) and half undergoing posterior-substituting, rotating-platform total knee arthroplasty (TKA). The protocol includes a simple acquisition procedure and an original elaboration methodology. Kinematic tests were performed before and after surgery and included varus/valgus stress at 0 and 30 degrees and passive range of motion. Both UKA and TKA improved varus/valgus stability in extension and preserved the total magnitude of screw-home motion during flexion. Moreover, compared to preoperative conditions, values assumed by tibial axial rotation during flexion in TKA knees were more similar to the rotating patterns of UKA knees. The analysis of the anteroposterior displacement of the knee compartments confirmed that the two prostheses did not produce medial pivoting, but achieved a postoperative normal behavior. These results demonstrated that proposed intraoperative kinematics evaluations by a navigation system provided new information on the functional outcome of the reconstruction useful to restore knee kinematics during surgery.
2012-01-01
Background Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. Methods rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. Results rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Conclusions Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media. PMID:22453050
Kahlert, Philipp; Parohl, Nina; Albert, Juliane; Schäfer, Lena; Reinhardt, Renate; Kaiser, Gernot M; McDougall, Ian; Decker, Brad; Plicht, Björn; Erbel, Raimund; Eggebrecht, Holger; Ladd, Mark E; Quick, Harald H
2012-03-27
Real-time cardiovascular magnetic resonance (rtCMR) is considered attractive for guiding TAVI. Owing to an unlimited scan plane orientation and an unsurpassed soft-tissue contrast with simultaneous device visualization, rtCMR is presumed to allow safe device navigation and to offer optimal orientation for precise axial positioning. We sought to evaluate the preclinical feasibility of rtCMR-guided transarterial aortic valve implatation (TAVI) using the nitinol-based Medtronic CoreValve bioprosthesis. rtCMR-guided transfemoral (n = 2) and transsubclavian (n = 6) TAVI was performed in 8 swine using the original CoreValve prosthesis and a modified, CMR-compatible delivery catheter without ferromagnetic components. rtCMR using TrueFISP sequences provided reliable imaging guidance during TAVI, which was successful in 6 swine. One transfemoral attempt failed due to unsuccessful aortic arch passage and one pericardial tamponade with subsequent death occurred as a result of ventricular perforation by the device tip due to an operating error, this complication being detected without delay by rtCMR. rtCMR allowed for a detailed, simultaneous visualization of the delivery system with the mounted stent-valve and the surrounding anatomy, resulting in improved visualization during navigation through the vasculature, passage of the aortic valve, and during placement and deployment of the stent-valve. Post-interventional success could be confirmed using ECG-triggered time-resolved cine-TrueFISP and flow-sensitive phase-contrast sequences. Intended valve position was confirmed by ex-vivo histology. Our study shows that rtCMR-guided TAVI using the commercial CoreValve prosthesis in conjunction with a modified delivery system is feasible in swine, allowing improved procedural guidance including immediate detection of complications and direct functional assessment with reduction of radiation and omission of contrast media.
Hamamoto, Shuzo; Unno, Rei; Taguchi, Kazumi; Ando, Ryosuke; Hamakawa, Takashi; Naiki, Taku; Okada, Shinsuke; Inoue, Takaaki; Okada, Atsushi; Kohri, Kenjiro; Yasui, Takahiro
2017-11-01
To evaluate the clinical utility of a new navigation technique for percutaneous renal puncture using real-time virtual sonography (RVS) during endoscopic combined intrarenal surgery. Thirty consecutive patients who underwent endoscopic combined intrarenal surgery for renal calculi, between April 2014 and July 2015, were divided into the RVS-guided puncture (RVS; n = 15) group and the ultrasonography-guided puncture (US; n = 15) group. In the RVS group, renal puncture was repeated until precise piercing of a papilla was achieved under direct endoscopic vision, using the RVS system to synchronize the real-time US image with the preoperative computed tomography image. In the US group, renal puncture was performed under US guidance only. In both groups, 2 urologists worked simultaneously to fragment the renal calculi after inserting the miniature percutaneous tract. The mean sizes of the renal calculi in the RVS and the US group were 33.5 and 30.5 mm, respectively. A lower mean number of puncture attempts until renal access through the calyx was needed for the RVS compared with the US group (1.6 vs 3.4 times, respectively; P = .001). The RVS group had a lower mean postoperative hemoglobin decrease (0.93 vs 1.39 g/dL, respectively; P = .04), but with no between-group differences with regard to operative time, tubeless rate, and stone-free rate. None of the patients in the RVS group experienced postoperative complications of a Clavien score ≥2, with 3 patients experiencing such complications in the US group. RVS-guided renal puncture was effective, with a lower incidence of bleeding-related complications compared with US-guided puncture. Copyright © 2017 Elsevier Inc. All rights reserved.
Limitations of navigation through Nubaria canal, Egypt.
Samuel, Magdy G
2014-03-01
Alexandria port is the main Egyptian port at the Mediterranean Sea. It is connected to the Nile River through Nubaria canal, which is a main irrigation canal. The canal was designed to irrigate eight hundred thousand acres of agricultural lands, along its course which extends 100 km. The canal has three barrages and four locks to control the flow and allow light navigation by some small barges. Recently, it was decided to improve the locks located on the canal. More than 40 million US$ was invested in these projects. This decision was taken to allow larger barges and increase the transported capacity through the canal. On the other hand, navigation through canals and restricted shallow waterways is affected by several parameters related to both the channel and the vessel. Navigation lane width as well as vessel speed and maneuverability are affected by both the channel and vessel dimensions. Moreover, vessel dimensions and speed will affect the canal stability. In Egypt, there are no guide rules for navigation through narrow and shallow canals such Nubaria. This situation threatens the canal stability and safety of navigation through it. This paper discussed the characteristics of Nubaria canal and the guide rules for navigation in shallow restricted water ways. Dimensions limitation for barges navigating through Nubaria canal is presented. New safe operation rules for navigation in Nubaria canal are also presented. Moreover, the implication of navigation through locks on canal discharge is estimated.
Rousseau, Sally J; Humiston, Sharon G; Yosha, Amy; Winters, Paul C; Loader, Starlene; Luong, Vi; Schwartzbauer, Bonnie; Fiscella, Kevin
2014-12-01
Patient navigation is increasingly employed to guide patients through cancer treatment. We assessed the elements of navigation that promoted patients' involvement in treatment among patients with breast and colorectal cancer that participated in a navigation study. We conducted qualitative analysis of 28 audiotaped and transcribed semi-structured interviews of navigated and unnavigated cancer patients. Themes included feeling emotionally and cognitively overwhelmed and desire for a strong patient-navigator partnership. Both participants who were navigated and those who were not felt that navigation did or could help address their emotional, informational, and communicational needs. The benefits of logistical support were cited less often. Findings underscore the salience of personal relationships between patients and navigators in meeting patients' emotional and informational needs.
Samaras, Athena T; Murphy, Kara; Nonzee, Narissa J; Endress, Richard; Taylor, Shaneah; Hajjar, Nadia; Bularzik, Rosario; Frankovich, Carmi; Dong, XinQi; Simon, Melissa A
2014-01-01
Using community-based participatory research (CBPR), the DuPage County Patient Navigation Collaborative (DPNC) developed an academic campus-community research partnership aimed at increasing access to care for underserved breast and cervical cancer patients within DuPage County, a collar county of Chicago. Given rapidly shifting demographics, targeting CBPR initiatives among underserved suburban communities is essential. To discuss the facilitating factors and lessons learned in forging the DPNC. A patient navigation collaborative was formed to guide medically underserved women through diagnostic resolution and if necessary, treatment, after an abnormal breast or cervical cancer screening. Facilitating factors included (1) fostering and maintaining collaborations within a suburban context, (2) a systems-based participatory research approach, (3) a truly equitable community-academic partnership, (4) funding adaptability, (5) culturally relevant navigation, and (6) emphasis on co-learning and capacity building. By highlighting the strategies that contributed to DPNC success, we envision the DPNC to serve as a feasible model for future health interventions.
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Allergy Library ▸ Anaphylaxis TTR Share | Anaphylaxis Anaphylaxis (an–a– ...
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Allergy Library ▸ Latex allergy TTR Share | Latex Allergy This ...
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Allergy Library ▸ Food allergy TTR Share | Food Allergy For ...
Photos & Graphics: Urticaria (Hives) and Angioedema
... Conditions Drug Guide Conditions Dictionary Just for Kids Library School Tools Videos Virtual Allergist Education & Training Careers in ... Support the AAAAI Foundation Donate Utility navigation Español Journals Annual Meeting Member Login / My Membership Search navigation ...
Wystrach, Antoine; Dewar, Alex; Philippides, Andrew; Graham, Paul
2016-02-01
The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal's behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation. As ants are expert visual navigators it may be that their vision is optimised for navigation. Here we take a computational approach in asking how the details of the optical array influence the informational content of scenes used in simple view matching strategies for orientation. We find that robust orientation is best achieved with low-resolution visual information and a large field of view, similar to the optical properties seen for many ant species. A lower resolution allows for a trade-off between specificity and generalisation for stored views. Additionally, our simulations show that orientation performance increases if different portions of the visual field are considered as discrete visual sensors, each giving an independent directional estimate. This suggests that ants might benefit by processing information from their two eyes independently.
A biologically inspired meta-control navigation system for the Psikharpax rat robot.
Caluwaerts, K; Staffa, M; N'Guyen, S; Grand, C; Dollé, L; Favre-Félix, A; Girard, B; Khamassi, M
2012-06-01
A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment-recognized as new contexts-and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics.
Shellikeri, Sphoorti; Setser, Randolph M; Hwang, Tiffany J; Srinivasan, Abhay; Krishnamurthy, Ganesh; Vatsky, Seth; Girard, Erin; Zhu, Xiaowei; Keller, Marc S; Cahill, Anne Marie
2017-07-01
Navigational software provides real-time fluoroscopic needle guidance for percutaneous procedures in the Interventional Radiology (IR) suite. We describe our experience with navigational software for pediatric percutaneous bone biopsies in the IR suite and compare technical success, diagnostic accuracy, radiation dose and procedure time with that of CT-guided biopsies. Pediatric bone biopsies performed using navigational software (Syngo iGuide, Siemens Healthcare) from 2011 to 2016 were prospectively included and anatomically matched CT-guided bone biopsies from 2008 to 2016 were retrospectively reviewed with institutional review board approval. C-arm CT protocols used for navigational software-assisted cases included institution-developed low-dose (0.1/0.17 μGy/projection), regular-dose (0.36 μGy/projection), or a combination of low-dose/regular-dose protocols. Estimated effective radiation dose and procedure times were compared between software-assisted and CT-guided biopsies. Twenty-six patients (15 male; mean age: 10 years) underwent software-assisted biopsies (15 pelvic, 7 lumbar and 4 lower extremity) and 33 patients (13 male; mean age: 9 years) underwent CT-guided biopsies (22 pelvic, 7 lumbar and 4 lower extremity). Both modality biopsies resulted in a 100% technical success rate. Twenty-five of 26 (96%) software-assisted and 29/33 (88%) CT-guided biopsies were diagnostic. Overall, the effective radiation dose was significantly lower in software-assisted than CT-guided cases (3.0±3.4 vs. 6.6±7.7 mSv, P=0.02). The effective dose difference was most dramatic in software-assisted cases using low-dose C-arm CT (1.2±1.8 vs. 6.6±7.7 mSv, P=0.001) or combined low-dose/regular-dose C-arm CT (1.9±2.4 vs. 6.6±7.7 mSv, P=0.04), whereas effective dose was comparable in software-assisted cases using regular-dose C-arm CT (6.0±3.5 vs. 6.6±7.7 mSv, P=0.7). Mean procedure time was significantly lower for software-assisted cases (91±54 vs. 141±68 min, P=0.005). In our experience, navigational software technology in the IR suite is a promising alternative to CT guidance for pediatric bone biopsies providing comparable technical success and diagnostic accuracy with lower radiation dose and procedure time, in addition to providing real-time fluoroscopic needle guidance.
Navigated total knee arthroplasty: is it error-free?
Chua, Kerk Hsiang Zackary; Chen, Yongsheng; Lingaraj, Krishna
2014-03-01
The aim of this study was to determine whether errors do occur in navigated total knee arthroplasty (TKAs) and to study whether errors in bone resection or implantation contribute to these errors. A series of 20 TKAs was studied using computer navigation. The coronal and sagittal alignments of the femoral and tibial cutting guides, the coronal and sagittal alignments of the final tibial implant and the coronal alignment of the final femoral implant were compared with that of the respective bone resections. To determine the post-implantation mechanical alignment of the limb, the coronal alignment of the femoral and tibial implants was combined. The median deviation between the femoral cutting guide and bone resection was 0° (range -0.5° to +0.5°) in the coronal plane and 1.0° (range -2.0° to +1.0°) in the sagittal plane. The median deviation between the tibial cutting guide and bone resection was 0.5° (range -1.0° to +1.5°) in the coronal plane and 1.0° (range -1.0° to +3.5°) in the sagittal plane. The median deviation between the femoral bone resection and the final implant was 0.25° (range -2.0° to 3.0°) in the coronal plane. The median deviation between the tibial bone resection and the final implant was 0.75° (range -3.0° to +1.5°) in the coronal plane and 1.75° (range -4.0° to +2.0°) in the sagittal plane. The median post-implantation mechanical alignment of the limb was 0.25° (range -3.0° to +2.0°). When navigation is used only to guide the positioning of the cutting jig, errors may arise in the manual, non-navigated steps of the procedure. Our study showed increased cutting errors in the sagittal plane for both the femur and the tibia, and following implantation, the greatest error was seen in the sagittal alignment of the tibial component. Computer navigation should be used not only to guide the positioning of the cutting jig, but also to check the bone resection and implant position during TKA. IV.
Sperm as microswimmers - navigation and sensing at the physical limit
NASA Astrophysics Data System (ADS)
Kaupp, Ulrich B.; Alvarez, Luis
2016-11-01
Many cells and microorganisms have evolved a motility apparatus to explore their surroundings. For guidance, these biological microswimmers rely on physical and chemical cues that are transduced by cellular pathways into directed movement - a process called taxis. Only few biological microswimmers have been studied as detailed as sperm from sea urchins. Sperm and eggs are released into the seawater. To enhance the chances of fertilization, eggs release chemical factors - called chemoattractants - that establish a chemical gradient and, thereby, guide sperm to the egg. Sea urchin sperm constitute a unique model system for understanding cell navigation at every level: from molecules to cell behaviours. We will outline the chemotactic signalling pathway of sperm from the sea urchin Arbacia punctulata and discuss how signalling controls navigation in a chemical gradient. Finally, we discuss recent insights into sperm chemotaxis in three dimensions (3D).
Mobile Robot and Mobile Manipulator Research Towards ASTM Standards Development.
Bostelman, Roger; Hong, Tsai; Legowik, Steven
2016-01-01
Performance standards for industrial mobile robots and mobile manipulators (robot arms onboard mobile robots) have only recently begun development. Low cost and standardized measurement techniques are needed to characterize system performance, compare different systems, and to determine if recalibration is required. This paper discusses work at the National Institute of Standards and Technology (NIST) and within the ASTM Committee F45 on Driverless Automatic Guided Industrial Vehicles. This includes standards for both terminology, F45.91, and for navigation performance test methods, F45.02. The paper defines terms that are being considered. Additionally, the paper describes navigation test methods that are near ballot and docking test methods being designed for consideration within F45.02. This includes the use of low cost artifacts that can provide alternatives to using relatively expensive measurement systems.
Assessment of feedback modalities for wearable visual aids in blind mobility
Sorrentino, Paige; Bohlool, Shadi; Zhang, Carey; Arditti, Mort; Goodrich, Gregory; Weiland, James D.
2017-01-01
Sensory substitution devices engage sensory modalities other than vision to communicate information typically obtained through the sense of sight. In this paper, we examine the ability of subjects who are blind to follow simple verbal and vibrotactile commands that allow them to navigate a complex path. A total of eleven visually impaired subjects were enrolled in the study. Prototype systems were developed to deliver verbal and vibrotactile commands to allow an investigator to guide a subject through a course. Using this mode, subjects could follow commands easily and navigate significantly faster than with their cane alone (p <0.05). The feedback modes were similar with respect to the increased speed for course completion. Subjects rated usability of the feedback systems as “above average” with scores of 76.3 and 90.9 on the system usability scale. PMID:28182731
Mobile Robot and Mobile Manipulator Research Towards ASTM Standards Development
Bostelman, Roger; Hong, Tsai; Legowik, Steven
2017-01-01
Performance standards for industrial mobile robots and mobile manipulators (robot arms onboard mobile robots) have only recently begun development. Low cost and standardized measurement techniques are needed to characterize system performance, compare different systems, and to determine if recalibration is required. This paper discusses work at the National Institute of Standards and Technology (NIST) and within the ASTM Committee F45 on Driverless Automatic Guided Industrial Vehicles. This includes standards for both terminology, F45.91, and for navigation performance test methods, F45.02. The paper defines terms that are being considered. Additionally, the paper describes navigation test methods that are near ballot and docking test methods being designed for consideration within F45.02. This includes the use of low cost artifacts that can provide alternatives to using relatively expensive measurement systems. PMID:28690359
Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Krozel, James A.
1988-01-01
An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.
Hüfner, T; Geerling, J; Oldag, G; Richter, M; Kfuri, M; Pohlemann, T; Krettek, C
2005-01-01
This study was designed to determine the clinical relevant accuracy of CT-based navigation for drilling. Experimental model. Laboratory. Twelve drills of varying lengths and diameters were tested with 2 different set-ups. Group 1 used free-hand navigated drilling technique with foam blocks equipped with titanium target points. Group 2 (control) used a newly developed 3-dimensional measurement device equipped with titanium target points with a fixed entry for the navigated drill to minimize bending forces. One examiner performed 690 navigated drillings using solely the monitor screen for control in both groups. The difference between the planned and the actual starting and target point (up to 150 mm distance) was measured (mm). Levene test and a nonpaired t test. Significance level was set as P < 0.05. The core accuracy of the navigation system measured with the 3-dimensional device was 0.5 mm. The mean distance from planned to actual entry points in group 1 was 1.3 (range, 0.6-3.4 mm). The mean distance between planned and actual target point was 3.4 (range, 1.7-5.8 mm). Free-hand navigated drilling showed an increased difference with increased length of the drill bits as well as with increased drilling channel for drill bits 2.5 and 3.2 mm and not for 3.5 and 4.5 mm (P < 0.05). The core accuracy of the navigation system is high. Compared with the navigated free-hand technique, the results suggest that drill bit deflection interferes directly with the precision. The precision is decreased when using small diameter and longer drill bits.
Rousseau, Sally J.; Humiston, Sharon G.; Yosha, Amy; Winters, Paul C.; Loader, Starlene; Luong, Vi; Schwartzbauer, Bonnie; Fiscella, Kevin
2014-01-01
Purpose Patient navigation is increasingly employed to guide patients through cancer treatment. We assessed the elements of navigation that promoted patients’ involvement in treatment among patients with breast and colorectal cancer that participated in a navigation study. Methods We conducted qualitative analysis of 28 audiotaped and transcribed semi-structured interviews of navigated and un-navigated cancer patients. Results Themes included feeling emotionally and cognitively overwhelmed and desire for a strong patient-navigator partnership. Both participants who were navigated and those who were not felt that navigation did or could help address their emotional, informational, and communicational needs. The benefits of logistical support were cited less often. Conclusions Findings underscore the salience of personal relationships between patients and navigators in meeting patients’ emotional and informational needs. PMID:24890503
Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro
2017-07-01
The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.
Spencer, Jennifer C; Samuel, Cleo A; Rosenstein, Donald L; Reeder-Hayes, Katherine E; Manning, Michelle L; Sellers, Jean B; Wheeler, Stephanie B
2018-04-01
As the cost of cancer treatment continues to rise, many patients are faced with significant emotional and financial burden. Oncology navigators guide patients through many aspects of care and therefore may be especially aware of patients' financial distress. Our objective was to explore navigators' perception of their patients' financial burden and their role in addressing financial needs. We conducted a real-time online survey of attendees at an oncology navigators' association conference. Participants included lay navigators, oncology nurse navigators, community health workers, and social workers. Questions assessed perceived burden in their patient population and their role in helping navigate patients through financial resources. Answers to open-ended questions are reported using identified themes. Seventy-eight respondents participated in the survey, reporting that on average 75% of their patients experienced some degree of financial toxicity related to their cancer. Only 45% of navigators felt the majority of these patients were able to get some financial assistance, most often through assistance with medical costs (73%), subsidized insurance (36%), or non-medical expenses (31%). Commonly identified barriers for patients obtaining assistance included lack of resources (50%), lack of knowledge about resources (46%), and complex/duplicative paperwork (20%). Oncology navigators reported a high burden of financial toxicity among their patients but insufficient knowledge or resources to address this need. This study underscores the importance of improved training and coordination for addressing financial burden, and the need to address community and system-level barriers.
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Allergy Library ▸ Medications and older adults Share | Medications and ...
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Allergy Library ▸ Saline Sinus Rinse Recipe Share | Saline Sinus ...
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Allergy Library ▸ What makes us itch? Share | What Makes ...
Kotze, Ben; Jordaan, Gerrit
2014-08-25
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.
Kotze, Ben; Jordaan, Gerrit
2014-01-01
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed. PMID:25157548
Zheng, Pengfei; Xu, Peng; Yao, Qingqiang; Tang, Kai; Lou, Yue
2017-01-01
To explore the feasibility of 3D-printed navigation template in proximal femoral varus rotation and shortening osteotomy for older children with developmental dysplasia of the hip (DDH). Between June 2014 and May 2015, navigation templates were designed and used for 12 DDH patients. Surgical information and outcomes were compared to 13 patients undergoing the same surgery but without navigation template. In template-guided patient group, operation time (21.08 min vs. 46.92 min), number of X-ray exposures (3.92 vs. 6.69), and occurrence of femoral epiphysis damage (0 vs. 0.92) were significantly decreased (P < 0.05). Furthermore, after 12–18 months follow-up, 66.7% and 16.7% of the hips in template-guided group were rated as excellent or good, respectively, according to the McKay criteria; 83.3% and 16.7% by using the Severin criteria respectively. By contrast, 46.2% and 23.1% of the hips in traditional operation group were classed as excellent or good, respectively, using the McKay criteria; 46.2% and 30.8% by using the Severin criteria respectively. The template-guided group achieved a better outcome; however, there was no significant difference. Application of the navigation template for older DDH children can reduce the operation time, radiation exposure, and epiphysis damage, which also simplifies surgery and improves precision. PMID:28322290
Sutton, Patrice
2014-01-01
Background: Synthesizing what is known about the environmental drivers of health is instrumental to taking prevention-oriented action. Methods of research synthesis commonly used in environmental health lag behind systematic review methods developed in the clinical sciences over the past 20 years. Objectives: We sought to develop a proof of concept of the “Navigation Guide,” a systematic and transparent method of research synthesis in environmental health. Discussion: The Navigation Guide methodology builds on best practices in research synthesis in evidence-based medicine and environmental health. Key points of departure from current methods of expert-based narrative review prevalent in environmental health include a prespecified protocol, standardized and transparent documentation including expert judgment, a comprehensive search strategy, assessment of “risk of bias,” and separation of the science from values and preferences. Key points of departure from evidence-based medicine include assigning a “moderate” quality rating to human observational studies and combining diverse evidence streams. Conclusions: The Navigation Guide methodology is a systematic and rigorous approach to research synthesis that has been developed to reduce bias and maximize transparency in the evaluation of environmental health information. Although novel aspects of the method will require further development and validation, our findings demonstrated that improved methods of research synthesis under development at the National Toxicology Program and under consideration by the U.S. Environmental Protection Agency are fully achievable. The institutionalization of robust methods of systematic and transparent review would provide a concrete mechanism for linking science to timely action to prevent harm. Citation: Woodruff TJ, Sutton P. 2014. The Navigation Guide systematic review methodology: a rigorous and transparent method for translating environmental health science into better health outcomes. Environ Health Perspect 122:1007–1014; http://dx.doi.org/10.1289/ehp.1307175 PMID:24968373
RT-06GAMMA KNIFE SURGERY AFTER NAVIGATION-GUIDED ASPIRATION FOR CYSTIC METASTATIC BRAIN TUMORS
Chiba, Yasuyoshi; Mori, Kanji; Toyota, Shingo; Kumagai, Tetsuya; Yamamoto, Shota; Sugano, Hirofumi; Taki, Takuyu
2014-01-01
Metastatic brain tumors over 3 cm in diameter (volume of 14.1ml) are generally considered poor candidates for Gamma Knife surgery (GKS). We retrospectively assessed the method and efficacy of GKS for large cystic metastatic brain tumors after navigation-guided aspiration under local anesthesia. From September 2007 to April 2014, 38 cystic metastatic brain tumors in 32 patients (12 males, 20 females; mean age, 63.2 years) were treated at Kansai Rosai Hospital. The patients were performed navigation-guided cyst aspiration under local anesthesia, then at the day or the next day, were performed GKS and usually discharged on the day. The methods for preventing of leptomeningeal dissemination are following: 1) puncture from the place whose cerebral thickness is 1 cm or more; 2) avoidance of Ommaya reservoir implantation; and 3) placement of absorbable gelatin sponge to the tap tract. Tumor volume, including the cystic component, decreased from 25.4 ml (range 8.7-84.7 ml) to 11.4 ml (range 2.9-36.7 ml) following aspiration; the volume reduction was approximately 51.6%. Follow-up periods in the study population ranged from 0 to 24 months (median 3.5 months). The overall median survival was 6.7 months. There was no leptomeningeal dissemination related to the aspiration. One patient experienced radiation necrosis after GKS, one patient experienced re-aspiration by failure of aspiration, and two patients experienced surgical resections and one patient experienced re-aspiration by cyst regrowth after GKS. Long-term hospitalization is not desirable for the patients with brain metastases. In japan, Long-term hospitalization is required for surgical resection or whole brain radiation therapy, but only two days hospitalization is required for GKS after navigation-guided aspiration at our hospital. This GKS after navigation-guided aspiration is more effective and less invasive than surgical resection or whole brain radiation therapy.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).
NASA Astrophysics Data System (ADS)
Bauer, John T.
2018-05-01
In the United States, automobile route guides were important precursors to the road maps that Americans are familiar with today. Listing turn-by-turn directions between cities, they helped drivers navigate unmarked, local roads. This paper examines the early business of route guide publishing through the Official Automobile Blue Book series of guides. It focuses specifically on the expansion, contraction, and eventual decline of the Blue Book publishing empire and also the work of professional "pathfinders" that formed the company's data-gathering infrastructure. Be- ginning in 1901 with only one volume, the series steadily grew until 1920, when thirteen volumes were required to record thousands of routes throughout the country. Bankruptcy and corporate restructuring in 1921 forced the publishers to condense the guide into a four-volume set in 1922. Competition from emerging sheet maps, along with the nationwide standardization of highway numbers, pushed a switch to an atlas format in 1926. Blue Books, however, could not remain competitive and disappeared after 1937. "Pathfinders" were employed by the publishers and equipped with reliable automobiles. Soon they developed a shorthand notation system for recording field notes and efficiently incorporating them into the development workflow. Although pathfinders did not call themselves cartographers, they were geographical data field collectors and considered their work to be an "art and a science," much the same as modern-day cartographers. The paper concludes with some comments about the place of route guides in the history of American commercial cartography and draws some parallels between "pathfinders" and the digital road mappers of today.
Sutton, Patrice; Atchley, Dylan S.; Koustas, Erica; Lam, Juleen; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.
2014-01-01
Background: The Navigation Guide methodology was developed to meet the need for a robust method of systematic and transparent research synthesis in environmental health science. We conducted a case study systematic review to support proof of concept of the method. Objective: We applied the Navigation Guide systematic review methodology to determine whether developmental exposure to perfluorooctanoic acid (PFOA) affects fetal growth in humans. Methods: We applied the first 3 steps of the Navigation Guide methodology to human epidemiological data: 1) specify the study question, 2) select the evidence, and 3) rate the quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using prespecified criteria. We evaluated each study for risk of bias and conducted meta-analyses on a subset of studies. We rated quality and strength of the entire body of human evidence. Results: We identified 18 human studies that met our inclusion criteria, and 9 of these were combined through meta-analysis. Through meta-analysis, we estimated that a 1-ng/mL increase in serum or plasma PFOA was associated with a –18.9 g (95% CI: –29.8, –7.9) difference in birth weight. We concluded that the risk of bias across studies was low, and we assigned a “moderate” quality rating to the overall body of human evidence. Conclusion: On the basis of this first application of the Navigation Guide systematic review methodology, we concluded that there is “sufficient” human evidence that developmental exposure to PFOA reduces fetal growth. Citation: Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1028–1039; http://dx.doi.org/10.1289/ehp.1307893 PMID:24968388
Lam, Juleen; Sutton, Patrice; Johnson, Paula I.; Atchley, Dylan S.; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.
2014-01-01
Background: In contrast to current methods of expert-based narrative review, the Navigation Guide is a systematic and transparent method for synthesizing environmental health research from multiple evidence streams. The Navigation Guide was developed to effectively and efficiently translate the available scientific evidence into timely prevention-oriented action. Objectives: We applied the Navigation Guide systematic review method to answer the question “Does fetal developmental exposure to perfluorooctanoic acid (PFOA) or its salts affect fetal growth in animals ?” and to rate the strength of the experimental animal evidence. Methods: We conducted a comprehensive search of the literature, applied prespecified criteria to the search results to identify relevant studies, extracted data from studies, obtained additional information from study authors, conducted meta-analyses, and rated the overall quality and strength of the evidence. Results: Twenty-one studies met the inclusion criteria. From the meta-analysis of eight mouse gavage data sets, we estimated that exposure of pregnant mice to increasing concentrations of PFOA was associated with a change in mean pup birth weight of –0.023 g (95% CI: –0.029, –0.016) per 1-unit increase in dose (milligrams per kilogram body weight per day). The evidence, consisting of 15 mammalian and 6 nonmammalian studies, was rated as “moderate” and “low” quality, respectively. Conclusion: Based on this first application of the Navigation Guide methodology, we found sufficient evidence that fetal developmental exposure to PFOA reduces fetal growth in animals. Citation: Koustas E, Lam J, Sutton P, Johnson PI, Atchley DS, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of nonhuman evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1015–1027; http://dx.doi.org/10.1289/ehp.1307177 PMID:24968374
Iwakiri, Kentaro; Kobayashi, Akio; Ohta, Yoichi; Minoda, Yukihide; Takaoka, Kunio; Nakamura, Hiroaki
2017-12-01
The acetabular component orientation in total hip arthroplasty (THA) is of critical importance to the good clinical results. However, traditional widely used cup alignment guides for cup placement are reported to be relatively unreliable. The present study aims at comparing a novel cup alignment guide, which can be attached to our anatomical pelvic plane (APP) pelvic lateral positioner for reducing discrepancies in sagittal pelvic tilt and indicate a targeted cup angle based on the APP, with a conventional cup alignment guide. The subjects were 136 hips of 136 patients who underwent unilateral THA using the APP positioner. The procedure was performed with the conventional cup alignment guide (conventional group; 60 hips) and with the novel cup navigator (mechanical navigator group; 76 hips). Postoperative cup angles and discrepancies of postoperative cup angles (inclination and anteversion angles) from the targeted angles were compared between the 2 groups to evaluate the usefulness of these navigators. The mean cup angles in the conventional group were 39.0° ± 5.3° for the inclination angle and 21.7° ± 6.4° for the anteversion angle, whereas those in the mechanical navigator group were 40.6° ± 3.2° and 18.3° ± 4.6°, respectively (P = .018, P < .0001). The discrepancies from the targeted angles were 3.5° ± 3.1° for the inclination angle and 4.6° ± 3.4° for the anteversion angle in the conventional group and 2.3° ± 2.3° and 3.2° ± 2.7°, respectively, in the mechanical navigator group (P = .020, P = .012). The mechanical cup navigator easily attachable to the APP positioner is a tool that can improve the accuracy of cup placement in a simple, economical, and noninvasive manner in THA via the lateral position. Copyright © 2017 Elsevier Inc. All rights reserved.
Netscape Communicator 4.5. Volume I: The Basic Functions of the Navigator Component.
ERIC Educational Resources Information Center
Gallo, Gail; Wichowski, Chester P.
This first of two guides on Netscape Communicator 4.5 contains six lessons on the basic functions of the Navigator component. Lesson 1 covers terminology and methods to connect to the World Wide Web, hardware needed, and a Netscape Communicator overview. Lesson 2 introduces the Navigator window, toolbars, and menus, and how to change the default…
ERIC Educational Resources Information Center
Lee, Sang Ah; Sovrano, Valeria A.; Spelke, Elizabeth S.
2012-01-01
Geometry is one of the highest achievements of our species, but its foundations are obscure. Consistent with longstanding suggestions that geometrical knowledge is rooted in processes guiding navigation, the present study examines potential sources of geometrical knowledge in the navigation processes by which young children establish their sense…
Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty.
Levy, Jonathan C; Everding, Nathan G; Frankle, Mark A; Keppler, Louis J
2014-10-01
The accuracy of reproducing a surgical plan during shoulder arthroplasty is improved by computer assistance. Intraoperative navigation, however, is challenged by increased surgical time and additional technically difficult steps. Patient-matched instrumentation has the potential to reproduce a similar degree of accuracy without the need for additional surgical steps. The purpose of this study was to examine the accuracy of patient-specific planning and a patient-specific drill guide for glenoid baseplate placement in reverse shoulder arthroplasty. A patient-specific glenoid baseplate drill guide for reverse shoulder arthroplasty was produced for 14 cadaveric shoulders based on a plan developed by a virtual preoperative 3-dimensional planning system using thin-cut computed tomography images. Using this patient-specific guide, high-volume shoulder surgeons exposed the glenoid through a deltopectoral approach and drilled the bicortical pathway defined by the guide. The trajectory of the drill path was compared with the virtual preoperative planned position using similar thin-cut computed tomography images to define accuracy. The drill pathway defined by the patient-matched guide was found to be highly accurate when compared with the preoperative surgical plan. The translational accuracy was 1.2 ± 0.7 mm. The accuracy of inferior tilt was 1.2° ± 1.2°. The accuracy of glenoid version was 2.6° ± 1.7°. The use of patient-specific glenoid baseplate guides is highly accurate in reproducing a virtual 3-dimensional preoperative plan. This technique delivers the accuracy observed using computerized navigation without any additional surgical steps or technical challenges. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nafis, Christopher; Jensen, Vern; von Jako, Ron
2008-03-01
Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.
Mert, Aygül; Kiesel, Barbara; Wöhrer, Adelheid; Martínez-Moreno, Mauricio; Minchev, Georgi; Furtner, Julia; Knosp, Engelbert; Wolfsberger, Stefan; Widhalm, Georg
2015-01-01
OBJECT Surgery of suspected low-grade gliomas (LGGs) poses a special challenge for neurosurgeons due to their diffusely infiltrative growth and histopathological heterogeneity. Consequently, neuronavigation with multimodality imaging data, such as structural and metabolic data, fiber tracking, and 3D brain visualization, has been proposed to optimize surgery. However, currently no standardized protocol has been established for multimodality imaging data in modern glioma surgery. The aim of this study was therefore to define a specific protocol for multimodality imaging and navigation for suspected LGG. METHODS Fifty-one patients who underwent surgery for a diffusely infiltrating glioma with nonsignificant contrast enhancement on MRI and available multimodality imaging data were included. In the first 40 patients with glioma, the authors retrospectively reviewed the imaging data, including structural MRI (contrast-enhanced T1-weighted, T2-weighted, and FLAIR sequences), metabolic images derived from PET, or MR spectroscopy chemical shift imaging, fiber tracking, and 3D brain surface/vessel visualization, to define standardized image settings and specific indications for each imaging modality. The feasibility and surgical relevance of this new protocol was subsequently prospectively investigated during surgery with the assistance of an advanced electromagnetic navigation system in the remaining 11 patients. Furthermore, specific surgical outcome parameters, including the extent of resection, histological analysis of the metabolic hotspot, presence of a new postoperative neurological deficit, and intraoperative accuracy of 3D brain visualization models, were assessed in each of these patients. RESULTS After reviewing these first 40 cases of glioma, the authors defined a specific protocol with standardized image settings and specific indications that allows for optimal and simultaneous visualization of structural and metabolic data, fiber tracking, and 3D brain visualization. This new protocol was feasible and was estimated to be surgically relevant during navigation-guided surgery in all 11 patients. According to the authors' predefined surgical outcome parameters, they observed a complete resection in all resectable gliomas (n = 5) by using contour visualization with T2-weighted or FLAIR images. Additionally, tumor tissue derived from the metabolic hotspot showed the presence of malignant tissue in all WHO Grade III or IV gliomas (n = 5). Moreover, no permanent postoperative neurological deficits occurred in any of these patients, and fiber tracking and/or intraoperative monitoring were applied during surgery in the vast majority of cases (n = 10). Furthermore, the authors found a significant intraoperative topographical correlation of 3D brain surface and vessel models with gyral anatomy and superficial vessels. Finally, real-time navigation with multimodality imaging data using the advanced electromagnetic navigation system was found to be useful for precise guidance to surgical targets, such as the tumor margin or the metabolic hotspot. CONCLUSIONS In this study, the authors defined a specific protocol for multimodality imaging data in suspected LGGs, and they propose the application of this new protocol for advanced navigation-guided procedures optimally in conjunction with continuous electromagnetic instrument tracking to optimize glioma surgery.
Usability of a real-time tracked augmented reality display system in musculoskeletal injections
NASA Astrophysics Data System (ADS)
Baum, Zachary; Ungi, Tamas; Lasso, Andras; Fichtinger, Gabor
2017-03-01
PURPOSE: Image-guided needle interventions are seldom performed with augmented reality guidance in clinical practice due to many workspace and usability restrictions. We propose a real-time optically tracked image overlay system to make image-guided musculoskeletal injections more efficient and assess its usability in a bed-side clinical environment. METHODS: An image overlay system consisting of an optically tracked viewbox, tablet computer, and semitransparent mirror allows users to navigate scanned patient volumetric images in real-time using software built on the open-source 3D Slicer application platform. A series of experiments were conducted to evaluate the latency and screen refresh rate of the system using different image resolutions. To assess the usability of the system and software, five medical professionals were asked to navigate patient images while using the overlay and completed a questionnaire to assess the system. RESULTS: In assessing the latency of the system with scanned images of varying size, screen refresh rates were approximately 5 FPS. The study showed that participants found using the image overlay system easy, and found the table-mounted system was significantly more usable and effective than the handheld system. CONCLUSION: It was determined that the system performs comparably with scanned images of varying size when assessing the latency of the system. During our usability study, participants preferred the table-mounted system over the handheld. The participants also felt that the system itself was simple to use and understand. With these results, the image overlay system shows promise for use in a clinical environment.
Cooperative interactions between hippocampal and striatal systems support flexible navigation
Brown, Thackery I; Ross, Robert S; Tobyne, Sean M; Stern, Chantal E
2012-01-01
Research in animals and humans has demonstrated that the hippocampus is critical for retrieving distinct representations of overlapping sequences of information. There is recent evidence that the caudate nucleus and orbitofrontal cortex are also involved in disambiguation of overlapping spatial representations. The hippocampus and caudate are functionally distinct regions, but both have anatomical links with the orbitofrontal cortex. The present study used an fMRI-based functional connectivity analysis in humans to examine the functional relationship between the hippocampus, caudate, and orbitofrontal cortex when participants use contextual information to navigate well-learned spatial routes which share common elements. Participants were trained outside the scanner to navigate virtual mazes from a first-person perspective. Overlapping condition mazes began and ended at distinct locations, but converged in the middle to share some hallways with another maze. Non-overlapping condition mazes did not share any hallways with any other maze. Successful navigation through the overlapping hallways required contextual information identifying the current navigational route to guide the appropriate response for a given trial. Results revealed greater functional connectivity between the hippocampus, caudate, and orbitofrontal cortex for overlapping mazes compared to non-overlapping mazes. The current findings suggest that the hippocampus and caudate interact with prefrontal structures cooperatively for successful contextually-dependent navigation. PMID:22266411
Ewers, R; Schicho, K; Undt, G; Wanschitz, F; Truppe, M; Seemann, R; Wagner, A
2005-01-01
Computer-aided surgical navigation technology is commonly used in craniomaxillofacial surgery. It offers substantial improvement regarding esthetic and functional aspects in a range of surgical procedures. Based on augmented reality principles, where the real operative site is merged with computer generated graphic information, computer-aided navigation systems were employed, among other procedures, in dental implantology, arthroscopy of the temporomandibular joint, osteotomies, distraction osteogenesis, image guided biopsies and removals of foreign bodies. The decision to perform a procedure with or without computer-aided intraoperative navigation depends on the expected benefit to the procedure as well as on the technical expenditure necessary to achieve that goal. This paper comprises the experience gained in 12 years of research, development and routine clinical application. One hundred and fifty-eight operations with successful application of surgical navigation technology--divided into five groups--are evaluated regarding the criteria "medical benefit" and "technical expenditure" necessary to perform these procedures. Our results indicate that the medical benefit is likely to outweight the expenditure of technology with few exceptions (calvaria transplant, resection of the temporal bone, reconstruction of the orbital floor). Especially in dental implantology, specialized software reduces time and additional costs necessary to plan and perform procedures with computer-aided surgical navigation.
ERIC Educational Resources Information Center
Hsiao, I.-H.; Sosnovsky, S.; Brusilovsky, P.
2010-01-01
Rapid growth of the volume of interactive questions available to the students of modern E-Learning courses placed the problem of personalized guidance on the agenda of E-Learning researchers. Without proper guidance, students frequently select too simple or too complicated problems and ended either bored or discouraged. This paper explores a…
ERIC Educational Resources Information Center
Burgess, K.; McKenzie, W.; Fehr, F.
2016-01-01
This pilot study explored the international female (IF) students' (n = 17) lived experiences of health care accessibility while studying in a small town in Canada. Analysis guided by a phenomenological method resulted in three major themes--(1) after arriving to attend university, IF students experienced challenges in staying healthy, such as…
Application of an image-guided navigation system in breast cancer localization
NASA Astrophysics Data System (ADS)
Alderliesten, Tanja; Loo, Claudette; Schlief, Angelique T. E. F.; Paape, Anita; van der Meer, Michiel; Gilhuijs, Kenneth G. A.
2009-02-01
Image-guided navigation on the basis of pre-therapy images in a deformable organ, such as the breast, requires a survey of the factors that cause uncertainties. A deformable breast-tissue-mimicking phantom with simulated tumors was employed to investigate the accuracy of lesion localization with a needle instrument coupled to an optical measurement system. The RMS deviation was 1.1 mm with errors <= 2.0 mm in 96% of the procedures. Ultrasonography data acquired during needle localization of breast tumors were analyzed in 20 patients (23 tumors; 12 benign, 11 malignant) to investigate the deformation due to presence of instruments. The overall RMS tumor shift was 2.3 mm after release of pressure on the needle. To establish an optimal strategy to correct for breast motion due to breathing experiments with a volunteer were performed. Tracking a single centre marker was found to be most effective to improve registration accuracy. Average deviations of 8.2 mm were reduced to 1.1 mm. The combined impact of these different uncertainties resulted in distributions defined by: μ = 2.5 mm, σ = 1.4 mm (benign and malignant), μ = 3.1 mm, σ = 1.8 mm (benign), μ = 1.7 mm, σ = 0.9 mm (malignant).
Take a Bite Out of Mosquito Stings
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... Expert Search Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Library ▸ Allergy Library ▸ Take a bite out of mosquito stings ...
Olivi, Alessandro, M.D.
2017-12-09
Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.
Wang, Huixiang; Wang, Fang; Leong, Anthony Peng Yew; Xu, Lu; Chen, Xiaojun; Wang, Qiugen
2016-09-01
Augmented reality (AR) enables superimposition of virtual images onto the real world. The aim of this study is to present a novel AR-based navigation system for sacroiliac screw insertion and to evaluate its feasibility and accuracy in cadaveric experiments. Six cadavers with intact pelvises were employed in our study. They were CT scanned and the pelvis and vessels were segmented into 3D models. The ideal trajectory of the sacroiliac screw was planned and represented visually as a cylinder. For the intervention, the head mounted display created a real-time AR environment by superimposing the virtual 3D models onto the surgeon's field of view. The screws were drilled into the pelvis as guided by the trajectory represented by the cylinder. Following the intervention, a repeat CT scan was performed to evaluate the accuracy of the system, by assessing the screw positions and the deviations between the planned trajectories and inserted screws. Post-operative CT images showed that all 12 screws were correctly placed with no perforation. The mean deviation between the planned trajectories and the inserted screws was 2.7 ± 1.2 mm at the bony entry point, 3.7 ± 1.1 mm at the screw tip, and the mean angular deviation between the two trajectories was 2.9° ± 1.1°. The mean deviation at the nerve root tunnels region on the sagittal plane was 3.6 ± 1.0 mm. This study suggests an intuitive approach for guiding screw placement by way of AR-based navigation. This approach was feasible and accurate. It may serve as a valuable tool for assisting percutaneous sacroiliac screw insertion in live surgery.
Measurement of electromagnetic tracking error in a navigated breast surgery setup
NASA Astrophysics Data System (ADS)
Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor
2016-03-01
PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.
Computerized lateral endoscopic approach to invertebral bodies
NASA Astrophysics Data System (ADS)
Abbasi, Hamid R.; Hariri, Sanaz; Kim, Daniel; Shahidi, Ramin; Steinberg, Gary
2001-05-01
Spinal surgery is often necessary to ease back pain symptoms. Neuronavigation (NN) allows the surgeon to localize the position of his instruments in 3D using pre- operative CT scans registered to intra-operative marker positions in cranial surgeries. However, this tool is unavailable in spinal surgeries for a variety of reasons. For example, because of the spine's many degrees of freedom and flexibility, the geometric relationship of the skin to the internal spinal anatomy is not fixed. Guided by the currently available imperfect 2D images, it is difficult for the surgeon to correct a patient's spinal anomaly; thus surgical relief of back pain is often only temporary. The Image Guidance Laborator's (IGL) goal is to combine the direct optical control of traditional endoscopy with the 3D orientation of NN. This powerful tool requires registration of the patient's anatomy to the surgical navigation system using internal landmarks rather than skin markers. Pre- operative CT scans matched with intraoperative fluoroscopic images can overcome the problem of spinal movement in NN registration. The combination of endoscopy with fluoroscopic registration of vertebral bodies in a NN system provides a 3D intra-operative navigational system for spinal neurosurgery to visualize the internal surgical environment from any orientation in real time. The accuracy of this system integration is being evaluated by assessing the success of nucleotomies and marker implantations guided by NN-registered endoscopy.
Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja
2017-08-01
Joint fractures must be accurately reduced minimising soft tissue damages to avoid negative surgical outcomes. To this regard, we have developed the RAFS surgical system, which allows the percutaneous reduction of intra-articular fractures and provides intra-operative real-time 3D image guidance to the surgeon. Earlier experiments showed the effectiveness of the RAFS system on phantoms, but also key issues which precluded its use in a clinical application. This work proposes a redesign of the RAFS's navigation system overcoming the earlier version's issues, aiming to move the RAFS system into a surgical environment. The navigation system is improved through an image registration framework allowing the intra-operative registration between pre-operative CT images and intra-operative fluoroscopic images of a fractured bone using a custom-made fiducial marker. The objective of the registration is to estimate the relative pose between a bone fragment and an orthopaedic manipulation pin inserted into it intra-operatively. The actual pose of the bone fragment can be updated in real time using an optical tracker, enabling the image guidance. Experiments on phantom and cadavers demonstrated the accuracy and reliability of the registration framework, showing a reduction accuracy (sTRE) of about [Formula: see text] (phantom) and [Formula: see text] (cadavers). Four distal femur fractures were successfully reduced in cadaveric specimens using the improved navigation system and the RAFS system following the new clinical workflow (reduction error [Formula: see text], [Formula: see text]. Experiments showed the feasibility of the image registration framework. It was successfully integrated into the navigation system, allowing the use of the RAFS system in a realistic surgical application.
Scholes, Corey; Sahni, Varun; Lustig, Sebastien; Parker, David A; Coolican, Myles R J
2014-03-01
The introduction of patient-specific instruments (PSI) for guiding bone cuts could increase the incidence of malalignment in primary total knee arthroplasty. The purpose of this study was to assess the agreement between one type of patient-specific instrumentation (Zimmer PSI) and the pre-operative plan with respect to bone cuts and component alignment during TKR using imageless computer navigation. A consecutive series of 30 femoral and tibial guides were assessed in-theatre by the same surgeon using computer navigation. Following surgical exposure, the PSI cutting guides were placed on the joint surface and alignment assessed using the navigation tracker. The difference between in-theatre data and the pre-operative plan was recorded and analysed. The error between in-theatre measurements and pre-operative plan for the femoral and tibial components exceeded 3° for 3 and 17% of the sample, respectively, while the error for total coronal alignment exceeded 3° for 27% of the sample. The present results indicate that alignment with Zimmer PSI cutting blocks, assessed by imageless navigation, does not match the pre-operative plan in a proportion of cases. To prevent unnecessary increases in the incidence of malalignment in primary TKR, it is recommended that these devices should not be used without objective verification of alignment, either in real-time or with post-operative imaging. Further work is required to identify the source of discrepancies and validate these devices prior to routine use. II.
Chen, Jerry Yongqiang; Chin, Pak Lin; Li, Zongxian; Yew, Andy Khye Soon; Tay, Darren Keng Jin; Chia, Shi-Lu; Lo, Ngai Nung; Yeo, Seng Jin
2015-12-01
This study aimed to investigate the accuracy of pinless navigation (BrainLAB(®) VectorVision(®) Knee 2.5 Navigation System) as an intra-operative alignment guide in total knee arthroplasty (TKA). The authors hypothesized that pinless navigation would reduce the proportion of outliers in conventional TKA, without a significant increase in the duration of surgery. Between 2011 and 2012, 100 patients scheduled for a unilateral primary TKA were randomized into two groups: pinless navigation and conventional surgery. All TKAs were performed with the surgical aim of achieving neutral coronal alignment with a 180° mechanical axis. The primary outcomes of this study were post-operative radiographic assessment of lower limb alignment using hip-knee-ankle angle (HKA) and components placement using coronal femoral-component angle (CFA) and coronal tibia-component angle (CTA). There was a smaller proportion of outliers for HKA, CFA and CTA at 10, 2 and 2 % respectively, in the pinless navigation group, compared to 32, 16 and 16 %, respectively, in the conventional group (p = 0.013, p = 0.032 and p = 0.032, respectively). The mean CFA was also more accurate at 90° in the pinless navigation group compared to 91° in the conventional group (p = 0.002). There was no difference in the duration of surgery between the two groups (n.s.). Pinless navigation improves lower limb alignment and components placement without a significant increase in the duration of surgery. The authors recommend the use of pinless navigation to verify the coronal alignments of conventional cutting blocks in TKA before the bone cuts are made. I.
NASA Astrophysics Data System (ADS)
Rodrigues, Pedro L.; Moreira, António H. J.; Rodrigues, Nuno F.; Pinho, A. C. M.; Fonseca, Jaime C.; Lima, Estevão.; Vilaça, João. L.
2014-03-01
Background: Precise needle puncture of renal calyces is a challenging and essential step for successful percutaneous nephrolithotomy. This work tests and evaluates, through a clinical trial, a real-time navigation system to plan and guide percutaneous kidney puncture. Methods: A novel system, entitled i3DPuncture, was developed to aid surgeons in establishing the desired puncture site and the best virtual puncture trajectory, by gathering and processing data from a tracked needle with optical passive markers. In order to navigate and superimpose the needle to a preoperative volume, the patient, 3D image data and tracker system were previously registered intraoperatively using seven points that were strategically chosen based on rigid bone structures and nearby kidney area. In addition, relevant anatomical structures for surgical navigation were automatically segmented using a multi-organ segmentation algorithm that clusters volumes based on statistical properties and minimum description length criterion. For each cluster, a rendering transfer function enhanced the visualization of different organs and surrounding tissues. Results: One puncture attempt was sufficient to achieve a successful kidney puncture. The puncture took 265 seconds, and 32 seconds were necessary to plan the puncture trajectory. The virtual puncture path was followed correctively until the needle tip reached the desired kidney calyceal. Conclusions: This new solution provided spatial information regarding the needle inside the body and the possibility to visualize surrounding organs. It may offer a promising and innovative solution for percutaneous punctures.
Image-guided navigation surgery for pelvic malignancies using electromagnetic tracking
NASA Astrophysics Data System (ADS)
Nijkamp, Jasper; Kuhlmann, Koert; Sonke, Jan-Jakob; Ruers, Theo
2016-03-01
The purpose of this study was to implement and evaluate a surgical navigation system for pelvic malignancies. For tracking an NDI Aurora tabletop field generator and in-house developed navigation software were used. For patient tracking three EM-sensor stickers were used, one on the back and two on the superior iliac spines. During surgery a trackable pointer was used. One day before surgery a CT scan was acquired with the stickers in-place and marked. From the CT scan the EM-sensors, tumor and normal structures were segmented. During surgery, accuracy was independently checked by pointing at the aorta bifurcation and the common iliac artery bifurcations. Subsequently, the system was used to localize the ureters and the tumor. Seven patients were included, three rectal tumors with lymph node-involvement, three lymph node recurrences, and one rectal recurrence. The average external marker registration accuracy was 0.75 cm RMSE (range 0.31-1.58 cm). The average distance between the pointer and the arterial bifurcations was 1.55 cm (1SD=0.63 cm). We were able to localize and confirm the location of all ureters. Twelve out of thirteen lymph nodes were localized and removed. All tumors were removed radically. In all cases the surgeons indicated that the system aided in better anatomical insight, and faster localization of malignant tissue and ureters. In 2/7 cases surgeons indicated that radical resection was only possible with navigation. The navigation accuracy was limited due to the use of skin markers. Nevertheless, preliminary results indicated potential clinical benefit due to better utilization of pre-treatment 3D imaging information.
NASA Astrophysics Data System (ADS)
Guha, Daipayan; Jakubovic, Raphael; Gupta, Shaurya; Yang, Victor X. D.
2017-02-01
Computer-assisted navigation (CAN) may guide spinal surgeries, reliably reducing screw breach rates. Definitions of screw breach, if reported, vary widely across studies. Absolute quantitative error is theoretically a more precise and generalizable metric of navigation accuracy, but has been computed variably and reported in fewer than 25% of clinical studies of CAN-guided pedicle screw accuracy. We reviewed a prospectively-collected series of 209 pedicle screws placed with CAN guidance to characterize the correlation between clinical pedicle screw accuracy, based on postoperative imaging, and absolute quantitative navigation accuracy. We found that acceptable screw accuracy was achieved for significantly fewer screws based on 2mm grade vs. Heary grade, particularly in the lumbar spine. Inter-rater agreement was good for the Heary classification and moderate for the 2mm grade, significantly greater among radiologists than surgeon raters. Mean absolute translational/angular accuracies were 1.75mm/3.13° and 1.20mm/3.64° in the axial and sagittal planes, respectively. There was no correlation between clinical and absolute navigation accuracy, in part because surgeons appear to compensate for perceived translational navigation error by adjusting screw medialization angle. Future studies of navigation accuracy should therefore report absolute translational and angular errors. Clinical screw grades based on post-operative imaging, if reported, may be more reliable if performed in multiple by radiologist raters.
Smith, Jacob D; Jack, Megan M; Harn, Nicholas R; Bertsch, Judson R; Arnold, Paul M
2016-06-01
Study Design Case series of seven patients. Objective C2 stabilization can be challenging due to the complex anatomy of the upper cervical vertebrae. We describe seven cases of C1-C2 fusion using intraoperative navigation to aid in the screw placement at the atlantoaxial (C1-C2) junction. Methods Between 2011 and 2014, seven patients underwent posterior atlantoaxial fusion using intraoperative frameless stereotactic O-arm Surgical Imaging and StealthStation Surgical Navigation System (Medtronic, Inc., Minneapolis, Minnesota, United States). Outcome measures included screw accuracy, neurologic status, radiation dosing, and surgical complications. Results Four patients had fusion at C1-C2 only, and in the remaining three, fixation extended down to C3 due to anatomical considerations for screw placement recognized on intraoperative imaging. Out of 30 screws placed, all demonstrated minimal divergence from desired placement in either C1 lateral mass, C2 pedicle, or C3 lateral mass. No neurovascular compromise was seen following the use of intraoperative guided screw placement. The average radiation dosing due to intraoperative imaging was 39.0 mGy. All patients were followed for a minimum of 12 months. All patients went on to solid fusion. Conclusion C1-C2 fusion using computed tomography-guided navigation is a safe and effective way to treat atlantoaxial instability. Intraoperative neuronavigation allows for high accuracy of screw placement, limits complications by sparing injury to the critical structures in the upper cervical spine, and can help surgeons make intraoperative decisions regarding complex pathology.
Flight Analysis of an Autonomously Navigated Experimental Lander for High Altitude Recovery
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Niehaus, Justin; Goodenow, Debra; Dunker, Storm; Montague, David
2016-01-01
First steps have been taken to qualify a family of parafoil systems capable of increasing the survivability and reusability of high-altitude balloon payloads. The research is motivated by the common risk facing balloon payloads where expensive flight hardware can often land in inaccessible areas that make them difficult or impossible to recover. The Autonomously Navigated Experimental Lander (ANGEL) flight test introduced a commercial Guided Parachute Aerial Delivery System (GPADS) to a previously untested environment at 108,000ft MSL to determine its high-altitude survivability and capabilities. Following release, ANGEL descended under a drogue until approximately 25,000ft, at which point the drogue was jettisoned and the main parachute was deployed, commencing navigation. Multiple data acquisition platforms were used to characterize the return-to-point technology performance and help determine its suitability for returning future scientific payloads ranging from 180 to 10,000lbs to safer and more convenient landing locations. This report describes the test vehicle design, and summarizes the captured sensor data. Various post-flight analyses are used to quantify the system's performance, gondola load data, and serve as a reference point for subsequent missions.
Flight Analysis of an Autonomously Navigated Experimental Lander
NASA Technical Reports Server (NTRS)
Chin, Jeffrey; Niehaus, Justin; Goodenow, Debra; Dunker, Storm; Montague, David
2016-01-01
First steps have been taken to qualify a family of parafoil systems capable of increasing the survivability and reusability of high-altitude balloon payloads. The research is motivated by the common risk facing balloon payloads where expensive flight hardware can often land in inaccessible areas that make them difficult or impossible to recover. The Autonomously Navigated Experimental Lander (ANGEL) flight test introduced a commercial Guided Parachute Aerial Delivery System (GPADS) to a previously untested environment at 108,000 feet Mean Sea Level (MSL) to determine its high-altitude survivability and capabilities. Following release, ANGEL descended under a drogue until approximately 25,000 feet, at which point the drogue was jettisoned and the main parachute was deployed, commencing navigation. Multiple data acquisition platforms were used to characterize the return-to-point technology performance and help determine its suitability for returning future scientific payloads ranging from 180 to 10,000 pounds to safer and more convenient landing locations. This report describes the test vehicle design, and summarizes the captured sensor data. Various post-flight analyses are used to quantify the systems performance, gondola load data, and serve as a reference point for subsequent missions.
Chatterji, Madhabi
2016-12-01
This paper explores avenues for navigating evaluation design challenges posed by complex social programs (CSPs) and their environments when conducting studies that call for generalizable, causal inferences on the intervention's effectiveness. A definition is provided of a CSP drawing on examples from different fields, and an evaluation case is analyzed in depth to derive seven (7) major sources of complexity that typify CSPs, threatening assumptions of textbook-recommended experimental designs for performing impact evaluations. Theoretically-supported, alternative methodological strategies are discussed to navigate assumptions and counter the design challenges posed by the complex configurations and ecology of CSPs. Specific recommendations include: sequential refinement of the evaluation design through systems thinking, systems-informed logic modeling; and use of extended term, mixed methods (ETMM) approaches with exploratory and confirmatory phases of the evaluation. In the proposed approach, logic models are refined through direct induction and interactions with stakeholders. To better guide assumption evaluation, question-framing, and selection of appropriate methodological strategies, a multiphase evaluation design is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maintenance of signs and sign supports : a guide for local highway and street maintenance personnel.
DOT National Transportation Integrated Search
2010-01-01
Highway signs are the means by which the road agency communicates the rules, warnings, guidance and other highway information that drivers need to navigate their roads and streets. This guide, which is an update to the same titled guide published in ...
Inhaler Reminders Significantly Improve Asthma Patients' Use of Controller Medications
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... the most-cited journal in the field of allergy and clinical immunology. Additional Information Asthma Symptoms, Diagnosis, ... Utility navigation Donate Annual meeting Browse your ...
Vercruyssen, M; Coucke, W; Naert, I; Jacobs, R; Teughels, W; Quirynen, M
2015-11-01
To assess the accuracy of guided surgery compared with mental navigation or the use of a pilot-drill template in fully edentulous patients. Sixty consecutive patients (72 jaws), requiring four to six implants (maxilla or mandible), were randomly assigned to one of the following treatment modalities: Materialise Universal(®) mucosa, Materialise Universal(®) bone, Facilitate(™) mucosa, Facilitate(™) bone, mental navigation, or a pilot-drill template. Accuracy was assessed by matching the planning CT with a postoperative CBCT. Deviations were registered in a vertical (depth) and horizontal (lateral) plane. The latter further subdivided into BL (bucco-lingual) and MD (mesio-distal) deviations. The overall mean vertical deviation for the guided surgery groups was 0.9 mm ± 0.8 (range: 0.0-3.7) and 0.9 mm ± 0.6 (range: 0.0-2.9) in a horizontal direction. For the non-guided groups, this was 1.7 mm ± 1.3 (range: 0.0-6.4) and 2.1 mm ± 1.4 (range 0.0-8.5), respectively (P < 0.05). The overall mean deviation for the guided surgery groups in MD direction was 0.6 mm ± 0.5 (range: 0.0-2.5) and 0.5 mm ± 0.5 (range: 0.0-2.9) in BL direction. For the non-guided groups, this was 1.8 mm ± 1.4 (range: 0.0-8.3) and 0.7 mm ± 0.6 (range 0.0-2.9), respectively. The deviation in MD direction was significantly higher in the non-guided groups (P = 0.0002). The most important inaccuracy with guided surgery is in vertical direction (depth). The inaccuracy in MD or BL direction is clearly less. For non-guided surgery, the inaccuracy is significantly higher. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
33 CFR 274.6 - Division/district pest control programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Division/district pest control..., DEPARTMENT OF DEFENSE PEST CONTROL PROGRAM FOR CIVIL WORKS PROJECTS Project Operation § 274.6 Division/district pest control programs. (a) Guides. Referenced technical manuals, and Engineer Circulars issued...
Integration for navigation on the UMASS mobile perception lab
NASA Technical Reports Server (NTRS)
Draper, Bruce; Fennema, Claude; Rochwerger, Benny; Riseman, Edward; Hanson, Allen
1994-01-01
Integration of real-time visual procedures for use on the Mobile Perception Lab (MPL) was presented. The MPL is an autonomous vehicle designed for testing visually guided behavior. Two critical areas of focus in the system design were data storage/exchange and process control. The Intermediate Symbolic Representation (ISR3) supported data storage and exchange, and the MPL script monitor provided process control. Resource allocation, inter-process communication, and real-time control are difficult problems which must be solved in order to construct strong autonomous systems.
Reducing inequalities in cancer outcomes: what works?
Bickell, Nina A; Paskett, Electra D
2013-01-01
Despite efforts to reduce disparities in cancer outcomes among vulnerable populations, certain subgroups do not experience the gains made in the reduction of cancer incidence and mortality. In this article, we review recent trial data reporting on patient-, physician-, and system-centered interventions to improve quality and reduce disparities in cancer care spanning patient navigation to health reform. We conclude with data from a state that implemented a multitiered approach, targeting patient and systems barriers, that serves as a guide for future endeavors.
Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C
2018-06-01
Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.
Woodruff, Tracey J; Sutton, Patrice
2014-10-01
Synthesizing what is known about the environmental drivers of health is instrumental to taking prevention-oriented action. Methods of research synthesis commonly used in environmental health lag behind systematic review methods developed in the clinical sciences over the past 20 years. We sought to develop a proof of concept of the "Navigation Guide," a systematic and transparent method of research synthesis in environmental health. The Navigation Guide methodology builds on best practices in research synthesis in evidence-based medicine and environmental health. Key points of departure from current methods of expert-based narrative review prevalent in environmental health include a prespecified protocol, standardized and transparent documentation including expert judgment, a comprehensive search strategy, assessment of "risk of bias," and separation of the science from values and preferences. Key points of departure from evidence-based medicine include assigning a "moderate" quality rating to human observational studies and combining diverse evidence streams. The Navigation Guide methodology is a systematic and rigorous approach to research synthesis that has been developed to reduce bias and maximize transparency in the evaluation of environmental health information. Although novel aspects of the method will require further development and validation, our findings demonstrated that improved methods of research synthesis under development at the National Toxicology Program and under consideration by the U.S. Environmental Protection Agency are fully achievable. The institutionalization of robust methods of systematic and transparent review would provide a concrete mechanism for linking science to timely action to prevent harm.
Real-time MRI-guided needle intervention for cryoablation: a phantom study
NASA Astrophysics Data System (ADS)
Gao, Wenpeng; Jiang, Baichuan; Kacher, Dan F.; Fetics, Barry; Nevo, Erez; Lee, Thomas C.; Jayender, Jagadeesan
2017-03-01
MRI-guided needle intervention for cryoablation is a promising way to relieve the pain and treat the cancer. However, the limited size of MRI bore makes it impossible for clinicians to perform the operation in the bore. The patients had to be moved into the bore for scanning to verify the position of the needle's tip and out for adjusting the needle's trajectory. Real-time needle tracking and shown in MR images is of importance for clinicians to perform the operation more efficiently. In this paper, we have instrumented the cryotherapy needle with a MRI-safe electromagnetic (EM) sensor and optical sensor to measure the needle's position and orientation. To overcome the limitation of line-of-sight for optical sensor and the poor dynamic performance of the EM sensor, Kalman filter based data fusion is developed. Further, we developed a navigation system in open-source software, 3D Slicer, to provide accurate visualization of the needle and the surrounding anatomy. Experiment of simulation the needle intervention at the entrance was performed with a realistic spine phantom to quantify the accuracy of the navigation using the retrospective analysis method. Eleven trials of needle insertion were performed independently. The target accuracy with the navigation using only EM sensor, only optical sensor and data fusion are 2.27 +/-1.60 mm, 4.11 +/- 1.77 mm and 1.91 - 1.10 mm, respectively.
Automatic Optimization of Wayfinding Design.
Huang, Haikun; Lin, Ni-Ching; Barrett, Lorenzo; Springer, Darian; Wang, Hsueh-Cheng; Pomplun, Marc; Yu, Lap-Fai
2017-10-10
Wayfinding signs play an important role in guiding users to navigate in a virtual environment and in helping pedestrians to find their ways in a real-world architectural site. Conventionally, the wayfinding design of a virtual environment is created manually, so as the wayfinding design of a real-world architectural site. The many possible navigation scenarios, and the interplay between signs and human navigation, can make the manual design process overwhelming and non-trivial. As a result, creating a wayfinding design for a typical layout can take months to several years. In this paper, we introduce the Way to Go! approach for automatically generating a wayfinding design for a given layout. The designer simply has to specify some navigation scenarios; our approach will automatically generate an optimized wayfinding design with signs properly placed considering human agents' visibility and possibility of making navigation mistakes. We demonstrate the effectiveness of our approach in generating wayfinding designs for different layouts. We evaluate our results by comparing different wayfinding designs and show that our optimized designs can guide pedestrians to their destinations effectively. Our approach can also help the designer visualize the accessibility of a destination from different locations, and correct any "blind zone" with additional signs.
Patient Navigation by Community Health Workers Increases Access to Surgical Care in Rural Haiti.
Matousek, Alexi C; Addington, Stephen R; Kahan, Joseph; Sannon, Herriot; Luckner, Thelius; Exe, Chauvet; Jean Louis, Rodolphe R Eisenhower; Lipsitz, Stuart; Meara, John G; Riviello, Robert
2017-12-01
In the Hôpital Albert Schweitzer district in rural Haiti, patients from mountain areas receive fewer operations per capita than patients from the plains. Possible additional barriers for mountain patients include lower socioeconomic status, lack of awareness of financial support, illiteracy and unfamiliarity with the hospital system. We sought to increase the rate of elective surgery for a mountain population using a patient navigation program. Patient navigators were trained to guide subjects from a mountain population through the entire hospital process for elective surgery. We compared the rate of elective operations before and after the patient navigation intervention between three groups: a control group from a mountainous area, a control group from the plains and an intervention group from a mountainous area. The baseline elective operation rate differed significantly between the plains control group, the mountain control group and the mountain intervention group (361 vs. 57 vs. 68 operations per 100,000 population per year). The rate of elective surgery between the two mountain groups was not statistically different prior to the intervention. After the intervention, the elective operation rate in the mountain group that received patient navigation increased from 68 to 131 operations per 100,000 population per year (p = 0.017). Patient navigation doubled the elective operation rate for a mountain population in rural Haiti. While additional barriers to access remain for this vulnerable population, patient navigation is an essential augmentation to financial assistance programs to ensure that the poor gain access to surgical care.
Aeronautics: An Educator's Guide with Activities in Science, Mathematics, and Technology Education.
ERIC Educational Resources Information Center
Anderson, Charles; Biggs, Pat; Brown, Deborah; Culivan, Steve; Ellis, Sue; Gerard, James; Hardwick, Ellen; Poff, Norm; Rosenberg, Carla; Shearer, Deborah; Tripp, Octavia; Ernst, Ron
This educator's guide explains basic aeronautical concepts and provides a background in the history of aviation within the context of flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They were developed by NASA Aerospace Education Services Program specialists who have…
47 CFR 79.108 - Video programming guides and menus provided by navigation devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Video programming guides and menus provided by...) BROADCAST RADIO SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.108 Video programming guides and... § 76.1200 of this chapter, into the chain of commerce for purchase by consumers, and multichannel video...
Micromachined actuators/sensors for intratubular positioning/steering
Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.
1998-01-01
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.
Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.
1998-10-13
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.
Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.
1998-01-01
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.
Intelligence Level Performance Standards Research for Autonomous Vehicles
Bostelman, Roger B.; Hong, Tsai H.; Messina, Elena
2017-01-01
United States and European safety standards have evolved to protect workers near Automatic Guided Vehicles (AGV’s). However, performance standards for AGV’s and mobile robots have only recently begun development. Lessons can be learned from research and standards efforts for mobile robots applied to emergency response and military applications. Research challenges, tests and evaluations, and programs to develop higher intelligence levels for vehicles can also used to guide industrial AGV developments towards more adaptable and intelligent systems. These other efforts also provide useful standards development criteria for AGV performance test methods. Current standards areas being considered for AGVs are for docking, navigation, obstacle avoidance, and the ground truth systems that measure performance. This paper provides a look to the future with standards developments in both the performance of vehicles and the dynamic perception systems that measure intelligent vehicle performance. PMID:28649189
Intelligence Level Performance Standards Research for Autonomous Vehicles.
Bostelman, Roger B; Hong, Tsai H; Messina, Elena
2015-01-01
United States and European safety standards have evolved to protect workers near Automatic Guided Vehicles (AGV's). However, performance standards for AGV's and mobile robots have only recently begun development. Lessons can be learned from research and standards efforts for mobile robots applied to emergency response and military applications. Research challenges, tests and evaluations, and programs to develop higher intelligence levels for vehicles can also used to guide industrial AGV developments towards more adaptable and intelligent systems. These other efforts also provide useful standards development criteria for AGV performance test methods. Current standards areas being considered for AGVs are for docking, navigation, obstacle avoidance, and the ground truth systems that measure performance. This paper provides a look to the future with standards developments in both the performance of vehicles and the dynamic perception systems that measure intelligent vehicle performance.
Design and Implementation of Context-Aware Musuem Guide Agents
NASA Astrophysics Data System (ADS)
Satoh, Ichiro
This paper presents an agent-based system for building and operating context-aware services in public spaces, including museums. The system provides users with agents and detects the locations of users and deploys location-aware user-assistant agents at computers near the their current locations by using active RFID-tags. When a visitor moves between exhibits in a museum, this dynamically deploys his/her agent at the computers close to the exhibits by using mobile agent technology. It annotates the exhibits in his/her personalized form and navigate him/her user to the next exhibits along his/her routes. It also introduces user movement as a natural approach to interacting between users and agents. To demonstrate the utility and effectiveness of the system, we constructed location/user-aware visitor-guide services and experimented them for two weeks in a public museum.
Navigating the Grad School Application Process: A Training Schedule
ERIC Educational Resources Information Center
Swindlehurst, Garrett R.; Bullard, Lisa G.
2014-01-01
Through a simple step-by-step guide for navigating the graduate school application process, a graduate student who's been through the ringer and a faculty advisor who knows the ropes offer advice to walk prospective grad students through the process of successfully entering graduate school. A repeat printing.
Hawaii: Navigating a Different Way of Knowing.
ERIC Educational Resources Information Center
Thuermer, Kitty
1999-01-01
Seafarer Nainoa Thompson proved Western scientists wrong when they claimed his Pacific Island ancestors lacked the navigational skills to make their 2,500 mile trans-Pacific voyages, guided only by the stars and the sea. In the same way, schools must model different, more affiliative ways of gaining and imparting knowledge. (MLH)
Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk
2018-04-23
Unilateral spatial neglect (USN), a highly prevalent and disabling post-stroke impairment, has been shown to affect the recovery of locomotor and navigation skills needed for community mobility. We recently found that USN alters goal-directed locomotion in conditions of different cognitive/perceptual demands. However, sensorimotor post-stroke dysfunction (e.g. decreased walking speed) could have influenced the results. Analogous to a previously used goal-directed locomotor paradigm, a seated, joystick-driven navigation experiment, minimizing locomotor demands, was employed in individuals with and without post-stroke USN (USN+ and USN-, respectively) and healthy controls (HC). Participants (n = 15 per group) performed a seated, joystick-driven navigation and detection time task to targets 7 m away at 0°, ±15°/30° in actual (visually-guided), remembered (memory-guided) and shifting (visually-guided with representational updating component) conditions while immersed in a 3D virtual reality environment. Greater end-point mediolateral errors to left-sided targets (remembered and shifting conditions) and overall lengthier onsets in reorientation strategy (shifting condition) were found for USN+ vs. USN- and vs. HC (p < 0.05). USN+ individuals mostly overshot left targets (- 15°/- 30°). Greater delays in detection time for target locations across the visual spectrum (left, middle and right) were found in USN+ vs. USN- and HC groups (p < 0.05). USN-related attentional-perceptual deficits alter navigation abilities in memory-guided and shifting conditions, independently of post-stroke locomotor deficits. Lateralized and non-lateralized deficits in object detection are found. The employed paradigm could be considered in the design and development of sensitive and functional assessment methods for neglect; thereby addressing the drawbacks of currently used traditional paper-and-pencil tools.
Qualitative Evaluation of a New Tobacco Cessation Training Curriculum for Patient Navigators
Shuk, Elyse; Krebs, Paul; Lu, Wei-Hsin; Burkhalter, Jack; Cortez-Weir, Jeralyn; Rodriguez, Rian; Burnside, Vanessa N.; Lubetkin, Erica I.
2011-01-01
Treatments for tobacco dependence exist but are underutilized, particularly among low-income and minority smokers. Patient navigation has been shown to help patients overcome barriers to quality care. In preparation for testing the feasibility of integrating tobacco cessation patient navigation into primary care, this paper describes the development and qualitative evaluation of a new curriculum for training patient navigators to address cessation treatment barriers faced by low-income, minority smokers who are advised to quit by their physicians. Thematic text analysis of transcripts obtained from focus groups with experienced patient navigators (n = 19) was conducted. Participants endorsed patient navigation as a relevant strategy for addressing tobacco cessation treatment barriers and made several recommendations regarding the knowledge, core competencies, and skills needed to conduct tobacco cessation patient navigation. This curriculum could be used by existing patient navigation training centers or made available as a self-guided continuing education program for experienced navigators who wish to expand their navigation interventions to include a tobacco cessation focus. PMID:21553331
Virtual reality in neurologic rehabilitation of spatial disorientation
2013-01-01
Background Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD. PMID:23394289
Müller, Matthias; Gras, Florian; Marintschev, Ivan; Mückley, Thomas; Hofmann, Gunter O
2009-01-01
A novel, radiation- and reference base-free procedure for placement of navigated instruments and implants was developed and its practicability and precision in retrograde drillings evaluated in an experimental setting. Two different guidance techniques were used: One experimental group was operated on using the radiation- and reference base-free navigation technique (Fluoro Free), and the control group was operated on using standard fluoroscopy for guidance. For each group, 12 core decompressions were simulated by retrograde drillings in different artificial femurs following arthroscopic determination of the osteochondral lesions. The final guide-wire position was evaluated by postoperative CT analysis using vector calculation. High precision was achieved in both groups, but operating time was significantly reduced in the navigated group as compared to the control group. This was due to a 100% first-pass accuracy of drilling in the navigated group; in the control group a mean of 2.5 correction maneuvers per drilling were necessary. Additionally, the procedure was free of radiation in the navigated group, whereas 17.2 seconds of radiation exposure time were measured in the fluoroscopy-guided group. The developed Fluoro Free procedure is a promising and simplified approach to navigating different instruments as well as implants in relation to visually or tactilely placed pointers or objects without the need for radiation exposure or invasive fixation of a dynamic reference base in the bone.
Integrated cockpit design for the Army helicopter improvement program
NASA Technical Reports Server (NTRS)
Drennen, T.; Bowen, B.
1984-01-01
The main Army Helicopter Improvement Program (AHIP) mission is to navigate precisely, locate targets accurately, communicate their position to other battlefield elements, and to designate them for laser guided weapons. The onboard navigation and mast-mounted sight (MMS) avionics enable accurate tracking of current aircraft position and subsequent target location. The AHIP crewstation development was based on extensive mission/task analysis, function allocation, total system design, and test and verification. The avionics requirements to meet the mission was limited by the existing aircraft structural and performance characteristics and resultant space, weight, and power restrictions. These limitations and night operations requirement led to the use of night vision goggles. The combination of these requirements and limitations dictated an integrated control/display approach using multifunction displays and controls.
Mabray, Marc C; Datta, Sanjit; Lillaney, Prasheel V; Moore, Teri; Gehrisch, Sonja; Talbott, Jason F; Levitt, Michael R; Ghodke, Basavaraj V; Larson, Paul S; Cooke, Daniel L
2016-07-01
Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom. MR was performed on a head phantom with DBS lead targets. The head phantom was placed into fixation and FDCT was performed. FDCT and MR datasets were automatically fused using the integrated guidance system (iGuide, Siemens). A DBS target was selected on the MR dataset. A 10 cm, 19 G needle was advanced by hand in a single pass using laser crosshair guidance. Radial error was visually assessed against measurement markers on the target and by a second FDCT. Ten needles were placed using CT-MR fusion and 10 needles were placed without MR fusion, with targeting based solely on FDCT and fusion steps repeated for every pass. Mean radial error was 2.75±1.39 mm as defined by visual assessment to the centre of the DBS target and 2.80±1.43 mm as defined by FDCT to the centre of the selected target point. There were no statistically significant differences in error between MR fusion and non-MR guided series. Single pass needle placement in a DBS phantom using FDCT guidance is associated with a radial error of approximately 2.5-3.0 mm at a depth of approximately 80 mm. This system could accurately target sub-centimetre intracranial lesions defined on MR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
From self-assessment to frustration, a small step toward autonomy in robotic navigation
Jauffret, Adrien; Cuperlier, Nicolas; Tarroux, Philippe; Gaussier, Philippe
2013-01-01
Autonomy and self-improvement capabilities are still challenging in the fields of robotics and machine learning. Allowing a robot to autonomously navigate in wide and unknown environments not only requires a repertoire of robust strategies to cope with miscellaneous situations, but also needs mechanisms of self-assessment for guiding learning and for monitoring strategies. Monitoring strategies requires feedbacks on the behavior's quality, from a given fitness system in order to take correct decisions. In this work, we focus on how a second-order controller can be used to (1) manage behaviors according to the situation and (2) seek for human interactions to improve skills. Following an incremental and constructivist approach, we present a generic neural architecture, based on an on-line novelty detection algorithm that may be able to self-evaluate any sensory-motor strategies. This architecture learns contingencies between sensations and actions, giving the expected sensation from the previous perception. Prediction error, coming from surprising events, provides a measure of the quality of the underlying sensory-motor contingencies. We show how a simple second-order controller (emotional system) based on the prediction progress allows the system to regulate its behavior to solve complex navigation tasks and also succeeds in asking for help if it detects dead-lock situations. We propose that this model could be a key structure toward self-assessment and autonomy. We made several experiments that can account for such properties for two different strategies (road following and place cells based navigation) in different situations. PMID:24115931
2010-06-01
Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles
[Navigated drilling for femoral head necrosis. Experimental and clinical results].
Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S
2007-05-01
In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.
Precision of computer-assisted core decompression drilling of the femoral head.
Beckmann, J; Goetz, J; Baethis, H; Kalteis, T; Grifka, J; Perlick, L
2006-08-01
Osteonecrosis of the femoral head is a local destructive disease with progression into devastating stages. Left untreated it mostly leads to severe secondary osteoarthrosis and early endoprosthetic joint replacement. Core decompression by exact drilling into the ischemic areas can be performed in early stages according to Ficat or ARCO. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. Twenty sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany) and 10 sawbones by fluoroscopic control only. No gypsum sphere was missed. There was a statistically significant difference regarding the three-dimensional deviation (Euclidian norm) as well as maximum deviation in x-, y- or z-direction (maximum norm) to the desired mid-point of the lesion, with a mean of 0.51 and 0.4 mm in the navigated group and 1.1 and 0.88 mm in the control group, respectively. Furthermore, significant difference was found in the number of drilling corrections as well as the radiation time needed: no second drilling or correction of drilling direction was necessary in the navigated group compared to 1.4 in the control group. The radiation time needed was less than 1 s compared to 3.1 s, respectively. The fluoroscopy-based VectorVision navigation system shows a high feasibility of computer-guided drilling with a clear reduction of radiation exposure time and can therefore be integrated into clinical routine. The additional time needed is acceptable regarding the simultaneous reduction of radiation time.
Navigation and Image Injection for Control of Bone Removal and Osteotomy Planes in Spine Surgery.
Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven Rainer; Archavlis, Elefterios; Giese, Alf
2017-04-01
In contrast to cranial interventions, neuronavigation in spinal surgery is used in few applications, not tapping into its full technological potential. We have developed a method to preoperatively create virtual resection planes and volumes for spinal osteotomies and export 3-D operation plans to a navigation system controlling intraoperative visualization using a surgical microscope's head-up display. The method was developed using a Sawbone ® model of the lumbar spine, demonstrating feasibility with high precision. Computer tomographic and magnetic resonance image data were imported into Amira ® , a 3-D visualization software. Resection planes were positioned, and resection volumes representing intraoperative bone removal were defined. Fused to the original Digital Imaging and Communications in Medicine data, the osteotomy planes were exported to the cranial version of a Brainlab ® navigation system. A navigated surgical microscope with video connection to the navigation system allowed intraoperative image injection to visualize the preplanned resection planes. The workflow was applied to a patient presenting with a congenital hemivertebra of the thoracolumbar spine. Dorsal instrumentation with pedicle screws and rods was followed by resection of the deformed vertebra guided by the in-view image injection of the preplanned resection planes into the optical path of a surgical microscope. Postoperatively, the patient showed no neurological deficits, and the spine was found to be restored in near physiological posture. The intraoperative visualization of resection planes in a microscope's head-up display was found to assist the surgeon during the resection of a complex-shaped bone wedge and may help to further increase accuracy and patient safety. Copyright © 2017 by the Congress of Neurological Surgeons
Flight test integration and evaluation of the LANTIRN system on the F-15E
NASA Astrophysics Data System (ADS)
Presuhn, Gary G.; Zeis, Joseph E.
1991-08-01
In today's high threat arena of air combat, the need to fly low, penetrate enemy defenses, strike effectively, and safely return to base is more valid than ever. The F-15E is designed to accomplish just that type of mission scenario, regardless of weather and time of day. In order to accomplish this demanding profile, any such aircraft requires terrain-following equipment and precision target designation. The LANTIRN system on the F-15E is designed to fulfill that role. This paper examines the two major aspects of the LANTIRN system found on the F-15E: the Navigation Pod and the Targeting Pod, and investigates flight test issues during F-15E integration testing. The Navigation Pod consists of two major subsystems, the Fixed Imaging Navigation Sensor (FINS) and the terrain following radar (TFR). Discussion of the FINS centers around the integration issues of the system and its utility in the night low level environment, as determined through flight test. In providing a 'window on the world,' this aspect of the LANTIRN system provides unique capabilities in navigation as well as weapons delivery. The TFR, the other major subsystem, is a continuation of the F-111 and RF-4 terrain following systems. While an effective system, integration of the TFR into the F-15E has been a challenge to the flight test community, with many lessons to be learned. The Targeting Pod is the second component of the LANTIRN system. Its purpose is to acquire and designate a target through use of its selectable dual field of view infrared sensor and laser ranger/designator. The laser also provides terminal guidance capability for precision guided weapons. Integration of the Targeting Pod into the avionics suite of the F-15E has provided classic examples of systems flight testing, evaluating both the technical and performance aspects of the pod, as well as the key human factors interface. The overall intent of this paper is to describe avionics testing, as applied to low level navigation and targeting systems, and to discuss lessons learned in that process, both of a specific and a general nature.
Motion-guided attention promotes adaptive communications during social navigation.
Lemasson, B H; Anderson, J J; Goodwin, R A
2013-03-07
Animals are capable of enhanced decision making through cooperation, whereby accurate decisions can occur quickly through decentralized consensus. These interactions often depend upon reliable social cues, which can result in highly coordinated activities in uncertain environments. Yet information within a crowd may be lost in translation, generating confusion and enhancing individual risk. As quantitative data detailing animal social interactions accumulate, the mechanisms enabling individuals to rapidly and accurately process competing social cues remain unresolved. Here, we model how motion-guided attention influences the exchange of visual information during social navigation. We also compare the performance of this mechanism to the hypothesis that robust social coordination requires individuals to numerically limit their attention to a set of n-nearest neighbours. While we find that such numerically limited attention does not generate robust social navigation across ecological contexts, several notable qualities arise from selective attention to motion cues. First, individuals can instantly become a local information hub when startled into action, without requiring changes in neighbour attention level. Second, individuals can circumvent speed-accuracy trade-offs by tuning their motion thresholds. In turn, these properties enable groups to collectively dampen or amplify social information. Lastly, the minority required to sway a group's short-term directional decisions can change substantially with social context. Our findings suggest that motion-guided attention is a fundamental and efficient mechanism underlying collaborative decision making during social navigation.
Jiang, Taoran; Zhu, Ming; Zan, Tao; Gu, Bin; Li, Qingfeng
2017-08-01
In perforator flap transplantation, dissection of the perforator is an important but difficult procedure because of the high variability in vascular anatomy. Preoperative imaging techniques could provide substantial information about vascular anatomy; however, it cannot provide direct guidance for surgeons during the operation. In this study, a navigation system (NS) was established to overlie a vascular map on surgical sites to further provide a direct guide for perforator flap transplantation. The NS was established based on computed tomographic angiography and augmented reality techniques. A virtual vascular map was reconstructed according to computed tomographic angiography data and projected onto real patient images using ARToolKit software. Additionally, a screw-fixation marker holder was created to facilitate registration. With the use of a tracking and display system, we conducted the NS on an animal model and measured the system error on a rapid prototyping model. The NS assistance allowed for correct identification, as well as a safe and precise dissection of the perforator. The mean value of the system error was determined to be 3.474 ± 1.546 mm. Augmented reality-based NS can provide precise navigation information by directly displaying a 3-dimensional individual anatomical virtual model onto the operative field in real time. It will allow rapid identification and safe dissection of a perforator in free flap transplantation surgery.
Three-dimensional simulation, surgical navigation and thoracoscopic lung resection
Kanzaki, Masato; Kikkawa, Takuma; Sakamoto, Kei; Maeda, Hideyuki; Wachi, Naoko; Komine, Hiroshi; Oyama, Kunihiro; Murasugi, Masahide; Onuki, Takamasa
2013-01-01
This report describes a 3-dimensional (3-D) video-assisted thoracoscopic lung resection guided by a 3-D video navigation system having a patient-specific 3-D reconstructed pulmonary model obtained by preoperative simulation. A 78-year-old man was found to have a small solitary pulmonary nodule in the left upper lobe in chest computed tomography. By a virtual 3-D pulmonary model the tumor was found to be involved in two subsegments (S1 + 2c and S3a). Complete video-assisted thoracoscopic surgery bi-subsegmentectomy was selected in simulation and was performed with lymph node dissection. A 3-D digital vision system was used for 3-D thoracoscopic performance. Wearing 3-D glasses, the patient's actual reconstructed 3-D model on 3-D liquid-crystal displays was observed, and the 3-D intraoperative field and the picture of 3-D reconstructed pulmonary model were compared. PMID:24964426
Surgical navigation in urology: European perspective.
Rassweiler, Jens; Rassweiler, Marie-Claire; Müller, Michael; Kenngott, Hannes; Meinzer, Hans-Peter; Teber, Dogu
2014-01-01
Use of virtual reality to navigate open and endoscopic surgery has significantly evolved during the last decade. Current status of seven most interesting projects inside the European Association of Urology section of uro-technology is summarized with review of literature. Marker-based endoscopic tracking during laparoscopic radical prostatectomy using high-definition technology reduces positive margins. Marker-based endoscopic tracking during laparoscopic partial nephrectomy by mechanical overlay of three-dimensional-segmented virtual anatomy is helpful during planning of trocar placement and dissection of renal hilum. Marker-based, iPAD-assisted puncture of renal collecting system shows more benefit for trainees with reduction of radiation exposure. Three-dimensional laser-assisted puncture of renal collecting system using Uro-Dyna-CT realized in an ex-vivo model enables minimal radiation time. Electromagnetic tracking for puncture of renal collecting system using a sensor at the tip of ureteral catheter worked in an in-vivo model of porcine ureter and kidney. Attitude tracking for ultrasound-guided puncture of renal tumours by accelerometer reduces the puncture error from 4.7 to 1.8 mm. Feasibility of electromagnetic and optical tracking with the da Vinci telemanipulator was shown in vitro as well as using in-vivo model of oesophagectomy. Target registration error was 11.2 mm because of soft-tissue deformation. Intraoperative navigation is helpful during percutaneous puncture collecting system and biopsy of renal tumour using various tracking techniques. Early clinical studies demonstrate advantages of marker-based navigation during laparoscopic radical prostatectomy and partial nephrectomy. Combination of different tracking techniques may further improve this interesting addition to video-assisted surgery.
Khandhar, Sandeep J; Bowling, Mark R; Flandes, Javier; Gildea, Thomas R; Hood, Kristin L; Krimsky, William S; Minnich, Douglas J; Murgu, Septimiu D; Pritchett, Michael; Toloza, Eric M; Wahidi, Momen M; Wolvers, Jennifer J; Folch, Erik E
2017-04-11
Electromagnetic navigation bronchoscopy (ENB) is an image-guided, minimally invasive approach that uses a flexible catheter to access pulmonary lesions. NAVIGATE is a prospective, multicenter study of the superDimension™ navigation system. A prespecified 1-month interim analysis of the first 1,000 primary cohort subjects enrolled at 29 sites in the United States and Europe is described. Enrollment and 24-month follow-up are ongoing. ENB index procedures were conducted for lung lesion biopsy (n = 964), fiducial marker placement (n = 210), pleural dye marking (n = 17), and/or lymph node biopsy (n = 334; primarily endobronchial ultrasound-guided). Lesions were in the peripheral/middle lung thirds in 92.7%, 49.7% were <20 mm, and 48.4% had a bronchus sign. Radial EBUS was used in 54.3% (543/1,000 subjects) and general anesthesia in 79.7% (797/1,000). Among the 964 subjects (1,129 lesions) undergoing lung lesion biopsy, navigation was completed and tissue was obtained in 94.4% (910/964). Based on final pathology results, ENB-aided samples were read as malignant in 417/910 (45.8%) subjects and non-malignant in 372/910 (40.9%) subjects. An additional 121/910 (13.3%) were read as inconclusive. One-month follow-up in this interim analysis is not sufficient to calculate the true negative rate or diagnostic yield. Tissue adequacy for genetic testing was 80.0% (56 of 70 lesions sent for testing). The ENB-related pneumothorax rate was 4.9% (49/1,000) overall and 3.2% (32/1,000) CTCAE Grade ≥2 (primary endpoint). The ENB-related Grade ≥2 bronchopulmonary hemorrhage and Grade ≥4 respiratory failure rates were 1.0 and 0.6%, respectively. One-month results of the first 1,000 subjects enrolled demonstrate low adverse event rates in a generalizable population across diverse practice settings. Continued enrollment and follow-up are required to calculate the true negative rate and delineate the patient, lesion, and procedural factors contributing to diagnostic yield. ClinicalTrials.gov NCT02410837 . Registered 31 March 2015.
Image-guided interventions and computer-integrated therapy: Quo vadis?
Peters, Terry M; Linte, Cristian A
2016-10-01
Significant efforts have been dedicated to minimizing invasiveness associated with surgical interventions, most of which have been possible thanks to the developments in medical imaging, surgical navigation, visualization and display technologies. Image-guided interventions have promised to dramatically change the way therapies are delivered to many organs. However, in spite of the development of many sophisticated technologies over the past two decades, other than some isolated examples of successful implementations, minimally invasive therapy is far from enjoying the wide acceptance once envisioned. This paper provides a large-scale overview of the state-of-the-art developments, identifies several barriers thought to have hampered the wider adoption of image-guided navigation, and suggests areas of research that may potentially advance the field. Copyright © 2016. Published by Elsevier B.V.
Electromagnetic tracking for abdominal interventions in computer aided surgery
Zhang, Hui; Banovac, Filip; Lin, Ralph; Glossop, Neil; Wood, Bradford J.; Lindisch, David; Levy, Elliot; Cleary, Kevin
2014-01-01
Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user friendly display for the physician. PMID:16829506
ERIC Educational Resources Information Center
Golden, Susan L.
Based on the "simple truth" that people, not proposals, secure grants, this guide argues that grantseekers need to go well beyond strong ideas and "beautifully written" proposals. The guide provides fundraisers with the grantsmanship skills they need to navigate the grantmaking process: from avoiding common pitfalls such as…
The Clinical Intuition Exploration Guide: A Decision-Making Tool for Counselors and Supervisors
ERIC Educational Resources Information Center
Jeffrey, Aaron
2012-01-01
Clinical intuition is a common experience among counselors, yet many do not know what to do with intuition when it occurs. This article reviews the role intuition plays in clinical work and presents the research-based Clinical Intuition Exploration Guide to help counselors navigate the decision-making process. The guide consists of self-reflection…
Control technique for planetary rover
NASA Technical Reports Server (NTRS)
Nakatani, Ichiro; Kubota, Takashi; Adachi, Tadashi; Saitou, Hiroaki; Okamoto, Sinya
1994-01-01
Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely.
Chen, Ziqiang; Wu, Bing; Zhai, Xiao; Bai, Yushu; Zhu, Xiaodong; Luo, Beier; Chen, Xiao; Li, Chao; Yang, Mingyuan; Xu, Kailiang; Liu, Chengcheng; Wang, Chuanfeng; Zhao, Yingchuan; Wei, Xianzhao; Chen, Kai; Yang, Wu; Ta, Dean; Li, Ming
2015-01-01
The purpose of this study was to understand the acoustic properties of human vertebral cancellous bone and to study the feasibility of ultrasound-based navigation for posterior pedicle screw fixation in spinal fusion surgery. Fourteen human vertebral specimens were disarticulated from seven un-embalmed cadavers (four males, three females, 73.14 ± 9.87 years, two specimens from each cadaver). Seven specimens were used to measure the transmission, including tests of attenuation and phase velocity, while the other seven specimens were used for backscattered measurements to inspect the depth of penetration and A-Mode signals. Five pairs of unfocused broadband ultrasonic transducers were used for the detection, with center frequencies of 0.5 MHz, 1 MHz, 1.5 MHz, 2.25 MHz, and 3.5 MHz. As a result, good and stable results were documented. With increased frequency, the attenuation increased (P<0.05), stability of the speed of sound improved (P<0.05), and penetration distance decreased (P>0.05). At about 0.6 cm away from the cortical bone, warning signals were easily observed from the backscattered measurements. In conclusion, the ultrasonic system proved to be an effective, moveable, and real-time imaging navigation system. However, how ultrasonic navigation will benefit pedicle screw insertion in spinal surgery needs to be determined. Therefore, ultrasound-guided pedicle screw implantation is theoretically effective and promising. PMID:25861053
Navigating Pre-, In-, and Post-Fieldwork: Elements for Consideration
ERIC Educational Resources Information Center
Lamoureux, Sylvie A.
2011-01-01
In this article, the author reflects on the transitions she has navigated since 2005 and offers insight into elements of research relationships. As she guides and accompanies a new generation of qualitative researchers planning and experiencing their fieldwork, the need for writing that addresses the complexities of "the intersubjectivity of the…
Navigation. Northern New England Marine Education Project.
ERIC Educational Resources Information Center
Maine Univ., Orono. Coll. of Education.
This guide provides student practice problems which use the procedures of ship navigators to reinforce the skills of mathematics learned in the secondary school and which seek to provide examples of the application of mathematical concepts. Along with the practice problems, teacher background material is provided briefly in the body of the unit.…
Supporting Classroom Instruction: The Textbook Navigator/Journal
ERIC Educational Resources Information Center
Cogan, Leland S.; Burroughs, Nathan; Schmidt, William H.
2015-01-01
Researchers at the Center for the Study of Curriculum at Michigan State University have developed a tool to help teachers implement the Common Core State Standards in mathematics by letting standards, not textbooks, guide their instruction. Using the web-based Textbook Navigator/Journal, teachers can pick a standard and ask which portions of the…
A map of abstract relational knowledge in the human hippocampal-entorhinal cortex.
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy Ej
2017-04-27
The hippocampal-entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal-entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal-entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns.
Di Biase, Luigi; Tung, Roderick; Szili-Torok, Tamás; Burkhardt, J David; Weiss, Peter; Tavernier, Rene; Berman, Adam E; Wissner, Erik; Spear, William; Chen, Xu; Neužil, Petr; Skoda, Jan; Lakkireddy, Dhanunjaya; Schwagten, Bruno; Lock, Ken; Natale, Andrea
2017-04-01
Patients with ischemic cardiomyopathy (ICM) are prone to scar-related ventricular tachycardia (VT). The success of VT ablation depends on accurate arrhythmogenic substrate localization, followed by optimal delivery of energy provided by constant electrode-tissue contact. Current manual and remote magnetic navigation (RMN)-guided ablation strategies aim to identify a reentry circuit and to target a critical isthmus through activation and entrainment mapping during ongoing tachycardia. The MAGNETIC VT trial will assess if VT ablation using the Niobe™ ES magnetic navigation system results in superior outcomes compared to a manual approach in subjects with ischemic scar VT and low ejection fraction. This is a randomized, single-blind, prospective, multicenter post-market study. A total of 386 subjects (193 per group) will be enrolled and randomized 1:1 between treatment with the Niobe ES system and treatment via a manual procedure at up to 20 sites. The study population will consist of patients with ischemic cardiomyopathy with left ventricular ejection fraction (LVEF) of ≤35% and implantable cardioverter defibrillator (ICD) who have sustained monomorphic VT. The primary study endpoint is freedom from any recurrence of VT through 12 months. The secondary endpoints are acute success; freedom from any VT at 1 year in a large-scar subpopulation; procedure-related major adverse events; and mortality rate through 12-month follow-up. Follow-up will consist of visits at 3, 6, 9, and 12 months, all of which will include ICD interrogation. The MAGNETIC VT trial will help determine whether substrate-based ablation of VT with RMN has clinical advantages over manual catheter manipulation. Clinicaltrials.gov identifier: NCT02637947.
Reading the landscape: Legible environments and hominin dispersals.
Guiducci, Dario; Burke, Ariane
2016-05-06
Wayfinding, or the ability to plan and navigate a course over the landscape, is a subject of investigation in geography, neurophysiology, psychology, urban planning, and landscape design. With the prevalence of GPS-assisted navigation systems, or "wayfinders," computer scientists are also increasingly interested in understanding how people plan their movements and guide others. However, the importance of wayfinding as a process that regulates human mobility has only recently been incorporated into archeological research design. Hominin groups were able to disperse widely during the course of prehistory. The scope of these dispersals speaks to the innate navigation abilities of hominins. Their long-term success must have depended on an ability to communicate spatial information effectively. Here, we consider the extent to which some landscapes may have been more conducive to wayfinding than others. We also describe a tool we have created for quantifying landscape legibility (sensu Gollege), a complex and under-explored concept in archeology, with a view to investigating the impact of landscape structure on human wayfinding and thus, patterns of dispersal during prehistory. To this end, we have developed a method for quantifying legibility using a Geographic Information System (GIS) and apply it to a test case in prehistoric Iberia. © 2016 Wiley Periodicals, Inc.
Evaluation of the eZono 4000 with eZGuide for ultrasound-guided procedures.
Gadsden, Jeff; Latmore, Malikah; Levine, Daniel M
2015-05-01
Ultrasound-guided procedures are increasingly common in a variety of acute care settings, such as the operating room, critical care unit and emergency room. However, accurate judgment of needle tip position using traditional ultrasound technology is frequently difficult, and serious injury can result from inadvertently advancing beyond or through the target. Needle navigation is a recent innovation that allows the clinician to visualize the needle position and trajectory in real time as it approaches the target. A novel ultrasound machine has recently been introduced that is portable and designed for procedural guidance. The eZono 4000™ features an innovative needle navigation technology that is simple to use and permits the use of a wide range of commercially available needles, avoiding the inconvenience and cost of proprietary equipment. This article discusses this new ultrasound machine in the context of other currently available ultrasound machines featuring needle navigation.
Kang, S-H; Kim, M-K; Kim, J-H; Park, H-K; Park, W
2012-01-01
Objective This study compared three marker-free registration methods that are applicable to a navigation system that can be used for maxillary sinus surgery, and evaluated the associated errors, with the aim of determining which registration method is the most applicable for operations that require accurate navigation. Methods The CT digital imaging and communications in medicine (DICOM) data of ten maxillary models in DICOM files were converted into stereolithography file format. All of the ten maxillofacial models were scanned three dimensionally using a light-based three-dimensional scanner. The methods applied for registration of the maxillofacial models utilized the tooth cusp, bony landmarks and maxillary sinus anterior wall area. The errors during registration were compared between the groups. Results There were differences between the three registration methods in the zygoma, sinus posterior wall, molar alveolar, premolar alveolar, lateral nasal aperture and the infraorbital areas. The error was smallest using the overlay method for the anterior wall of the maxillary sinus, and the difference was statistically significant. Conclusion The navigation error can be minimized by conducting registration using the anterior wall of the maxillary sinus during image-guided surgery of the maxillary sinus. PMID:22499127
Discover a Watershed: The Missouri Educators Guide
ERIC Educational Resources Information Center
Project WET Foundation, 2004
2004-01-01
2005 IPPY Award Winner! Actively engaging students with 36 science-based, multidisciplinary, hands-on activities, this "Guide" is an award-winning learning tool covering the Missouri Basin's hydrology, geology, geography, tribes, settlement, cities, agriculture, industry, recreation, navigation, plant and animal species, issues,…
Simple Smartphone-Based Guiding System for Visually Impaired People
Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying
2017-01-01
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them. PMID:28608811
Simple Smartphone-Based Guiding System for Visually Impaired People.
Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying
2017-06-13
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.
NASA Astrophysics Data System (ADS)
Stylianou, Agni
2003-06-01
Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.
A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery
NASA Astrophysics Data System (ADS)
Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.
2007-03-01
This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.
Prototype of a single probe Compton camera for laparoscopic surgery
NASA Astrophysics Data System (ADS)
Koyama, A.; Nakamura, Y.; Shimazoe, K.; Takahashi, H.; Sakuma, I.
2017-02-01
Image-guided surgery (IGS) is performed using a real-time surgery navigation system with three-dimensional (3D) position tracking of surgical tools. IGS is fast becoming an important technology for high-precision laparoscopic surgeries, in which the field of view is limited. In particular, recent developments in intraoperative imaging using radioactive biomarkers may enable advanced IGS for supporting malignant tumor removal surgery. In this light, we develop a novel intraoperative probe with a Compton camera and a position tracking system for performing real-time radiation-guided surgery. A prototype probe consisting of Ce :Gd3 Al2 Ga3 O12 (GAGG) crystals and silicon photomultipliers was fabricated, and its reconstruction algorithm was optimized to enable real-time position tracking. The results demonstrated the visualization capability of the radiation source with ARM = ∼ 22.1 ° and the effectiveness of the proposed system.
ERIC Educational Resources Information Center
Ramirez, Ernesto Fidel
2017-01-01
This dissertation is the experience of my life, an evolution of platicas I have had con mis coyotes, my Nepantlero guides. I am one Chicano navigating through the mechanisms of a coercive and hegemonic system which limits our advancement in the academy. My ontology, epistemology, and axiology stem from my cultural and family foundations which I…
Kataria, Vikas; Berte, Benjamin; Vandekerckhove, Yves; Tavernier, Rene; Duytschaever, Mattias
2017-01-01
Purpose. We aimed to study long-term outcome after pulmonary vein isolation (PVI) guided by remote magnetic navigation (RMN) and provided comparative data to outcome after manual navigation (MAN). Methods. Three hundred thirty-six patients with symptomatic paroxysmal AF underwent PVI by irrigated point-by-point radiofrequency (RF) ablation (RMN, n = 114 versus MAN, n = 222). Patients were followed up with symptom guided rhythm monitoring for a period up to 43 months. The end point of the study was freedom from repeat ablation after a single procedure and without antiarrhythmic drug treatment (ADT). Results. At the end of follow-up (median 26.3 months), freedom from repeat ablation was comparable between RMN and MAN (70.9% versus 69.5%, p = 0.61). At repeat, mean number of reconnected veins was 2.4 ± 1.2 in RMN versus 2.6 ± 1.0 in MAN ( p = 0.08). The majority of repeat procedures occurred during the first year (82.1% in RMN versus 78.5% in MAN; p = 0.74). Conclusion. On the long term (up to 3 years) and in a large cohort of patients with paroxysmal AF, RMN-guided PVI is as effective as MAN guided PVI. In both strategies the majority of repeat procedures occurred during the first year after index procedure.
Berte, Benjamin; Vandekerckhove, Yves; Tavernier, Rene
2017-01-01
Purpose. We aimed to study long-term outcome after pulmonary vein isolation (PVI) guided by remote magnetic navigation (RMN) and provided comparative data to outcome after manual navigation (MAN). Methods. Three hundred thirty-six patients with symptomatic paroxysmal AF underwent PVI by irrigated point-by-point radiofrequency (RF) ablation (RMN, n = 114 versus MAN, n = 222). Patients were followed up with symptom guided rhythm monitoring for a period up to 43 months. The end point of the study was freedom from repeat ablation after a single procedure and without antiarrhythmic drug treatment (ADT). Results. At the end of follow-up (median 26.3 months), freedom from repeat ablation was comparable between RMN and MAN (70.9% versus 69.5%, p = 0.61). At repeat, mean number of reconnected veins was 2.4 ± 1.2 in RMN versus 2.6 ± 1.0 in MAN (p = 0.08). The majority of repeat procedures occurred during the first year (82.1% in RMN versus 78.5% in MAN; p = 0.74). Conclusion. On the long term (up to 3 years) and in a large cohort of patients with paroxysmal AF, RMN-guided PVI is as effective as MAN guided PVI. In both strategies the majority of repeat procedures occurred during the first year after index procedure. PMID:28386560
ERIC Educational Resources Information Center
Terzian; Mary; Moore, Kristin Anderson; Williams-Taylor, Lisa; Nguyen, Hoan
2009-01-01
Child Trends produced this Guide to assist funders, administrators, and practitioners in identifying and navigating online resources to find evidence-based programs that may be appropriate for their target populations and communities. The Guide offers an overview of 21 of these resources--11 searchable online databases, 2 online interactive…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...
Evaluation of navigation interfaces in virtual environments
NASA Astrophysics Data System (ADS)
Mestre, Daniel R.
2014-02-01
When users are immersed in cave-like virtual reality systems, navigational interfaces have to be used when the size of the virtual environment becomes larger than the physical extent of the cave floor. However, using navigation interfaces, physically static users experience self-motion (visually-induced vection). As a consequence, sensorial incoherence between vision (indicating self-motion) and other proprioceptive inputs (indicating immobility) can make them feel dizzy and disoriented. We tested, in two experimental studies, different locomotion interfaces. The objective was twofold: testing spatial learning and cybersickness. In a first experiment, using first-person navigation with a flystick ®, we tested the effect of sensorial aids, a spatialized sound or guiding arrows on the ground, attracting the user toward the goal of the navigation task. Results revealed that sensorial aids tended to impact negatively spatial learning. Moreover, subjects reported significant levels of cybersickness. In a second experiment, we tested whether such negative effects could be due to poorly controlled rotational motion during simulated self-motion. Subjects used a gamepad, in which rotational and translational displacements were independently controlled by two joysticks. Furthermore, we tested first- versus third-person navigation. No significant difference was observed between these two conditions. Overall, cybersickness tended to be lower, as compared to experiment 1, but the difference was not significant. Future research should evaluate further the hypothesis of the role of passively perceived optical flow in cybersickness, but manipulating the virtual environment'sperrot structure. It also seems that video-gaming experience might be involved in the user's sensitivity to cybersickness.
Iliac screw fixation using computer-assisted computer tomographic image guidance: technical note.
Shin, John H; Hoh, Daniel J; Kalfas, Iain H
2012-03-01
Iliac screw fixation is a powerful tool used by spine surgeons to achieve fusion across the lumbosacral junction for a number of indications, including deformity, tumor, and pseudarthrosis. Complications associated with screw placement are related to blind trajectory selection and excessive soft tissue dissection. To describe the technique of iliac screw fixation using computed tomographic (CT)-based image guidance. Intraoperative registration and verification of anatomic landmarks are performed with the use of a preoperatively acquired CT of the lumbosacral spine. With the navigation probe, the ideal starting point for screw placement is selected while visualizing the intended trajectory and target on a computer screen. Once the starting point is selected and marked with a burr, a drill guide is docked within this point and the navigation probe re-inserted, confirming the trajectory. The probe is then removed and the high-speed drill reinserted within the drill guide. Drilling is performed to a depth measured on the computer screen and a screw is placed. Confirmation of accurate placement of iliac screws can be performed with standard radiographs. CT-guided navigation allows for 3-dimensional visualization of the pelvis and minimizes complications associated with soft-tissue dissection and breach of the ilium during screw placement.
Micromachined actuators/sensors for intratubular positioning/steering
Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.
1998-06-30
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.
Pishnamaz, Miguel; Wilkmann, Christoph; Na, Hong-Sik; Pfeffer, Jochen; Hänisch, Christoph; Janssen, Max; Bruners, Philipp; Kobbe, Philipp; Hildebrand, Frank; Schmitz-Rode, Thomas; Pape, Hans-Christoph
2016-01-01
Electromagnetic tracking is a relatively new technique that allows real time navigation in the absence of radiation. The aim of this study was to prove the feasibility of this technique for the treatment of posterior pelvic ring fractures and to compare the results with established image guided procedures. Tests were performed in pelvic specimens (Sawbones®) with standardized sacral fractures (Type Denis I or II). A gel matrix simulated the operative approach and a cover was used to disable visual control. The electromagnetic setup was performed by using a custom made carbon reference plate and a prototype stainless steel K-wire with an integrated sensor coil. Four different test series were performed: Group OCT: Optical navigation using preoperative CT-scans; group O3D: Optical navigation using intraoperative 3-D-fluoroscopy; group Fluoro: Conventional 2-D-fluoroscopy; group EMT: Electromagnetic navigation combined with a preoperative Dyna-CT. Accuracy of screw placement was analyzed by standardized postoperative CT-scan for each specimen. Operation time and intraoperative radiation exposure for the surgeon was documented. All data was analyzed using SPSS (Version 20, 76 Chicago, IL, USA). Statistical significance was defined as p< 0.05. 160 iliosacral screws were placed (40 per group). EMT resulted in a significantly higher incidence of optimal screw placement (EMT: 36/40) compared to the groups Fluoro (30/40; p< 0.05) and OCT (31/40; p< 0.05). Results between EMT and O3D were comparable (O3D: 37/40; n.s.). Also, the operation time was comparable between groups EMT and O3D (EMT 7.62 min vs. O3D 7.98 min; n.s.), while the surgical time was significantly shorter compared to the Fluoro group (10.69 min; p< 0.001) and the OCT group (13.3 min; p< 0.001). Electromagnetic guided iliosacral screw placement is a feasible procedure. In our experimental setup, this method was associated with improved accuracy of screw placement and shorter operation time when compared with the conventional fluoroscopy guided technique and compared to the optical navigation using preoperative CT-scans. Further studies are necessary to rule out drawbacks of this technique regarding ferromagnetic objects.
From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation
Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.
2012-01-01
Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737
Navigating the Academy: A Guide to Gaining Tenure and Securing Career Success
ERIC Educational Resources Information Center
Hayes, Dianne
2012-01-01
The age-old challenge of navigating the academy to gain tenure still persists. While today more doors are open for a diverse talent pool, successfully breaking down barriers requires understanding how to maneuver around pitfalls throughout all stages of one's career. While tenure continues to be the major priority for junior professors, long-term…
SMALL CRAFT OPERATION AND NAVIGATION, INSTRUCTOR'S GUIDE.
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge.
THE MATERIAL IN THIS COURSE IN MARINE NAVIGATION AND SMALL CRAFT OPERATION ON INLAND AND INTERNATIONAL WATERS WAS DEVELOPED BY AN INDIVIDUAL AUTHOR FOR USE IN TRADE SCHOOL PREPARATORY AND EXTENSION CLASSES FOR MALE ADULTS WHO PLAN TO OPERATE BOATS. THE OBJECTIVE IS TO PREPARE THE SMALL BOAT OPERATOR FOR HIS OWN CONTINUATION IN THE STUDY OF…
Zhang, Qiu; Kong, De-yu; Li, Chun-jian; Chen, Bo; Jia, En-zhi; Chen, Lei-Lei; Jia, Qing-zhe; Dai, Zhen-hua; Zhu, Tian-tian; Chen, Jun; Liu, Jie; Zhu, Tie-bing; Yang, Zhi-jian; Cao, Ke-jiang
2013-02-01
To evaluate the feasibility, efficacy and safety of the percutaneous coronary intervention (PCI)guided by computed tomography (CT) coronary angiography derived roadmap and magnetic navigation system (MNS). During June 2011 and May 2012, thirty consecutive patients receiving elective PCI were enrolled, coronary artery disease was primarily diagnosed by dual-source CT coronary angiography (DSCT-CA) at outpatient clinic and successively proved by coronary artery angiography in the hospital. Target vessels from pre-procedure DSCT-CA were transferred to the magnetic navigation system, and consequently edited, reconstructed, and projected onto the live fluoroscopic screen as roadmap. Parameters including characters of the target lesions, time, contrast volume, radiation dosage for guidewire crossing, and complications of the procedure were recorded. Thirty patients with 36 lesions were recruited and intervened by PCI. Among the target lesions, sixteen were classified as type A, 11 as type B1, 8 as type B2, 1 as type C. The average length of the target lesions was (22.0 ± 9.8) mm, and the average stenosis of the target lesions was (81.3 ± 10.3)%. Under the guidance of CT roadmap and MNS, 36 target lesions were crossed by the magnetic guidewires, with a lesion crossing ratio of 100%. The time of placement of the magnetic guidewires was 92.5 (56.6 - 131.3) seconds. The contrast volume and the radiation dosage for guidewire placement were 0.0 (0.0 - 3.0) ml and 235.0 (123.5 - 395.1) µGym(2)/36.5 (21.3 - 67.8) mGy, respectively. Guidewires were successfully placed in 21 (58.3%) lesions without contrast agent. All enrolled vessels were successfully treated, and there were no MNS associated complications. It is feasible, effective and safe to initiate PCI under the guidance of CT derived roadmap and MNS. This method might be helpful for the guidewire placement in the treatment of total occlusions.
An augmented magnetic navigation system for Transcatheter Aortic Valve Implantation.
Luo, Zhe; Cai, Junfeng; Nie, Yuanyuan; Wang, Guotai; Gu, Lixu
2013-01-01
This research proposes an augmented magnetic navigation system for Transcatheter Aortic Valve Implantation (TAVI) employing a magnetic tracking system (MTS) combined with a dynamic aortic model and intra-operative ultrasound (US) images. The dynamic 3D aortic model is constructed based on the preoperative 4D computed tomography (CT), which is animated according to the real time electrocardiograph (ECG) input of patient. And a preoperative planning is performed to determine the target position of the aortic valve prosthesis. The temporal alignment is performed to synchronize the ECG signals, intra-operative US image and tracking information. Afterwards, with the assistance of synchronized ECG signals, the contour of aortic root automatic extracted from short axis US image is registered to the dynamic aortic model by a feature based registration intra-operatively. Then the augmented MTS guides the interventionist to confidently position and deploy the aortic valve prosthesis to target. The system was validated by animal studies on three porcine subjects, the deployment and tilting errors of which are 3.17 ± 0.91 mm and 7.40 ± 2.89° respectively.
Toward Intraoperative Image-Guided Transoral Robotic Surgery
Liu, Wen P.; Reaugamornrat, Sureerat; Deguet, Anton; Sorger, Jonathan M.; Siewerdsen, Jeffrey H.; Richmon, Jeremy; Taylor, Russell H.
2014-01-01
This paper presents the development and evaluation of video augmentation on the stereoscopic da Vinci S system with intraoperative image guidance for base of tongue tumor resection in transoral robotic surgery (TORS). Proposed workflow for image-guided TORS begins by identifying and segmenting critical oropharyngeal structures (e.g., the tumor and adjacent arteries and nerves) from preoperative computed tomography (CT) and/or magnetic resonance (MR) imaging. These preoperative planned data can be deformably registered to the intraoperative endoscopic view using mobile C-arm cone-beam computed tomography (CBCT) [1, 2]. Augmentation of TORS endoscopic video defining surgical targets and critical structures has the potential to improve navigation, spatial orientation, and confidence in tumor resection. Experiments in animal specimens achieved statistically significant improvement in target localization error when comparing the proposed image guidance system to simulated current practice. PMID:25525474
Farooq, Hamza; Genis, Helen; Alarcon, Joseph; Vuong, Barry; Jivraj, Jamil; Yang, Victor X D; Cohen-Adad, Julien; Fehlings, Michael G; Cadotte, David W
2015-01-01
This narrative review captures a subset of recent advances in imaging of the central nervous system. First, we focus on improvements in the spatial and temporal profile afforded by optical coherence tomography, fluorescence-guided surgery, and Coherent Anti-Stokes Raman Scattering Microscopy. Next, we highlight advances in the generation and uses of imaging-based atlases and discuss how this will be applied to specific clinical situations. To conclude, we discuss how these and other imaging tools will be combined with neuronavigation techniques to guide surgeons in the operating room. Collectively, this work aims to highlight emerging biomedical imaging strategies that hold potential to be a valuable tool for both clinicians and researchers in the years to come. © 2015 Elsevier B.V. All rights reserved.
Vollmann, Dirk; Lüthje, Lars; Seegers, Joachim; Sohns, Christian; Sossalla, Samuel; Sohns, Jan; Röver, Christian; Hasenfuß, Gerd; Zabel, Markus
2014-10-01
Remote magnetic navigation (RMN) is utilized for catheter guidance during pulmonary vein ablation (PVA). We aimed to determine whether the additional use of a circular mapping catheter (CMC) influences efficacy and outcome of RMN-guided PVA. A total of 80 consecutive subjects (65 % male, age 62 ± 9 years) underwent circumferential PVA with a 3D mapping system and an RMN-guided irrigated catheter. Procedural endpoint was complete PV isolation (PVI), total radiofrequency (RF) time >60 min, or procedure duration >5 h. PVI was defined as an entrance and/or exit block, diagnosed with a CMC within the PV ostium or by pacing via the roving RMN-guided catheter (single-catheter technique). Prolonged Holter monitoring after 3 and 6 months was used to detect atrial tachyarrhythmia (AT/AF) recurrences. Complete PVI was achieved in 56 % (45/80) of all subjects (isolated PVs per patient, 3.1 ± 1.2; RF time, 56.3 ± 17.2 min; procedure duration, 3.8 ± 0.8 h). Prospective validation of the single-catheter technique for diagnosing PVI demonstrated high concordance (94 %) with blinded CMC results. CMC use in first-time PVA was associated with similar total RF and procedure times but higher PV isolation rate. Upon multivariate analysis, CMC use, female gender, left PV, smaller PV ostium and repeat PVA predicted PVI during RMN-guided ablation. Persistent AF and mitral regurgitation at baseline and the number of non-isolated PVs predicted AT/AF recurrence during follow-up. Concomitant CMC use for first-time, RMN-guided PVA is associated with similar procedure duration but higher PV isolation rates as compared to a single-catheter approach. Since the number of isolated PVs predicts freedom from AT/AF, CMC utilization appears advisable for first-time, RMN-guided PVA.
Xiao, Xiang; Zhu, Hao; Liu, Wei-Jie; Yu, Xiao-Ting; Duan, Lian; Li, Zheng; Zhu, Chao-Zhe
2017-01-01
The International 10/20 system is an important head-surface-based positioning system for transcranial brain mapping techniques, e.g., fNIRS and TMS. As guidance for probe placement, the 10/20 system permits both proper ROI coverage and spatial consistency among multiple subjects and experiments in a MRI-free context. However, the traditional manual approach to the identification of 10/20 landmarks faces problems in reliability and time cost. In this study, we propose a semi-automatic method to address these problems. First, a novel head surface reconstruction algorithm reconstructs head geometry from a set of points uniformly and sparsely sampled on the subject's head. Second, virtual 10/20 landmarks are determined on the reconstructed head surface in computational space. Finally, a visually-guided real-time navigation system guides the experimenter to each of the identified 10/20 landmarks on the physical head of the subject. Compared with the traditional manual approach, our proposed method provides a significant improvement both in reliability and time cost and thus could contribute to improving both the effectiveness and efficiency of 10/20-guided MRI-free probe placement.
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Stübig, Timo; Petri, Maximilian; Zeckey, Christian; Hawi, Nael; Krettek, Christian; Citak, Musa; Meller, Rupert
2013-12-01
Reversed shoulder arthroplasty is an alternative to total shoulder arthroplasty for various indications. The long-term results depend on stable bone fixation, and correct positioning of the glenoid component. The potential contribution of image guidance for reversed shoulder arthroplasty procedures was tested in vitro. 27 positioning procedures (15 navigated, 12 non-navigated) of the glenoid baseplate in reverse shoulder arthroplasty were performed by a single experienced orthopaedic surgeon. A Kirschner wire was placed freehand or with the use of a navigated drill guide. For the navigated procedures, a flat detector 3D C-arm with navigation system was used. The Kirschner wire was to be inserted 12 mm from the inferior glenoid, with an inferior tilt of 10° and centrally in the axial scapular axis. The insertion point in the glenoid as well as the position of the K-wire in the axial and sagittal planes were measured. For statistical analysis, t-tests were performed with a significance level of 0.05. The inferior glenoid drilling distance was 14.1 ± 3.4 mm for conventional placement and 15.1 ± 3.4 mm for the navigated procedure (P = 0.19). The inferior tilt showed no significant difference between the two methods (conventional 7.4 ± 5.2°, navigated 7.7 ± 4.9°, P = 0.63). The glenoid version in the axial plane showed significantly higher accuracy for the navigated procedure, with a mean deviation of 1.6 ±4.5° for the navigated procedure compared with 11.5 ± 6.5° for the conventional procedure(P = 0.004). Accurate positioning of the glenoidal baseplate in the axial scapular plane can be improved using 3D C-arm navigation for reversed shoulder arthroplasty. However, computer navigation may not improve the inferior tilt of the component or the position in the inferior glenoid to avoid scapular notching. Nevertheless, further studies are required to confirm these findings in the clinical setup. Copyright © 2013 John Wiley & Sons, Ltd.
Improving Performance During Image-Guided Procedures
Duncan, James R.; Tabriz, David
2015-01-01
Objective Image-guided procedures have become a mainstay of modern health care. This article reviews how human operators process imaging data and use it to plan procedures and make intraprocedural decisions. Methods A series of models from human factors research, communication theory, and organizational learning were applied to the human-machine interface that occupies the center stage during image-guided procedures. Results Together, these models suggest several opportunities for improving performance as follows: 1. Performance will depend not only on the operator’s skill but also on the knowledge embedded in the imaging technology, available tools, and existing protocols. 2. Voluntary movements consist of planning and execution phases. Performance subscores should be developed that assess quality and efficiency during each phase. For procedures involving ionizing radiation (fluoroscopy and computed tomography), radiation metrics can be used to assess performance. 3. At a basic level, these procedures consist of advancing a tool to a specific location within a patient and using the tool. Paradigms from mapping and navigation should be applied to image-guided procedures. 4. Recording the content of the imaging system allows one to reconstruct the stimulus/response cycles that occur during image-guided procedures. Conclusions When compared with traditional “open” procedures, the technology used during image-guided procedures places an imaging system and long thin tools between the operator and the patient. Taking a step back and reexamining how information flows through an imaging system and how actions are conveyed through human-machine interfaces suggest that much can be learned from studying system failures. In the same way that flight data recorders revolutionized accident investigations in aviation, much could be learned from recording video data during image-guided procedures. PMID:24921628
Quantifying attention shifts in augmented reality image-guided neurosurgery
Drouin, Simon; Collins, D. Louis; Popa, Tiberiu; Kersten-Oertel, Marta
2017-01-01
Image-guided surgery (IGS) has allowed for more minimally invasive procedures, leading to better patient outcomes, reduced risk of infection, less pain, shorter hospital stays and faster recoveries. One drawback that has emerged with IGS is that the surgeon must shift their attention from the patient to the monitor for guidance. Yet both cognitive and motor tasks are negatively affected with attention shifts. Augmented reality (AR), which merges the realworld surgical scene with preoperative virtual patient images and plans, has been proposed as a solution to this drawback. In this work, we studied the impact of two different types of AR IGS set-ups (mobile AR and desktop AR) and traditional navigation on attention shifts for the specific task of craniotomy planning. We found a significant difference in terms of the time taken to perform the task and attention shifts between traditional navigation, but no significant difference between the different AR set-ups. With mobile AR, however, users felt that the system was easier to use and that their performance was better. These results suggest that regardless of where the AR visualisation is shown to the surgeon, AR may reduce attention shifts, leading to more streamlined and focused procedures. PMID:29184663
Quantifying attention shifts in augmented reality image-guided neurosurgery.
Léger, Étienne; Drouin, Simon; Collins, D Louis; Popa, Tiberiu; Kersten-Oertel, Marta
2017-10-01
Image-guided surgery (IGS) has allowed for more minimally invasive procedures, leading to better patient outcomes, reduced risk of infection, less pain, shorter hospital stays and faster recoveries. One drawback that has emerged with IGS is that the surgeon must shift their attention from the patient to the monitor for guidance. Yet both cognitive and motor tasks are negatively affected with attention shifts. Augmented reality (AR), which merges the realworld surgical scene with preoperative virtual patient images and plans, has been proposed as a solution to this drawback. In this work, we studied the impact of two different types of AR IGS set-ups (mobile AR and desktop AR) and traditional navigation on attention shifts for the specific task of craniotomy planning. We found a significant difference in terms of the time taken to perform the task and attention shifts between traditional navigation, but no significant difference between the different AR set-ups. With mobile AR, however, users felt that the system was easier to use and that their performance was better. These results suggest that regardless of where the AR visualisation is shown to the surgeon, AR may reduce attention shifts, leading to more streamlined and focused procedures.
Intelligent navigation and accurate positioning of an assist robot in indoor environments
NASA Astrophysics Data System (ADS)
Hua, Bin; Rama, Endri; Capi, Genci; Jindai, Mitsuru; Tsuri, Yosuke
2017-12-01
Intact robot's navigation and accurate positioning in indoor environments are still challenging tasks. Especially in robot applications, assisting disabled and/or elderly people in museums/art gallery environments. In this paper, we present a human-like navigation method, where the neural networks control the wheelchair robot to reach the goal location safely, by imitating the supervisor's motions, and positioning in the intended location. In a museum similar environment, the mobile robot starts navigation from various positions, and uses a low-cost camera to track the target picture, and a laser range finder to make a safe navigation. Results show that the neural controller with the Conjugate Gradient Backpropagation training algorithm gives a robust response to guide the mobile robot accurately to the goal position.
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.
ERIC Educational Resources Information Center
Murphy, Corinne M.; Verden, Claire
2011-01-01
Graduate students must complete a research project to receive their degree. In addition to this basic requirement, the student may be required to submit a research proposal and application to the governing Institutional Review Board (IRB) for approval prior to beginning the research project. This article describes the IRB process and offers tips…
ERIC Educational Resources Information Center
Conderman, Greg; Hedin, Laura
2017-01-01
Study guides are a popular and frequently student-requested instructional support developed primarily by upper elementary, middle, and high school teachers to help students navigate through a course of study. With the increase of the number of learners with diverse needs in general education classrooms, teachers need to be mindful of various ways…
Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.
The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…
A Guide to Collaboration for IEP Teams
ERIC Educational Resources Information Center
Martin, Nicholas R. M.
2005-01-01
With so many complex, challenging, and emotionally charged decisions involved, participating in an IEP meeting can seem like navigating through a minefield. But now there is a practical guide to managing these meetings with a high level of awareness, safety, and confidence. Developed for administrators, teachers, resource professionals, and…
Development and evaluation of an instrumented linkage system for total knee surgery.
Walker, Peter S; Wei, Chih-Shing; Forman, Rachel E; Balicki, M A
2007-10-01
The principles and application of total knee surgery using optical tracking have been well demonstrated, but electromagnetic tracking may offer further advantages. We asked whether an instrumented linkage that attaches directly to the bone can maintain the accuracy of the optical and electromagnetic systems but be quicker, more convenient, and less expensive to use. Initial testing using a table-mounted digitizer to navigate a drill guide for placing pins to mount a cutting guide demonstrated the feasibility in terms of access and availability. A first version (called the Mark 1) instrumented linkage designed to fix directly to the bone was constructed and software was written to carry out a complete total knee replacement procedure. The results showed the system largely fulfilled these goals, but some surgeons found that using a visual display for pin placement was difficult and time consuming. As a result, a second version of a linkage system (called the K-Link) was designed to further develop the concept. User-friendly flexible software was developed for facilitating each step quickly and accurately while the placement of cutting guides was facilitated. We concluded that an instrumented linkage system could be a useful and potentially lower-cost option to the current systems for total knee replacement and could possibly have application to other surgical procedures.
Robotic digital subtraction angiography systems within the hybrid operating room.
Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki
2011-05-01
Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.
Optical augmented reality assisted navigation system for neurosurgery teaching and planning
NASA Astrophysics Data System (ADS)
Wu, Hui-Qun; Geng, Xing-Yun; Wang, Li; Zhang, Yuan-Peng; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng
2013-07-01
This paper proposed a convenient navigation system for neurosurgeon's pre-operative planning and teaching with augmented reality (AR) technique, which maps the three-dimensional reconstructed virtual anatomy structures onto a skull model. This system included two parts, a virtual reality system and a skull model scence. In our experiment, a 73 year old right-handed man initially diagnosed with astrocytoma was selected as an example to vertify our system. His imaging data from different modalities were registered and the skull soft tissue, brain and inside vessels as well as tumor were reconstructed. Then the reconstructed models were overlayed on the real scence. Our findings showed that the reconstructed tissues were augmented into the real scence and the registration results were in good alignment. The reconstructed brain tissue was well distributed in the skull cavity. The probe was used by a neurosurgeon to explore the surgical pathway which could be directly posed into the tumor while not injuring important vessels. In this way, the learning cost for students and patients' education about surgical risks reduced. Therefore, this system could be a selective protocol for image guided surgery(IGS), and is promising for neurosurgeon's pre-operative planning and teaching.
General classification handbook for floodplain vegetation in large river systems
Dieck, Jennifer J.; Ruhser, Janis; Hoy, Erin E.; Robinson, Larry R.
2015-01-01
This handbook describes the General Wetland Vegetation Classification System developed as part of the U.S. Army Corps of Engineers’ Upper Mississippi River Restoration (UMRR) Program, Long Term Resource Monitoring (LTRM) element. The UMRR is a cooperative effort between the U.S. Army Corps of Engineers, U.S. Geological Survey, U.S. Fish and Wildlife Service, and the states of Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The classification system consists of 31 general map classes and has been used to create systemic vegetation data layers throughout the diverse Upper Mississippi River System (UMRS), which includes the commercially navigable reaches of the Mississippi River from Minneapolis, Minnesota, in the north to Cairo, Illinois, in the south, the Illinois River, and navigable portions of the Kaskaskia, Black, St. Croix, and Minnesota Rivers. In addition, this handbook describes the evolution of the General Wetland Vegetation Classification System, discusses the process of creating a vegetation data layer, and describes each of the 31 map classes in detail. The handbook also acts as a pictorial guide to each of the map classes as they may appear in the field, as well as on color-infrared imagery. This version is an update to the original handbook published in 2004.
Baek, K-W; Deibel, W; Marinov, D; Griessen, M; Bruno, A; Zeilhofer, H-F; Cattin, Ph; Juergens, Ph
2015-12-01
Laser was being used in medicine soon after its invention. However, it has been possible to excise hard tissue with lasers only recently, and the Er:YAG laser is now established in the treatment of damaged teeth. Recently experimental studies have investigated its use in bone surgery, where its major advantages are freedom of cutting geometry and precision. However, these advantages become apparent only when the system is used with robotic guidance. The main challenge is ergonomic integration of the laser and the robot, otherwise the surgeon's space in the operating theatre is obstructed during the procedure. Here we present our first experiences with an integrated, miniaturised laser system guided by a surgical robot. An Er:YAG laser source and the corresponding optical system were integrated into a composite casing that was mounted on a surgical robotic arm. The robot-guided laser system was connected to a computer-assisted preoperative planning and intraoperative navigation system, and the laser osteotome was used in an operating theatre to create defects of different shapes in the mandibles of 6 minipigs. Similar defects were created on the opposite side with a piezoelectric (PZE) osteotome and a conventional drill guided by a surgeon. The performance was analysed from the points of view of the workflow, ergonomics, ease of use, and safety features. The integrated robot-guided laser osteotome can be ergonomically used in the operating theatre. The computer-assisted and robot-guided laser osteotome is likely to be suitable for clinical use for ostectomies that require considerable accuracy and individual shape. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Image guidance improves localization of sonographically occult colorectal liver metastases
NASA Astrophysics Data System (ADS)
Leung, Universe; Simpson, Amber L.; Adams, Lauryn B.; Jarnagin, William R.; Miga, Michael I.; Kingham, T. Peter
2015-03-01
Assessing the therapeutic benefit of surgical navigation systems is a challenging problem in image-guided surgery. The exact clinical indications for patients that may benefit from these systems is not always clear, particularly for abdominal surgery where image-guidance systems have failed to take hold in the same way as orthopedic and neurosurgical applications. We report interim analysis of a prospective clinical trial for localizing small colorectal liver metastases using the Explorer system (Path Finder Technologies, Nashville, TN). Colorectal liver metastases are small lesions that can be difficult to identify with conventional intraoperative ultrasound due to echogeneity changes in the liver as a result of chemotherapy and other preoperative treatments. Interim analysis with eighteen patients shows that 9 of 15 (60%) of these occult lesions could be detected with image guidance. Image guidance changed intraoperative management in 3 (17%) cases. These results suggest that image guidance is a promising tool for localization of small occult liver metastases and that the indications for image-guided surgery are expanding.
Real-time MRI guidance of cardiac interventions.
Campbell-Washburn, Adrienne E; Tavallaei, Mohammad A; Pop, Mihaela; Grant, Elena K; Chubb, Henry; Rhode, Kawal; Wright, Graham A
2017-10-01
Cardiac magnetic resonance imaging (MRI) is appealing to guide complex cardiac procedures because it is ionizing radiation-free and offers flexible soft-tissue contrast. Interventional cardiac MR promises to improve existing procedures and enable new ones for complex arrhythmias, as well as congenital and structural heart disease. Guiding invasive procedures demands faster image acquisition, reconstruction and analysis, as well as intuitive intraprocedural display of imaging data. Standard cardiac MR techniques such as 3D anatomical imaging, cardiac function and flow, parameter mapping, and late-gadolinium enhancement can be used to gather valuable clinical data at various procedural stages. Rapid intraprocedural image analysis can extract and highlight critical information about interventional targets and outcomes. In some cases, real-time interactive imaging is used to provide a continuous stream of images displayed to interventionalists for dynamic device navigation. Alternatively, devices are navigated relative to a roadmap of major cardiac structures generated through fast segmentation and registration. Interventional devices can be visualized and tracked throughout a procedure with specialized imaging methods. In a clinical setting, advanced imaging must be integrated with other clinical tools and patient data. In order to perform these complex procedures, interventional cardiac MR relies on customized equipment, such as interactive imaging environments, in-room image display, audio communication, hemodynamic monitoring and recording systems, and electroanatomical mapping and ablation systems. Operating in this sophisticated environment requires coordination and planning. This review provides an overview of the imaging technology used in MRI-guided cardiac interventions. Specifically, this review outlines clinical targets, standard image acquisition and analysis tools, and the integration of these tools into clinical workflow. 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:935-950. © 2017 International Society for Magnetic Resonance in Medicine.
Nölker, Georg; Schwagten, Bruno; Deville, J Brian; Burkhardt, J David; Horton, Rodney P; Sha, Qun; Tomassoni, Gery
2016-03-01
Circular mapping catheters (CMC) are an essential tool in most atrial fibrillation ablation procedures. The Vdrive™ with V-Loop™ system enables a physician to remotely manipulate a CMC during electrophysiology studies. Our aim was to compare the clinical performance of the system to conventional CMC navigation according to efficiency and safety endpoints. A total of 120 patients scheduled to undergo a CMC study followed by pulmonary vein isolation (PVI) were included. Treatment allocation was randomized 2:1, remote navigation:manual navigation. The primary effectiveness endpoint was assessed based on both successful navigation to the targeted pulmonary vein (PV) and successful recording of PV electrograms. All PVs were treated independently within and between patients. The primary safety endpoint was assessed based on the occurrence of major adverse events (MAEs) through seven days after the study procedure. Primary effectiveness endpoints were achieved in 295/302 PVs in the Vdrive arm (97.7%) and 167/167 PVs in the manual arm (100%). Effectiveness analysis indicates Vdrive non-inferiority (pnon-inferiority = 0.0405; δ = -0.05) per the Cochran-Mantel-Haenszel test adjusted for PV correlation. Five MAEs related to the ablation procedure occurred (three in the Vdrive arm-3.9%; two in the manual arm-2.33%). No device-related MAEs were observed; safety analysis indicates Vdrive non-inferiority (pnon-inferiority = 0.0441; δ = 0.07) per the normal Z test. Remote navigation of a CMC is equivalent to manual in PVI in terms of safety and effectiveness. This allows for single-operator procedures in conjunction with a magnetically guided ablation catheter. © 2016 Wiley Periodicals, Inc.
Curvature-Guided Motility of Microalgae in Geometric Confinement
NASA Astrophysics Data System (ADS)
Ostapenko, Tanya; Schwarzendahl, Fabian Jan; Böddeker, Thomas J.; Kreis, Christian Titus; Cammann, Jan; Mazza, Marco G.; Bäumchen, Oliver
2018-02-01
Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.
NASA Astrophysics Data System (ADS)
Celik, Koray
This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.
Tokuda, Junichi; Morikawa, Shigehiro; Dohi, Takeyoshi; Hata, Nobuhiko
2004-01-01
Image registration in magnetic resonance (MR) image-guided liver therapy enhances surgical guidance by fusing preoperative multimodality images with intraoperative images, or by fusing intramodality images to correlate serial intraoperative images to monitor the effect of therapy. The objective of this paper is to describe the application of navigator echo and projection profile matching to fast two-dimensional image registration for MR-guided liver therapy. We obtain navigator echoes along the read-out and phase-encoding directions by using modified gradient echo imaging. This registration is made possible by masking out the liver profile from the image and performing profile matching with cross-correlation or mutual information as similarity measures. The set of experiments include a phantom study with a 2.0-T experimental MR scanner, and a volunteer and a clinical study with a 0.5-T open-configuration MR scanner, and these evaluate the accuracy and effectiveness of this method for liver therapy. Both the phantom and volunteer study indicate that this method can perform registration in 34 ms with root-mean-square error of 1.6 mm when the given misalignment of a liver is 30 mm. The clinical studies demonstrate that the method can track liver motion of up to approximately 40 mm. Matching profiles with cross-correlation information perform better than with mutual information in terms of robustness and speed. The proposed image registration method has potential clinical impact on and advantages for MR-guided liver therapy.
[Georg Schlöndorff-the father of computer-assisted surgery].
Mösges, R
2016-09-01
Georg Schlöndorff (1931-2011) developed the idea of computer-assisted surgery (CAS) during his time as professor and chairman of the Department of Otorhinolaryngology at the Medical Faculty of the University of Aachen, Germany. In close cooperation with engineers and physicists, he succeeded in translating this concept into a functional prototype that was applied in live surgery in the operating theatre. The first intervention performed with this image-guided navigation system was a skull base surgical procedure 1987. During the following years, this concept was extended to orbital surgery, neurosurgery, mid-facial traumatology, and brachytherapy of solid tumors in the head and neck region. Further technical developments of this first prototype included touchless optical positioning and the computer vision concept with three orthogonal images, which is still common in contemporary navigation systems. During his time as emeritus professor from 1996, Georg Schlöndorff further pursued his concept of CAS by developing technical innovations such as computational fluid dynamics (CFD).
Weber, Joseph J; Mascarenhas, Debra C; Bellin, Lisa S; Raab, Rachel E; Wong, Jan H
2012-10-01
Patient navigation programs are initiated to help guide patients through barriers in a complex cancer care system. We sought to analyze the impact of our patient navigator program on the adherence to specific Breast Cancer Care Quality Indicators (BCCQI). A retrospective cohort of patients with stage I-III breast cancer seen the calendar year prior to the initiation of the patient navigation program were compared with patients treated in the ensuing two calendar years. Quality indicators deemed appropriate for analysis were those associated with overcoming barriers to treatment and those associated with providing health education and improving patient decision-making. A total of 134 consecutive patients between January 1, 2006 and December 31, 2006 and 234 consecutive patients between January 1, 2008 and December 31, 2009 were evaluated for compliance with the BCCQI. There was no significant difference in the mean age or race/ethnic distribution of the study population. In all ten BCCQI evaluated, there was improvement in the percentage of patients in compliance from pre and post implementation of a patient navigator program (range 2.5-27.0 %). Overall, compliance with BCCQI improved from 74.1 to 95.5 % (p < 0.0001). Indicators associated with informed decision-making and patient preference achieved statistical significance, while only completion axillary node dissection in sentinel node-positive biopsies in the process of treatment achieved statistical significance. The implementation of a patient navigator program improved breast cancer care as measured by BCCQI. The impact on disease-free and overall survival remains to be determined.
Cirillo, V; Zito Marinosci, G; De Robertis, E; Iacono, C; Romano, G M; Desantis, O; Piazza, O; Servillo, G; Tufano, R
2015-11-01
The recently introduced Navigator® (GE Healthcare, Helsinki, Finland) and SmartPilot® View (Dräger Medical, Lübeck, Germany) show the concentrations and predicted effects of combined anesthetic drugs, and should facilitate more precisely their titration. Our aim was to evaluate if Navigator® or SmartPilot® View guided anesthesia was associated with a good quality of analgesia, depth of hypnosis and may reduce anesthetic requirements. We performed a prospective non-randomized study. Sixty ASA I-II patients undergoing balanced general anesthesia for abdominal and plastic surgery were enrolled. Patients were divided in 4 groups. Group 1 (N. 15) and group 3 (N. 15) were cases in whom anesthesia was performed with standard monitoring plus the aid of Navigator® (Nav) or SmartPilot® View (SPV) display. Group 2 (N. 15) and group 4 (N. 15) were controls in whom anesthesia was performed with standard monitoring (heart rate, NIBP, SpO2, end-tidal CO2, end-expired sevoflurane concentration, train of four, Bispectral Index [Aspect Medical Systems, Natick, MA, USA] or Entropy [GE Healthcare]). Patients' vital parameters and end-expired sevoflurane concentration were recorded during anesthesia. All patients recovered uneventfully and showed hemodynamic stability. End-tidal sevoflurane concentrations values [median (min-max)], during maintenance of anesthesia, were significantly (P<0.05) lower in SPV [1.1% (0.8-1.5)] and Nav [1%(0.8-1.8)] groups compared to SPV-control group [1.5%(1-2.5)] and Nav-control group [1.5%(0.8-2)]. BIS and entropy values were respectively higher in the SPV group [53 (46-57)] compared to the control group [43 (37-51)] (P<0.05) and Nav group [53 (43-60)] compared to the control group [41 (35-51)] (P<0.05). No significant differences in Remifentanil dosing were observed in the four groups. Navigator® and SmartPilot® View may be of clinical use in monitoring adequacy of anesthesia. Both displays can optimize the administration and monitoring of anesthetic drugs during general anesthesia and may reduce the consumption of volatile anesthetic agents.
BiopSee® - transperineal stereotactic navigated prostate biopsy.
Zogal, Pawel; Sakas, Georgios; Rösch, Woerner; Baltas, Dimos
2011-06-01
In the recent years, prostate cancer was the most commonly diagnosed cancer in men. Currently secure diagnosis confirmation is done by a transrectal biopsy and following histopathological examination. Conventional transrectal biopsy success rates are rather low with ca. 30% detection upon the first and ca 20% after re-biopsy. The paper presents a novel system for stereotactic navigated prostate biopsy. The approach results into higher accuracy, reproducibility and unrestricted and effective access to all prostate regions. Custom designed ultrasound, new template design and integrated 2-axes stepper allows superior 2D and 3D prostate imaging quality and precise needle navigation. DICOM functionality and image fusion enable to import pre-operative datasets (e.g. multiparametric MRI, targets etc.) and overlay all available radiological information into the biopsy planning and guiding procedure. The biopsy needle insertion itself is performed under augmented reality ultrasound guidance. Each procedure step is automatically documented in order to provide quality assurance and permit data re-usage for the further treatment. First clinical results indicates success rates of ca. 70% by first biopsies by our approach.
Stelter, K; Andratschke, M; Leunig, A; Hagedorn, H
2006-12-01
This paper presents our experience with a navigation system for functional endoscopic sinus surgery. In this study, we took particular note of the surgical indications and risks and the measurement precision and preparation time required, and we present one brief case report as an example. Between 2000 and 2004, we performed functional endoscopic sinus surgery on 368 patients at the Ludwig Maximilians University, Munich, Germany. We used the Vector Vision Compact system (BrainLAB) with laser registration. The indications for surgery ranged from severe nasal polyps and chronic sinusitis to malignant tumours of the paranasal sinuses and skull base. The time needed for data preparation was less than five minutes. The time required for preparation and patient registration depended on the method used and the experience of the user. In the later cases, it took 11 minutes on average, using Z-Touch registration. The clinical plausibility test produced an average deviation of 1.3 mm. The complications of system use comprised one intra-operative re-registration (18 per cent) and one complete failure (5 per cent). Despite the assistance of an accurate working computer, the anterior ethmoidal artery was incised in one case. However, in all 368 cases, we experienced no cerebrospinal fluid leaks, optic nerve lesions, retrobulbar haematomas or intracerebral bleeding. There were no deaths. From our experience with computer-guided surgical procedures, we conclude that computer-guided navigational systems are so accurate that the risk of misleading the surgeon is minimal. In the future, their use in certain specialized procedures will be not only sensible but mandatory. We recommend their use not only in difficult surgical situations but also in routine procedures and for surgical training.
Lorhan, Shaun; Wright, Michelle; Hodgson, Sally; van der Westhuizen, Michael
2014-09-01
To describe the development and delivery of a competency framework designed to guide the recruitment, training, and competency screening of volunteer lay navigators at an outpatient cancer centre in Victoria, BC. Volunteers that passed a screening interview underwent 22 h of training focusing on the scope of the navigator's role, communication skills, and cancer center processes and resources. Volunteers that passed a post-training interview, by demonstrating a basic level of competency in three domains (Self as Navigator, Communication, and Knowledge/Information), were invited to participate as volunteer lay navigators in a three-step intervention with newly diagnosed lung cancer patients at the British Columbia Cancer Agency-Vancouver Island Centre. Of the 27 volunteers who attended a screening interview, 20 were invited to participate in training. From the subset of 20, 13 of these participants achieved competency scores high enough to qualify them to practice as volunteer lay navigators. By incorporating the lessons we have learned from this study, we believe that the lay navigation competency framework serves as a useful model for selecting, training, and supporting competent navigators.
Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search
Song, Kai; Liu, Qi; Wang, Qi
2011-01-01
Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401
Inrig, Stephen J; Tiro, Jasmin A; Melhado, Trisha V; Argenbright, Keith E; Craddock Lee, Simon J
2014-01-01
Providing breast cancer screening services in rural areas is challenging due to the fractured nature of healthcare delivery systems and complex reimbursement mechanisms that create barriers to access for the under- and uninsured. Interventions that reduce structural barriers to mammography, like patient navigation programs, are effective and recommended, especially for minority and underserved women. Although the literature on rural healthcare is significant, the field lacks studies of adaptive service delivery models and rigorous evaluation of evidence-based programs that facilitate routine screening and appropriate follow-up across large geographic areas. To better understand how to implement a decentralized regional delivery "hub & spoke" model for rural breast cancer screening and patient navigation, we have designed a rigorous, structured, multi-level and mixed-methods evaluation based on Glasgow's RE-AIM model (Reach, Effectiveness, Adoption, Implementation, and Maintenance). The program is comprised of three core components: 1) Outreach to underserved women by partnering with county organizations; 2) Navigation to guide patients through screening and appropriate follow-up; and 3) Centralized Reimbursement to coordinate funding for screening services through a central contract with Medicaid Breast and Cervical Cancer Services (BCCS). Using Glasgow's RE-AIM model, we will: 1) assess which counties have the resources and capacity to implement outreach and/or navigation components, 2) train partners in each county on how to implement components, and 3) monitor process and outcome measures in each county at regular intervals, providing booster training when needed. This evaluation strategy will elucidate how the heterogeneity of rural county infrastructure impacts decentralized service delivery as a navigation program expands. In addition to increasing breast cancer screening access, our model improves and maintains time to diagnostic resolution and facilitates timely referral to local cancer treatment services. We offer this evaluation approach as an exemplar for scientific methods to evaluate the translation of evidence-based federal policy into sustainable health services delivery in a rural setting.
Inrig, Stephen J.; Tiro, Jasmin A.; Melhado, Trisha V.; Argenbright, Keith E.; Craddock Lee, Simon J.
2017-01-01
Providing breast cancer screening services in rural areas is challenging due to the fractured nature of healthcare delivery systems and complex reimbursement mechanisms that create barriers to access for the under- and uninsured. Interventions that reduce structural barriers to mammography, like patient navigation programs, are effective and recommended, especially for minority and underserved women. Although the literature on rural healthcare is significant, the field lacks studies of adaptive service delivery models and rigorous evaluation of evidence-based programs that facilitate routine screening and appropriate follow-up across large geographic areas. Objectives To better understand how to implement a decentralized regional delivery “hub & spoke” model for rural breast cancer screening and patient navigation, we have designed a rigorous, structured, multi-level and mixed-methods evaluation based on Glasgow’s RE-AIM model (Reach, Effectiveness, Adoption, Implementation, and Maintenance). Methods and Design The program is comprised of three core components: 1) Outreach to underserved women by partnering with county organizations; 2) Navigation to guide patients through screening and appropriate follow-up; and 3) Centralized Reimbursement to coordinate funding for screening services through a central contract with Medicaid Breast and Cervical Cancer Services (BCCS). Using Glasgow’s RE-AIM model, we will: 1) assess which counties have the resources and capacity to implement outreach and/or navigation components, 2) train partners in each county on how to implement components, and 3) monitor process and outcome measures in each county at regular intervals, providing booster training when needed. Discussion This evaluation strategy will elucidate how the heterogeneity of rural county infrastructure impacts decentralized service delivery as a navigation program expands. In addition to increasing breast cancer screening access, our model improves and maintains time to diagnostic resolution and facilitates timely referral to local cancer treatment services. We offer this evaluation approach as an exemplar for scientific methods to evaluate the translation of evidence-based federal policy into sustainable health services delivery in a rural setting. PMID:28713882
Oliveira-Santos, Thiago; Klaeser, Bernd; Weitzel, Thilo; Krause, Thomas; Nolte, Lutz-Peter; Peterhans, Matthias; Weber, Stefan
2011-01-01
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil
2011-01-01
Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934
Interactive MR image guidance for neurosurgical and minimally invasive procedures
NASA Astrophysics Data System (ADS)
Wong, Terence Z.; Schwartz, Richard B.; Pergolizzi, Richard S., Jr.; Black, Peter M.; Kacher, Daniel F.; Morrison, Paul R.; Jolesz, Ferenc A.
1999-05-01
Advantages of MR imaging for guidance of minimally invasive procedures include exceptional soft tissue contrast, intrinsic multiplanar imaging capability, and absence of exposure to ionizing radiation. Specialized imaging sequences are available and under development which can further enhance diagnosis and therapy. Flow-sensitive imaging techniques can be used to identify vascular structures. Temperature-sensitive imaging is possible which can provide interactive feedback prior to, during, and following the delivery of thermal energy. Functional MR imaging and dynamic contrast-enhanced MRI sequences can provide additional information for guidance in neurosurgical applications. Functional MR allows mapping of eloquent areas in the brain, so that these areas may be avoided during therapy. Dynamic contrast enhancement techniques can be useful for distinguishing active tumor from tumor necrosis caused by previous radiation therapy. An open-configuration 0.5T MRI system (GE Signa SP) developed at Brigham and Women's Hospital in collaboration with General Electric Medical Systems is described. Interactive navigation systems have been integrated into the MRI system. The imaging system is sited in an operating room environment, and used for image guided neurosurgical procedures (biopsies and tumor excision), as well as minimally invasive thermal therapies. Examples of MR imaging guidance, navigational techniques, and clinical applications are presented.
A map of abstract relational knowledge in the human hippocampal–entorhinal cortex
Garvert, Mona M; Dolan, Raymond J; Behrens, Timothy EJ
2017-01-01
The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal–entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal–entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns. DOI: http://dx.doi.org/10.7554/eLife.17086.001 PMID:28448253
NASA Astrophysics Data System (ADS)
B. Mondal, Suman; Gao, Shengkui; Zhu, Nan; Sudlow, Gail P.; Liang, Kexian; Som, Avik; Akers, Walter J.; Fields, Ryan C.; Margenthaler, Julie; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel
2015-07-01
The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve the accuracy of cancer staging.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Clay Street) at Vicksburg City Front. No vessel or raft shall be moored along the west bank of the... Street; navigation. (a) Signals. Vessels navigating the canal will be governed by the Pilot Rules for... power to make headway and guide the raft so as to give half the channel to passing vessels. (c) Mooring...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Clay Street) at Vicksburg City Front. No vessel or raft shall be moored along the west bank of the... Street; navigation. (a) Signals. Vessels navigating the canal will be governed by the Pilot Rules for... power to make headway and guide the raft so as to give half the channel to passing vessels. (c) Mooring...
System, Apparatus, and Method for Active Debris Removal
NASA Technical Reports Server (NTRS)
Hickey, Christopher J. (Inventor); Spehar, Peter T. (Inventor); Griffith, Sr., Anthony D. (Inventor); Kohli, Rajiv (Inventor); Burns, Susan H. (Inventor); Gruber, David J. (Inventor); Lee, David E. (Inventor); Robinson, Travis M. (Inventor); Damico, Stephen J. (Inventor); Smith, Jason T. (Inventor)
2017-01-01
Systems, apparatuses, and methods for removal of orbital debris are provided. In one embodiment, an apparatus includes a spacecraft control unit configured to guide and navigate the apparatus to a target. The apparatus also includes a dynamic object characterization unit configured to characterize movement, and a capture feature, of the target. The apparatus further includes a capture and release unit configured to capture a target and deorbit or release the target. The collection of these apparatuses is then employed as multiple, independent and individually operated vehicles launched from a single launch vehicle for the purpose of disposing of multiple debris objects.
Ioalè, P; Gagliardo, A; Bingman, V P
2000-02-01
The homing pigeon navigational map is perhaps one of the most striking examples of a naturally occurring spatial representation of the environment used to guide navigation. In a previous study, it was found that hippocampal lesions thoroughly disrupt the ability of young homing pigeons held in an outdoor aviary to learn a navigational map. However, since that study an accumulation of anecdotal data has hinted that hippocampal-lesioned young pigeons allowed to fly during their first summer could learn a navigational map. In the present study, young control and hippocampal-lesioned homing pigeons were either held in an outdoor aviary or allowed to fly during the time of navigational map learning. At the end of their first summer, the birds were experimentally released to test for navigational map learning. Independent of training experience, control pigeons oriented homeward during the experimental releases demonstrating that they learned a navigational map. Surprisingly, while the aviary-held hippocampal-lesioned pigeons failed to learn a navigational map as reported previously, hippocampal-lesioned birds allowed flight experience learned a navigational map indistinguishable from the two control groups. A subsequent experiment revealed that the navigational map learned by the three groups was based on atmospheric odours. The results demonstrate that hippocampal participation in navigational map learning depends on the type of experience a young bird pigeon has, and presumably, the type of navigational map learned.
The evolution of image-guided lumbosacral spine surgery.
Bourgeois, Austin C; Faulkner, Austin R; Pasciak, Alexander S; Bradley, Yong C
2015-04-01
Techniques and approaches of spinal fusion have considerably evolved since their first description in the early 1900s. The incorporation of pedicle screw constructs into lumbosacral spine surgery is among the most significant advances in the field, offering immediate stability and decreased rates of pseudarthrosis compared to previously described methods. However, early studies describing pedicle screw fixation and numerous studies thereafter have demonstrated clinically significant sequelae of inaccurate surgical fusion hardware placement. A number of image guidance systems have been developed to reduce morbidity from hardware malposition in increasingly complex spine surgeries. Advanced image guidance systems such as intraoperative stereotaxis improve the accuracy of pedicle screw placement using a variety of surgical approaches, however their clinical indications and clinical impact remain debated. Beginning with intraoperative fluoroscopy, this article describes the evolution of image guided lumbosacral spinal fusion, emphasizing two-dimensional (2D) and three-dimensional (3D) navigational methods.
NASA Technical Reports Server (NTRS)
Almeida, Eduardo DeBrito
2012-01-01
This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.
Navigating public health chemicals policy in Australia: a policy maker's and practitioner's guide.
Capon, Adam; Smith, Wayne; Gillespie, James A
2013-03-01
Chemicals are ubiquitous in everyday life. Environmental health practitioners rely on a complex web of regulators and policy bodies to ensure the protection of public health, yet few understand the full extent of this web. A lack of understanding can hamper public health response and impede policy development. In this paper we map the public health chemicals policy landscape in Australia and conclude that an understanding of this system is essential for effective environmental health responses and policy development.
Rodríguez-Tizcareño, Mario H; Barajas, Lizbeth; Pérez-Gásque, Marisol; Gómez, Salvador
2012-06-01
This report presents a protocol used to transfer the virtual treatment plan data to the surgical and prosthetic reality and its clinical application, bone site augmentation with computer-custom milled bovine bone graft blocks to their ideal architecture form, implant insertion based on image-guided stent fabrication, and the restorative manufacturing process through computed tomography-based software programs and navigation systems and the computer-aided design and manufacturing techniques for the treatment of the edentulous maxilla.
Westendorff, Carsten; Kaminsky, Jan; Ernemann, Ulrike; Reinert, Siegmar; Hoffmann, Jürgen
2007-02-01
Resection of large intraosseous sphenoid wing meningiomas is traditionally associated with significant morbidity. Rapid prototyping techniques have become widely used for treatment planning. Yet, the transfer of a treatment plan into the intraoperative situs strongly depends on the experience of the individual surgeon. Extensive resection with orbital decompression was planned and performed on the basis of rapid prototyping and surgical navigation techniques in a 44-year-old woman presenting with a large sphenoid wing meningioma on the right infiltrating the orbit. Tumor resection was simulated on a stereolithography model of the patient's head. The stereolithography model was scanned using computed tomography (CT) and the defect geometry was used to create a custom-made titanium implant. The implant consisted of a solid titanium core and a spot-welded titanium mesh surrounding the core, allowing for minor intraoperative adjustments of the implant size by reducing the mesh size. The stereolithography model with the incorporated implant was CT scanned again and the CT data were fused with the patient's original CT data. The implant borders indicating the resection borders were marked within the patient's CT data set. This treatment plan was transferred to an optical navigation system. Intraoperatively, tumor resection was performed using surgical navigation. In the presented case report, the combination of computer-assisted planning using rapid prototyping techniques and image-guided surgery allowed for an extensive tumor resection precisely according to a preoperative treatment plan in a patient presenting with a large intraosseous sphenoid wing meningioma. A larger clinical series with a long-term follow-up period will be needed to determine the reproducibility.
Insider's Guide to Community College Administration. Second Edition
ERIC Educational Resources Information Center
Jensen, Robert; Giles, Ray
2006-01-01
Drawing from their varied experiences, the authors of this helpful guide, now in its second edition, offer firsthand advice on the skills and attitude needed to succeed as a community college leader. Topics include: (1) Making the right career choices; (2) Thriving and surviving on the job; (3) Navigating institutional politics; (4) Taking the…
Teaching the Humanities Online: A Practical Guide to the Virtual Classroom
ERIC Educational Resources Information Center
Hoffman, Steven J., Ed.
2010-01-01
This practical guide is essential for anyone new to or intimidated by online instruction. It distills the wisdom of veteran instructors and program directors who have successfully navigated the transition from face-to-face classroom teaching to the online learning environment. Chapters cover all the bases from skills assessment to instructional…
Reading Games: Close Viewing and Guided Playing of Multimedia Texts
ERIC Educational Resources Information Center
Kozdras, Deborah; Joseph, Christine; Schneider, Jenifer Jasinski
2015-01-01
In this article, we describe how literacy strategies can be adapted for playing (and reading) video games--games that embed disciplinary content in multimedia texts. Using close viewing and guided playing strategies with online games and simulations, we share ideas for helping students navigate and comprehend multimedia texts in order to learn…
Helping Your Children Navigate Their Teenage Years: A Guide for Parents.
ERIC Educational Resources Information Center
Schwebel, Robert
Noting that caring adults can help teens make the right decisions during the difficult time of adolescence, this guide for parents provides some useful tools to improve parents' communication with teenagers to help them get through adolescence successfully. The booklet is presented in six parts: (1) "Getting the Conversation Started," including…
Image-guided thoracic surgery in the hybrid operation room.
Ujiie, Hideki; Effat, Andrew; Yasufuku, Kazuhiro
2017-01-01
There has been an increase in the use of image-guided technology to facilitate minimally invasive therapy. The next generation of minimally invasive therapy is focused on advancement and translation of novel image-guided technologies in therapeutic interventions, including surgery, interventional pulmonology, radiation therapy, and interventional laser therapy. To establish the efficacy of different minimally invasive therapies, we have developed a hybrid operating room, known as the guided therapeutics operating room (GTx OR) at the Toronto General Hospital. The GTx OR is equipped with multi-modality image-guidance systems, which features a dual source-dual energy computed tomography (CT) scanner, a robotic cone-beam CT (CBCT)/fluoroscopy, high-performance endobronchial ultrasound system, endoscopic surgery system, near-infrared (NIR) fluorescence imaging system, and navigation tracking systems. The novel multimodality image-guidance systems allow physicians to quickly, and accurately image patients while they are on the operating table. This yield improved outcomes since physicians are able to use image guidance during their procedures, and carry out innovative multi-modality therapeutics. Multiple preclinical translational studies pertaining to innovative minimally invasive technology is being developed in our guided therapeutics laboratory (GTx Lab). The GTx Lab is equipped with similar technology, and multimodality image-guidance systems as the GTx OR, and acts as an appropriate platform for translation of research into human clinical trials. Through the GTx Lab, we are able to perform basic research, such as the development of image-guided technologies, preclinical model testing, as well as preclinical imaging, and then translate that research into the GTx OR. This OR allows for the utilization of new technologies in cancer therapy, including molecular imaging, and other innovative imaging modalities, and therefore enables a better quality of life for patients, both during and after the procedure. In this article, we describe capabilities of the GTx systems, and discuss the first-in-human technologies used, and evaluated in GTx OR.
Emergency navigation without an infrastructure.
Gelenbe, Erol; Bi, Huibo
2014-08-18
Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.
Emergency Navigation without an Infrastructure
Gelenbe, Erol; Bi, Huibo
2014-01-01
Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014
American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...
Bowling, Mark R; Kohan, Matthew W; Walker, Paul; Efird, Jimmy; Ben Or, Sharon
2015-01-01
Navigational bronchoscopy is utilized to guide biopsies of peripheral lung nodules and place fiducial markers for treatment of limited stage lung cancer with stereotactic body radiotherapy. The type of sedation used for this procedure remains controversial. We performed a retrospective chart review to evaluate the differences of diagnostic yield and overall success of the procedure based on anesthesia type. Electromagnetic navigational bronchoscopy was performed using the superDimension software system. Once the targeted lesion was within reach, multiple tissue samples were obtained. Statistical analysis was used to correlate the yield with the type of sedation among other factors. A successful procedure was defined if a diagnosis was made or a fiducial marker was adequately placed. Navigational bronchoscopy was performed on a total of 120 targeted lesions. The overall complication rate of the procedure was 4.1%. The diagnostic yield and success of the procedure was 74% and 87%, respectively. Duration of the procedure was the only significant difference between the general anesthesia and IV sedation groups (mean, 58 vs. 43 min, P=0.0005). A larger tumor size was associated with a higher diagnostic yield (P=0.032). All other variables in terms of effect on diagnostic yield and an unsuccessful procedure did not meet statistical significance. Navigational bronchoscopy is a safe and effective pulmonary diagnostic tool with relatively low complication rate. The diagnostic yield and overall success of the procedure does not seem to be affected by the type of sedation used.
A networked modular hardware and software system for MRI-guided robotic prostate interventions
NASA Astrophysics Data System (ADS)
Su, Hao; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Cole, Gregory; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare; Fischer, Gregory S.
2012-02-01
Magnetic resonance imaging (MRI) provides high resolution multi-parametric imaging, large soft tissue contrast, and interactive image updates making it an ideal modality for diagnosing prostate cancer and guiding surgical tools. Despite a substantial armamentarium of apparatuses and systems has been developed to assist surgical diagnosis and therapy for MRI-guided procedures over last decade, the unified method to develop high fidelity robotic systems in terms of accuracy, dynamic performance, size, robustness and modularity, to work inside close-bore MRI scanner still remains a challenge. In this work, we develop and evaluate an integrated modular hardware and software system to support the surgical workflow of intra-operative MRI, with percutaneous prostate intervention as an illustrative case. Specifically, the distinct apparatuses and methods include: 1) a robot controller system for precision closed loop control of piezoelectric motors, 2) a robot control interface software that connects the 3D Slicer navigation software and the robot controller to exchange robot commands and coordinates using the OpenIGTLink open network communication protocol, and 3) MRI scan plane alignment to the planned path and imaging of the needle as it is inserted into the target location. A preliminary experiment with ex-vivo phantom validates the system workflow, MRI-compatibility and shows that the robotic system has a better than 0.01mm positioning accuracy.
Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael
2015-01-01
MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators - attending (AR) and resident radiologists (RR) as well as medical students (MS) - performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between groups with different expertise there were significant differences in experimental procedure times but not in the number of successful biopsies.
Asthma, Allergies and Pregnancy
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just for Kids Library School Tools Videos Virtual ...
Wang, David J; Lownie, Stephen P; Pelz, David; Pandey, Sachin
2016-10-01
Spinal synovial cysts are benign protrusions of facet joint capsules caused by degenerative spondylosis, most frequently involving the L4-5 level, and commonly lead to symptoms of back pain, radiculopathy and neurogenic claudication. Although percutaneous treatment via facet joint steroid injection with cyst rupture can provide significant symptom relief, cyst rupture is not always achievable via an indirect trans-facet approach due to limited access from severe degenerative changes. In this case, we describe a successful approach to direct cyst access using a laser-guided navigational software in a patient with severe facet joint osteophytosis. We provide a brief review of literature. © The Author(s) 2016.
Project Management Using Modern Guidance, Navigation and Control Theory
NASA Technical Reports Server (NTRS)
Hill, Terry
2010-01-01
The idea of control theory and its application to project management is not new, however literature on the topic and real-world applications is not as readily available and comprehensive in how all the principals of Guidance, Navigation and Control (GN&C) apply. This paper will address how the fundamental principals of modern GN&C Theory have been applied to NASA's Constellation Space Suit project and the results in the ability to manage the project within cost, schedule and budget. A s with physical systems, projects can be modeled and managed with the same guiding principles of GN&C as if it were a complex vehicle, system or software with time-varying processes, at times non-linear responses, multiple data inputs of varying accuracy and a range of operating points. With such systems the classic approach could be applied to small and well-defined projects; however with larger, multi-year projects involving multiple organizational structures, external influences and a multitude of diverse resources, then modern control theory is required to model and control the project. The fundamental principals of G N&C stated that a system is comprised of these basic core concepts: State, Behavior, Control system, Navigation system, Guidance and Planning Logic, Feedback systems. The state of a system is a definition of the aspects of the dynamics of the system that can change, such as position, velocity, acceleration, coordinate-based attitude, temperature, etc. The behavior of the system is more of what changes are possible rather than what can change, which is captured in the state of the system. The behavior of a system is captured in the system modeling and if properly done, will aid in accurate system performance prediction in the future. The Control system understands the state and behavior of the system and feedback systems to adjust the control inputs into the system. The Navigation system takes the multiple data inputs and based upon a priori knowledge of the input, will develop a statistical-based weighting of the input to determine where the system currently is located. Guidance and Planning logic of the system with the understanding of where it is (provided by the navigation system) will in turn determine where it needs to be and how to get there. Lastly, the system Feedback system is the right arm of the control system to allow it to affect change in the overall system and therefore it is critical to not only correctly identify the system feedback inputs but also the system response to the feedback inputs. And with any systems project it is critical that the objective of the system be clearly defined for not only planning but to be used to measure performance and to aid in the guidance of the system or project.
Hilbert, Sebastian; Sommer, Philipp; Gutberlet, Matthias; Gaspar, Thomas; Foldyna, Borek; Piorkowski, Christopher; Weiss, Steffen; Lloyd, Thomas; Schnackenburg, Bernhard; Krueger, Sascha; Fleiter, Christian; Paetsch, Ingo; Jahnke, Cosima; Hindricks, Gerhard; Grothoff, Matthias
2016-04-01
Recently cardiac magnetic resonance (CMR) imaging has been found feasible for the visualization of the underlying substrate for cardiac arrhythmias as well as for the visualization of cardiac catheters for diagnostic and ablation procedures. Real-time CMR-guided cavotricuspid isthmus ablation was performed in a series of six patients using a combination of active catheter tracking and catheter visualization using real-time MR imaging. Cardiac magnetic resonance utilizing a 1.5 T system was performed in patients under deep propofol sedation. A three-dimensional-whole-heart sequence with navigator technique and a fast automated segmentation algorithm was used for online segmentation of all cardiac chambers, which were thereafter displayed on a dedicated image guidance platform. In three out of six patients complete isthmus block could be achieved in the MR scanner, two of these patients did not need any additional fluoroscopy. In the first patient technical issues called for a completion of the procedure in a conventional laboratory, in another two patients the isthmus was partially blocked by magnetic resonance imaging (MRI)-guided ablation. The mean procedural time for the MR procedure was 109 ± 58 min. The intubation of the CS was performed within a mean time of 2.75 ± 2.21 min. Total fluoroscopy time for completion of the isthmus block ranged from 0 to 7.5 min. The combination of active catheter tracking and passive real-time visualization in CMR-guided electrophysiologic (EP) studies using advanced interventional hardware and software was safe and enabled efficient navigation, mapping, and ablation. These cases demonstrate significant progress in the development of MR-guided EP procedures. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Rand, Kristina M.; Creem-Regehr, Sarah H.; Thompson, William B.
2015-01-01
The ability to navigate without getting lost is an important aspect of quality of life. In five studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low-vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2 participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared to degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared to degraded vision. With degraded vision, auditory task performance was better when guided compared to unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766
Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak
2010-01-01
Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to provide landing site visibility for both the crew and the terrain hazard detection sensor system. One output of Guidance is the steering angle commands sent to the 2 degree-of-freedom (dof) gimbal actuation system of the descent engine. The engine gimbal actuation system is controlled by a Thrust Vector Control algorithm that is designed taking into account the large quantities of sloshing liquids in tanks mounted on Altair. In this early design phase of Altair, the GN&C system is described only briefly in this paper and the emphasis is on the GN&C architecture (that is still evolving). Multiple companion papers will provide details that are related to navigation, optical navigation, guidance, fuel sloshing, rendezvous and docking, machine-pilot interactions, and others. The similarities and differences of GN&C designs for Lunar and Mars landers are briefly compared.
NASA Astrophysics Data System (ADS)
Satyakumar, M.; Anil, R.; Sreeja, G. S.
2017-12-01
Traffic in Kerala has been growing at a rate of 10-11% every year, resulting severe congestion especially in urban areas. Because of the limitation of spaces it is not always possible to construct new roads. Road users rely on travel time information for journey planning and route choice decisions, while road system managers are increasingly viewing travel time as an important network performance indicator. More recently Advanced Traveler Information Systems (ATIS) are being developed to provide real-time information to roadway users. For ATIS various methodologies have been developed for dynamic travel time prediction. For this work the Kalman Filter Algorithm was selected for dynamic travel time prediction of different modes. The travel time data collected using handheld GPS device were used for prediction. Congestion Index were calculated and Range of CI values were determined according to the percentage speed drop. After prediction using Kalman Filter, the predicted values along with the GPS data was integrated to GIS and using Network Analysis of ArcGIS the offline route navigation guide was prepared. Using this database a program for route navigation based on travel time was developed. This system will help the travelers with pre-trip information.
Guided exploration in virtual environments
NASA Astrophysics Data System (ADS)
Beckhaus, Steffi; Eckel, Gerhard; Strothotte, Thomas
2001-06-01
We describe an application supporting alternating interaction and animation for the purpose of exploration in a surround- screen projection-based virtual reality system. The exploration of an environment is a highly interactive and dynamic process in which the presentation of objects of interest can give the user guidance while exploring the scene. Previous systems for automatic presentation of models or scenes need either cinematographic rules, direct human interaction, framesets or precalculation (e.g. precalculation of paths to a predefined goal). We report on the development of a system that can deal with rapidly changing user interest in objects of a scene or model as well as with dynamic models and changes of the camera position introduced interactively by the user. It is implemented as a potential-field based camera data generating system. In this paper we describe the implementation of our approach in a virtual art museum on the CyberStage, our surround-screen projection-based stereoscopic display. The paradigm of guided exploration is introduced describing the freedom of the user to explore the museum autonomously. At the same time, if requested by the user, guided exploration provides just-in-time navigational support. The user controls this support by specifying the current field of interest in high-level search criteria. We also present an informal user study evaluating this approach.
Personalizing the Approach to Childhood Asthma
American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...
33 CFR 62.51 - Western Rivers Marking System.
Code of Federal Regulations, 2012 CFR
2012-07-01
....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...
33 CFR 62.51 - Western Rivers Marking System.
Code of Federal Regulations, 2013 CFR
2013-07-01
....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...
33 CFR 62.51 - Western Rivers Marking System.
Code of Federal Regulations, 2014 CFR
2014-07-01
....51 Section 62.51 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.51 Western Rivers Marking System. (a) A variation of the standard U.S. aids to navigation system described above is employed...
ERIC Educational Resources Information Center
Farber, Betty, Ed.
This collection of articles is compiled to offer parents and teachers guidelines to help navigate between a child's intentions and his or her behavior. The book consists of 43 brief chapters divided into 9 sections. Articles in section one, "Guiding Young Children's Behavior," address issues of discipline, setting limits, effective…
Zhang, Yaqing; Wen, Lianjiang; Zhang, Jun; Yan, Guoliang; Zhou, Yue; Huang, Bo
2017-01-01
Abstract Rationale: Three-dimensional (3D) printed templates can be designed to match an individual's anatomy, allowing surgeons to refine preoperative planning. In addition, the use of computer navigation (NAV) is gaining popularity to improve surgical accuracy in the resection of pelvic tumors. However, its use in combination with 3D printing to assist complex pelvic tumor resection has not been reported. Patient concerns: A 36-year-old man presented with left-sided pelvic pain and a fast-growing mass. He also complained of a 3-month history of radiating pain and numbness in the lower left extremity. Diagnoses: A biopsy revealed an osteochondroma with malignant potential. This osteochondroma arises from the ilium and involves the sacrum and lower lumbar vertebrae. Interventions: Here, we describe a novel combined application of 3D printing and intraoperative NAV systems to guide hemipelvectomy for en-bloc resection of the osteochondroma. The 3D printed template is analyzed during surgical planning and guides the initial intraoperative bone work to improve surgical accuracy and efficiency, while a computer NAV system provides real-time imaging during the tumor removal to achieve adequate resection margins and minimize the likelihood of injury to adjacent critical structures. Outcomes: The tumor mass and the invaded spinal structures were removed en bloc. Lessons: The combined application of 3D printing and computer NAV may be useful for tumor targeting and safe osteotomies in pelvic tumor surgery. PMID:28328842
Shao, Zhen-Xuan; He, Wei; He, Shao-Qi; Lin, Sheng-Lei; Huang, Zhe-Yu; Tang, Hong-Chao; Ni, Wen-Fei; Wang, Xiang-Yang; Wu, Ai-Min
2017-07-21
The incidence of lumbar disc degeneration disease has increased in recent years. Lumbar interbody fusion using two unilateral pedicle screws and a translaminar facet screw fixation has advantages of minimal invasiveness and lower costs compared with the traditional methods. Moreover, a method guided by a three-dimensional (3D) navigation template may help us improve the surgical accuracy and the success rate. This is the first randomised study using a 3D navigation template to guide a unilateral lumbar pedicle screw with contralateral translaminar facet screw fixation. Patients who meet the criteria of the surgery will be randomly divided into experimental groups and control groups by a computer-generated randomisation schedule. We will preoperatively design an individual 3D navigation template using CATIA software and MeditoolCreate. The following primary outcomes will be collected: screw angles compared with the optimal screw trajectories in 3D digital images, length of the wound incision, operative time, intraoperative blood loss and complications. The following secondary outcomes will be collected: visual analogue scale (VAS) for back pain, VAS for leg pain and the Oswestry Disability Index. These parameters will be evaluated on day 1 and then 3, 6, 12 and 24 months postoperatively. The study has been reviewed and approved by the institutional ethics review board of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. The results will be presented at scientific communities and peer-reviewed journals. ChiCTR-IDR-17010466. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
[The history and development of computer assisted orthopaedic surgery].
Jenny, J-Y
2006-10-01
Computer assisted orthopaedic surgery (CAOS) was developed to improve the accuracy of surgical procedures. It has improved dramatically over the last years, being transformed from an experimental, laboratory procedure into a routine procedure theoretically available to every orthopaedic surgeon. The first field of application of computer assistance was neurosurgery. After the application of computer guided spinal surgery, the navigation of total hip and knee joints became available. Currently, several applications for computer assisted surgery are available. At the beginning of navigation, a preoperative CT-scan or several fluoroscopic images were necessary. The imageless systems allow the surgeon to digitize patient anatomy at the beginning of surgery without any preoperative imaging. The future of CAOS remains unknown, but there is no doubt that its importance will grow in the next 10 years, and that this technology will probably modify the conventional practice of orthopaedic surgery.
Wiltschko, Roswitha
2017-07-01
Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.
Multisource energy system project
NASA Astrophysics Data System (ADS)
Dawson, R. W.; Cowan, R. A.
1987-03-01
The mission of this project is to investigate methods of providing uninterruptible power to Army communications and navigational facilities, many of which have limited access or are located in rugged terrain. Two alternatives are currently available for deploying terrestrial stand-alone power systems: (1) conventional electric systems powered by diesel fuel, propane, or natural gas, and (2) alternative power systems using renewable energy sources such as solar photovoltaics (PV) or wind turbines (WT). The increased cost of fuels for conventional systems and the high cost of energy storage for single-source renewable energy systems have created interest in the hybrid or multisource energy system. This report will provide a summary of the first and second interim reports, final test results, and a user's guide for software that will assist in applying and designing multi-source energy systems.
NASA Astrophysics Data System (ADS)
Ashley, P. R.; Temmen, M. G.; Diffey, W. M.; Sanghadasa, M.; Bramson, M. D.
2007-10-01
Active and passive polymer materials have been successfully used in the development of highly accurate, compact and low cost guided-wave components: an optical transceiver and a phase modulator, for inertial measurement units (IMUs) based on the interferometric fibre optic gyroscope (IFOG) technology for precision guidance in navigation systems. High performance and low noise transceivers with high optical power and good spectral quality were fabricated using a silicon-bench architecture. Low loss phase modulators with low halfwave drive voltage (Vπ) have been fabricated with a backscatter compensated design using polarizing waveguides consisting of CLD- and FTC-type high performance electro-optic (E-O) chromophores. Gyro bias stability of less than 0.02° h-1 has been demonstrated with these guided-wave components.
Mechatronic description of a laser autoguided vehicle for greenhouse operations.
Sánchez-Hermosilla, Julián; González, Ramón; Rodríguez, Francisco; Donaire, Julián G
2013-01-08
This paper presents a novel approach for guiding mobile robots inside greenhouses demonstrated by promising preliminary physical experiments. It represents a comprehensive attempt to use the successful principles of AGVs (auto-guided vehicles) inside greenhouses, but avoiding the necessity of modifying the crop layout, and avoiding having to bury metallic pipes in the greenhouse floor. The designed vehicle can operate different tools, e.g., a spray system for applying plant-protection product, a lifting platform to reach the top part of the plants to perform pruning and harvesting tasks, and a trailer to transport fruits, plants, and crop waste. Regarding autonomous navigation, it follows the idea of AGVs, but now laser emitters are used to mark the desired route. The vehicle development is analyzed from a mechatronic standpoint (mechanics, electronics, and autonomous control).
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-04-09
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.
NASA Technical Reports Server (NTRS)
Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.
1970-01-01
A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.
Autonomous GN and C for Spacecraft Exploration of Comets and Asteroids
NASA Technical Reports Server (NTRS)
Carson, John M.; Mastrodemos, Nickolaos; Myers, David M.; Acikmese, Behcet; Blackmore, James C.; Moussalis, Dhemetrio; Riedel, Joseph E.; Nolet, Simon; Chang, Johnny T.; Mandic, Milan;
2010-01-01
A spacecraft guidance, navigation, and control (GN&C) system is needed to enable a spacecraft to descend to a surface, take a sample using a touch-and-go (TAG) sampling approach, and then safely ascend. At the time of this reporting, a flyable GN&C system that can accomplish these goals is beyond state of the art. This article describes AutoGNC, which is a GN&C system capable of addressing these goals, which has recently been developed and demonstrated to a maturity TRL-5-plus. The AutoGNC solution matures and integrates two previously existing JPL capabilities into a single unified GN&C system. The two capabilities are AutoNAV and GREX. AutoNAV is JPL s current flight navigation system, and is fairly mature with respect to flybys and rendezvous with small bodies, but is lacking capability for close surface proximity operations, sampling, and contact. G-REX is a suite of low-TRL algorithms and capabilities that enables spacecraft operations in close surface proximity and for performing sampling/contact. The development and integration of AutoNAV and G-REX components into AutoGNC provides a single, unified GN&C capability for addressing the autonomy, close-proximity, and sampling/contact aspects of small-body sample return missions. AutoGNC is an integrated capability comprising elements that were developed separately. The main algorithms and component capabilities that have been matured and integrated are autonomy for near-surface operations, terrain-relative navigation (TRN), real-time image-based feedback guidance and control, and six degrees of freedom (6DOF) control of the TAG sampling event. Autonomy is achieved based on an AutoGNC Executive written in Virtual Machine Language (VML) incorporating high-level control, data management, and fault protection. In descending to the surface, the AutoGNC system uses camera images to determine its position and velocity relative to the terrain. This capability for TRN leverages native capabilities of the original AutoNAV system, but required advancements that integrate the separate capabilities for shape modeling, state estimation, image rendering, defining a database of onboard maps, and performing real-time landmark recognition against the stored maps. The ability to use images to guide the spacecraft requires the capability for image-based feedback control. In Auto- GNC, navigation estimates are fed into an onboard guidance and control system that keeps the spacecraft guided along a desired path, as it descends towards its targeted landing or sampling site. Once near the site, AutoGNC achieves a prescribed guidance condition for TAG sampling (position/orientation, velocity), and a prescribed force profile on the sampling end-effector. A dedicated 6DOF TAG control then implements the ascent burn while recovering from sampling disturbances and induced attitude rates. The control also minimizes structural interactions with flexible solar panels and disallows any part of the spacecraft from making contact with the ground (other than the intended end-effector).
Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank
2017-01-01
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.
Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank
2017-01-01
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation. PMID:28824390
Navigation in head and neck oncological surgery: an emerging concept.
Gangloff, P; Mastronicola, R; Cortese, S; Phulpin, B; Sergeant, C; Guillemin, F; Eluecque, H; Perrot, C; Dolivet, G
2011-01-01
Navigation surgery, initially applied in rhinology, neurosurgery and orthopaedic cases, has been developed over the last twenty years. Surgery based on computed tomography data has become increasingly important in the head and neck region. The technique for hardware fusion between RMI and computed tomography is also becoming more useful. We use such device since 2006 in head and neck carcinologic situation. Navigation allows control of the resection in order to avoid and protect the precise anatomical structures (vessels and nerves). It also guides biopsy and radiofrequency. Therefore, quality of life is much more increased and morbidity is decreased for these patients who undergo major and mutilating head and neck surgery. Here we report the results of 33 navigation procedures performed for 31 patients in our institution.
Impact of Food Allergy on Asthma in Children
American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...
Simplifying Effective Treatment of Chronic Hives in Children
American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...
NASA Astrophysics Data System (ADS)
van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard
2016-08-01
Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the <1-cm detection limit for fluorescence imaging, allowing refinement of the navigation process using fluorescence findings. The phantom experiments performed suggest that SPECT-based navigation of the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.
Babu, Harish; Lagman, Carlito; Kim, Terrence T.; Grode, Marshall; Johnson, J. Patrick; Drazin, Doniel
2017-01-01
Background: Bertolotti's syndrome is characterized by enlargement of the transverse process at the most caudal lumbar vertebra with a pseudoarticulation between the transverse process and sacral ala. Here, we describe the use of intraoperative three-dimensional image-guided navigation in the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Case Descriptions: Two patients diagnosed with Bertolotti's syndrome who had undergone the above-mentioned procedure were identified. The patients were 17- and 38-years-old, and presented with severe, chronic low back pain that was resistant to conservative treatment. Imaging revealed lumbosacral transitional vertebrae at the level of L5-S1, which was consistent with Bertolotti's syndrome. Injections of the pseudoarticulations resulted in only temporary symptomatic relief. Thus, the patients subsequently underwent O-arm neuronavigational resection of the bony defects. Both patients experienced immediate pain resolution (documented on the postoperative notes) and remained asymptomatic 1 year later. Conclusion: Intraoperative three-dimensional imaging and navigation guidance facilitated the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Excellent outcomes were achieved in both patients. PMID:29026672
Babu, Harish; Lagman, Carlito; Kim, Terrence T; Grode, Marshall; Johnson, J Patrick; Drazin, Doniel
2017-01-01
Bertolotti's syndrome is characterized by enlargement of the transverse process at the most caudal lumbar vertebra with a pseudoarticulation between the transverse process and sacral ala. Here, we describe the use of intraoperative three-dimensional image-guided navigation in the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Two patients diagnosed with Bertolotti's syndrome who had undergone the above-mentioned procedure were identified. The patients were 17- and 38-years-old, and presented with severe, chronic low back pain that was resistant to conservative treatment. Imaging revealed lumbosacral transitional vertebrae at the level of L5-S1, which was consistent with Bertolotti's syndrome. Injections of the pseudoarticulations resulted in only temporary symptomatic relief. Thus, the patients subsequently underwent O-arm neuronavigational resection of the bony defects. Both patients experienced immediate pain resolution (documented on the postoperative notes) and remained asymptomatic 1 year later. Intraoperative three-dimensional imaging and navigation guidance facilitated the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Excellent outcomes were achieved in both patients.
INL Autonomous Navigation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.
NASA Astrophysics Data System (ADS)
Marlow, W. A.; Cahoy, K.; Males, J.; Carlton, A.; Yoon, H.
2015-12-01
Real-time observation and monitoring of geostationary (GEO) satellites with ground-based imaging systems would be an attractive alternative to fielding high cost, long lead, space-based imagers, but ground-based observations are inherently limited by atmospheric turbulence. Adaptive optics (AO) systems are used to help ground telescopes achieve diffraction-limited seeing. AO systems have historically relied on the use of bright natural guide stars or laser guide stars projected on a layer of the upper atmosphere by ground laser systems. There are several challenges with this approach such as the sidereal motion of GEO objects relative to natural guide stars and limitations of ground-based laser guide stars; they cannot be used to correct tip-tilt, they are not point sources, and have finite angular sizes when detected at the receiver. There is a difference between the wavefront error measured using the guide star compared with the target due to cone effect, which also makes it difficult to use a distributed aperture system with a larger baseline to improve resolution. Inspired by previous concepts proposed by A.H. Greenaway, we present using a space-based laser guide starprojected from a satellite orbiting the Earth. We show that a nanosatellite-based guide star system meets the needs for imaging GEO objects using a low power laser even from 36,000 km altitude. Satellite guide star (SGS) systemswould be well above atmospheric turbulence and could provide a small angular size reference source. CubeSatsoffer inexpensive, frequent access to space at a fraction of the cost of traditional systems, and are now being deployed to geostationary orbits and on interplanetary trajectories. The fundamental CubeSat bus unit of 10 cm cubed can be combined in multiple units and offers a common form factor allowing for easy integration as secondary payloads on traditional launches and rapid testing of new technologies on-orbit. We describe a 6U CubeSat SGS measuring 10 cm x 20 cm x 30 cm with laser power on the order of milliwatts, and a commercial off the shelf based attitude determination and control system, among others. Different from standard 1U and 3U buses, the 6U form factor allows for a propulsion system for navigating around multiple targets in the GEO belt.
EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study
NASA Astrophysics Data System (ADS)
Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina
2014-03-01
Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.
Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken
2011-03-15
Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Visual landmarks facilitate rodent spatial navigation in virtual reality environments
Youngstrom, Isaac A.; Strowbridge, Ben W.
2012-01-01
Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain areas. Virtual reality offers a unique approach to ask whether visual landmark cues alone are sufficient to improve performance in a spatial task. We found that mice could learn to navigate between two water reward locations along a virtual bidirectional linear track using a spherical treadmill. Mice exposed to a virtual environment with vivid visual cues rendered on a single monitor increased their performance over a 3-d training regimen. Training significantly increased the percentage of time avatars controlled by the mice spent near reward locations in probe trials without water rewards. Neither improvement during training or spatial learning for reward locations occurred with mice operating a virtual environment without vivid landmarks or with mice deprived of all visual feedback. Mice operating the vivid environment developed stereotyped avatar turning behaviors when alternating between reward zones that were positively correlated with their performance on the probe trial. These results suggest that mice are able to learn to navigate to specific locations using only visual cues presented within a virtual environment rendered on a single computer monitor. PMID:22345484
Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats
Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F.
2015-01-01
ABSTRACT Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. PMID:26582935
Endoscopic intracranial surgery enhanced by electromagnetic-guided neuronavigation in children.
Hermann, Elvis J; Esmaeilzadeh, Majid; Ertl, Philipp; Polemikos, Manolis; Raab, Peter; Krauss, Joachim K
2015-08-01
Navigated intracranial endoscopy with conventional technique usually requires sharp head fixation. In children, especially in those younger than 1 year of age and in older children with thin skulls due to chronic hydrocephalus, sharp head fixation is not possible. Here, we studied the feasibility, safety, and accuracy of electromagnetic (EM)-navigated endoscopy in a series of children, obviating the need of sharp head fixation. Seventeen children (ten boys, seven girls) between 12 days and 16.8 years (mean age 4.3 years; median 14 months) underwent EM-navigated intracranial endoscopic surgery based on 3D MR imaging of the head. Inclusion criteria for the study were intraventricular cysts, arachnoid cysts, aqueduct stenosis for endoscopic third ventriculostomy (ETV) with distorted ventricular anatomy, the need of biopsy in intraventricular tumors, and multiloculated hydrocephalus. A total of 22 endoscopic procedures were performed. Patients were registered for navigation by surface rendering in the supine position. After confirming accuracy, they were repositioned for endoscopic surgery with the head fixed slightly on a horseshoe headholder. EM navigation was performed using a flexible stylet introduced into the working channel of a rigid endoscope. Neuronavigation accuracy was checked for deviations measured in millimeters on screenshots after the referencing procedure and during surgery in the coronal (z = vertical), axial (x = mediolateral), and sagittal (y = anteroposterior) planes. EM-navigated endoscopy was feasible and safe. In all 17 patients, the aim of endoscopic surgery was achieved, except in one case in which a hemorrhage occurred, blurring visibility, and we proceeded with open surgery without complications for the patient. Navigation accuracy for extracranial markers such as the tragus, bregma, and nasion ranged between 1 and 2.5 mm. Accuracy for fixed anatomical structures like the optic nerve or the carotid artery varied between 2 and 4 mm, while there was a broader variance of accuracy at the target point of the cyst itself ranging between 2 and 9 mm. EM-navigated endoscopy in children is a safe and useful technique enhancing endoscopic intracranial surgery and obviating the need of sharp head fixation. It is a good alternative to the common opto-electric navigation system in this age group.
Counts, Jacqueline; Gillam, Rebecca; Garstka, Teri A; Urbach, Ember
2018-01-01
The challenge of maximizing the well-being of children, youth, and families is recognizing that change occurs within complex social systems. Organizations dedicated to improving practice, advancing knowledge, and informing policy for the betterment of all must have the right approach, structure, and personnel to work in these complex systems. The University of Kansas Center for Public Partnerships and Research cultivates a portfolio of innovation, research, and data science approaches positioned to help move social service fields locally, regionally, and nationally. Mission, leadership, and smart growth guide our work and drive our will to affect positive change in the world.
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-01-01
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549
Predicting Asthma in Preschool Children with Asthma-Like Symptoms
American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...
Anayama, Takashi; Qiu, Jimmy; Chan, Harley; Nakajima, Takahiro; Weersink, Robert; Daly, Michael; McConnell, Judy; Waddell, Thomas; Keshavjee, Shaf; Jaffray, David; Irish, Jonathan C; Hirohashi, Kentaro; Wada, Hironobu; Orihashi, Kazumasa; Yasufuku, Kazuhiro
2015-01-01
Video-assisted thoracoscopic wedge resection of multiple small, non-visible, and nonpalpable pulmonary nodules is a clinical challenge. We propose an ultra-minimally invasive technique for localization of pulmonary nodules using the electromagnetic navigation bronchoscope (ENB)-guided transbronchial indocyanine green (ICG) injection and intraoperative fluorescence detection with a near-infrared (NIR) fluorescence thoracoscope. Fluorescence properties of ICG topically injected into the lung parenchyma were determined using a resected porcine lung. The combination of ENB-guided ICG injection and NIR fluorescence detection was tested using a live porcine model. An electromagnetic sensor integrated flexible bronchoscope was geometrically registered to the three-dimensional chest computed tomographic image data by way of a real-time electromagnetic tracking system. The ICG mixed with iopamidol was injected into the pulmonary nodules by ENB guidance; ICG fluorescence was visualized by a near-infrared (NIR) thoracoscope. The ICG existing under 24-mm depth of inflated lung was detectable by the NIR fluorescence thoracoscope. The size of the fluorescence spot made by 0.1 mL of ICG was 10.4 ± 2.2 mm. An ICG or iopamidol spot remained at the injected point of the lung for more than 6 hours in vivo. The ICG fluorescence spot injected into the pulmonary nodule with ENB guidance was identified at the pulmonary nodule with the NIR thoracoscope. The ENB-guided transbronchial ICG injection and intraoperative NIR thoracoscopic detection is a feasible method to localize multiple pulmonary nodules. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Hendrix, Philipp; Senger, Sebastian; Griessenauer, Christoph J; Simgen, Andreas; Linsler, Stefan; Oertel, Joachim
2018-01-01
To report a technique for endoscopic cystoventriculostomy guided by preoperative navigated transcranial magnetic stimulation (nTMS) and tractography in a patient with a large speech eloquent arachnoid cyst. A 74-year old woman presented with a seizure and subsequent persistent anomic aphasia from a progressive left-sided parietal arachnoid cyst. An endoscopic cystoventriculostomy and endoscope-assisted ventricle catheter placement were performed. Surgery was guided by preoperative nTMS and tractography to avoid eloquent language, motor, and visual pathways. Preoperative nTMS motor and language mapping were used to guide tractography of motor and language white matter tracts. The ideal locations of entry point and cystoventriculostomy as well as trajectory for stent-placement were determined preoperatively with a pseudo-3-dimensional model visualizing eloquent language, motor, and visual cortical and subcortical information. The early postoperative course was uneventful. At her 3-month follow-up visit, her language impairments had completely recovered. Additionally, magnetic resonance imaging demonstrated complete collapse of the arachnoid cyst. The combination of nTMS and tractography supports the identification of a safe trajectory for cystoventriculostomy in eloquent arachnoid cysts. Copyright © 2017 Elsevier Inc. All rights reserved.
Magnetic navigation for thoracic aortic stent-graft deployment using ultrasound image guidance.
Luo, Zhe; Cai, Junfeng; Wang, Su; Zhao, Qiang; Peters, Terry M; Gu, Lixu
2013-03-01
We propose a system for thoracic aortic stent-graft deployment that employs a magnetic tracking system (MTS) and intraoperative ultrasound (US). A preoperative plan is first performed using a general public utilities-accelerated cardiac modeling method to determine the target position of the stent-graft. During the surgery, an MTS is employed to track sensors embedded in the catheter, cannula, and the US probe, while a fiducial landmark based registration is used to map the patient's coordinate to the image coordinate. The surgical target is tracked in real time via a calibrated intraoperative US image. Under the guidance of the MTS integrated with the real-time US images, the stent-graft can be deployed to the target position without the use of ionizing radiation. This navigation approach was validated using both phantom and animal studies. In the phantom study, we demonstrate a US calibration accuracy of 1.5 ± 0.47 mm, and a deployment error of 1.4 ± 0.16 mm. In the animal study, we performed experiments on five porcine subjects and recorded fiducial, target, and deployment errors of 2.5 ± 0.32, 4.2 ± 0.78, and 2.43 ± 0.69 mm, respectively. These results demonstrate that delivery and deployment of thoracic stent-graft under MTS-guided navigation using US imaging is feasible and appropriate for clinical application.
Kumar, Rakesh; Gupta, Ekta; Kumar, Sunil; Rani Sharma, Kavita; Rani Gupta, Neera
2013-03-01
Softer endotracheal (ET) tubes are more difficult to navigate in the oropharynx than the stiffer polyvinyl chloride (PVC) tubes during nasotracheal intubation (NTI). Cuff inflation has been used to guide PVC tubes into the laryngeal inlet during blind NTI, but it has not been tested when performing NTI under direct laryngoscopic guidance. We assessed the role of cuff inflation in improving oropharyngeal navigation of 3 ET tubes of varying stiffness during direct laryngoscope-guided NTI. Simultaneously, we also assessed and compared the nasotracheal navigability and incidence of nasal injury with these ET tubes during cuff inflation-supplemented, laryngoscope-guided NTI. One hundred sixty-two adults were randomized to undergo NTI with either a conventional PVC (n = 54), wire reinforced (WR; n = 54) or a silicone-tipped WR (SWR; n = 54) ET tube. Ease of insertion of these tubes was assessed during passage from nose into oropharynx, from oropharynx into laryngeal inlet aided by cuff inflation if needed, and from laryngeal inlet into trachea. Nasal morbidity was assessed by a blinded observer. All ET tubes could be inserted into the trachea. Seventy-one of 162 ET tubes could be inserted from the oropharynx into the laryngeal inlet without cuff inflation. Eighty-six of the remaining 91 tubes that did not enter the laryngeal inlet without cuff inflation could be inserted when using the cuff inflation technique. Thus, a total of 157 ET tubes could be inserted into the laryngeal inlet with cuff inflation (95% confidence interval of difference of proportions between total number of tubes passed [157] and those without cuff inflation [71]: 53% [45%-61%]). The remaining 5 tubes had to be inserted with the help of Magill forceps. The incidence of epistaxis was lowest with the SWR tube (difference of proportions [95% confidence interval] SWR versus PVC 27% [8%-45%]; SWR versus WR 20% [1%-38%]; WR versus PVC 7% [-12% to 26%]). The cuff inflation technique consistently improved the oropharyngeal insertion of the 3 ET tubes of varying stiffness during direct laryngoscope-guided NTI. Supplemented with the cuff inflation technique, the SWR ET tube seems to be better than the PVC and WR ET tubes in terms of complete nasotracheal navigability and less perioperative nasal injury.
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.
Unraveling the neural basis of insect navigation.
Heinze, Stanley
2017-12-01
One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons. Copyright © 2017 Elsevier Inc. All rights reserved.
Santella, Anthony; Catena, Raúl; Kovacevic, Ismar; Shah, Pavak; Yu, Zidong; Marquina-Solis, Javier; Kumar, Abhishek; Wu, Yicong; Schaff, James; Colón-Ramos, Daniel; Shroff, Hari; Mohler, William A; Bao, Zhirong
2015-06-09
Imaging and image analysis advances are yielding increasingly complete and complicated records of cellular events in tissues and whole embryos. The ability to follow hundreds to thousands of cells at the individual level demands a spatio-temporal data infrastructure: tools to assemble and collate knowledge about development spatially in a manner analogous to geographic information systems (GIS). Just as GIS indexes items or events based on their spatio-temporal or 4D location on the Earth these tools would organize knowledge based on location within the tissues or embryos. Developmental processes are highly context-specific, but the complexity of the 4D environment in which they unfold is a barrier to assembling an understanding of any particular process from diverse sources of information. In the same way that GIS aids the understanding and use of geo-located large data sets, software can, with a proper frame of reference, allow large biological data sets to be understood spatially. Intuitive tools are needed to navigate the spatial structure of complex tissue, collate large data sets and existing knowledge with this spatial structure and help users derive hypotheses about developmental mechanisms. Toward this goal we have developed WormGUIDES, a mobile application that presents a 4D developmental atlas for Caenorhabditis elegans. The WormGUIDES mobile app enables users to navigate a 3D model depicting the nuclear positions of all cells in the developing embryo. The identity of each cell can be queried with a tap, and community databases searched for available information about that cell. Information about ancestry, fate and gene expression can be used to label cells and craft customized visualizations that highlight cells as potential players in an event of interest. Scenes are easily saved, shared and published to other WormGUIDES users. The mobile app is available for Android and iOS platforms. WormGUIDES provides an important tool for examining developmental processes and developing mechanistic hypotheses about their control. Critically, it provides the typical end user with an intuitive interface for developing and sharing custom visualizations of developmental processes. Equally important, because users can select cells based on their position and search for information about them, the app also serves as a spatially organized index into the large body of knowledge available to the C. elegans community online. Moreover, the app can be used to create and publish the result of exploration: interactive content that brings other researchers and students directly to the spatio-temporal point of insight. Ultimately the app will incorporate a detailed time lapse record of cell shape, beginning with neurons. This will add the key ability to navigate and understand the developmental events that result in the coordinated and precise emergence of anatomy, particularly the wiring of the nervous system.
Image-based global registration system for bronchoscopy guidance
NASA Astrophysics Data System (ADS)
Khare, Rahul; Higgins, William E.
2011-03-01
Previous studies have shown that bronchoscopy guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. In the past, we presented an image-based bronchoscopy guidance system that has been extensively validated in live bronchoscopic procedures. However, this system cannot actively recover from adverse events, such as patient coughing or dynamic airway collapses. After such events, the bronchoscope position is recovered only by moving back to a previously seen and easily identifiable bifurcation such as the main carina. Furthermore, the system requires an attending technician to closely follow the physician's movement of the bronchoscope to avoid misguidance. Also, when the physician is forced to advance the bronchoscope across multiple bifurcations, the system is not able to detect faulty maneuvers. We propose two system-level solutions. The first solution is a system-level guidance strategy that incorporates a global-registration algorithm to provide the physician with updated navigational and guidance information during bronchoscopy. The system can handle general navigation to a region of interest (ROI), as well as adverse events, and it requires minimal commands so that it can be directly controlled by the physician. The second solution visualizes the global picture of all the bifurcations and their relative orientations in advance and suggests the maneuvers needed by the bronchoscope to approach the ROI. Guided bronchoscopy results using human airway-tree phantoms demonstrate the potential of the two solutions.
Srinivasan, Mandyam V
2011-04-01
Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.
Relative navigation requirements for automatic rendezvous and capture systems
NASA Technical Reports Server (NTRS)
Kachmar, Peter M.; Polutchko, Robert J.; Chu, William; Montez, Moises
1991-01-01
This paper will discuss in detail the relative navigation system requirements and sensor trade-offs for Automatic Rendezvous and Capture. Rendezvous navigation filter development will be discussed in the context of navigation performance requirements for a 'Phase One' AR&C system capability. Navigation system architectures and the resulting relative navigation performance for both cooperative and uncooperative target vehicles will be assessed. Relative navigation performance using rendezvous radar, star tracker, radiometric, laser and GPS navigation sensors during appropriate phases of the trajectory will be presented. The effect of relative navigation performance on the Integrated AR&C system performance will be addressed. Linear covariance and deterministic simulation results will be used. Evaluation of relative navigation and IGN&C system performance for several representative relative approach profiles will be presented in order to demonstrate the full range of system capabilities. A summary of the sensor requirements and recommendations for AR&C system capabilities for several programs requiring AR&C will be presented.
Apollo Onboard Navigation Techniques
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM General § 62.1 Purpose. (a) The Coast Guard administers the U.S. Aids to Navigation System. The system consists of Federal aids to navigation operated by the Coast Guard, aids to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM General § 62.1 Purpose. (a) The Coast Guard administers the U.S. Aids to Navigation System. The system consists of Federal aids to navigation operated by the Coast Guard, aids to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM General § 62.1 Purpose. (a) The Coast Guard administers the U.S. Aids to Navigation System. The system consists of Federal aids to navigation operated by the Coast Guard, aids to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM General § 62.1 Purpose. (a) The Coast Guard administers the U.S. Aids to Navigation System. The system consists of Federal aids to navigation operated by the Coast Guard, aids to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM General § 62.1 Purpose. (a) The Coast Guard administers the U.S. Aids to Navigation System. The system consists of Federal aids to navigation operated by the Coast Guard, aids to...
Rice, James P.; Wallace, Douglas G.; Hamilton, Derek A.
2015-01-01
The hippocampus and dorsolateral striatum are critically involved in spatial navigation based on extra-maze and intra-maze cues, respectively. Previous reports from our laboratory suggest that behavior in the Morris water task may be guided by both cue types, and rats appear to switch from extra-pool to intra-pool cues to guide navigation in a sequential manner within a given trial. In two experiments, rats with hippocampal or dorsolateral striatal lesions were trained and tested in water task paradigms that involved translation and removal of a cued platform within the pool and translations of the pool itself with respect to the extra-pool cue reference frame. In the first experiment, moment-to-moment analyses of swim behavior indicate that hippocampal lesions disrupt initial trajectories based on extra-pool cues at the beginning of the trial, while dorsolateral striatal lesions disrupt subsequent swim trajectories based on the location of the cued platform at the end of the trial. In the second experiment lesions of the hippocampus, but not the dorsolateral striatum, impaired directional responding in situations where the pool was shifted within the extra-pool cue array. These results are important for understanding the cooperative interactions between the hippocampus and dorsolateral striatum in spatial learning and memory, and establish that these brain areas are continuously involved in goal-directed spatial navigation. These results also highlight the importance of the hippocampus in directional responding in addition to place navigation. PMID:25907746
An egocentric vision based assistive co-robot.
Zhang, Jingzhe; Zhuang, Lishuo; Wang, Yang; Zhou, Yameng; Meng, Yan; Hua, Gang
2013-06-01
We present the prototype of an egocentric vision based assistive co-robot system. In this co-robot system, the user is wearing a pair of glasses with a forward looking camera, and is actively engaged in the control loop of the robot in navigational tasks. The egocentric vision glasses serve for two purposes. First, it serves as a source of visual input to request the robot to find a certain object in the environment. Second, the motion patterns computed from the egocentric video associated with a specific set of head movements are exploited to guide the robot to find the object. These are especially helpful for quadriplegic individuals who do not have needed hand functionality for interaction and control with other modalities (e.g., joystick). In our co-robot system, when the robot does not fulfill the object finding task in a pre-specified time window, it would actively solicit user controls for guidance. Then the users can use the egocentric vision based gesture interface to orient the robot towards the direction of the object. After that the robot will automatically navigate towards the object until it finds it. Our experiments validated the efficacy of the closed-loop design to engage the human in the loop.
Understanding How to Support Family Caregivers of Seniors with Complex Needs.
Charles, Lesley; Brémault-Phillips, Suzette; Parmar, Jasneet; Johnson, Melissa; Sacrey, Lori-Ann
2017-06-01
The purpose of this study was to describe the experiences and challenges of supporting family caregivers of seniors with complex needs and to outline support strategies and research priorities aimed at supporting them. A CIHR-funded, two-day conference entitled "Supporting Family Caregivers of Seniors: Improving Care and Caregiver Outcomes" was held. An integrated knowledge translation approach guided this planning conference. Day 1 included presentations of research evidence, followed by participant engagement Qualitative data was collected regarding facilitators, barriers/gaps, and recommendations for the provision of caregiver supports. Day 2 focused on determination of research priorities. Identified facilitators to the provision of caregiver support included accessibility of health-care and community-based resources, availability of well-intended health-care providers, and recognition of caregivers by the system. Barriers/gaps related to challenges with communication, access to information, knowledge of what is needed, system navigation, access to financial resources, and current policies. Recommendations regarding caregiver services and research revolved around assisting caregivers to self-identify and seek support, formalizing caregiver supports, centralizing resources, making system navigation available, and preparing the next generation for caregiving. A better understanding of the needs of family caregivers and ways to support them is critical to seniors' health services redesign.
Augmented Reality-Based Navigation System for Wrist Arthroscopy: Feasibility
Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L.; Liverneaux, Philippe A.; Obdeijn, Miryam
2013-01-01
Purpose In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. Methods We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. Results A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. Discussion The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration. PMID:24436832
B. Mondal, Suman; Gao, Shengkui; Zhu, Nan; Sudlow, Gail P.; Liang, Kexian; Som, Avik; Akers, Walter J.; Fields, Ryan C.; Margenthaler, Julie; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel
2015-01-01
The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve the accuracy of cancer staging. PMID:26179014
Designation and verification of road markings detection and guidance method
NASA Astrophysics Data System (ADS)
Wang, Runze; Jian, Yabin; Li, Xiyuan; Shang, Yonghong; Wang, Jing; Zhang, JingChuan
2018-01-01
With the rapid development of China's space industry, digitization and intelligent is the tendency of the future. This report is present a foundation research about guidance system which based on the HSV color space. With the help of these research which will help to design the automatic navigation and parking system for the frock transport car and the infrared lamp homogeneity intelligent test equipment. The drive mode, steer mode as well as the navigation method was selected. In consideration of the practicability, it was determined to use the front-wheel-steering chassis. The steering mechanism was controlled by the stepping motors, and it is guided by Machine Vision. The optimization and calibration of the steering mechanism was made. A mathematical model was built and the objective functions was constructed for the steering mechanism. The extraction method of the steering line was studied and the motion controller was designed and optimized. The theory of HSV, RGB color space and analysis of the testing result will be discussed Using the function library OPENCV on the Linux system to fulfill the camera calibration. Based on the HSV color space to design the guidance algorithm.
Augmented reality-based navigation system for wrist arthroscopy: feasibility.
Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L; Obdeijn, Miryam; Liverneaux, Philippe A
2013-11-01
In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration.
Risk-based analysis and decision making in multi-disciplinary environments
NASA Technical Reports Server (NTRS)
Feather, Martin S.; Cornford, Steven L.; Moran, Kelly
2003-01-01
A risk-based decision-making process conceived of and developed at JPL and NASA, has been used to help plan and guide novel technology applications for use on spacecraft. These applications exemplify key challenges inherent in multi-disciplinary design of novel technologies deployed in mission-critical settings. 1) Cross-disciplinary concerns are numerous (e.g., spacecraft involve navigation, propulsion, telecommunications). These concems are cross-coupled and interact in multiple ways (e.g., electromagnetic interference, heat transfer). 2) Time and budget pressures constrain development, operational resources constrain the resulting system (e.g., mass, volume, power). 3) Spacecraft are critical systems that must operate correctly the first time in only partially understood environments, with no chance for repair. 4) Past experience provides only a partial guide: New mission concepts are enhanced and enabled by new technologies, for which past experience is lacking. The decision-making process rests on quantitative assessments of the relationships between three classes of information - objectives (the things the system is to accomplish and constraints on its operation and development), risks (whose occurrence detracts from objectives), and mitigations (options for reducing the likelihood and or severity of risks). The process successfully guides experts to pool their knowledge, using custom-built software to support information gathering and decision-making.
Asthma Patients in US Overuse Quick-Relief Inhalers, Underuse Control Medications
American Academy of Allergy Asthma & Immunology Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just ...
Understanding your cancer prognosis
... about: Treatment Palliative care Personal matters such as finances Knowing what to expect may make it easier ... treatment. www.cancer.net/navigating-cancer-care/cancer-basics/understanding-statistics-used-guide-prognosis-and-evaluate-treatment . ...
Real-Time MRI-Guided Cardiac Cryo-Ablation: A Feasibility Study.
Kholmovski, Eugene G; Coulombe, Nicolas; Silvernagel, Joshua; Angel, Nathan; Parker, Dennis; Macleod, Rob; Marrouche, Nassir; Ranjan, Ravi
2016-05-01
MRI-based ablation provides an attractive capability of seeing ablation-related tissue changes in real time. Here we describe a real-time MRI-based cardiac cryo-ablation system. Studies were performed in canine model (n = 4) using MR-compatible cryo-ablation devices built for animal use: focal cryo-catheter with 8 mm tip and 28 mm diameter cryo-balloon. The main steps of MRI-guided cardiac cryo-ablation procedure (real-time navigation, confirmation of tip-tissue contact, confirmation of vessel occlusion, real-time monitoring of a freeze zone formation, and intra-procedural assessment of lesions) were validated in a 3 Tesla clinical MRI scanner. The MRI compatible cryo-devices were advanced to the right atrium (RA) and right ventricle (RV) and their position was confirmed by real-time MRI. Specifically, contact between catheter tip and myocardium and occlusion of superior vena cava (SVC) by the balloon was visually validated. Focal cryo-lesions were created in the RV septum. Circumferential ablation of SVC-RA junction with no gaps was achieved using the cryo-balloon. Real-time visualization of freeze zone formation was achieved in all studies when lesions were successfully created. The ablations and presence of collateral damage were confirmed by T1-weighted and late gadolinium enhancement MRI and gross pathological examination. This study confirms the feasibility of a MRI-based cryo-ablation system in performing cardiac ablation procedures. The system allows real-time catheter navigation, confirmation of catheter tip-tissue contact, validation of vessel occlusion by cryo-balloon, real-time monitoring of a freeze zone formation, and intra-procedural assessment of ablations including collateral damage. © 2016 Wiley Periodicals, Inc.
On learning navigation behaviors for small mobile robots with reservoir computing architectures.
Antonelo, Eric Aislan; Schrauwen, Benjamin
2015-04-01
This paper proposes a general reservoir computing (RC) learning framework that can be used to learn navigation behaviors for mobile robots in simple and complex unknown partially observable environments. RC provides an efficient way to train recurrent neural networks by letting the recurrent part of the network (called reservoir) be fixed while only a linear readout output layer is trained. The proposed RC framework builds upon the notion of navigation attractor or behavior that can be embedded in the high-dimensional space of the reservoir after learning. The learning of multiple behaviors is possible because the dynamic robot behavior, consisting of a sensory-motor sequence, can be linearly discriminated in the high-dimensional nonlinear space of the dynamic reservoir. Three learning approaches for navigation behaviors are shown in this paper. The first approach learns multiple behaviors based on the examples of navigation behaviors generated by a supervisor, while the second approach learns goal-directed navigation behaviors based only on rewards. The third approach learns complex goal-directed behaviors, in a supervised way, using a hierarchical architecture whose internal predictions of contextual switches guide the sequence of basic navigation behaviors toward the goal.
MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a Museum
Rubino, Irene; Xhembulla, Jetmir; Martina, Andrea; Bottino, Andrea; Malnati, Giovanni
2013-01-01
In recent years there has been a growing interest in the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discover and follow the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present Museum Assistant (MusA), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these applications. PMID:24351645
MusA: using indoor positioning and navigation to enhance cultural experiences in a museum.
Rubino, Irene; Xhembulla, Jetmir; Martina, Andrea; Bottino, Andrea; Malnati, Giovanni
2013-12-17
In recent years there has been a growing interest in the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discover and follow the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present Museum Assistant (MusA), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these applications.
Subarachnoid and basal cistern navigation through the sacral hiatus with guide wire assistance.
Layer, Lauren; Riascos, Roy; Firouzbakht, Farhood; Amole, Adewumi; Von Ritschl, Rudiger; Dipatre, Pier; Cuellar, Hugo
2011-07-01
Intraspinal navigation with catheters and fiberscopes has shown feasible results for diagnosis and treatment of intraspinal and intracranial lesions. The most common approach, lumbar puncture, has allowed access to the spinal cord, however, coming with the difficulties of fiberscope damage and decreased torque for guidance. Our objective in this study is to allow an alternate access, the sacral hiatus, with guide wire assistance into the subarachnoid and intracranial structures, while easing the angle of entry and increasing torque. We advanced catheters with guide wire and fluoroscopy assistance into the sacral hiatus of three cadavers. After entry, the thecal sac was punctured and the catheter with guide wire was advanced rostrally until positioned in the basal cisterns of the brain. We confirmed catheter placement with contrast injection, autopsy, and dissection. In our study, the sacral hiatus was easily accessed, but resistance was found when attempting to puncture the thecal sac. The advancement of the catheter with guide wire assistance glided easily rostrally until some mild resistance was discovered at entry into the foramen magnum. With redirection, all catheters passed with ease into the basal cisterns. Positioning was confirmed with contrast injection with fluoroscopy evidence, autopsy, and dissection. There was no macroscopic or microscopic evidence of damage to the spinal roots, spinal cord, or cranial nerves. The sacral hiatus with guide wire assistance is an accessible conduit for uncomplicated entry into the subarachnoid and basal cistern space without damaging surrounding structures.
A navigation system for the visually impaired using colored navigation lines and RFID tags.
Seto, First Tatsuya
2009-01-01
In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.
33 CFR 62.63 - Recommendations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Recommendations. 62.63 Section 62.63 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM Public Participation in the Aids to Navigation System § 62.63...
Terrain matching image pre-process and its format transform in autonomous underwater navigation
NASA Astrophysics Data System (ADS)
Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang
2007-06-01
Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its matching precision directly influences the final precision of integrated navigation system. Image matching assistant navigation is spatially matching and aiming at two underwater scenery images coming from two different sensors matriculating of the same scenery in order to confirm the relative displacement of the two images. In this way, we can obtain the vehicle's location in fiducial image known geographical relation, and the precise location information given from image matching location is transmitted to INS to eliminate its location error and greatly enhance the navigation precision of vehicle. Digital image data analysis and processing of image matching in underwater passive navigation is important. In regard to underwater geographic data analysis, we focus on the acquirement, disposal, analysis, expression and measurement of database information. These analysis items structure one of the important contents of underwater terrain matching and are propitious to know the seabed terrain configuration of navigation areas so that the best advantageous seabed terrain district and dependable navigation algorithm can be selected. In this way, we can improve the precision and reliability of terrain assistant navigation system. The pre-process and format transformation of digital image during underwater image matching are expatiated in this paper. The information of the terrain status in navigation areas need further study to provide the reliable data terrain characteristic and underwater overcast for navigation. Through realizing the choice of sea route, danger district prediction and navigating algorithm analysis, TAN can obtain more high location precision and probability, hence provide technological support for image matching of underwater passive navigation.
... Menu Search Main navigation Skip to content Conditions & Treatments Allergies Asthma Primary Immunodeficiency Disease Related Conditions Drug Guide ... your condition and determine the best form of treatment. Allergy shots (immunotherapy) may be effective long-term treatment ...
Exercise-Induced Bronchoconstriction (EIB)
... Primary Immunodeficiency Disease Related Conditions Drug Guide Conditions Dictionary Just for Kids Library School Tools Videos Virtual ... Search AAAAI Breadcrumb navigation Home ▸ Conditions & Treatments ▸ Conditions Dictionary ▸ ... Share | Exercise-Induced Bronchoconstriction (EIB) « ...
National Military Family Association
... Action Volunteer Mark Your Calendar Donate Twitter Facebook Instagram Donate Appreciating Military Families: Meet the Wilsons This ... 2017 - National Military Family Association Twitter Facebook Pinterest Instagram Charity Navigator Four Star Charity GuideStar Exchange Better ...
Navigations: The Road to a Better Orientation.
Rizzo, Leah Heather
2016-01-01
A team of nursing professional development specialists from a large Magnet® healthcare network transformed new employee orientation using a themed, interdisciplinary, learner-centered approach. Guided by project management principles, the nursing professional development team created an engaging program that serves as an interactive guide for new hires' orientation journey. This unique approach differs from traditional orientation programs through its incorporation of gaming, video clips, and group discussions.
Application of aircraft navigation sensors to enhanced vision systems
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.
1993-01-01
In this presentation, the applicability of various aircraft navigation sensors to enhanced vision system design is discussed. First, the accuracy requirements of the FAA for precision landing systems are presented, followed by the current navigation systems and their characteristics. These systems include Instrument Landing System (ILS), Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global Positioning System (GPS). Finally, the use of navigation system data to improve enhanced vision systems is discussed. These applications include radar image rectification, motion compensation, and image registration.
Increasing minority patient participation in cancer clinical trials using oncology nurse navigation.
Holmes, Dennis Ricky; Major, Jacquelyn; Lyonga, Doris Efosi; Alleyne, Rebecca Simone; Clayton, Sheilah Marie
2012-04-01
Residential distance from an academic or cancer center is a significant barrier to minority patient participation in cancer research. Most cancer clinical trials (CTs) are only accessible at academic and cancer centers, yet most cancer patients receive treatment in their home communities where access to CTs may be limited. Oncology nurse navigation is an innovative approach for increasing minority CT participation by facilitating access to cancer CTs in communities where minority patients live. The purpose of this study was to evaluate the impact of oncology nurse navigation on community-based recruitment of black patients to breast cancer CTs at a major cancer center. We merged the roles of a traditional oncology research nurse and a professional patient navigator to create a novel health care provider role, the oncology nurse navigator. The primary duties of the oncology nurse navigator were to engage black cancer patients in the offices of their community physicians and to collaborate with community physicians to increase black patient participation in cancer research. The oncology nurse navigator played a key role in all phases of the CT participation process (e.g., screening for eligibility and completion of informed consent and clinical research forms) and guided each patient around barriers in the health care system. The accrual of eligible patients to breast cancer CTs was used to assess the impact of oncology nurse navigation on community-based recruitment of blacks to cancer CTs. Between January 2007 and December 2008, a total of 132 black breast cancer patients were screened by a single oncology nurse navigator for eligibility to University of Southern California-sponsored breast cancer CTs. Fifty-nine patients were eligible for CTs, and each was invited to participate in 1 or more CTs for which they were eligible. Fifty-one of 59 eligible black patients (86% of eligible patients) were enrolled to 1 or more research protocols. The estimated cost per enrolled patient was $5,677, nearly half the expected per patient cost of treating patients on CT at an academic or cancer center. Oncology nurse navigation is an effective outreach strategy for increasing black patient participation in cancer research and may be achieved at nearly half the cost of traditional methods of enrolling patients in CTs at cancer centers. Copyright © 2012 Elsevier Inc. All rights reserved.
An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.
Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo
2017-03-25
Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.
An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles
Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo
2017-01-01
Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance. PMID:28346346
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Special marks. 62.31 Section 62.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.31 Special marks. Special...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lateral marks. 62.25 Section 62.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.25 Lateral marks. (a...
33 CFR 62.32 - Inland waters obstruction mark.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Inland waters obstruction mark. 62.32 Section 62.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.32...
33 CFR 62.33 - Information and regulatory marks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Ranges. 62.41 Section 62.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.41 Ranges. Ranges are aids to...
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...
33 CFR 62.32 - Inland waters obstruction mark.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Inland waters obstruction mark. 62.32 Section 62.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.32...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Special marks. 62.31 Section 62.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.31 Special marks. Special...
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...
33 CFR 62.33 - Information and regulatory marks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Special marks. 62.31 Section 62.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.31 Special marks. Special...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Ranges. 62.41 Section 62.41 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.41 Ranges. Ranges are aids to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lateral marks. 62.25 Section 62.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.25 Lateral marks. (a...
33 CFR 62.33 - Information and regulatory marks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lateral marks. 62.25 Section 62.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.25 Lateral marks. (a...
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Special marks. 62.31 Section 62.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.31 Special marks. Special...
33 CFR 62.32 - Inland waters obstruction mark.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Inland waters obstruction mark. 62.32 Section 62.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.32...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lighthouses. 62.37 Section 62.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.37 Lighthouses. Lighthouses are...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lighthouses. 62.37 Section 62.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.37 Lighthouses. Lighthouses are...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lighthouses. 62.37 Section 62.37 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.37 Lighthouses. Lighthouses are...
33 CFR 62.33 - Information and regulatory marks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...
33 CFR 62.32 - Inland waters obstruction mark.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Inland waters obstruction mark. 62.32 Section 62.32 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.32...
33 CFR 62.29 - Isolated danger marks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Isolated danger marks. 62.29 Section 62.29 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.29 Isolated danger...