Sample records for gulf stream

  1. New views of the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Todd, R. E.

    2016-02-01

    The Gulf Stream plays a major role in the climate system and is a significant forcing agent for the coastal circulation along the US East Coast, yet routine subsurface measurements of Gulf Stream structure are only collected in the Florida Straits and between New Jersey and Bermuda. A recent pilot program demonstrated the feasibility of using underwater gliders to repeatedly survey across the Gulf Stream and to provide subsurface Gulf Stream observations to the community in realtime. Spray gliders were deployed on three-month missions from Miami, Florida to the New England shelf south of Cape Cod, during which they zigzagged back and forth across the Gulf Stream. Three such deployments have been completed so far with a total of more than 20 cross-Gulf Stream transects occupied. These new observations detail the subsurface structure and variability of the Gulf Stream upstream and downstream of its separation from the continental margin, reveal large-amplitude internal waves within the boundary current, and capture numerous eddies along the flanks of the Gulf Stream. Future routine glider deployments in the Gulf Stream promise to provide critical observations for examining inherent Gulf Stream variability, investigating western boundary current influences on coastal circulation, and constraining numerical simulations.

  2. Modeling the Gulf Stream System: How Far from Reality?

    NASA Technical Reports Server (NTRS)

    Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.

    1996-01-01

    Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.

  3. Local sensitivities of the gulf stream separation

    DOE PAGES

    Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas; ...

    2016-12-05

    Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less

  4. On th meridional surface profile of the Gulf Stream at 55 deg W

    NASA Technical Reports Server (NTRS)

    Hallock, Zachariah R.; Teague, William J.

    1995-01-01

    Nine-month records from nine inverted echo sounders (IESs) are analyzed to describe the mean baroclinic Gulf Stream at 55 deg W. IES acoustic travel times are converted to thermocline depth which is optimally interpolated. Kinematic and dynamic parameters (Gulf Stream meridional position, velocity, and vorticity) are calculated. Primary Gulf Stream variabiltiy is attributed to meandering and and changes in direction. A mean, stream-coordinate (relative to Gulf Stream instantaneous position and direction) meridional profile is derived and compared with results presented by other investigators. The mean velocity is estimated at 0.84 m/s directed 14 deg to the right eastward, and the thermocline (12 c) drops 657 m (north to south), corresponding to a baroclinic rise of the surface of 0.87 m. The effect of Gulf Stream curvature on temporal mean profiles is found to be unimportant and of minimal importance overall. The derived, downstream current profile is well represented by a Gaussian function and is about 190 km wide where it crosses zero. Surface baroclinic transport is estimated to be 8.5 x 10(exp 4) sq m/s, and maximum shear (flanking the maximum) is 1.2 x 10(exp -5). Results compare well with other in situ observational results from the same time period. On the other hand, analyses (by others) of concurrent satellite altimetry (Geosat) suggest a considerable narrower, more intense mean Gulf Stream.

  5. Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge

    NASA Astrophysics Data System (ADS)

    Meinen, Christopher S.; Luther, Douglas S.

    2016-06-01

    Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.

  6. Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge

    NASA Astrophysics Data System (ADS)

    Meinen, Christopher S.; Luther, Douglas S.

    2016-05-01

    Data from three independent and extensive field programs in the Straits of Florida, the Mid-Atlantic Bight, and near the Southeast Newfoundland Ridge are reanalyzed and compared with results from other historical studies to highlight the downstream evolution of several characteristics of the Gulf Stream's mean flow and variability. The three locations represent distinct dynamical regimes: a tightly confined jet in a channel; a freely meandering jet; and a topographically controlled jet on a boundary. Despite these differing dynamical regimes, the Gulf Stream in these areas exhibits many similarities. There are also anticipated and important differences, such as the loss of the warm core of the current by 42°N and the decrease in the cross-frontal gradient of potential vorticity as the current flows northward. As the Gulf Stream evolves it undergoes major changes in transport, both in magnitude and structure. The rate of inflow up to 60°W and outflow thereafter are generally uniform, but do exhibit some remarkable short-scale variations. As the Gulf Stream flows northward the vertical coherence of the flow changes, with the Florida Current and North Atlantic Current segments of the Gulf Stream exhibiting distinct upper and deep flows that are incoherent, while in the Mid-Atlantic Bight the Gulf Stream exhibits flows in three layers each of which tends to be incoherent with the other layers at most periods. These coherence characteristics are exhibited in both Eulerian and stream coordinates. The observed lack of vertical coherence indicates that great caution must be exercised in interpreting proxies for Gulf Stream structure and flow from vertically-limited or remote observations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas

    Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less

  8. Evidence of a Weakening Gulf Stream from In-situ Expendable Bathythermograph Data, 1996-2013

    NASA Astrophysics Data System (ADS)

    Roupe, L.; Baringer, M. O.

    2014-12-01

    A weakening of the Gulf Stream, the upper branch of the Atlantic Meridional Overturning Circulation system, has been hypothesized to accelerate sea level rise on the east coast of the United States, caused by changes in the Gulf Stream strength and, hence, sea level difference across the current. It still remains unclear if the Gulf Stream has in fact weakened or remains stable, along with the potential role of natural long-term variability. Tide gauges along the east coast show an accelerated sea level rise from Cape Hatteras to Cape Cod that is 3-4 times higher than global sea level rise. Satellite altimetry shows a weakening gradient in Gulf Stream sea surface height that is highly correlated (r=-0.85) with east coast sea level rise, however, direct velocity measurements showed no significant decrease in Gulf Stream strength over a similar time period. We introduce another in-situ dataset to examine the issues between these conflicting results. Expendable bathythermographs (XBTs) measure temperature at depth directly, and then depth and salinity can be inferred, along with geostrophic velocity and transport. XBT data has been used to measure transport in various current systems, however, the Gulf Stream transport has not been analyzed using the newest high-density XBT data made available since 1996. The trend in sea level difference is determined to be 3.3 +/- 3.2 mm/yr, resulting in an overall decrease of 5.2 cm in sea level from 1996-2013. This result agrees with satellite altimetry results that show a significant decrease in recent years. This data also shows a changing Gulf Stream core position, based on the 15°C isotherm at 200 m, of 0.03°N/yr that is negatively correlated with surface transport (r=-0.25). Issues remain in defining the core and width of the Gulf Stream and with eliminating the possibility of natural variability in the current system.

  9. Temperature of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using the 11- and 12-micron bands, by Bob Evans, Peter Minnett, and co-workers.

  10. On the recent destabilization of the Gulf Stream path downstream of Cape Hatteras

    NASA Astrophysics Data System (ADS)

    Andres, M.

    2016-09-01

    Mapped satellite altimetry reveals interannual variability in the position of initiation of Gulf Stream meanders downstream of Cape Hatteras. The longitude where the Gulf Stream begins meandering varies by 1500 km. There has been a general trend for the destabilization point to shift west, and 5 of the last 6 years had a Gulf Stream destabilization point upstream of the New England Seamounts. Independent in situ data suggest that this shift has increased both upper-ocean/deep-ocean interaction events at Line W and open-ocean/shelf interactions across the Middle Atlantic Bight (MAB) shelf break. Mooring data and along-track altimetry indicate a recent increase in the number of deep cyclones that stir Deep Western Boundary Current waters from the MAB slope into the deep interior. Temperature profiles from the Oleander Program suggest that recent enhanced warming of the MAB shelf may be related to shifts in the Gulf Stream's destabilization point.

  11. The role of the Gulf Stream in European climate.

    PubMed

    Palter, Jaime B

    2015-01-01

    The Gulf Stream carries the warm, poleward return flow of the wind-driven North Atlantic subtropical gyre and the Atlantic Meridional Overturning Circulation. This northward flow drives a significant meridional heat transport. Various lines of evidence suggest that Gulf Stream heat transport profoundly influences the climate of the entire Northern Hemisphere and, thus, Europe's climate on timescales of decades and longer. The Gulf Stream's influence is mediated through feedback processes between the ocean, atmosphere, and cryosphere. This review synthesizes paleoclimate archives, model simulations, and the instrumental record, which collectively suggest that decadal and longer-scale variability of the Gulf Stream's heat transport manifests in changes in European temperature, precipitation, and storminess. Given that anthropogenic climate change is projected to weaken the Atlantic Meridional Overturning Circulation, associated changes in European climate are expected. However, large uncertainty in the magnitude of the anticipated weakening undermines the predictability of the future climate in Europe.

  12. Evidence for atmospheric carbon dioxide variability over the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.

    1984-01-01

    Two airborne surveys of atmospheric carbon dioxide concentration have been conducted over the Gulf Stream off the east coast of Virginia and North Carolina on September 7-8, 1983. In situ CO2 data were acquired at an aircraft altitude of 300 m on trajectories that transcected the Gulf Stream near 36 deg N 73 deg W. Data show evidence of a CO2 concentration increase by 4 ppm to 15 ppm above the nominal atmospheric background value of 345 ppm. These enhanced values were associated with the physical location of the Gulf Stream prior to the passage of a weak cold front.

  13. Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Minobe, S.; Ida, T.; Takatama, K.

    2016-12-01

    Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.

  14. Impact of Gulf Stream SST biases on the global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Woollings, Tim J.; Hoskins, Brian J.; Williams, Keith D.; O'Reilly, Christopher H.; Masato, Giacomo

    2018-02-01

    The UK Met Office Unified Model in the Global Coupled 2 (GC2) configuration has a warm bias of up to almost 7 K in the Gulf Stream SSTs in the winter season, which is associated with surface heat flux biases and potentially related to biases in the atmospheric circulation. The role of this SST bias is examined with a focus on the tropospheric response by performing three sensitivity experiments. The SST biases are imposed on the atmosphere-only configuration of the model over a small and medium section of the Gulf Stream, and also the wider North Atlantic. Here we show that the dynamical response to this anomalous Gulf Stream heating (and associated shifting and changing SST gradients) is to enhance vertical motion in the transient eddies over the Gulf Stream, rather than balance the heating with a linear dynamical meridional wind or meridional eddy heat transport. Together with the imposed Gulf Stream heating bias, the response affects the troposphere not only locally but also in remote regions of the Northern Hemisphere via a planetary Rossby wave response. The sensitivity experiments partially reproduce some of the differences in the coupled configuration of the model relative to the atmosphere-only configuration and to the ERA-Interim reanalysis. These biases may have implications for the ability of the model to respond correctly to variability or changes in the Gulf Stream. Better global prediction therefore requires particular focus on reducing any large western boundary current SST biases in these regions of high ocean-atmosphere interaction.

  15. Relative Linkages of Stream Dissolved Oxygen with the Hydroclimatic and Biogeochemical Drivers across the Gulf Coast of U.S.A.

    NASA Astrophysics Data System (ADS)

    Gebreslase, A. K.; Abdul-Aziz, O. I.

    2017-12-01

    Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.

  16. Subinertial response of the Gulf Stream System to Hurricane Fran of 1996

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Pietrafesa, Leonard J.; Zhang, Chen

    The evidence of subinertial-frequency (with periods from 2 days to 2 weeks) oceanic response to Hurricane Fran of 1996 is documented. Hurricane Fran traveled northward across the Gulf Stream and then over a cool-core trough, known as the Charleston Trough, due east of Charleston, SC and in the lee of the Charleston Bump during the period 4-5 September, 1996. During the passage of the storm, the trough closed into a gyre to form an intense cool-core cyclonic eddy. This cool-core eddy had an initial size of approximately 130 km by 170 km and drifted northeastward along the Gulf Stream front at a speed of 13 to 15 km/day as a subinertial baroclinic wave. Superimposed on this subinertial-frequency wave were near-inertial frequency, internal inertia-gravity waves formed in the stratified mixed-layer base after the passage of the storm. The results from a three-dimensional numerical ocean model confirm the existence of both near-inertial and subinertial-frequency waves in the Gulf Stream system during and after the passage of Hurricane Fran. Model results also showed that hurricane-forced oceanic response can modify Gulf Stream variability at both near-inertial and subinertial frequencies.

  17. The Gulf Stream and Density of Fluids

    ERIC Educational Resources Information Center

    Landstrom, Erich

    2006-01-01

    A few kilometers from the shores of Palm Beach County, Florida, is the Gulf Stream current--a remarkable "river" within an ocean. The current's journey across the Atlantic Ocean connects southeast Florida and southwest Great Britain as it streams steadily north at speeds of 97 km a day; moving 100 times as much water as all the rivers on…

  18. The Impact of Gulf Stream-Induced Diabatic Forcing on Coastal Mid-Atlantic Surface Cyclogenesis

    NASA Astrophysics Data System (ADS)

    Cione, Joseph Jerome

    In this dissertation, numerical experiments were conducted using a mesoscale atmospheric model developed at North Carolina State University. Three sets of numerical experiments were conducted and were designed to: quantify the impact Gulf Stream frontal distance, initial surface air temperature and cold air outbreak timing each have on the subsequent development of the marine atmospheric boundary layer during periods of offshore cold advection; investigate critical processes associated with Gulf Stream -induced mesocyclogenesis and; elucidate the role SST gradients and surface fluxes of heat and moisture have on the intensification and track of propagating mesocyclonic systems within the highly baroclinic Gulf Stream region. A major finding from the offshore cold advection simulations is that the initial air-sea contrast is the dominant forcing mechanism linked to the offshore circulation development and marine boundary layer modification. Results from the mesocyclogenesis experiments indicate that surface cyclogenesis was simulated to occur along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) were maximized. Results from sensitivity experiments illustrate that changes in the Gulf Stream SST gradient pattern can act to alter the timing and degree of cyclonic development simulated, while the inclusion of surface fluxes and moist convective processes during the development phase act to strongly enhance the intensity and/or occurrence of simulated mesocyclogenesis. Both observational and numerical results from studies investigating the impact strong Gulf Stream SST gradients have on the development of pre-existing, propagating cyclonic systems show that the baroclinic nature of the low level environment near the circulation center (as well as the degree of simulated/observed surface cyclonic intensification) appear to be highly dependent upon the mesoscale storm track within the Gulf Stream frontal zone. Furthermore, the numerical storm track experiments conducted in this research illustrate that surfaces fluxes can act to significantly alter the storm track of the surface mesocyclone (in addition to impacting the overall intensification of the simulated cyclonic system). This work also presents the technique development and operational utilization of the recently devised Atlantic Surface Cyclone Intensification Index (ASCII). The index continues to be implemented by the National Weather Service at the Raleigh-Durham and surrounding coastal forecast offices, and to date, has been successfully utilized for 11 coastal winter storm events over the February 1994-January 1996 period.

  19. Simulated atmospheric response to Gulf Stream variability

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Latif, Mojib; Minobe, Shoshiro

    2010-05-01

    Though the ocean variability has a distinct low-frequent component on interannual to interdecadal timescales, a better understanding of the main features of air-sea interaction in the extratropical ocean might increase the predictive skill of climate models significantly. An insufficiently understood region in this context are the sharp SST-fronts connected to western boundary currents, which interact with the overlaying atmosphere by forcing low-level winds and evaporation. Recent studies show, that this response extends beyond the marine boundary layer and so might influence also the large-scale atmospheric circulation. In this work a 5 member ensemble of model runs from the AGCM ECHAM5 was analyzed focussing on the atmospheric response to the Gulf Stream. The analyzed experiment covered a time period of 138 years from 1870 to 2007 and was forced by observed SSTs and sea-ice concentration from the HadISST dataset. The experiment was performed at T106 horizontal resolution (~100km) and with 31 vertical levels up to 1 hPa. Simulated seasonal mean circulation indicate a convective response of the atmosphere in the Gulf Stream region similar to observations, with distinct low-level wind convergence, strong upward motion, and low-pressure over the warm SST flank of the Gulf Stream. An analysis of variance (ANOVA) suggests, that up to 25-30% of the variability of the summer precipitation in the Gulf Stream region are connected to the boundary conditions. The link between oceanic and atmospheric variability on seasonal to interannual timescales is investigated with composite and linear regression analysis. Results indicate that increased (decreased) precipitation is associated with stronger (weaker) low-level wind convergence, enhanced (reduced) upward motion, low (high) pressure, and warm (cold) SST anomalies in the region of the Gulf Stream. Currently sensitivity experiments with the same AGCM configuration are in progress.

  20. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization.

    PubMed

    Phrampus, Benjamin J; Hornbach, Matthew J

    2012-10-25

    The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its impact on climate--remains uncertain.

  1. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Todd, Robert E.

    2017-06-01

    Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.

  2. NWS Marine Forecast Areas

    Science.gov Websites

    Currents Global Ocean Model Sea Surface Temperatures Gulf Stream ASCII Data Gulf Stream Comparison Gridded ASCAT Scatterometer Winds Lightning Strike Density Satellite Imagery Ocean Global Ocean Model , 2017 19:10:57 UTC Disclaimer Information Quality Help Glossary Privacy Policy Freedom of Information

  3. Impact of Data Assimilation And Resolution On Modeling The Gulf Stream Pathway

    DTIC Science & Technology

    2011-11-18

    currents could be generated by either the Deep Western Boundary Current (DWBC) associated with the Meridional Overturning Circulation (MOC) or by...abyssal gyre centered directly beneath the surface gyre. Figure 7. Meridional overturning circulation stream function for four 1/12° global HYCOM... circulation and have a weak overturning circulation . The Gulf Stream path is poorly simulated without the steering by the abyssal circulation . A

  4. On the nonlinear forced response of the North Atlantic atmosphere to meridional shifts of the Gulf Stream path

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.

    2016-12-01

    This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.

  5. The branching of the Gulf Stream southeast of the Grand Banks

    NASA Astrophysics Data System (ADS)

    Krauss, W.; KäSe, R. H.; Hinrichsen, H.-H.

    1990-08-01

    During March-April 1987, 101 hydrographic stations were occupied on three sections spanning a triangle between the Azores (Faial), the southern tip of the Grand Banks of Newfoundland, and Bermuda. Information on the near-surface processes in the interior of the triangle were obtained from 32 satellite-tracked buoys deployed during the cruise and a composite infrared image based on cloud-free NOAA 9 data during April 1987. The data were combined to analyze the eddy field and the branching of the Gulf Stream into the North Atlantic Current and the Azores Current. Calculations of mass transports through the legs of the triangle gave a total of 46 Sv supplied by the Gulf Stream, 31 Sv of which left the area as the North Atlantic Current and westwind drift north of the Azores. The remaining 14 Sv continued towards east-southeast as the Azores Current and southern recirculation. Additional conductivity-temperature-depth stations from a cruise in April 1986 into the same area allowed also study of the large-scale circulation within that triangle in deeper layers. The Azores Current appears as a baroclinic stream which reaches down to approximately 1000 m. Intensive mixing was observed at the continental slope of Newfoundland between water of the Labrador Current and the Gulf Stream (mixed water). Owing to cabbeling and consecutive convective mixing, this water penetrates down to 2000 m depth and creates horizontal density gradients to the surrounding Gulf Stream water, which intensifies the North Atlantic Current. This process is considered to be an important energy source for this current.

  6. Effect of timber harvesting on stormflow characteristics in headwater streams of managed, forested watersheds in the Upper Gulf Coastal Plain in Mississippi

    Treesearch

    Byoungkoo Choi; Jeff A. Hatten; Janet C. Dewey; Kyoichi Otsuki; Dusong Cha

    2013-01-01

    Headwater streams are crucial parts of overall watershed dynamics because they comprise more than 50–80% of stream networks and watershed land areas. This study addressed the influence of headwater areas (ephemeral and intermittent) on stormflow characteristics following harvest within three first–order catchments in the Upper Gulf Coastal Plain of Mississippi. Four...

  7. Near-Surface Transport Pathways in the North Atlantic Ocean: Looking for Throughput from the Subtropical to the Subpolar Gyre

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Pratt, L. J.; Lozier, M.

    2011-12-01

    Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.

  8. A vorticity budget for the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Le Bras, Isabela; Toole, John

    2017-04-01

    We develop a depth-averaged vorticity budget framework to diagnose the dynamical balance of the Gulf Stream, and apply this framework to observations and the ECCO state estimate (Wunsch and Heimbach 2013) above the thermocline in the subtropical North Atlantic. Using the hydrographic and ADCP data along the WOCE/CLIVAR section A22 and a variety of wind stress data products, we find that the advective vorticity flux out of the western region is on the same order as the wind stress forcing over the eastern portion of the gyre. This is consistent with a large-scale balance between a negative source of vorticity from wind stress forcing and a positive source of vorticity in the western region. Additionally, the form of the vorticity flux indicates that the Gulf Stream has a significant inertial component. In the ECCO state estimate, we diagnose a seasonal cycle in advective vorticity flux across a meridional section associated with seasonal fluctuations in Gulf Stream transport. This vorticity flux is forced by wind stress over the eastern subtropical North Atlantic and balanced by lateral friction with the western boundary. The lateral friction in ECCO is a necessary parameterization of smaller scale processes that occur in the real ocean, and quantifying these remains an open and interesting question. This simplified framework provides a means to interpret large scale ocean dynamics. In our application, it points to wind stress forcing over the subtropical North Altantic as an important regulator of the Gulf Stream and hence the climate system.

  9. A Gulf Stream-derived pycnocline intrusion on the Middle Atlantic Bight shelf

    NASA Astrophysics Data System (ADS)

    Gawarkiewicz, Glen; McCarthy, Robert K.; Barton, Kenneth; Masse, Ann K.; Church, Thomas M.

    1990-12-01

    Saline intrusions from the upper slope onto the outer shelf are frequently observed at the pycnocline along the shelfbreak front in the Middle Atlantic Bight during the summer. A brief cruise was conducted in July, 1986 between Baltimore and Washington Canyons to examine along-shelf variability of pycnocline salinity intrusions. A particularly saline intrusion of 35.8 Practical Salinity Units (PSU) was observed between 20 and 40 m in a water depth of 70 to 80 m. The along-shelf extent was at least 40 km. The cooler, sub-pycnocline outer shelf water was displaced 15 km shoreward of the shelfbreak. A Gulf Stream filament was present in the slope region prior to the hydrographic sampling, but was not visible in thermal imagery during the hydrographic sampling. Temperature-salinity characteristics of the intrusion suggest that it was a mixture of Gulf Stream water and slope water, possibly from the filament. The shoreward penetration of saline water was most pronounced at the pycnocline and penetrated the shelfbreak front, with salinities as high as 35.0 PSU reaching as far shoreward as the 35 m isobath. These pycnocline intrusions may be an important mechanism for the transport of Gulf Stream-derived water onto the shelf during the summer. The presence of filaments or other Gulf Stream-derived water on the upper slope may account for some of the along-front variability of the pycnocline salinity maximum that has previously been observed.

  10. Estimating occurrence and detection probabilities for stream-breeding salamanders in the Gulf Coastal Plain

    USGS Publications Warehouse

    Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.

    2017-01-01

    Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.

  11. Detection and interpretation of ocean roughness variations across the Gulf Stream inferred from radar cross section observations

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Thompson, T. W.

    1977-01-01

    Radar cross section data shows that the Gulf Stream has a higher cross section per unit area (interpreted here as a greater roughness) than the water on the continental shelf. A steep gradient in cross section was often seen at the expected location of the western boundary. There were also longer-scale (10-20 km) gradual fluctuations within the stream of significant magnitude. These roughness variations are correlated with the surface shear stress that the local wind imposes on the sea. Using the available surface-truth information concerning the wind speed and direction, an assumed Gulf Stream velocity profile, and high-resolution ocean-surface temperature data obtained by the VHRR onboard a NOAA-NESS polar-orbiting satellite, the present study demonstrates that the computed surface stress variation bears a striking resemblance to the measured radar cross-section variations.

  12. Transport driven by eddy momentum fluxes in the Gulf Stream Extension region

    NASA Astrophysics Data System (ADS)

    Greatbatch, R. J.; Zhai, X.; Claus, M.; Czeschel, L.; Rath, W.

    2010-12-01

    The importance of the Gulf Stream Extension region in climate and seasonal prediction research is being increasingly recognised. Here we use satellite-derived eddy momentum fluxes to drive a shallow water model for the North Atlantic Ocean that includes the realistic ocean bottom topography. The results show that the eddy momentum fluxes can drive significant transport, sufficient to explain the observed increase in transport of the Gulf Stream following its separation from the coast at Cape Hatteras, as well as the observed recirculation gyres. The model also captures recirculating gyres seen in the mean sea surface height field within the North Atlantic Current system east of the Grand Banks of Newfoundland, including a representation of the Mann Eddy.

  13. Frontal Eddy Dynamics (FRED) experiment off North Carolina: Volume 1. Executive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbesmeyer, C.C.

    1989-03-01

    In preparation for oil and gas lease sales on the outer continental shelf offshore of North Carolina, the Minerals Management Service was requested to investigate the potential transport and impacts of oil spilled offshore. The Gulf Stream and associated eddies are an important aspect of the transport. Although the speed and location of the Gulf Stream are reasonably well known, knowledge of the meanders of the Gulf Stream is limited. How the circulatory structure and movement of associated frontal eddies and filaments affect the North Carolina coastal waters is not clear. This study investigates the interactions of these circulatory elementsmore » and follows the evolution of frontal eddies as they migrate along the North Carolina coast.« less

  14. Monthly Maps of Sea Surface Height in the North Atlantic and Zonal Indices for the Gulf Stream Using TOPEX/Poseidon Altimeter Data

    NASA Technical Reports Server (NTRS)

    Singh, Sandipa; Kelly, Kathryn A.

    1997-01-01

    Monthly Maps of sea surface height are constructed for the North Atlantic Ocean using TOPEX/Poseidon altimeter data. Mean sea surface height is reconstructed using a weighted combination of historical, hydrographic data and a synthetic mean obtained by fitting a Gaussian model of the Gulf Stream jet to altimeter data. The resultant mean shows increased resolution over the hydrographic mean, and incorporates recirculation information that is absent in the synthetic mean. Monthly maps, obtained by adding the mean field to altimeter sea surface height residuals, are used to derive a set of zonal indices that describe the annual cycle of meandering as well as position and strength of the Gulf Stream.

  15. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  16. The Challenge of Simulating the Regional Climate over Florida

    NASA Astrophysics Data System (ADS)

    Misra, V.; Mishra, A. K.

    2015-12-01

    In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.

  17. Impact Of Resolving Submesoscale Features On Modeling The Gulf Stream System

    NASA Astrophysics Data System (ADS)

    Chassignet, E.; Xu, X.

    2016-02-01

    Despite being one the best-known circulation pattern of the world ocean, the representation of the Gulf Stream, especially its energetic extension east of the New England Seamounts Chains in the western North Atlantic Ocean, has been a major challenge for ocean general circulation models even at eddy-rich resolutions. Here we show that, for the first time, a simulation of the North Atlantic circulation at 1/50° resolution realistically represents the narrow, energetic jet near 55°W when compared to observations, whereas similarly configured simulations at 1/25° and 1/12° resolution do not. This result highlights the importance of submesoscale features in driving the energetic Gulf Stream extension in the western North Atlantic. The results are discussed in terms of mesoscale and submesoscale energy power spectra.

  18. The dynamics of oceanic fronts. I - The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1980-01-01

    The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.

  19. Preliminary estimates of Gulf Stream characteristics from TOPEX data and a precise gravimetric geoid

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Smith, Dru A.

    1994-01-01

    TOPEX sea surface height data has been used, with a gravimetric geoid, to calculate sea surface topography across the Gulf Stream. This topography was initially computed for nine tracks on cycles 21 to 29. Due to inaccurate geoid undulations on one track, results for eight tracks are reported. The sea surface topography estimates were used to calculate parameters that describe Gulf Stream characteristics from two models of the Gulf Stream. One model was based on a Gaussian representation of the velocity while the other was a hyperbolic representation of velocity or the sea surface topography. The parameters of the Gaussian velocity model fit were a width parameter, a maximum velocity value, and the location of the maximum velocity. The parameters of the hyperbolic sea surface topography model were the width, the height jump, position, and sea surface topography at the center of the stream. Both models were used for the eight tracks and nine cycles studied. Comparisons were made between the width parameters, the maximum velocities, and the height jumps. Some of the parameter estimates were found to be highly (0.9) correlated when the hyperbolic sea surface topography fit was carried out, but such correlations were reduced for either the Gaussian velocity fits or the hyperbolic velocity model fit. A comparison of the parameters derived from 1-year TOPEX data showed good agreement with values derived by Kelly (1991) using 2.5 years of Geosat data near 38 deg N, 66 deg W longitude. Accuracy of the geoid undulations used in the calculations was of order of +/- 16 cm with the accuracy of a geoid undulation difference equal to +/- 15 cm over a 100-km line in areas with good terrestrial data coverage. This paper demonstrates that our knowledge or geoid undulations and undulation differences, in a portion of the Gulf Stream region, is sufficiently accurate to determine characteristics of the jet when used with TOPEX altimeter data. The method used here has not been shown to be more accurate than methods that average altimeter data to form a reference surface used in analysis to obtain the Gulf Stream characteristics. However, the results show the geoid approach may be used in areas where lack of current meandering reduces the accuracy of the average surface procedure.

  20. Rotary motions and convection as a means of regulating primary production in warm core rings. [of ocean currents

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.; Phinney, D. A.

    1985-01-01

    The term 'ring' is generally used in the case of a subdivision of ocean eddies. in the present investigation, it denotes mesoscale features which are spawned by the Gulf Stream. This investigation is concerned with the mechanism involved in the regulation of the growth of phytoplankton by the physical oceanographic features of rings. Gulf Stream rings were first observed by Parker (1971) and Fuglister (1972) as a result of extensive temperature measurements from ships in the Gulf Stream. Attention is given to changes in density boundaries associated with the rotation of rings, a synthetic model of a newly formed warm core ring, convection-stabilization, the role of light, the influence of convective overturn in adding nutrients to surface waters of warm core rings, and two major areas which require study.

  1. Predicting and explaining the movement of mesoscale oceanographic features using CLIPS

    NASA Technical Reports Server (NTRS)

    Bridges, Susan; Chen, Liang-Chun; Lybanon, Matthew

    1994-01-01

    The Naval Research Laboratory has developed an oceanographic expert system that describes the evolution of mesoscale features in the Gulf Stream region of the northwest Atlantic Ocean. These features include the Gulf Stream current and the warm and cold core eddies associated with the Gulf Stream. An explanation capability was added to the eddy prediction component of the expert system in order to allow the system to justify the reasoning process it uses to make predictions. The eddy prediction and explanation components of the system have recently been redesigned and translated from OPS83 to C and CLIPS and the new system is called WATE (Where Are Those Eddies). The new design has improved the system's readability, understandability and maintainability and will also allow the system to be incorporated into the Semi-Automated Mesoscale Analysis System which will eventually be embedded into the Navy's Tactical Environmental Support System, Third Generation, TESS(3).

  2. Gulf stream velocity structure through combined inversion of hydrographic and acoustic Doppler data

    NASA Technical Reports Server (NTRS)

    Pierce, S. D.

    1986-01-01

    Near-surface velocities from an acoustic Doppler instrument are used in conjunction with CTD/O2 data to produce estimates of the absolute flow field off Cape Hatteras. The data set consists of two transects across the Gulf Stream made by the R/V Endeavor cruise EN88 in August 1982. An inverse procedure is applied which makes use of both the acoustic Doppler data and property conservation constraints. Velocity sections at approximately 73 deg. W and 71 deg. W are presented with formal errors of 1-2 cm/s. The net Gulf Stream transports are estimated to be 116 + or - 2 Sv across the south leg and 161 + or - 4 Sv across the north. A Deep Western Boundary Current transport of 4 + or - 1 Sv is also estimated. While these values do not necessarily represent the mean, they are accurate estimates of the synoptic flow field in the region.

  3. The likelihood of winter sprites over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Price, Colin; Burrows, William; King, Patrick

    2002-11-01

    With the recent introduction of the Canadian Lightning Detection Network (CLDN), it was revealed that during the winter months every year, the highest lightning activity within the network occurs over the Gulf Stream, southeast of Nova Scotia. These storms over the Gulf Stream, in addition to being of importance to trans-Atlantic shipping and aviation, have an unusually high fraction of positive polarity lightning, with unusually large peak currents. Such intense positive lightning flashes are known to generate transient luminous events (TLEs) such as sprites and elves in the upper atmosphere. It is found that many of these large positive discharges produce extremely low frequency (ELF) electromagnetic radiation detected at a field station in the Negev Desert, Israel, 8000 km away, in agreement with previously documented sprite observations. Since these winter storms occur in the same location every year, it provides a good opportunity for field experiments focused on studying winter sprites and oceanic thunderstorms.

  4. Florida, Bahamas, Cuba and Gulf Stream, USA

    NASA Image and Video Library

    1992-08-08

    This unique photo offers a view of the Florida peninsula, western Bahamas, north central Cuba and the deep blue waters of the Gulf Stream, that hugs the east coast of Florida (27.0N, 82.0W). In addition to being an excellent photograph for showing the geographical relationships between the variety of landforms in this scene, the typical effect of the land-sea breeze is very much in evidence as few clouds over water, cumulus build up over landmass.

  5. Sandals and Robes to Business Suits and Gulf Streams: Warfare in the 21st Century

    DTIC Science & Technology

    2011-04-20

    movements and the extremist environments in which these movements operate. However, much like a franchise business enterprise, AQ is expanding its...2011, Small Wars Foundation April 20, 2011 Sandals and Robes to Business Suits and Gulf Streams: Warfare in the 21st Century by MG Michael T...comfortable in sandals and robes as they are wearing business suits and flying around the world in gulfstream aircraft. As confident in their ability to

  6. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico from Streams in the South-Central United States1

    PubMed Central

    Rebich, Richard A; Houston, Natalie A; Mize, Scott V; Pearson, Daniel K; Ging, Patricia B; Evan Hornig, C

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South-Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two-thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). PMID:22457582

  7. Gulf Coast Deep Water Port Facilities study. Appendix B. North Central Gulf Hydrobiological Zones.

    DTIC Science & Technology

    1973-04-01

    bottom and surface salinities , but their effect is more noticeable at the surface. Because of variation in these factors along the Gulf Coast... effects of discharge on salinity have been considered above. Numerous streams empty into the Gulf of Mexico along its north central portion but the...1967) investigated various aspects of osmoregulation in blue crabs in Mississippi Sound and adjacent waters and observed that salinity and temperature

  8. The Baselines Project: Establishing Reference Environmental Conditions for Marine Habitats in the Gulf of Mexico using Forecast Models and Satellite Data

    NASA Astrophysics Data System (ADS)

    Jolliff, J. K.; Gould, R. W.; deRada, S.; Teague, W. J.; Wijesekera, H. W.

    2012-12-01

    We provide an overview of the NASA-funded project, "High-Resolution Subsurface Physical and Optical Property Fields in the Gulf of Mexico: Establishing Baselines and Assessment Tools for Resource Managers." Data assimilative models, analysis fields, and multiple satellite data streams were used to construct temperature and photon flux climatologies for the Flower Garden Banks National Marine Sanctuary (FGBNMS) and similar habitats in the northwestern Gulf of Mexico where geologic features provide a platform for unique coral reef ecosystems. Comparison metrics of the products to in situ data collected during complimentary projects are also examined. Similarly, high-resolution satellite-data streams and advanced processing techniques were used to establish baseline suspended sediment load and turbidity conditions in selected northern Gulf of Mexico estuaries. The results demonstrate the feasibility of blending models and data into accessible web-based analysis products for resource managers, policy makers, and the public.

  9. The Gulf Stream Pathway and the Impacts of the Eddy-Driven Abyssal Circulation and the Deep Western Boundary Current

    DTIC Science & Technology

    2008-07-06

    bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The...small values below the sill depth in all of the simulations. e The upper ocean northward flow of the meridional overturning circulation (MOC) is...plus the northward upper ocean flow (14 Sv) of the meridional overturning circulation (MOC). The mean Gulf Stream IR northwall pathway ±lrr from

  10. Proceedings of the Gulf Stream Workshop Held at West Greenwich, Rhode Island on 23-26 April 1985,

    DTIC Science & Technology

    1985-04-01

    complex. We now realize that a correct dytiamical description must intrinsically couple the mass-, momentum -, energy-, and vorticity-fluxes of a strong mean...path and structure, and the mass- and momentum transport. 2. Meander dynamics "intrinsic" to the Gulf Stream, such as growth and propagation of...contribute to the dissipation of momentum through wave and form drag. A general study of the influence of the seamounts seems more appropriate for the

  11. Electronic research and technology requirements for marine resources

    NASA Technical Reports Server (NTRS)

    Ewing, G. C.

    1971-01-01

    The Woods Hole air/space oceanographic program for 1969 is discussed. Studies included: (1) monitoring the sharp temperature boundary of the Gulf Stream by microwave and infrared observation, (2) spectrophotometry of the Gulf Stream and the adjacent continental slope and shelf water over Georges Bank, (3) interpretation of cloud and other meteorological data in terms of the effects of wind and sun on the upper ocean, (4) a sea state test plan, (5) systems research, and (6) ocean data recovery by aircraft and satellite.

  12. Thunderstorm, Texas Gulf Coast, USA

    NASA Image and Video Library

    1990-04-29

    This thunderstorm along the Texas Gulf Coast (29.0N, 95.0W), USA is seen as the trailing edge of a large cloud mass formed along the leading edge of a spring frontal system stretching northwest to southeast across the Texas Gulf Coast. This system brought extensive severe weather and flooding to parts of Texas and surrounding states. Muddy water discharging from coastal streams can be seen in the shallow Gulf of Mexico as far south as Lavaca Bay.

  13. Hydrographic data from R/V endeavor cruise #90

    NASA Technical Reports Server (NTRS)

    Stalcup, M. D.; Joyce, T. M.; Barbour, R. L.; Dunworth, J. A.

    1986-01-01

    The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W.

  14. Influence of ENSO on Gulf Stream cyclogenesis and the North Atlantic storm track

    NASA Astrophysics Data System (ADS)

    Li, C.; Schemm, S.; Ciasto, L.; Kvamsto, N. G.

    2015-12-01

    There is emerging evidence that climate in the North Atlantic-European sector is sensitive to vacillations of tropical Pacific sea surface temperatures, in particular, the central Pacific flavour of the El Nino Southern Oscillation (ENSO) and concomitant trends in atmospheric heating. The frequency of central Pacific ENSOs appears to have increased over the last decades and some studies suggest it may continue increasing in the future, but the precise mechanisms by which these events affect the North Atlantic synoptic scale circulation are poorly understood. Here, we show that central Pacific ENSOs influence where midlatitude cyclogenesis occurs over the Gulf Stream, producing more cyclogenesis in the jet exit region rather than in the climatologically preferred jet entrance region. The cyclones forming over the Gulf Stream in central Pacific ENSO seasons tend to veer north, penetrating deeper into the Arctic rather than into continental Europe. The shift in cyclogenesis is linked to changes in the large scale circulation, namely, the upper-level trough formed in the lee of the Rocky Mountains.

  15. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico from Streams in the South-Central United States

    USGS Publications Warehouse

    Rebich, R.A.; Houston, N.A.; Mize, S.V.; Pearson, D.K.; Ging, P.B.; Evan, Hornig C.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South-Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two-thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  16. Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Lee, Tong; Cornillon, Peter

    1995-01-01

    The path of the Gulf Stream exhibits two modes of variability: wavelike spatial meanders associated with instability processes and large-sale lateral shifts of the path presumably due to atmospheric forcing. The objectives of this study are to examine the temporal variation of the intensity of spatial meandering in the stream, to characterize large-scale lateral oscillations in the stream's path, and to study the correlation betwen these two dynamically distinct modes of variability. The data used for this analysis are path displacemets ofthe Gulf Stream between 75 deg and 60 deg W obtained from AVHRR-derived (Advanced Very High Resolution Radiometer) infrared images for the period April 1982 through December 1989. Meandering intensity, measured by the spatial root-mean-sqaure displacement of the stream path, displays a 9-month dominant periodicity which is persistent through the study period. The 9-month fluctuation in meandering intensity may be related to the interaction of Rosseby waves with the stream. Interannual variation of meandering intensity is also found to be significant, with meandering being mich more intense during 1985 than it was in 1987. Annual variation, however,is weak and not well-defined.The spatially averaged position of the stream, which reflects nonmeandering large-scale lateral oscillations of the stream path, is dominated by an annual cycle. On average, the mean position is farthest north in November and farthest south in April. The first empirical orthogonal function mode of the space-time path displacements represents lateral oscillatins that are in-phase over the space-time domain. Interannual oscillations are also observed and are found to be weaker than the annual oscillation. The eigenvalue of the first mode indicates that about 21.5% of the total space-time variability of the stream path can be attibuted to domain-wide lateral oscillation. The correlation between meandering intensity and domain-wide lateral oscillations is very weak.

  17. Gulf Atlantic Coastal Plain Long Term Agroecosystem Research site, Tifton, GA

    Treesearch

    Timothy Strickland; David D. Bosch; Dinku M. Endale; Thomas L. Potter

    2016-01-01

    The Gulf-Atlantic Coastal Plain (GACP) physiographic region is an important agricultural production area within the southeastern U.S. that extends from Delaware in the Northeast to the Gulf Coast of Texas. The region consists mainly of low-elevation flat to rolling terrain with numerous streams, abundant rainfall, a complex coastline, and many wetlands. The GACP Long ...

  18. A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams

    Treesearch

    William R. Budnick; William E. Kelso; Susan B. Adams; Michael D. Kaller

    2018-01-01

    Identifying an effective protocol for sampling crayfish in streams that vary in habitat and physical/chemical characteristics has proven problematic. We evaluated an active, combined-gear (backpack electrofishing and dipnetting) sampling protocol in 20 Coastal Plain streams in Louisiana. Using generalized linear models and rarefaction curves, we evaluated environmental...

  19. The Gulf Stream frontal system: A key oceanographic feature in the habitat selection of the leatherback turtle?

    NASA Astrophysics Data System (ADS)

    Chambault, Philippine; Roquet, Fabien; Benhamou, Simon; Baudena, Alberto; Pauthenet, Etienne; de Thoisy, Benoît; Bonola, Marc; Dos Reis, Virginie; Crasson, Rodrigue; Brucker, Mathieu; Le Maho, Yvon; Chevallier, Damien

    2017-05-01

    Although some associations between the leatherback turtle Dermochelys coriacea and the Gulf Stream current have been previously suggested, no study has to date demonstrated strong affinities between leatherback movements and this particular frontal system using thorough oceanographic data in both the horizontal and vertical dimensions. The importance of the Gulf Stream frontal system in the selection of high residence time (HRT) areas by the North Atlantic leatherback turtle is assessed here for the first time using state-of-the-art ocean reanalysis products. Ten adult females from the Eastern French Guianese rookery were satellite tracked during post-nesting migration to relate (1) their horizontal movements to physical gradients (Sea Surface Temperature (SST), Sea Surface Height (SSH) and filaments) and biological variables (micronekton and chlorophyll a), and (2) their diving behaviour to vertical structures within the water column (mixed layer, thermocline, halocline and nutricline). All the turtles migrated northward towards the Gulf Stream north wall. Although their HRT areas were geographically remote (spread between 80-30 °W and 28-45 °N), all the turtles targeted similar habitats in terms of physical structures, i.e. strong gradients of SST, SSH and a deep mixed layer. This close association with the Gulf Stream frontal system highlights the first substantial synchronization ever observed in this species, as the HRTs were observed in close match with the autumn phytoplankton bloom. Turtles remained within the enriched mixed layer at depths of 38.5±7.9 m when diving in HRT areas, likely to have an easier access to their prey and maximize therefore the energy gain. These depths were shallow in comparison to those attained within the thermocline (82.4±5.6 m) while crossing the nutrient-poor subtropical gyre, probably to reach cooler temperatures and save energy during the transit. In a context of climate change, anticipating the evolution of such frontal structure under the influence of global warming is crucial to ensure the conservation of this vulnerable species.

  20. Verification of ADS-B performance to provide 5 nautical mile separation services in the Gulf of Mexico

    DOT National Transportation Integrated Search

    2010-01-01

    Prior to Automatic Dependent SurveillanceBroadcast (ADS-B), non-radar separation was necessary in the Gulf of Mexico due to limited surveillance and air-ground communication. Five nautical mile separation using ADS-B improves capacity and streamli...

  1. Glacially-megalineated limestone terrain of Anticosti Island, Gulf of St. Lawrence, Canada; onset zone of the Laurentian Channel Ice Stream

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Putkinen, Niko

    2014-03-01

    Anticosti is a large elongate island (240 km long, 60 km wide) in eastern Canada within the northern part of a deep water trough (Gulf of St. Lawrence) that terminates at the Atlantic continental shelf edge. The island's Pleistocene glaciological significance is that its long axis lay transverse to ice from the Quebec and Labrador sectors of the Laurentide Ice Sheet moving south from the relatively high-standing Canadian Shield. Recent glaciological reconstructions place a fast-flowing ice stream along the axis of the Gulf of St. Lawrence but supporting geologic evidence in terms of recognizing its hard-bedded onset zone and downstream streamlined soft bed is limited. Anticosti Island consists of gently southward-dipping limestone plains composed of Ordovician and Silurian limestones (Vaureal, Becscie and Jupiter formations) with north-facing escarpments transverse to regional ice flow. Glacial deposits are largely absent and limestone plains in the higher central plateau of the island retain a relict apparently ‘preglacial’ drainage system consisting of deeply-incised dendritic bedrock valleys. In contrast, the bedrock geomorphology of the lower lying western and eastern limestone plains of the island is strikingly different having been extensively modified by glacial erosion. Escarpments are glacially megalineated with a distinct ‘zig-zag’ planform reflecting northward-projecting bullet-shaped ‘noses’ (identified as rock drumlins) up to 2 km wide at their base and 4 km in length with rare megagrooved upper surfaces. Drumlins are separated by southward-closing, funnel-shaped ‘through valleys’ where former dendritic valleys have been extensively altered by the streaming of basal ice through gaps in the escarpments. Glacially-megalineated bedrock terrain such as on the western and eastern flanks of Anticosti Island is elsewhere associated with the hard-bedded onset zones of fast flowing ice streams and provides important ground truth for the postulated Laurentian Channel Ice Stream (LCIS) within the Gulf of St. Lawrence sector of the Laurentide Ice Sheet.

  2. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W.

    2008-01-01

    Seasonal hypoxia in the northern Gulf of Mexico has been linked to increased nitrogen fluxes from the Mississippi and Atchafalaya River Basins, though recent evidence shows that phosphorus also influences productivity in the Gulf. We developed a spatially explicit and structurally detailed SPARROW water-quality model that reveals important differences in the sources and transport processes that control nitrogen (N) and phosphorus (P) delivery to the Gulf. Our model simulations indicate that agricultural sources in the watersheds contribute more than 70% of the delivered N and P. However, corn and soybean cultivation is the largest contributor of N (52%), followed by atmospheric deposition sources (16%); whereas P originates primarily from animal manure on pasture and rangelands (37%), followed by corn and soybeans (25%), other crops (18%), and urban sources (12%). The fraction of in-stream P and N load delivered to the Gulf increases with stream size, but reservoir trapping of P causes large local- and regional-scale differences in delivery. Our results indicate the diversity of management approaches required to achieve efficient control of nutrient loads to the Gulf. These include recognition of important differences in the agricultural sources of N and P, the role of atmospheric N, attention to P sources downstream from reservoirs, and better control of both N and P in close proximity to large rivers. ?? 2008 American Chemical Society.

  3. Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico.

    PubMed

    Phillips, Melissa B; Bonner, Timothy H

    2015-11-15

    Ingestion of microplastics by fishes could be an emerging environmental crisis because of the proliferation of plastic pollution in aquatic environments. Microplastics in marine ecosystems are well documented, however only one study has reported percent occurrence of microplastics in freshwater fishes. The purpose of this study was to quantify the occurrences and types of microplastics ingested by fishes within several freshwater drainages of the Gulf of Mexico and an estuary of the Gulf of Mexico. Among 535 fishes examined in this study, 8% of the freshwater fishes and 10% of the marine fishes had microplastics in their gut tract. Percentage occurrence of microplastics ingested by fishes in non-urbanized streams (5%) was less than that of one of the urbanized streams (Neches River; 29%). Percent occurrence of microplastics by habitat (i.e., benthic, pelagic) and trophic guilds (herbivore/omnivore, invertivore, carnivore) were similar. Low but widespread occurrences among drainages, habitat guilds, and trophic guilds indicate proliferation of plastic pollution within watersheds of the Gulf of Mexico, but consequences to fish health are unknown at this time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.

    2000-01-01

    An increase in the flux of nitrogen from the Mississippi river during the latter half of the twentieth century has caused eutrophication and chronic seasonal hypoxia in the shallow waters of the Louisiana shelf in the northern Gulf of Mexico. This has led to reductions in species diversity, mortality of benthic communities and stress in fishery resources. There is evidence for a predominantly anthropogenic origin of the increased nitrogen flux, but the location of the most significant sources in the Mississippi basin responsible for the delivery of nitrogen to the Gulf of Mexico have not been clearly identified, because the parameters influencing nitrogen-loss rates in rivers are not well known. Here we present an analysis of data from 374 US monitoring stations, including 123 along the six largest tributaries to the Mississippi, that shows a rapid decline in the average first-order rate of nitrogen loss with channel size-from 0.45 day-1 in small streams to 0.005 day-1 in the Mississippi river. Using stream depth as an explanatory variable, our estimates of nitrogen-loss rates agreed with values from earlier studies. We conclude that the proximity of sources to large streams and rivers is an important determinant of nitrogen delivery to the estuary in the Mississippi basin, and possibly also in other large river basins.

  5. Physical oceanography of the US Atlantic and eastern Gulf of Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliman, J.D.; Imamura, E.

    The report provides a summary of the physical oceanography of the U.S. Atlantic and Eastern Gulf of Mexico and its implication to offshore oil and gas exploration and development. Topics covered in the report include: meteorology and air-sea interactions, circulation on the continental shelf, continental slope and rise circulation, Gulf Stream, Loop Current, deep-western boundary current, surface gravity-wave climatology, offshore engineering implications, implications for resource commercialization, and numerical models of pollutant dispersion.

  6. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles

    NASA Astrophysics Data System (ADS)

    Carnes, Michael R.; Mitchell, Jim L.; de Witt, P. Webb

    1990-10-01

    Synthetic temperature profiles are computed from altimeter-derived sea surface heights in the Gulf Stream region. The required relationships between surface height (dynamic height at the surface relative to 1000 dbar) and subsurface temperature are provided from regression relationships between dynamic height and amplitudes of empirical orthogonal functions (EOFs) of the vertical structure of temperature derived by de Witt (1987). Relationships were derived for each month of the year from historical temperature and salinity profiles from the region surrounding the Gulf Stream northeast of Cape Hatteras. Sea surface heights are derived using two different geoid estimates, the feature-modeled geoid and the air-dropped expendable bathythermograph (AXBT) geoid, both described by Carnes et al. (1990). The accuracy of the synthetic profiles is assessed by comparison to 21 AXBT profile sections which were taken during three surveys along 12 Geosat ERM ground tracks nearly contemporaneously with Geosat overflights. The primary error statistic considered is the root-mean-square (rms) difference between AXBT and synthetic isotherm depths. The two sources of error are the EOF relationship and the altimeter-derived surface heights. EOF-related and surface height-related errors in synthetic temperature isotherm depth are of comparable magnitude; each translates into about a 60-m rms isotherm depth error, or a combined 80 m to 90 m error for isotherms in the permanent thermocline. EOF-related errors are responsible for the absence of the near-surface warm core of the Gulf Stream and for the reduced volume of Eighteen Degree Water in the upper few hundred meters of (apparently older) cold-core rings in the synthetic profiles. The overall rms difference between surface heights derived from the altimeter and those computed from AXBT profiles is 0.15 dyn m when the feature-modeled geoid is used and 0.19 dyn m when the AXBT geoid is used; the portion attributable to altimeter-derived surface height errors alone is 0.03 dyn m less for each. In most cases, the deeper structure of the Gulf Stream and eddies is reproduced well by vertical sections of synthetic temperature, with largest errors typically in regions of high horizontal gradient such as across rings and the Gulf Stream front.

  7. Controls on the early Holocene collapse of the Bothnian Sea Ice Stream

    NASA Astrophysics Data System (ADS)

    Clason, Caroline C.; Greenwood, Sarah L.; Selmes, Nick; Lea, James M.; Jamieson, Stewart S. R.; Nick, Faezeh M.; Holmlund, Per

    2016-12-01

    New high-resolution multibeam data in the Gulf of Bothnia reveal for the first time the subglacial environment of a Bothnian Sea Ice Stream. The geomorphological record suggests that increased meltwater production may have been important in driving rapid retreat of Bothnian Sea Ice during deglaciation. Here we apply a well-established, one-dimensional flow line model to simulate ice flow through the Gulf of Bothnia and investigate controls on retreat of the ice stream during the post-Younger Dryas deglaciation of the Fennoscandian Ice Sheet. The relative influence of atmospheric and marine forcings are investigated, with the modeled ice stream exhibiting much greater sensitivity to surface melting, implemented through surface mass balance and hydrofracture-induced calving, than to submarine melting or relative sea level change. Such sensitivity is supported by the presence of extensive meltwater features in the geomorphological record. The modeled ice stream does not demonstrate significant sensitivity to changes in prescribed ice stream width or overall bed slope, but local variations in basal topography and ice stream width result in nonlinear retreat of the grounding line, notably demonstrating points of short-lived retreat slowdown on reverse bed slopes. Retreat of the ice stream was most likely governed by increased ice surface meltwater production, with the modeled retreat rate less sensitive to marine forcings despite the marine setting.

  8. Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream

    EPA Science Inventory

    Streams of the agricultural Midwest export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During hi...

  9. Pliocene shallow water paleoceanography of the North Atlantic ocean based on marine ostracodes

    USGS Publications Warehouse

    Cronin, T. M.

    1991-01-01

    Middle Pliocene marine ostracodes from coastal and shelf deposits of North and Central America and Iceland were studied to reconstruct paleotemperatures of shelf waters bordering portions of the Western Boundary Current System (including the Gulf Loop Current, Florida Current, Gulf Stream and North Atlantic Drift). Factor analytic transfer functions provided Pliocene August and February bottom-water temperatures of eight regions from the tropics to the subfrigid. The results indicate: (1) meridional temperature gradients in the western North Atlantic were less steep during the Pliocene than either today or during Late Pleistocene Isotope Stage 5e; (2) tropical and subtropical shelf waters during the Middle Pliocene were as warm as, or slightly cooler than today; (3) slightly cooler water was on the outer shelf off the southeastern and mid-Atlantic coast of the U.S., possibly due to summer upwelling of Gulf Stream water; (4) the shelf north of Cape Hatteras, North Carolina may have been influenced by warm water incursions from the western edge of the Gulf Stream, especially in summer; (5) the northeast branch of the North Atlantic Drift brought warm water to northern Iceland between 4 and 3 Ma; evidence from the Iceland record indicates that cold East Greenland Current water did not affect coastal Iceland between 4 and 3 Ma; (6) Middle Pliocene North Atlantic circulation may have been intensified, transporting more heat from the tropics to the Arctic than it does today. ?? 1991.

  10. Long-term monitoring reveals cold-water corals in extreme conditions off the southeast US coast

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Ross, S. W.; Lavaleye, M.; Van Weering, T.

    2011-12-01

    Cold-water corals are common on the SE slope of the US (SEUS) from Florida to Cape Hatteras between depths of 400-600 m. Near Cape Hatteras cold-water corals have formed mound structures that are up to 60 m high, which are mainly covered by living colonies of the coral species Lophelia pertusa. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. The coral areas lie in the vicinity of the Gulf Stream characterized by strong currents transporting relatively warm water northwards along the SEUS slope. Thus far little is known about the environmental conditions inside the SEUS coral communities and particularly the effects of the nearby Gulf Stream. In December 2009 two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Landers recorded temperature, fluorescence, turbidity, and current speed and direction. Furthermore, a sediment trap was mounted on the landers that collected material at a 16-days interval. A first analysis of the lander data shows that instability of the Gulf Stream causes rapid rises in temperature, current speed and turbidity lasting for days to more than a week. Peak temperature and turbidity levels are the highest measured in coral habitats studied so far. We did not see clear cut effects of Gulf Stream instabilities on the near bed flux of phytodetritus as opposed to reports of meanders inducing upwelling and enhanced production in the photic zone. Data analyzed so far suggest that cwc habitats of Cape Lookout experience extreme and adverse conditions for prolonged periods. The findings of this study are compared with methodologically similar studies that have been conducted in coral habitats in the Gulf of Mexico and in the eastern North Atlantic.

  11. Variations in Transport Derived from Satellite Altimeter Data over the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Molinelli, Eugene; Lambert, Richard B., Jr.

    1981-01-01

    Variations in total change of sea surface height (delta h) across the Gulf Stream are observed using Seasat radar altimeter data. The sea surface height is related to transport within the stream by a two layer model. Variations in delta h are compared with previously observed changes in transport found to increase with distance downstream. No such increase is apparent since the satellite transports show no significant dependence on distance. Though most discrepancies are less than 50 percent, a few cases differ by about 100 percent and more. Several possible reasons for these discrepancies are advanced, including geoid error, but only two oceanographic contributions to the variability are examined, namely, limitations in the two layer model and meanders in the current. It is concluded that some of the discrepancies could be explained as changes in the density structure not accounted for by the two layer model.

  12. Comparison data for Seasat altimetry in the western North Atlantic

    NASA Technical Reports Server (NTRS)

    Cheney, R. E.

    1981-01-01

    The radar altimeter flown on Seasat in 1978 collected approximately 1,000 orbits of high quality data (5-8 precision). In the western North Atlantic these data were combined with a detailed gravimetric geoid in an attempt to produce profiles of dynamic topography. In order to provide a basis for evaluation of these profiles, available oceanographic observations in the Gulf Stream/Sargasso Sea region have been compiled into a series of biweekly maps. The data include XBT's, satellite infrared imagery, and selected trajectories of surface drifters and sub-surface SOFAR floats. The maps document the known locations of the Gulf Stream, cyclonic and anticyclonic rings, and mid-ocean eddies during the period July to October 1978.

  13. GEOS-3 ocean current investigation using radar altimeter profiling. [Gulf Stream surface topography

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1978-01-01

    Both quasi-stationary and dynamic departures from the marine geoid were successfully detected using altitude measurements from the GEOS-3 radar altimeter. The quasi-stationary departures are observed either as elevation changes in single pass profiles across the Gulf Stream or at the crowding of contour lines at the western and northern areas of topographic maps generated using altimeter data spanning one month or longer. Dynamic features such as current meandering and spawned eddies can be monitored by comparing monthly mean maps. Comparison of altimeter inferred eddies with IR detected thermal rings indicates agreement of the two techniques. Estimates of current velocity are made using derived slope estimates in conjunction with the geostrophic equation.

  14. Polarization and wavelength diversities of Gulf Stream fronts imaged by AIRSAR

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Jansen, R. W.; Marmorino, G. O.; Chubb, S. R.

    1995-01-01

    During the 1990 Gulf Stream Experiment, NASA/JPL AIRSAR imaged the north edge of the Gulf Stream near the coast of Virginia. Simultaneous in-situ measurements of currents, temperatures, salinities, etc. were made for several crossings of the north edge by the R/V Cape Henlopen. Measurements identified two fronts with shearing and converging flows. The polarimetric SAR images from the fronts showed two bright linear features. One of them corresponds to the temperature front, which separated the warm Gulf Stream water to the south from a cool, freshwater filament to the north. The other line, located about 8 km north of the temperature front, is believed to correspond to the velocity front between the filament and the slope water. At these fronts, wave-current interactions produced narrow bands of steep and breaking waves manifesting higher radar returns in polarimetric SAR images. In general, our AIRSAR imagery shows that the signal-to-clutter ratio of radar cross sections for the temperature front is higher than that of the velocity front. In this paper, we study the polarization and wavelength diversities of radar response of these two fronts using the P-, L-, and C-Band Polarimetric SAR data. The north-south flight path of the AIRSAR crossed the temperature front several times and provided valuable data for analysis. Three individual passes are investigated. We found that for the temperature front, the cross-pol (HV) responses are much higher than co-pol responses (VV and HH), and that P-Band HV has the highest signal to clutter ratio. For the velocity front, the ratio is the strongest in P-Band VV, and it is indistinguishable for all polarizations in C-Band. The radar cross sections for all three polarization (HH, HV, and VV) and for all three bands are modelled using an ocean wave model and a composite Bragg scattering model. In our initial investigations, the theoretical model agrees qualitatively with the AIRSAR observations.

  15. The Use of Pre-Storm Boundary-Layer Baroclinicity in Determining and Operationally Implementing the Atlantic Surface Cyclone Intensification Index

    NASA Astrophysics Data System (ADS)

    Cione, Joseph; Pietrafes, Leonard J.

    The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.

  16. Wave and Current Measurements From the Coastal Storms Program (CSP) Buoy 41012 off St. Augustine, FL

    NASA Astrophysics Data System (ADS)

    Crout, R. L.

    2008-05-01

    The Coastal Storms Program (CSP) is a NOAA program that involves several different branches within NOAA. Components of the National Ocean Service, the National Weather Service, the National Marine Fisheries Service, and the Office of Oceanic and Atmospheric Research participate in CSP, which is administered by the Coastal Services Center. CSP selects an area where an impact in support of the NOAA Societal Goals can be made. The first area selected was the northeast coast of Florida in 2002. In addition to coastal water level stations and modeling efforts, a 3-meter discuss buoy (WMO 41012) was deployed off the coast of St. Augustine, FL in approximately 38 meters of water. In addition to the normal complement of meteorological sensors, Buoy 41012 contained a sensor to measure directional waves at hourly intervals, a temperature-conductivity sensor to measure near-surface temperature and salinity, and a current profiler to obtain near-surface to near-bottom currents at hourly intervals. These data on the continental shelf provide a view of the oceanography on the inner margin of the Gulf Stream. The data are served over the National Data Buoy Center's web page and over the Global Telecommunications System. The waves and currents during the period from September 2005 through December 2007 are related to coastal storms, hurricanes, tides, and Gulf Stream intrusions. During several late fall and winter periods the waves exceeded 4.5 meters. The on-offshore component of the currents appears to be tidally driven, however, predominant on- and off-shore flows are observed in response to storms and Gulf Stream intrusions. The primary component of the flow is aligned alongshore and although the tidal influence is obvious, extended periods of northward and southward currents are observed. Currents approaching 2 knots are observed at various times during the period that the buoy has been active. The high currents appear to be in response to strong wind events (atmospheric frontal passages) and Gulf Stream intrusions.

  17. The Oleander Program - 9 years of Gulf Stream Sampling and Still Going Strong!

    NASA Astrophysics Data System (ADS)

    Rossby, T.

    2001-12-01

    Starting in Fall 1992 we have been monitoring the currents between the mid-Atlantic Bight and the NW Sargasso Sea with an acoustic Doppler current profiler on the freighter CMV Oleander, which makes weekly roundtrips between Port Elizabeth, NJ and Bermuda. In addition, XBTs and surface salts have been taken on a monthly basis since 1979. These systematic observations of the upper ocean are giving us new insights into the structure of the Gulf Stream and adjacent waters. In this overview we will highlight some of the major findings of this ongoing program. One of the more striking observations is perhaps the structural stability of the Gulf Stream itself. Its shape can be characterized as a double-exponential which results from the mixing or homogenization of waters between the current and either side, but not across it. We show that 80 percent of the Eulerian eddy kinetic energy that is observed in the Gulf Stream can be described in terms of the meandering of a rigid double-exponential current. The remaining variability can be accounted for in terms of a few structural modes that are most likely associated with the meandering of the current. We have found that the transport of the current has been conspicuously stable, and will argue that past thoughts about large variations in transport may result from an inability to distinguish between the current itself and adjacent local recirculations of varying intensity. The distinction is made clear thanks to the repeat sampling. However, the Gulf Stream does exhibit significant variations in mean path on interannual time scales. These show a strong correlation with temperature-salinity anomalies in the Slope Sea. We suggest that both result from time-varying transports from the Labrador shelf, but there is presently considerable discussion as to whether the path shifting should be viewed as a thermohaline or a winddriven process. More generally, we use the above examples to argue that with more deliberate planning, the unparalleled and repeat access to in-situ sampling of the oceans provided by commercial shipping and cruise vessels could provide society with far more extensive and valuable information about the ocean and atmospheric conditions at sea. But for this to happen, the instrumentation needs to be optimized for completely automatic and unattended operation. This also means working with the merchant marine community to develop guidelines and procedures for future cooperative efforts.

  18. Nonmigratory, 12-kHz, deep scattering layers of Sargasso Sea origin in warm-core rings

    NASA Astrophysics Data System (ADS)

    Conte, Maureen H.; Bishop, James B.; Backus, Richard H.

    1986-11-01

    Nonmigratory, 12-kHz, deep sound-scattering layers (NMDSLs) were entrained within Sargasso Sea-Gulf Stream waters during the formation of warm-core rings 82B and 82H. At night ring water was easily distinguished from Slope Water by the presence of these well-developed features between 200 and 550 m. The distribution of NMDSLs in 82H as a function of temperature and salinity matched Sargasso Sea distributions, indicating that Sargasso Sea water was present in the center of 82H at the time of its formation. However, the distribution of NMDSLs in the center of 82B a few weeks after its formation was more consistent with the distribution found in Gulf Stream-Sargasso Sea edge water. NMDSLs were a persistent feature of the lower thermostad and upper thermocline of 82B. Their distribution in the upper thermocline approximately paralleled the decrease in thickness of the thermostad and became shallower with increasing distance from ring center. The NMDSLs disappeared at the ring edge when the bottom of the thermostad became shallower than about 100 m. Their distribution within 30 km of ring center changed very little between April and June, whereas those found in the thermocline at greater distances from ring center showed greater dispersion with respect to temperature. Following several Gulf Stream interactions in July, the NMDSLs were significantly shallower, and lay in colder water. The continued presence of the deep NMDSLs in the thermocline, even though the latter was nearly 100 m shallower, indicates that the remaining thermocline had not been significantly exchanged with Gulf Stream or Slope Water during the interactions. The changes in the temperature of the water in which the NMDSLs were found in August suggest that core waters (30 km from ring center in June) were resorbed by the Gulf Stream and that only waters of 30 km radius remained to reform the ring. We found no evidence that the animals composing the NMDSLs adjusted their vertical distributions in response to changes in environmental properties; rather, the temporal changes we observed are best explained by the physical processes affecting ring structure. No qualitative decrease in NMDSL intensity was observed in 82B between April and August, suggesting that the sound scatterers can tolerate significant changes in depth, temperature and salinity. The gonostomatid fish Cyclothone braueri and the physonect siphonophores are possibly sources of the NMDSLs.

  19. 76 FR 59371 - Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... South Atlantic Region (Snapper- Grouper FMP), as prepared and submitted by the Council. CE-BA 2 also... South Atlantic EEZ bounded by the Gulf Stream as EFH for pelagic Sargassum. Octocoral FMU CE-BA 2 would.... EFH and EFH-HAPCs CE-BA 2 would also amend the South Atlantic FMPs as needed to designate new or...

  20. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 3. Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    The Point is an area that supports a most productive pelagic fishery, including tuna, swordfish, marlin, and more. The objective of the study is to analyze video tapes from near the Point, in order to provide data on epibenthic, megafaunal invertebrates including species composition, relative abundances, and large scale (1 km) distribution. The Point is not a defined spot on a chart. Although fishermen do use the steep shelf break for location, they generally look for the west wall of the Gulf Stream. The Point and the oil lease site coincidentally occur where the Gulf Stream parts the continental slope,more » just north of the eastern-most tip of Cape Hatteras.« less

  1. Microwave responses of the western North Atlantic

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Girard, M. A.

    1985-01-01

    Features and objects in the Western North Atlantic Ocean - the Eastern Seaboard of the United States - are observed from Earth orbit by passive microwaves. The intensities of their radiated flux signatures are measured and displayed in color as a microwave flux image. The features of flux emitting objects such as the course of the Gulf Stream and the occurrence of cold eddies near the Gulf Stream are identified by contoured patterns of relative flux intensities. The flux signatures of ships and their wakes are displayed and discussed. Metal data buoys and aircraft are detected. Signal to clutter ratios and probabilities of detection are computed from their measured irradiances. Theoretical models and the range equations that explain passive microwave detection using the irradiances of natural sources are summarized.

  2. Stream carbon dynamics in low-gradient headwaters of a forested watershed

    Treesearch

    April Bryant-Mason; Y. Jun Xu; Johnny M. Grace

    2013-01-01

    Headwater streams drain more than 70 percent of the total watershed area in the United States. Understanding of carbon dynamics in the headwater systems is of particular relevance for developing best silvicultural practices to reduce carbon export. This study was conducted in a low-gradient, predominantly forested watershed located in the Gulf Coastal Plain region, to...

  3. Contrasting responses of the extended Gulf Stream to severe winter forcing

    NASA Astrophysics Data System (ADS)

    Jacobs, Z.; Grist, J. P.; Marsh, R.; Josey, S. A.; Sinha, B.

    2015-12-01

    Changes in the path and strength of the extended Gulf Stream, downstream of Cape Hatteras, and the North Atlantic Current (GSNAC), are associated with strong wintertime air-sea interactions that can further influence the atmospheric storm track. The GSNAC response to anomalous air-sea heat fluxes in particular is dependent on the location of excess heat loss, in turn related to meteorological circumstances. Outbreaks of cold continental air may lead to excess cooling over the Sargasso Sea, as in 1976-77. Under these circumstances, the Gulf Stream may intensify through a steepening of cross-stream density gradients. An alternative scenario prevailed during the cold outbreak of 2013-14 where excess cooling occurred over the central subpolar gyre and may have influenced the extreme storminess experienced in western Europe. An objectively-analysed temperature and salinity product (EN4) is used to investigate the variability of the GSNAC. Temperature and salinity profiles are used to obtain geostrophic transport at selected GSNAC transects, confirming strong horizontal temperature gradients and a positive geostrophic velocity anomaly at 70oW in spring 1977, the strongest spring transport seen in the 1970s at this location. In addition to observations, an eddy-resolving model hindcast spanning 1970-2013, is used to further characterise GSNAC transport variability, allowing a fuller assessment of the relationship between the winter surface heat flux, end-of-winter mixed layer depth, subtropical mode water volume and GSNAC transports. Preliminary results reveal a significant negative correlation between the winter surface heat flux over the Sargasso Sea and the GSNAC transport in the following spring.

  4. Turbines in the ocean

    NASA Astrophysics Data System (ADS)

    Smith, F. G. W.; Charlier, R. H.

    1981-10-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami; here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  5. Connection between encounter volume and diffusivity in geophysical flows

    NASA Astrophysics Data System (ADS)

    Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.

    2018-04-01

    Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.

  6. Frontal Eddy Dynamics (FRED) experiment off North Carolina: Volume 2. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbesmeyer, C.C.

    1988-03-01

    In preparation for oil and gas lease sales on the outer continental shelf offshore of North Carolina, the Minerals Management Service was requested to investigate the potential transport and impacts of oil spilled offshore. Of particular concern is estimating the movement of spilled oil, especially the probability of shoreward transport and/or beaching of the floatable fraction. Although the speed and location of the Gulf Stream are well known, knowledge of the meanders of the Gulf Stream is limited. How the circulatory structure and movement of associated frontal eddies and filaments affect the North Carolina coastal waters is not clear. Thismore » present study investigates the interactions of these circulatory elements and follows the evolution of frontal eddies as they migrate along the North Carolina coast.« less

  7. The subsurface geology of the Florida-Hatteras shelf, slope, and inner Blake Plateau

    USGS Publications Warehouse

    Paull, Charles K.; Dillon, William P.

    1979-01-01

    The structure and stratigraphy of the Florida-Hatteras Slope and inner Blake Plateau was studied by means of 4,780 km of single-channel air gun seismic reflection profiles. Control for the seismic stratigraphy is provided by correlating reflecting units and paleontologically dated stratigraphic units identified in offshore wells and dredge hauls. Many Tertiary unconformities exist, and major regional unconformities at the end of the Oligocene and in the late Paleocene are mapped. Reflecting surfaces believed to represent the tops of the Cretaceous, Paleocene, and Oligocene extend throughout the region. Upper Cretaceous (pre-Maastrichtian) rocks on the southeastern side of the Carolina Platform form a large seaward-facing progradational wedge. The Upper Cretaceous rocks in the Southeast Georgia Embayment, are seismically transparent and on the inner Blake Plateau are cut by numerous small faults, perhaps due to compaction. Within the survey area relatively flat-lying Maastrichtian and Paleocene strata show no evidence that a feature similar to the present Florida-Hatteras Slope existed at the beginning of the Tertiary. Late Paleocene erosion, related to the initiation of the Gulf Stream flow, probably developed this regional unconformity. Eocene and Oligocene sediments landward of the present Gulf Stream form a thick sequence of seaward-dipping progradational beds. A seaward progradational wedge of Miocene to Holocene age covers a regionally traceable unconformity, which separates the Oligocene from the Miocene sediments. Under and seaward of the present Gulf Stream, the Eocene and younger sediment supply was much smaller and the buildup is comparatively insignificant. The difference in accumulation rates in the Eocene and younger sediments, landward and seaward of the Gulf Stream, is responsible for the Florida-Hatteras Slope. Tertiary isopach maps suggest that there is a well developed triangular depocenter under the shelf. The edges of the depocenter correspond with magnetic anomalies and it is suggested that the depocenter is related to differential subsidence during the Tertiary across older crustal structures. The Eocene and Oligocene units contain the aquifer onshore, and the aquifer probably remains in these units offshore. With this assumption the potential aquifer has been identified and traced under the shelf and slope.

  8. Entrainment and mixing of shelf/slope waters in the near-surface Gulf Stream

    NASA Astrophysics Data System (ADS)

    Lillibridge, J. L., III; Hitchcock, G.; Rossby, T.; Lessard, E.; Mork, M.; Golmen, L.

    1990-08-01

    An interdisciplinary study of the entrainment of shelf and slope waters in the Gulf Stream front was undertaken in October 1985 northeast of Cape Hatteras. Fifteen hydrographic transects of the Gulf Stream front and of the shelf water intrusion known as Ford water were completed in 2 1/2 days with a towed undulating profiler, the SeaSoar, equipped with a conductivity-temperature-depth probe and a fluorometer. Upstream sections within 50 km of the shelf break show entrainment of surface and subsurface waters along the northern edge of the high-velocity Gulf Stream. The low-salinity core, first observed at 70 m, is subducted to >100 m. The subsurface Ford water is also at a maximum in chlorophyll, fluorescence, and dissolved oxygen and contains a distinct diatom assemblage of nearshore species. Productivity rates in the Ford water may be equivalent to those in slope waters. Expendable current profilers yield an estimated transport for subsurface shelf waters of 1 to 5×105 m3 s-1 and indicate that vertical shear at the depth of maximum static stability is typically 2×10-2 s-1. A bulk Richardson number is estimated over vertical scales of several meters by combining SeaSoar density profiles with velocity shear from concurrent expendable current profiler deployments. The minimum values are generally >1, and only infrequently are they at or below the 0.25 threshold for shear instability. The presence of double-diffusive processes around the low-salinity core of Ford water is indicated by elevated conductivity Cox numbers. The stability parameter "Turner angle" shows that low-salinity Ford water and its associated T-S property front are sites of double-diffusive mixing, given general agreement between the distributions of Turner angle and Cox number. We conclude that double-diffusive processes are more important than shear flow instability in governing cross-isopycnal mixing. However, downstream transit times are so swift that no measurable change or decay occurs in the Ford water. This explains the occurrence of distinct shelf water phytoplankton species within the low-salinity waters downstream of Cape Hatteras.

  9. Significant bed elevation changes related to Gulf Stream dynamics on the South Carolina continental shelf

    USGS Publications Warehouse

    Gelfenbaum, G.; Noble, M.

    1993-01-01

    Photographs of the seabed taken from an instrumented bottom tripod located approximately 100 km east of Charleston, South Carolina, reveal bed elevation changes of over 20 cm between July and November 1978. The tripod was in 85 m of water and was equipped with two current meters at 38.7 and 100 cm from the bed, a pressure sensor, a transmissometer, which fouled early during the deployment, a temperature sensor and a camera. The sediment under the tripod was composed of poorly sorted sand, some shell debris and numerous small biological tubes. Bed roughness varied throughout the deployment from biologically-produced mounds (2-5 cm high and 5-20 cm diameter) to streaks to a smooth bed, depending upon the frequency and magnitude of the sediment transporting events. Even though these events were common, especially during the later part of the deployment, the bed was rarely rippled, and there was no evidence of large bedforms such as dunes or sand waves migrating through the field of view of the camera. Photographs did clearly show, however, a gradual net deposition of the bed of nearly 20 cm, followed by erosion of approximately 5 cm. The flow field near the bed was dominated by sub-tidal period currents. Hourly-averaged currents at 100 cm from the bed typically varied between 10 and 30 cm s-1 and occasionally were as high as 60 cm s-1. The large flow events were predominantly toward the southwest along the shelf in the opposite direction of the northeast flowing Gulf Stream. The cross-shore component of the flow near the bed was predominantly directed offshore due to a local topographic steering effect. Current, temperature and satellite data suggest that the largest flow events were associated with the advection of Gulf Stream filaments past the tripod. Erosion events, as seen from the photographs, were highly correlated with the passage of these Gulf Stream filaments past the tripod. Gradual deposition of sediment, which occurred during the first half of the deployment, appears to have been associated with the convergence of the near-bed sediment flux near the shelf break. ?? 1993.

  10. Large wood debris recruitment on differing riparian landforms along a Gulf Coastal Plain (USA) stream: a comparison of large floods and average flows

    Treesearch

    Stephen W. Golladay; Juliann M. Battle; Brian J. Palik

    2007-01-01

    In southeastern Coastal Plain streams, wood debris can be very abundant and is recruited from extensive forested floodplains. Despite importance of wood debris, there have been few opportunities to examine recruitment and redistribution of wood in an undisturbed setting, particularly in the southeastern Coastal Plain. Following extensive flooding in 1994, measurements...

  11. Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring

    NASA Technical Reports Server (NTRS)

    Smith, Raymond C.; Brown, Otis B.; Hoge, Frank E.; Baker, Karen S.; Evans, Robert H.

    1987-01-01

    The purpose of this paper is to demonstrate the ability to meet the need to measure distributions of physical and biological properties of the ocean over large areas synoptically and over long time periods by means of remote sensing utilizing contemporaneous buoy, ship, aircraft, and satellite (i.e., multiplatform) sampling strategies. A mapping of sea surface temperature and chlorophyll fields in a Gulf Stream warm core ring using the multiplatform approach is described. Sampling capabilities of each sensing system are discussed as background for the data collected by means of these three dissimilar methods. Commensurate space/time sample sets from each sensing system are compared, and their relative accuracies in space and time are determined. The three-dimensional composite maps derived from the data set provide a synoptic perspective unobtainable from single platforms alone.

  12. Southeast Georgia embayment high-resolution seismic-reflection survey

    USGS Publications Warehouse

    Edsall, Douglas W.

    1979-01-01

    A high-resolution seismic survey of the offshore part of the Southeast Georgia Embayment on about a 20 km spacing was completed in 1976. A stratigraphic analyses of the data shows that the largest controlling factor in the depositional history of the shelf has been the Gulf Stream. These currents have shifted back and forth across the shelf, at times incising into shelf sediments, and at all times blocking much of the accumulation of Cenozoic sediments seaward of the Florida-Hatteras Slope. In the southern region the Gulf Stream maintained its present position since Miocene time, blocking the accumulation of Pliocene and younger rocks on the Plateau. Northward, in the middle, region the currents turned slightly to the northeast. The inner portion of the Blake Plateau has been scoured of sediments since the Paleocene in this area, and scouring has also occurred on the shelf from time to time. In the northern part of the survey area a more easterly flow of the Gulf Stream has allowed Eocene and younger rocks to be deposited on the Plateau. Line drawings and a geologic map show the distribution of the various Cretaceous and Cenozoic units. A number of potential environmental hazards or constraints to petroleum development seen in the reflection data are identified. Besides current scour and erosion features, these include gravity faults on the slope, a slump, faulting on the inner Blake Plateau, the shelf edge reef, and deep water reefs on the Blake Plateau.

  13. Seasonal occurrence of sperm whales (Physeter macrocephalus) around Kelvin Seamount in the Sargasso Sea in relation to oceanographic processes

    NASA Astrophysics Data System (ADS)

    Wong, Sarah N. P.; Whitehead, Hal

    2014-09-01

    Sperm whales (Physeter macrocephalus) are widely distributed in all oceans, but they are clumped geographically, generally in areas associated with high primary and secondary productivity. The warm, clear waters of the Sargasso Sea are traditionally thought to be low in productivity, however recent surveys have found large numbers of sperm whales there. The New England Seamount Chain bisects the north-western portion of the Sargasso Sea, and might influence the mesoscale eddies associated with the Gulf Stream; creating areas of higher productivity within the Sargasso Sea. We investigated the seasonal occurrence of sperm whales over Kelvin Seamount (part of the New England Seamount Chain) and how it is influenced by oceanographic variables. An autonomous recording device was deployed over Kelvin Seamount from May to June 2006 and November 2006 to June 2007. A total of 6505 hourly two-minute recordings were examined for the presence of sperm whale echolocation clicks. Sperm whales were more prevalent around Kelvin in the spring (April to June: mean=51% of recordings contained clicks) compared to the winter (November to March: mean=16% of recordings contained clicks). Sperm whale prevalence at Kelvin was related to chlorophyll-a concentration four weeks previous, eddy kinetic energy and month. The mesoscale activity associated with the Gulf Stream and the Gulf Stream's interaction with the New England Seamount Chain likely play an important role in sperm whale occurrence in this area, by increasing productivity and perhaps concentration of cephalopod species.

  14. First satellite tracks of the Endangered black-capped petrel

    USGS Publications Warehouse

    Jodice, Patrick G.R.; Ronconi, Robert A.; Rupp, Ernst; Wallace, George E.; Satgé, Yvan

    2015-01-01

    The black-capped petrel Pterodroma hasitata is an endangered seabird with fewer than 2000 breeding pairs restricted to a few breeding sites in Haiti and the Dominican Republic. To date, use areas at sea have been determined entirely from vessel-based surveys and opportunistic sightings and, as such, spatial and temporal gaps in our understanding of the species’ marine range are likely. To enhance our understanding of marine use areas, we deployed satellite tags on 3 black-capped petrels breeding on Hispaniola, representing the first tracking study for this species and one of the first published tracking studies for any breeding seabird in the Caribbean. During chick rearing, petrels primarily used marine habitats in the southern Caribbean Sea (ca. 18.0° to 11.5°N, 70.0° to 75.5°W) between the breeding site and the coasts of Venezuela and Colombia. Maximum distance from the breeding sites ranged from ca. 500 to 1500 km during the chick-rearing period. During the post-breeding period, each bird dispersed north and used waters west of the Gulf Stream offshore of the mid- and southern Atlantic coasts of the USA as well as Gulf Stream waters and deeper pelagic waters east of the Gulf Stream. Maximum distance from the breeding sites ranged from ca. 2000 to 2200 km among birds during the nonbreeding period. Petrels used waters located within 14 different exclusive economic zones, suggesting that international collaboration will benefit the development of management strategies for this species.

  15. NOAA Ecosystem Data Assembly Center for the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Parsons, A. R.; Beard, R. H.; Arnone, R. A.; Cross, S. L.; Comar, P. G.; May, N.; Strange, T. P.

    2006-12-01

    Through research programs at the NOAA Northern Gulf of Mexico Cooperative Institute (CI), NOAA is establishing an Ecosystem Data Assembly Center (EDAC) for the Gulf of Mexico. The EDAC demonstrates the utility of integrating many heterogeneous data types and streams used to characterized and identify ecosystems for the purpose of determining the health of ecosystems and identifying applications of the data within coastal resource management activities. Data streams include meteorological, physical oceanographic, ocean color, benthic, biogeochemical surveys, fishery, as well as fresh water fluxes (rainfall and river flow). Additionally the EDAC will provide an interface to the ecosystem data through an ontology based on the Coastal/Marine Ecological Classification System (CMECS). Applications of the ontological approach within the EDAC will be applied to increase public knowledge on habitat and ecosystem awareness. The EDAC plans to leverage companion socioeconomic studies to identify the essential data needed for continued EDAC operations. All data-management architectures and practices within the EDAC ensure interoperability with the Integrated Ocean Observing System (IOOS) national backbone by incorporating the IOOS Data Management and Communications Plan. Proven data protocols, standards, formats, applications, practices and architectures developed by the EDAC will be transitioned to the NOAA National Data Centers.

  16. Multi-year Current Observations on the Shelf Slope off Cape Hatteras, NC

    NASA Astrophysics Data System (ADS)

    Muglia, M.

    2017-12-01

    As part of an observing and modeling effort by the North Carolina Renewable Ocean Energy Program to determine if the Gulf Stream is a viable marine hydrokinetic energy resource for the state, upper continental slope current measurements were made over a period of nearly four years off of Cape Hatteras, NC. Velocity profiles were measured by a near-bottom, upward-looking, 150-kHz Acoustic Doppler Current Profiler deployed at a depth of 230-260 m. The mooring was sited at the location where water from the Gulf Stream, Middle Atlantic Bight, South Atlantic Bight, and Slope Sea all converge. Measured tidal amplitudes here are 2 m. These observations are used to consider the temporal variability and vertical structure of the currents at this location at tidal to interannual periods at this complex location. Concurrent near-bottom water mass properties are considered.

  17. Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian

    USGS Publications Warehouse

    Watkins, D.K.; ,

    2005-01-01

    Upper Maastrichtian calcareous nannofossil assemblages, from eight cores on the South Carolina Coastal Plain (onshore set) and three deep sea drilling sites from the continental slope and abyssal hills (offshore set), were analyzed by correlation and principal component analysis to examine the ancient surface water thermal structure. In addition, a temperature index derived from independently published paleobiogeographic information was applied to the sample data. All three methods indicate a strong separation of the samples into onshore and offshore sets, with the offshore data set exhibiting significantly warmer paleotemperatures. The great disparity between these two sample sets indicates that there was a strong thermal contrast between the onshore and offshore surface water masses that persisted throughout the late Maastrichtian despite evident shortterm changes in fertility, productivity, and community structure. This suggests the Gulf Stream was present as a major oceanographic feature during the late Maastrichtian. Copyright 2005 by the American Geophysical Union.

  18. Silver hake tracks changes in Northwest Atlantic circulation.

    PubMed

    Nye, Janet A; Joyce, Terrence M; Kwon, Young-Oh; Link, Jason S

    2011-08-02

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream. These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the Gulf Stream path, namely changes in the Atlantic meridional overturning circulation (AMOC). If the AMOC weakens, as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.

  19. Verification of Geosat sea surface topography in the Gulf Stream extension with surface drifting buoys and hydrographic measurements

    NASA Astrophysics Data System (ADS)

    Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.

    1990-03-01

    Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.

  20. Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Savelyev, I.; Thomas, L. N.; Smith, G. B.; Wang, Q.; Shearman, R. K.; Haack, T.; Christman, A. J.; Blomquist, B.; Sletten, M.; Miller, W. D.; Fernando, H. J. S.

    2018-01-01

    An unusual spatial pattern on the ocean surface was captured by thermal airborne swaths taken across a strong sea surface temperature front at the North Wall of the Gulf Stream. The thermal pattern on the cold side of the front resembles a staircase consisting of tens of steps, each up to ˜200 m wide and up to ˜0.3°C warm. The steps are well organized, clearly separated by sharp temperature gradients, mostly parallel and aligned with the primary front. The interpretation of the airborne imagery is aided by oceanographic measurements from two research vessels. Analysis of the in situ observations indicates that the front was unstable to symmetric instability, a type of overturning instability that can generate coherent structures with similar dimensions to the temperature steps seen in the airborne imagery. It is concluded that the images capture, for the first time, the surface temperature field of symmetric instability turbulence.

  1. Remote sensing of Gulf Stream using GEOS-3 radar altimeter

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1978-01-01

    Radar altimeter measurements from the GEOS-3 satellite to the ocean surface indicated the presence of expected geostrophic height differences across the the Gulf Stream. Dynamic sea surface heights were found by both editing and filtering the raw sea surface heights and then referencing these processed data to a 5 minute x 5 minute geoid. Any trend between the processed data and the geoid was removed by subtracting out a linear fit to the residuals in the open ocean. The mean current velocity of 107 + or - 29 cm/sec calculated from the dynamic heights for all orbits corresponded with velocities obtained from hydrographic methods. Also, dynamic topographic maps were produced for August, September, and October 1975. Results pointed out limitations in the accuracy of the geoid, height anomaly deteriorations due to filtering, and lack of dense time and space distribution of measurements.

  2. Nature Run for the North Atlantic Ocean Hurricane Region: System Evaluation and Regional Applications

    NASA Astrophysics Data System (ADS)

    Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.

    2016-02-01

    A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).

  3. Massive subtropical icebergs and freshwater forcing of climate

    NASA Astrophysics Data System (ADS)

    Condron, Alan; Hill, Jenna

    2014-05-01

    High resolution seafloor mapping shows incredible evidence that massive (>300m thick) icebergs drifted more than 5,000 km along the United States continental margin to southern Florida during the last deglaciation. Here we discuss how the discovery of icebergs in this location highlights a previously unknown ocean circulation pathway capable of transporting icebergs and meltwater from the Northern Hemisphere ice sheets directly to the subtropical North Atlantic. This pathway questions the classical idea that freshwater forcing from meltwater floods and icebergs occurred primarily over the subpolar North Atlantic (50N - 70N), with little penetration to subtropical latitudes, south of 40N. Using a sophisticated, high-resolution (1/6 deg.) ocean model, capable of resolving the circulation of the coastal ocean in detail, we show that icebergs off the coast of Florida likely calved from ice streams in the Gulf of St Lawrence and Hudson Bay. We find that icebergs can only drift south of Cape Hatteras, and overcome the northward flow of the Gulf Stream, when they are entrained in a narrow, southward-flowing, coastal meltwater flood originating from the Laurentide Ice Sheet. This cold meltwater increases iceberg survival in the warm subtropics and flows in the opposite direction to the Gulf Stream along the coast, allowing icebergs to drift to southern Florida in less than 4 months. We conclude that during the last deglaciation, icebergs drifted south in massive meltwater floods that delivered freshwater to the subtropical North Atlantic. Our findings have important implications for understanding how changes in freshwater forcing triggered past abrupt climate change.

  4. Migration Pathways, Behavioural Thermoregulation and Overwintering Grounds of Blue Sharks in the Northwest Atlantic

    PubMed Central

    Campana, Steven E.; Dorey, Anna; Fowler, Mark; Joyce, Warren; Wang, Zeliang; Yashayaev, Igor

    2011-01-01

    The blue shark Prionace glauca is the most abundant large pelagic shark in the Atlantic Ocean. Although recaptures of tagged sharks have shown that the species is highly migratory, migration pathways towards the overwintering grounds remain poorly understood. We used archival satellite pop-up tags to track 23 blue sharks over a mean period of 88 days as they departed the coastal waters of North America in the autumn. Within 1–2 days of entering the Gulf Stream (median date of 21 Oct), all sharks initiated a striking diel vertical migration, taking them from a mean nighttime depth of 74 m to a mean depth of 412 m during the day as they appeared to pursue vertically migrating squid and fish prey. Although functionally blind at depth, calculations suggest that there would be a ∼2.5-fold thermoregulatory advantage to swimming and feeding in the markedly cooler deep waters, even if there was any reduced foraging success associated with the extreme depth. Noting that the Gulf Stream current speeds are reduced at depth, we used a detailed circulation model of the North Atlantic to examine the influence of the diving behaviour on the advection experienced by the sharks. However, there was no indication that the shark diving resulted in a significant modification of their net migratory pathway. The relative abundance of deep-diving sharks, swordfish, and sperm whales in the Gulf Stream and adjacent waters suggests that it may serve as a key winter feeding ground for large pelagic predators in the North Atlantic. PMID:21373198

  5. On the dynamic forcing of short-term climate fluctuations by feedback mechanisms

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.

    1979-01-01

    Various internal feedback mechanisms in the ocean atmosphere system were studied. A variability pattern of sea surface temperature with a quasibiennial oscillation (QBO) was detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's were pointed out by a hypothetical feedback model. Interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.

  6. Intercomparison of the Gulf Stream in ocean reanalyses: 1993-2010

    NASA Astrophysics Data System (ADS)

    Chi, Lequan; Wolfe, Christopher L. P.; Hameed, Sultan

    2018-05-01

    In recent years, significant progress has been made in the development of high-resolution ocean reanalysis products. This paper compares aspects of the Gulf Stream (GS) from the Florida Straits to south of the Grand Banks-particularly Florida Strait transport, separation of the GS near Cape Hatteras, GS properties along the Oleander Line (from New Jersey to Bermuda), GS path, and the GS north wall positions-in 13 widely used global reanalysis products of various resolutions, including two unconstrained products. A large spread across reanalysis products is found. HYCOM and GLORYS2v4 stand out for their superior performance by most metrics. Some common biases are found in all discussed models; for example, the velocity structure of the GS near the Oleander Line is too symmetrical and the maximum velocity is too weak compared with observations. Less than half of the reanalysis products show significant correlations (at the 95% confidence level) with observations for the GS separation latitude at Cape Hatteras, the GS transport, and net transport across Oleander Line. The cross-stream velocity structure is further discussed by a theoretical model idealizing GS as a smoothed PV front.

  7. Assessing trace metal pollution through high spatial resolution of surface sediments along the Tunis Gulf coast (southwestern Mediterranean).

    PubMed

    Ennouri, Rym; Zaaboub, Noureddine; Fertouna-Bellakhal, Mouna; Chouba, Lassad; Aleya, Lotfi

    2016-03-01

    Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction <63 μm by atomic absorption spectrophotometry. Results showed varying spatial distribution patterns for metals, indicating complex origins and controlling factors such as anthropogenic activities. Sediment metal concentrations are ranked as follows: Fe > Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea.

  8. Evaluating the competing effects of lithology and sediment supply on the erosional dynamics of rivers crossing active faults.

    NASA Astrophysics Data System (ADS)

    Whittaker, Alex; Boulton, Sarah; Kent, Emiko; Zondervan, Jesse; Hann, Madeleine; Watkins, Stephen; Bell, Rebecca; Brooke, Sam

    2017-04-01

    Lithology and sediment supply influence the erosional dynamics of rivers crossing active faults and together these effects govern the style, timescale and means by which landscapes respond to their tectono-climatic boundary conditions. Here, for transient bedrock catchments in the Gediz Graben, Turkey, and the Gulf of Corinth, Greece, for which the timing and rate of active faulting is known, we quantify the relative importance of rock strength and sediment supply on models of fluvial incision. We determine rock type, strength and erodibility using a Schmidt hammer and structural measurements of joint density and size. We evaluate the downstream distribution of channel width and stream power and calculate the extent to which the latter scales with tectonic rates and rock strength. Sediment supply is constrained using estimates of bedrock exposure, transport capacities and erosional fluxes. For the Turkish examples, stream powers in the metamorphic rocks are four times greater than in the Neogene sediment units, indicating a four-fold difference in bedrock erodibility, K, for a two-fold variation in in Schmidt hammer hardness. In the Gulf of Corinth examples, we interpret differences in stream powers near the active faults to represent order of magnitude differences in bedrock erodibility between carbonate and sandstone/conglomerate units. We also observe that in both cases, significant along-strike variation in fault slip rate is not associated with an increase in stream power for the sedimentary rocks and we assess the extent to which this stream power deficit may also represent the effects of sediment-flux-dependent incision.

  9. A numerical investigation of surface-induced mesocyclogenesis near the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Cione, Joseph J.; Raman, Sethu

    1995-10-01

    A series of numerical experiments designed to simulate the initial development stages of low-level coastal mesocyclogenesis near the Gulf Stream was recently conducted. Under initially quiescent conditions, surface cyclogenesis in the control simulation occurs along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) are maximized. A low-level mesovortex on the order of 140km forms approximately 12 h into the simulation and continues to intensify through 42h. During the 24 48 h time period, a mesoscale frontal feature develops in direct response to strong diabatic forcing associated with sustained surface latent and sensible heating near the Gulf Stream frontal zone south of the main circulation center. Due to the non-linear advection of the frontal feature during this time period, the previously quasi-stationary circulation center drifts eastward (and away) from the thermal forcing associated with the large SST gradients found to the west. This eastward frontal propagation acts to decrease the magnitude of the low level horizontal air temperature gradient near the center of circulation throughout the 24 42 h development period. During the 42 48-h period, the relatively quick moving frontal feature acts to severely shear the nearly stationary center of circulation in the east west direction. As a result, the mesoscale system begins to fill during the final 6 h of integration. In addition to the control simulation, additional sensitivity experiments were conducted. These experiments were specifically designed to: (1) investigate how the magnitude of the Gulf Stream SST gradients affect the timing and degree of cyclonic development; (2) address the impact surface moisture fluxes and moist convection each have on the simulated low level mesocyclogenesis; (3) isolate the role surface sensible heating plays in the overall development of the simulated mesocyclone. Results from the SST gradient experiment indicate that a moderate enhancement of the SST distribution significantly affects the timing of the initial cyclogenesis and the maximum intensity of the simulated frontal circulation. For the "no turbulent heat flux" experiment, it appears that the elimination of surface sensible heating does not radically alter the overall structure of the simulated mesocyclone. However, the rate of development during the early stage of cyclogenesis, the absolute peak intensity of the system as well as the vertical depth of the simulated mesoscale frontal feature were all noticeably reduced when compared with the control simulation. The initial development of a closed low level circulation was delayed by nearly 18 h in the absence surface latent heat fluxes. Once formed, the system intensified throughout the 48-h period of integration, but unlike the control experiment, a mesoscale frontal feature south of the main circulation center was not simulated. Results from the "no surface moisture flux/no moist convection" simulation illustrate that moist convective processes play a dominant role in the overall development of the mesoscale cyclone. For this particular case, a weak and extremely shallow circulation was simulated after 24h. This circulation quickly eroded however, and was virtually non-existent for integration times greater than 39h.

  10. Earth Observations taken by the STS-109 crew

    NASA Image and Video Library

    2002-03-05

    STS109-719-076 (1-12 March 2002) --- The astronauts on board the Space Shuttle Columbia took this 70mm picture featuring part of the eastern sea board. The oblique view looks northward from South Florida to the southern Appalachians. Most of the southeastern United States appears in crisp, clear air in the wake of a cold front that has pushed well off the mainland. Only a few jet stream and low-level clouds remain over South Florida and Gulf Stream.

  11. A Study of Oceans and Atmospheric Interactions Associated with Tropical Cyclone Activity using Earth Observing Technology

    NASA Astrophysics Data System (ADS)

    Abdullah, Warith; Reddy, Remata

    From October 22nd to 30th, 2012 Hurricane Sandy was a huge storm of many abnormalities causing an estimated 50 billion dollars in damage. Tropical storm development states systems’ energy as product of warm sea surface temperatures (SST’s) and tropical cyclone heat potential (TCHP). Advances in Earth Observing (EO) technology, remote sensing and proxy remote sensing have allowed for accurate measurements of SST and TCHP information. In this study, we investigated rapid intensification of Sandy through EO applications for precipitable water vapor (PWAT), SST’s and TCHP during the period of October 27th. These data were obtained from NASA and NOAA satellites and NOAA National Buoy data center (NDBC). The Sensible Heat (Qs) fluxes were computed to determine available energy resulting from ocean-atmosphere interface. Buoy 41010, 120 NM east of Cape Canaveral at 0850 UTC measured 22.3 °C atmospheric temperatures and 27 °C SST, an interface of 4.7 °C. Sensible heat equation computed fluxes of 43.7 W/m2 at 982.0 mb central pressure. Sandy formed as late-season storm and near-surface air temperatures averaged > 21 °C according to NOAA/ESRL NCEP/NCAR reanalysis at 1000 mb and GOES 13 (EAST) geostationary water vapor imagery shows approaching cold front during October 27th. Sandy encountered massive dry air intrusion to S, SE and E quadrants of storm while travelling up U.S east coast but experienced no weakening. Cool, dry air intrusion was considered for PWAT investigation from closest sounding station during Oct. 27th 0900 - 2100 UTC at Charleston, SC station 72208. Measured PWAT totaled 42.97 mm, indicating large energy potential supply to the storm. The Gulf Stream was observed using NASA Short-term Prediction Research and Transition Center (SPoRT) MODIS SST analysis. The results show 5 °C warmer above average than surrounding cooler water, with > 25 °C water extent approximately 400 NM east of Chesapeake Bay and eddies > 26 °C. Results from sensible heat computations for atmospheric interface suggests unusual warmth associated with Gulf Stream current, such that it provided Sandy with enough kinetic energy to intensify at high latitude. The study further suggests that energy gained from Caribbean TCHP and Gulf Stream SST’s were largely retained by Sandy upon losing tropical-cyclone characteristics and merging with strong cold front and polar jet stream. Storms of Sandy’s magnitude and unusual source of energy resulting from Gulf Stream may indicate a building average for tropical cyclone development and intensity for North Atlantic, particularly as the GOM waters continue to warm on seasonal averages.

  12. On the size and distribution of rings and coherent vortices in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Luce, David L.; Rossby, Tom

    2008-05-01

    The container motor vessel CMV Oleander, which operates between New Jersey and Bermuda, crosses the Gulf Stream and Sargasso Sea all year round on a semiweekly schedule. Using an acoustic Doppler current profiler, measurements of upper ocean currents have been made on a regular basis since the fall of 1992. In this paper we examine the database for evidence of axisymmetric coherent vortices including the distribution and intensity of cold core rings. To detect the existence of coherent vortices, the patterns of current vectors averaged between 40 and 80 m depth were fit to an axisymmetric Gaussian vortex model. The parameters of the model were axis location, maximum tangential, or swirl, speed, and radius at which the maximum swirl was measured. We were able to distinguish between the well-known cold core "rings" (CCRs) pinched from the Gulf Stream, and a population of cyclonic and anticyclonic "vortices" in the Sargasso Sea. Both the rings and the Sargasso Sea vortices showed radii of 64 ± 18 km, albeit with different swirl speeds. The rings, close to the Gulf Stream, exhibited a typical maximum swirl speed of 0.98 ± 0.40 m s-1 and a center relative vorticity of 0.64 ± 0.35 × 10-4 s-1, almost 80% of the planetary vorticity for the region. The more uniform population of Sargasso Sea vortices contained approximately equal numbers of cyclones and anticyclones, with mean speeds of +0.43 and -0.55 m s-1, and center relative vorticities of +0.24 × 10-4 s-1 and -0.29 × 10-4 s-1, respectively.

  13. Climatic teleconnections between the subtropical and polar North Atlantic during the Last Interglacial period (MIS5e)

    NASA Astrophysics Data System (ADS)

    Bauch, H. A.; Zhuravleva, A.

    2017-12-01

    Meridional gradients in sea surface temperature (SST) control ocean-atmosphere circulation patterns and, thus, regulate the global climate. Here we reconstruct variability of these gradients in the course of the Last Interglacial (MIS5e), by using sediment records from the low and high latitude North Atlantic which are linked via the Gulf Stream.In the Nordic Seas, i.e., at the northern end of the Gulf Stream extension, strong post-Saalian meltwater discharge reduced northward-directed transport of surface oceanic heat until the mid-MIS5e, resulting in a late and rather weak SST peak. To decipher the corresponding climatic changes in the area of the Gulf Stream origin, we employ stable isotopes data, planktic foraminifera assemblages as well as a new alkenone paleotemperature record from core drilled on the upper northern slope of the Little Bahama Bank. In addition, chemical composition of sediments (XRF data) was used to asses past sea level fluctuations and sedimentation regimes on this shallow-water carbonate bank. Significant variations in Sr/Ca ratios point to a two-fold structure of the Last Interglacial. Stabilized Sr/Ca values were reached only during the second phase of MIS5e, possibly representing the interval of maximum bank-top flooding after the northern hemisphere deglaciation terminated. Faunal-based proxies as well as oxygen isotopic gradients between surface and bottom-dwelling foraminifera corroborate existence of the two major climatic phases within the Last Interglacial, in agreement with the respective development in the polar region. This further suggests a strong climatic coupling between the subtropical and high-latitude North Atlantic with important implications for meridional SST gradients during the Last Interglacial.

  14. Interactions of phytoplankton, zooplankton and microorganisms

    NASA Astrophysics Data System (ADS)

    Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.

    We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.

  15. Environmental Guide to the Virginia Capes Operating Area

    DTIC Science & Technology

    1973-03-01

    invertebrates occupy the waters over the shelf. Among fishes found here are croakers, sea robins, sea bass, sharks, rays, bluefish , alewives, and...pelagic forms such as tuna, billfish, and bluefish migrate seasonally, occurring in greatest abun- dance along the Gulf Stream boundary in spring and

  16. Ocean Current Power Generator. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, G. A.

    2002-07-26

    The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost thatmore » is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.« less

  17. Experiment evaluates ocean models and data assimiliation in the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Willems, Robert C.; Glenn, S. M.; Crowley, M. F.; Malanotte-Rizzoli, P.; Young, R. E.; Ezer, T.; Mellor, G. L.; Arango, H. G.; Robinson, A. R.; Lai, C.-C. A.

    Using data sets of known quality as the basis for comparison, a recent experiment explored the Gulf Stream Region at 27°-47°N and 80°-50°W to assess the nowcast/forecast capability of specific ocean models and the impact of data assimilation. Scientists from five universities and the Naval Research Laboratory/Stennis Space Center participated in the Data Assimilation and Model Evaluation Experiment (DAMEÉ-GSR).DAMEÉ-GSR was based on case studies, each successively more complex, and was divided into three phases using case studies (data) from 1987 and 1988. Phase I evaluated models' forecast capability using common initial conditions and comparing model forecast fields with observational data at forecast time over a 2-week period. Phase II added data assimilation and assessed its impact on forecast capability, using the same case studies as in phase I, and phase III added a 2-month case study overlapping some periods in Phases I and II.

  18. An Experiment to Evaluate Skylab Earth Resources Sensors for Detection of the Gulf Stream. [Straits of Florida

    NASA Technical Reports Server (NTRS)

    Maul, G. A. (Principal Investigator); Gordon, H. R.; Baig, S. R.; Mccaslin, M.; Devivo, R. J.

    1976-01-01

    The author has identified the following significant results. An experiment to evaluate the Skylab earth resources package for observing ocean currents was performed in the Straits of Florida in January 1974. Data from the S190 photographic facility, S191 spectroradiometer and S192 multispectral scanner, were compared with surface observations. The anticyclonic edge of the Gulf Stream could be identified in the Skylab S190A and B photographs, but the cyclonic edge was obscured by clouds. The aircraft photographs were judged not useful for spectral analysis because vignetting caused the blue/green ratios to be dependent on the position in the photograph. The spectral measurement technique could not identify the anticyclonic front, but mass of Florida Bay water which was in the process of flowing into the Straits could be identified and classified. Monte Carlo simulations of the visible spectrum showed that the aerosol concentration could be estimated and a correction technique was devised.

  19. Generation and Maintenance of Recirculations by Gulf Stream Instabilities

    DTIC Science & Technology

    1999-02-01

    Francois Primeau for endless discus- sions of various scientific problems, Kirill Pankratov for useful advice on the numerical methods in fluid...recirculation. J. Phys. Oceanogr., 18, 662-682. [7] Davis C. A. and K. A. Emanuel, 1991 : Potential vorticity diagnostics of cyclo- genesis. Mon. Weather. Rev

  20. Slow Adaptation in the Face of Rapid Warming Leads to the Collapse of Atlantic Cod in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Pershing, A. J.; Alexander, M. A.; Hernandez, C.; Kerr, L. A.; Le Bris, A.; Mills, K.; Nye, J. A.; Record, N.; Scannell, H. A.; Scott, J. D.; Sherwood, G. D.; Thomas, A. C.

    2016-02-01

    Climate change is altering conditions in all marine ecosystems, but the pace of change is not uniform. Rapid changes in environmental conditions pose a challenge for resource management, especially when available tools or policies assume the environment is stationary. Between 2004 and 2013, the Gulf of Maine and northwest Atlantic Shelf warmed at a rate that few large marine ecosystems have ever experienced. This warming was associated with a northward shift in the Gulf Stream and with Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation. The unprecedented warming led to reduced recruitment and enhanced mortality of Atlantic cod. Fisheries management has built-in feedbacks designed to reduce quotas as populations decline, but the management process could not keep pace with the rapid temperature-related changes in the Gulf of Maine cod stock. Future recovery of this fishery now depends on both sound management and favorable temperatures. The experience in the Gulf of Maine highlights the need to incorporate environmental factors into resource management and to build resiliency in coupled social-ecological systems. It also highlights a need for scientific and policy guidance for managing species threatened by future warming.

  1. Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Blayo, E.; Verron, J.; Molines, J. M.

    1994-12-01

    Assimilation experiments were conducted using the first 12 months of TOPEX/POSEIDON (T/P) altimeter measurements in a multilayered quasi-geostrophic model of the North Atlantic between 20°N and 60°N. These experiments demonstrate the feasibility of using T/P data to control a basin-scale circulation model by means of an assimilation procedure. Moreover, they allow us to recreate the four-dimensional behavior of the North Atlantic Ocean during the year October 1992-September 1993 and to improve our knowledge and understanding of such circulation patterns. For this study we used a four-layer quasigeostrophic model of high horizontal resolution (1/6° in latitude and longitude). The assimilation procedure used is an along-track, sequential, nudging technique. The evolution of the model general circulation is described and analyzed from a deterministic and statistical point of view, with special emphasis on the Gulf Stream area. The gross features of the North Atlantic circulation in terms of mean transport and circulation are reproduced, such as the path, penetration and recirculation of the Gulf Stream, and its meandering throughout the eastern basin. The North Atlantic Drift is, however, noticeably underestimated. A northern meander of the north wall of the Gulf Stream above the New England Seamount Chain is present for most of the year, while, just downstream, the southern part of the jet is subject to a 100-km southeastward deflection. The Azores current is shown to remain stable and to shift southward with time from the beginning of December 1992 to the end of April 1993, the amplitude of the shift being about 2°. The computation of the mean latitude of the Gulf Stream as a function of time shows an abrupt shift from a northern position to a southern position in January, and a reverse shift, from a southern position to a northern position, in July. Finally, some issues are addressed concerning the comparison of assimilation experiments using T/P data and Geosat data. The first results show that the T/P simulations are more energetic than the Geosat simulations, especially east of the Mid-Atlantic Ridge, for every wavelength from 50 km to 500 km. This property is also verified in the deep ocean. The predicted abyssal circulation is indeed more energetic in the T/P case, which is more in accordance with what we know of the real ocean. Moreover, the good T/P altimeter coverage near the coasts greatly improves the model eddy kinetic energy levels in these areas, especially east of 25°W.

  2. JPRS Report, Science & Technology, USSR: Earth Sciences

    DTIC Science & Technology

    1988-02-26

    25 - d Phenomenological Description of Eddy Registered in Gulf Stream (V.A. Bubnov, N.P. Kuzmina , et al.; OKEANOLOGIYA, No 1, Jan-Feb 87) 26...Bubnov, N. P. Kuzmina and I. S. Podymov, Oceanology Insti- tute imeni P. P. Shirshov, USSR Academy of Sciences, Moscow] [Abstract] The 5th cruise of

  3. Sensitivity Analysis of SWAT Nitrogen Simulations with and without In-Stream Processes

    EPA Science Inventory

    Nitrogen (N) losses to surface waters are of great concern on both national and regional scales. Scientists have concluded that large areas of hypoxia in the northern Gulf of Mexico are due to excessive nutrients derived primarily from agricultural runoff via the Mississippi Rive...

  4. Present and past Gulf Stream variability in a cold-water coral area off Cape Lookout, West Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Pedersen, A.; Duineveld, G.; Seidenkrantz, M.; Fischel, A.; Matos, L.; Bane, J. M.; Frank, N.; Hebbeln, D.; Ross, S.

    2012-12-01

    Cold-water coral mounds are common on the SE slope of the US from Florida to Cape Hatteras between depths of 400-600 m. All coral areas lie in the vicinity of the Gulf Stream, which is characterized by strong currents transporting relatively warm water northwards. Thus far little is known about the recent and past environmental conditions inside the cold-water coral habitats on the SE US slope and particularly the effect of changing patterns of the Gulf Stream. Near Cape Lookout, which is the northern most cold-water coral area on the SE US slope, cold-water corals have formed mounds up to 60 m high with a tear drop shape, which are oriented in a SSW-NNE direction. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. Two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Furthermore, a 3.6 m long piston core was collected in 2010 during a cruise with the R.V. Pelagia. This pistoncore was used to determine the changes of current strength through time, using foraminiferal counts, stable oxygen and carbon isotopes on foraminifera, XRF and magnetic susceptibility measurements. Cold-water coral fragments were dated with U/Th and foraminifera from the same depth interval were dated with C14. Bottom landers have recorded a number of events that are characterized by of peaks in temperature and salinity, coinciding with increased flow and turbidity. The current during these events was directed to the NNE. During some of these events temperature rose up to 9 degrees in one day. The temporary replacement of the colder bottom water by warm (and saline) water in combination with the strong currents to the NNE point at Gulfstream water moving over the deployment site as was confirmed by satellite images. The instantaneous increases in of the turbidity at the onset of warm events when the current speed increases, likely represent local erosion of the seafloor and of the coral mounds. Based on the foraminifera data three zones could be observed in the piston core (13000-10000 years, 10000-7200 years and 7200-4700 years. All zones show the gradual onshore movement of the Gulf Stream, which can be related to a rapid rise in sea-level after the last deglaciation. This movement has gradually widened the band of the Gulfstream thereby compressing the surface and deeper water masses. Current speed in the area are generally strong but weakened during periods of fresh water outflow in the North Atlantic, which weakened the thermohaline circulation. This was especially clear in zone 2 around 8200 years, due to a melt water pulse of lake Agassiz and Ojibway. Data presented here show that the Gulf Stream influenced cold-water coral growth and mound formation at the SE Us margin at present as well as in the past.

  5. Smoke in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of the Bay of Campeche, acquired January 17, 2001, shows a 300-kilometer long smoke plume streaming towards the northwest from around 19.4o North and 92o West, the location of the Akal oil field. In the lower right (southeast) corner of the image is the country of El Salvador, site of a magnitude 7.6 earthquake on January 13, 2001. On the Pacific side of Southern Mexico, the productive waters of the Gulf of Tehuantepec are visible. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. Phytoplankton bloom in Persian Gulf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    There is a large amount of sediment clearly visible in the true-color image of the Persian Gulf, acquired on November 1, 2001, by MODIS. Carried by the confluence of the Tigris and Euphrates Rivers (at center), the sediment-laden waters appear light brown where they enter the northern end of the Persian Gulf and then gradually dissipate into turquoise swirls as they drift southward. The nutrients these sediments carry are helping to support a phytoplankton bloom in the region, which adds some darker green hues in the rich kaleidoscope of colors on the surface (see the high resolution image). The confluence of the Tigris and Euphrates Rivers marks the southernmost boundary between Iran (upper right) and Iraq (upper left). South of Iraq are the countries of Kuwait and Saudi Arabia. The red dots indicate the probable locations of fires burning at oil refineries. Thin black plumes of smoke can be seen streaming away from several of these.

  7. An initial SPARROW model of land use and in-stream controls on total organic carbon in streams of the conterminous United States

    USGS Publications Warehouse

    Shih, Jhih-Shyang; Alexander, Richard B.; Smith, Richard A.; Boyer, Elizabeth W.; Shwarz, Grogory E.; Chung, Susie

    2010-01-01

    Watersheds play many important roles in the carbon cycle: (1) they are a site for both terrestrial and aquatic carbon dioxide (CO2) removal through photosynthesis; (2) they transport living and decomposing organic carbon in streams and groundwater; and (3) they store organic carbon for widely varying lengths of time as a function of many biogeochemical factors. Using the U.S. Geological Survey (USGS) Spatially Referenced Regression on Watershed Attributes (SPARROW) model, along with long-term monitoring data on total organic carbon (TOC), this research quantitatively estimates the sources, transport, and fate of the long-term mean annual load of TOC in streams of the conterminous United States. The model simulations use surrogate measures of the major terrestrial and aquatic sources of organic carbon to estimate the long-term mean annual load of TOC in streams. The estimated carbon sources in the model are associated with four land uses (urban, cultivated, forest, and wetlands) and autochthonous fixation of carbon (stream photosynthesis). Stream photosynthesis is determined by reach-level application of an empirical model of stream chlorophyll based on total phosphorus concentration, and a mechanistic model of photosynthetic rate based on chlorophyll, average daily solar irradiance, water column light attenuation, and reach dimensions. It was found that the estimate of in-stream photosynthesis is a major contributor to the mean annual TOC load per unit of drainage area (that is, yield) in large streams, with a median share of about 60 percent of the total mean annual carbon load in streams with mean flows above 500 cubic feet per second. The interquartile range of the model predictions of TOC from in-stream photosynthesis is from 0.1 to 0.4 grams (g) carbon (C) per square meter (m-2) per day (day-1) for the approximately 62,000 stream reaches in the continental United States, which compares favorably with the reported literature range for net carbon fixation by phytoplankton in lakes and streams. The largest contributors per unit of drainage area to the mean annual stream TOC load among the terrestrial sources are, in descending order: wetlands, urban lands, mixed forests, agricultural lands, evergreen forests, and deciduous forests . It was found that the SPARROW model estimates of TOC contributions to streams associated with these land uses are also consistent with literature estimates. SPARROW model calibration results are used to simulate the delivery of TOC loads to the coastal areas of seven major regional drainages. It was found that stream photosynthesis is the largest source of the TOC yields ( about 50 percent) delivered to the coastal waters in two of the seven regional drainages (the Pacific Northwest and Mississippi-Atchafalaya-Red River basins ), whereas terrestrial sources are dominant (greater than 60 percent) in all other regions (North Atlantic, South Atlantic-Gulf, California, Texas-Gulf, and Great Lakes).

  8. On the evolution of Atlantic Meridional Overturning Circulation Fingerprint and implications for decadal predictability in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Zhang, Jinting; Zhang, Rong

    2015-07-01

    It has been suggested previously that the Atlantic Meridional Overturning Circulation (AMOC) anomaly associated with changes in the North Atlantic Deep Water formation propagates southward with an advection speed north of 34°N. In this study, using Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 (GFDL CM2.1), we show that this slow southward propagation of the AMOC anomaly is crucial for the evolution and the enhanced decadal predictability of the AMOC fingerprint—the leading mode of upper ocean heat content (UOHC) in the extratropical North Atlantic. A positive AMOC anomaly in northern high latitudes leads to a convergence/divergence of the Atlantic meridional heat transport (MHT) anomaly in the subpolar/Gulf Stream region, thus warming in the subpolar gyre (SPG) and cooling in the Gulf Stream region after several years. Recent decadal prediction studies successfully predicted the observed warm shift in the SPG in the mid-1990s. Our results here provide the physical mechanism for the enhanced decadal prediction skills in the SPG UOHC.

  9. Mobile Bay, Alabama area seen in Skylab 4 Earth Resources Experiment Package

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A near vertical view of the Mobile Bay, Alabama area seen in this Skylab 4 Earth Resources Experiment Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in earth orbit. North of Mobile the Tombigbee and Alabama Rivers join to form the Mobile River. Detailed configuration of the individual stream channels and boundaries can be defined as the Mobile River flows into Mobile Bay and into the Gulf of Mexico. The Mobile River Valley with its numerous stream channels is a distinct light shade in contrast to the dark green shade of the adjacent areas. The red coloration of Mobile Bay reflects the sediment load carried into the bay by the rivers. The westerly movement of the shore currents at the mouth of Mobile Bay is shown by the contrasting light blue of the sediment-laden current the the blue of the Gulf. Agricultural areas east and west of Mobile Bay are characterized by a rectangular pattern in green to white shades. Color variations may reflect

  10. Collecting Currents with Water Turbines

    NASA Astrophysics Data System (ADS)

    Allen, J.; Allen, S.

    2017-12-01

    Our science poster is inspired by Florida Atlantic University's recent program to develop three types of renewable energy. They are using water turbines and the Gulf Stream Current to produce a renewable energy source. Wave, tidal and current driven energy. Our poster is called "Collecting Currents with Water Turbines". In our science poster, the purpose was to see which turbine design could produce the most power. We tested three different variables, the number of blades (four, six, and eight), the material of the blades and the shape of the blades. To test which number of blades produced the most power we cut slits into a cork. We used plastic from a soda bottle to make the blades and then we put the blades in the cork to make the turbines. We observed each blade and how much time it took for the water turbines to pull up 5 pennies. Currently water turbines are used in dams to make hydroelectric energy. But with FAU we could understand how to harness the Gulf Stream current off Florida's coast we could soon have new forms of renewable energy.

  11. North Atlantic Ocean OSSE system development: Nature Run evaluation and application to hurricane interaction with the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Kourafalou, Vassiliki H.; Androulidakis, Yannis S.; Halliwell, George R.; Kang, HeeSook; Mehari, Michael M.; Le Hénaff, Matthieu; Atlas, Robert; Lumpkin, Rick

    2016-11-01

    A high resolution, free-running model has been developed for the hurricane region of the North Atlantic Ocean. The model is evaluated with a variety of observations to ensure that it adequately represents both the ocean climatology and variability over this region, with a focus on processes relevant to hurricane-ocean interactions. As such, it can be used as the "Nature Run" (NR) model within the framework of Observing System Simulation Experiments (OSSEs), designed specifically to improve the ocean component of coupled ocean-atmosphere hurricane forecast models. The OSSE methodology provides quantitative assessment of the impact of specific observations on the skill of forecast models and enables the comprehensive design of future observational platforms and the optimization of existing ones. Ocean OSSEs require a state-of-the-art, high-resolution free-running model simulation that represents the true ocean (the NR). This study concentrates on the development and data based evaluation of the NR model component, which leads to a reliable model simulation that has a dual purpose: (a) to provide the basis for future hurricane related OSSEs; (b) to explore process oriented studies of hurricane-ocean interactions. A specific example is presented, where the impact of Hurricane Bill (2009) on the eastward extension and transport of the Gulf Stream is analyzed. The hurricane induced cold wake is shown in both NR simulation and observations. Interaction of storm-forced currents with the Gulf Stream produced a temporary large reduction in eastward transport downstream from Cape Hatteras and had a marked influence on frontal displacement in the upper ocean. The kinetic energy due to ageostrophic currents showed a significant increase as the storm passed, and then decreased to pre-storm levels within 8 days after the hurricane advanced further north. This is a unique result of direct hurricane impact on a western boundary current, with possible implications on the ocean feedback on hurricane evolution.

  12. Short-finned Pilot Whales (Globicephala macrorhynchus) Target Gulf Stream and Shelf Break Waters in the U.S. Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Thorne, L. H.; Foley, H.; Webster, D.; Baird, R.; Swaim, Z.; Read, A.

    2016-02-01

    Short-finned pilot whales (Globicephala macrorhynchus) are deep-diving predators that feed on squid and regularly exploit prey at depths of more than 500 m. Detailed information on the habitat use of pilot whales in the Northwest Atlantic is lacking, which complicates management of the species, particularly for efforts to mitigate bycatch and depredation in the pelagic longline fishery. To address this limitation, we tracked the horizontal and vertical movements of short-finned pilot whales with LIMPET satellite-linked transmitters off Cape Hatteras, North Carolina, in 2014. We deployed 14 satellite tags and 4 satellite-linked depth recording tags, with deployments of 2 to 194 days (mean=57 days). Using randomly-generated temporally-matched pseudo-absences with modeled distance constraints and mixed-effects generalized additive models (GAMMs), we evaluated pilot whale movement relative to environmental variables (distance to shelf break, sea surface temperature SST), location of Gulf Stream, bathymetric slope, and depth). Pilot whales showed two types of behavior, showing a strong affinity for either the shelf break or waters of the Gulf Stream. Slope, distance to shelf break, and SST were significant predictors of habitat use (p<<0.001 for all variables, R2=0.40). Pilot whales demonstrated a preference for waters close to the shelf break, with warmer SST values (peak preference 25°C) and medium to high bathymetric slopes (peak preference 40 percent rise). We observed seasonal patterns in pilot whale movements, with whales diving to deeper depths in late summer and fall months than in spring months (Wilcoxon test, p<<0.001). Diving behavior was also significantly influenced by SST; pilot whales took longer and deeper dives in warmer waters (Pearson's correlation coefficients >0.40, p<<0.001). We use these results to develop spatial maps of pilot whale habitat relative to seasonal and environmental factors in order to identify areas and times of high risk for interactions between pilot whales and longline gear.

  13. The Glacial and Relative Sea Level History of Southern Banks Island, NT, Canada

    NASA Astrophysics Data System (ADS)

    Vaughan, Jessica Megan

    The mapping and dating of surficial glacial landforms and sediments across southern Banks Island document glaciation by the northwest Laurentide Ice Sheet (LIS) during the last glacial maximum. Geomorphic landforms confirm the operation of an ice stream at least 1000 m thick in Amundsen Gulf that was coalescent with thin, cold-based ice crossing the island's interior, both advancing offshore onto the polar continental shelf. Raised marine shorelines across western and southern Banks Island are barren, recording early withdrawal of the Amundsen Gulf Ice Stream prior to the resubmergence of Bering Strait and the re-entry of Pacific molluscs ~13,750 cal yr BP. This withdrawal resulted in a loss of ~60,000 km2 of ice --triggering drawdown from the primary northwest LIS divide and instigating changes in subsequent ice flow. The Jesse moraine belt on eastern Banks Island records a lateglacial stillstand and/or readvance of Laurentide ice in Prince of Wales Strait (13,750 -- 12,750 cal yr BP). Fossiliferous raised marine sediments that onlap the Jesse moraine belt constrain final deglaciation to ~12,600 cal yr BP, a minimum age for the breakup of the Amundsen Gulf Ice Stream. The investigation of a 30 m thick and 6 km wide stratigraphic sequence at Worth Point, southwest Banks Island, identifies an advance of the ancestral LIS during the Mid-Pleistocene (sensu lato), substantially diversifying the glacial record on Banks Island. Glacial ice emplaced during this advance has persisted through at least two glacial-interglacial cycles, demonstrating the resilience of circumpolar permafrost. Pervasive deformation of the stratigraphic sequence also records a detailed history of glaciotectonism in proglacial and subglacial settings that can result from interactions between cold-based ice and permafrost terrain. This newly recognized history rejects the long-established paleoenvironmental model of Worth Point that assumed a simple 'layer-cake' stratigraphy.

  14. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  15. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    USGS Publications Warehouse

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.

  16. Evidence against a late Wisconsinan ice shelf in the Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Williams, R.S.; Colman, Steven M.

    1990-01-01

    Proposals for the formation of a late Wisconsinan ice shelf in the Gulf of Maine during the retreat of the Laurentide Ice Sheet are considered to be inappropriate. An Antarctic-type ice shelf does not fit the field data that indicate temperate glacial, terrestrial, and marine climates for the region between 18 ka and 12 ka. A temperate ice shelf has no modern analogues and may be physically impossible. The preponderance of stratified drift in the Gulf of Maine region supports temperate climates during late Wisconsinan time. It also indicates that glacial meltwater, rather than ice in either an ice sheet or ice shelf, was the primary transport mechanism of glacial sediment and the source for the glaciomarine mud. For these reasons we have proposed glacial analogues for the deglaciation of the Gulf of Maine that consist of temperate or subpolar marine-based glaciers, characterized by depositional environments dominated by meltwater discharge directly to the sea or the sea by way of subaerial meltwater streams. These analogues include Alaskan fjord glaciers, glaciers on the Alaskan continental shelf that discharged meltwater directly into the sea in the not too distant past, and Austfonna (Nordaustandet, Svalbard, Norway) that is presently discharging meltwater in the sea along a grounded ice wall. This last example is the best modern-day analogue for the depositional environment for most of the glaciomarine mud in the Gulf of Maine and deglaciation of the Gulf. 

  17. Water Masses and Nutrient Sources to the Gulf of Maine

    PubMed Central

    Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James

    2016-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013. PMID:27721519

  18. Water Masses and Nutrient Sources to the Gulf of Maine.

    PubMed

    Townsend, David W; Pettigrew, Neal R; Thomas, Maura A; Neary, Mark G; McGillicuddy, Dennis J; O'Donnell, James

    2015-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013.

  19. 77 FR 19169 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Snapper-Grouper Fishery Off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... for ABC is the projected yield stream with a 70 percent probability of rebuilding success. The Council... to have an 81 percent chance of rebuilding in 10 years, greater than the 70 percent probability... AM applications. Should this ACT be used in the future to trigger AMs, then it may be expected to...

  20. US Navy Operational Global Ocean and Arctic Ice Prediction Systems

    DTIC Science & Technology

    2014-09-01

    meridional overturning circulation (Figure 29 in Hurlburt et al., 2011), when comparing a non-assimilative simulation with a data assimilative...boundary current regions of the Gulf Stream ( Atlantic ), the Kuroshio (Pacific), and the Agulhas and Somali Currents (both Indian). Consequently...Oceanic and Atmospheric Administration at the National Centers for Environmental Prediction (NCEP), initially for the North Atlantic (Mehra and

  1. Life on the edge: carbon fluxes from wetland to ocean along Alaska's coastal temperate rain forest

    Treesearch

    Rhonda Mazza; Richard Edwards; David D' Amore

    2010-01-01

    Acre for acre, streams of the coastal temperate rain forest along the Gulf of Alaska export 36 times as much dissolved organic carbon as the world average. Rain and snow are the great connectors, tightly linking aquatic and terrestrial systems of this region. The freshwater that flushes over and through the forest floor leaches carbon...

  2. A Moored System for Understanding the Temporal Variability of Prey Fields of Deep Diving Predators off Cape Hatteras and Response to Gulf Stream Fronts

    DTIC Science & Technology

    2015-09-30

    Number: N000141310686 http://superpod.ml.duke.edu/ LONG-TERM GOALS Fisheries acoustics are routinely used for biomass and abundance surveys and...will be required every 10-12 months), allowing us to address the seasonality and the inter-annual variability in prey biomass and density in

  3. Migrant Education. Third Annual Regional Workshop (Virginia Beach, Va., March 5-9, 1972).

    ERIC Educational Resources Information Center

    Nachman, Cynthia P., Comp.

    The Third Annual Regional Workshop on Migrant Education was held on March 5-9, 1972 in Virginia Beach, Virginia. This conference was for migrant educators from the Eastern Stream states extending from the Gulf of Mexico north to New England. Over 480 participants met, coordinating their ideas and experiences to create a better world for the…

  4. Dynamical Systems Analysis Of Transport In Flows Defined As Data Sets: Contaminant Control On The Coast Of Florida And Criteria For Warm Rings In The North Atlantic

    NASA Astrophysics Data System (ADS)

    Lekien, F.; Coulliette, C.

    In this talk we will briefly describe the dynamical systems framework for Lagrangian transport. In particular, we will show how dynamical systems theory can now be uti- lized in the context of "real" problems, such as those derived from remote sensing observations or the input of a large scale numerical model. We will illustrate these ideas by two examples. Study of fluid transport near the Atlantic coast of Florida us- ing a velocity field observed experimentally from high frequency radar measurements reveals that dynamical systems theory can be used to reduce contaminant density in coastal areas. We also study intergyre transport in a quasigeostrophic model of the North Atlantic. We investigate the structure of eddies detaching from the Gulf Stream and prove that in a double gyre structure cyclonic rings cannot contain fluid from the other gyre. Only anticyclonic rings can contain "foreign" fluid coming from another gyre. This explains many phenomenons, such as why counter-clockwise rings South of the Gulf Stream contain colder fluid advected directly from the northern gyre, which has been illustrated in many observational studies.

  5. Observed decline of the Atlantic Meridional Overturning circulation 2004 to 2012

    NASA Astrophysics Data System (ADS)

    Cunningham, Stuart; Smeed, David; Johns, William; Meinen, Chris; Rayner, Darren; Moat, Ben; Duchez, Aurelie; Bryden, Harry; Baringer Molly, O.; McCarthy, Gerard

    2014-05-01

    The Atlantic Meridional Overturning Circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April~2008 to March 2012 the AMOC was an average of 2.7 Sv weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the subtropical gyre above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of Lower North Atlantic Deep Water below 3000 m. The transport of Lower North Atlantic Deep Water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).

  6. Observed fingerprint of a weakening Atlantic Ocean overturning circulation.

    PubMed

    Caesar, L; Rahmstorf, S; Robinson, A; Feulner, G; Saba, V

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC)-a system of ocean currents in the North Atlantic-has a major impact on climate, yet its evolution during the industrial era is poorly known owing to a lack of direct current measurements. Here we provide evidence for a weakening of the AMOC by about 3 ± 1 sverdrups (around 15 per cent) since the mid-twentieth century. This weakening is revealed by a characteristic spatial and seasonal sea-surface temperature 'fingerprint'-consisting of a pattern of cooling in the subpolar Atlantic Ocean and warming in the Gulf Stream region-and is calibrated through an ensemble of model simulations from the CMIP5 project. We find this fingerprint both in a high-resolution climate model in response to increasing atmospheric carbon dioxide concentrations, and in the temperature trends observed since the late nineteenth century. The pattern can be explained by a slowdown in the AMOC and reduced northward heat transport, as well as an associated northward shift of the Gulf Stream. Comparisons with recent direct measurements from the RAPID project and several other studies provide a consistent depiction of record-low AMOC values in recent years.

  7. An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model

    NASA Technical Reports Server (NTRS)

    Fukumori, Ichiro; Malanotte-Rizzoli, Paola

    1995-01-01

    A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kalman filter based on approximation of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.

  8. AIRSAR observations of the Gulf Stream with interpretation from sea truth and modeling

    NASA Technical Reports Server (NTRS)

    Valenzuela, G. R.; Chubb, S. R.; Marmorino, G. O.; Trump, C. L.; Lee, J. S.; Cooper, A. L.; Askari, F.; Keller, W. C.; Kaiser, J. A. C.; Mied, R. P.

    1991-01-01

    On 20 Jul., JPL/DC-8 synthetic aperture radar (SAR) participated in the 17-21 Jul. 1990 NRL Gulf Stream (GS) experiment in preparation for SIR-C missions in 1993, 1994, and 1996 for calibration purposes and to check modes and techniques for operation at our experimental site off the east coast of the US. During this experiment, coordinated and near simultaneous measurements were performed from ship (R/V Cape Henlopen) and other aircraft (NADC/P-3 and NRL/P-3) to address scientific questions relating to the origin of 'slick-like' features observed by Scully-Power, the refraction and modulation of waves by variable currents, the effect of current and thermal fronts on radar imagery signatures and the modification of Kelvin ship wakes by fronts. The JPL/DC-8 and NADC/P-3 SAR's are fully polarimetric systems. Their composite frequency range varies between P- and X-band. We describe in detail the Airborne SAR (AIRSAR) participation in the Jul. 1990 GS experiment and present preliminary results of the ongoing analysis and interpretation of the radar imagery in the context of ground truth, other remote measurements, and modeling efforts.

  9. An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model

    NASA Astrophysics Data System (ADS)

    Fukumori, Ichiro; Malanotte-Rizzoli, Paola

    1995-04-01

    A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kaiman filter based on approximations of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.

  10. The Gulf Stream in Ocean Reanalyses: 1993-2010

    NASA Astrophysics Data System (ADS)

    Chi, L.; Wolfe, C.; Hameed, S.

    2017-12-01

    In recent years, significant progress has been made in the development of high-resolution ocean reanalysis products. However, errors are likely to remain because of inadequate coverage of observations, model resolutions, physical parameterizations, etc. We compare the representation of the Gulf Stream (GS) in several widely used global reanalysis products with resolutions ranging from 1° to 1/12°. This intercomparison focuses on the Florida Current transport, the separation of GS near Cape Hatteras, GS properties along the Oleander Line (from New Jersey to Bermuda), GS path and the GS north wall positions between 73°W and 55°W. A large spread exists across the reanalysis products. HYCOM and GLORYS2v4 stand out for their top performance in most metrics. Some common biases are found in all discussed products; for example, the velocity structure of the GS near the Oleander Line is too symmetric and the maximum velocity is weaker than in observations. In addition, the annual mean values of GS separation latitude near Cape Hatteras, the GS transport, and net transport across Oleander Line (which runs from New Jersey to Bermuda), less than half of the reanalysis products are correlated to the observations at 95% confidence level.

  11. Simulation of stream discharge and transport of nitrate and selected herbicides in the Mississippi River Basin

    USGS Publications Warehouse

    Broshears, R.E.; Clark, G.M.; Jobson, H.E.

    2001-01-01

    Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO: Ohio River at Grand Chain, IL: And Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico.

  12. Assimilation of global versus local data sets into a regional model of the Gulf Stream system. 1. Data effectiveness

    NASA Astrophysics Data System (ADS)

    Malanotte-Rizzoli, Paola; Young, Roberta E.

    1995-12-01

    The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3-month duration by constructing a "synthetic" ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the "global" Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi-weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique ("nudging"). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high-quality SYNOP data sets in numerical experiments longer than 1-2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model "on track" over 3-month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a "gentle" weight must be prescribed to it so as not to overconstrain the model. However, in these assimilations the predicted velocity fields over the SYNOP arrays are greatly in error. The continuous assimilation of the localized SYNOP data sets with a strong weight is necessary to obtain local realistic evolutions. Then assimilation of velocity measurements alone recovers the density structure over the array area. However, the spatial coverage of the SYNOP measurements is too small to constrain the model on the global scale. Thus the blending of both types of datasets is necessary in the assimilation as they constrain different time and space scales. Our choice of "gentle" nudging weight for the global OTIS 3 and "strong" weight for the local SYNOP data provides for realistic simulations of the Gulf Stream system, both globally and locally, on the 3- to 4-month-long timescale, the one governed by the Gulf Stream jet internal dynamics.

  13. U. S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model

    DTIC Science & Technology

    2009-01-01

    2008). There are three major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning ...Smith, 2007. Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system...σ-z coordinates, and (3) a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal

  14. Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.12

    DTIC Science & Technology

    2015-09-03

    NPP) with the VIIRS sensor package as well as data from the Geostationary Ocean Color Imager (GOCI) sensor, aboard the Communication Ocean and...capability • Prepare the NRT Geostationary Ocean Color Imager (GOCI) data stream for integration into operations. • Improvements in sensor...Navy (DON) Environmental Data Records (EDRs) Expeditionary Warfare (EXW) Geostationary Ocean Color Imager (GOCI) Gulf of Mexico (GOM) Hierarchical

  15. Secular Change and Inter-annual Variability of the Gulf Stream Position, 1993-2013, 70°-55°W

    NASA Astrophysics Data System (ADS)

    Bisagni, J. J.; Gangopadhyay, A.

    2016-12-01

    The Gulf Stream (GS) is the northeastward-flowing surface limb of the Atlantic Ocean meridional overturning circulation (AMOC) "conveyer belt" that flows towards Europe and the Nordic Seas. Changes in the GS position after its separation from the coast at Cape Hatteras, i.e., from 75°W to 50°W, may be key to understanding the AMOC, sea level variability and ecosystem behavior along the east coast of North America. In this study we compare secular change and inter-annual variability (IAV) of annual mean Gulf Stream North Wall (GSNW) position with equator-ward Labrador Current (LC) transport along the southwestern Grand Banks near 52° W using 21 years (1993-2013) of satellite altimeter data. Results at 70°, 65°, 60° and 55° W show a southward secular trend for the GSNW, decreasing to the west. IAV of de-trended GSNW position residuals also decreases to the west. The long-term secular trend of annual mean upper layer LC transport increases near 52° W. Furthermore, IAV of LC transport residuals near 52° W is significantly correlated with GSNW position residuals at 55° W at a lag of +1-year. Spectral analysis reveals inter-annual peaks at 5-7 years and 2-3 years for the North Atlantic Oscillation (NAO), GSNW (65°-55°W) and LC transport for 1993-2013. A volume calculation using the LC rms residual of +1.04 Sv near 52° W results in an estimated GSNW residual of 79 km, or 63% of the observed 125.6 km (1.13°) rms value at 55° W. A similar volume calculation using the positive long-term, upper-layer LC transport trend accounts for 68% of the observed southward shift of the GSNW over the 1993-2013 period. Our work provides observational evidence of direct interaction between the upper layers of the sub-polar and sub-tropical gyres within the North Atlantic over secular and inter-annual time scales as suggested by previous workers.

  16. From SYNOP to AMOC: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at Line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.

    2016-02-01

    Shipboard velocity and property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the deep ocean in the DSOW density layer. The occurrence of deep cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous observations (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested deep cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.

  17. Ku-band ocean radar backscatter observations during SWADE

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, F. K.; Lou, S. H.; Neumann, G.

    1993-01-01

    We present results obtained by an airborne Ku-band scatterometer during the Surface Wave Dynamics Experiment (SWADE). The specific objective of this study is to improve our understanding of the relationship between ocean radar backscatter and near surface winds. The airborne scatterometer, NUSCAT, was flown on the NASA Ames C-130 over an instrumented oceanic area near 37 deg N and 74 deg W. A total of 10 flights from 27 Feb. to 9 Mar. 1991 were conducted. Radar backscatter at incidence angles of 0 to 60 deg were obtained. For each incidence angle, the NUSCAT antenna was azimuthally scanned in multiple complete circles to measure the azimuthal backscatter modulations. Both horizontal and vertical polarization backscatter measurements were made. In some of the flights, the cross-polarization backscatter was measured as well. Internal calibrations were carried out throughout each of the flights. Preliminary results indicate that the radar was stable to +/-0.3 dB for each flight. In this paper, we present studies of the backscatter measurements over several crossings of the Gulf Stream. In these crossings, large air-sea temperature differences were encountered and substantial changes in the radar cross section were observed. We summarize the observations and compare them to the changes of several wind variables across the Gulf Stream boundary. In one of the flights, the apparent wind near the cold side of the Gulf Stream was very low (less than 3 m/s). The behavior of the radar cross sections at such low wind speeds and a comparison with models are presented. A case study of the effects of swell on the absolute cross section and the azimuthal modulation pattern is presented. Significant wave heights larger than m were observed during SWADE. The experimentally observed effects of the swell on the radar backscatter are discussed. The effects are used to assess the uncertainties in wind retrieval due to underlying waves. A summary of azimuthal modulation from our ten-flight of NUSCAT data is given. Wind velocities, air and sea surface temperature, ocean spectrum, and other variables measured from aircraft and buoys are also shown.

  18. On the use of the earth resources technology satellite /LANDSAT-1/ in optical oceanography

    NASA Technical Reports Server (NTRS)

    Maul, G. A.; Gordon, H. R.

    1975-01-01

    Observations of the Gulf Stream System in the Gulf of Mexico were obtained in synchronization with LANDSAT-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed by color (diffuse radiance) or sea state (specular radiance) effects associated with the cyclonic boundary even in the absence of a surface thermal signature. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance.

  19. June and August median streamflows estimated for ungaged streams in southern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2010-01-01

    Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.

  20. Global Positioning System En Route/Terminal Exploratory Tests.

    DTIC Science & Technology

    1982-12-01

    the set in a Grumman G-159 Gulf stream during June and July 1981. •»-*r P "» _^„. ~kjfe. 11 H. "»> ’•! This report contains the test...i . ».....•. :. • i i r iia^ri 1 I.-—„., nlMllltt—’ PLOT STAAT TIME 21 42 20 PLOT ENO TIME 23 1» 20 DATE RECOnOFO- TIOtlM TIME OPS

  1. Proceedings of the Workshop on Gulf Stream Structure and Variability Held at Research Triangle Park, North Carolina on 1-2 April 1982.

    DTIC Science & Technology

    1982-04-01

    Fear. Deep Sea Res., 16, 225-231. Salby, M. L., 1981: Rossby normal modes in nonuniform background configurations. Part I: Simple fields. Part II...CUJRRENT METER 1363 m~ 1/4" WIRE So - 1I? GLASS FLOATS IGO I CHAIN 720 m ANCHOR lAIR W1145141 3300 I- Fig. 2. Florida Current test mooring 325

  2. Surface water supply of the United States, 1907-8, Part II. South Atlantic Coast and eastern Gulf of Mexico

    USGS Publications Warehouse

    ,

    1909-01-01

    This volume contains results of flow measurements made on certain streams in the United States. The work was performed by the water-resources branch of the United States Geological Survey, either independently or in cooperation with organizations mentioned herein. These investigations are authorized by the organic law of the Geological Survey (Stat. L., vol. 20, p. 394)...

  3. U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model

    DTIC Science & Technology

    2008-09-30

    major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning circulation (AMOC), and (3) a...convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system. Ocean Model., 16, 141-159...a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal/estuarian applications. NCOM is

  4. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, D.H.

    2001-01-01

    Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (δ15N and δ18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the δ15N and δ18O of NO3 provide information about NO3 sources and transformation processes in a large river system (drainage area 2 900 000 km2) that would otherwise be unavailable using concentration and discharge data alone. Results from 42 samples indicate that the δ15N and δ18O ratios between sites on the Mississippi River and its tributaries are somewhat distinctive, and vary with season and discharge rate. Of particular interest are two nearly Lagrangian sample sets, in which samples from the Mississippi River at St Francisville, LA, are compared with samples collected from the Ohio River at Grand Chain, II, and the Mississippi River at Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months.

  5. Oceanic heterotrophic dinoflagellates: distribution, abundance, and role as microzooplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessard, E.J.

    1984-01-01

    The primary objectives of this thesis were to determine the distribution and abundance of heterotrophic dinoflagellates across the Gulf Stream system off Cape Hatteras and to assess the potential grazing impact of these microheterotrophs in plankton communities. A list of species encountered in this study and their trophic status based on epifluorescence is presented, as well as observations on the presence of external or internal symbionts. The abundance of heterotrophic dinoflagellates across the Gulf Stream region off Cape Hatteras was determined from bimonthly net tow samples over a year and from whole water samples in March. Their average abundance wasmore » twice that of net ciliates in the net plankton and ten times that of ciliates in the nanoplankton. An isotope technique was developed to measure grazing rates of individual dinoflaggellates and other microzooplankton which cannot be separated in natural populations on the basis of size. /sup 3/H-thymidine and /sup 14/C-bicarbonate were used to label natural heterotrophic (bacteria and bacterivores) and autotrophic (phytoplankton and herbivores) food, respectively. Estimates of the grazing impact of heterotrophic kinoflagellates relative to other groups of heterotrophs on phytoplankton and bacteria were made by combining abundance data and clearance rates. Such calculations suggested that heterotrophic dinoflagellates may be an important group of grazers in oceanic waters.« less

  6. Observed decline of the Atlantic meridional overturning circulation 2004-2012

    NASA Astrophysics Data System (ADS)

    Smeed, D. A.; McCarthy, G. D.; Cunningham, S. A.; Frajka-Williams, E.; Rayner, D.; Johns, W. E.; Meinen, C. S.; Baringer, M. O.; Moat, B. I.; Duchez, A.; Bryden, H. L.

    2014-02-01

    The Atlantic meridional overturning circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable-based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April 2008 to March 2012, the AMOC was an average of 2.7 Sv (1 Sv = 106 m3 s-1) weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the southward flow above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of lower North Atlantic deep water below 3000 m. The transport of lower North Atlantic deep water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year).

  7. Slowing of the Atlantic meridional overturning circulation at 25 degrees N.

    PubMed

    Bryden, Harry L; Longworth, Hannah R; Cunningham, Stuart A

    2005-12-01

    The Atlantic meridional overturning circulation carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the Equator. Its heat transport makes a substantial contribution to the moderate climate of maritime and continental Europe, and any slowdown in the overturning circulation would have profound implications for climate change. A transatlantic section along latitude 25 degrees N has been used as a baseline for estimating the overturning circulation and associated heat transport. Here we analyse a new 25 degrees N transatlantic section and compare it with four previous sections taken over the past five decades. The comparison suggests that the Atlantic meridional overturning circulation has slowed by about 30 per cent between 1957 and 2004. Whereas the northward transport in the Gulf Stream across 25 degrees N has remained nearly constant, the slowing is evident both in a 50 per cent larger southward-moving mid-ocean recirculation of thermocline waters, and also in a 50 per cent decrease in the southward transport of lower North Atlantic Deep Water between 3,000 and 5,000 m in depth. In 2004, more of the northward Gulf Stream flow was recirculating back southward in the thermocline within the subtropical gyre, and less was returning southward at depth.

  8. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

    NASA Astrophysics Data System (ADS)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael

    2018-01-01

    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  9. Silicon utilizing microorganisms in the sea act as the environmental bellwether which foretell future trends in weather fluctuations

    NASA Astrophysics Data System (ADS)

    Das, S.

    2012-12-01

    It is well known that the southerly shift of the Gulf Stream is associated with major storms, heavy rains and mudslide in the adjoining northern part of the globe. Phytoplanktons particularly their silicon utilizing members like diatoms were found to play a major part in this phenomenon. A decrease in silicon utilizing phytoplanktons and chlorophyll-a , which sometimes occurs even more than 10 fold was found associated with a parallel significant decrease of zooplanktons as reflected in the CPR survey, leads to fall of sea temperature causing a shift of the Gulf Stream. This sea temperature changes is also associated with cooling of the adjoining atmosphere in a remarkable way which leads to weather changes. The association of silicon utilizing diatoms and the ocean currents guides the future trends in the climatic swing known as NAO, one of the great fluctuations that occur in the global climate, the largest of which is the ENSO phenomenon in the Pacific Ocean, which cause destruction all around the tropics. When total density and biovolume of phytoplanktons were studied it was found that the changes of pennate diatoms was unique and occurred in an opposite way in comparison to green algae, blue green algae, chrysophyte, cryptophytes, dinoflagellates and green flagellates.

  10. Nonlinear Gulf Stream Interaction with the Deep Western Boundary Current System: Observations and a Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng

    2003-01-01

    Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.

  11. Small-scale shear measurements during the Fine and Microstructure Experiment (Fame)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gargett, A.E.; Osborn, T.R.

    1981-03-20

    The turbulent kinetic energy dissipation rate e is estimated from measurements of small-scale shear taken with a vertical profiler during the Fine and Microstructure Experiment (Fame). Typical profiles of e are presented for the different oceanographic regions sampled, the Gulf Stream, a mid-Sargasso site, and locations withoutin and with the 100 fathom (approx.2000 m) contour about the island of Bermuda. Heavily averaged values of e are presented as a funtion of mean Vaeisaela frequency N-bar, a fundamental scaling parameter for the oceanic internal wave field. A dependence of e-barproportionalN-bar is found for an ensemble of stations near Bermuda: functional dependencemore » for an ensemble of stations at the mid-Sargasso site is less clear, with results exhibiting an undersirable sensitivity to infrequent large events. Dissipation is found to increase as the island of Bermuda is approached from any direction: the density of measurements is insufficient to determine any azimuthal variation resulting from the anisotropic mean flow field about the island at the time. A set of three profiles across the Gulf Stream suggests that this is not a region of abnormally high dissipation, a conclusion supported by previous and concurrent measurements of temperature finestructure and microstructure.« less

  12. Simulation of stream discharge and transport of nitrate and selected herbicides in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Broshears, Robert E.; Clark, Gregory M.; Jobson, Harvey E.

    2001-05-01

    Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO; Ohio River at Grand Chain, IL; and Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico. Published in 2001 by John Wiley & Sons, Ltd.

  13. Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example

    DTIC Science & Technology

    2010-01-01

    transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12

  14. Dynamical Evaluation of Ocean Models Using the Gulf Stream as an Example

    DTIC Science & Technology

    2012-02-10

    Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ...30 35 55N 65N Fig. 21.14 Atlantic meridional overturning circulation (AMOC) streamfunction from the same four simulations as Fig. 21.11. An AMOC...typically develops a northern or southern bias. A shallow bias in the southward abyssal flow of the Atlan- tic Meridional Overturning Circulation (AMOC

  15. A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1WS

    USGS Publications Warehouse

    Brakebill, J.W.; Terziotti, S.E.

    2011-01-01

    A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.

  16. A Digital Hydrologic Network Supporting NAWQA MRB SPARROW Modeling--MRB_E2RF1

    USGS Publications Warehouse

    Brakebill, J.W.; Terziotti, S.E.

    2011-01-01

    A digital hydrologic network was developed to support SPAtially Referenced Regression on Watershed attributes (SPARROW) models within selected regions of the United States. These regions correspond with the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program Major River Basin (MRB) study units 2, 3, 4, 5, and 7 (Preston and others, 2009). MRB2, covers the South Atlantic-Gulf and Tennessee River basins. MRB3, covers the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins. MRB4, covers the Missouri River basins. MRB5, covers the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins. MRB7, covers the Pacific Northwest River basins. The digital hydrologic network described here represents surface-water pathways (MRB_E2RF1) and associated catchments (MRB_E2RF1WS). It serves as the fundamental framework to spatially reference and summarize explanatory information supporting nutrient SPARROW models (Brakebill and others, 2011; Wieczorek and LaMotte, 2011). The principal geospatial dataset used to support this regional effort was based on an enhanced version of a 1:500,000 scale digital stream-reach network (ERF1_2) (Nolan et al., 2002). Enhancements included associating over 3,500 water-quality monitoring sites to the reach network, improving physical locations of stream reaches at or near monitoring locations, and generating drainage catchments based on 100m elevation data. A unique number (MRB_ID) identifies each reach as a single unit. This unique number is also shared by the catchment area drained by the reach, thus spatially linking the hydrologically connected streams and the respective drainage area characteristics. In addition, other relevant physical, environmental, and monitoring information can be associated to the common network and accessed using the unique identification number.

  17. Three-Dimensional Structure of the Circulation Induced by a Shoaling Topographic Wave

    NASA Astrophysics Data System (ADS)

    Mizuta, G.; Hogg, N. G.

    2003-12-01

    Rectification of Rossby wave energy has been proposed as a mechanism for the maintenance of the recirculation cell of the Gulf Stream (Hogg 1988; Rizzoli et al. 1995). We investigated the three-dimensional structure of potential-vorticity flux and a mean flow induced by a topographic wave incident over a bottom slope analytically and numerically, focusing on the limit that bottom friction is the dominant dissipation process. In this limit it is shown that the topographic wave cannot be a steady source of the potential vorticity outside the bottom Ekman layer. Instead, the distribution of potential vorticity is determined from the initial transient of the topographic wave. This potential vorticity and the heat flux by the topographic wave at the bottom determine the mean flow, and give a relation between the horizontal and vertical scales of the mean flow. When the horizontal scale of the mean flow is larger than the internal deformation radius, the mean flow is almost constant with depth independent of whether or not the topographic wave is trapped near the bottom. Then the mean flow at the bottom is proportional to the divergence of vertically integrated Reynolds stress ∫ -D0 /line{u'v'} dz. This divergence, which is caused by bottom friction, is large when the group velocity, cg and the vertical scale, μ -1 of the wave motion are small. Thus the mean flow tends to be large where cg and μ -1 become small, and decreases as the topographic wave is dissipated by bottom friction. Since bottom friction also dissipates the mean flow, the mean flow asymptotes to a constant value as the friction becomes zero. These features of the potential-vorticity flux and the mean flow are reproduced in numerical experiments. It is also shown from the numerical experiment that the distribution of the mean flow depends on the amplitude of the wave because of the Doppler shift of the wave by the mean flow. These feature of the mean flow are preserved when we used stratification and bottom topography resembling to those over the continental slope near the Gulf Stream. The transport of the mean flow is about 20 Sv when the wave amplitude is about 2 cm/s. These numbers are similiar to those observed in the Gulf Stream region.

  18. Modeling the drift of massive icebergs to the subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Condron, A.; Hill, J. C.

    2013-12-01

    New evidence from high-resolution seafloor bathymetry data indicates that massive (>300m thick) icebergs from the Laurentide Ice Sheet (LIS) drifted south to the tip of Florida during the last deglaciation. This finding is particularly exciting as it contradicts evidence from marine sediments that icebergs were mainly confined to the subpolar North Atlantic (50 - 70N) at this time. Indeed, the freshwater released from icebergs melting in the subpolar gyre is repeatedly cited as a main trigger for a slow-down of the Atlantic MOC in the past, and the possible cause of any climate cooling related to the melting of the Greenland Ice Sheet in the future. Using a sophisticated iceberg model (MITberg), coupled to a high (18-km; 1/6 deg.) resolution ocean model (MITgcm), we investigate the ocean circulation dynamics required to allow icebergs to drift to the southern tip of Florida. We find that icebergs only reach this location if they turn right at the Grand Banks of Newfoundland, and stay inshore of the Gulf Stream all the way to Florida. Modern-day circulation dynamics do not readily allow this to happen as cold, southward flowing, Labrador Current Water (important for iceberg survival) has little penetration south of Cape Hatteras. However, when a liquid meltwater flood is released from Hudson Bay at the same time, icebergs are rapidly transported (inshore of the Gulf Stream) in a narrow, buoyant, coastal current all the way to southern Florida. The meltwater and icebergs result in a significant freshening of the subtropical North Atlantic and weaken the strength of the Gulf Stream, suggesting such an event would have a large cooling effect on climate. We are only able to simulate the flow of meltwater and icebergs to the subtropics by modeling ocean circulation at a resolution that is 5 - 10 times higher than the majority of existing paleoclimate models; at lower resolutions the narrow, coastal boundary currents important for iceberg transport to the subtropics are no longer resolved. Our results show convincing evidence that a large component of iceberg laden freshwater from the LIS had more of a subtropical impact than previously believed, suggesting the ';subpolar-freshening' hypothesis repeatedly cited in the literature as a trigger for abrupt climate change needs rethinking.

  19. Variability of sea-surface temperature in the South Atlantic bight as observed from satellite: Implications for offshore-spawning fish

    NASA Astrophysics Data System (ADS)

    Stegmann, P. M.; Yoder, J. A.

    1996-06-01

    We examined full-resolution (1 × 1 km) satellite images of sea-surface temperature (SST) over five consecutive years (1981-1986) covering the Atlantic menhaden ( Brevoortia tyrannus) recruitment period (November-April) in the SABRE (South Atlantic Bight recruitment experiment) study site. The results of our image time series indicated two processes which could be possible mechanisms for the onshore transport of fish larvae into coastal regions. One is the influx of warm Gulf Stream water that oscillates in and out of the Carolina Bays. These oscillations occurred throughout the study period over distances of 20-40 km and on time-scales as short as two days. The other is a tongue of relatively cold water located adjacent to the Virginia coast that moved southward and penetrated into Onslow Bay between January and March. Previous studies showed that Atlantic menhaden preferentially spawn in 18-22°C waters on the outer shelf. On the assumption that the 18°C isotherm (18DI) indicates where high larval abundance may occur, we used AVHRR-SST imagery to track the onshore-offshore movement of the 18DI along a transect extending onshore-offshore in Onslow Bay. Owing to seasonal warming and cooling, this isotherm was always found closest to the coast in early November, reached maximum offshore displacement by January/March, and then moved onshore again in April/May. Our results also showed that the position of this isotherm can move offshore or onshore in a matter of a few days. An important influence and possibly the major cause of the higher frequency displacements of the 18DI are Gulf Stream meanders or filaments moving through Onslow Bay. Our estimates of onshore isotherm speeds as determined from satellite SST ranged from 2 to 25 cm s -1 and are within the same order as those calculated by physical models or larval age determinations. If the onshore pulses of warm Gulf Stream water are indeed a mode by which menhaden larvae are transported cross-shelf, then the use of satellite-based observations to determine their frequency and onshore extent, as done in the present study, is a useful tool to study variations in fish recruitment.

  20. OSTM/Jason-2 and Jason-1 Tandem Mission View of the Gulf Stream

    NASA Image and Video Library

    2009-04-27

    Created with altimeter data from NASA's Ocean Surface Topography Mission (OSTM)/Jason-2 satellite and the Jason-1 satellite, this image shows a portion of the Gulf Stream off the east coast of the United States. It demonstrates how much more detail is visible in the ocean surface when measured by two satellites than by one alone. The image on the left was created with data from OSTM/Jason-2. The image on the right is the same region but made with combined data from OSTM/Jason-2 and Jason-1.It shows the Gulf Stream's eddies and rings much more clearly. This image is a product of the new interleaved tandem mission of the Jason-1 and Ocean Surface Topography Mission (OSTM)/Jason-2 satellites. (The first global map from this tandem mission is available at PIA11859.) In January 2009, Jason-1 was maneuvered into orbit on the opposite side of Earth from its successor, OSTM/Jason-2 satellite. It takes 10 days for the satellites to cover the globe and return to any one place over the ocean. So, in this new tandem configuration, Jason-1 flies over the same region of the ocean that OSTM/Jason-2 flew over five days earlier. Its ground tracks fall mid-way between those of Jason-2, which are about 315 kilometers (195 miles) apart at the equator. Working together, the two spacecraft measure the surface topography of the ocean twice as often as would be possible with one satellite, and over a 10-day period, they return twice the amount of detailed measurements. Combining data from the two satellites makes it possible to map smaller, more rapidly changing features than one satellite could alone. These images show sea-level anomaly data from the first 14 days of the interleaved orbit of Jason-1 and OSTM/Jason-2, the period beginning on Feb. 20, 2009. An anomaly is a departure from a value averaged over a long period of time. Red and yellow are regions where sea levels are higher than normal. Purple and dark blue show where sea levels are lower. A higher-than-normal sea surface is usually a sign of warm waters below, while lower sea levels indicate cooler than normal temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA11997

  1. KSC-07pd3546

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Pilot Alan Poindexter seems satisfied with the landing practice session he has just completed aboard a shuttle training aircraft, or STA, at Kennedy Space Center's Shuttle Landing Facility. Poindexter and Commander Steve Frick are preparing for the Dec. 6 launch on space shuttle Atlantis. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd3545

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- STS-122 Commander Steve Frick seems satisfied with the landing practice session he has just completed aboard a shuttle training aircraft, or STA, at Kennedy Space Center's Shuttle Landing Facility. Frick and Pilot Alan Poindexter are preparing for the Dec. 6 launch on space shuttle Atlantis. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. Photo credit: NASA/Kim Shiflett

  3. Data requirements in support of the marine weather service program

    NASA Technical Reports Server (NTRS)

    Travers, J.; Mccaslin, R. W.; Mull, M.

    1972-01-01

    Data support activities for the Marine Weather Service Program are outlined. Forecasts, cover anomolous water levels, including sea and swell, surface and breakers, and storm surge. Advisories are also provided for sea ice on the Great Lake and Cook inlet in winter, and in the Bering, Chukchi, and Beaufort Seas in summer. Attempts were made to deal with ocean currents in the Gulf Stream, areas of upwelling, and thermal structure at least down through the mixed layer.

  4. Gulf Stream Temperature, Salinity and Transport During the Last Millennium

    DTIC Science & Technology

    2006-02-01

    their relationship to 9 one another and to proxies of solar variability. Chapter 3 addresses the temperature and salinity components of the...Florida Current 618Oc varied coherently with proxies of atmospheric radiocarbon at low frequencies over 10 the last 5,000 years, suggesting a link...cooling that began around 1000 A.D. models and proxies used. This two-stage character of the LIA is not apparent in the Florida margin cores. 6.4

  5. Into the Second Century: Memphis Engineer District, 1976-1981

    DTIC Science & Technology

    1983-01-01

    stream out of Lake Itasca in central Minnesota, the river begins a 2,340-mile journey to the Gulf of Mexico. In making the long journey, the river...McKellar Lake in honor of the senior Senator from Tennessee, Kenneth D. McKellar. Part of Tennessee Chute was dredged and then used as a slack...Missouri; and the Reelfoot -Obion areas in west Tennessee to monitor flood control structures. Under Phase I operations the Memphis District provided

  6. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    DTIC Science & Technology

    2013-09-30

    bottom form stress (pressure force) and bottom boundary layers – all the aspects associated with turbulent flows over steep topography in the presence of...filaments, and eddies; topographic current separation, form stress , and submesoscale vortex generation; Our work on isoneutral diffusion for tracers...Bump region, are due to the contribution of the bottom stress curl. Fig. 4 shows how the Gulf Stream path is directly linked to the Bottom Pressure

  7. Deep-Sea Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The deep-sea submarine 'Ben Franklin' is being docked in the harbor. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life. It also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  8. Interior View of the Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is an interior view of the living quarters of the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep- ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  9. Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is an aerial view of the deep-sea research submarine 'Ben Franklin' at dock. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  10. Skylab

    NASA Image and Video Library

    1969-07-01

    This is an aerial view of the deep-sea research submarine "Ben Franklin" at dock. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  11. Skylab

    NASA Image and Video Library

    1969-07-01

    In this photograph, the deep-sea Research Submarine "Ben Franklin" drifts off the East Coast of the United States (U.S.) prior to submerging into the ocean. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  12. Skylab

    NASA Image and Video Library

    1969-07-01

    This is an interior view of the living quarters of the deep-sea research submarine "Ben Franklin." Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep- ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  13. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic): Bluefish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J.D.; Van Den Avyle, M.J.; Bozeman, E.L. Jr.

    1989-04-01

    Species profiles are literature summaries of the life history, distribution, and environmental requirements of coastal fishes and invertebrates. Profiles are prepared to assist with environmental impact assessment. The bluefish (Pomatomus saltatrix) is a valuable recreational and commercial fish on the Atlantic coast. In the South Atlantic Region the recreational catch exceeds the commercial catch. The bluefish is a migratory pelagic fish that generally travels northward in spring and summer and southward in fall and winter along the Atlantic seaboard. In the South Atlantic Region, spawning occurs primarily during spring waters just shoreward of the Gulf Stream form southern North Carolinamore » to Florida. Most larvae are carried northward by the Gulf Stream and are dispersed over the continental slope of the Middle Atlantic Region. Adult bluefish inhabit nearshore areas in the South Atlantic Region during their southerly migration in fall and winter. Larval bluefish eat mostly copepods, cladocerans, and invertebrate eggs; juveniles eat larger invertebrates and fishes. Adult bluefish eat fishes and seem to prefer schooling coastal species. Bluefish have been reported to avoid areas of low dissolved oxygen. Water turbidity may affect feeding because bluefish rely on vision to locate prey. Environmental disturbances which affect the dissolved oxygen concentration or turbidity of estuarine and nearshore waters may, therefore, affect bluefish distribution and feeding. 40 refs., 4 figs., 2 tabs.« less

  14. Ocean backscatter across the Gulf Stream sea surface temperature front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nghiem, S.V.; Li, F.K.

    1997-06-01

    Ocean backscatter was measured by the Jet Propulsion Laboratory, with the airborne NUSCAT K{sub u}-band scatterometer, across the Gulf Stream sea surface temperature front during the Surface Wave Dynamics Experiment off the coast of Virginia and Maryland in the winter of 1991. Backscatter across the front between the National Oceanic and Atmospheric Administration experimental coastal buoy A (44024) on the cold side and Discus C buoy (44023) on the warm side shows a difference of more than 5 dB for vertical polarization in many cases. This large frontal backscatter change is observed in all upwind, downwind, and crosswind directions. Themore » sea surface temperature difference measured by the buoys was about 9{degrees}C. The corresponding difference in wind speed cannot account for the large backscatter change in view of geophysical model functions depending only on neutral wind velocity such as SASS. The measured backscatter also has larger upwind-downwind and upwind-crosswind ratios compared to the model results. Furthermore, NUSCAT data reveal that upwind backscatter on the cold side was smaller than or close to crosswind backscatter on the warm side for incidence angles between 30{degrees} to 50{degrees}. This suggests that the temperature front can be detected by the scatterometer at these incidence angles for different wind directions in the cold and warm sides.« less

  15. Fluorescence of dissolved organic matter: A comparison of north Pacific and north Atlantic Oceans during April 1991

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Swift, Robert N.; Yungel, James K.; Vodacek, Anthony

    1993-01-01

    Profiles of airborne-laser-induced fluorescence emission from dissolved organic matter in the upper ocean have been produced and compared for the Southern California Bight (SCB) and the Mid-Atlantic Bight (MAB). Findings were as follows. (1) The fluorescent components of dissolved organic matter (FDOM) are present in easily measurable quantities from near shore to well over 300 km offshore in the SCB and are likewise easily measurable in the coastal, shelf, slope, and Gulf Stream waters of the MAB. (2) The reange of FDOM in the MAB is considerably greater than that in the SCB. (3) The lowest FDOM levels observed in the SCB were higher than those found in the Gulf Stream. (4) The onshore-to-offshore spatial gradient of the FDOM was found to be considerably lower in the SCB than in the MAB, with the highest levels of FDOM being found immediately adjacent to the coast in the MAB. This suggests that the water adjacent to the SCB shoreline is not as strongly influenced by terrestrial and estuarine sources of FDOM as the MAB is. (5) The spatial distribution of the FDOM within both the SCB and the MAB is frequently coherent with the spatial distribution of chlorophyll determined form the concurrent airborne- laser- induced phytoplankton pigment fluorescence measurements. However, distinct noncoherency is sometimes observed, especially at water mass boundaries.

  16. Interannual variability of ring formations in the Gulf Stream region

    NASA Astrophysics Data System (ADS)

    Sasaki, Y. N.

    2016-02-01

    An oceanic ring in the Gulf Stream (GS) region plays important roles in across-jet transport of heat, salt, momentum, and nutrients. This study examines interannual variability of rings shed from the GS jet and their properties using satellite altimeter observations from 1993 to 2013. An objective method is used to capture a ring shedding from the GS jet and track its movement. A spatial distribution of the ring formations in the GS region showed that both cyclonic (cold-core) and anticyclonic (warm-core) rings were most frequently formed around the New England Seamount chain between 62°-65°W, suggesting the importance of the bottom topography on the pinch-off process. These rings moved westward, although about two-third of these rings was reabsorbed by the GS jet. The number of ring formations, especially cyclonic ring formations, indicated prominent fluctuations on interannual to decadal timescales. The annual maximum number of the pinched-off rings is four times larger than the annual minimum number of the rings. These fluctuations of the ring formations were negatively correlated with the strength of the GS. This situation is similar that in the Kuroshio Extension region. The interannual variability of the number of ring formations is also negatively correlated with the North Atlantic Oscillation (NAO) index with one-year lag (NAO leads). Interannual variations of the propagation tendency and shape of rings are also discussed.

  17. Impact of the Extreme Warming of 2012 on Shelfbreak Frontal Structure North of Cape Hatteras

    NASA Astrophysics Data System (ADS)

    Gawarkiewickz, G.

    2014-12-01

    Continental shelf circulation north of Cape Hatteras is complex, with southward flowing Middle Atlantic Bight shelf water intersecting the Gulf Stream and subducting offshore into the Gulf Stream. In May, 2012, a cruise was conducted in order to study the shelf circulation and acoustic propagation through fish schools in the area. An important aspect of the study was to use Autonomous Underwater Vehicles to map fish schools with a sidescan sonar. High-resolution hydrographic surveys to map the continental shelf water masses and shelfbreak frontal structure were sampled to relate oceanographic conditions to the fish school distributions. The cold pool water mass over the continental shelf in May 2012 was extremely warm, with temperature anomalies of up to 5 Degrees C relative to observations from the same area in May, 1996. The normal cross-shelf temperature gradients within the shelfbreak front were not present because of the warming. As a result, the shelf density field was much more buoyant than usual, which led to an accelerated shelfbreak jet. Moored velocity measurements at the 60 m isobath recorded alongshelf flow of as much as 0.6 m/s. The anticipated fish species were not observed over the continental shelf. Some comments on the forcing leading to the large scale warming will be presented, along with a brief discussion of the impact of the warming on the marine ecosystem in the northeast U.S.

  18. "Submesoscale Soup" Vorticity and Tracer Statistics During the Lateral Mixing Experiment

    NASA Astrophysics Data System (ADS)

    Shcherbina, A.; D'Asaro, E. A.; Lee, C. M.; Molemaker, J.; McWilliams, J. C.

    2012-12-01

    A detailed view of upper-ocean velocity, vorticity, and tracer statistics was obtained by a unique synchronized two-vessel survey in the North Atlantic in winter 2012. In winter, North Atlantic Mode water region south of the Gulf Stream is filled with an energetic, homogeneous, and well-developed submesoscale turbulence field - the "submesoscale soup". Turbulence in the soup is produced by frontogenesis and the surface layer instability of mesoscale eddy flows in the vicinity of the Gulf Stream. This region is a convenient representation of the inertial range of the geophysical turbulence forward cascade spanning scales of o(1-100km). During the Lateral Mixing Experiment in February-March 2012, R/Vs Atlantis and Knorr were run on parallel tracks 1 km apart for 500 km in the submesoscale soup region. Synchronous ADCP sampling provided the first in-situ estimates of full 3-D vorticity and divergence without the usual mix of spatial and temporal aliasing. Tracer distributions were also simultaneously sampled by both vessels using the underway and towed instrumentation. Observed vorticity distribution in the mixed layer was markedly asymmetric, with sparse strands of strong anticyclonic vorticity embedded in a weak, predominantly cyclonic background. While the mean vorticity was close to zero, distribution skewness exceeded 2. These observations confirm theoretical and numerical model predictions for an active submesoscale turbulence field. Submesoscale vorticity spectra also agreed well with the model prediction.

  19. A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Rykova, Tatiana; Oke, Peter R.; Griffin, David A.

    2017-06-01

    Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.

  20. Wernher von Braun

    NASA Image and Video Library

    1969-07-01

    This photograph depicts Dr. von Braun (at right, showing his back) and other NASA officials surveying the deep-sea research submarine "Ben Franklin." Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  1. Wernher von Braun

    NASA Image and Video Library

    1969-07-01

    This photograph depicts Dr. von Braun (fourth from far right) and other NASA officials surveying the deep-sea research submarine "Ben Franklin." Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  2. Data assimilation and model evaluation experiment datasets

    NASA Technical Reports Server (NTRS)

    Lai, Chung-Cheng A.; Qian, Wen; Glenn, Scott M.

    1994-01-01

    The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMEE) for the Gulf Stream region during fiscal years 1991-1993. Enormous effort has gone into the preparation of several high-quality and consistent datasets for model initialization and verification. This paper describes the preparation process, the temporal and spatial scopes, the contents, the structure, etc., of these datasets. The goal of DAMEE and the need of data for the four phases of experiment are briefly stated. The preparation of DAMEE datasets consisted of a series of processes: (1) collection of observational data; (2) analysis and interpretation; (3) interpolation using the Optimum Thermal Interpolation System package; (4) quality control and re-analysis; and (5) data archiving and software documentation. The data products from these processes included a time series of 3D fields of temperature and salinity, 2D fields of surface dynamic height and mixed-layer depth, analysis of the Gulf Stream and rings system, and bathythermograph profiles. To date, these are the most detailed and high-quality data for mesoscale ocean modeling, data assimilation, and forecasting research. Feedback from ocean modeling groups who tested this data was incorporated into its refinement. Suggestions for DAMEE data usages include (1) ocean modeling and data assimilation studies, (2) diagnosis and theoretical studies, and (3) comparisons with locally detailed observations.

  3. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    2000-01-01

    Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico. Copyright (C) 2000 Elsevier Science B.V.

  4. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River

    USGS Publications Warehouse

    Clark, Gregory M.; Goolsby, Donald A.

    2000-01-01

    Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991–1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1–2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico.

  5. Status and reproduction of Gulf coast strain walleye in a Tombigbee River tributary

    USGS Publications Warehouse

    Schramm, H.L.; Hart, J.; Hanson, L.A.

    2004-01-01

    Walleye (Sander vitreus [Mitchill]) are native to rivers and streams in the Mobile River basin in Mississippi and Alabama. These populations comprise a genetically unique strain (Gulf coast walleye, GCW) and represent the southernmost distribution of walleye in the United States. Luxapallila Creek was considered an important spawning site for GCW prior to and shortly after impoundment of the Tombigbee River in 1980. Extensive sampling in Luxapallila Creek in 2001 and 2002 collected only one larval walleye. Microsatellite DNA analysis suggested 14 of 16 adult walleye from Luxapallila Creek were hatchery-produced fish or their progeny. Controlled angling catch rates of adult walleye have declined since 1997. The scarcity of wild-spawned walleye and the similarity of wild-caught and hatchery broodstock walleye indicates that the GCW population in, or spawning in, Luxapallila Creek is sustained by stocking and recruitment from these stocked fish may be diminishing.

  6. Sea surface temperature variability in the Gulf of Mexico from 1734-2008 CE: A reconstruction using cross-dated Sr/Ca records from the coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    DeLong, K. L.; Flannery, J. A.; Quinn, T. M.; Maupin, C. R.; Lin, K.; Shen, C.

    2013-12-01

    Sea surface temperature (SST) variability in the Gulf of Mexico impacts climate in Central and North America because the Gulf is a major source of moisture and is a source region for the Gulf Stream, which transports ocean heat northward. Here we use skeletal variations in coral Sr/Ca from three Siderastrea siderea coral colonies within the Dry Tortugas National Park in the southeastern Gulf of Mexico (24°42'N, 82°48'W) to develop 274 years of monthly-resolved SST variations. The cross-dated chronology, determined by counting annual density bands and correlating Sr/Ca variations, is verified by four replicated high precision 230Th dates (×1.7-37 years, 2σ). Calibration and verification of our replicated coral Sr/Ca-SST reconstruction with Dry Tortugas SST (r = 0.98 and 0.55 for monthly and 36-month smoothed, respectively; 1992-2008 CE) and Key West, Florida surface air temperature (1895-2008 CE) measurements reveals similar covariance (r = 0.96 and 0.56 for monthly and 36-month smoothed, respectively). The absolute coral SST reconstruction is consistent with SST recorded at the Dry Tortugas lighthouse from 1879-1907 CE indicating that this coral Sr/Ca-SST relationship is stable on centennial time scales. The Sr/Ca-SST reconstruction reveals ~2.0°C interannual variability, ~1.5°C decadal fluctuations, and a 0.7°C warming trend for the past 274 years. Secular variability in our reconstruction is similar to approximately decadally resolved planktic foraminifer Mg/Ca records from the northern Gulf of Mexico. The coral Sr/Ca-SST reconstruction reveals colder decades (~1.5°C) suggesting a reduction in moisture and ocean heat flux from the Gulf of Mexico. We find winter extremes are more variable than summer extremes (×2.2°C vs. ×1.6°C, 2σ) with a stronger warming trend (1°C) in the summers suggesting continued warming may increase coral bleaching.

  7. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Kevin

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potentialmore » energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.« less

  8. European Science Notes Information Bulletin. Reports on Current European and Middle Eastern Science

    DTIC Science & Technology

    1993-04-01

    beamwidth of 2 degrees . Hie had interesting data wideband backscatter in the 2-50 kHz band and on profiles, including hydrothermal plumes ob- forward...civil aviation. Academician P. Naza- gravity in casting Al-Pb alloys. This process renko is rector of the institut’. and Professor N . produces a...pro- east -west sections across 36’ N from Gibraltar to grams such as WOCE (World Ocean Circulation Bermuda and northwest across the Gulf Stream

  9. Cultural Resources Reconnaissance Study of the Black Warrior-Tombigbee System Corridor, Alabama. Volume 1. Archaeology.

    DTIC Science & Technology

    1983-01-01

    hazel alder (Alnus serrulata), and lead plant (Amerpha fruticasa) often gain dominance on low stream banks. A great variety of woody vines groww in...Early Archaic ecosystems for the Midwest may be highly signifi- cant. From 8000 to about 5000 B.P. in southwest Alabama mobile groups apparently...n-48) of the Gulf Formational or Early Woodland sites within the BWT project area. Middle to Late Woodi -nd Site Locations The summary locational

  10. SEASAT views oceans and sea ice with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Fu, L. L.; Holt, B.

    1982-01-01

    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided.

  11. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    PubMed

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range <0.7-88.3 microg L(-1) in groundwater, 41.1-90.7 microg L(-1) in thermal spring water and 0.4-13.2 microg L(-1) in stream water, whereas As concentrations in stream sediments varied between 2.0-21.9 mg kg(-1). Four out of 31 groundwater samples exceeded the EC standard of 10 microg L(-1). The survey revealed an enrichment in both surface and groundwater hydrological systems in the northern part of the area (average concentrations of As in groundwater, stream water and stream sediment: 8.0 microg L(-1), 8.8 microg L(-1) and 15.0 mg kg(-1) respectively), in association with the volcanic bedrocks, while lower As concentrations were found in the eastern part (average concentrations in groundwater, stream water and stream sediment: 2.9 microg L(-1), 1.7 microg L(-1) and 5.9 mg kg(-1) respectively), which is dominated by ophiolitic ultramafic formations. The variation of As levels between the different parts of the study area suggests that local geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.

  12. Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.

    2008-12-01

    Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.

  13. Optimal boundary conditions for ORCA-2 model

    NASA Astrophysics Data System (ADS)

    Kazantsev, Eugene

    2013-08-01

    A 4D-Var data assimilation technique is applied to ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of boundary conditions on the solution is analyzed both within and beyond the assimilation window. It is shown that the optimal bottom and surface boundary conditions allow us to better represent the jet streams, such as Gulf Stream and Kuroshio. Analyzing the reasons of the jets reinforcement, we notice that data assimilation has a major impact on parametrization of the bottom boundary conditions for u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.

  14. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Jackson, C.R.

    2007-01-01

    Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.

  15. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada

    NASA Astrophysics Data System (ADS)

    Brickman, D.; Hebert, D.; Wang, Z.

    2018-03-01

    In 2012, 2014, and 2015 anomalous warm events were observed in the subsurface waters in the Scotian Shelf region of eastern Canada. Monthly output from a high resolution numerical ocean model simulation of the North Atlantic ocean for the period 1990-2015 is used to investigate this phenomenon. It is found that the model shows skill in simulating the anomaly fields derived from various sources of data, and the observed warming trend over the last decade. From analysis of the model run it is found that the anomalies originate from the interaction between the Gulf Stream and the Labrador Current at the tail of the Grand Banks (south of Newfoundland). This interaction results in the creation of anomalous warm/salty (or cold/fresh) eddies that travel east-to-west along the shelfbreak. These anomalies penetrate into the Gulf of St. Lawrence, onto the Scotian Shelf, and into the Gulf of Maine via deep channels along the shelfbreak. The observed warming trend can be attributed to an increase in the frequency of creation of warm anomalies during the last decade. Strong anomalous events are commonly observed in the data and model, and thus should be considered as part of the natural variability of the coupled atmosphere-ocean system.

  16. Dr. von Braun on top of the Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This photograph depicts Dr. von Braun (at right, showing his back) and other NASA officials surveying the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  17. Dr. von Braun on Top of the Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This photograph depicts Dr. von Braun (fourth from far right) and other NASA officials surveying the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  18. Deep-Sea Research Submarine 'Ben Franklin' at the East Coast of the United States

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In this photograph, the deep-sea Research Submarine 'Ben Franklin' drifts off the East Coast of the United States (U.S.) prior to submerging into the ocean. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  19. Trophic Ecology and Movement Patters of Tiger Sharks (Galeocerdo Cuvier) off the Western North Atlantic Coastal and Continental Shelf Waters

    NASA Astrophysics Data System (ADS)

    Sancho, G.; Edman, R.; Frazier, B.; Bubley, W.

    2016-02-01

    Understanding the trophic dynamics and habitat utilization of apex predators is central to inferring their influence on different marine landscapes and to help design effective management plans for these animals. Tiger sharks (Galeocerdo cuvier) are abundant in shelf and offshore Gulf Stream waters of the western North Atlantic Ocean, and based on movements from individuals captured in Florida and Bahamas, seem to avoid coastal and shelf waters off South Carolina and Georgia. This contradicts reports of tiger sharks regularly being caught nearshore by anglers in these states, indicating that separate sub-populations may exist in the western North Atlantic. In the present study we captured Tiger Sharks in coastal waters off South Carolina in 2014 and 2015 in order to describe their movement patterns through acoustic and satellite tagging, and trophic dynamics through stable isotope analyses. Movement data show that these tiger sharks repeatedly visit particular inshore areas and mainly travel over the continental shelf, but rarely venture offshore beyond the continental shelf edge. Ongoing C and N stable isotope analyses of muscle, blood and skin tissues from adult and juvenile tiger sharks, as well as from potential prey species and primary producers, will help determine if their diets are based on inshore, shelf or offshore based food webs. Tiger sharks exploiting nearshore environments and shelf waters have much higher probabilities of interacting with humans than individuals occupying far offshore Gulf Stream habitats.

  20. Integrated Observations From Fixed and AUV Platforms in the Littoral Zone at the SFOMC Coastal Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Dhanak, M. R.

    2001-12-01

    A 12-hour survey of the coastal waters off the east coast of Florida at the South Florida Ocean Measurement Center (SFOMC) coastal ocean observatory, during summer 1999, is described to illustrate the observatory's capabilities for ocean observation. The facility is located close to the Gulf Stream, the continental shelf break being only 3 miles from shore and is therefore influenced by the Gulf Stream meanders and the instability of the horizontal shear layer at its edge. As a result, both cross-shelf and along-shelf components of currents in the littoral zone can undergo dramatic +/- 0.5 m/s oscillations. Observations of surface currents from an OSCR, and of subsurface structure from an autonomous underwater vehicle (AUV) platform, a bottom-mounted ADCP and CT-chain arrays during the survey will be described and compared. The AUV on-board sensors included upward and downward looking 1200kHz ADCP, a CTD package and a small-scale turbulence package, consisting of two shear probes and a fast-response thermistor. Prevailing atmospheric conditions were recorded at an on-site buoy. The combined observations depict flows over a range of scales. Acknowledgements: The observations from the OSCR are due to Nick Shay and Tom Cook (University of Miami), and from the bottom-mounted ADCP, CT chain arrays and the surface buoy are due to Alex Soloviev (Nova Southeastern University) and Mark Luther and Bob Weisberg (University of South Florida).

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002 Geospatial_Data_Presentation_Form: tabular digital data

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). These characteristics are reach catchment shape index, stream density, sinuosity, mean elevation, mean slope and number of road-stream crossings. The source data sets are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011) and the U.S. Census Bureau's TIGER/Line Files (U.S. Census Bureau,2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.

    NASA Astrophysics Data System (ADS)

    Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.

    2016-02-01

    As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (<10 km) features along the front. Models have successfully reproduced similar features, but observations are lacking, particularly at the small scales needed to understand their role in the transport of heat and salt across the front and out of the mixed layer. Calculating the trend in time at each depth and cross-front location we found an increase of heat and salinity in regions where the strongest cross-front gradients of velocity were observed at the mixed layer and around 150m depth, these changes are density compensated and suggest isopycnal mixing and a connection between the mixed layer and subsurface layers. The large Rossby number (Ro>1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.

  3. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus).

    PubMed

    Richardson, David E; Marancik, Katrin E; Guyon, Jeffrey R; Lutcavage, Molly E; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J; Wildes, Sharon; Yates, Douglas A; Hare, Jonathan A

    2016-03-22

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.

  4. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus)

    PubMed Central

    Richardson, David E.; Marancik, Katrin E.; Guyon, Jeffrey R.; Lutcavage, Molly E.; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J.; Wildes, Sharon; Yates, Douglas A.; Hare, Jonathan A.

    2016-01-01

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors. PMID:26951668

  5. Passive Microwave Measurements of Salinity: The Gulf Stream Experiment

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Koblinsky, C.; Haken, M.; Howden, S.; Bingham, F.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Passive microwave sensors at L-band (1.4 GHz) operating from aircraft have demonstrated that salinity can be measured with sufficient accuracy (I psu) to be scientifically meaningful in coastal waters. However, measuring salinity in the open ocean presents unresolved issues largely because of the much greater accuracy (approximately 0.2 psu) required of global maps to be scientifically viable. The development of a satellite microwave instrument to make global measurements of SSS (Sea Surface Salinity) is the focus of a joint JPL/GSFC/NASA ocean research program called Aquarius. In the summer of 1999 a series of measurements called, The Gulf Stream Experiment, were conducted as part of research at the Goddard Space Flight Center to test the potential for passive microwave remote sensing of salinity in the open ocean. The measurements consisted of airborne microwave instruments together with ships and drifters for surface truth. The study area was a 200 km by 100 km rectangle about 250 km east of Delaware Bay between the continental shelf waters and north wall of the Gulf Stream. The primary passive instruments were the ESTAR radiometer (L-band, H-pol) and the SLFMR radiometer (L-band, V-pol). In addition, the instruments on the aircraft included a C-band radiometer (ACMR), an ocean wave scatterometer (ROWS) and an infrared radiometer (for surface temperature). These instruments were mounted on the NASA P-3 Orion aircraft. Sea surface measurements consisted of thermosalinograph data provided by the R/V Cape Henlopen and the MN Oleander, and data from salinity and temperature sensors on three surface drifters deployed from the R/V Cape Henlopen. The primary experiment period was August 26-September 2, 1999. During this period the salinity field within the study area consisted of a gradient on the order of 2-3 psu in the vicinity of the shelf break and a warm core ring with a gradient of 1-2 psu. Detailed maps were made with the airborne sensors on August 28 and 29 and on September 2 flights were made over the surface drifters to look for effects due to a change in surface roughness resulting from the passage of Hurricane Dennis. Results show a good agreement between the microwave measurements and ship measurements of salinity. The features of the brightness temperature maps correspond well with the features of the salinity field measured by the ship and drifters and a preliminary retrieval of salinity compares well with the ship data.

  6. From geospatial observations of ocean currents to causal predictors of spatio-economic activity using computer vision and machine learning

    NASA Astrophysics Data System (ADS)

    Popescu, Florin; Ayache, Stephane; Escalera, Sergio; Baró Solé, Xavier; Capponi, Cecile; Panciatici, Patrick; Guyon, Isabelle

    2016-04-01

    The big data transformation currently revolutionizing science and industry forges novel possibilities in multi-modal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost - a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques. This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image. We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized representation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC's H2020-sponsored 'See.4C' project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology and result. We shall attempt to extract more complex feature representation including branching points, eddies and parameterized changes in transport and velocity. Other related predictive features will be similarly developed, such as inference of deep water flux long the current path and wider spatial scale features such as Hough transform, surface turbulence indicators and temperature gradient indexes along with multi-time scale analysis of ocean height and temperature dynamics. The geospatial imaging and ML community may therefore benefit from a baseline of open-source techniques useful and expandable to other related prediction and/or scientific analysis tasks.

  7. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loope, D.B.; Swinehart, J.B.

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less

  8. Combined impacts of tidal energy extraction and sea level rise in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Hashemi, M. R.; Kresning, B.

    2016-12-01

    The objective of this study was to assess the combined effects of SLR and tidal energy extraction on the dynamics of tides in the Gulf of Maine in both US and Canadian waters. The dynamics of tides in the Gulf of Maine is dominated by tidal resonance, which generates one of the largest tidal ranges in the world. Further, sea level rise (SLR) is affecting tidal circulations globally, and in the Gulf of Maine. A large tidal energy resource is available in the Gulf of Maine, particularly in the Bay of Fundy, and is expected to be harvested in the future. Currently, more than 6 projects are operational or under development in this region (in both US and Canadian waters). Understanding the far-field impacts of tidal-stream arrays is important for future development of tidal energy extraction. The impacts include possible changes in water elevation, which can potentially increase flooding in coastal areas. Further, SLR can affect tidal energy resources and the impacts of tidal energy extraction during the project lifetime - which is usually more than 25 years. A tidal model of the Gulf of Maine was developed using Regional Ocean Model System (ROMS) at one arcminute scale. An array of turbines were simulated in the model. After validation of the model at NOAA tidal gauge stations and NERACOOS buoys, several scenarios; including SLR scenario, and tidal extraction scenario, were examined. In particular, the results of a recent research was used to assess the impacts of SLR on the boundary of the model domain, which was neglected in previous studies. The results of the impacts of the tidal energy extraction with and without the SLR were presented, and compared with those from literature. This includes the decrease of tidal range and M2 amplitude in Minas Basin due to the 2.5 GW extraction scenario, and possible changes in Massachusetts coastal area. The impacts were compared with the level of uncertainty in the model. It was shown that the impact of SLR on the dynamics of tides is more than those from energy extraction assuming 2.5 GW extraction in Minas Passage.

  9. Continuous proxy measurements reveal large mercury fluxes from glacial and forested watersheds in Alaska.

    PubMed

    Vermilyea, Andrew W; Nagorski, Sonia A; Lamborg, Carl H; Hood, Eran W; Scott, Durelle; Swarr, Gretchen J

    2017-12-01

    In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r 2 =0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r 2 =0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r 2 =0.55 for glacial stream, r 2 =0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm -2 y -1 , which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sediment from the Tigris and Euphrates

    NASA Technical Reports Server (NTRS)

    2002-01-01

    There is a large amount of sediment clearly visible in the true-color image of the Persian Gulf, acquired on November 1, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS). Carried by the confluence of the Tigris and Euphrates Rivers (at center), the sediment-laden waters appear light brown where they enter the northern end of the Persian Gulf and then gradually dissipate into turquoise swirls as they drift southward. The nutrients these sediments carry are helping to support a phytoplankton bloom in the region, which adds some darker green hues in the rich kaleidoscope of colors on the surface (see the high resolution image). The confluence of the Tigris and Euphrates Rivers marks the southernmost boundary between Iran (upper right) and Iraq (upper left). South of Iraq are the countries of Kuwait and Saudi Arabia. The red dots indicate the probable locations of fires burning at oil refineries. Thin black plumes of smoke can be seen streaming away from several of these. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  11. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    USGS Publications Warehouse

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment-associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages.

  12. Perpetual Ocean - Gulf Stream

    NASA Image and Video Library

    2017-12-08

    This image shows ocean surface currents around the world during the period from June 2005 through Decmeber 2007. Go here to view a video of this data: www.flickr.com/photos/gsfc/7009056027/ NASA/Goddard Space Flight Center Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Oceanographic Interpretation of Apollo Photographs. Coastal Oceanographic and Sedimentologic Interpretation of Apollo 9 Space Photographs; Carolina's Continental Shelf, USA

    NASA Technical Reports Server (NTRS)

    Mairs, R. L.

    1971-01-01

    Apollo 9 photographs, color band separations, and oceanographic and meteorological data are used in the study of the origin, movement, and dissipation of masses of discolored water near the shores of North and South Carolina. A model has been developed incorporating jet theory, climatology, currents, surface temperatures, color separations, and other oceanographic data to explain the processes involved in the life cycle of the discolored water masses. Special treatment is afforded the Gulf Stream boundary definition and the Cape Hatteras oceanographic barrier.

  14. Satellite altitude determination uncertainties

    NASA Technical Reports Server (NTRS)

    Siry, J. W.

    1972-01-01

    Satellite altitude determination uncertainties will be discussed from the standpoint of the GEOS-C satellite, from the longer range viewpoint afforded by the Geopause concept. Data are focused on methods for short-arc tracking which are essentially geometric in nature. One uses combinations of lasers and collocated cameras. The other method relies only on lasers, using three or more to obtain the position fix. Two typical locales are looked at, the Caribbean area, and a region associated with tracking sites at Goddard, Bermuda and Canada which encompasses a portion of the Gulf Stream in which meanders develop.

  15. Operations summary for the convection and moisture experiment (CAMEX)

    NASA Technical Reports Server (NTRS)

    Griffin, V. L.; Guillory, A. R.; Susko, M.; Arnold, J. E.

    1994-01-01

    During the fall of 1993, NASA sponsored a field program called the Convection and Moisture Experiment (CAMEX) at Wallops Island, Virginia. CAMEX was a multidisciplinary experiment design to measure the three dimensional moisture fields over Wallops Island and to characterize the multifrequency radiometric signature of tropical convection over the Gulf Stream and southeastern Atlantic Ocean. This document summarizes the daily CAMEX activities, including ground and aircraft (NASA ER-2) operations, and includes 'quick-look' summaries of data acquisition along with data examples provided by the various CAMEX PI's.

  16. Horizontal and Vertical Structure of Velocity, Potential Vorticity and Energy in the Gulf Stream.

    DTIC Science & Technology

    1985-02-01

    before. Finally, the equation for heat conservation, using standard . - notation, is: T u + w 3 RHS (2-15) at ax ay + where the RHS may include source and...may be rewritten: a o f 0 2 ah 30i .. .iaT + -R2 -+ w2! = RHS . at goz az Under an assumption of negligible mixing (i.e., RHS is small), vertical...Hk( + v.) Kk - 2i + 2 2 --k (k + N - P available potential energy EKE eddy kinetic energy MKE - mean kinetic energy RHS - right hand side LHS -left

  17. National Hydrography Dataset (NHD)

    USGS Publications Warehouse

    ,

    2001-01-01

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.

  18. Pleistocene corals of the Florida keys: Architects of imposing reefs - Why?

    USGS Publications Warehouse

    Lidz, B.H.

    2006-01-01

    Five asymmetrical, discontinuous, stratigraphically successive Pleistocene reef tracts rim the windward platform margin off the Florida Keys. Built of large head corals, the reefs are imposing in relief (???30 m high by 1 km wide), as measured from seismic profiles. Well dated to marine oxygen isotope substages 5c, 5b, and 5a, corals at depth are inferred to date to the Stage 6/5 transition. The size of these reefs attests to late Pleistocene conditions that repeatedly induced vigorous and sustained coral growth. In contrast, the setting today, linked to Florida Bay and the Gulf of Mexico, is generally deemed marginal for reef accretion. Incursion onto the reef tract of waters that contain seasonally inconsistent temperature, salinity, turbidity, and nutrient content impedes coral growth. Fluctuating sea level and consequent settings controlled deposition. The primary dynamic was position of eustatic zeniths relative to regional topographic elevations. Sea level during the past 150 ka reached a maximum of ???10.6 m higher than at present ???125 ka, which gave rise to an inland coral reef (Key Largo Limestone) and ooid complex (Miami Limestone) during isotope substage 5e. These formations now form the Florida Keys and a bedrock ridge beneath The Quicksands (Gulf of Mexico). High-precision radiometric ages and depths of dated corals indicate subsequent apices remained ???15 to 9 m, respectively, below present sea level. Those peaks provided accommodation space sufficient for vertical reef growth yet exposed a broad landmass landward of the reefs for >100 ka. With time, space, lack of bay waters, and protection from the Gulf of Mexico, corals thrived in clear oceanic waters of the Gulf Stream, the only waters to reach them.

  19. Downscaling ocean conditions with application to the Gulf of Maine, Scotian Shelf and adjacent deep ocean

    NASA Astrophysics Data System (ADS)

    Katavouta, Anna; Thompson, Keith

    2017-04-01

    A high resolution regional model (1/36 degree) of the Gulf of Maine, Scotian Shelf and adjacent deep ocean (GoMSS) is developed to downscale ocean conditions from an existing global operational system. First, predictions from the regional GoMSS model in a one-way nesting set up are evaluated using observations from multiple sources including satellite-borne sensors of surface temperature and sea level, CTDs, Argo floats and moored current meters. It is shown that on the shelf, the regional model predicts more realistic fields than the global system because it has higher resolution and includes tides that are absent from the global system. However, in deep water the regional model misplaces deep ocean eddies and meanders associated with the Gulf Stream. This is because of unrealistic internally generated variability (associated with the one-way nesting set up) that leads to decoupling of the regional model from the global system in the deep water. To overcome this problem, the large scales (length scales > 90 km) of the regional model are spectrally nudged towards the global system fields. This leads to more realistic predictions off the shelf. Wavenumber spectra show that even though spectral nudging constrains the large scales, it does not suppress the variability on small scales; on the contrary, it favours the formation of eddies with length scales below the cut-off wavelength of the spectral nudging.

  20. Variability in Sea Surface Height: A Qualitative Measure for the Meridional Overturning in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1999-01-01

    Sea surface height (SSH) from altimeter observations from 1992 on and from modeling results is investigated to determine the modes of variability and the linkages to the state of oceanic circulation in the North Atlantic. First the altimeter and model simulated SSH are analyzed using the empirical orthogonal function (EOF) analysis. They are found to share a similar leading mode where the center of action is along the Gulf Stream and North Atlantic Current with opposite sign anomalies in the subpolar gyre and in the slope waters along the Eastern Seaboard. The time series of the leading EOF mode from the altimeter data shows that between winters of 1995 and 1996, SSH over the Gulf Stream decreased by about 12cm which change is reproduced by the model simulation. Based on the relationship from the model simulations between the time series of the SSH EOF1 and meridional heat transport, it is suggested that associated with this SSH change in 1995-96, the overturning has slowed down from its heights in the early 90's. Furthermore, it is shown that decadal variability in the leading SSH mode originates from the thermal forcing component. This adds confidence to the qualitative relationship between the state of overturning/meridional heat transport and SSH in the limited area described by the EOF1. SSH variability in the eastern side of the North Atlantic basin, outside the western boundary current region, is determined by local and remote (Rossby waves) wind stress curl forcing.

  1. Evaluation of Geophysical and Thermal Methods for Detecting Submarine Groundwater Discharge (SGD) in the Suwannee River Estuary

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Kruse, S.; Burnett, W. C.; Chanton, J.; Greenwood, W.; Murray, M.; Peterson, R.; Swarzenski, P.

    2005-12-01

    In an effort to evaluate geophysical and thermal methods for detecting submarine groundwater discharge (SGD) on the Florida Gulf coast, a suite of water-borne surveys were run in conjunction with aerial thermal imagery over the lower Suwannee estuary in March 2005. Marine resistivity streaming data were collected alongside continuous radon and methane sampling from surface waters. Resistivity measurements were collected with dipole-dipole geometries. Readings were inverted for terrain resistivity assuming two-dimensional structure and constraining uppermost layers to conform to measured water depths and surface water conductivities. Thermal images were collected at the end of winter and at night to maximize temperatures between warmer discharging groundwater and colder surface waters. For the preliminary data analysis presented here, we assume high radon and methane concentrations coincide with zones of high SGD, and look at relationships between radon and methane concentrations and terrain resistivity and thermal imagery intensity values. For a limited set of coincident thermal intensity and radon readings, thermal intensities are higher at sites with the highest radon readings. These preliminary results suggest that in this environment, thermal imagery may be effective for identifying the "hottest" spots for SGD, but not for zones of diffuse discharge. The thermal imagery shows high intensity features at the heads of tidal streams, but shallow water depths precluded boat-based resistivity and sampling at these sites. Shallow terrain resistivities generally show a positive correlation with methane concentrations, as would be expected over zones of discharging groundwater that is fresher than Gulf surface water.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, L.R.

    There are three distinct but not mutually exclusive areas of research in this contract, studies of intrusions of the west wall of the Gulf Stream onto the outer continental shelf, studies of the flux of materials across nearshore density fronts, and advances in understanding of the planktonic food web of the continental shelf. Studies of frontal events on the outer and inner continental shelf involve distinctive physical and chemical regimes and have proven to require distinctive biological approaches. The studies of the food web run through our work on both of the frontal regimes, but certain aspects have become subjectsmore » in their own right. We have developed a simulation model of the flux of energy through the continental shelf food web which we believe to be more realistic than previous ones of its type. We have examined several of the many roles of dissolved organic compounds in sea water which originate either from release by phytoplankton, digestive processes or metabolites of zooplankton, or extracellular digestion of microorganisms. Methods have been developed under this contract to measure both the chelating capacity of naturally occurring organic materials and the copper concentration in the water. It has been possible to characterize the effects, both toxic and stimulatory, of copper on photosynthesis of naturally occurring phytoplankton populations. It is possible to characterize in considerable detail the course of biological events associated with meanders of the Gulf Stream. We are now in a position to explain the limits to biological productivity of the outer continental shelf of the southeastern US and the reasons why that biological production moves through the food web in the characteristic way that it does.« less

  3. The Use of Mesoscale Eddies and Gulf Stream Meanders by White Sharks Carcharodon carcharias

    NASA Astrophysics Data System (ADS)

    Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.

    2016-02-01

    Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean eddies, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale eddies has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic eddies differently, a previously undocumented behavior. While swimming in warm, subtropical water, white sharks preferentially inhabit anticyclonic eddies compared to cyclonic eddies. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic eddies compared to those in cyclonic eddies. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic eddies that are more than 7 degrees C warmer than cyclonic eddies, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic eddies may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.

  4. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  5. On the recovery of gravity anomalies from high precision altimeter data

    NASA Technical Reports Server (NTRS)

    Lelgemann, D.

    1976-01-01

    A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.

  6. A global monthly sea surface temperature climatology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, D.J.; Trenberth, K.E.; Reynolds, R.W.

    1992-09-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S. 22 refs.

  7. Nutrient interleaving below the mixed layer of the Kuroshio Extension Front

    NASA Astrophysics Data System (ADS)

    Nagai, Takeyoshi; Clayton, Sophie

    2017-08-01

    Nitrate interleaving structures were observed below the mixed layer during a cruise to the Kuroshio Extension in October 2009. In this paper, we investigate the formation mechanisms for these vertical nitrate anomalies, which may be an important source of nitrate to the oligotrphoc surface waters south of the Kuroshio Extension Front. We found that nitrate concentrations below the main stream of the Kuroshio Extension were elevated compared to the ambient water of the same density ( σ 𝜃 = 23.5-25). This appears to be analogous to the "nutrient stream" below the mixed layer, associated with the Gulf Stream. Strong turbulence was observed above the vertical nitrate anomaly, and we found that this can drive a large vertical turbulent nitrate flux >O (1 mmol N m-2 day-1). A realistic, high-resolution (2 km) numerical simulation reproduces the observed Kuroshio nutrient stream and nitrate interleaving structures, with similar lateral and vertical scales. The model results suggest that the nitrate interleaving structures are first generated at the western side of the meander crest on the south side of the Kuroshio Extension, where the southern tip of the mixed layer front is under frontogenesis. Lagrangian analyses reveal that the vertical shear of geostrophic and subinertial ageostrophic flow below the mixed layer tilts the existing along-isopycnal nitrate gradient of the Kuroshio nutrient stream to form nitrate interleaving structures. This study suggests that the multi-scale combination of (i) the lateral stirring of the Kuroshio nutrient stream by developed mixed layer fronts during fall to winter, (ii) the associated tilting of along-isopycnal nitrate gradient of the nutrient stream by subinertial shear, which forms vertical interleaving structures, and (iii) the strong turbulent diffusion above them, may provide a route to supply nutrients to oligotrophic surface waters on the south side of the Kuroshio Extension.

  8. Effects of climate change on freshwater ecosystems of the south-eastern United States and the Gulf Coast of Mexico

    USGS Publications Warehouse

    Mulholland, P.J.; Best, G.R.; Coutant, C.C.; Hornberger, G.M.; Meyer, J.L.; Robinson, P.J.; Stenberg, J.R.; Turner, R.E.; Vera-Herrera, F.; Wetzel, R.G.

    1997-01-01

    The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3-4??C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature-dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. ?? 1997 by John Wiley & Sons, Ltd.

  9. Data Used in Analyses of Trends, and Nutrient and Suspended-Sediment Loads for Streams in the Southeastern United States, 1973-2005

    USGS Publications Warehouse

    Staub, Erik L.; Peak, Kelly L.; Tighe, Kirsten C.; Sadorf, Eric M.; Harned, Douglas A.

    2010-01-01

    Water-quality data from selected surface-water monitoring sites in the Southeastern United States were assessed for trends in concentrations of nutrients, suspended sediment, and major constituents and for in-stream nutrient and suspended-sediment loads for the period 1973-2005. The area of interest includes river basins draining into the southern Atlantic Ocean, the Gulf of Mexico, and the Tennessee River-drainage basins in Hydrologic Regions 03 (South Atlantic - Gulf) and 06 (Tennessee). This data assessment is related to studies of several major river basins as part of the U.S. Geological Survey National Water-Quality Assessment Program, which was designed to assess national water-quality trends during a common time period (1993-2004). Included in this report are data on which trend tests could be performed from 44 U.S. Geological Survey National Water Information System (NWIS) sampling sites. The constituents examined include major ions, nutrients, and suspended sediment; the physical properties examined include pH, specific conductance, dissolved oxygen, and streamflow. Also included are data that were tested for trends from an additional 290 sites from the U.S. Environmental Protection Agency Storage and Retrieval (STORET) database. The trend analyses of the STORET data were limited to total nitrogen and total phosphorus concentrations. Data from 48 U.S. Geological Survey NWIS sampling sites with sufficient water-quality and continuous streamflow data for estimating nutrient and sediment loads are included. The methods of data compilation and modification used prior to performing trend tests and load estimation are described. Results of the seasonal Kendall trend test and the Tobit trend test are given for the 334 monitoring sites, and in-stream load estimates are given for the 48 monitoring sites. Basin characteristics are provided, including regional landscape variables and agricultural nutrient sources (annual variations in cropping and fertilizer use). The data and results presented in this report are in tabular format and can be downloaded and used by environmental researchers and water managers, particularly in the Southeast.

  10. Discharge controls on the sediment and dissolved nutrient transport flux of the lowermost Mississippi River: Implications for export to the ocean and for delta restoration

    NASA Astrophysics Data System (ADS)

    Allison, Mead A.; Pratt, Thad C.

    2017-12-01

    Lagrangian longitudinal surveys and fixed station data are utilized from the lowermost Mississippi River reach in Louisiana at high and low discharge in 2012-2013 to examine the changing stream power, sediment transport capacity, and nitrate conveyance in this backwater reach of the river. Nitrate appears to remain conservative through the backwater reach at higher discharges (>15,000 m3/s), thus, nitrate levels supplied from the catchment are those exported to the Gulf of Mexico, fueling coastal hypoxia. At lower discharges, interaction with fine sediments and organic matter stored on the bed due to estuarine and tidal processes, likely elevates nitrate levels prior to entering the Gulf: a further 1-2 week long spike in nitrate concentrations is associated with the remobilization of this sediments during the rising discharge phase of the Mississippi. Backwater characteristics are clearly observed in the study reach starting at river kilometer 703 (Vicksburg) in both longitudinal study periods. Stream power at the lowermost station is only 16% of that at Vicksburg in the high discharge survey, and 0.6% at low flow. The high-to-low discharge study differential in unit stream power at a station increases between Vicksburg and the lowermost station from a factor of 3 to 47-50 times. At high discharge, ∼30% of this energy loss can be ascribed to the removal of water to the Atchafalaya at Old River Control. Suspended sediment flux decreases downstream in the studied reach in both studies: the lowermost station has 75% of the flux at Vicksburg in the high discharge study, and 0.9% in the low discharge study. The high discharge values, given that this study was conducted during the highest rising hydrograph of the water year, are augmented by sediment resuspended from the bed that was deposited in the previous low discharge phase. Examination of this first detailed field observation studies of the backwater phenomenon in a major river, shows that observed suspended particle sizes and calculated shear velocities compare favorably with suspension coefficients derived by previous investigators using flume experiments and modeling.

  11. Challenges and successes in developing a data sharing culture in the Gulf of Mexico following the Deepwater Horizon disaster.

    NASA Astrophysics Data System (ADS)

    Showalter, L. M.

    2017-12-01

    The Gulf Research Program (GRP) was developed as part of legal settlements with the companies involved in the Deepwater Horizon (DWH) disaster. The Federal Government asked the National Academy of Sciences to establish a new program to fund and conduct activities to enhance offshore energy system safety and protect human health and the environment in the Gulf of Mexico and other regions along the U.S. outer continental shelf. An important part of the program is a commitment to open data and data sharing among the variety of disciplines it funds. The DWH disaster produced a major influx of funding for the Gulf region and various groups and organizations are collaborating to ensure that the science being conducted via these funding streams is not duplicative. A number of data focused sub groups have formed and are working to leverage existing efforts to strengthen data sharing and collaboration in the region. For its part, the GRP is developing a data program that encourages researchers to share data openly while providing avenues for acknowledgement of data sharing and research collaborations. A main problem with collaborative data sharing is often not the technologies available but instead the human component. The "traditional" path for scientific research has not generally involved making data widely or readily available in a short time frame. It takes a lot of effort to challenge this norm and change the way researchers view data sharing and its value for them and the world at large. The GRP data program aims to build a community of researchers that not only share their data but who also help show the value of this practice to the greater scientific community. To this end, the GRP will support a variety of education and training opportunities to help develop a base of researchers more informed on issues related to open data and data sharing and working to leverage the technology and expertise of others to develop a culture of data sharing in the Gulf of Mexico.

  12. Downscaling ocean conditions with application to the Gulf of Maine, Scotian Shelf and adjacent deep ocean

    NASA Astrophysics Data System (ADS)

    Katavouta, Anna; Thompson, Keith R.

    2016-08-01

    The overall goal is to downscale ocean conditions predicted by an existing global prediction system and evaluate the results using observations from the Gulf of Maine, Scotian Shelf and adjacent deep ocean. The first step is to develop a one-way nested regional model and evaluate its predictions using observations from multiple sources including satellite-borne sensors of surface temperature and sea level, CTDs, Argo floats and moored current meters. It is shown that the regional model predicts more realistic fields than the global system on the shelf because it has higher resolution and includes tides that are absent from the global system. However, in deep water the regional model misplaces deep ocean eddies and meanders associated with the Gulf Stream. This is not because the regional model's dynamics are flawed but rather is the result of internally generated variability in deep water that leads to decoupling of the regional model from the global system. To overcome this problem, the next step is to spectrally nudge the regional model to the large scales (length scales > 90 km) of the global system. It is shown this leads to more realistic predictions off the shelf. Wavenumber spectra show that even though spectral nudging constrains the large scales, it does not suppress the variability on small scales; on the contrary, it favours the formation of eddies with length scales below the cutoff wavelength of the spectral nudging.

  13. Quantifying and predicting historical and future patterns of carbon fluxes from the North American Continent to Ocean

    NASA Astrophysics Data System (ADS)

    Tian, H.; Zhang, B.; Xu, R.; Yang, J.; Yao, Y.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Najjar, R. G.; Friedrichs, M. A. M.; Hofmann, E. E.

    2017-12-01

    Carbon export through river channels to coastal waters is a fundamental component of the global carbon cycle. Changes in the terrestrial environment, both natural (e.g., climatic change, enriched CO2 concentration, and elevated ozone concentration) and anthropogenic (e.g, deforestation, cropland expansion, and urbanization) have greatly altered carbon production, stocks, decomposition, movement and export from land to river and ocean systems. However, the magnitude and spatiotemporal patterns of lateral carbon fluxes from land to oceans and the underlying mechanisms responsible for these fluxes remain far from certain. Here we applied a process-based land model with explicit representation of carbon processes in stream and rivers (Dynamic Land Ecosystem Model: DLEM 2.0) to examine how changes in climate, land use, atmospheric CO2, and nitrogen deposition have affected the carbon fluxes from North American continent to Ocean during 1980-2015. Our simulated results indicated that terrestrial carbon export shows substantially spatial and temporal variability. Of the five sub-regions (Arctic coast, Pacific coast, Gulf of Mexico, Atlantic coast, and Great lakes), the Arctic sub-region provides the highest DOC flux, whereas the Gulf of Mexico sub-region provided the highest DIC flux. However, terrestrial carbon export to the arctic oceans showed increasing trends for both DOC and DIC, whereas DOC and DIC export to the Gulf of Mexico decreased in the recent decades. Future pattern of riverine carbon fluxes would be largely dependent on the climate change and land use scenarios.

  14. Multiphase flowmeter successfully measures three-phase flow at extremely high gas-volume fractions -- Gulf of Suez, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.B.; Borling, D.C.; Powers, B.S.

    1998-02-01

    A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less

  15. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  16. A forty-three year museum study of northern cricket frog (Acris crepitans) abnormalities in Arkansas: upward trends and distributions.

    PubMed

    McCallum, Malcolm L; Trauth, Stanley E

    2003-07-01

    The northern cricket frog (Acris crepitans) is a resident of streams, rivers, and wetlands of eastern North America. We documented abnormalities in A. crepitans housed in the Arkansas State University Museum of Zoology Herpetology Collection. Abnormality frequency increased from 1957 to 2000 (chi 2 = 43.76, df = 3, P < 0.001). From 1957 through 1979 only 3.33% of specimens were unusual. This rate was 6.87% during the 1990s, and in 2000 it was 8.48%. High frequencies of abnormalities were identified in the following Ozark highland counties: Sharp, Lawrence, and Randolph. We observed 104 abnormalities among 1,464 frogs (7.10%). The differential abnormality frequencies observed between the Arkansas lowlands and highlands are striking. The Ozarks had significantly higher frequencies of abnormalities than other Arkansas regions (chi 2 = 59.76, df = 4, P < 0.001). The Ouachita Mountains had significantly higher frequencies than the Gulf Coastal Plain, Delta, or Arkansas River Valley (chi 2 = 13.172, df = 3, P < 0.01). There was no difference in abnormality frequency between the Gulf Coastal Plain, Delta, and Arkansas River Valley (chi 2 = 0.422, df = 2, P > 0.70). Proposed hypotheses for distributions include: 1) A. crepitans might possess naturally high abnormality levels, and land use practices of the Delta may reduce this variability; 2) an unknown xenobiotic may be in Ozark streams causing increased numbers of abnormalities; 3) the museum's collection effort may be skewed; 4) Delta habitat might be more favorable for green tree frogs (Hyla cinerea) allowing this species to drive out A. crepitans through competition; here, abnormal metamorphs are not detected because they are even less competitive than normal individuals.

  17. Shaping climate change in the North Atlantic sector: The role of the atmospheric response to local SST changes vs. large-scale changes

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen

    2017-04-01

    Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.

  18. Eddy Vertical Structure Observed by Deepgliders: Evidence for the Enstrophy Inertial Range Cascade in Geostrophic Turbulence

    NASA Astrophysics Data System (ADS)

    Eriksen, C. C.

    2016-12-01

    Full water column temperature and salinity profiles and estimates of average current collected with Deepgliders were used to analyze vertical structure of mesoscale features in the western North Atlantic Ocean. Fortnightly repeat surveys over a 58 km by 58 km region centered at the Bermuda Atlantic Time Series (BATS) site southeast of Bermuda were carried out for 3 and 9 months in successive years. In addition, a section from Bermuda along Line W across the Gulf Stream to the New England Continental Slope and a pair of sections from Bermuda to the Bahamas were carried out. Absolute geostrophic current estimates constructed from these measurements and projected upon flat bottom resting ocean dynamic modes for the regions indicate nearly equal kinetic energy in the barotropic mode and first baroclinic mode. An empirical orthogonal mode decomposition of dynamic mode amplitudes demonstrates strong coupling of the barotropic and first baroclinic modes, a result resembling those reported for the Polymode experiment 3 decades ago. Higher baroclinic modes are largely independent of one another. Energy in baroclinic modes varies in inverse proportion to mode number cubed, a result predicted for an enstrophy inertial range cascade of geostrophic turbulence, believed newly detected by these observations. This (mode number)-3 dependence is found at BATS and across the Gulf Stream and Sargasso Sea. On two occasions, submesoscale anticyclones were detected at BATS whose vertical structure closely resembled the second baroclinic mode. Anomalously cold and fresh water within their cores (by as much as 3.5°C and 0.5 in salinity) suggests they were of subpolar (likely Labrador Sea) origin. These provided temporary perturbations to the vertical mode number energy spectrum.

  19. Predominant nonlinear atmospheric response to meridional shift of the Gulf Stream path from the WRF atmospheric model simulations

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.

    2016-02-01

    A remarkably strong nonlinear behavior of the atmospheric circulation response to North Atlantic SST anomalies (SSTA) is revealed from a set of large-ensemble, high-resolution, and hemispheric-scale Weather Research and Forecasting (WRF) model simulations. The model is forced with the SSTA associated with meridional shift of the Gulf Stream (GS) path, constructed from a lag regression of the winter SST on a GS Index from observation. Analysis of the systematic set of experiments with SSTAs of varied amplitudes and switched signs representing various GS-shift scenarios provides unique insights into mechanism for emergence and evolution of transient and equilibrium response of atmospheric circulation to extratropical SSTA. Results show that, independent of sign of the SSTA, the equilibrium response is characterized by an anomalous trough over the North Atlantic Ocean and the Western Europe concurrent with enhanced storm track, increased rainfall, and reduced blocking days. To the north of the anomalous low, an anomalous ridge emerges over the Greenland, Iceland, and Norwegian Seas accompanied by weakened storm track, reduced rainfall and increased blocking days. This nonlinear component of the total response dominates the weak and oppositely signed linear response that is directly forced by the SSTA, yielding an anomalous ridge (trough) downstream of the warm (cold) SSTA. The amplitude of the linear response is proportional to that of the SSTA, but this is masked by the overwhelmingly strong nonlinear behavior showing no clear correspondence to the SSTA amplitude. The nonlinear pattern emerges 3-4 weeks after the model initialization in November and reaches its first peak amplitude in December/January. It appears that altered baroclinic wave activity due to the GS SSTA in November lead to low-frequency height responses in December/January through transient eddy vorticity flux convergence.

  20. Transport and Fate of Nutrients Along the U.S. East Coast

    NASA Astrophysics Data System (ADS)

    Hofmann, E. E.; Narvaez, D.; Friedrichs, M. A. M.; Najjar, R.; Tian, H.; Hyde, K.; Mannino, A.; Signorini, S. R.; Wilkin, J.; St-Laurent, P.

    2017-12-01

    As part of a NASA-funded multi-investigator project, a land-estuarine-ocean biogeochemical modeling system was implemented and verified with remote sensing and in situ data to examine processes controlling fluxes on land, their coupling to riverine systems, the delivery of materials to estuaries and the coastal ocean, and marine ecosystem responses to these changing riverine inputs and changing climate forcing. This modeling system is being used to develop nutrient budgets for the U.S. east coast continental shelf and to examine seasonal and interannual variability in nutrient fluxes. An important aspect of these nutrient budgets is the transport and fate of nutrients released along the inner shelf. Results from a five-year simulation (2004 to 2008) that used tracer releases from the main rivers along the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) provide insights into transport pathways that connect the inner and outer continental shelf. Tracers released along the inner MAB spread along the shelf with a general southward and offshore transport. Inner shelf inputs from the large estuarine systems are transported to the mid and outer MAB shelf. Tracers that reach the mid to outer shelf can be entrained in the Gulf Stream. Export from the MAB to the SAB occurs during periods of southerly winds. Transport processes along the SAB are similar, but Gulf Stream entrainment is a larger component of tracer transport. Superimposed on the MAB and SAB transport patterns is considerable seasonal and interannual variability. The results from these retrospective simulations improve understanding of the coupling at the land-water interface and shelf-wide transport patterns that advance the ability to predict the effects of localized human impacts and broader-scale climate-related impacts on the U.S. east coast continental shelf system.

  1. Assimilation of Altimeter Data into a Quasigeostrophic Model of the Gulf Stream System. Part 2; Assimilation Results

    NASA Technical Reports Server (NTRS)

    Capotondi, Antonietta; Holland, William R.; Malanotte-Rizzoli, Paola

    1995-01-01

    The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to 'correctly' extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1-0.2 in the deep ocean.

  2. Mesoscale Air-Sea Interactions along the Gulf Stream: An Eddy-Resolving and Convection-Permitting Coupled Regional Climate Model Study

    NASA Astrophysics Data System (ADS)

    Hsieh, J. S.; Chang, P.; Saravanan, R.

    2017-12-01

    Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.

  3. Observed and modeled mesoscale variability near the Gulf Stream and Kuroshio Extension

    NASA Astrophysics Data System (ADS)

    Schmitz, William J.; Holland, William R.

    1986-08-01

    Our earliest intercomparisons between western North Atlantic data and eddy-resolving two-layer quasi-geostrophic symmetric-double-gyre steady wind-forced numerical model results focused on the amplitudes and largest horizontal scales in patterns of eddy kinetic energy, primarily abyssal. Here, intercomparisons are extended to recent eight-layer model runs and new data which allow expansion of the investigation to the Kuroshio Extension and throughout much of the water column. Two numerical experiments are shown to have realistic zonal, vertical, and temporal eddy scales in the vicinity of the Kuroshio Extension in one case and the Gulf Stream in the other. Model zonal mean speeds are larger than observed, but vertical shears are in general agreement with the data. A longitudinal displacement between the maximum intensity in surface and abyssal eddy fields as observed for the North Atlantic is not found in the model results. The numerical simulations examined are highly idealized, notably with respect to basin shape, topography, wind-forcing, and of course dissipation. Therefore the zero-order agreement between modeled and observed basic characteristics of mid-latitude jets and their associated eddy fields suggests that such properties are predominantly determined by the physical mechanisms which dominate the models, where the fluctuations are the result of instability processes. The comparatively high vertical resolution of the model is needed to compare with new higher-resolution data as well as for dynamical reasons, although the precise number of layers required either kinematically or dynamically (or numerically) has not been determined; we estimate four to six when no attempt is made to account for bottom- or near-surface-intensified phenomena.

  4. Regional Ocean Data Portal: Transforming Information to Knowledge

    NASA Astrophysics Data System (ADS)

    Howard, M. K.; Gayanilo, F. C.; Jochens, A. E.

    2009-12-01

    The mission of the Gulf of Mexico Coastal Ocean Observing System’s (GCOOS) regional data portal is to aggregate data and model output from distributed providers and to offer these, and derived products, through a single access point in standardized ways to a diverse set of users. The portal evolved under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) program where automated largely-unattended machine-to-machine interoperability has always been a guiding tenet for system design. Initially, the portal focused on aggregating relatively homogeneous oceanographic and marine meteorological data from the principal Gulf of Mexico data providers. Obtaining community agreements from the data providers on data formats, vocabularies, and levels of service was relatively easy because the technical barriers to participation were low and we were able to provide financial support to them to make small additions or changes to their local data systems. Over time, the portal requirements became more complex as new parameters, new providers and heterogeneous data streams were added and the spatial domain increased to include beaches and adjacent wetlands. This began to strain our resources and take us outside our science domains of expertise. During the same period, the Gulf of Mexico Alliance (GOMA), a new environmental quality initiative involving the five Gulf states and Mexico with similar goals and directives as those of our sponsor, gained momentum and demanded both our attention and participation. GOMA is working, mostly among themselves, to discover or establish community standards for various types of data sets - e.g. water quality and nutrients. In addition to aggregation, the portal is also tasked with producing products from the collected information streams. Arriving at a prioritized list of desired products has been a major part of the business conducted by the GCOOS Regional Association (RA). Numerous stakeholder (e.g. emergency responders, oil and gas producers, recreational boaters, etc.) workshops were held to elicit user needs and requirements for observing system products for each group. The GCOOS-RA’s Products and Services Committee and Education and Outreach Council have gone through similar activities aimed at determining what products various users groups want. We have been sensitive to the private sector when deciding which products to produce. While science users want numbers, users of all types mainly want maps. We have tried to develop flexible capabilities within the portal that helps users to create their own fused products, ad hoc, for a variety of output devices, from desktop screens to the smart phones. We will discuss how our data management system has evolved within the backdrop of rapidly changing technologies and diverse community requirements.

  5. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  6. Exploring applications of GPR methodology and uses in determining floodplain function of restored streams in the Gulf Coastal Plain, Alabama

    NASA Astrophysics Data System (ADS)

    Eckes, S. W.; Shepherd, S. L.

    2017-12-01

    Accurately characterizing subsurface structure and function of remediated floodplains is indispensable in understanding the success of stream restoration projects. Although many of these projects are designed to address increased storm water runoff due to urbanization, long term monitoring and assessment are often limited in scope and methodology. Common monitoring practices include geomorphic surveys, stream discharge, and suspended sediment loads. These data are comprehensive for stream monitoring but they do not address floodplain function in terms of infiltration and through flow. Developing noninvasive methods for monitoring floodplain moisture transfer and distribution will aid in current and future stream restoration endeavors. Ground penetrating radar (GPR) has been successfully used in other physiographic regions for noninvasive and continuous monitoring of (1) natural geomorphic environments including subsurface structure and landform change and (2) soil and turf management to monitor subsurface moisture content. We are testing the viability of these existing methods to expand upon the broad capabilities of GPR. Determining suitability will be done in three parts using GPR to (1) find known buried objects of typical materials used in remediation at measured depths, (2) understand GPR functionality in varying soil moisture content thresholds on turf plots, and (3) model reference, remediated, and impacted floodplains in a case study in the D'Olive Creek watershed located in Baldwin County, Alabama. We hypothesize that these methods will allow us to characterize moisture transfer from precipitation and runoff to the floodplain which is a direct function of floodplain health. The need for a methodology to monitor floodplains is widespread and with increased resolution and mobility, expanding GPR applications may help streamline remediation and monitoring practices.

  7. Transport and fate of nitrate at the ground-water/surface-water interface

    USGS Publications Warehouse

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Analytic approximations to the modon dispersion relation. [in oceanography

    NASA Technical Reports Server (NTRS)

    Boyd, J. P.

    1981-01-01

    Three explicit analytic approximations are given to the modon dispersion relation developed by Flierl et al. (1980) to describe Gulf Stream rings and related phenomena in the oceans and atmosphere. The solutions are in the form of k(q), and are developed in the form of a power series in q for small q, an inverse power series in 1/q for large q, and a two-point Pade approximant. The low order Pade approximant is shown to yield a solution for the dispersion relation with a maximum relative error for the lowest branch of the function equal to one in 700 in the q interval zero to infinity.

  9. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordan, Howard R.

    1996-01-01

    Several significant accomplishments were made during the present reporting period. We have completed our basic study of using the 1.38 micron MODIS band for removal of the effects of thin cirrus clouds and stratospheric aerosol. The results suggest that it should be possible to correct imagery for thin cirrus clouds with optical thicknesses as large as 0.5 to 1.0. We have also acquired reflectance data for oceanic whitecaps during a cruise on the RV Malcolm Baldrige in the Gulf of Mexico. The reflectance spectrum of whitecaps was found to be similar to that for breaking waves in the surf zone measured by Frouin, Schwindling and Deschamps. We installed a CIMEL sun photometer at Fort Jefferson on the Dry Tortugas off Key West in the Gulf of Mexico. The instrument has yielded a continuous stream of data since February. It shows that the aerosol optical thickness at 669 nm is often less than 0.1 in winter. This suggests that the Southern Gulf of Mexico will be an excellent winter site for vicarious calibration. In addition, we completed a study of the effect of vicarious calibration, i.e., the accuracy with which the radiance at the top of the atmosphere (TOA) can be predicted from measurement of the sky radiance at the bottom of the atmosphere (BOA). The results suggest that the neglect of polarization in the aerosol optical property inversion algorithm and in the prediction code for the TOA radiances is the largest error associated with the radiative transfer process. Overall, the study showed that the accuracy of the TOA radiance prediction is now limited by the racliometric calibration error in the sky radiometer. Finally, considerable coccolith light scattering data were obtained in the Gulf of Maine with a flow-through instrument, along with data relating to calcite concentration and the rate of calcite production.

  10. Secular change and inter-annual variability of the Gulf Stream position, 1993-2013, 70°-55°W

    NASA Astrophysics Data System (ADS)

    Bisagni, James J.; Gangopadhyay, Avijit; Sanchez-Franks, Alejandra

    2017-07-01

    The Gulf Stream (GS) is the northeastward-flowing surface limb of the Atlantic Ocean's meridional overturning circulation (AMOC) ;conveyer belt; that flows towards Europe and the Nordic Seas. Changes in the GS position after its separation from the coast at Cape Hatteras, i.e., from 75°W to 50°W, may be key to understanding the AMOC, sea level variability and ecosystem behavior along the east coast of North America. In this study we compare secular change and inter-annual variability (IAV) of the Gulf Stream North Wall (GSNW) position with equator-ward Labrador Current (LC) transport along the southwestern Grand Banks near 52°W using 21 years (1993-2013) of satellite altimeter data. Results at 55°, 60°, and 65°W show a significant southward (negative) secular trend for the GSNW, decreasing to a small but insignificant southward trend at 70°W. IAV of de-trended GSNW position residuals also decreases to the west. The long-term secular trend of annual mean upper layer (200 m) LC transport near 52°W is positive. Furthermore, IAV of LC transport residuals near 52°W along the southwestern Grand Banks are significantly correlated with GSNW position residuals at 55°W at a lag of +1-year, with positive (negative) LC transport residuals corresponding to southward (northward) GSNW positions one year later. The Taylor-Stephens index (TSI) computed from the first principal component of the GSNW position from 79° to 65°W shows a similar relationship with a more distal LC index computed along altimeter ground track 250 located north of the Grand Banks across Hamilton Bank in the western Labrador Sea. Increased (decreased) sea height differences along ground track 250 are significantly correlated with a more southward (northward) TSI two years later (lag of +2-years). Spectral analysis of IAV reveals corresponding spectral peaks at 5-7 years and 2-3 years for the North Atlantic Oscillation (NAO), GSNW (70°-55°W) and LC transport near 52°W for the 1993-2013 period suggesting a connection between these phenomena. An upper-layer (200 m) slope water volume calculation using the LC IAV rms residual of +1.04 Sv near 52°W results in an estimated GSNW IAV residual of 79 km, or 63% of the observed 125.6 km (1.13°) rms value at 55°W. A similar upper-layer slope water volume calculation using the positive long-term, upper-layer LC transport trend accounts for 68% of the mean observed secular southward shift of the GSNW between 55° and 70°W over the 1993-2013 period. Our work provides additional observational evidence of important interactions between the upper layers of the sub-polar and sub-tropical gyres within the North Atlantic over both secular and inter-annual time scales as suggested by previous studies.

  11. Upwelling and downwelling induced by mesoscale circulation in the DeSoto Canyon region

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Chassignet, E.; Morey, S. L.; Dukhovskoy, D. S.

    2014-12-01

    Ocean dynamics are complex over irregular topography areas, and the northeastern Gulf of Mexico, specifically the DeSoto Canyon region, is a challenge for modelers and oceanographers. Vertical movement of waters, especially upwelling, is observed to take place over the canyon's head and along the coast; however, it is not well understood. We focus on upwelling/downwelling processes induced by the Loop Current and its associated eddy field using multi-decadal Hybrid Coordinate Ocean Model simulations. The Loop Current, part of the Gulf Stream, can develop northward into the Gulf through the Yucatan Channel and exit through the Florida Straits. It can reach the continental slope of the study domain and directly depress the isopycnals. Cyclonic eddies in front of the Loop Current also induce upwelling underneath. On the other hand, the Loop Current sometimes impinges on the West Florida Shelf and generates a high pressure disturbance, which travels northward along the shelf into the study region. Consequently, large-scale downwelling occurs across the continental slopes. Our analysis of sea surface height shows that the Loop Current pressure disturbance tends to propagate along the shallow isobaths of 100 to 300 m in the topographic wave direction from south of the West Florida Shelf to the Mississippi Delta. In addition, after shedding a large anticyclonic eddy, the Loop Current retracts southward and can touch the southeastern corner of the West Florida Shelf. This can result in a higher pressure disturbance, and therefore stronger large-scale downwelling in the DeSoto Canyon region.

  12. Holocene landscape response to seasonality of storms in the Mojave Desert

    USGS Publications Warehouse

    Miller, D.M.; Schmidt, K.M.; Mahan, S.A.; McGeehin, J.P.; Owen, L.A.; Barron, J.A.; Lehmkuhl, F.; Lohrer, R.

    2010-01-01

    New optically stimulated and radiocarbon ages for alluvial fan and lake deposits in the Mojave Desert are presented, which greatly improves the temporal resolution of surface processes. The new Mojave Desert climate-landscape record is particularly detailed for the late Holocene. Evidence from ephemeral lake deposits and landforms indicates times of sustained stream flow during a wet interval of the latter part of the Medieval Warm Period at ca. AD 1290 and during the Little Ice Age at ca. AD 1650. The former lakes postdate megadroughts of the Medieval Warm Period, whereas the latter match the Maunder Minimum of the Little Ice Age. Periods of alluvial fan aggradation across the Mojave Desert are 14-9 cal ka and 6-3 cal ka. This timing largely correlates to times of increased sea-surface temperatures in the Gulf of California and enhanced warm-season monsoons. This correlation suggests that sustained alluvial fan aggradation may be driven by intense summer-season storms. These data suggest that the close proximity of the Mojave Desert to the Pacific Ocean and the Gulf of California promotes a partitioning of landscape-process responses to climate forcings that vary with seasonality of the dominant storms. Cool-season Pacific frontal storms cause river flow, ephemeral lakes, and fan incision, whereas periods of intense warm-season storms cause hillslope erosion and alluvial fan aggradation. The proposed landscape-process partitioning has important implications for hazard mitigation given that climate change may increase sea-surface temperatures in the Gulf of California, which indirectly could increase future alluvial fan aggradation.

  13. Timing and mechanisms for the deposition of the glaciomarine mud in and around the Gulf of Maine: A discussion of alternative models

    USGS Publications Warehouse

    Oldale, Robert N.

    1989-01-01

    Glaciomarine mud in the Gulf of Maine, characterized by rhythmic seismic layers that mimic the morphology of the underlying surface, is composed of subequal amounts of silt and clay, variable amounts of sand, and sparse gravel-sized clasts. The mud is Wisconsinan in age and was deposited during the retreat of the last ice sheet. A beginning date of 38 ka, proposed by King and Fader (1986) in their chronology of the last deglaciation, is considered too old. An alternative chronology, more consistent with the continental record to the west, is proposed here. ln this interpretation, deposition ofglaciomarine mud began about 18 ka when the late Wisconsinan ice retreated from Georges Bank, Great South Channel, and Northeast Channel and ended around 11 ka, when meltwater ceased to enter the Gulf of Maine. Basal-till melt-out from an ice shelf and bergs as the source of the glaciomarine mud, also proposed by King and Fader (1986), is thought to be inconsistent with the volume, widespread rhythmic bedding, and low stone content of the deposit. More likely the source of the glaciomarine mud was rock-flour-laden meltwater that entered the sea along the grounding line of a calving glacier or by way of subaerial meltwater streams. The rock flour was then dispersed by sediment plumes and was deposited when the sediment fell to the sea floor, aided by flocculation and biological agglutination. Rhythmic layers within the glaciomarine mud could represent annual cyclic sedimentation (varves) or cyclic events of lesser duration.

  14. Importance of the Mississippi River Basin for investigating agricultural–chemical contamination of the hydrologic cycle

    USGS Publications Warehouse

    Kolpin, Dana W.

    2000-01-01

    The Mississippi River Basin has undergone dramatic land use and cultural changes over the last 150 years. Approximately 70 million people now live within the basin, representing approximately 27% of the nation's population. This basin has also become one of the most productive agricultural regions in the world in terms of both crops and livestock grown. Approximately 65% of the nation's harvested cropland is grown in this basin, with more than 100 000 metric tons (t) of pesticides and approximately 6 500 000 t of commercial nitrogen fertilizers applied to cropland within the basin annually. The drainage of more than 20 000 000 ha within the basin has been enhanced by means of tile lines and ditches to lower the water table to make the cropland more productive. While removing the water from the soil as intended, this practice also leads to more rapid transport of contaminants to the river, and ultimately the Gulf of Mexico. Furthermore, the extensive chemical use in the Mississippi River Basin has led to the transport of pesticides and nitrate into the region’s streams, aquifers, and atmosphere. An estimated 1 000 000 t of nitrate-N is transported from the Mississippi River Basin into the Gulf of Mexico annually. The peak annual load of herbicides to the Gulf of Mexico has been documented at 1920 t. The fundamental goal of the papers presented in this volume is to provide a scientific basis for decisions necessary to promote sound and efficient agricultural practices and protect the quality of the nation's water resources.

  15. Planktivorous auklet Ptychoramphus aleuticus responses to ocean climate, 2005: Unusual atmospheric blocking?

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Bradley, Russell W.; Warzybok, Pete; Abraham, Christine L.; Jahncke, Jaime; Hyrenbach, K. David; Kousky, Vernon; Hipfner, J. Mark; Ohman, Mark D.

    2006-10-01

    In spring-summer 2005, anomalous atmospheric-oceanographic coupling caused unprecedented reproductive failures and redistribution of a planktivorous marine bird in both central California (37°N) and southern British Columbia (50°N). At SE Farallon Island, CA, the birds abandoned the breeding colony en masse between 10-20 May, a unique behavioral response; for the first time in 35 years, reproductive success was zero. At Triangle Island, B.C., only 8% of the nesting pairs were successful, the worst year on record. Surveys of birds at sea revealed a peak in relative abundance south of Point Conception (34°N) in summer and fall, suggestive of emigration from the north. Prey (euphausiid crustacean) biomass in the Gulf of the Farallones was reduced, but remained high south of Point Conception. Change in predator and prey may be explained, in part, by unusual atmospheric blocking in the Gulf of Alaska in May, which caused the jet stream to shift southwards resulting in poor upwelling-favorable winds and anomalously warm SST. This study demonstrates the deleterious consequences of this climate event for a top marine predator in the central-northern California Current System.

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Base-Flow Index, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment of MRB_E2RF1 catchments of Major River Basins (MRBs, Crawford and others, 2006). Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. The Rivers of the Mississippi Watershed

    NASA Image and Video Library

    2017-12-08

    The Mississippi Watershed is the largest drainage basin in North America at 3.2 million square kilometers in area. The USGS has created a database of this area which indicates the direction of waterflow at each point. By assembling these directions into streamflows, it is possible to trace the path of water from every point of the area to the mouth of the Mississippi in the Gulf of Mexico. This animation starts with the points furthest from the Gulf and reveals the streams and rivers as a steady progression towards the mouth of the Mississippi until all the major rivers are revealed. The speed of the reveal of the rivers is not dependent on the actual speed of the water flow. The reveal proceeds at a constant velocity along each river path, timed so that all reveals reach the mouth of the Mississippi at the same time. This animation does not show actual flow rates of the rivers. All rivers are shown with identical rates. The river colors and widths correspond to the relative lengths of river segments. Credit: NASA's Scientific Visualization Studio/Horace Mitchell Go here to download this video: svs.gsfc.nasa.gov/4493

  18. Geometrical effects on western intensification of wind-driven ocean currents: The rotated-channel Stommel model, coastal orientation, and curvature

    NASA Astrophysics Data System (ADS)

    Boyd, John P.; Sanjaya, Edwin

    2014-03-01

    We revisit early models of steady western boundary currents [Gulf Stream, Kuroshio, etc.] to explore the role of irregular coastlines on jets, both to advance the research frontier and to illuminate for education. In the framework of a steady-state, quasigeostrophic model with viscosity, bottom friction and nonlinearity, we prove that rotating a straight coastline, initially parallel to the meridians, significantly thickens the western boundary layer. We analyze an infinitely long, straight channel with arbitrary orientation and bottom friction using an exact solution and singular perturbation theory, and show that the model, though simpler than Stommel's, nevertheless captures both the western boundary jet (“Gulf Stream”) and the “orientation effect”. In the rest of the article, we restrict attention to the Stommel flow (that is, linear and inviscid except for bottom friction) and apply matched asymptotic expansions, radial basis function, Fourier-Chebyshev and Chebyshev-Chebyshev pseudospectral methods to explore the effects of coastal geometry in a variety of non-rectangular domains bounded by a circle, parabolas and squircles. Although our oceans are unabashedly idealized, the narrow spikes, broad jets and stationary points vividly illustrate the power and complexity of coastal control of western boundary layers.

  19. High nitrate concentrations in some Midwest United States streams in 2013 after the 2012 drought

    USGS Publications Warehouse

    Van Metre, Peter C.; Frey, Jeffrey W.; Musgrove, MaryLynn; Nakagaki, Naomi; Qi, Sharon L.; Mahler, Barbara J.; Wieczorek, Michael; Button, Daniel T.

    2016-01-01

    Nitrogen sources in the Mississippi River basin have been linked to degradation of stream ecology and to Gulf of Mexico hypoxia. In 2013, the USGS and the USEPA characterized water quality stressors and ecological conditions in 100 wadeable streams across the midwestern United States. Wet conditions in 2013 followed a severe drought in 2012, a weather pattern associated with elevated nitrogen concentrations and loads in streams. Nitrate concentrations during the May to August 2013 sampling period ranged from <0.04 to 41.8 mg L−1 as N (mean, 5.31 mg L−1). Observed mean May to June nitrate concentrations at the 100 sites were compared with May to June concentrations predicted from a regression model developed using historical nitrate data. Observed concentrations for 17 sites, centered on Iowa and southern Minnesota, were outside the 95% confidence interval of the regression-predicted mean, indicating that they were anomalously high. The sites with a nitrate anomaly had significantly higher May to June nitrate concentrations than sites without an anomaly (means, 19.8 and 3.6 mg L−1, respectively) and had higher antecedent precipitation indices, a measure of the departure from normal precipitation, in 2012 and 2013. Correlations between nitrate concentrations and watershed characteristics and nitrogen and oxygen isotopes of nitrate indicated that fertilizer and manure used in crop production, principally corn, were the dominant sources of nitrate. The anomalously high nitrate levels in parts of the Midwest in 2013 coincide with reported higher-than-normal nitrate loads in the Mississippi River.

  20. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    NASA Astrophysics Data System (ADS)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1) areal extent of river drainage basins, (2) source area relief, (3) climate of the source areas and tributary systems, (4) source lithology, and (5) sediment storage within the upper drainage basin. Climate has played an important and complex role in modulating supply. In wet tropical to temperate climate regimes, abundant runoff efficiently removed entrained sediment. Arid climate limited runoff; resultant transport-limited tributaries and trunk streams deposited aggradational alluvial aprons, storing sediment in the drainage basin even in the absence of a structural depression. Eolian deposition commonly accompanied such alluvial aggradation. In contrast, seasonality and consequent runoff variability favored erosion and efficient sediment evacuation from the upper parts of drainage basins. Tectonism has played a prominent but equally complex role. Elevation of uplands by compression, crustal heating, or extrusive volcanism created primary loci of erosion and high sediment yield. At the same time, accompanying subsidence sometimes created long-lived sediment repositories that intercepted and sequestered sediment adjacent to sources. Regional patterns of uplift and subsidence relocated drainage divides and redirected trunk stream paths to the Gulf margin.

  1. On the Fundamental Cause of River Meanders

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Diplas, P.

    2017-12-01

    River meandering has been attributed to the erosion and deposition of sediments along river banks, yet the fundamental cause of the instability has not been heretofore identified. In this conceptual study, we address the conditions that lead to the meander instability, in effect "upstream" of the many previous and thorough analyses of hydraulics and the alternating erosional/depositional pattern that ensues once such conditions exist. Rivers are only one of many fluid systems that exhibit meandering behavior, and no other involves sediments at all. Other examples include the gulf stream, glacial meltwater, the jet stream, channels in submarine fans, water falling directly down from a faucet, derailed trains and even tractor trailer trucks. As such, a universal criterion is needed to explain meandering in general. We show that meandering in all systems is driven by the existence of an adverse pressure gradient, such that the resulting deceleration imposed upon the fluid causes it to be energetically favorable to divert the flow to either side of its original direction. This universal framework makes it possible to determine under what conditions the meandering instability will be manifest in altered flow/channel morphology.

  2. KSC-07pd0769

    NASA Image and Video Library

    2007-04-02

    KENNEDY SPACE CENTER, FLA. -- A green heron is spotted on a fence in the Launch Complex 39 Area at NASA's Kennedy Space Center. These herons range across the eastern half of the United States, wintering through South Carolina, the Gulf Coast and California. For their habitat, the herons prefer lake margins, streams, ponds and marshes. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which surrounds it. The refuge is a habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. In addition, the refuge supports 19 endangered or threatened wildlife species on Federal or State lists, more than any other single refuge in the U.S. Photo credit: NASA/Jim Grossmann

  3. Soil moisture and the persistence of North American drought

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Erickson, David J., III

    1989-01-01

    Numerical sensitivity experiments on the effects of soil moisture on North American summertime climate are performed using a 12-layer global atmospheric general circulation model. Consideration is given to the hypothesis that reduced soil moisture may induce and amplify warm, dry summers of midlatitude continental interiors. The simulations resemble the conditions of the summer of 1988, including an extensive drought over much of North America. It is found that a reduction in soil moisture leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. It is shown that low-level moisture advection from the Gulf of Mexico is important in the maintenance of persistent soil moisture deficits.

  4. Airborne ROWS data report for the high resolution experiment, June 1993

    NASA Technical Reports Server (NTRS)

    Vandemark, D.; Hines, D.; Bailey, S.; Stewart, K.

    1994-01-01

    Airborne radar ocean wave spectrometer (ROWS) data collected during the Office of Naval Research's High Resolution Remote Sensing Experiment of June 1993 are presented. This data summary covers six flights made using NASA's T-39 aircraft over a region of the North Atlantic off the coast of North Carolina and includes multiple crossings of the gulf stream. The Ku-band ROWS was operated in a configuration which continuously switched between an altimeter and a spectrometer channel. Data derived from the two channels include altimeter radar cross section, altimeter-derived sea surface mean square slope and wind speed, and directional and nondirectional longwave spectra. Discussion is provided for several events of particular interest.

  5. Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream.

    PubMed

    Roley, Sarah S; Tank, Jennifer L; Stephen, Mia L; Johnson, Laura T; Beaulieu, Jake J; Witter, Jonathan D

    2012-01-01

    Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditch's effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.

  6. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.

  7. Mobile Bay, Alabama area seen in Skylab 4 Earth Resources Experiment Package

    NASA Image and Video Library

    1974-02-01

    SL4-92-300 (February 1974) --- A near vertical view of the Mobile Bay, Alabama area is seen in this Skylab 4 Earth Resources Experiments Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in Earth orbit. North of Mobile the Tombigbee and Alabama Rivers join to form the Mobile River. Detailed configuration of the individual stream channels and boundaries can be defined as the Mobile River flows into Mobile Bay, and thence into the Gulf of Mexico. The Mobile River Valley with its numerous stream channels is a distinct light shade in contrast to the dark green shade of the adjacent areas. The red coloration of Mobile Bay reflects the sediment load carried into the Bay by the rivers. Variations in red color indicate sediment load and the current paths within Mobile Bay. The waterly movement of the along shore currents at the mouth of Mobile Bay is shown by the contrasting light blue of the sediment-laden current and the blue of the Gulf predominately. Agricultural areas east and west of Mobile Bay are characterized by a rectangular pattern in green to white shades. Color variations may reflect the type and growth cycle of crops. Agricultural areas (light gray-greens) are also clearly visible in other parts of the photograph. Interstate 10 extends from near Pascagoula, Mississippi eastward through Mobile to the outskirts of Pensacola, Florida. Analysis of the EREP photographic data will be undertaken by the U.S. Corps of Engineers to determine bay dynamic processes. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior's Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota. 57198 Photo credit: NASA

  8. A numerical analysis of shipboard and coastal zone color scanner time series of new production within Gulf Stream cyclonic eddies in the South Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Pribble, J. Raymond; Walsh, John J.; Dieterle, Dwight A.; Mueller-Karger, Frank E.

    1994-01-01

    Eddy-induced upwelling occurs along the western edge of the Gulf Stream between Cape Canaveral, Florida, and Cape Hatteras, North Carolina, in the South Atlantic Bight (SAB). Coastal zone color scanner images of 1-km resolution spanning the period April 13-21, 1979, were processed to examine these eddy features in relation to concurrent shipboard and current/temperature measurements at moored arrays. A quasi-one-dimensional (z), time dependent biological model, using only nitrate as a nutrient source, has been combined with a three-dimensional physical model in an attempt to replicate the observed phytoplankton field at the northward edge of an eddy. The model is applicable only to the SAB south of the Charleston Bump, at approximately 31.5 deg N, since no feature analogous to the bump exists in the model bathymetry. The modeled chlorophyll, nitrate, and primary production fields of the euphotic zone are very similar to those obtained from the satellite and shipboard data at the leading edges of the observed eddies south of the Charleston Bump. The horizontal and vertical simulated fluxes of nitrate and chlorophyll show that only approximately 10% of the upwelled nitrate is utilized by the phytoplankton of the modeled grid box on the northern edge of the cyclone, while approximately 75% is lost horizontally, with the remainder still in the euphotic zone after the 10-day period of the model. Loss of chlorophyll due to sinking is very small in this strong upwelling region of the cyclone. The model is relatively insensitive to variations in the sinking parameterization and the external nitrate and chlorophyll fields but is very sensitive to a reduction of the maximum potential growth rate to half that measured. Given the success of this model in simulating the new production of the selcted upwelling region, other upwelling regions for which measurements or successful models of physical and biological quantities and rates exist could be modeled similarly.

  9. Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level

    NASA Astrophysics Data System (ADS)

    Ezer, Tal; Atkinson, Larry P.; Tuleya, Robert

    2017-12-01

    In October 7-9, 2016, Hurricane Matthew moved along the southeastern coast of the U.S., causing major flooding and significant damage, even to locations farther north well away from the storm's winds. Various observations, such as tide gauge data, cable measurements of the Florida Current (FC) transport, satellite altimeter data and high-frequency radar data, were analyzed to evaluate the impact of the storm. The data show a dramatic decline in the FC flow and increased coastal sea level along the U.S. coast. Weakening of the Gulf Stream (GS) downstream from the storm's area contributed to high coastal sea levels farther north. Analyses of simulations of an operational hurricane-ocean coupled model reveal the disruption that the hurricane caused to the GS flow, including a decline in transport of ∼20 Sv (1 Sv = 106 m3 s-1). In comparison, the observed FC reached a maximum transport of ∼40 Sv before the storm on September 10 and a minimum of ∼20 Sv after the storm on October 12. The hurricane impacts both the geostrophic part of the GS and the wind-driven currents, generating inertial oscillations with velocities of up to ±1 m s-1. Analysis of the observed FC transport since 1982 indicated that the magnitude of the current weakening in October 2016 was quite rare (outside 3 standard deviations from the mean). Such a large FC weakening in the past occurred more often in October and November, but is extremely rare in June-August. Similar impacts on the FC from past tropical storms and hurricanes suggest that storms may contribute to seasonal and interannual variations in the FC. The results also demonstrated the extended range of coastal impacts that remote storms can cause through their influence on ocean currents.

  10. Assimilation of Altimeter Data into a Quasigeostrophic Model of the Gulf Stream System. Part 1; Dynamical Considerations

    NASA Technical Reports Server (NTRS)

    Capotondi, Antonietta; Malanotte-Rizzoli, Paola; Holland, William R.

    1995-01-01

    The dynamical consequences of constraining a numerical model with sea surface height data have been investigated. The model used for this study is a quasigeostrophic model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. The assimilation of the surface data is thus equivalent to the prescription of a surface pressure boundary condition. The authors analyzed the mechanisms of the model adjustment and the characteristics of the resultant equilibrium state when the surface data are assimilated. Since the surface data are the superposition of a mean component and an eddy component, in order to understand the relative role of these two components in determining the characteristics of the final equilibrium state, two different experiments have been considered: in the first experiment only the climatological mean field is assimilated, while in the second experiment the total surface streamfunction field (mean plus eddies) has been used. It is shown that the model behavior in the presence of the surface data constraint can be conveniently described in terms of baroclinic Fofonoff modes. The prescribed mean component of the surface data acts as a 'surface topography' in this problem. Its presence determines a distortion of the geostrophic contours in the subsurface layers, thus constraining the mean circulation in those layers. The intensity of the mean flow is determined by the inflow/outflow conditions at the open boundaries, as well as by eddy forcing and dissipation.

  11. Retrospective

    NASA Astrophysics Data System (ADS)

    Brooks, David A.

    Charting a course toward an uncertain future is always a risky business, especially among shoals of fiscal restraint or national tragedy, and the prudent navigator is well advised to remember where he's been as he looks ahead. The ocean and space sciences are poised for grand joint adventures, but shrinking budgets and the lingering Challenger numbness are restrictive lee shores that must be considered when laying plans. To sharpen the focus on future choices, it may be helpful to glance in the geophysical rearview mirror and remember some of the challenges and opportunities of a different era.A quarter century is a long time, but many images from 25 years ago can still be recalled in crisp detail, like photographs in a scrapbook. In 1961, results from the International Geophysical Year (IGY) filled the pages of the Transactions of the American Geophysical Union, and the U.S. program of space exploration finally was underway with conviction. The Indian Ocean Expedition, conceived during the IGY, ushered in a new era of international oceanography. The TIROS III satellite beamed to earth fuzzy pictures of tropical storms and revealed the intricate writhings of the Gulf Stream. Forecasters and fluid dynamicists suddenly saw new horizons, and geophysical turbulence became a major topic at the IUGG Symposium in Marseilles, France. Papers with prescient themes were presented at the AGU Ocean Section meeting: June Pattullo (then at Oregon State College, Corvallis) on heat storage in the Pacific; Ferris Webster (then at Woods Hole Oceanographic Institution, Woods Hole, Mass.) on Gulf Stream meanders. Polar oceanography was well represented in AGU journals: Kenneth Hunkins (at what was then called the Lamont Geological Observatory, Palisades, N.Y.) described the Alpha Rise, discovered from a drifting Arctic ice island, and Edward Thiel (then at the University of Minnesota, Minneapolis) and his co-workers discussed open ocean tides, gravimetrically measured from Antarctic ice shelves.

  12. On the radiocarbon record in banded corals: exchange parameters and net transport of /sup 14/CO/sub 2/ between atmosphere and surface ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druffel, E.M.; Suess, H.E.

    1983-02-20

    We have made radiocarbon measurements of banded hermatypic corals from Florida, Belize, and the Galapagos Islands. Interpretation is presented here of these previously reported results. These measurements represent the /sup 14/C//sup 12/C ratios in dissolved inorganic carbon (DIOC) in the surface ocean waters of the Gulf Stream and the Peru Current at the time of coral ring formation. A depletion in radiocarbon concentration was observed incoral rings that grew from A.D. 1900--1952. It was caused by dilution of existing /sup 14/C levels with dead CO/sub 2/ from fossil fuel burning (the Suess effect, or S/sub e/). A similar trend wasmore » observed in the distribution of bomb-produced /sup 14/C in corals that had grown during the years following A.D. 1952. The concentration of bomb-produced radiocarbon was much higher in corals from temperate regions (Florida, Belize, Hawaiian Islands) than in corals from tropical regions (Galapagos Islands and Canton Island). The apparent radiocarbon ages of the surface waters in temperate and tropical oceans during the preanthropogenic period range from about 280 to 520 years B.P. (-40 to -69%). At all investigated locations, it is likely that waters at subsurface depths have the same apparent radiocarbon age of about 670 years B.P. From the change of oceanic ..delta../sup 14/C in the surface during post-bomb times, the approximate annual rate of net input of /sup 14/CO/sub 2/ to the ocean waters is calculated to be about 8% of the prevailing /sup 14/C difference between atmosphere and ocean. From this input and from preanthropogenic ..delta../sup 14/C values found at each location, it can be seen that vertical mixing of water in the Peru Current is about 3 times greater than that in the Gulf Stream.« less

  13. Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2

    NASA Technical Reports Server (NTRS)

    Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.

    2004-01-01

    A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.

  14. Targeted Acoustic Data Processing for Ocean Ecological Studies

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, N.; Li, K.; Tiemann, C.; Ackleh, A. S.; Tang, T.; Ioup, G. E.; Ioup, J. W.

    2015-12-01

    The Gulf of Mexico is home to many species of deep diving marine mammals. In recent years several ecological studies have collected large volumes of Passive Acoustic Monitoring (PAM) data to investigate the effects of anthropogenic activities on protected and endangered marine mammal species. To utilize these data to their fullest potential for abundance estimates and habitat preference studies, automated detection and classification algorithms are needed to extract species acoustic encounters from a continuous stream of data. The species which phonate in overlapping frequency bands represent a particular challenge. This paper analyzes the performance of a newly developed automated detector for the classification of beaked whale clicks in the Northern Gulf of Mexico. Current used beaked whale classification algorithms rely heavily on experienced human operator involvement in manually associating potential events with a particular species of beaked whales. Our detection algorithm is two-stage: the detector is triggered when the species-representative phonation band energy exceeds the baseline detection threshold. Then multiple event attributes (temporal click duration, central frequency, frequency band, frequency sweep rate, Choi-Williams distribution shape indices) are measured. An attribute vector is then used to discriminate among different species of beaked whales present in the Gulf of Mexico and Risso's dolphins which were recognized to mask the detections of beaked whales in the case of widely used energy-band detectors. The detector is applied to the PAM data collected by the Littoral Acoustic Demonstration Center to estimate abundance trends of beaked whales in the vicinity of the 2010 oil spill before and after the disaster. This algorithm will allow automated processing with minimal operator involvement for new and archival PAM data. [The research is supported by a BP/GOMRI 2015-2017 consortium grant.

  15. Elemental and Mineralogical Analysis of Silt Fraction from Site U1420, IODP Expedition 341

    NASA Astrophysics Data System (ADS)

    Salinas, J. K.; Jaeger, J. M.; Penkrot, M. L.

    2016-12-01

    In southeastern Alaska, the Chugach-St. Elias Mountains - the world's highest coastal mountain range - exhibit extreme topography due to the collision and subduction of the Yakutat microplate beneath the North American plate. The St. Elias orogen is younger than 30 Ma, with mountain building having occurred during a period of enhanced glacial erosion when erosive ice streams delivered sediment into the Gulf of Alaska. Integrated Ocean Drilling Program Expedition 341 set out to investigate the relationship between mountain building and glacial dynamics in the Gulf of Alaska. Sediment cores from site U1420 were collected, within the Bering trough, just offshore of the Bering Glacier. Analysis of Bering Trough seismic profiles demonstrates an evolution from tectonically-controlled to depositionally-controlled continental margin strata formation (Worthington et al., 2010). The goal of this study is to investigate the provenance of the silt-sized fraction (15-63 μm) of U1420 sediments across this transition in seismic facies using mineralogy and elemental geochemical analyses. XRD mineralogical analysis shows consistent downhole mineralogy with minor variations in relative peak intensities. Elemental ICP-MS geochemical analysis reveal concentrations of both major and trace elements to be very well constrained, with all major (Al, Ca, Fe, Mg, and Ti) and trace elemental data (Ce, Cr, Ga, La, Rb, Sc, Sr, Th, and Y) only varying downhole by few percent/ppm. Both the consistent downhole mineralogy and elemental data suggest that the provenance of the silt-sized sediment deposited offshore has not changed since initial deposition (<0.7 Ma). Comparison with onshore bedrock geochemistry and surface samples from the modern Gulf of Alaska indicate that U1420 silt is similar in composition to modern regional sediment sources and is a mixture of the different bedrock lithologies within the modern Bering Glacier drainage.

  16. Exploration and Discovery of Hydrocarbon Seeps, Coral Ecosystems, and Shipwrecks in the Deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Hsing, P.; Carney, R. S.; Herrera, S.; Heyl, T.; Munro, C.; Bors, E.; Kiene, W.; Vecchione, M.; Evans, A.; Irion, J.; Warren, D.; Malik, M.; Lobecker, M.; Potter, J.

    2012-12-01

    Between March 20 and April 6, 2012, the NOAA Ship Okeanos Explorer served as a platform for ship-board and shore-side scientists to explore the deep Gulf of Mexico, targeting the northern West Florida Escarpment, DeSoto Canyon, the vicinity (within 11km) of the Deepwater Horizon (DWH) well, and deepwater shipwrecks. We systematically explored and discovered natural hydrocarbon seeps, diverse coral ecosystems, wooden and iron-hulled shipwrecks more than 100 years old colonized by coral communities, and sperm whale habitat between 600 and 1200m. A total of sixteen dives took advantage of new and recent maps to explore and groundtruth both hard and soft-bottom habitats, from cretaceous carbonates to mounds of coral rubble. The final ROV dive successfully groundtruthed expected methane-release areas imaged by the ship's mapping systems up to 1150m above the seafloor. The source of the mapping imagery was a stream of bubbles issuing from beneath thriving seep mussel communities. We visited five sites in the Mississippi Canyon (MC) area (lease blocks MC294, MC297, MC388, MC255, and MC036; the DWH incident took place in MC252). These sites were 11.3 km SW, 6.8 km SW, 7.6 km SW, 25.7 km E, and 27.4 km to the NE of the DWH, respectively. We used high-definition imaging systems on the Little Hercules ROV and Seirios camera platform to document more than 130 coral colonies and over 400 associated individual animals to continue to assessing the impact of the Deepwater Horizon oil spill. All of these efforts were conducted to provide fundamental knowledge of unknown and poorly known regions, ecosystems, and items of historical significance in the deep Gulf of Mexico.

  17. Living Behaviors and Molecular Characterization of Benthic Foraminifera in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Arslan, Muhammad; Kaminski, Michael; Khalil, Amjad; Holzmann, Maria

    2016-04-01

    The benthic foraminifera are among the major carbonate producers in modern Arabian Gulf waters and are found living in all marine habitats. They have been recognized as proxies to assess paleoenvironmental changes, however, their biological behaviors in modern environments needs to be further studied. The current study attempts to explain the biology of benthic foraminifera in terms of their living behaviors and molecular characterization, from different regions of the western side of the Arabian Gulf. Accordingly, two major groups of benthic foraminifera, namely rotaliids and miliolids, are examined under laboratory conditions. Results illustrate that the rotaliids are more resistant to environmental changes than miliolids, as their granular reticulopodial network is stronger than among the miliolids, with high cytoplasmic streaming. The pseudopodia extend out from both primary and secondary apertures, and aid the organism in locomotion by attaching to the wall of hard substrate. As a result they drag their whole bodies toward the direction of motion. In rotaliids, the movement rate is high and is attributed to the extension of pseudopodia through all apertures, compared with miliolids in which pseudopodia extend out from the primary aperture only. The innate behavior of both groups was observed as a function of external stimulus, i.e., light, nutrients, and availability of substrate. The observation on average life span reflected that the rotaliids was able to survive longer than miliolids. Molecular analysis reveals the presence of four groups, i.e., Ammonia, Murrayinella, Glabratellina, and Elphidium which support the morphological taxonomy at the genus level. However, BLAST analysis contradicts the species level taxonomy, which challenges the classification based upon hard-shell morphology. Nevertheless, monophyletic clustering is observed among all major groups. The study concludes that the morphological taxonomy needs to be augmented by molecular analysis, in order to develop a new inventory of species.

  18. Variability of Relative Sea Level Rise: Spatial and Temporal Correlations in Northwest Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Tissot, P.; Reisinger, A. S.; Besonen, M. R.

    2017-12-01

    While our understanding of global sea level rise and its budget has made great progress over the past decade, the spatial and temporal variability of relative sea level rise along the coasts still needs to be better understood and quantified. We developed a technique to reduce the confidence intervals associated with relative sea level rise (RSLR) estimates for 15 tide gauges located along the Texas coast for the period 1993-2016. Seasonally detrended monthly mean water levels are highly correlated after removal of station-specific RSLR trends, which allows for the quantification of a common, low frequency oceanic signal. RSLR confidence intervals are reduced from over 1.9 mm/yr, on average 2.3mm, to less than 1.1 mm/yr, on average 0.7 mm/yr after removing this common signal. The resulting RSLR rates range from 3.0 to 8.4 mm/yr. The range is wider than the longer-term rates of 5.3, 3.8 and 1.9 mm/yr measured from north to south by the three National Water Level Observation Network (NWLON) stations covering the study area (over different and longer time spans). The results emphasize the importance of the spatial variability of the vertical land motion component of RSLR. The temporal variability of the coherent oceanic signal is not significantly correlated to the ENSO signal for the study period and is only weakly correlated to the AMO and PDO climate indices. The coherence of the signal is further investigated by comparison with other locations along the Gulf of Mexico and along the Northeast Atlantic coast. The results are discussed while considering strong local processes along the Northwest Gulf of Mexico, such as wind forcing and intermittent eddies and the spatially broader influence of the Gulf Stream. The local significance of the RSLR spatial and temporal differences are discussed in terms of the differences in inundation frequency for nuisance type flooding including comparing the time span to reach a probability of at least one nuisance flood event per year.

  19. Discharge between San Antonio Bay and Aransas Bay, southern Gulf Coast, Texas, May-September 1999

    USGS Publications Warehouse

    East, Jeffery W.

    2001-01-01

    Along the Gulf Coast of Texas, many estuaries and bays are important habitat and nurseries for aquatic life. San Antonio Bay and Aransas Bay, located about 50 and 30 miles northeast, respectively, of Corpus Christi, are two important estuarine nurseries on the southern Gulf Coast of Texas (fig. 1). According to the Texas Parks and Wildlife Department, “Almost 80 percent of the seagrasses [along the Texas Gulf Coast] are located in the Laguna Madre, an estuary that begins just south of Corpus Christi Bay and runs southward 140 miles to South Padre Island. Most of the remaining seagrasses, about 45,000 acres, are located in the heavily traveled San Antonio, Aransas and Corpus Christi Bay areas” (Shook, 2000).Population growth has led to greater demands on water supplies in Texas. The Texas Water Development Board, the Texas Parks and Wildlife Department, and the Texas Natural Resource Conservation Commission have the cooperative task of determining inflows required to maintain the ecological health of the State’s streams, rivers, bays, and estuaries. To determine these inflow requirements, the three agencies collect data and conduct studies on the need for instream flows and freshwater/ saline water inflows to Texas estuaries.To assist in the determination of freshwater inflow requirements, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, conducted a hydrographic survey of discharge (flow) between San Antonio Bay and Aransas Bay during the period May–September 1999. Automated instrumentation and acoustic technology were used to maximize the amount and quality of data that were collected, while minimizing personnel requirements. This report documents the discharge measured at two sites between the bays during May–September 1999 and describes the influences of meteorologic (wind and tidal) and hydrologic (freshwater inflow) conditions on discharge between the two bays. The movement of water between the bays is controlled primarily by prevailing winds, tidal fluctuations, and freshwater inflows. An adequate understanding of mixing and physical exchange in the estuarine waters is fundamental to the assessment of the physical, chemical, and biological processes governing the aquatic system.

  20. A postglacial coleopterous assemblage from Lockport Gulf, New York

    NASA Astrophysics Data System (ADS)

    Miller, Randy F.; Morgan, Alan V.

    1982-03-01

    The Lockport Gulf site near Lockport, New York, is a 1.9-m sequence of organic-rich marls having a basal date of approximately 10,920 yr B.P. Six bulk samples with a combined weight of 48 kg produced over 780 individual fossil insects representing five orders, as well as molluscs and abundant plant macrofossils. Coleoptera were represented by 24 families. Several major beetle groups (Carabidae, ground beetles; Hydrophilidae, water scavenger beetles; Elmidae, riffle beetles; Staphylinidae, rove beetles; and Scolytidae, bark beetles) indicate a riffle-and-pool stream, surrounded by marsh, with open riparian habitats and nearby trees. Two zones were recognized based on the Coleoptera assemblages. The Zone 1 fauna (ca. 10,920-9800 yr B.P.) was dominated by boreal forest taxa with abundant bark beetles indicating the presence of spruce trees. In Zone 2 (ca. 9700-9100 yr B.P.) the combination of species with a restricted modern distribution in the Great Lakes-St. Lawrence Forest region and pine and deciduous tree inhabitants suggests a change in vegetation by 9700 yr B.P. Thermal estimates from a faunal analysis indicate that the climatic conditions were stable across the spruce-pine transition, with the mean July temperature in the range of 16° to 18°C.

  1. Aphanius kruppi, a new killifish from Oman with comments on the A. dispar species group (Cyprinodontiformes: Aphaniidae).

    PubMed

    Freyhof, Jörg; Weissenbacher, Anton; Geiger, Matthias

    2017-10-26

    Eight species are recognised in the Aphanius dispar group. Aphanius dispar from the Red and Mediterranean Sea basins, A. stoliczkanus from coastal areas of the Arabian/Persian Gulf, the northern Arabian Sea east to Gujarat in India, the Gulf of Oman and some endorheic basins in Iran and Pakistan, A. richardsoni from springs in the Dead Sea basin in Jordan and Israel, A. sirhani from the Azraq Oasis in Jordan, A. ginaonis from one spring in Iran, A. furcatus from few streams and springs in Iran and A. stiassnyae from one lake in Ethiopia. Aphanius kruppi, new species, from the Wadi al Batha drainage in northern Oman, is distinguished from adjacent A. stoliczkanus by having 9-14 brown or grey lateral bars on the flank in the male, a roundish, diamond-shaped or somewhat vertically-elongate blotch centred on the caudal-fin base in the female and 2-3 scale rows on the caudal-fin base. The available molecular genetic data for A. dispar reject the hypothesis of the presence of a single widespread coastal species in the Middle East and make it likely that two additional unidentified species occur in the Red Sea basin.

  2. Surface faults in the gulf coastal plain between Victoria and Beaumont, Texas

    USGS Publications Warehouse

    Verbeek, Earl R.

    1979-01-01

    Displacement of the land surface by faulting is widespread in the Houston-Galveston region, an area which has undergone moderate to severe land subsidence associated with fluid withdrawal (principally water, and to a lesser extent, oil and gas). A causative link between subsidence and fluid extraction has been convincingly reported in the published literature. However, the degree to which fluid withdrawal affects fault movement in the Texas Gulf Coast, and the mechanism(s) by which this occurs are as yet unclear. Faults that offset the ground surface are not confined to the large (>6000-km2) subsidence “bowl” centered on Houston, but rather are common and characteristic features of Gulf Coast geology. Current observations and conclusions concerning surface faults mapped in a 35,000-km2 area between Victoria and Beaumont, Texas (which area includes the Houston subsidence bowl) may be summarized as follows: (1) Hundreds of faults cutting the Pleistocene and Holocene sediments exposed in the coastal plain have been mapped. Many faults lie well outside the Houston-Galveston region; of these, more than 10% are active, as shown by such features as displaced, fractured, and patched road surfaces, structural failure of buildings astride faults, and deformed railroad tracks. (2) Complex patterns of surface faults are common above salt domes. Both radial patterns (for example, in High Island, Blue Ridge, Clam Lake, and Clinton domes) and crestal grabens (for example, in the South Houston and Friendswood-Webster domes) have been recognized. Elongate grabens connecting several known and suspected salt domes, such as the fault zone connecting Mykawa, Friendswood-Webster, and Clear Lake domes, suggest fault development above rising salt ridges. (3) Surface faults associated with salt domes tend to be short (<5 km in length), numerous, curved in map view, and of diverse trend. Intersecting faults are common. In contrast, surface faults in areas unaffected by salt diapirism are frequently mappable for appreciable distances (>10 km), occur singly or in simple grabens, have gently sinuous traces, and tend to lie roughly parallel to the ENE-NE “coastwise” trend common to regional growth faults identified in subsurface Tertiary sediments. (4) Evidence to support the thesis that surface scarps are the shallow expression of faults extending downward into the Tertiary section is mostly indirect, but nonetheless reasonably convincing. Certainly the patterns of crestal grabens and radiating faults mapped on the surface above salt domes are more than happenstance; analogous fault patterns have been documented around these structures at depth. Similarly, some of the long surface faults not associated with salt domes seem to have subsurface counterparts among known regional growth faults documented through well logs and seismic data. Correlations between surface scarps and faults offsetting subsurface data are not conclusive because of the large vertical distances (1900- 3800 m) involved in making the most of the inferred connections. Nevertheless, the large number of successful correlations - in trend, movement sense, and position - suggests that many surface scarps represent merely the most recent displacements on faults formed during the Tertiary. (5) Upstream-facing fault scarps in this region of low relief can be significant impediments to streams. Locally, both abandoned, mud-filled Pleistocene distributary channels and, more commonly, Holocene drainage lines still occupied by perennial streams reflect the influence of faulting on their development. Some bend sharply near faults and have tended to flow along or pond against the base of scarps; others meander within topographically expressed grabens. Such evidence for Quaternary displacement of the ground surface is widespread in the Texas Gulf coast. In the general, however, streams in areas now offset by faulting show no disruption of their courses where they cross fault scarps. Such scarps are probably very young, and where they can be demonstrated to partly or wholly predate fluid withdrawal, very recent natural fault activity is indicated. (6) Early aerial photographs (1930) of the entire region and topographic maps (1915-16 surveys) of Harris County (Houston and vicinity) show that many faults had already displaced the land surface at a time when appreciable pressure declines in subjacent strata were localized to relatively few areas of large-scale pumping. Prehistoric faulting of the land surface, as noted above, appears to have affected much of the Texas Gulf Coast. (7) A relation between groundwater extraction and current motion on active faults is suspected because of the increased incidence of ground failure in the Houston-Galveston subsidence bowl. This argument is weakened somewhat by recognition of numerous surface faults, some of them active today, far beyond the periphery of the strongly subsiding area. Moreover, tilt beam records from two monitored faults in northwest Houston and accounts of fault damage from local residents demonstrate a complex, episodic nature of fault creep which can only partially be correlated with groundwater production. Nevertheless, although specific mechanisms are in doubt, the extraction of groundwater from shallow (<800-m) sands is probably a major factor in contributing to current displacement of the ground surface in the Houston-Galveston region. Within this large area, the number of faults recognizable from aerial photographs has increased at least tenfold between 1930 and 1970. Elsewhere in the Texas Gulf Coast only a moderate increase has been noted, some of which is possibly attributable to oil and gas production. Surface fault density in the Houston-Galveston region is far greater than in any other area of the Texas Gulf Coast investigated to date. A plausible explanation for these differences is that large overdrafts of groundwater over an extended period of time in the Houston-Galveston region have stimulated fault activity there. Throughout the Texas Gulf Coast, however, a natural contribution to fault motion remains a distinct possibility.

  3. Circulation of the gyres of the world ocean: Observation modeling using TOPEX/Poseidon altimeter data

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Zlotnicki, V.; Holland, W. R.; Malanotte-Rizzoli, P.

    1991-01-01

    The overall objectives of the proposed investigation are to study the dynamics of the large-scale recirculating cells of water in the ocean, which are loosely defined as 'gyres' in this study. A gyre is normally composed of a swift western boundary current (e.g., the Gulf Stream and the Kuroshio), a tight recirculating cell attached to the current, and a large-scale sluggish return flow. The water, of course, is not entirely recirculating within a gyre. The exchange of water among gyres is an important process in maintaining the meridional heat transport of the ocean. The gyres constitute a major mode of water movement in the ocean and play significant roles in the global climate system.

  4. Impact of 1/8 degree to 1/64 degree Resolution on Gulf Stream Model-Data Comparisons in Basin-Scale Subtropical Atlantic Ocean Models

    DTIC Science & Technology

    2000-01-01

    Momentum Fluxes. NOAA Atlas NESDIS 8 vol. 3 US Department of Commerce, NOAA, NESDIS, 413 p. Dietrich, G., Kalle , K ., Krauss, K ., Siedler, G., 1980...depth, hydrodynamic model are given below for layers ks1 . . . n with ks1 for the top layer. In places where k is used to index model interfaces, ks0 is...the surface and ksn is the bottom. EU 1 E U u E V u cosuŽ . Ž . k k k k k q q yV u sinuqaV sin2uŽ . k k Et acosu Ef Eu sqmax 0,yv u qmax 0,v u y max 0

  5. Harbeck research files donated

    NASA Astrophysics Data System (ADS)

    The collected papers and research files of G. Earl Harbeck (deceased), noted U.S. Geological Survey (USGS) research hydraulic engineer, have recently been donated by the USGS Gulf Coast Hydroscience Center to the Department of Civil Engineering at the University of Mississippi (University, Miss.). Harbeck performed important research in evaporation and evapotranspiration phenomena during the 1950s and 1960s that led to modern water and energy budget methods for lakes, streams, and reservoirs that are widely used today. Many of the papers in his files are unique; others have importance in the historical progression of evaporation research in lakes. Researchers or students interested in gaining access to the files may contact Robert M. Hackett, Chairman, Department of Civil Engineering, University of Mississippi, University, MS 38677, for details.

  6. A multisensor analysis of Nimbus-5 data recorded on 22 January 1973. [measurement of rainfall rates for east coast of the United States

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Rodgers, E. B.; Wilheit, T. T.; Wexler, R.

    1975-01-01

    The Nimbus 5 meteorological satellite has a full complement of radiation sensors. Data from these sensors were analyzed and intercompared for orbits 569 and 570. The electrically-scanning microwave radiometer (19.35-GHz region) delineated rain areas over the ocean off the U.S. east coast, in good agreement with radar imagery, and permitted the estimation of rainfall rates in this region. Residual ground water, from abnormal rainfall in the lower Mississippi Valley, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 electrically scanning microwave radiometer and U.S. Air Force Data Acquisition and Processing Program infrared data. The temperature-humidity infrared radiometer (6.7 micron and 11 micron) showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad subtropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders are found to be in good agreement with related radiosonde ascents along orbit 569 from the subtropics to the Arctic Circle.

  7. Remote identification of a gravel laden Pleistocene river bed

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.

    1993-01-01

    The abundance of gravel deposits is well known in certain areas across the Gulf of Mexico coastal plain, including lands within several National Forests. These Pleistocene gravels were deposited following periods of glacial buildup when ocean levels were down and the main river channels had cut deep gorges, leaving the subsidiary streams with increased gradients to reach the main channels. During the warm interglacial periods that followed each glaciation, melting ice brought heavy rainfall and torrents of runoff carrying huge sediment loads that separated into gravel banks below these steeper reaches where abraiding streams, developed. As the oceans rose again, filling in the main channels, these abraiding areas were gradually flattened and covered over by progressively finer material. Older terraces were uplifted by tectonic movements associated with the Gulf Coastal Plain, and the subsequent erosional processes gradually brought the gravels closer to the surface. The study area is located on the Kisatchie National Forest, in central Louisiana, near Alexandria. Details of the full study have been discussed elsewhere. The nearest source of chert is in the Ouachita Mountains located to the northeast. The Ouachita River flows south, out of these mountains, and in Pleistocene times probably carried these chert gravels into the vicinity of the present day Little River Basin which lies along the eastern boundary of the National Forest. Current day drainages cross the National Forest from west to east, emptying into the Little River on the east side. However, a north-south oriented ridge of hills along the west side of the Forest appears to be a recent uplift associated with the hinge line of the Mississippi River depositional basin further to the east, and 800,000 years ago, when these gravels were first deposited during the Williana interglacial period, the streams probably flowed east to west, from the Little River basin to the Red River basin on the west side of the Forest. Within the National Forest and north of Alexandria, along Fish Creek, and east and west of an area known as Breezy Hill, exist several small, worked out gravel pits on privately owned blocks of land, formerly used by the state and county road departments. The pattern presented by these pits gives the impression of a series of north-south drainages lacing through the Forest, probable tributaries to Fish Creek which flows south of east from the west side of the Forest to empty into the Little River. Because of this predominant north-south pattern, no consideration was given to areas between these drainages during early gravel exploration efforts.

  8. Attributes for NHDPlus Catchments (Version 1.1): Basin Characteristics, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents basin characteristics, compiled for every catchment in NHDPlus for the conterminous United States. These characteristics are basin shape index, stream density, sinuosity, mean elevation, mean slope, and number of road-stream crossings. The source data sets are the U.S. Environmental Protection Agency's NHDPlus and the U.S. Census Bureau's TIGER/Line Files. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  9. Thermaikos Gulf Coastal System, NW Aegean Sea: an overview of water/sediment fluxes in relation to air land ocean interactions and human activities

    NASA Astrophysics Data System (ADS)

    Poulos, S. E.; Chronis, G. Th; Collins, M. B.; Lykousis, V.

    2000-04-01

    This study presents an overview of the Holocene formation and evolution of the coastal system of Thermaikos Gulf (NW Aegean Sea). The system is divided into the terrestrial sub-system and the oceanic sub-system; the former represents 90%, while the latter includes only 10% of the total area. This particular coastal zone includes the second most important socio-economic area of Greece and in the southern Balkans, the Thessaloniki region; this is in terms of population concentration (>1 million people), industry, agriculture, aquaculture, trade and services. The geomorphology of the coastal zone is controlled by sediment inputs, nearshore water circulation, and the level of wave activity. The large quantities of sediments (with yields >500 tonnes/km 2 per year), delivered annually by the main rivers (Axios, Aliakmon, Pinios, and Gallikos) and other seasonal streams are responsible for the general progradation of the coastline and the formation of the Holocene sedimentary cover over the seabed of the Gulf. Changes to the coastline can be identified on macro- and meso-time scales; the former include the evolution of the deltaic plains (at >1 km 2/year), while the latter incorporates seasonal changes along sections of the coastline (e.g. sandy spits), mostly due to the anthropogenic activities. The overall water circulation pattern in Thermaikos Gulf is characterised by northerly water movement, from the central and eastern part of the Gulf; this is compensated by southerly movement along its western part. The prevailing climate (winds and pressure systems) appears to control the surface water circulation, while near-bed current measurements reveal a general moderate (<15 cm/s) southerly flow, i.e. offshore, towards the deep water Sporades Basin. Waves approaching from southerly directions play also a role in controlling the shoreline configuration. Various human activities within the coastal system place considerable pressure on the natural evolution of the coastal zone ecosystem. Thus, the construction of dams along the routes of the main rivers has reduced dramatically the water/sediment fluxes; this caused, for example, retreat of the deltaic coastlines and seawater intrusion into the groundwater aquifers. Similarly, pollution and/or eutrophication of the nearshore marine environment have resulted from the inputs of industrial wastes, urban untreated sewage, and agricultural activities on the coastal plains. This effect is demonstrated by high levels of pollutants, nutrients, and by the increased concentrations of non-residual trace-metals within the surficial sediments. Finally, climatic changes associated with a potential rise in sea level (i.e. 30-50 cm) will threaten a substantial part of the low-lying lands of Thermaikos Gulf. Thus, systematic and thorough monitoring is needed in order to protect the coastal ecosystem; this will ensure its sustainable development and successful management, in relation to present and future socio-economic activities and climatic changes.

  10. Formation of the Shelf-edge Cretaceous-Tertiary contact off the southeastern U.S. Coast

    USGS Publications Warehouse

    Poppe, L.J.; Hathaway, J.C.; Hall, R.E.; Commeau, R.F.

    1986-01-01

    Submarine erosion, associated with changes in position of the proto-Gulf Stream, was the dominant mechanism controlling the formation of the Cretaceous-Tertiary unconformity in AMCOR borehole 6004. Paleontologic evidence indicates that this unconformity, which is marked by a gravelly-sand enriched in glauconitic and phosphoritic concretions, represents a hiatus of about 7 m.y. Both Cretaceous and Paleocene sediments contain middle-outer neritic foraminiferal assemblages that become more diverse with distance from the contact. Of the elemental abundances measured, Al, Ba, Co, Fe, Ga, K, Mg/Ca, Mo, Ni, P, Sr/Ca, V, Y, and Zn show a strong positive correlation with proximity to the contact, probably as a result of the concentration of authigenic and heavy minerals present as lag sediments on the erosion surface. ?? 1986.

  11. Earth observation taken during STS-102

    NASA Image and Video Library

    2001-04-03

    STS102-331-012 (8-21 March 2001) --- The STS-102 crew members used a 35mm camera on the flight deck of the Space Shuttle Discovery to record this image of several meandering distributary channels of the Orinoco River draining northward into the south side of the Gulf of Paria in eastern Venezuela. According to NASA scientists studying the STS-102 collection, these sediment-laden channels carry a tremendous quantity of fluvial material that constantly changes the size and shapes of the shoreline and adjacent islands. An assortment of mud flats and sand bars, seen here as lighter colored features in the water, are affected both by stream flow and tidal forces. The extensive dark landscape identifies the flat, swampy coastal plains of northeast Venezuela that is covered by dense stands of vegetation.

  12. Charney's Influence on Modern Oceanography

    NASA Astrophysics Data System (ADS)

    Cane, M. A.

    2017-12-01

    In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.

  13. Phytoplankton bloom off the coast of Ireland

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Irish Sea (right) is full of phytoplankton in this true-color image from January 15, 2002. The Irish Sea separates Ireland (center) from the United Kingdom (right). In this image the water of both the Irish and Celtic (lower right) Seas appears quite turbid, being a milky blue-green compared to the clearer waters of the open Atlantic (left). This milky appearance is likely due to the growth of marine plants called phytoplankton. Despite the fact that Ireland is at the same latitude as southern Hudson Bay, Canada, it remains green year round, thanks to the moderating effect on temperatures of the Atlantic Ocean. The Gulf Stream bring warmer waters up from the tropics, and southwesterly winds bring warmer air to the country, thus moderating seasonal temperature extremes.

  14. The impact of oil revenues on Arab Gulf development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Azhary, M.S.

    1984-01-01

    This book presents papers on Middle East oil policy. Topics considered include oil production policies in the Gulf States, oil planning, the philosophy of state development planning, prospects for Gulf economic coordination, the philosophy of infrastructural development, industrialization in the Arab Gulf, the agricultural potential of the Arab Gulf states, the future of banking as a Gulf industry, manpower problems and projections in the Gulf, education as an instrument of progress in the Arab Gulf states, and the impact of development on Gulf society.

  15. Isotopic and chemical composition of inorganic and organic water-quality samples from the Mississippi River Basin, 1997-98

    USGS Publications Warehouse

    Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, Donald H.

    2001-01-01

    Nitrate (NO3) and other nutrients discharged by the Mississippi River combined with seasonal stratification of the water column are known to cause a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. About 120 water and suspended sediment samples collected in 1997 and 1998 from 24 locations in the Mississippi River Basin were analyzed for the isotope ratios δ15N and δ18O of dissolved NO3, and δ15N and δ13C of suspended particulate organic material (POM). Sampling stations include both large rivers (drainage areas more than 30,000 square kilometers) that integrate the effects of many land uses, and smaller streams (drainage areas less than 2,500 square kilometers) that have relatively uniform land use within their drainage areas. The data are used to determine sources and transformations of NO3 in the Mississippi River.Results of this study demonstrate that much of the NO3 in the Mississippi River originates in the agriculturally dominated basins of the upper midwestern United States and is transported without significant transformation or other loss to the Gulf of Mexico. Results from major tributaries that drain into the Mississippi River suggest that NO3 is not significantly altered by denitrification in its journey, ultimately, to the Gulf of Mexico. The spatial variability of isotope ratios among the smaller streams appears to be related to the dominant nitrogen source in the basins. There are some distinct isotope differences among land-use types. For example, for both NO3 and POM, the majority of δ15N isotope ratio values from basins dominated by urban and undeveloped land are less than +5 per mil, whereas the majority of values from basins dominated by row crops and row crops and/or livestock production are greater than +5 per mil. Also, the median δ18O of NO3 isotope ratio value (+14.0 per mil) from undeveloped basins is more than 6 per mil higher than the median value (+7.3 per mil) from the row crop dominated basins and 5 per mil higher than the median value (+9.0 per mil) from the row crop and/or livestock production dominated basins. The median δ18O of NO3 isotope ratio value (+21.5 per mil) from urban basins is 6.5 per mil higher than the median value (+14.0 per mil) from the undeveloped basins. The majority of NO3 concentrations are greater than 3 milligrams per liter (mg/L) in basins dominated by row crops and row crops and/or livestock production, whereas all NO3 concentrations are less than 2 mg/L in basins dominated by urban and undeveloped land.

  16. Reducing nitrogen export from the corn belt to the Gulf of Mexico: agricultural strategies for remediating hypoxia

    USGS Publications Warehouse

    McLellan, Eileen; Robertson, Dale M.; Schilling, Keith; Tomer, Mark; Kostel, Jill; Smith, Douglas G.; King, Kevin

    2015-01-01

    SPAtially Referenced Regression on Watershed models developed for the Upper Midwest were used to help evaluate the nitrogen-load reductions likely to be achieved by a variety of agricultural conservation practices in the Upper Mississippi-Ohio River Basin (UMORB) and to compare these reductions to the 45% nitrogen-load reduction proposed to remediate hypoxia in the Gulf of Mexico (GoM). Our results indicate that nitrogen-management practices (improved fertilizer management and cover crops) fall short of achieving this goal, even if adopted on all cropland in the region. The goal of a 45% decrease in loads to the GoM can only be achieved through the coupling of nitrogen-management practices with innovative nitrogen-removal practices such as tile-drainage treatment wetlands, drainage–ditch enhancements, stream-channel restoration, and floodplain reconnection. Combining nitrogen-management practices with nitrogen-removal practices can dramatically reduce nutrient export from agricultural landscapes while minimizing impacts to agricultural production. With this approach, it may be possible to meet the 45% nutrient reduction goal while converting less than 1% of cropland in the UMORB to nitrogen-removal practices. Conservationists, policy makers, and agricultural producers seeking a workable strategy to reduce nitrogen export from the Corn Belt will need to consider a combination of nitrogen-management practices at the field scale and diverse nitrogen-removal practices at the landscape scale.

  17. River plumes investigation using Sentinel-2A MSI and Landsat-8 OLI data

    NASA Astrophysics Data System (ADS)

    Lavrova, Olga Yu.; Soloviev, Dmitry M.; Strochkov, Mikhail A.; Bocharova, Tatiana Y.; Kashnitsky, Alexandr V.

    2016-10-01

    We present the results of using Sentinel-2A Multispectral Imager Instrument (MSI/S2) and Landsat-8 Operational Land Imager (OLI/L8) data to monitor river plumes in the eastern Black Sea and from the Rhône River in the Mediterranean Sea. The focus is on exploring the possibility to investigate hydrodynamic processes associated with river outflows, in particular internal waves (IWs). Submesoscale IWs having wavelengths less than 50 m and generated by unstable sharp front of a river plume were revealed and their parameters were assessed. A map of surface manifestation of IW trains in the Gulf of Lions was created based on MSI/S2 images. There are different mechanisms of IW generation in river outflow zones, they are determined by a number of parameters including river discharge, bottom topography and presence of tidal currents or inertial period IWs in the shelf zone. A new phenomenon manifested as a chain of quasi circles was discovered. Inertial water motions were suggested as its prime cause, however, this hypothesis is yet to be investigated. An analysis of OLI/L8 and MSI/S2 data enabled us to consider in detail river debouchment streams. For the first time a wave pattern of such stream in the eastern Black Sea was observed in conditions of foehn winds. Usually, foehn winds are distinctly manifested in radar images. A joint analysis of quasi simultaneous ocean color MSI/S2 and Sentinel-1A SAR images demonstrated how water stream wave-like signatures differ from those of foehn winds.

  18. Summary of floods in the United States during 1958

    USGS Publications Warehouse

    Hendricks, E.L.

    1964-01-01

    This report describes the most outstanding floods that occurred in the United States during 1958.A series of storms from January 23 to February 16 brought large amounts of precipitation to northern California and produced damaging floods, particularly in the Lower Sacramento Valley where losses totaled about \\$12 million.Major floods, notable because of the large area affected, occurred on many small streams in central and south Texas, following heavy general rains in late February. Extensive flooding occurred along the Gulf Coastal plain on the lower reaches of the major streams from the Brazos River to the Nueces River. Two lives were lost, and property damage exceeded \\$1 million.Damaging floods of April 1-7 followed one of the wettest winters in California history. Swollen streams overflowed their banks throughout the central part of the State, and discharge peaks on many streams exceeded those .of the floods of December 1955. Most severely flooded was the San Francisco Bay area. Total flood damage was estimated at \\$23 million.The storms and floods of April-May in Louisiana and adjacent States outranked all other floods in the United States during 1958 with respect to intensity of rain over a large area, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount (\\$21 million) of resultant damage.Heavy rains on June 8-15 caused one of the greatest summer floods of record in central Indiana. Peak discharges were high and of rare occurrences. Failure of numerous levees along the Wabash River caused great damage. Crop damage alone was estimated at \\$48 million.Intense rains of July 1-2 caused record-breaking floods in southwestern Iowa. Rapid rises and the great magnitude of the floods on small streams resulted in 18 deaths and many injuries. Six towns and cities along the East Nishnabotna River and its tributaries were particularly hard hit; rural damage was also high. Total damage was estimated at \\$15 million.Heavy rains (as much as 40 inches during the last 2 weeks in September) from the middle of September to the middle of October caused destructive floods along the Rio Grande in Texas and Mexico. Many communities were isolated by the flood waters, and damage to crops was great.In addition to the 7 floods mentioned above, 21 others of lesser magnitude are reported in this annual summary.

  19. Ground-water resources of Liberty County, Texas, with a section on Stream runoff

    USGS Publications Warehouse

    Alexander, Walter H.; Breeding, S. D.

    1950-01-01

    Liberty County is in the Gulf Coastal Plain of southeastern Texas in the second tier of counties back from the Gulf. The geologic formations discussed in this report in upward sequence consist of the Oakville sandstone of Miocene age and the Lagarto clay of Miocene (?) age, the Willis sand of Pliocene (?) age, and the Lissie formation and Beaumont clay of Pleistocene age. The rocks of these formations crop out in belts roughly parallel to the Gulf shore and dip southeastward. As one travels across San Jacinto and Liberty Counties from northwest to southeast the belts of outcrop are traversed in the above order, beginning with the 0akville sandstone and Lagarto clay. The land surface slopes southeastward toward the Gulf at a rate less than the dip of the rocks; consequently artesian conditions exist in all parts of the county. The valley of the Trinity River is well known for its flowing weds, which range from 100 to 808 feet in depth. Most of the ground water used in the county is obtained from wells ranging in depth from 350 to about 1,000 feet and is drawn from the Lissie formation. Wells yielding 1,000 to 3,500 gallons a minute and ranging from 740 to 1,030 feet in depth have been developed for rice irrigation in the North Dayton area, in the southwestern part of the county. These wells draw water mostly from sands in the Lissie formation, but most of them are also screened in overlying thinner sands in the Beaumont clay. The municipal water supplies of Liberty, Cleveland, Dayton, and Diasetta are obtained from wells ranging from 350 to 833 feet in depth with reported yields of 300 to 350 gallons a minute. Most of the wells in the rural areas are less than 50 feet in depth and furnish small supplies of water for domestic use and for stock. Such supplies can be obtained almost anywhere in the county from shallow wells in the Lissie and Beaumont formations or in alluvial deposits. The average daily withdrawal of ground water for irrigation, public supply, and industrial use is estimated to have been about 7,500,000 gallons in 1944, distributed as follows: irrigation, 6,780,000 gallons; public supply, 325,000 gallons; and industrial use, 395,000 gallons.

  20. Summary of regional geology, petroleum potential, resource assessment and environmental considerations for oil and gas lease sale area No. 56

    USGS Publications Warehouse

    Dillon, William P.; Klitgord, Kim D.; Paull, Charles K.; Grow, John A.; Ball, Mahlon M.; Dolton, Gordon L.; Powers, Richard B.; Khan, Abdul S.; Popenoe, Peter; Robb, James M.; Dillon, William P.

    1980-01-01

    This report summarizes our general knowledge of the petroleum potential, as well as problems and hazards associated with development of petroleum resources in the area proposed for nominations for lease sale number 56. This area includes the U.S. eastern continental margin from the North Carolina-Virginia border south to approximately Cape Canaveral, Florida and from three miles from shore, seaward to include the upper Continental Slope and inner Blake Plateau. The area for possible sales is shown in figure 1; major physiographic features of the region are shown in figure 2.No wells have been drilled for petroleum within this proposed lease area and no significant commercial production has been obtained onshore in the Southeast Georgia Embayment. The COST GE-1 stratigraphic test well, drilled on the Continental Shelf off Jacksonville, Fla. (fig- 1), reached basement at 3,300 m. The bottom third of the section consists of dominantly continental rocks that are typically poor sources of petroleum (Scholle, 1979) and the rocks that contain organic carbon adequate for generation of petroleum at the well are seen in seismic profiles always at shallow subbottom depths, so they probably have not reached thermal maturity. However, seismic profiles indicate that the sedimentary deposits thicken markedly in a seaward direction where more of the section was deposited under marine conditions; therefore, commercial accumulations of petroleum offshore are more likely.Several potential sources of environmental hazard exist. Among the most important are hurricanes, the Gulf Stream, and earthquakes. The potential danger from high wind, waves, storm surges, and storm-driven currents associated with hurricanes is obvious. Evidence for significant bottom scour by the Gulf Stream is abundant; such scour is a threat to the stability of bottom-mounted structures. The fast-flowing water also will hamper floating drill rigs and control of drill strings. A major earthquake of about magnitude 6.8 struck Charleston in 1886; it may have been associated with a zone of active seismicity that crosses South Carolina. The likelihood of a repetition of the 1886 event is presently not predictable but a seismic hazard must be assumed to exist.

  1. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.; ,

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be <2% of the annual application of each herbicide in the Midwest.

  2. Stirring by deep cyclones and the evolution of Denmark strait overflow water observed at line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M.; Joyce, T. M.; Curry, R. G.

    2016-03-01

    Shipboard velocity and water property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40 °N are examined to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and mixing between DSOW and the interior. The examined transects along Line W - which stretches from the continental shelf south of New England to Bermuda - were made between 1994 and 2014. The shipboard data comprise measurements at regular stations of velocity from lowered acoustic Doppler current profilers, CTD profiles and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths. Comparison of the Line W velocity sections with concurrent sea surface height maps from satellite altimetry indicates that large cyclones in the deep ocean accompany intermittent quasi-stationary meander troughs in the Gulf Stream path at Line W. A composite of 5 velocity sections along Line W suggests that a typical cyclone reaches swirl speeds of greater than 30 cm s-1 at 3400-m depth and has a radius (distance between the center and the maximum velocity) of 75 km. Tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC's DSOW and the interior. Vigorous exchange is corroborated by a mismatch in the CFC-11:CFC-12 and CFC-113:CFC-12 ratio ages calculated for DSOW at Line W. During the most recent 5-year period (2010-2014), a decrease in DSOW density has been driven by warming (increasing by almost 0.1 °C) as salinity has increased only slightly (by 0.003, which is close to the 0.002 uncertainty of the measurements). The abyssal ocean offshore of the DWBC and Gulf Stream and deeper than 3000-m depth has freshened at a rate of 6×10-4 yr-1 since at least 2003. Density here remains nearly unchanged over this period, due to temperature compensation, though a linear cooling trend in the abyssal ocean (to compensate the freshening) is not statistically significant.

  3. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, Μ; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development of Sr/Ca-d18O Temperature Calibrations of a Siderastrea siderea Coral from the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wagner, A. J.; DeLong, K. L.; Kilbourne, H.; Slowey, N. C.

    2016-12-01

    The Gulf of Mexico (GOM) is sensitive to oceanic and atmospheric variability in both the Atlantic and Pacific Oceans (i.e., Atlantic Multidecadal Oscillation (AMO), El Niño Southern Oscillation (ENSO), Pacific North American pattern (PNA), and Pacific Decadal Oscillation (PDO)). The major GOM current, the Loop Current, feeds the Gulf Stream as it transports oceanic heat to the northern Atlantic Ocean. The northern GOM is the northernmost summer extent of the western hemisphere warm pool (WHWP) that drives oceanic moisture flux and precipitation into the Americas. Decadally-resolved foraminifera reconstructions from the northern GOM indicates SST was 2 to 4ºC colder on average than today during the Little Ice Age (LIA, 1850), whereas a subannually-resolved coral reconstruction from the southeastern GOM find 1.5 to 2ºC colder intervals and reduced areal extent of the WHWP on interannual time scales during some intervals of the LIA. However, records capable of resolving annual and subannual SST variability from the northern GOM, necessary for investigating WHWP northern extent, are still lacking. Here we present a new temperature reconstruction for the northern GOM derived from strontium-to-calcium (Sr/Ca) ratios of approximately monthly samples milled from a Siderastrea siderea coral core collected from the Flower Garden Banks National Marine Sanctuary (FGBNMS; 27° 52.5'N, 93° 49'W) growing at a water depth of 20 m. Coral Sr/Ca and δ18O is calibrated to reef temperature data from FGBNMS Hobotemp data loggers near the reef cap in 22 m water depth (1986-2004) and to NOAA OISST (1981-2004). Coral Sr/Ca co-varies with the reef temperature (r=0.95, p<0.05, n=146) and consistently captures winter values in reef temperature with slightly warmer summers (0.9ºC on average). Pseudocoral analysis is used to assess the relationships between SST and SSS in coral δ18O.

  5. 78 FR 14225 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    .... 120417412-2412-01] RIN 0648-XC510 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery; 2013 Accountability Measure for Gulf of Mexico Commercial Gray Triggerfish... measure (AM) for commercial gray triggerfish in the Gulf of Mexico (Gulf) reef fish fishery for the 2013...

  6. 78 FR 66945 - Proposed Collection; 60-Day Comment request: Gulf Long-Term Follow-Up Study (GuLF STUDY)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Comment request: Gulf Long-Term Follow-Up Study (GuLF STUDY) Summary: In compliance with the requirement... days of the date of this publication. Proposed Collection: Gulf Long-Term Follow-Up Study (GuLF STUDY... GuLF STUDY is to investigate potential short- and long-term health effects associated with oil spill...

  7. 77 FR 56168 - Reef Fish Fishery of the Gulf of Mexico; Gulf of Mexico Individual Fishing Quota Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    .... 090206140-91081-03] RIN 0648-XC227 Reef Fish Fishery of the Gulf of Mexico; Gulf of Mexico Individual... red snapper and grouper/tilefish components of the reef fish fishery in the Gulf of Mexico (Gulf), the... INFORMATION: The reef fish fishery of the Gulf of Mexico is managed under the Fishery Management Plan for Reef...

  8. 75 FR 77880 - Proposed Collection; Comment Request; GuLF Worker Study: Gulf Long-Term Follow-Up Study for Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Request: New. Need and Use of Information Collection: The purpose of the GuLF Study is to investigate... Request; GuLF Worker Study: Gulf Long-Term Follow-Up Study for Oil Spill Clean-Up Workers and Volunteers... instruments display a currently valid OMB control number. Proposed Collection Title: GuLF Worker Study: Gulf...

  9. 76 FR 64248 - Gulf of Mexico Reef Fish Fishery; Closure of the 2011 Gulf of Mexico Commercial Sector for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    .... 040205043-4043-01] RIN 0648-XA766 Gulf of Mexico Reef Fish Fishery; Closure of the 2011 Gulf of Mexico... the commercial sector for greater amberjack in the exclusive economic zone (EEZ) of the Gulf of Mexico... Reef Fish Resources of the Gulf of Mexico (FMP). The FMP was prepared by the Gulf of Mexico Fishery...

  10. Physical and Mental Health Status of Gulf War and Gulf Era Veterans: Results From a Large Population-Based Epidemiological Study.

    PubMed

    Dursa, Erin K; Barth, Shannon K; Schneiderman, Aaron I; Bossarte, Robert M

    2016-01-01

    The aim of the study was to report the mental and physical health of a population-based cohort of Gulf War and Gulf Era veterans 20 years after the war. A multimode (mail, Web, or computer-assisted telephone interviewing) heath survey of 14,252 Gulf War and Gulf Era veterans. The survey consisted of questions about general, physical, mental, reproductive, and functional health. Gulf War veterans report a higher prevalence of almost all queried physical and mental health conditions. The population as a whole, however, has a significant burden of disease including high body mass index and multiple comorbid conditions. Gulf War veterans continue to report poorer heath than Gulf Era veterans, 20 years after the war. Chronic disease management and interventions to improve health and wellness among both Gulf War and Gulf Era veterans are necessary.

  11. The mental health of UK Gulf war veterans: phase 2 of a two phase cohort study

    PubMed Central

    Ismail, Khalida; Kent, Kate; Brugha, Traolach; Hotopf, Matthew; Hull, Lisa; Seed, Paul; Palmer, Ian; Reid, Steve; Unwin, Catherine; David, Anthony S; Wessely, Simon

    2002-01-01

    Objectives To examine the prevalence of psychiatric disorders in veterans of the Gulf war with or without unexplained physical disability (a proxy measure of ill health) and in similarly disabled veterans who had not been deployed to the Gulf war (non-Gulf veterans). Design Two phase cohort study. Setting Current and ex-service UK military personnel. Participants Phase 1 consisted of three randomly selected samples of Gulf veterans, veterans of the 1992-7 Bosnia peacekeeping mission, and UK military personnel not deployed to the Gulf war (Era veterans) who had completed a postal health questionnaire. Phase 2 consisted of randomly selected subsamples from phase 1 of Gulf veterans who reported physical disability (n=111) or who did not report disability (n=98) and of Bosnia (n=54) and Era (n=79) veterans who reported physical disability. Main outcome measure Psychiatric disorders assessed by the schedule for clinical assessment in neuropsychiatry and classified by the Diagnostic and Statistical Manual of Mental Disorders, fourth edition. Results Only 24% (n=27) of the disabled Gulf veterans had a formal psychiatric disorder (depression, anxiety, or alcohol related disorder). The prevalence of psychiatric disorders in non-disabled Gulf veterans was 12%. Disability and psychiatric disorders were weakly associated in the Gulf group when confounding was adjusted for (adjusted odds ratio 2.4, 99% confidence interval 0.8 to 7.2, P=0.04). The prevalence of psychiatric disorders was similar in disabled non-Gulf veterans and disabled Gulf veterans ( 19% v 24%; 1.3, 0.5 to 3.4). All groups had rates for post-traumatic stress disorder of between 1% and 3%. Conclusions Most disabled Gulf veterans do not have a formal psychiatric disorder. Post-traumatic stress disorder is not higher in Gulf veterans than in other veterans. Psychiatric disorders do not fully explain self reported ill health in Gulf veterans; alternative explanations for persistent ill health in Gulf veterans are needed. What is already known on this topicGulf veterans report medically unexplained symptoms more often than non-Gulf veteransThe clinical characteristics of ill health in Gulf veterans are not well known, and factors associated with ill health in Gulf veterans are poorly understoodWhat this study addsMost ill Gulf veterans do not have a formal psychiatric disorderThe rates for post-traumatic stress disorder are lowPsychiatric morbidity is not strongly associated with ill health in Gulf veteransThe rates for somatoform disorders are three times greater in disabled Gulf veterans than they are in disabled non-Gulf veterans PMID:12228134

  12. A multi-sensor analysis of Nimbus 5 data on 22 January 1973. [meteorological parameters

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Rodgers, E. B.; Wilheit, T. T.; Wexler, R.

    1973-01-01

    The Nimbus 5 meteorological satellite carried aloft a full complement of radiation sensors, the data from which were analyzed and intercompared during orbits 569-570 on 22 January 1973. The electrically scanning microwave radiometer (ESMR) which sensed passive microwave radiation in the 19.35 GHz region, delineated rain areas over the ocean off the U.S. east coast, in good agreement with WSR-57 and FPS-77 radar imagery and permitted the estimation of rainfall rates in this region. Residual ground water in the lower Mississippi Valley, which resulted from abnormal rainfall in previous months, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 ESMR and U.S. Air Force Data Acquisition and Processing Program (DAPP) IR data. The temperature-humidity infrared radiometer showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad sub-tropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders, the infrared temperature profile radiometer (ITPR), the Nimbus E microwave spectrometer (NEMS) and the selective chopper radiometer (SCR) were found to be in good agreement with related radiosonde ascents along orbit 569 from the sub-tropics to the Arctic Circle.

  13. Concentrated Animal Feeding Operations, Row Crops and their Relationship to Nitrate in Eastern Iowa Rivers

    PubMed Central

    Weldon, Mark B.; Hornbuckle, Keri C.

    2009-01-01

    Concentrated animal feeding operations (CAFO) and fertilizer application to row crops may contribute to poor water quality in surface waters. To test this hypothesis, we evaluated nutrient concentrations and fluxes in four Eastern Iowa watersheds sampled between 1996-2004. We found that these watersheds contribute nearly 10% of annual nitrate flux entering the Gulf of Mexico, while representing only 1.5% of the contributing drainage basin. Mass budget analysis shows stream flow to be a major loss of nitrogen (18% of total N output), second only to crop harvest (63%). The major watershed inputs of nitrogen include applied fertilizer for corn (54% of total N input) and nitrogen fixation by soybeans (26%). Despite the relatively small input from animal manure (~5%), the results of spatial analysis indicate that row crop and CAFO densities are significantly and independently correlated to higher nitrate concentration in streams. Pearson correlation coefficients of 0.59 and 0.89 were found between nitrate concentration and row crop and CAFO density, respectively. Multiple linear regression analysis produced a correlation for nitrate concentration with an R2 value of 85%. High spatial density of row crops and CAFOs are linked to the highest river nitrate concentrations (up to 15 mg/l normalized over five years). PMID:16749677

  14. Future of Pacific salmon in the face of environmental change: Lessons from one of the world's remaining productive salmon regions

    USGS Publications Warehouse

    Schoen, Erik R.; Wipfli, Mark S.; Trammell, Jamie; Rinella, Daniel J.; Floyd, Angelica L.; Grunblatt, Jess; McCarthy, Molly D.; Meyer, Benjamin E.; Morton, John M.; Powell, James E.; Prakash, Anupma; Reimer, Matthew N.; Stuefer, Svetlana L.; Toniolo, Horacio; Wells, Brett M.; Witmer, Frank D. W.

    2017-01-01

    Pacific salmon Oncorhynchus spp. face serious challenges from climate and landscape change, particularly in the southern portion of their native range. Conversely, climate warming appears to be allowing salmon to expand northwards into the Arctic. Between these geographic extremes, in the Gulf of Alaska region, salmon are at historically high abundances but face an uncertain future due to rapid environmental change. We examined changes in climate, hydrology, land cover, salmon populations, and fisheries over the past 30–70 years in this region. We focused on the Kenai River, which supports world-famous fisheries but where Chinook Salmon O. tshawytscha populations have declined, raising concerns about their future resilience. The region is warming and experiencing drier summers and wetter autumns. The landscape is also changing, with melting glaciers, wetland loss, wildfires, and human development. This environmental transformation will likely harm some salmon populations while benefiting others. Lowland salmon streams are especially vulnerable, but retreating glaciers may allow production gains in other streams. Some fishing communities harvest a diverse portfolio of fluctuating resources, whereas others have specialized over time, potentially limiting their resilience. Maintaining diverse habitats and salmon runs may allow ecosystems and fisheries to continue to thrive amidst these changes.

  15. Prevalence of Gulf war veterans who believe they have Gulf war syndrome: questionnaire study

    PubMed Central

    Chalder, T; Hotopf, M; Unwin, C; Hull, L; Ismail, K; David, A; Wessely, S

    2001-01-01

    Objectives To determine how many veterans in a random sample of British veterans who served in the Gulf war believe they have “Gulf war syndrome,” to examine factors associated with the presence of this belief, and to compare the health status of those who believe they have Gulf war syndrome with those who do not. Design Questionnaire study asking British Gulf war veterans whether they believe they have Gulf war syndrome and about symptoms, fatigue, psychological distress, post-traumatic stress, physical functioning, and their perception of health. Participants 2961 respondents to questionnaires sent out to a random sample of 4250 Gulf war veterans (69.7%). Main outcome measure The proportion of veterans who believe they have Gulf war syndrome. Results Overall, 17.3% (95% confidence interval 15.9 to 18.7) of the respondents believed they had Gulf war syndrome. The belief was associated with the veteran having poor health, not serving in the army when responding to the questionnaire, and having received a high number of vaccinations before deployment to the Gulf. The strongest association was knowing another person who also thought they had Gulf war syndrome. Conclusions Substantial numbers of British Gulf war veterans believe they have Gulf war syndrome, which is associated with psychological distress, a high number of symptoms, and some reduction in activity levels. A combination of biological, psychological, and sociological factors are associated with the belief, and these factors should be addressed in clinical practice. What is already known on this topicThe term Gulf war syndrome has been used to describe illnesses and symptoms experienced by veterans of the 1991 Gulf warConcerns exist over the validity of Gulf war syndrome as a unique entityWhat this study adds17% of Gulf war veterans believe they have Gulf war syndromeHolding the belief is associated with worse health outcomesKnowing someone else who believes they have Gulf war syndrome and receiving more vaccinations were associated with holding the belief PMID:11532836

  16. Mortality among US veterans of the Persian Gulf War: 7-year follow-up.

    PubMed

    Kang, H K; Bullman, T A

    2001-09-01

    To assess the long-term health consequences of the 1991 Persian Gulf War, the authors compared cause-specific mortality rates of 621,902 Gulf War veterans with those of 746,248 non-Gulf veterans, by gender, with adjustment for age, race, marital status, branch of service, and type of unit. Vital status follow-up began with the date of exit from the Persian Gulf theater (Gulf veterans) or May 1, 1991 (control veterans). Follow-up for both groups ended on the date of death or December 31, 1997, whichever came first. Cox proportional hazards models were used for the multivariate analysis. For Gulf veterans, mortality risk was also assessed relative to the likelihood of exposure to nerve gas at Khamisiyah, Iraq. Among Gulf veterans, the significant excess of deaths due to motor vehicle accidents that was observed during the earlier postwar years had decreased steadily to levels found in non-Gulf veterans. The risk of death from natural causes remained lower among Gulf veterans compared with non-Gulf veterans. This was mainly accounted for by the relatively higher number of deaths related to human immunodeficiency virus infection among non-Gulf veterans. There was no statistically significant difference in cause-specific mortality among Gulf veterans relative to potential nerve gas exposure. The risk of death for both Gulf veterans and non-Gulf veterans stayed less than half of that expected in their civilian counterparts. The authors conclude that the excess risk of mortality from motor vehicle accidents that was associated with Gulf War service has dissipated after 7 years of follow-up.

  17. Deepwater Horizon NRDA Trustees Commend Gulf Task Force Efforts | NOAA Gulf

    Science.gov Websites

    of the five Gulf states and two federal agencies, commend the members of the Gulf Coast Ecosystem Gulf of Mexico ecosystem and the Gulf Coast region. “We share a common goal of a healthy , resilient Gulf ecosystem, and we intend to take into account the Task Force strategies and the public’s

  18. 78 FR 14983 - Fisheries of the Gulf of Mexico; Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... the Gulf of Mexico; Gulf of Mexico Fishery Management Council; Public Meeting AGENCY: National Marine... of Gulf of Mexico Fishery Management Council Spanish Mackerel and Cobia Stock Assessment Review Workshop. SUMMARY: Independent peer review of Gulf of Mexico Spanish Mackerel and Cobia stocks will be...

  19. Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N.

    PubMed

    Cunningham, Stuart A; Kanzow, Torsten; Rayner, Darren; Baringer, Molly O; Johns, William E; Marotzke, Jochem; Longworth, Hannah R; Grant, Elizabeth M; Hirschi, Joël J-M; Beal, Lisa M; Meinen, Christopher S; Bryden, Harry L

    2007-08-17

    The vigor of Atlantic meridional overturning circulation (MOC) is thought to be vulnerable to global warming, but its short-term temporal variability is unknown so changes inferred from sparse observations on the decadal time scale of recent climate change are uncertain. We combine continuous measurements of the MOC (beginning in 2004) using the purposefully designed transatlantic Rapid Climate Change array of moored instruments deployed along 26.5 degrees N, with time series of Gulf Stream transport and surface-layer Ekman transport to quantify its intra-annual variability. The year-long average overturning is 18.7 +/- 5.6 sverdrups (Sv) (range: 4.0 to 34.9 Sv, where 1 Sv = a flow of ocean water of 10(6) cubic meters per second). Interannual changes in the overturning can be monitored with a resolution of 1.5 Sv.

  20. Engineering studies related to the Skylab program. Task H: Microwave/optical/infrared image processing for ocean current recognition. [from radar altimeter data

    NASA Technical Reports Server (NTRS)

    Smith, A. G.

    1974-01-01

    Images from the Skylab S-193 radar altimeter were selected from data obtained on appropriate passes made by Skylabs 2, 3, and 4 missions for the following three objectives: (1) to serve as a precursor to an investigation for the planned GEOS-C mission, in which radar altimeter data will be analyzed to reveal ocean current related to surface topography; (2) to determine the value of satellite infrared and visual radiometer data as potential sources of ground truth data, the results of which be incorporated in the planning of the SEASAT program; and (3) to determine whether optimal data reduction techniques are useful for revealing clues on Gulf Stream topographic signature characteristics. The results obtained which apply to the stated objectives are discussed.

  1. Season-ahead Drought Forecast Models for the Lower Colorado River Authority in Texas

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Zimmerman, B.; Grzegorzewski, M.; Watkins, D. W., Jr.; Anderson, R.

    2014-12-01

    The Lower Colorado River Authority (LCRA) in Austin, Texas, manages the Highland Lakes reservoir system in Central Texas, a series of six lakes on the Lower Colorado River. This system provides water to approximately 1.1 million people in Central Texas, supplies hydropower to a 55-county area, supports rice farming along the Texas Gulf Coast, and sustains in-stream flows in the Lower Colorado River and freshwater inflows to Matagorda Bay. The current, prolonged drought conditions are severely taxing the LCRA's system, making allocation and management decisions exceptionally challenging, and affecting the ability of constituents to conduct proper planning. In this work, we further develop and evaluate season-ahead statistical streamflow and precipitation forecast models for integration into LCRA decision support models. Optimal forecast lead time, predictive skill, form, and communication are all considered.

  2. 47 CFR 22.950 - Provision of service in the Gulf of Mexico Service Area (GMSA)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... purposes, the Gulf of Mexico Exclusive Zone (GMEZ) and the Gulf of Mexico Coastal Zone (GMCZ). This section... Zone. (2) Gulf of Mexico Coastal Zone. The geographical area within the Gulf of Mexico Service Area... unserved area licensing procedure for the GMEZ. (d) Operation within the Gulf of Mexico Coastal Zone (GMCZ...

  3. 50 CFR 622.17 - Notice regarding seasonal/area closures to protect Gulf reef fish.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to protect Gulf reef fish. 622.17 Section 622.17 Wildlife and Fisheries FISHERY CONSERVATION AND... closures to protect Gulf reef fish. See § 622.34, paragraphs (a)(1) and (a)(3) through (6), regarding Gulf reef fish protective restrictions in the Gulf EEZ that apply broadly to multiple Gulf fisheries and...

  4. 50 CFR 622.17 - Notice regarding seasonal/area closures to protect Gulf reef fish.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to protect Gulf reef fish. 622.17 Section 622.17 Wildlife and Fisheries FISHERY CONSERVATION AND... closures to protect Gulf reef fish. See § 622.34, paragraphs (a)(1) and (a)(3) through (6), regarding Gulf reef fish protective restrictions in the Gulf EEZ that apply broadly to multiple Gulf fisheries and...

  5. All-Cause Mortality Among US Veterans of the Persian Gulf War: 13-Year Follow-up.

    PubMed

    Barth, Shannon K; Kang, Han K; Bullman, Tim

    2016-11-01

    We determined cause-specific mortality prevalence and risks of Gulf War deployed and nondeployed veterans to determine if deployed veterans were at greater risk than nondeployed veterans for death overall or because of certain diseases or conditions up to 13 years after conflict subsided. Follow-up began when the veteran left the Gulf War theater or May 1, 1991, and ended on the date of death or December 31, 2004. We studied 621   901 veterans who served in the 1990-1991 Persian Gulf War and 746   247 veterans who served but were not deployed during the Gulf War. We used Cox proportional hazard models to calculate rate ratios adjusted for age at entry to follow-up, length of follow-up, race, sex, branch of service, and military unit. We compared the mortality of (1) Gulf War veterans with non-Gulf War veterans and (2) Gulf War army veterans potentially exposed to nerve agents at Khamisiyah in March 1991 with those not exposed. We compared standardized mortality ratios of deployed and nondeployed Gulf War veterans with the US population. Male Gulf War veterans had a lower risk of mortality than male non-Gulf War veterans (adjusted rate ratio [aRR] = 0.97; 95% confidence interval [CI], 0.95-0.99), and female Gulf War veterans had a higher risk of mortality than female non-Gulf War veterans (aRR = 1.15; 95% CI, 1.03-1.28). Khamisiyah-exposed Gulf War army veterans had >3 times the risk of mortality from cirrhosis of the liver than nonexposed army Gulf War veterans (aRR = 3.73; 95% CI, 1.64-8.48). Compared with the US population, female Gulf War veterans had a 60% higher risk of suicide and male Gulf War veterans had a lower risk of suicide (standardized mortality ratio = 0.84; 95% CI, 0.80-0.88). The vital status and mortality risk of Gulf War and non-Gulf War veterans should continue to be investigated.

  6. All-Cause Mortality Among US Veterans of the Persian Gulf War

    PubMed Central

    Kang, Han K.; Bullman, Tim

    2016-01-01

    Objective: We determined cause-specific mortality prevalence and risks of Gulf War deployed and nondeployed veterans to determine if deployed veterans were at greater risk than nondeployed veterans for death overall or because of certain diseases or conditions up to 13 years after conflict subsided. Methods: Follow-up began when the veteran left the Gulf War theater or May 1, 1991, and ended on the date of death or December 31, 2004. We studied 621   901 veterans who served in the 1990-1991 Persian Gulf War and 746   247 veterans who served but were not deployed during the Gulf War. We used Cox proportional hazard models to calculate rate ratios adjusted for age at entry to follow-up, length of follow-up, race, sex, branch of service, and military unit. We compared the mortality of (1) Gulf War veterans with non–Gulf War veterans and (2) Gulf War army veterans potentially exposed to nerve agents at Khamisiyah in March 1991 with those not exposed. We compared standardized mortality ratios of deployed and nondeployed Gulf War veterans with the US population. Results: Male Gulf War veterans had a lower risk of mortality than male non–Gulf War veterans (adjusted rate ratio [aRR] = 0.97; 95% confidence interval [CI], 0.95-0.99), and female Gulf War veterans had a higher risk of mortality than female non–Gulf War veterans (aRR = 1.15; 95% CI, 1.03-1.28). Khamisiyah-exposed Gulf War army veterans had >3 times the risk of mortality from cirrhosis of the liver than nonexposed army Gulf War veterans (aRR = 3.73; 95% CI, 1.64-8.48). Compared with the US population, female Gulf War veterans had a 60% higher risk of suicide and male Gulf War veterans had a lower risk of suicide (standardized mortality ratio = 0.84; 95% CI, 0.80-0.88). Conclusion: The vital status and mortality risk of Gulf War and non–Gulf War veterans should continue to be investigated. PMID:28123229

  7. Skin disease in Gulf war veterans.

    PubMed

    Higgins, E M; Ismail, K; Kant, K; Harman, K; Mellerio, J; Du Vivier, A W P; Wessely, S

    2002-10-01

    Gulf war veterans report more symptomatic ill-health than other military controls, and skin disease is one of the most frequent reasons for military personnel to seek medical care. To compare the nature and prevalence of skin disease in UK Gulf veterans with non-Gulf veterans, and to assess whether skin disease is associated with disability. Prospective case comparison study. Disabled (n=111) and non-disabled (n=98) Gulf veterans and disabled non-Gulf veterans (n=133) were randomly selected from representative cohorts of those who served in the Gulf conflict 1990-1991, UN Bosnia Peacekeeping Force 1992-1997, or veterans in active service between 1990-91, but not deployed to the Gulf. Disability was defined as reduced physical functioning as measured by the Short Form 36 [score <72.2]. All subjects recruited were examined by a dermatologist, blind to the military and health status of the veteran. The prevalences of skin disease in disabled Gulf, non-disabled Gulf and disabled non-Gulf veterans were 47.7, 36.7, and 42.8% respectively. Seborrhoeic dermatitis was twice as common as expected in the Gulf veterans (both disabled and non-disabled). Skin disease does not appear to be contributing to ill health in Gulf war veterans, with the exception of an unexplained two-fold increase in seborrhoeic dermatitis.

  8. 78 FR 12012 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    .... 121004516-3064-01] RIN 0648-BC64 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Gag Management Measures in the Gulf of Mexico AGENCY: National Marine... of Mexico (FMP), as prepared by the Gulf of Mexico Fishery Management Council (Council). If...

  9. 76 FR 50181 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Exempted... the Gulf of Mexico (Gulf) off Louisiana, is intended to more closely monitor populations of red snapper and other reef fish to ensure public health and seafood quality are maintained. DATES: Comments...

  10. 76 FR 54375 - Safety Zone; Thunder on the Gulf, Gulf of Mexico, Orange Beach, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ...-AA00 Safety Zone; Thunder on the Gulf, Gulf of Mexico, Orange Beach, AL AGENCY: Coast Guard, DHS... protection of crews, vessels, persons, and spectators on navigable waters during the Thunder on the Gulf high... to hold their Thunder on the Gulf high speed boat races starting on October 6, 2011. Publishing a...

  11. 77 FR 30507 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Exempted... and retention. This study, to be conducted in the exclusive economic zone (EEZ) of the Gulf of Mexico (Gulf), is intended to better document the age structure and life history of fish associated with...

  12. 76 FR 43250 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Stone Crab Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    .... 110707375-1374-01] RIN 0648-BB07 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Stone Crab Fishery of the Gulf of Mexico; Removal of Regulations AGENCY: National Marine Fisheries Service (NMFS... Gulf of Mexico (FMP) and remove its implementing regulations, as requested by the Gulf of Mexico...

  13. Excavation multiple up drafting tunnels in coastal mountains: A simple solution to resist against the severe drought in sub tropical zones

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manizheh; Daei, Bijan

    2017-04-01

    At many sub tropical places in the globe, including the Persian Gulf in the south of Iran, there is continuously a tremendous amount of steam in the air, but it fails to transform to cloud because of the surrounding overheated lands. Reduction in precipitation in these regions has been extraordinary in recent years. The most probable reason is the global warming phenomena. Many dried forest remains, in these regions are referring to much more precipitations not long ago. All around the Persian Gulf, Oman Sea, Arab sea, and red sea there are enough steam to produce good precipitation nearly year round. The main missed requirement in this zone is the coldness. This fact can be well understand from a narrow green strip in Dhofar which is indebted to a cold oceanic stream that approaches to local shore during four months yearly. This natural cold stream helps a better condensation of water vapor and more precipitation but only in a narrow mountainous land. Based on this natural phenomenon, we hypothesize a different design to cool the water vapor with the same result. Prevention of close contact between the water vapors and hot lands by shooting the steam directly into the atmosphere may help to produce more cloud and rain. Making multiple vertical tunnels in mountains for upright conducting of humid air into the atmosphere can be a solution. Fortunately there are a few high mountain ranges alongside of the coastline in south part of Iran. So excavation of drafting tunnels in these mountains seems reasonable. These structures act passively, but for long term do their work without consuming energy, and making pollution. These earth tubes in some aspects resemble to Kariz, another innovative structure which invented by ancient Iranians, thousands of years ago in order to extract water from dry lands in deserts. Up drafting earth channels can be supposed as a wide vertical kariz which conduct water vapor into the atmosphere from the hot land near a warm sea, something like passive cooling towers in power plants. Many experiments and practices are indicating that these simple, cheap, and environmentally friendly structures can work continuously and effectively without an operator. We expect hundreds of these structures alongside the coastline in the south, will be able to change the local climate positively forever. Also upright earth tubes may have extra benefits if we choose the right points for drilling. Chasing escaping streams, finding precious minerals and stones, producing well ventilated area for recreation are among of the probable opportunities. Almost certainly, these by-products, in majority of cases will compensate the costs. Key words: up drafting tunnels, conducting water vapor, steam, cloud and rain production, hot lands. Global warming

  14. 76 FR 69136 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    .... 110321211-1289-02] RIN 0648-BA94 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Gag Grouper Closure Measures AGENCY: National Marine Fisheries Service... interim measures to reduce overfishing of gag in the Gulf of Mexico (Gulf) implemented by a temporary rule...

  15. 75 FR 8819 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    .... 040205043-4043-01] RIN 0648-XU38 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Reopening of the Gulf Group King Mackerel East Coast Subzone AGENCY..., little tunny, and, in the Gulf of Mexico only, dolphin and bluefish) is managed under the Fishery...

  16. The distribution of nutrients, dissolved oxygen and chlorophyll a in the upper Gulf of Nicoya, Costa Rica, a tropical estuary.

    PubMed

    Palter, Jaime; Coto, Sandra León; Ballestero, Daniel

    2007-06-01

    In the Gulf of Nicoya on the Pacific Coast of Costa Rica, nutrient rich equatorial subsurface water (ESW) is upwelled in much of the lower gulf. These offshore waters are often regarded as the major source of nutrients to the gulf. However, for most of the year, the ESW has little influence on the nutrient content of the upper gulf, which has a distinct character from the lower gulf. The upper gulf, extending 40 km north of the restriction between Puntarenas Peninsula and San Lucas Island, is bordered primarily by mangrove swamps, is less than 20 m deep, and is less saline than the lower gulf. We surveyed the upper gulf for dissolved inorganic nitrogen, phosphate, silicate, dissolved oxygen, and chlorophyll in November 2000, January and July 2001. All nutrients are more concentrated in the upper gulf during the rainy and transitional seasons than the dry season, significantly so for phosphate and silicate. Throughout the year, nutrients tend to be much more concentrated in the less saline water of the upper gulf. This trend indicates that discharge from the Tempisque River predominantly controls spatial and temporal nutrient variability in the upper gulf. However, nutrient rich ESW, upwelled offshore and mixed to form a mid-temperature intermediate water, may enter the inner gulf to provide an important secondary source of nutrients during the dry season.

  17. On the glacial and inter-glacial thermohaline circulation and the associated transports of heat and freshwater

    NASA Astrophysics Data System (ADS)

    Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.

    2014-03-01

    The change of the thermohaline circulation (THC) between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present day climate are explored using an Ocean General Circulation Model and stream functions projected in various coordinates. Compared to the present day period, the LGM circulation is reorganised in the Atlantic Ocean, in the Southern Ocean and particularly in the abyssal ocean, mainly due to the different haline stratification. Due to stronger wind stress, the LGM tropical circulation is more vigorous than under modern conditions. Consequently, the maximum tropical transport of heat is slightly larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes and reorganising the freshwater transport. The LGM circulation is represented as a large intrusion of saline Antarctic Bottom Water into the Northern Hemisphere basins. As a result, the North Atlantic Deep Water is shallower in the LGM simulation. The stream functions in latitude-salinity coordinates and thermohaline coordinates point out the different haline regimes between the glacial and interglacial period, as well as a LGM Conveyor Belt circulation largely driven by enhanced salinity contrast between the Atlantic and the Pacific basin. The thermohaline structure in the LGM simulation is the result of an abyssal circulation that lifts and deviates the Conveyor Belt cell from the area of maximum volumetric distribution, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimation of the turnover times reveal a deep circulation almost sluggish during the LGM, and a Conveyor Belt cell more vigorous due to the combination of stronger wind stress and shortened circulation route.

  18. A qualitative appraisal of the hydrology of the Yemen Arab Republic from Landsat images

    USGS Publications Warehouse

    Grolier, Maurice J.; Tibbitts, G. Chase; Ibrahim, M.M.

    1981-01-01

    Six series of Landsat-1 and Landsat-2 images taken between 1972 and 1976 were analyzed to describe the flow regimens of streams and the regional distribution of vegetation in the Yemen Arab Republic. The findings provide a factual basis for planning a surface-water data collection program, and for preparing maps of plant distribution and agricultural land use. They lay the foundation for modernized water development, for effecting a program of country-wide water management. The work was undertaken as part of the program of the U.S. Agency for International Development with the cooperation of the Yemen Mineral and Petroleum Authority, Ministry of Economy. A false-color composite mosaic of the nine images which cover the country was prepared using Landsat 1 images taken at relatively low sun-angle in winter 1972-73. Catchment areas and the major drainage basins of the country were delineated on this mosaic. In order of increasing water availability, the four catchment areas of the YAR are: Ar Rub al Khali, Wadi Jawf (Arabian Sea), Red Sea, and Gulf of Aden. Most streams are ephemeral. No lakes were detected during the period under investigation, but sebkhas--salt flats or low salt-encrusted plains--are common along the Red Sea coast. In spite of resolution and scale constraints, streamflow was interpreted as perennial or intermittent, wherever it could be detected on several Landsat images covering the same scene at seasonal or yearly intervals. Much of the land under cultivation is restricted to valley floors, and to valley slopes and irrigated terraces adjacent to stream channels. Little or no vegetation could be detected over large regions of the Yemen Arab Republic. (USGS)

  19. Quantification of Water Quality Parameters for the Wabash River Using Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, J.; Cherkauer, K. A.; Chaubey, I.

    2011-12-01

    Increasingly impaired water bodies in the agriculturally dominated Midwestern United States pose a risk to water supplies, aquatic ecology and contribute to the eutrophication of the Gulf of Mexico. Improving regional water quality calls for new techniques for monitoring and managing water quality over large river systems. Optical indicators of water quality enable a timely and cost-effective method for observing and quantifying water quality conditions by remote sensing. Compared to broad spectral sensors such as Landsat, which observe reflectance over limited spectral bands, hyperspectral sensors should have significant advantages in their ability to estimate water quality parameters because they are designed to split the spectral signature into hundreds of very narrow spectral bands increasing their ability to resolve optically sensitive water quality indicators. Two airborne hyperspectral images were acquired over the Wabash River using a ProSpecTIR-VS2 sensor system on May 15th, 2010. These images were analyzed together with concurrent in-stream water quality data collected to assess our ability to extract optically sensitive constituents. Utilizing the correlation between in-stream data and reflectance from the hyperspectral images, models were developed to estimate the concentrations of chlorophyll a, dissolved organic carbon and total suspended solids. Models were developed using the full array of hyperspectral bands, as well as Landsat bands synthesized by averaging hyperspectral bands within the Landsat spectral range. Higher R2 and lower RMSE values were found for the models taking full advantage of the hyperspectral sensor, supporting the conclusion that the hyperspectral sensor was better at predicting the in-stream concentrations of chlorophyll a, dissolved organic carbon and total suspended solids in the Wabash River. Results also suggest that predictive models may not be the same for the Wabash River as for its tributaries.

  20. Scientific Guidance for Rehabilitation of the Chesapeake Bay Ecosystem under the Changing Climate.

    NASA Astrophysics Data System (ADS)

    Boesch, D. F.; Johnson, Z. P.; Li, M.

    2017-12-01

    While the Chesapeake Bay is an estuary and not a marginal sea on the scale of the Baltic Sea or the Gulf of Mexico, it has a complex set of environmental issues and multiple political jurisdictions such that it can serve as a test bed for science-informed management in larger marine systems. In particular, the Chesapeake Bay possesses a relatively advanced effort to ameliorate eutrophication, reduce toxic stresses, rehabilitate critical habitats, and sustainably utilized resources. Furthermore, both scientists and managers are addressing these challenges while now beginning to incorporate the effects of changes in temperature, precipitation and runoff, sea level, ocean boundary conditions, and pH. Increases in temperature and sea level are already apparent and future conditions can be estimated from global model projections, although sea level and ocean exchanges are also affected by variations in Gulf Stream flows and mesoscale climate. Changes in the volume, seasonality and variability in freshwater delivery from the multiple rivers discharging to the bay are harder to project with confidence, but may have pervasive consequences for circulation, reducing nutrient loads to ameliorate eutrophication, biogeochemical processes, and biotic distributions and dynamics. Science is now challenged to inform multiple adaptation strategies, including minimizing the vulnerability of humans and infrastructure, sustaining important tidal wetlands, managing sediment resources, sustaining living resources, redefining achievable ecosystem rehabilitation goals, and achieving shifting goals for nutrient load reductions. At the same time, science will also have to identify effective means to meet these challenges while also reducing greenhouse gas emissions.

  1. Simulating surface oil transport during the Deepwater Horizon oil spill: Experiments with the BioCast system

    NASA Astrophysics Data System (ADS)

    Jolliff, Jason Keith; Smith, Travis A.; Ladner, Sherwin; Arnone, Robert A.

    2014-03-01

    The U.S. Naval Research Laboratory (NRL) is developing nowcast/forecast software systems designed to combine satellite ocean color data streams with physical circulation models in order to produce prognostic fields of ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system to rapidly combine the latest satellite imagery of the oil slick distribution with surface circulation fields in order to produce oil slick transport scenarios and forecasts. In one such sequence of experiments, MODIS satellite true color images were combined with high-resolution ocean circulation forecasts from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®) to produce 96-h oil transport simulations. These oil forecasts predicted a major oil slick landfall at Grand Isle, Louisiana, USA that was subsequently observed. A key driver of the landfall scenario was the development of a coastal buoyancy current associated with Mississippi River Delta freshwater outflow. In another series of experiments, longer-term regional circulation model results were combined with oil slick source/sink scenarios to simulate the observed containment of surface oil within the Gulf of Mexico. Both sets of experiments underscore the importance of identifying and simulating potential hydrodynamic conduits of surface oil transport. The addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend beyond horizontal trajectory analysis.

  2. Health and exposures of United Kingdom Gulf war veterans. Part I: The pattern and extent of ill health.

    PubMed

    Cherry, N; Creed, F; Silman, A; Dunn, G; Baxter, D; Smedley, J; Taylor, S; Macfarlane, G J

    2001-05-01

    To assess the health of United Kingdom Gulf war veterans, to compare their health to that of similar personnel not deployed, to describe patterns of ill health in both groups, and to estimate their extent. Main Gulf (n=4795) and validation Gulf (n=4793) cohorts were randomly selected within strata from the population deployed to the Gulf and a non-Gulf cohort (n=4790) from those who were not sent. Seven years after the war subjects completed a questionnaire about their health in the past month, including 95 symptom questions and two manikins on which to shade areas of pain or numbness and tingling. Responses were subjected to a principal component analysis with rotation and to a cluster analysis within each cohort. Mean symptom score was used as a measure of severity. Areas shaded on the manikins were coded to indicate widespread pain and possible toxic neuropathy. A response of 85.5% was achieved. Those who had been to the Gulf were more troubled by every symptom with a mean severity score (3.0) substantially greater than in the non-Gulf cohort (1.7). Seven factors were extracted accounting for 48% of the variance. The scores on five factors (labelled psychological, peripheral, respiratory, gastrointestinal, and concentration) were significantly worse in those who had been to the Gulf. Symptoms suggestive of peripheral neuropathy were found more often (12.5%) in the Gulf than the non-Gulf (6.8%) cohorts. Widespread pain was also found more often (12.2% Gulf; 6.5% non-Gulf). Those who had been to the Gulf were found disproportionately (23.8%) in three clusters with high mean severity scores; only 9.8% of non-Gulf respondents were in these clusters. There was no evidence of an important excess in the use of alcohol, tobacco, or referral to hospital specialists by those who had been to the Gulf. For the same level of reported ill health those who had been to the Gulf were less likely to be referred to specialists than non-Gulf veterans. 7 Years after the war, the Gulf war veterans were more troubled about their health than those who had not been sent, with a substantial subgroup reporting a pattern of symptoms suggestive of a significant decline in health.

  3. The mental health of UK Gulf war veterans: phase 2 of a two phase cohort study.

    PubMed

    Ismail, Khalida; Kent, Kate; Brugha, Traolach; Hotopf, Matthew; Hull, Lisa; Seed, Paul; Palmer, Ian; Reid, Steve; Unwin, Catherine; David, Anthony S; Wessely, Simon

    2002-09-14

    To examine the prevalence of psychiatric disorders in veterans of the Gulf war with or without unexplained physical disability (a proxy measure of ill health) and in similarly disabled veterans who had not been deployed to the Gulf war (non-Gulf veterans). Two phase cohort study. Current and ex-service UK military personnel. Phase 1 consisted of three randomly selected samples of Gulf veterans, veterans of the 1992-7 Bosnia peacekeeping mission, and UK military personnel not deployed to the Gulf war (Era veterans) who had completed a postal health questionnaire. Phase 2 consisted of randomly selected subsamples from phase 1 of Gulf veterans who reported physical disability (n=111) or who did not report disability (n=98) and of Bosnia (n=54) and Era (n=79) veterans who reported physical disability. Psychiatric disorders assessed by the schedule for clinical assessment in neuropsychiatry and classified by the Diagnostic and Statistical Manual of Mental Disorders, fourth edition. Only 24% (n=27) of the disabled Gulf veterans had a formal psychiatric disorder (depression, anxiety, or alcohol related disorder). The prevalence of psychiatric disorders in non-disabled Gulf veterans was 12%. Disability and psychiatric disorders were weakly associated in the Gulf group when confounding was adjusted for (adjusted odds ratio 2.4, 99% confidence interval 0.8 to 7.2, P=0.04). The prevalence of psychiatric disorders was similar in disabled non-Gulf veterans and disabled Gulf veterans ( 19% v 24%; 1.3, 0.5 to 3.4). All groups had rates for post-traumatic stress disorder of between 1% and 3%. Most disabled Gulf veterans do not have a formal psychiatric disorder. Post-traumatic stress disorder is not higher in Gulf veterans than in other veterans. Psychiatric disorders do not fully explain self reported ill health in Gulf veterans; alternative explanations for persistent ill health in Gulf veterans are needed.

  4. 75 FR 69402 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    .... SUMMARY: The Gulf of Mexico Fishery Management Council in conjunction with the Gulf & South Atlantic...) 873-8675. Council address: Gulf of Mexico Fishery Management Council, 2203 N. Lois Avenue, Suite 1100... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA028 Gulf of...

  5. Free and forced Rossby normal modes in a rectangular gulf of arbitrary orientation

    NASA Astrophysics Data System (ADS)

    Graef, Federico

    2016-09-01

    A free Rossby normal mode in a rectangular gulf of arbitrary orientation is constructed by considering the reflection of a Rossby mode in a channel at the head of the gulf. Therefore, it is the superposition of four Rossby waves in an otherwise unbounded ocean with the same frequency and wavenumbers perpendicular to the gulf axis whose difference is equal to 2mπ/W, where m is a positive integer and W the gulf's width. The lower (or higher) modes with small m (or large m) are oscillatory (evanescent) in the coordinate along the gulf; these are elucidated geometrically. However for oceanographically realistic parameter values, most of the modes are evanescent. When the gulf is forced at the mouth with a single Fourier component, the response is in general an infinite sum of modes that are needed to match the value of the streamfunction at the gulf's entrance. The dominant mode of the response is the resonant one, which corresponds to forcing with a frequency ω and wavenumber normal to the gulf axis η appropriate to a gulf mode: η =- β sin α/(2ω) ± Mπ/W, where α is the angle between the gulf's axis and the eastern direction (+ve clockwise) and M the resonant's mode number. For zonal gulfs ω drops out of the resonance condition. For the special cases η = 0 in which the free surface goes up and down at the mouth with no flow through it, or a flow with a sinusoidal profile, resonant modes can get excited for very specific frequencies (only for non-zonal gulfs in the η = 0 case). The resonant mode is around the annual frequency for a wide range of gulf orientations α ∈ [40°, 130°] or α ∈ [220°, 310°] and gulf widths between 150 and 200 km; these include the Gulf of California and the Adriatic Sea. If η is imaginary, i.e. a flow with an exponential profile, there is no resonance. In general less modes get excited if the gulf is zonally oriented.

  6. Lithosphere thickness in the Gulf of California region

    NASA Astrophysics Data System (ADS)

    Fernández, Alejandra; Pérez-Campos, Xyoli

    2017-11-01

    The Gulf of California has a long tectonic history. Before the subduction of the Guadalupe and Magdalena plates ceased, extension of the Gulf began to the east, at the Basin and Range province. Later, it was focused west of the Sierra Madre Occidental and the opening of the Gulf started. Currently, the Gulf rifting has different characteristics to the north than to the south. In this study, we analyze the lithosphere thickness in the Gulf of California region by means of P-wave and S-wave receiver functions. We grouped our lithosphere-thickness estimates into five froups: 1) North of the Gulf, with a thin lithosphere ( 50 km) related to the extension observed in the Salton Through region; 2) the northwestern part of Baja California, with a thicker lithosphere ( 80 km), thinning towards the Gulf due to the extension and opening processes ( 65 km); 3) central Baja California, with no converted phase corresponding to the lithosphere-asthenosphere boundary but evidence of the presence of a slab remnant; 4) the southern Baja California peninsula, showing a shallow lithosphere-astenosphere boundary (LAB) (< 55 km) and a lithosphere thinning towards the Gulf; and 5) the eastern Gulf margin with lithosphere thinning towards the south. These groups can be further assembled into three regions: A) The northernmost Gulf, where both margins of the Gulf show a relatively constant lithosphere thickness, consistent with an old basement in Sonora and the presence of the Peninsular Ranges batholith in northern Baja California, thinning up towards the axis of the rift in the northernmost Gulf. B) Central and southern Gulf, where the lithosphere thickness in this region ranges from 40 to 55 km, which is consistent with the presence of a younger crust. C) Central Baja California peninsula, where LAB is not detected; but there is evidence of a slab remnant.

  7. 47 CFR 27.6 - Service areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the United States Virgin Islands, American Samoa, and the Gulf of Mexico, which have been assigned... states, Alaska, Hawaii, the Gulf of Mexico, and the U.S. territories. Maps of the EAs, MEAs, MSAs, RSAs... (American Samoa) 51 (American Samoa) 175. 12 (Gulf of Mexico) 52 (Gulf of Mexico) 176. (2) The Gulf of...

  8. 47 CFR 27.6 - Service areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the United States Virgin Islands, American Samoa, and the Gulf of Mexico, which have been assigned... states, Alaska, Hawaii, the Gulf of Mexico, and the U.S. territories. Maps of the EAs, MEAs, MSAs, RSAs... (American Samoa) 51 (American Samoa) 175. 12 (Gulf of Mexico) 52 (Gulf of Mexico) 176. (2) The Gulf of...

  9. 47 CFR 27.6 - Service areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the United States Virgin Islands, American Samoa, and the Gulf of Mexico, which have been assigned... states, Alaska, Hawaii, the Gulf of Mexico, and the U.S. territories. Maps of the EAs, MEAs, MSAs, RSAs... (American Samoa) 51 (American Samoa) 175. 12 (Gulf of Mexico) 52 (Gulf of Mexico) 176. (2) The Gulf of...

  10. 77 FR 28308 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... Fishery of the Gulf of Mexico; Gray Triggerfish Management Measures AGENCY: National Marine Fisheries... Act), implements interim measures to reduce overfishing of gray triggerfish in the Gulf of Mexico (Gulf). This rule reduces the gray triggerfish commercial quota (commercial annual catch target (ACT...

  11. Gulf Dolphins Slideshow | NOAA Gulf Spill Restoration

    Science.gov Websites

    Skip to main content Home Home Toggle navigation Search form Search Search the web Search NOAA Gulf Spill Restoration Search Home About Us Trustees Contact Us How We Restore Planning Damage Assessment Archive Home Gulf Dolphins Slideshow Gulf Dolphins Slideshow share Posted on March 23, 2012 | Assessment

  12. $627 Million Gulf Spill Restoration Plan Approved | NOAA Gulf Spill

    Science.gov Websites

    Publications Press Releases Story Archive Home $627 Million Gulf Spill Restoration Plan Approved $627 Million Gulf Spill Restoration Plan Approved Bird landing on water share Posted on October 3, 2014 | Assessment Gulf of Mexico early restoration projects since the oil spill. The restoration plan includes 44

  13. Tampa Bay as a model estuary for examining the impact of human activities on biogeochemical processes: an introduction

    USGS Publications Warehouse

    Swarzenski, Peter W.; Baskaran, Mark; Henderson, Carl S.; Yates, Kim

    2007-01-01

    Tampa Bay is a shallow, Y-shaped coastal embayment that is located along the center of the Florida Platform – an expansive accumulation of Cretaceous–Tertiary shallow-water carbonates and evaporites that were periodically exposed during glacio–eustatic sea level fluctuations. As a consequence, extensive karstification likely had a controlling impact on the geologic evolution of Tampa Bay. Despite its large aerial size (∼ 1000 km2), Tampa Bay is relatively shallow (mean depth = 4 m) and its watershed (6700 km2) is among the smallest in the Gulf of Mexico. About 85% of all freshwater inflow (mean = 63 m3 s-1) to the bay is carried by four principal tributaries (Orlando et al., 1993). Groundwater makes up an important component of baseflow of these coastal streams and may also be important in delivering nutrients and other constituents to the bay proper by submarine groundwater discharge.

  14. Response of North Atlantic Ocean Chlorophyll a to the Change of Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhang, Yuanling; Shu, Qi; Zhao, Chang; Wang, Gang; Wu, Zhaohua; Qiao, Fangli

    2017-04-01

    Changes in marine phytoplankton are a vital component in global carbon cycling. Despite this far-reaching importance, the variable trend in phytoplankton and its response to climate variability remain unclear. This work presents the spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean by using merged ocean color products for the period 1997-2016. We find a dipole pattern between the subpolar gyre and the Gulf Stream path,and chlorophyll a trend signal propagatedalong the opposite direction of the North Atlantic Current. Such a dipole pattern and opposite propagation of chlorophyll a signal are consistent with the recent distinctive signature of the slowdown of the Atlantic MeridionalOverturning Circulation (AMOC). It is suggested that the spatiotemporal evolution of chlorophyll a during the two most recent decades is a part of the multidecadal variation and regulated byAMOC, which could be used as an indicator of AMOC variations.

  15. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic.

    PubMed

    Foukal, Nicholas P; Lozier, M Susan

    2016-04-22

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.

  16. Probability Distribution of Turbulent Kinetic Energy Dissipation Rate in Ocean: Observations and Approximations

    NASA Astrophysics Data System (ADS)

    Lozovatsky, I.; Fernando, H. J. S.; Planella-Morato, J.; Liu, Zhiyu; Lee, J.-H.; Jinadasa, S. U. P.

    2017-10-01

    The probability distribution of turbulent kinetic energy dissipation rate in stratified ocean usually deviates from the classic lognormal distribution that has been formulated for and often observed in unstratified homogeneous layers of atmospheric and oceanic turbulence. Our measurements of vertical profiles of micro-scale shear, collected in the East China Sea, northern Bay of Bengal, to the south and east of Sri Lanka, and in the Gulf Stream region, show that the probability distributions of the dissipation rate ɛ˜r in the pycnoclines (r ˜ 1.4 m is the averaging scale) can be successfully modeled by the Burr (type XII) probability distribution. In weakly stratified boundary layers, lognormal distribution of ɛ˜r is preferable, although the Burr is an acceptable alternative. The skewness Skɛ and the kurtosis Kɛ of the dissipation rate appear to be well correlated in a wide range of Skɛ and Kɛ variability.

  17. Video Animation of Ocean Topography From TOPEX/POSEIDON

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Leconte, Denis; Pihos, Greg; Davidson, Roger; Kruizinga, Gerhard; Tapley, Byron

    1993-01-01

    Three video loops showing various aspects of the dynamic ocean topography obtained from the TOPEX/POSEIDON radar altimetry data will be presented. The first shows the temporal change of the global ocean topography during the first year of the mission. The time-averaged mean is removed to reveal the temporal variabilities. Temporal interpolation is performed to create daily maps for the animation. A spatial smoothing is also performed to retain only the large-sale features. Gyre-scale seasonal changes are the main features. The second shows the temporal evolution of the Gulf Stream. The high resolution gravimetric geoid of Rapp is used to obtain the absolute ocean topography. Simulated drifters are used to visualize the flow pattern of the current. Meanders and rings of the current are the main features. The third is an animation of the global ocean topography on a spherical earth. The JGM-2 geoid is used to obtain the ocean topography...

  18. Spin-Down of the North Atlantic Subpolar Circulation

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.; Rhines, P. B.

    2004-01-01

    Dramatic changes have occurred in the mid-to-high-latitude North Atlantic Ocean as evidenced by TOPEX/Poseidon observations of sea surface height (SSH) in the subpolar gyre and the Gulf Stream. Analysis of altimeter data shows that subpolar SSH has increased during the 1990s and the geostrophic velocity derived from altimeter data shows a decline in the gyre circulation. Direct current-meter observations in the boundary current of the Labrador Sea support the trend in the 199Os, and, together with hydrographic data show that in the mid-late 1990s the trend extends deep in the water column. We find that buoyancy forcing over the northern North Atlantic has a dynamic effect consistent with the altimeter data and hydrographic observations: a weak thermohaline forcing and the subsequent decay of the domed structure of the subpolar isopycnals would give rise to the observed anticyclonic circulation trend.

  19. Atmospheric Signature of the Agulhas Current

    NASA Astrophysics Data System (ADS)

    Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu

    2018-05-01

    Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.

  20. On the self-organizing process of large scale shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Andrew P. L.; Kim, Eun-jin; Liu, Han-Li

    2013-09-15

    Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2Dmore » hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.« less

  1. The history and future trends of ocean warming-induced gas hydrate dissociation in the SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Vadakkepuliyambatta, Sunil; Chand, Shyam; Bünz, Stefan

    2017-01-01

    The Barents Sea is a major part of the Arctic where the Gulf Stream mixes with the cold Arctic waters. Late Cenozoic uplift and glacial erosion have resulted in hydrocarbon leakage from reservoirs, evolution of fluid flow systems, shallow gas accumulations, and hydrate formation throughout the Barents Sea. Here we integrate seismic data observations of gas hydrate accumulations along with gas hydrate stability modeling to analyze the impact of warming ocean waters in the recent past and future (1960-2060). Seismic observations of bottom-simulating reflectors (BSRs) indicate significant thermogenic gas input into the hydrate stability zone throughout the SW Barents Sea. The distribution of BSR is controlled primarily by fluid flow focusing features, such as gas chimneys and faults. Warming ocean bottom temperatures over the recent past and in future (1960-2060) can result in hydrate dissociation over an area covering 0.03-38% of the SW Barents Sea.

  2. Description and evaluation of the Acoustic Profiling of Ocean Currents (APOC) system used on R. V. Oceanus cruise 96 on 11-22 May 1981

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Rintoul, S. R., Jr.; Barbour, R. L.

    1982-01-01

    The underway current profiling system which consists of a microprocessor controlled data logger that collects and formats data from a four beam Ametek-Straza 300 kHz acoustic Doppler current profiler, heading from the ship's gyrocompass, and navigation information from a Loran-C receiver and a satellite navigation unit is discussed. Data are recorded on magnetic tape and real time is calculated. Time averaging is required to remove effects of ship motion. An intercomparison is made with a moored vector measuring current meter (VMCM). The mean difference in hourly averaged APOC and VMCM currents over the four hour intercomparison is a few mm s minus including: two Gulf Stream crossings, a warm core ring survey, and shallow water in a frontal zone to the east of Nantucket Shoals.

  3. American Society of Photogrammetry and American Congress on Surveying and Mapping, Fall Technical Meeting, ASP Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Various topics in the field of photogrammetry are addressed. Among the subjects discussed are: remote sensing of Gulf Stream dynamics using VHRR satellite imagery an interactive rectification system for remote sensing imagery use of a single photo and digital terrain matrix for point positioning crop type analysis using Landsat digital data use of a fisheye lens in solar energy assessment remote sensing inventory of Rocky Mountain elk habitat Washington state's large scale ortho program educational image processing. Also discussed are: operational advantages of on-line photogrammetric triangulation analysis of fracturation field photogrammetry as a tool for measuring glacier movement double modelmore » orthophotos used for forest inventory mapping map revisioning module for the Kern PG2 stereoplotter assessing accuracy of digital land-use and terrain data accuracy of earthwork calculations from digital elevation data.« less

  4. NASA Sees Post-Patricia Moisture, Winds Stalking the Mid-Atlantic

    NASA Image and Video Library

    2017-12-08

    The remnant moisture from what was once Hurricane Patricia and moisture from the Gulf of Mexico were being transported north by a trough of low pressure over Wisconsin. The clouds and moisture were streaming into the Eastern third of the U.S. on October 28, 2015. The hybrid system was generating windy conditions which were seen from NASA's RapidScat instrument, while NOAA's GOES-East satellite captured an image of the impressive and sizeable cloud cover. Read more: www.nasa.gov/feature/goddard/patricia-eastern-pacific-2015 Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. ERICA plans for winter storms field study

    NASA Astrophysics Data System (ADS)

    Hadlock, Ron

    The Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) field study will be conducted between December 1, 1988, and February 28, 1989. The oceanic area that is approximately bounded by t he Gulf Stream and North America, from coastal Carolina to just east of Newfoundland, will be the region for special observations obtained by recently developed measurement systems, including high-resolution and safe Loran-C dropwindsondes, CLASS rawinsondes, an array of drifting data buoys, and multiple airborne Doppler radars. The special observations will be acquired within a framework of all conventional operational data available for the eastern United States and Canada, including that from the National Weather Service's land sites (plus supplemental rawinsonde observations), ocean platforms, U.S. Air Force WC-130 National Winter Storms Operations Plan reconnaissance flights, and civilian and military weather satellites. Satellite imagery and soundings willl be available in real time and archived through facilities of NOAA and the military.

  6. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic

    PubMed Central

    Foukal, Nicholas P.; Lozier, M. Susan

    2016-01-01

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS. PMID:27103496

  7. Skillful prediction of northern climate provided by the ocean

    NASA Astrophysics Data System (ADS)

    Årthun, Marius; Eldevik, Tor; Viste, Ellen; Drange, Helge; Furevik, Tore; Johnson, Helen L.; Keenlyside, Noel S.

    2017-06-01

    It is commonly understood that a potential for skillful climate prediction resides in the ocean. It nevertheless remains unresolved to what extent variable ocean heat is imprinted on the atmosphere to realize its predictive potential over land. Here we assess from observations whether anomalous heat in the Gulf Stream's northern extension provides predictability of northwestern European and Arctic climate. We show that variations in ocean temperature in the high latitude North Atlantic and Nordic Seas are reflected in the climate of northwestern Europe and in winter Arctic sea ice extent. Statistical regression models show that a significant part of northern climate variability thus can be skillfully predicted up to a decade in advance based on the state of the ocean. Particularly, we predict that Norwegian air temperature will decrease over the coming years, although staying above the long-term (1981-2010) average. Winter Arctic sea ice extent will remain low but with a general increase towards 2020.

  8. KSC-07pd1375

    NASA Image and Video Library

    2007-06-05

    KENNEDY SPACE CENTER, FLA. -- STS-117 Commander Frederick Sturckow and Pilot Lee Archambault aim high to begin landing practice in the shuttle training aircraft (STA). The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter's cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter's atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. STS-117 is scheduled to launch at 7:38 p.m. June 8. During the 11-day mission and three spacewalks, the crew will work with flight controllers at NASA's Johnson Space Center in Houston to install the 17-ton segment on the station's girder-like truss and deploy the set of solar arrays, S3/S4. The mission will increase the space station's power capability in preparation for the arrival of new science modules from the European and Japanese space agencies. Photo credit: NASA/Kim Shiflett

  9. 30 CFR 519.414 - How will BOEM determine each Gulf producing State's share of the qualified OCS revenues?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... distance from the geographic centers of each applicable leased tract to each Gulf producing State's... each Gulf producing State using the following procedure: (1) For each Gulf producing State, we will...) For each Gulf producing State, we will divide the sum of each State's inverse distances, from all...

  10. 30 CFR 519.414 - How will BOEM determine each Gulf producing State's share of the qualified OCS revenues?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... distance from the geographic centers of each applicable leased tract to each Gulf producing State's... each Gulf producing State using the following procedure: (1) For each Gulf producing State, we will...) For each Gulf producing State, we will divide the sum of each State's inverse distances, from all...

  11. 30 CFR 519.414 - How will BOEM determine each Gulf producing State's share of the qualified OCS revenues?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... distance from the geographic centers of each applicable leased tract to each Gulf producing State's... each Gulf producing State using the following procedure: (1) For each Gulf producing State, we will...) For each Gulf producing State, we will divide the sum of each State's inverse distances, from all...

  12. 78 FR 78776 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Shrimp Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...), Commerce. ACTION: Final changes to management measures. SUMMARY: NMFS establishes funding responsibilities... the Fishery Management Plan for the Shrimp Fishery of the Gulf of Mexico (FMP), as prepared by the Gulf of Mexico (Gulf) Fishery Management Council (Council). Newer and more efficient ELB units have...

  13. 76 FR 9735 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Fishery of the Gulf of Mexico; Red Snapper Management Measures AGENCY: National Marine Fisheries Service... the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico Fishery Management Council (Council). This proposed rule would increase the commercial...

  14. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage by four NWS NEXRAD Doppler radar systems. 9) Long history of national interest and investment including flood control projects, wetland restoration, and dredging by the US Army Corps of Engineers, an intensively instrumented national watershed observatory by the USDA Agricultural Research Service in Goodwin Creek, and numerous other projects by over 20 federal and state agencies. 10) Availability of a 2300 square meter research facility within the watershed for housing research and administrative activities.

  15. Hurricane shuts down gulf activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koen, A.D.

    1992-08-31

    This paper reports that producers in the Gulf of Mexico and plant operators in South Louisiana last week were checking for damage wrought by Hurricane Andrew. In its wake Andrew left evacuated rigs and platforms in the gulf and shuttered plants across a wide swath of the Gulf Coast. Operations were beginning to return to normal late last week. Not all gulf operators, especially in the central gulf, expected to return to offshore facilities. And even producers able to book helicopters did not expect to be able to fully assess damage to all offshore installations before the weekend. MMS officialsmore » in Washington estimated that 37,500 offshore workers were evacuated from 700 oil and gas installations on the gulf's Outer Continental Shelf. Gulf oil and gas wells account for about 800,000 b/d of oil and one fourth of total U.S. gas production. MMS was awaiting an assessment of hurricane damage before estimating how soon and how much gulf oil and gas production would be restored.« less

  16. 78 FR 6218 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ...NMFS issues this final rule to implement management measures described in Amendment 38 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico (Gulf) Fishery Management Council (Council). This final rule modifies post-season accountability measures (AMs) that affect the recreational harvest of shallow-water grouper species (SWG), changes the trigger for recreational sector AMs for gag and red grouper, and revises the Gulf reef fish framework procedure. The intent of this final rule is to achieve optimum yield (OY) while ensuring the Gulf reef fish fishery resources are utilized efficiently.

  17. 30 CFR 219.414 - How will MMS determine each Gulf producing State's share of the qualified OCS revenues?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine each Gulf producing State's share of the qualified OCS revenues? (a) The MMS will determine the... be disbursed to each Gulf producing State using the following procedure: (1) For each Gulf producing... intersected. (2) For each Gulf producing State, we will divide the sum of each State's inverse distances, from...

  18. 47 CFR 22.950 - Provision of service in the Gulf of Mexico Service Area (GMSA)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Provision of service in the Gulf of Mexico... service in the Gulf of Mexico Service Area (GMSA) The GMSA has been divided into two areas for licensing purposes, the Gulf of Mexico Exclusive Zone (GMEZ) and the Gulf of Mexico Coastal Zone (GMCZ). This section...

  19. 76 FR 64327 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Drum, Reef Fish, Shrimp, and Coral and Coral Reefs Fishery Management Plans (Generic ACL Amendment) for... the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery; South Atlantic... management unit in the Fishery Management Plan for Reef Fish Resources of the Gulf of Mexico (Reef Fish FMP...

  20. 76 FR 78245 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Coral and Coral Reefs FMPs (Generic ACL Amendment) for purposes of review by the Secretary under the... the Caribbean, Gulf of Mexico, and South Atlantic; Gulf of Mexico Reef Fish Fishery; South Atlantic... the FMP for Reef Fish Resources of the Gulf of Mexico (Reef Fish FMP). DATES: This action is effective...

  1. 78 FR 62579 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Shrimp Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ...), Commerce. ACTION: Proposed changes to management measures; request for comments. SUMMARY: NMFS proposes to... described in a framework action to the Fishery Management Plan for the Shrimp Fishery of the Gulf of Mexico (FMP), as prepared by the Gulf of Mexico (Gulf) Fishery Management Council (Council). Newer and more...

  2. 47 CFR 22.950 - Provision of service in the Gulf of Mexico Service Area (GMSA)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Provision of service in the Gulf of Mexico... service in the Gulf of Mexico Service Area (GMSA) The GMSA has been divided into two areas for licensing purposes, the Gulf of Mexico Exclusive Zone (GMEZ) and the Gulf of Mexico Coastal Zone (GMCZ). This section...

  3. 47 CFR 22.950 - Provision of service in the Gulf of Mexico Service Area (GMSA)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Provision of service in the Gulf of Mexico... service in the Gulf of Mexico Service Area (GMSA) The GMSA has been divided into two areas for licensing purposes, the Gulf of Mexico Exclusive Zone (GMEZ) and the Gulf of Mexico Coastal Zone (GMCZ). This section...

  4. 47 CFR 22.950 - Provision of service in the Gulf of Mexico Service Area (GMSA)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Provision of service in the Gulf of Mexico... service in the Gulf of Mexico Service Area (GMSA) The GMSA has been divided into two areas for licensing purposes, the Gulf of Mexico Exclusive Zone (GMEZ) and the Gulf of Mexico Coastal Zone (GMCZ). This section...

  5. 77 FR 1910 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    .... 100217095-1780-03] RIN 0648-AY56 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Amendment 32 AGENCY: National Marine Fisheries Service (NMFS), National... Mexico (Amendment 32) prepared by the Gulf of Mexico Fishery Management Council (Council). During the...

  6. 78 FR 49440 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Fisheries, Fishing, Gulf, Quotas, Red snapper. Dated: August 8, 2013. Alan D. Risenhoover, Director, Office... increase the 2013 commercial and recreational quotas for red snapper in the Gulf of Mexico (Gulf) reef fish fishery and re-open the red snapper recreational season for 2013. This proposed rule is intended to help...

  7. A screening model analysis of mercury sources, fate and bioaccumulation in the Gulf of Mexico.

    PubMed

    Harris, Reed; Pollman, Curtis; Hutchinson, David; Landing, William; Axelrad, Donald; Morey, Steven L; Dukhovskoy, Dmitry; Vijayaraghavan, Krish

    2012-11-01

    A mass balance model of mercury (Hg) cycling and bioaccumulation was applied to the Gulf of Mexico (Gulf), coupled with outputs from hydrodynamic and atmospheric Hg deposition models. The dominant overall source of Hg to the Gulf is the Atlantic Ocean. Gulf waters do not mix fully however, resulting in predicted spatial differences in the relative importance of external Hg sources to Hg levels in water, sediments and biota. Direct atmospheric Hg deposition, riverine inputs, and Atlantic inputs were each predicted to be the most important source of Hg to at least one of the modeled regions in the Gulf. While incomplete, mixing of Gulf waters is predicted to be sufficient that fish Hg levels in any given location are affected by Hg entering other regions of the Gulf. This suggests that a Gulf-wide approach is warranted to reduce Hg loading and elevated Hg concentrations currently observed in some fish species. Basic data to characterize Hg concentrations and cycling in the Gulf are lacking but needed to adequately understand the relationship between Hg sources and fish Hg concentrations. Copyright © 2012. Published by Elsevier Inc.

  8. 2015 Gulf Guardian Award Winners

    EPA Pesticide Factsheets

    The Gulf of Mexico Program Partnership developed the Gulf Guardian awards as a way to recognize and honor the businesses, community groups, individuals, and agencies that are taking positive steps to keep the Gulf healthy, beautiful and productive.

  9. 2017 Gulf Guardian Award Winners

    EPA Pesticide Factsheets

    The Gulf of Mexico Program Partnership developed the Gulf Guardian awards as a way to recognize and honor the businesses, community groups, individuals, and agencies that are taking positive steps to keep the Gulf healthy, beautiful and productive.

  10. 78 FR 76758 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ...NMFS announces the closure date of the recreational season for red snapper in the exclusive economic zone (EEZ) of the Gulf of Mexico (Gulf) for the 2014 fishing season through this temporary rule. Federal waters of the Gulf will close to red snapper recreational harvest at 12:01 a.m., July 11, 2014. This closure is necessary to prevent the recreational sector from exceeding its quota for the fishing year and prevent overfishing of the Gulf red snapper resource.

  11. Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness

    DTIC Science & Technology

    2010-07-01

    09-2-0065 TITLE: Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness PRINCIPAL INVESTIGATOR: William Joel Meggs, MD, PhD...From - To) 1 JUL 2009 - 30 JUN 2010 4. TITLE AND SUBTITLE Trial of Naltrexone and Dextromethorphan for Gulf War Veteravns’ Illness 5a... dextromethorphan & naltrexone for gulf war illness. 15. SUBJECT TERMS Dextromethorphan , naltexone, gulf war illness 16. SECURITY CLASSIFICATION OF

  12. 76 FR 67618 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    .... 110819519-1640-02] RIN 0648-BB22 Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of Mexico; Red Grouper Management Measures AGENCY: National Marine Fisheries Service... the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the...

  13. Making Real-Time Data "Real" for General Interest Users

    NASA Astrophysics Data System (ADS)

    Hotaling, L.

    2003-04-01

    Helping educators realize the benefits of integrating technology into curricula to effectively engage student learning and improve student achievement, particularly in science and mathematics, is the core mission of the Center for Improved Engineering and Science Education (CIESE). To achieve our mission, we focus on projects utilizing real-time data available from the Internet, and collaborative projects utilizing the Internet's potential to reach peers and experts around the world. As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (COSEE), the Center for Improved Engineering and Science Education (CIESE), is committed to delivering relevant ocean science education to diverse audiences, including K-12 teachers, students, coastal managers, families and tourists. The highest priority of the Mid-Atlantic COSEE is to involve scientists and educators in the translation of data and information from the coastal observatories into instructional materials and products usable by educators and the public. A combination of three regional observing systems, the New Jersey Shelf Observing System (NJSOS), Chesapeake Bay Observing System (CBOS), and the York River observing system will provide the scientific backbone for an integrated program of science and education that improves user access to, and understanding of, modern ocean science and how it affects our daily lives. At present, the Mid-Atlantic COSEE offers three projects that enable users to apply and validate scientific concepts to real world situations. (1) The Gulf Stream Voyage is an online multidisciplinary project that utilizes both real-time data and primary source materials to help guide students to discover the science and history of the Gulf Stream current. (2) C.O.O.L. Classroom is an online project that utilizes concepts and real-time data collected through the NJSOS. The C.O.O.L. Classroom is based on the concept of the Rutgers-IMCS Coastal Ocean Observation Laboratory, a real place where ocean scientists from various disciplines study the coastal ocean collaboratively. (3) Oceans Connecting the Nation is an online collaborative project currently in development. The core activities will involve the study of Nonpoint Source Pollution (NPS). Students will conduct water quality (nutrient) testing and share that data, along with climate data and local characteristics with other participants. This will promote discussions about how NPS affects local communities as well as the oceans, and allow users to develop an understanding of how the oceans affect their daily lives.

  14. The global warming in the North Atlantic Sector and the role of the ocean

    NASA Astrophysics Data System (ADS)

    Hand, R.; Keenlyside, N. S.; Greatbatch, R. J.; Omrani, N. E.

    2014-12-01

    This work presents an analysis of North Atlantic ocean-atmosphere interaction in a warming climate, based on a long-term earth system model experiment forced by the RCP 8.5 scenario, the strongest greenhouse gas forcing used in the climate projections for the 5th Assessement report of the Intergovernmental Panel on Climate Change). In addition to a global increase in SSTs as a direct response to the radiative forcing, the model shows a distinct change of the local sea surface temperature (SST hereafter) patterns in the Gulf Stream region: The SST front moves northward by several hundred kilometers, likely as a response of the wind-driven part of the oceanic surface circulation, and becomes more zonal. As a consequence of a massive slowdown of the Atlantic Meridional Overturning Circulation, the northeast North Atlantic only shows a moderate warming compared to the rest of the ocean. The feedback of these changes on the atmosphere was studied in a set of sensitivity experiments based on the SST climatology of the coupled runs. The set consists of a control run based on the historical run, a run using the full SST from the coupled RCP 8.5 run and two runs, where the SST signal was deconstructed into a homogenous mean warming part and a local pattern change. In the region of the precipitation maximum in the historical run the future scenario shows an increase of absolute SSTs, but a significant decrease in local precipitation, low-level convergence and upward motion. Since warmer SSTs usually cause the opposite, this indicates that the local response in that region is connected to the (with respect to the historical run) weakened SST gradients rather than to the absolute SST. Consistently, the model shows enhanced precipitation north of this region, where the SST gradients are enhanced. However, the signal restricts to the low and mid-troposphere and does not reach the higher model levels. There is little evidence for a large-scale response to the changes in the Gulf Stream region; instead, the large scale signal is mainly controlled by the warmer background state and the AMOC slowdown and influenced by tropical SSTs. In a warmer climate the same change in SST gradient has a stronger effect on precipitation and the model produces a slightly enhanced North Atlantic storm track.

  15. Multi-symptom illnesses, unexplained illness and Gulf War Syndrome

    PubMed Central

    Ismail, Khalida; Lewis, Glyn

    2006-01-01

    Explanatory models for the increased prevalence of ill health in Gulf veterans compared to those not deployed to the Gulf War 1990–1991 remain elusive. This article addresses whether multi-symptom reporting in Gulf veterans are types of medically unexplained symptoms and whether the alleged Gulf War Syndrome is best understood as a medically unexplained syndrome. A review of the epidemiological studies, overwhelmingly cross-sectional, describing ill health was conducted including those that used factor analysis to search for underlying or latent clinical constructs. The overwhelming evidence was that symptoms in Gulf veterans were either in keeping with currently defined psychiatric disorders such as depression and anxiety or were medically unexplained. The application of factor analysis methods had varied widely with a risk of over interpretation in some studies and limiting the validity of their findings. We concluded that ill health in Gulf veterans and the alleged Gulf War Syndrome is best understood within the medically unexplained symptoms and syndromes constructs. The cause of increased reporting in Gulf veterans are still not clear and requires further inquiry into the interaction between sociological factors and symptomatic distress. PMID:16687260

  16. Thermal tolerances of reef corals in the Gulf: a review of the potential for increasing coral survival and adaptation to climate change through assisted translocation.

    PubMed

    Coles, Steve L; Riegl, Bernhard M

    2013-07-30

    Corals in the Gulf withstand summer temperatures up to 10 °C higher than corals elsewhere and have recovered from extreme temperature events in 10 years or less. This heat-tolerance of Gulf corals has positive implications for the world's coral populations to adapt to increasing water temperatures. However, survival of Gulf corals has been severely tested by 35-37 °C temperatures five times in the last 15 years, each time causing extensive coral bleaching and mortality. Anticipated future temperature increases may therefore challenge survival of already highly stressed Gulf corals. Previously proposed translocation of Gulf corals to introduce temperature-adapted corals outside of the Gulf is assessed and determined to be problematical, and to be considered a tool of last resort. Coral culture and transplantation within the Gulf is feasible for helping maintain coral species populations and preserving genomes and adaptive capacities of Gulf corals that are endangered by future thermal stress events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The effect of the 2011 flood on agricultural chemical and sediment movement in the lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Welch, H.; Coupe, R.; Aulenbach, B.

    2012-04-01

    Extreme hydrologic events, such as floods, can overwhelm a surface water system's ability to process chemicals and can move large amounts of material downstream to larger surface water bodies. The Mississippi River is the 3rd largest River in the world behind the Amazon in South America and the Congo in Africa. The Mississippi-Atchafalaya River basin grows much of the country's corn, soybean, rice, cotton, pigs, and chickens. This is large-scale modern day agriculture with large inputs of nutrients to increase yields and large applied amounts of crop protection chemicals, such as pesticides. The basin drains approximately 41% of the conterminous United States and is the largest contributor of nutrients to the Gulf of Mexico each spring. The amount of water and nutrients discharged from the Mississippi River has been related to the size of the low dissolved oxygen area that forms off of the coast of Louisiana and Texas each summer. From March through April 2011, the upper Mississippi River basin received more than five times more precipitation than normal, which combined with snow melt from the Missouri River basin, created a historic flood event that lasted from April through July. The U.S. Geological Survey, as part of the National Stream Quality Accounting Network (NASQAN), collected samples from six sites located in the lower Mississippi-Atchafalaya River basin, as well as, samples from the three flow-diversion structures or floodways: the Birds Point-New Madrid in Missouri and the Morganza and Bonnet Carré in Louisiana, from April through July. Samples were analyzed for nutrients, pesticides, suspended sediments, and particle size; results were used to determine the water quality of the river during the 2011 flood. Monthly loads for nitrate, phosphorus, pesticides (atrazine, glyphosate, fluometuron, and metolachlor), and sediment were calculated to quantify the movement of agricultural chemicals and sediment into the Gulf of Mexico. Nutrient loads were compared to historic loads to assess the effect of the flood on the zone of hypoxia that formed in the Gulf of Mexico during the spring of 2011.

  18. Temperature Calibration of a Northern Gulf of Mexico Siderastrea siderea Coral

    NASA Astrophysics Data System (ADS)

    Wagner, A. J.; DeLong, K. L.; Kilbourne, K. H.; Richey, J. N.; Jelinek, K.; Hickerson, E.; Slowey, N. C.

    2015-12-01

    The Gulf of Mexico (GOM) is sensitive to oceanic and atmospheric variability in both the Atlantic and Pacific Oceans (i.e., Atlantic Multidecadal Oscillation (AMO), El Niño Southern Oscillation (ENSO), Pacific North American Pattern (PNA), and Pacific Decadal Oscillation (PDO)). The major GOM current, the Loop Current, feeds the Gulf Stream as it transports oceanic heat to the northern Atlantic Ocean. The northern GOM is the northernmost summer extent of the western hemisphere warm pool (WHWP) that drives oceanic moisture flux and precipitation into the Americas. Decadally-resolved foraminifera reconstructions from the northern GOM indicates SST was 2 to 4ºC colder on average than today during the Little Ice Age (LIA, ~1850), whereas a subannually-resolved coral reconstruction from the southeastern GOM find 1.5 to 2ºC colder intervals and reduced areal extent of the WHWP on interannual time scales during some intervals of the LIA. However, records capable of resolving annual and subannual SST variability from the northern GOM, necessary for investigating WHWP northern extent, are still lacking. Here we present a new temperature reconstruction for the northern GOM derived from strontium-to-calcium (Sr/Ca) ratios of approximately monthly samples milled from a Siderastrea siderea coral core collected from the Flower Garden Banks National Marine Sanctuary (FGBNMS; 27° 52.5'N, 93° 49'W) growing at a water depth of 20 m. Coral Sr/Ca is calibrated to reef temperature data from FGBNMS Hobotemp data loggers near the reef cap in ~22 m water depth (1986-2004) and to NOAA OISST (1981-2004), which co-varies with the reef temperature (r=0.95, p<0.05, n=146) and consistently captures winter values in reef temperature with slightly warmer summers (0.9ºC on average). The Sr/Ca-SST calibration slope (-0.043, r=-0.89, n=136, p<0.01 for reef temperature; -0.039, r=-0.94, n=275, p<0.01 for OISST) agrees well with published coral Sr/Ca-SST calibrations for S. siderea in the southeastern GOM from shallower water depths.

  19. Late-Wisconsinan submarine moraines along the north shore of the Estuary and Gulf of St. Lawrence (Eastern Canada)

    NASA Astrophysics Data System (ADS)

    Lajeunesse, Patrick; St-Onge, Guillaume

    2013-04-01

    A series of ice-contact submarine fans and morainal banks along the Québec North-Shore of the Estuary and Gulf of St. Lawrence (Eastern Canada), between the Manicouagan River delta and the Mingan Islands, have been revealed with great detail by recent multibeam echosounder and high-resolution subbottom profiler surveys. These grounding-line landforms are observed between 65 and 190 m water depths and were constructed as the marine-based margin of the Laurentide Ice Sheet (LIS) stabilized or readvanced. Radiocarbon ages obtained from shells sampled in sediment cores collected in glaciomarine deposits 6 km south of a grounding line in the Sept-Iles area indicate a stabilisation that took place around 11 000 14C yr BP (12.5 ka cal BP with a ΔR=120 ± 40 yr). In the Mingan Islands area, organic matter collected in distal deposits of an ice-contact fan is dated at 10 800 14C yr BP (11.6 ka cal BP). The position of the Sept-Iles and Mingan deposits, 20 km south of the ~9.7-9.5 14C kyr BP North-Shore Moraine, suggests that these ice marginal landforms were constructed during the Younger Dryas (YD) cold episode and that they might be the eastward submarine extent of the early YD St. Narcisse morainic system. Superimposed till sheets and morainal banks observed within grounding line deposits indicate that this stability phase was interrupted by local readvances that were marked in some cases by ice streaming. Segments of this morainic system are also visible along the shoreline in some sectors, where they have been generally washed out of fine fragments by waves. Another series of ice-contact deposits and landforms of similar nature observed farther offshore and at greater depths (100-190 m) were formed during a previous phase of stabilisation of the LIS margin. This older morainic system was probably deposited immediately after the opening of the Estuary and Gulf of the St. Lawrence.

  20. Physical Processes Involved in the 1988 Drought and 1993 Floods in North America.

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Guillemot, Christian J.

    1996-06-01

    An analysis of the spring-summer 1988 drought and 1993 floods over North America reveals a reversal in the sign of anomalies in several fields. Large sea surface temperature anomalies of opposite signs existed in the tropical Pacific with strong La Niña conditions in 1988 and a mature El Niño in 1993. The distribution of tropical convection in the convergence zones and associated latent heating of the atmosphere were correspondingly altered, implying a large-scale switch in the anomalous tropical heating and forcing of extratropical quasi-stationary waves in the atmosphere, influencing the subtropical jet stream over the North Pacific and across North America. In 1988 the jet stream and the closely related storm track of high-frequency disturbances in the upper troposphere were displaced into Canada well north of the normal location-the farthest north of any year from 1979 to 1993. In 1993 a broader jet stream and the storm track were displaced well south of normal to a more springlike location across the United States-the farthest south by over 200 km of any year from 1979 to 1993. High-frequency eddy activity in the Pacific-North American storm track is shown to reinforce the anomalous jet streams in both years.An analysis of the moisture budgets reveals a stronger river of atmospheric moisture flowing across the Gulf of Mexico into the central and eastern United States in 1993. Also, in the lower atmosphere, the storm track in 1993 was more active, and its lower latitude allowed the cyclonic disturbances to tap into the moisture source, transport moisture into the upper Mississippi River basin, and precipitate it out. It is deduced that local evaporation may have enhanced the precipitation and helped perpetuate and prolong the conditions. In contrast, in 1988 disturbances were weaker and displaced far enough north to avoid most of the moisture source, and the drought was perpetuated by the dry conditions. Consequently, these effects should be viewed as feedbacks that amplify and prolong the response, while from the standpoint of the atmosphere, the anomalous tropical Pacific sea surface temperatures are a notable (but not the sole) external forcing of the patterns.

  1. 78 FR 61827 - Reef Fish Fishery of the Gulf of Mexico; 2013 Recreational Accountability Measure and Closure for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-04

    ...NMFS implements an accountability measure (AM) for recreational gray triggerfish in the Gulf of Mexico (Gulf) reef fish fishery for the 2013 fishing year through this temporary final rule. Based on the projected recreational landings, NMFS determined that the recreational annual catch target (ACT) for Gulf gray triggerfish was reached in August 2013. Therefore, NMFS closes the recreational sector for gray triggerfish in the Gulf EEZ at 12:01 a.m., local time, October 15, 2013, until January 1, 2014. This closure is necessary to reduce overfishing of the Gulf gray triggerfish resource.

  2. 77 FR 64300 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ...NMFS proposes to implement management measures described in Amendment 38 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico (Gulf) Fishery Management Council (Council). If implemented, this rule would modify post-season accountability measures (AMs) that affect shallow- water grouper species (SWG), change the trigger for AMs, and revise the Gulf reef fish framework procedure. The intent of this proposed rule is to achieve optimum yield (OY) while ensuring the fishery resources are utilized efficiently.

  3. Mercury in the Gulf of Mexico: sources to receptors.

    PubMed

    Harris, Reed; Pollman, Curtis; Landing, William; Evans, David; Axelrad, Donald; Hutchinson, David; Morey, Steven L; Rumbold, Darren; Dukhovskoy, Dmitry; Adams, Douglas H; Vijayaraghavan, Krish; Holmes, Christopher; Atkinson, R Dwight; Myers, Tom; Sunderland, Elsie

    2012-11-01

    Gulf of Mexico (Gulf) fisheries account for 41% of the U.S. marine recreational fish catch and 16% of the nation's marine commercial fish landings. Mercury (Hg) concentrations are elevated in some fish species in the Gulf, including king mackerel, sharks, and tilefish. All five Gulf states have fish consumption advisories based on Hg. Per-capita fish consumption in the Gulf region is elevated compared to the U.S. national average, and recreational fishers in the region have a potential for greater MeHg exposure due to higher levels of fish consumption. Atmospheric wet Hg deposition is estimated to be higher in the Gulf region compared to most other areas in the U.S., but the largest source of Hg to the Gulf as a whole is the Atlantic Ocean (>90%) via large flows associated with the Loop Current. Redistribution of atmospheric, Atlantic and terrestrial Hg inputs to the Gulf occurs via large scale water circulation patterns, and further work is needed to refine estimates of the relative importance of these Hg sources in terms of contributing to fish Hg levels in different regions of the Gulf. Measurements are needed to better quantify external loads, in-situ concentrations, and fluxes of total Hg and methylmercury in the water column, sediments, and food web. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Healthcare utilization and mortality among veterans of the Gulf War

    PubMed Central

    Gray, Gregory C; Kang, Han K

    2006-01-01

    The authors conducted an extensive search for published works concerning healthcare utilization and mortality among Gulf War veterans of the Coalition forces who served during the1990–1991 Gulf War. Reports concerning the health experience of US, UK, Canadian, Saudi and Australian veterans were reviewed. This report summarizes 15 years of observations and research in four categories: Gulf War veteran healthcare registry studies, hospitalization studies, outpatient studies and mortality studies. A total of 149 728 (19.8%) of 756 373 US, UK, Canadian and Australian Gulf War veterans received health registry evaluations revealing a vast number of symptoms and clinical conditions but no suggestion that a new unique illness was associated with service during the Gulf War. Additionally, no Gulf War exposure was uniquely implicated as a cause for post-war morbidity. Numerous large, controlled studies of US Gulf War veterans' hospitalizations, often involving more than a million veterans, have been conducted. They revealed an increased post-war risk for mental health diagnoses, multi-symptom conditions and musculoskeletal disorders. Again, these data failed to demonstrate that Gulf War veterans suffered from a unique Gulf War-related illness. The sparsely available ambulatory care reports documented that respiratory and gastrointestinal complaints were quite common during deployment. Using perhaps the most reliable data, controlled mortality studies have revealed that Gulf War veterans were at increased risk of injuries, especially those due to vehicular accidents. In general, healthcare utilization data are now exhausted. These findings have now been incorporated into preventive measures in support of current military forces. With a few diagnostic exceptions such as amyotrophic lateral sclerosis, mental disorders and cancer, it now seems time to cease examining Gulf War veteran morbidity and to direct future research efforts to preventing illness among current and future military personnel. PMID:16687261

  5. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced Pluripotent Cells...2015 - 31 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced...functions to normal in neurons derived from human pluripotent cells exposed to Gulf War toxins. 15. SUBJECT TERMS microtubule, neuron, Gulf War Illness

  6. Climate change and its potential impacts on the Gulf Coast region of the United States.

    PubMed

    Tchounwou, P B

    1999-01-01

    The Gulf Coast region of the United States abuts five states, including Alabama, Florida, Louisiana, Mississippi, and Texas. In general, the Gulf of Mexico has a surface area of 1.63 million square kilometers (630,000 square miles) and a watershed area of 4.69 million square kilometers (1.81 million square miles) in the United States. This region is one of the nation's largest ecological systems and is closely linked to a significant portion of the nation's economy. In the Gulf Coast region, energy, fisheries, agriculture, and tourism rank among the most significant sectors of the economy. The Gulf has five of the top ten fishing ports in the United States, and commercial fisheries in the Gulf annually produce nearly 2 billion tons of fish, oysters, shrimps, and crabs. Gulf ports handle one-half of the nation's import-export tonnage. Petroleum produced in the Gulf represents about 80% of the nation's offshore production. The Gulf Coast region largely relies on many natural resources to fuel many important sectors of its economy. But nevertheless, the health and vitality of the Gulf have declined in recent years, caused in part by increasing populations along its coast and the growing demand upon its resources and in part by the accumulation of years of careless depletion, abuse, and neglect of the environment. Equally important are the impacts of natural and human-induced climate change on the economy and on the quality of life for millions of people living in the Gulf Coast region. The results have generated alarming increases in damage to and destruction of the ecosystems and habitats of the Gulf. This paper reviews the nature of global environmental change and addresses the potential health and environmental impacts that may occur in the Gulf Coast region of the United States as a consequence of various environmental alterations resulting from global change.

  7. Thermohaline circulation in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bray, N. A.

    1988-05-01

    The Gulf of California, a narrow, semienclosed sea, is the only evaporative basin of the Pacific Ocean. As a result of evaporative forcing, salinities in the gulf are 1 to 2 ‰ higher than in the adjacent Pacific at the same latitude. This paper examines the thermohaline structure of the gulf and the means by which thermohaline exchange between the Pacific and the gulf occurs, over time scales of months to years. In addition to evaporative forcing, air-sea heat fluxes and momentum fluxes are important to thermohaline circulation in the gulf. From observations presented here, it appears that the gulf gains heat from the atmosphere on an annual average, unlike the Mediterranean and Red seas, which have comparable evaporative forcing. As a result, outflow from the gulf tends to be less dense than inflow from the Pacific. Winds over the gulf change direction with season, blowing northward in summer and southward in winter. This same seasonal pattern appears in near-surface transports averaged across the gulf. The thermohaline circulation, then, consists of outflow mostly between about 50 m and 250 m, inflow mostly between 250 m and 500 m, and a surface layer in which the direction of transport changes with seasonal changes in the large-scale winds. Using hydrographic observations from a section across the central gulf, total transport in or out of the northern gulf is estimated to be 0.9 Sv, heat gain from the atmosphere is estimated to be 20 to 50 W m-2, and evaporation is estimated to be 0.95 m yr-1. These estimates are annual averages, based on cruises from several years. Seasonal variations in thermohaline structure in the gulf are also examined and found to dominate the variance in temperature and density in the top 500 m of the water column. Salinity has little seasonal variability but does exhibit more horizontal variablility than temperature or density. Major year-to-year variations in thermohaline structure may be attributable to El Niño-Southern Oscillation events.

  8. 75 FR 57760 - Combined Notice of Filings No. 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ...: Gulf States Transmission Corporation. Description: Gulf States Transmission Corporation submits tariff filing per 154.203: Gulf States Transmission Corporation Baseline Tariff Filing to be effective 9/15/2010... Refund Report filings: Docket Numbers: RP10-1301-000. Applicants: Gulf South Pipeline Company, LP...

  9. 76 FR 68437 - Combined Notice of Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...: Filings Instituting Proceedings Docket Numbers: RP12-61-000. Applicants: Gulf Crossing Pipeline Company LLC. Description: Gulf Crossing Pipeline Company LLC submits tariff filing per 154.204: Antero 2 to.... Docket Numbers: RP12-63-000. Applicants: Gulf South Pipeline Company, LP. Description: Gulf South...

  10. Real-time continuous nitrate monitoring in Illinois in 2013

    USGS Publications Warehouse

    Warner, Kelly L.; Terrio, Paul J.; Straub, Timothy D.; Roseboom, Donald; Johnson, Gary P.

    2013-01-01

    Many sources contribute to the nitrogen found in surface water in Illinois. Illinois is located in the most productive agricultural area in the country, and nitrogen fertilizer is commonly used to maximize corn production in this area. Additionally, septic/wastewater systems, industrial emissions, and lawn fertilizer are common sources of nitrogen in urban areas of Illinois. In agricultural areas, the use of fertilizer has increased grain production to meet the needs of a growing population, but also has resulted in increases in nitrogen concentrations in many streams and aquifers (Dubrovsky and others, 2010). The urban sources can increase nitrogen concentrations, too. The Federal limit for nitrate nitrogen in water that is safe to drink is 10 milligrams per liter (mg/L) (http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm, accessed on May 24, 2013). In addition to the concern with nitrate nitrogen in drinking water, nitrogen, along with phosphorus, is an aquatic concern because it feeds the intensive growth of algae that are responsible for the hypoxic zone in the Gulf of Mexico. The largest nitrogen flux to the waters feeding the Gulf of Mexico is from Illinois (Alexander and others, 2008). Most studies of nitrogen in surface water and groundwater include samples for nitrate nitrogen collected weekly or monthly, but nitrate concentrations can change rapidly and these discrete samples may not capture rapid changes in nitrate concentrations that can affect human and aquatic health. Continuous monitoring for nitrate could inform scientists and water-resource managers of these changes and provide information on the transport of nitrate in surface water and groundwater.

  11. Comparative phylogeography of black mangroves (Avicennia germinans) and red mangroves (Rhizophora mangle) in Florida: Testing the maritime discontinuity in coastal plants.

    PubMed

    Hodel, Richard G J; Cortez, Maria B de Souza; Soltis, Pamela S; Soltis, Douglas E

    2016-04-01

    Previous studies of the comparative phylogeography of coastal and marine species in the southeastern United States revealed that phylogenetically diverse taxa share a phylogeographic break at the southern tip of Florida (the maritime discontinuity). These studies have focused nearly exclusively on animals; few coastal plant species in Florida have been analyzed phylogeographically. We investigated phylogeographic patterns of black mangroves (Avicennia germinans) and red mangroves (Rhizophora mangle), two coastal trees that occur on both coasts of the peninsula of Florida. We sampled and genotyped 150 individuals each of A. germinans and R. mangle, using eight microsatellite loci per species. We used observed and expected heterozygosity to quantify genetic diversity in each sampling location and allele frequencies to identify putative phylogeographic breaks and measure gene flow using BayesAss and Migrate-n. We tested the hypothesis that both species would exhibit a phylogeographic break at the southern tip of Florida. We did not find any significant phylogeographic breaks in either species. Rhizophora mangle exhibits greater genetic structure than A. germinans, contrary to expectations based on propagule dispersal capability. However, directional gene flow from the Gulf to the Atlantic was more pronounced in R. mangle, indicating that the Gulf Stream may affect genetic patterns in R. mangle more than in A. germinans. The high dispersal capability of these species may lead to high genetic connectivity between sampling locations and little geographic structure. We also identified several locations that, based on genetic data, should be the focus of conservation efforts. © 2016 Botanical Society of America.

  12. Evaluating the 100 year floodplain as an indicator of flood risk in low-lying coastal watersheds

    NASA Astrophysics Data System (ADS)

    Sebastian, A.; Brody, S.; Bedient, P. B.

    2013-12-01

    The Gulf of Mexico is the fastest growing region in the United States. Since 1960, the number of housing units built in the low-lying coastal counties has increased by 246%. The region experiences some of the most intense rainfall events in the country and coastal watersheds are prone to severe flooding characterized by wide floodplains and ponding. This flooding is further exacerbated as urban development encroaches on existing streams and waterways. While the 100 year floodplain should play an important role in our ability to develop disaster resilient communities, recent research has indicated that existing floodplain delineations are a poor indicator of actual flood losses in low-lying coastal regions. Between 2001 and 2005, more than 30% of insurance claims made to FEMA in the Gulf Coast region were outside of the 100 year floodplain and residential losses amounted to more than $19.3 billion. As population density and investments in this region continue to increase, addressing flood risk in coastal communities should become a priority for engineers, urban planners, and decision makers. This study compares the effectiveness of 1-D and a 2-D modeling approaches to spatially capture flood claims from historical events. Initial results indicate that 2-D models perform much better in coastal environments and may serve better for floodplain modeling helping to prevent unintended losses. The results of this study encourage a shift towards better engineering practices using existing 2-D models in order to protect resources and provide guidance for urban development in low-lying coastal regions.

  13. Soil Moisture and the Persistence of North American Drought.

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.; Erickson, David J., III

    1989-11-01

    We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.

  14. Short-term streamflow forecasting with global climate change implications A comparative study between genetic programming and neural network models

    NASA Astrophysics Data System (ADS)

    Makkeasorn, A.; Chang, N. B.; Zhou, X.

    2008-05-01

    SummarySustainable water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods may also result in property damages and the loss of life. To more efficiently use the limited amount of water under the changing world or to resourcefully provide adequate time for flood warning, the issues have led us to seek advanced techniques for improving streamflow forecasting on a short-term basis. This study emphasizes the inclusion of sea surface temperature (SST) in addition to the spatio-temporal rainfall distribution via the Next Generation Radar (NEXRAD), meteorological data via local weather stations, and historical stream data via USGS gage stations to collectively forecast discharges in a semi-arid watershed in south Texas. Two types of artificial intelligence models, including genetic programming (GP) and neural network (NN) models, were employed comparatively. Four numerical evaluators were used to evaluate the validity of a suite of forecasting models. Research findings indicate that GP-derived streamflow forecasting models were generally favored in the assessment in which both SST and meteorological data significantly improve the accuracy of forecasting. Among several scenarios, NEXRAD rainfall data were proven its most effectiveness for a 3-day forecast, and SST Gulf-to-Atlantic index shows larger impacts than the SST Gulf-to-Pacific index on the streamflow forecasts. The most forward looking GP-derived models can even perform a 30-day streamflow forecast ahead of time with an r-square of 0.84 and RMS error 5.4 in our study.

  15. Seasonal Progression and Interannual Variability of Nutrient and Chlorophyll-a Distributions in the Northern Gulf of Alaska, 1998-2010

    NASA Astrophysics Data System (ADS)

    Trahanovsky, K.; Whitledge, T. E.

    2016-02-01

    We examined nutrient and chlorophyll-a (chl) concentrations from bottle samples collected from 0-50 m depth in the Northern Gulf of Alaska along the Seward Line transect on 56 cruises from 1998-2010. We computed monthly average concentrations of macronutrients (N, P, and Si) and chlorophyll-a by depth at four major stations along the transect to describe the regular seasonal progression of the nutricline and typical water column distributions of chlorophyll-a in this seasonally productive, downwelling coastal zone. The across-shelf transect displayed two different patterns of seasonal progression clearly associated with the Alaska Coastal Current (ACC) and Alaskan Stream (AS) current systems. The annual cycle of nutrient drawdown and replenishment is remarkably consistent from year to year within each system and is well correlated with chl measurements. The spring bloom begins earlier and nutrient depletion is sustained longer in the near-shore ACC then in the AS system centered over the shelf break. Chlorophyll-a concentrations frequently peak at 10-20m depth in both systems during July through October, as nutrients remain depleted in the top 10m. Subsurface nutrients (20 - 50 m depth) begin to recover between July and August and then experience a secondary drawdown between August and October, consistent with higher chl levels observed during the fall bloom. Interannual variability in the progression of the nutricline and the relative contribution of subsurface chl to total chl is presented. Physical data demonstrate increasing stratification in this region due to climate change; the implications for nutrient dynamics and primary production are discussed.

  16. On the dynamic forcing of short-term climate fluctuations by feedback mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, E.R.

    1979-09-01

    The energies involved in the general circulation of the atmosphere, especially the zonal available potential energy, show considerable interannual variability, suggesting the presence of various internal feedback mechanisms in the ocean-atmosphere system. Sea-surface temperature (SST) variations appear to have some effect on the hydrological cycle. The possible existence of feedback mechanisms between ocean and atmosphere seem to be evident in some of the data from the North Pacific and North Atlantic. One of these proposed mechanisms involves the variation in the convergence between the North and South Pacific trade-wind systems and is strongly reflected in rainfall variability within the drymore » region of the equatorial Pacific. Similar variations appear in low-latitude SST anomalies. The convergence between the two trade-wind systems in the Atlantic region also undergoes marked interannual variations. This quasi-biennial oscillation (QBO) in trade-wind convergence over the Atlantic appears to be tied to the global QBO of equatorial stratospheric winds and to regional rainfall regimes in the dry region of northeastern Brazil. A variability pattern of SST's with a QBO has been detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's are pointed out by a hypothetical feedback model. It is also suggested that interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.« less

  17. Seasonal cross-shelf distribution of major zooplankton taxa on the northern Gulf of Alaska shelf relative to water mass properties, species depth preferences and vertical migration behavior

    NASA Astrophysics Data System (ADS)

    Coyle, Kenneth O.; Pinchuk, Alexei I.

    2005-01-01

    The cross-shelf distribution of major zooplankton species was examined on the northern Gulf of Alaska (GOA) shelf during the production season for four years, between October 1997 and October 2001. The zooplankton community on the northern GOA shelf consisted of oceanic and neritic species of the North Pacific subarctic species complex. Cross-shelf distribution of the major zooplankton species was influenced by their depth preferences, vertical migration behavior, salinity-temperature preferences, and by cross-shelf water-mass distribution and movement. The neritic community, dominated by Pseudocalanus spp., Metridia pacifica and Calanus marshallae, had highest abundances on the inner shelf, in the Alaska Coastal Current, and in the adjacent fjords in late spring and early summer. The oceanic community, which contained primarily Neocalanus cristatus and Eucalanus bungii, was observed in the Alaskan Stream and adjacent waters near the shelf break. A mid-shelf transition zone contained a mixture of oceanic and neritic species. Prince William Sound (PWS) contained a unique species complex of large mesopelagic copepods, amphipods and shrimp. Neocalanus flemingeri and Oithona similis were abundant in all four regions during spring and early summer. The transition zone commonly crossed much of the shelf between the shelf break and the ACC, but satellite images and CTD data indicate that occasionally a narrow shelf-break front can form, in which case distinct zooplankton species groups are observed on either side of the front. Satellite data also revealed numerous large and small eddies, which probably contribute to cross-shelf mixing in the transition zone.

  18. Sediment pollution by heavy metals in the Strymonikos and Ierissos Gulfs, North Aegean Sea, Greece.

    PubMed

    Stamatis, Nikolaos; Ioannidouw, Despina; Christoforidis, Achilleas; Koutrakis, Emmanouil

    2002-11-01

    Surface sediment samples from Strymonikos and Ierissos Gulfs were analyzed for Cu, Pb, Zn, Cr and Ni. The results showed that the sediment of Ierissos Gulf is more polluted with Cu, Pb, and Zn as compared to that of Strymonikos Gulf. The benthal area located off the load-out facility of the mining operations in the town of Stratoni, in Ierissos Gulf is established as the most polluted region. The distribution of Cr and Ni in both gulfs indicates the natural origin of these metals with the weathering of Strymon River and of other smaller rivers rocks being responsible for their enrichment.

  19. Psychiatric disorder in veterans of the Persian Gulf War of 1991. Systematic review.

    PubMed

    Stimpson, Nicola J; Thomas, Hollie V; Weightman, Alison L; Dunstan, Frank; Lewis, Glyn

    2003-05-01

    Veterans of the Persian Gulf War of 1991 have reported symptoms attributed to their military service. To review all studies comparing the prevalence of psychiatric disorders in Gulf War veterans and in a comparison group of service personnel not deployed to the Gulf War. Studies of military personnel deployed to the Gulf published between 1990 and 2001 were identified from electronic databases. Reference lists and websites were searched and key researchers were contacted for information. A total of 2296 abstracts and 409 complete articles were reviewed and data were extracted independently by two members of the research team. The prevalence of psychiatric disorder in 20 studies of Gulf War veterans was compared with the prevalence in the comparison group. Prevalence of post-traumatic stress disorder (PTSD) and common mental disorder were higher in the Gulf War veterans. Heterogeneity between studies was significant, but all reported this increased prevalence. Veterans of the Persian Gulf War reported an increased prevalence of PTSD and common mental disorder compared with other active service personnel not deployed to the Gulf. These findings are attributable to the increase in psychologically traumatic events in wartime.

  20. 76 FR 56191 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    .... Eastern Time on Friday, September 23, 2011. Docket Numbers: ER11-4426-000. Applicants: Gulf States Energy, Inc. Description: Gulf States Energy, Inc. Cancellation Notice. Filed Date: 09/02/2011. Accession...: ER11-4427-000. Applicants: Gulf States Energy Investments L.P. Description: Gulf States Energy...

  1. 77 FR 59901 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Panel in conjunction with the Gulf States Marine Fisheries Commission's Law Enforcement Committee. DATES... Panel (LEAP) along with the Gulf States Marine Fisheries Commission's Law Enforcement Committee (LEC... each of the Gulf States, as well as the National Oceanic and Atmospheric Administration (NOAA) Law...

  2. 77 FR 64597 - Proposed Information Collection (Survey of Chronic Gastrointestinal Illness in Persian Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... information needed to evaluate chronic gastrointestinal disorders in Persian Gulf War Veterans. DATES: Written... deployed in the first Persian Gulf War returned with persistent gastrointestinal symptoms, typical of... of Chronic Gastrointestinal Illness in Persian Gulf Veterans (Irritable Bowel Syndrome--Diarrhea...

  3. 77 FR 75568 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... exclusive economic zone (EEZ) of the Gulf of Mexico (Gulf) through this temporary rule. NMFS has determined... maintaining the commercial and recreational quotas for red snapper in 2013 at the 2012 level. The intent of...

  4. 77 FR 25144 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Gulf of Mexico Fishery... Atmospheric Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The Gulf of Mexico..., May 17, 2012. ADDRESSES: The meeting will be held at the Gulf of Mexico Fishery Management Council...

  5. 75 FR 39495 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    .... SUMMARY: The Gulf of Mexico Fishery Management Council (Council) will convene its Law Enforcement Advisory.... Beach Blvd, Gulfport, MS 39501. Council address: Gulf of Mexico Fishery Management Council, 2203 North... Executive Director, Gulf of Mexico Fishery Management Council; telephone: (813) 348-1630. SUPPLEMENTARY...

  6. 77 FR 40859 - Gulf of Mexico Fishery Management Council; Public Meetings; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Gulf of Mexico Fishery.... SUMMARY: The Gulf of Mexico Fishery Management Council (Council) will convene its Law Enforcement Advisory... Ludwig Lane, Grand Isle, LA 70358; telephone: (985) 787-2163 Council address: Gulf of Mexico Fishery...

  7. 77 FR 8810 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    .... SUMMARY: The Gulf of Mexico Fishery Management Council (Council) will convene its Law Enforcement Advisory... East Beach Blvd., Gulfport, MS 39501. Council address: Gulf of Mexico Fishery Management Council, 2203..., Deputy Executive Director, Gulf of Mexico Fishery Management Council; telephone: (813) 348-1630...

  8. 75 FR 7444 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    .... SUMMARY: The Gulf of Mexico Fishery Management Council (Council) will convene its Law Enforcement Advisory...., Orange Beach, AL 36561. Council address: Gulf of Mexico Fishery Management Council, 2203 North Lois... Director, Gulf of Mexico Fishery Management Council; telephone: (813) 348-1630. SUPPLEMENTARY INFORMATION...

  9. INTEGRATED COASTAL MONITORING PROGRAM FOR THE GULF OF MEXICO

    EPA Science Inventory

    The Gulf of Mexico Program (GMP) Office in cooperation with Gulf State agencies, EPA Regions 4 and 6, EPA's Office of Water and Office of Research and Development (ORD), and the GMP principal partners are developing an integrated coastal monitoring program for the Gulf of Mexico....

  10. 77 FR 39998 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Gulf of Mexico Fishery... Atmospheric Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The Gulf of Mexico... Ludwig Lane, Grand Isle, LA 70358; telephone: (985) 787-2163. Council address: Gulf of Mexico Fishery...

  11. 78 FR 62587 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Gulf of Mexico Fishery... Atmospheric Administration (NOAA), Commerce. ACTION: Notice of a public meeting of the Gulf of Mexico Fishery Management Council. SUMMARY: The Gulf of Mexico Fishery Management Council (Council) will hold a meeting of...

  12. Satellite views of the massive algal bloom in the Persian Gulf and the Gulf of Oman during 2008-2009

    NASA Astrophysics Data System (ADS)

    Yu, Shujie; Gong, Fang; He, Xianqiang; Bai, Yan; Zhu, Qiankun; Wang, Difeng; Chen, Peng

    2016-10-01

    The Persian Gulf and the Gulf of Oman locate at the northwest of the Arabian Sea, with the total area more than 50,0000 km2. The Persian Gulf is a semi-enclosed subtropical sea with high water temperature, extremely high salinity, and an average depth of 50 meters. By the Strait of Hormuz, the Persian Gulf is connected to the Gulf of Oman which is significantly affected by the monsoonal winds and by water exchange between the Arabian Sea and the Persian Gulf. Algal blooms occurred frequently in the Persian Gulf and the Gulf of Oman, and some of them are harmful algal blooms which may lead to massive fish death and thereby serious economic loss. Due to the widely spatial coverage and temporal variation, it is difficult to monitoring the dynamic of the algal bloom based on in situ measurement. In this study, we used the remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to investigate a massive algal bloom event in the Persian Gulf and the Gulf of Oman during 2008-2009. The time series of MODIS-derived chlorophyll concentration (Chl-a) indicated that the bloom event with high Chl-a concentration ( 60 percent higher than corresponding climatological data) appeared to lasting more than 8 months from autumn of 2008 to spring of 2009. In addition, the bloom was widespread from the Persian Gulf to the Gulf of Oman and neighboring open ocean. The MODIS-derived net primary production (NPP) collected from MODIS showed the same trend with Chl-a. Multiple forces including upwelling, dust deposition was taken into account to elucidate the mechanisms for the long-lasting algal bloom. The time series chlorophyll concentration of the Persian Gulf emerges a significant seasonal pattern with maximum concentrations seen during the winter time and lowest during the summer. It also indicated slight disturbances occurred in June (May/July) and December (November/ January) in some years. The sea surface temperature and water transparency in the Persian Gulf increased with the rates of 0.3% (<0.01) and 3.02% (p<0.01) during 2003-2014, respectively. Chl-a and NPP declined with the rates of 1.61% (p=0.06) and 1.09% (p=0.08), respectively. However, there are no significant changes of the bloom initiation, termination and duration time among years over 2003-2014.

  13. Physical health, mental health, and utilization of complementary and alternative medicine services among Gulf War veterans.

    PubMed

    Holliday, Stephanie Brooks; Hull, Amanda; Lockwood, Courtney; Eickhoff, Christine; Sullivan, Patrick; Reinhard, Matthew

    2014-12-01

    Gulf War veterans represent a unique subset of the veteran population. It has been challenging to identify interventions that result in improvements in physical and mental health for this population. Recently, there has been recognition of a potential role for complementary and alternative medicine (CAM) interventions. This paper examines the characteristics of Gulf War and non-Gulf War veterans referred to a CAM clinic, and explores the utilization of services by this population. Participants included 226 veterans enrolled in a CAM clinic at a Veterans Affairs medical center, 42 of whom were Gulf War veterans. Self-report measures of physical/mental health were administered, and service utilization was obtained from participants' medical records for a 6-month period. Gulf War veterans enrolled in the program reported more severe physical and mental health symptoms than non-Gulf War veterans. However, examining only veterans who participated in services in the 6 months following enrollment, the 2 groups reported similar symptom severity. Both groups were similar in their attendance of individual acupuncture and iRest yoga nidra, although Gulf War veterans attended fewer sessions of group acupuncture. Although Gulf War veterans who enroll in a CAM program may have more severe symptoms than non-Gulf War veterans, those who actually participate in services are similar to non-Gulf War veterans on these measures. These groups also differ in their pattern of service utilization. Future research should explore the reasons for these differences, and to identify ways to promote treatment engagement with this population.

  14. 50 CFR 640.1 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Gulf of Mexico off the Atlantic and Gulf of Mexico states from the Virginia/North Carolina border south..., DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC General Provisions... the Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic prepared by the South Atlantic and...

  15. 76 FR 10561 - Gulf of Mexico Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... Panel in conjunction with the Gulf States Marine Fisheries Commission's Law Enforcement Committee... the Gulf States Marine Fisheries Commission's Law Enforcement Committee to consider the status of... consists of principal law enforcement officers in each of the Gulf States, as well as the National Oceanic...

  16. 77 FR 56813 - Fisheries of the South Atlantic, Gulf of Mexico, and Caribbean; Southeast Data, Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... States Marine Fisheries Commission, and the Gulf States Marine Fisheries Commission, implemented the... the South Atlantic, Gulf of Mexico, and Caribbean; Southeast Data, Assessment, and Review (SEDAR...) 769-4520; email: [email protected] . SUPPLEMENTARY INFORMATION: The South Atlantic, Gulf of...

  17. 76 FR 50719 - Fisheries of the South Atlantic, Gulf of Mexico, and Caribbean; Southeastern Data, Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Atlantic, Gulf of Mexico, and Caribbean Fishery Management Councils; in conjunction with NOAA Fisheries, the Atlantic States Marine Fisheries Commission, and the Gulf States Marine Fisheries Commission... the South Atlantic, Gulf of Mexico, and Caribbean; Southeastern Data, Assessment, and Review (SEDAR...

  18. 50 CFR 622.4 - Permits and fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... migratory pelagic fish. (B) South Atlantic coastal migratory pelagic fish. (C) Gulf reef fish. (D) South... regarding a limited access system for charter vessel/headboat permits for Gulf reef fish and Gulf coastal... headboat, respectively. (iv) If Federal regulations for Gulf reef fish in subparts A, B, or C of this part...

  19. 50 CFR 622.4 - Permits and fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... migratory pelagic fish. (B) South Atlantic coastal migratory pelagic fish. (C) Gulf reef fish. (D) South... regarding a limited access system for charter vessel/headboat permits for Gulf reef fish and Gulf coastal... headboat, respectively. (iv) If Federal regulations for Gulf reef fish in subparts A, B, or C of this part...

  20. ESTABLISHING A NATURE CONSERVANCY GULF OF MEXICO INITIATIVE MX974946

    EPA Science Inventory

    The Conservancy will initiate a three-year pilot program to create a Gulf of Mexico Initiative within TNC to coordinate and enhance site-based conservation work at priority Gulf coastal sites. TNC would hire an ecologist to serve as the director of TNC's Gulf of Mexico Initiative...

  1. Gulf Coast Ecosystem Restoration Council Public Meeting | NOAA Gulf Spill

    Science.gov Websites

    Publications Press Releases Story Archive Home Gulf Coast Ecosystem Restoration Council Public Meeting Gulf Coast Ecosystem Restoration Council Public Meeting share Posted on December 5, 2012 | Assessment and Early Restoration Restoration Area The Council, which was established by the Resources and Ecosystem

  2. Gulf Coast Ecosystem Restoration Task Force Meeting and Public Listening

    Science.gov Websites

    Data Media & News Publications Press Releases Story Archive Home Gulf Coast Ecosystem Restoration Task Force Meeting and Public Listening Session Gulf Coast Ecosystem Restoration Task Force Meeting and Title: Gulf Coast Ecosystem Restoration Task Force Meeting and Public Listening SessionDescription: The

  3. Observing environmental change in of the Gulf of Maine: ICUC smartphone app

    EPA Science Inventory

    Want to help collect data on environmental change in the Gulf of Maine with your smartphone? The Gulf of Maine Council’s EcoSystem Indicator Partnership (ESIP) is growing the community of citizen scientists in the Gulf of Maine region through its new smartphone app: ICUC (...

  4. Gulf Cooperation Council: Arabian Gulf Cooperation Continues Defense Forces (Peninsula Shield Force)

    DTIC Science & Technology

    2015-05-23

    Lieutenant Colonel Rhett Champagne , USAF, “The Case for a Gulf Cooperation Council Peninsula Shield Force,” The FAOA Journal of International Affairs...Anthony J. Mastalir USAF, Lieutenant Colonel Jim Keating USA, and Lieutenant Colonel Rhett Champagne , USAF. “The Case for a Gulf Cooperation Council

  5. 50 CFR 622.50 - Permits, permit moratorium, and endorsements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Shrimp Fishery of the Gulf of Mexico § 622.50 Permits, permit moratorium, and... Fishery Management Plan for the Shrimp Fishery of the Gulf of Mexico (Gulf Shrimp FMP), all commercial...

  6. 77 FR 19231 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... ABC recommendations for redfish, Georges Bank haddock, Gulf of Maine/ Georges Bank windowpane flounder... 2013 and 2014 ABC recommendations for Georges Bank cod, Gulf of Maine haddock, Cape Cod/ Gulf of Maine yellowtail flounder, American plaice, witch flounder and Georges Bank/Gulf of Maine white hake. c. Other...

  7. 75 FR 7444 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    .... SUMMARY: The Gulf of Mexico Fishery Management Council (Council) will convene a web based meeting of the... via internet. Please go to the Gulf of Mexico Fishery Management Council's website at www.gulfcouncil.org for instructions. Council address: Gulf of Mexico Fishery Management Council, 2203 N. Lois Avenue...

  8. 76 FR 80343 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... meeting. SUMMARY: The Gulf of Mexico Fishery Management Council (Council) will convene a meeting of the...: The meeting will be held at the Gulf of Mexico Fishery Management Council, 2203 North Lois Avenue, Suite 1100, Tampa, FL 33607, telephone: (813) 348-1630. Council address: Gulf of Mexico Fishery...

  9. 78 FR 9888 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    .... SUMMARY: The Gulf of Mexico Fishery Management Council will convene a meeting of the Ad Hoc Artificial... Thursday, February 28, 2013. ADDRESSES: The meeting will be held at the Gulf of Mexico Fishery Management... INFORMATION CONTACT: Dr. John Froeschke, Fishery Biologist- Statistician; Gulf of Mexico Fishery Management...

  10. 76 FR 37064 - Gulf of Mexico Fishery Management Council (Council); Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... meeting. SUMMARY: The Gulf of Mexico Fishery Management Council will convene a public meeting via webinar... meeting will be held via webinar. Council address: Gulf of Mexico Fishery Management Council, 2203 North... Executive Director, Gulf of Mexico Fishery Management Council; telephone: (813) 348-1630. SUPPLEMENTARY...

  11. 78 FR 9372 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    .... SUMMARY: The Gulf of Mexico Fishery Management Council will convene a meeting of the Ad Hoc Private.... on Tuesday, February 26, 2013. ADDRESSES: The meeting will be held at the Gulf of Mexico Fishery... INFORMATION CONTACT: Dr. John Froeschke, Fishery Biologist- Statistician; Gulf of Mexico Fishery Management...

  12. 76 FR 37328 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... meeting. SUMMARY: The Gulf of Mexico Fishery Management Council will convene a meeting of the Ad Hoc...) 348-1630. Council address: Gulf of Mexico Fishery Management Council, 2203 N. Lois Avenue, Suite 1100, Tampa, FL 33607. FOR FURTHER INFORMATION CONTACT: Dr. Assane Diagne, Economist; Gulf of Mexico Fishery...

  13. 75 FR 19941 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ...: The Gulf of Mexico Fishery Management Council will convene a public meeting of its Outreach and... will be held at the Gulf of Mexico Fishery Management Council, 2203 North Lois Avenue, Suite 1100, Tampa, FL 33607; telephone: (813) 348-1630. Council address: Gulf of Mexico Fishery Management Council...

  14. 76 FR 28733 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    .... SUMMARY: The Gulf of Mexico Fishery Management Council will convene a Web based meeting of the... the Gulf of Mexico Fishery Management Council's Web site at http://www.gulfcouncil.org for instructions. Council address: Gulf of Mexico Fishery Management Council, 2203 N. Lois Avenue, Suite 1100...

  15. MODELING OF THE MISSISSIPPI SOUND AND ADJOINING RIVERS, BAYS, AND SHELF WATERS

    EPA Science Inventory

    The Gulf of Mexico and its coastal watersheds are a complex ecosystem that is receiving negative impacts from human activities both in the Gulf and its watersheds. The Gulf of Mexico Program (GMP), as a multi-agency effort, is working with the Gulf States, citizens, and private ...

  16. 3 CFR 13626 - Executive Order 13626 of September 10, 2012. Gulf Coast Ecosystem Restoration

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... information relevant to Gulf Coast restoration, including through research, modeling, and monitoring; and..., planning, and the exchange of information in order to better implement Gulf Coast ecosystem restoration and... Ecosystem Restoration Council (Gulf Restoration Council), which will build upon the Task Force's already...

  17. Department of Veterans Affairs, Gulf War Veterans’ Illnesses Task Force to the Secretary of Veterans Affairs

    DTIC Science & Technology

    2010-09-29

    estimate for FY10 includes 40% of MRI imaging equipment upgrade at San Francisco for Gulf War research and use of unobligated FY2009 UTSW Contract funds...atrophy. (2) Explore the sensitivity of these tests to the localization of focal brain damage as confirmed on magnetic resonance imaging ( MRI ) in...2004 Gulf War RFA Effects of Gulf War Illness on Brain Structure, Function and Metabolism: MRI /MRS at 4 Tesla Gulf War Veterans Determine if

  18. Department of Veterans Affairs Gulf War Veterans’ Illnesses Task Force to the Secretary of Veterans Affairs

    DTIC Science & Technology

    2010-09-29

    estimate for FY10 includes 40% of MRI imaging equipment upgrade at San Francisco for Gulf War research and use of unobligated FY2009 UTSW Contract...atrophy. (2) Explore the sensitivity of these tests to the localization of focal brain damage as confirmed on magnetic resonance imaging ( MRI ) in...16 2004 Gulf War RFA Effects of Gulf War Illness on Brain Structure, Function and Metabolism: MRI /MRS at 4 Tesla Gulf War Veterans Determine

  19. Trends In Nutrient and Sediment Concentrations and Loads In Major River Basins of the South-Central United States, 1993-2004

    USGS Publications Warehouse

    Rebich, Richard A.; Demcheck, Dennis K.

    2008-01-01

    Nutrient and sediment data collected at 115 sites by Federal and State agencies from 1993 to 2004 were analyzed by the U.S. Geological Survey to determine trends in concentrations and loads for selected rivers and streams that drain into the northwestern Gulf of Mexico from the south-central United States, specifically from the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf Basins. Trends observed in the study area were compared to determine potential regional patterns and to determine cause-effect relations with trends in hydrologic and human-induced factors such as nutrient sources, streamflow, and implementation of best management practices. Secondary objectives included calculation of loads and yields for the study period as a basis for comparing the delivery of nutrients and sediment to the northwestern Gulf of Mexico from the various rivers within the study area. In addition, loads were assessed at seven selected sites for the period 1980-2004 to give hydrologic perspective to trends in loads observed during 1993-2004. Most study sites (about 64 percent) either had no trends or decreasing trends in streamflow during the study period. The regional pattern of decreasing trends in streamflow during the study period appeared to correspond to moist conditions at the beginning of the study period and the influence of three drought periods during the study period, of which the most extreme was in 2000. Trend tests were completed for ammonia at 49 sites, for nitrite plus nitrate at 69 sites, and for total nitrogen at 41 sites. For all nitrogen constituents analyzed, no trends were observed at half or more of the sites. No regional trend patterns could be confirmed because there was poor spatial representation of the trend sites. Decreasing trends in flow-adjusted concentrations of ammonia were observed at 25 sites. No increasing trends in concentrations of ammonia were noted at any sites. Flow-adjusted concentrations of nitrite plus nitrate decreased at 7 sites and increased at14 sites. Flow-adjusted concentrations of total nitrogen decreased at 2 sites and increased at 12 sites. Improvements to municipal wastewater treatment facilities contributed to the decline of ammonia concentrations at selected sites. Notable increasing trends in nitrite plus nitrate and total nitrogen at selected study sites were attributed to both point and nonpointsources. Trend patterns in total nitrogen generally followed trend patterns in nitrite plus nitrate, which was understandable given that nitrite plus nitrate loads generally were 70-90 percent of the total nitrogen loads at most sites. Population data were used as a surrogate to understand the relation between changes in point sources and nutrient trends because data from wastewater treatment plants were inconsistent for this study area. Although population increased throughout the study area during the study period, there was no observed relation between increasing trends in nitrogen in study area streams and increasing trends in population. With respect to other nitrogen sources, statistical results did suggest that increasing trends in nitrogen could be related to increasing trends in nitrogen from either commercial fertilizer use and/or land application of manure. Loads of ammonia, nitrite plus nitrate, and total nitrogen decreased during the study period, but some trends in nitrogen loads were part of long-term decreases since 1980. For example, ammonia loads were shown to decrease at nearly all sites over the past decade, but at selected sites, these decreasing trends were part of much longer trends since 1980. The Mississippi and Atchafalaya Rivers contributed the highest nitrogen loads to the northwestern Gulf of Mexico as expected; however, nitrogen yields from smaller rivers had similar or higher yields than yields from the Mississippi River. Trend tests were completed for orthophosphorus at 34 sites and for total phosphorus at 52 sites. No trends were observed in abo

  20. DNA barcoding and morphological studies confirm the occurrence of three Atarbolana (Crustacea: Isopoda: Cirolanidae) species along the coastal zone of the Persian Gulf and Gulf of Oman.

    PubMed

    Khalaji-Pirbalouty, Valiallah; Raupach, Michael J

    2016-11-27

    Two species of Atarbolana (Cirolanidae: Isopoda) from the intertidal zone of the Gulf of Oman and the Persian Gulf were studied and redescribed. The known distribution of this small genus is limited to the northern areas of the Indian Ocean, from the Pakistan coasts to the Persian Gulf. The analyses of DNA barcodes as well as detailed morphological studies clearly support the existence of three distinct Atarbolana species along the coastal zone of the Persian Gulf and northern Arabian Sea. Furthermore, A. dasycolus Yasmeen, 2004 is synonymized with A. setosa Javed and Yasmeen, 1989.

  1. Chemical warfare and the Gulf War: a review of the impact on Gulf veterans' health.

    PubMed

    Riddle, James R; Brown, Mark; Smith, Tyler; Ritchie, Elspeth Cameron; Brix, Kelley Ann; Romano, James

    2003-08-01

    It is unlikely that Gulf War veterans are suffering chronic effects from illnesses caused by chemical warfare nerve agent exposure. Extensive investigation and review by several expert panels have determined that no evidence exists that chemical warfare nerve agents were used during the Gulf War. At no time before, during, or after the war was there confirmation of symptoms among anyone, military or civilian, caused by chemical warfare nerve agent exposure. However, studies of Gulf War veterans have found belief that chemical weapons were used, significantly associated with both severe and mild-moderate illnesses. The psychological impact of a chemical warfare attack, either actual or perceived, can result in immediate and long-term health consequences. The deployment or war-related health impact from life-threatening experiences of the Gulf War, including the perceived exposure to chemical warfare agents, should be considered as an important cause of morbidity among Gulf War veterans.

  2. The growth of coral reef science in the Gulf: a historical perspective.

    PubMed

    Burt, John A

    2013-07-30

    Coral reef science has grown exponentially in recent decades in the Gulf. Analysis of literature from 1950 to 2012 identified 270 publications on coral reefs in the Gulf, half of which were published in just the past decade. This paper summarizes the growth and evolution of coral reef science in the Gulf by examining when, where and how research has been conducted on Gulf reefs, who conducted that research, and what themes and taxa have dominated scientific interest. The results demonstrate that there has been significant growth in our understanding of the valuable coral reefs of the Gulf, but also highlight the fact that we are documenting an increasingly degraded ecosystem. Reef scientists must make a concerted effort to improve dialogue with regional reef management and decision-makers if we are to stem the tide of decline in coral reefs in the Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous Lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico Basin Onshore and State Waters

    USGS Publications Warehouse

    Dennen, Kristin O.; Hackley, Paul C.

    2012-01-01

    An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.

  4. 33 CFR 207.187 - Gulf Intracoastal Waterway, Tex.; special floodgate, lock and navigation regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gulf Intracoastal Waterway on the Colorado River. The legend states “DO NOT PROCEED BEYOND THIS POINT... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf Intracoastal Waterway, Tex... Gulf Intracoastal Waterway, Tex.; special floodgate, lock and navigation regulations. (a) Application...

  5. 33 CFR 207.187 - Gulf Intracoastal Waterway, Tex.; special floodgate, lock and navigation regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gulf Intracoastal Waterway on the Colorado River. The legend states “DO NOT PROCEED BEYOND THIS POINT... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf Intracoastal Waterway, Tex... Gulf Intracoastal Waterway, Tex.; special floodgate, lock and navigation regulations. (a) Application...

  6. 77 FR 23661 - Fisheries of the South Atlantic, Gulf of Mexico, and Caribbean; Southeast Data, Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... . SUPPLEMENTARY INFORMATION: The South Atlantic, Gulf of Mexico, and Caribbean Fishery Management Councils; in conjunction with NOAA Fisheries, the Atlantic States Marine Fisheries Commission, and the Gulf States Marine... the South Atlantic, Gulf of Mexico, and Caribbean; Southeast Data, Assessment, and Review (SEDAR...

  7. 50 CFR 622.90 - Permits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Red Drum Fishery of the Gulf of Mexico § 622.90 Permits. (a) Dealer permits and conditions—(1) Permits. For a dealer to first receive Gulf red drum harvested in or from the EEZ, a Gulf and South Atlantic dealer permit must be issued...

  8. The Arabian Gulf and Security Policy: The Past as Present, the Present as Future

    DTIC Science & Technology

    2009-04-01

    permeates the Green Zone. Recent cooperation between the Maliki government and Sunni groups represents the tactical “divide-and-conquer” approach to... Kegan Paul, 2005), 76-77. 42. Zahlan, Modern Gulf States, 65. 43. Peck, Gulf Arab States, 38. 44. Zahlan, Modern Gulf States, 67. 70 JSOU Report

  9. 75 FR 75173 - Gulf of Mexico Executive Council Notice of Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-02

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9234-8] Gulf of Mexico Executive Council Notice of Charter... provisions of the Federal Advisory Committee Act (FACA), 5 U.S.C. App. 2, the Gulf of Mexico Executive... living resources of the Gulf of Mexico. FOR FURTHER INFORMATION CONTACT: Gloria Car, Designated Federal...

  10. 50 CFR 600.1310 - New England and Gulf of Mexico Individual Fishing Quota Referenda.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false New England and Gulf of Mexico Individual... PROVISIONS Limited Access Privilege Programs § 600.1310 New England and Gulf of Mexico Individual Fishing... Fishery Management Council (NEFMC) and the Gulf of Mexico Fishery Management Council (GMFMC). These...

  11. 76 FR 30705 - Gulf of Mexico Citizen Advisory Committee; Request for Nominations to the Gulf of Mexico Citizen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9311-5] Gulf of Mexico Citizen Advisory Committee; Request... Protection Agency (EPA). ACTION: Notice. SUMMARY: The U.S. Environmental Protection Agency (EPA), invites... environmental issues affecting the five Gulf of Mexico Coastal States. Members serve as representatives of...

  12. 78 FR 6404 - Agency Information Collection (Survey of Chronic Gastrointestinal Illness in Persian Gulf...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ...: Approximately 25 percent military troops who were deployed in the first Persian Gulf War returned with... of Chronic Gastrointestinal Illness in Persian Gulf Veterans) Activities Under OMB Review AGENCY.... Survey of Chronic Gastrointestinal Illness in Persian Gulf Veterans, VA Form 10-21092a. b. VA Research...

  13. 40 CFR 408.260 - Applicability; description of the Atlantic and Gulf Coast hand-shucked oyster processing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Atlantic and Gulf Coast hand-shucked oyster processing subcategory. 408.260 Section 408.260 Protection of... SEAFOOD PROCESSING POINT SOURCE CATEGORY Atlantic and Gulf Coast Hand-Shucked Oyster Processing Subcategory § 408.260 Applicability; description of the Atlantic and Gulf Coast hand-shucked oyster processing...

  14. 50 CFR 600.1310 - New England and Gulf of Mexico Individual Fishing Quota Referenda.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false New England and Gulf of Mexico Individual... PROVISIONS Limited Access Privilege Programs § 600.1310 New England and Gulf of Mexico Individual Fishing... Fishery Management Council (NEFMC) and the Gulf of Mexico Fishery Management Council (GMFMC). These...

  15. 50 CFR 600.1310 - New England and Gulf of Mexico Individual Fishing Quota Referenda.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false New England and Gulf of Mexico Individual... PROVISIONS Limited Access Privilege Programs § 600.1310 New England and Gulf of Mexico Individual Fishing... Fishery Management Council (NEFMC) and the Gulf of Mexico Fishery Management Council (GMFMC). These...

  16. 50 CFR 600.1310 - New England and Gulf of Mexico Individual Fishing Quota Referenda.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false New England and Gulf of Mexico Individual... PROVISIONS Limited Access Privilege Programs § 600.1310 New England and Gulf of Mexico Individual Fishing... Fishery Management Council (NEFMC) and the Gulf of Mexico Fishery Management Council (GMFMC). These...

  17. 50 CFR 600.1310 - New England and Gulf of Mexico Individual Fishing Quota Referenda.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false New England and Gulf of Mexico Individual... PROVISIONS Limited Access Privilege Programs § 600.1310 New England and Gulf of Mexico Individual Fishing... Fishery Management Council (NEFMC) and the Gulf of Mexico Fishery Management Council (GMFMC). These...

  18. 77 FR 66818 - Fisheries of the Gulf of Mexico; Southeast Data, Assessment, and Review (SEDAR); Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Gulf of Mexico Spanish Mackerel and Cobia AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of SEDAR 28 Gulf of Mexico Spanish mackerel and cobia assessment webinar. SUMMARY: The SEDAR 28 assessment of the Gulf of Mexico Spanish...

  19. 76 FR 58783 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    .... SUMMARY: The Gulf of Mexico Fishery Management Council will convene a meeting of the Reef Fish Advisory.... on Friday, October 14, 2011. ADDRESSES: The meeting will be held at the Gulf of Mexico Fishery Management Council, 2203 North Lois Avenue, Suite 1100, Tampa, FL 33607. Council address: Gulf of Mexico...

  20. 76 FR 37063 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... meeting. SUMMARY: The Gulf of Mexico Fishery Management Council will convene a meeting of the Ad Hoc Red... held at the Gulf of Mexico Fishery Management Council, 2203 North Lois Avenue, Suite 1100, Tampa, FL 33607; telephone: (813) 348-1630. Council address: Gulf of Mexico Fishery Management Council, 2203 N...

Top