Science.gov

Sample records for gurmarin-sensitive taste nerve

  1. Genetically-increased taste cell population with Gα-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice

    PubMed Central

    2009-01-01

    Background The peptide gurmarin is a selective sweet response inhibitor for rodents. In mice, gurmarin sensitivity differs among strains with gurmarin-sensitive C57BL and gurmarin-poorly-sensitive BALB strains. In C57BL mice, sweet-responsive fibers of the chorda tympani (CT) nerve can be divided into two distinct populations, gurmarin-sensitive (GS) and gurmarin-insensitive (GI) types, suggesting the existence of two distinct reception pathways for sweet taste responses. By using the dpa congenic strain (dpa CG) whose genetic background is identical to BALB except that the gene(s) controlling gurmarin sensitivity are derived from C57BL, we previously found that genetically-elevated gurmarin sensitivity in dpa CG mice, confirmed by using behavioral response and whole CT nerve response analyses, was linked to a greater taste cell population co-expressing sweet taste receptors and a Gα protein, Gα-gustducin. However, the formation of neural pathways from the increased taste cell population to nerve fibers has not yet been examined. Results Here, we investigated whether the increased taste cell population with Gα-gustducin-coupled sweet receptors would be associated with selective increment of GS fiber population or nonselective shift of gurmarin sensitivities of overall sweet-responsive fibers by examining the classification of GS and GI fiber types in dpa CG and BALB mice. The results indicated that dpa CG, like C57BL, possess two distinct populations of GS and GI types of sweet-responsive fibers with almost identical sizes (dpa CG: 13 GS and 16 GI fibers; C57BL: 16 GS and 14 GI fibers). In contrast, BALB has only 3 GS fibers but 18 GI fibers. These data indicate a marked increase of the GS population in dpa CG. Conclusion These results suggest that the increased cell population expressing T1r2/T1r3/Gα-gustducin in dpa CG mice may be associated with an increase of their matched GS type fibers, and may form the distinct GS sweet reception pathway in mice. G

  2. Gurmarin sensitivity of sweet taste responses is associated with co-expression patterns of T1r2, T1r3, and gustducin.

    PubMed

    Shigemura, Noriatsu; Nakao, Kazuko; Yasuo, Toshiaki; Murata, Yoshihiro; Yasumatsu, Keiko; Nakashima, Akihiko; Katsukawa, Hideo; Sako, Noritaka; Ninomiya, Yuzo

    2008-03-07

    Gurmarin (Gur) is a peptide that selectively suppresses sweet taste responses in rodents. The inhibitory effect of Gur differs among tongue regions and mouse strains. Recent studies demonstrated that co-expression levels of genes controlling sweet receptors (T1r2/T1r3 heterodimer) versus Galpha-protein, gustducin, are much lower in Gur-insensitive posterior circumvallate papillae than in Gur-sensitive anterior fungiform papillae. Here, we investigated the potential link of Gur-sensitivity with the co-expression for T1r2/T1r3 receptors and gustducin by comparing those of taste tissues of Gur-sensitive (B6, dpa congenic strains) and Gur-weakly-sensitive (BALB) strains. The results indicated that co-expression ratios among T1r2, T1r3, and gustducin in the fungiform papillae were significantly lower in Gur-weakly-sensitive BALB mice than in Gur-sensitive B6 and dpa congenic mice. This linkage between Gur-sensitivity and co-expression for T1r2/T1r3 receptors versus gustducin suggests that gustducin may be a key molecule involved in the pathway for Gur-sensitive sweet responses.

  3. Coding channels for taste perception: information transmission from taste cells to gustatory nerve fibers.

    PubMed

    Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; Ninomiya, Yuzo

    2006-12-01

    Taste signals are first detected by the taste receptor cells, which are located in taste buds existing in the tongue, soft palate, larynx and epiglottis. Taste receptor cells contact with the chemical compounds in oral cavity through the apical processes which protrude into the taste pore. Interaction between chemical compounds and the taste receptor produces activation of taste receptor cells directly or indirectly. Then the signals are transmitted to gustatory nerve fibers and higher order neurons. A recent study demonstrated many similarities between response properties of taste receptor cells with action potentials and those of the gustatory nerve fibers innervating them, suggesting information derived from receptor cells generating action potentials may form a major component of taste information that is transmitted to gustatory nerve fibers. These findings may also indicate that there is no major modification of taste information sampled by taste receptor cells in synaptic transmission from taste cells to nerve fibers although there is indirect evidence. In the peripheral taste system, gustatory nerve fibers may selectively contact with taste receptor cells that have similar response properties and convey constant taste information to the higher order neurons.

  4. Tasting

    MedlinePlus Videos and Cool Tools

    ... buds. The taste buds are linked to the brain by nerve fibers. Food particles are detected by ... taste buds, which send nerve signals to the brain. Certain areas of the tongue are more sensitive ...

  5. New insights into the signal transmission from taste cells to gustatory nerve fibers.

    PubMed

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2010-01-01

    Taste receptor cells detect chemical compounds in the oral cavity and transfer their messages to gustatory afferent nerve fibers. Considering the coding of taste information, the sensitivity of taste cells and the connection between taste cells and gustatory fibers may be critical in this process. Broadly tuned taste cells and random connections between taste cells and fibers would produce gustatory fibers that have broad sensitivity to multiple taste qualities. Narrowly tuned taste cells and selective connections would yield gustatory nerve fibers that respond to specific taste quality. This review summarizes results showing molecular and morphological aspects of taste bud cells, physiological responses of taste cells, possible connections between taste cells and gustatory fibers, and transmitter release from taste cells, and discusses how taste qualities are encoded among taste bud cells and how taste information is transmitted from taste cells to gustatory nerve fibers. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Role of neurotrophin in the taste system following gustatory nerve injury.

    PubMed

    Meng, Lingbin; Jiang, Xin; Ji, Rui

    2015-06-01

    Taste system is a perfect system to study degeneration and regeneration after nerve injury because the taste system is highly plastic and the regeneration is robust. Besides, degeneration and regeneration can be easily measured since taste buds arise in discrete locations, and nerves that innervate them can be accurately quantified. Neurotrophins are a family of proteins that regulate neural survival, function, and plasticity after nerve injury. Recent studies have shown that neurotrophins play an important role in the developmental and mature taste system, indicating neurtrophin might also regulate taste system following gustatory nerve injury. This review will summarize how taste system degenerates and regenerates after gustatory nerve cut and conclude potential roles of neurotrophin in regulating the process.

  7. Reactive microglia after taste nerve injury: comparison to nerve injury models of chronic pain.

    PubMed

    Bartel, Dianna L; Finger, Thomas E

    2013-01-01

    The chorda tympani (CT), which innervates taste buds on the anterior portion of the tongue, is susceptible to damage during inner ear surgeries. Injury to the CT causes a disappearance of taste buds, which is concurrent with significant microglial responses at central nerve terminals in the nucleus of the solitary tract (nTS). The resulting taste disturbances that can occur may persist for months or years, long after the nerve and taste buds have regenerated. These persistent changes in taste sensation suggest alterations in central functioning and may be related to the microglial responses. This is reminiscent of nerve injuries that result in chronic pain, where microglial reactivity is essential in maintaining the altered sensation (i.e., pain). In these models, methods that diminish microglial responses also diminish the corresponding pain behavior. Although the CT nerve does not contain nociceptive pain fibers, the microglial reactivity after CT damage is similar to that described in pain models. Therefore, methods that decrease microglial responses in pain models were used here to test if they could also affect microglial reactivity after CT injury. Treatment with minocycline, an antibiotic that dampens pain responsive microglia, was largely ineffective in diminishing microglial responses after CT injury. In addition, signaling through the toll-like 4 receptor (TLR4) does not seem to be required after CT injury as blocking or deleting TLR4 had no effect on microglial reactivity. These results suggest that microglial responses following CT injury rely on different signaling mechanisms than those described in nerve injuries resulting in chronic pain.

  8. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional

  9. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.

  10. [Progress in the effects of injury and regeneration of gustatory nerves on the taste functions in animals].

    PubMed

    Fan, Yuan-Yuan; Yu, Dong-Ming; Shi, Yu-Juan; Yan, Jian-Qun; Jiang, En-She

    2014-10-25

    The sensor of the taste is the taste bud. The signals originated from the taste buds are transmitted to the central nervous system through the gustatory taste nerves. The chorda tympani nerve (innervating the taste buds of the anterior tongue) and glossopharyngeal nerve (innervating the taste buds of the posterior tongue) are the two primary gustatory nerves. The injuries of gustatory nerves cause their innervating taste buds atrophy, degenerate and disappear. The related taste function is also impaired. The impaired taste function can be restored after the gustatory nerves regeneration. The rat model of cross-regeneration of gustatory nerves is an important platform for research in the plasticity of the central nervous system. The animal behavioral responses and the electrophysiological properties of the gustatory nerves have changed a lot after the cross-regeneration of the gustatory nerves. The effects of the injury, regeneration and cross-regeneration of the gustatory nerves on the taste function in the animals will be discussed in this review. The prospective studies on the animal model of cross-regeneration of gustatory nerves are also discussed in this review. The study on the injury, regeneration and cross-regeneration of the gustatory nerves not only benefits the understanding of mechanism for neural plasticity in gustatory nervous system, but also will provide theoretical basis and new ideas for seeking methods and techniques to cure dysgeusia.

  11. Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    PubMed Central

    Ishiwatari, Yutaka; Theodorides, Maria L.; Bachmanov, Alexander A.

    2011-01-01

    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies. PMID:21743094

  12. Taste cell responses in the frog are modulated by parasympathetic efferent nerve fibers.

    PubMed

    Sato, Toshihide; Okada, Yukio; Miyazaki, Toshihiro; Kato, Yuzo; Toda, Kazuo

    2005-11-01

    We studied the anatomical properties of parasympathetic postganglionic neurons in the frog tongue and their modulatory effects on taste cell responses. Most of the parasympathetic ganglion cell bodies in the tongue were found in extremely small nerve bundles running near the fungiform papillae, which originate from the lingual branches of the glossopharyngeal (GP) nerve. The density of parasympathetic postganglionic neurons in the tongue was 8000-11,000/mm(3) of the extremely small nerve bundle. The mean major axis of parasympathetic ganglion cell bodies was 21 microm, and the mean length of parasympathetic postganglionic neurons was 1.45 mm. Electrical stimulation at 30 Hz of either the GP nerve or the papillary nerve produced slow hyperpolarizing potentials (HPs) in taste cells. After nicotinic acetyl choline receptors on the parasympathetic ganglion cells in the tongue had been blocked by intravenous (i.v.) injection of D-tubocurarine (1 mg/kg), stimulation of the GP nerve did not induce any slow HPs in taste cells but that of the papillary nerve did. A further i.v. injection of a substance P NK-1 antagonist, L-703,606, blocked the slow HPs induced by the papillary nerve stimulation. This suggests that the parasympathetic postganglionic efferent fibers innervate taste cells and are related to a generation of the slow HPs and that substance P is released from the parasympathetic postganglionic axon terminals. When the resting membrane potential of a taste cell was hyperpolarized by a prolonged slow HP, the gustatory receptor potentials for NaCl and sugar stimuli were enhanced in amplitude, but those for quinine-HCl and acetic acid stimuli remained unchanged. It is concluded that frog taste cell responses are modulated by activities of parasympathetic postganglionic efferent fibers innervating these cells.

  13. Evoked taste thresholds in a normal population and the application of electrogustometry to trigeminal nerve disease.

    PubMed Central

    Grant, R; Ferguson, M M; Strang, R; Turner, J W; Bone, I

    1987-01-01

    No standardised method for taste threshold measurement is available and therefore comparison between clinical studies is difficult. An electrogustometer was evaluated in normal subjects. No sex difference in taste threshold was noted; however, there was a significant elevation in detection threshold with age and smoking. Electrogustometric values both in patients before and after surgery for trigeminal neuralgia and in patients with trigeminal sensory neuropathy were determined. Many patients with trigeminal nerve disorders had abnormal electrogustometric detection thresholds suggesting that there is possibly an accessory taste pathway through the trigeminal nerve, although in some individuals the site of lesion may be in the brain stem. Electrogustometry is a convenient method for clinically assessing taste. Images PMID:3819752

  14. An Analysis of Hamster Afferent Taste Nerve Response Functions

    PubMed Central

    Frank, Marion

    1973-01-01

    Sensitivities to moderately intense stimuli representing four taste qualities to man were determined for 79 hamster chorda tympani fibers. Some fibers were very sensitive to sucrose, sodium chloride, or hydrochloric acid, but none were very sensitive to quinine. These sensitivities were not randomly distributed among fibers: the sucrose sensitivity was separated from and negatively correlated with the other sensitivities which were associated and positively correlated with each other. Moreover, there were a limited number of sensitivity patterns: (a) fibers responding best to sucrose responded second-best to salt, less to acid, not to quinine; (b) fibers responding best to salt either responded second-best to sucrose and not to acid or quinine; or second-best to acid, less to quinine, and not to sucrose; and (c) fibers responding best to acid responded second-best to salt, more to quinine, and less to sucrose than other fibers. Therefore, if four stimuli of different taste qualities are ordered from acceptable to unacceptable, neural response functions of most hamster chorda tympani taste fibers peak at one point. Sensitivities to nine other moderately intense stimuli which vary in quality to man were also determined for 46–49 of the fibers. Sensitivities to sweet stimuli were always associated with each other and separated from sensitivities to nonsweet stimuli. Sensitivities to nonsweet stimuli were all associated with each other; however, the strongest correlations were between sensitivities to stimuli of like quality, e.g., the three acids or the two sodium salts. PMID:4705639

  15. The sweet taste in the calf. II. Glossopharyngeal nerve responses to taste stimulation of the tongue.

    PubMed

    Hård af Segerstad, C H; Hellekant, G

    1989-05-01

    Recordings were obtained from the glossopharyngeal nerve in 1-5-week-old calves during stimulation of the circumvallate tongue area with NaCl, quinine hydrochloride, citric acid, and the sweet compounds: acesulfam-K, aspartame, fructose, galactose, glucose, glycine, lactose, maltose, monellin, Na-saccharin, sucrose, thaumatin, and xylitol. All compounds except aspartame, monellin and thaumatin gave a nerve response. Glycine, followed by Na-saccharin, elicited the largest responses. Sucrose gave the largest response among the disaccharides, while there was no significant difference between the monosaccharides. Expressed as percent of the NaCl responses, the responses to glycine, sucrose, xylitol, fructose, galactose, glucose, lactose and maltose were considerably larger in the glossopharyngeal nerve than in the chorda tympani nerve. This can be taken as an indication that the posterior region of the tongue serves as the major receptive area for sweet in cattle.

  16. The organization of taste sensibilities in hamster chorda tympani nerve fibers

    PubMed Central

    Frank, ME; Bieber, SL; Smith, DV

    1988-01-01

    Electrophysiological measurements of nerve impulse frequencies were used to explore the organization of taste sensibilities in single fibers of the hamster chorda tympani nerve. Moderately intense taste solutions that are either very similar or easily discriminated were applied to the anterior lingual surface. 40 response profiles or 13 stimulus activation patterns were considered variables and examined with multivariate statistical techniques. Three kinds of response profiles were seen in fibers that varied in their overall sensitivity to taste solutions. One profile (S) showed selectivity for sweeteners, a second (N) showed selectivity for sodium salts, and a third (H) showed sensitivity to salts, acids, and other compounds. Hierarchical cluster analysis indicated that profiles fell into discrete classes. Responses to many pairs of effective stimuli were covariant across profiles within a class, but some acidic stimuli had more idiosyncratic effects. Factor analysis of profiles identified two common factors, accounting for 77% of the variance. A unipolar factor was identified with the N profile, and a bipolar factor was identified with the S profile and its opposite, the H profile. Three stimulus activation patterns were elicited by taste solutions that varied in intensity of effect. Hierarchical cluster analysis indicated that the patterns fell into discrete classes. Factor analysis of patterns identified three common unipolar factors accounting for 82% of the variance. Eight stimuli (MgSO4, NH4Cl, KCl, citric acid, acetic acid, urea, quinine HCl, HCl) selectively activated fibers with H profiles, three stimuli (fructose, Na saccharin, sucrose) selectively activated fibers with S profiles, and two stimuli (NaNO3, NaCl) activated fibers with N profiles more strongly than fibers with H profiles. Stimuli that evoke different patterns taste distinct to hamsters. Stimuli that evoke the same pattern taste more similar. It was concluded that the hundreds of peripheral

  17. Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers.

    PubMed

    Tang, Tao; Rios-Pilier, Jennifer; Krimm, Robin

    2017-07-01

    Taste receptor cells transduce different types of taste stimuli and transmit this information to gustatory neurons that carry it to the brain. Taste receptor cells turn over continuously in adulthood, requiring constant new innervation from nerve fibers. Therefore, the maintenance of innervation to taste buds is an active process mediated by many factors, including brain-derived neurotrophic factor (BDNF). Specifically, 40% of taste bud innervation is lost when Bdnf is removed during adulthood. Here we speculated that not all gustatory nerve fibers express the BDNF receptor, TrkB, resulting in subsets of neurons that vary in their response to BDNF. However, it is also possible that the partial loss of innervation occurred because the Bdnf gene was not effectively removed. To test these possibilities, we first determined that not all gustatory nerve fibers express the TrkB receptor in adult mice. We then verified the efficiency of Bdnf removal specifically in taste buds of K14-CreER:Bdnf mice and found that Bdnf expression was reduced to 1%, indicating efficient Bdnf gene recombination. BDNF removal resulted in a 55% loss of TrkB-expressing nerve fibers, which was greater than the loss of P2X3-positive fibers (39%), likely because taste buds were innervated by P2X3+/TrkB- fibers that were unaffected by BDNF removal. We conclude that gustatory innervation consists of both TrkB-positive and TrkB-negative taste fibers and that BDNF is specifically important for maintaining TrkB-positive innervation to taste buds. In addition, although taste bud size was not affected by inducible Bdnf removal, the expression of the γ subunit of the ENaC channel was reduced. So, BDNF may regulate expression of some molecular components of taste transduction pathways. Copyright © 2017. Published by Elsevier Inc.

  18. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice.

    PubMed

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-03-01

    Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities.

  19. Smell and Taste Disorders

    MedlinePlus

    ... nerve cells (olfactory bulbs). These bulbs form the cranial nerves of smell (olfactory nerves). The impulse travels through ... nearby nerve fibers, which are connected to the cranial nerves of taste (the facial and glossopharyngeal nerves). The ...

  20. Taste response in the facial nerve of the carp, Cyprinus carpio L.

    PubMed

    Funakoshi, M; Kawakita, K; Marui, T

    1981-01-01

    The stimulating effect of taste substances on the external chemoreceptors of the carp, Cyprinus carpio L., was studied by recording the electrical activity from the facial taste fibers innervating the facial skin surface. The integrated responses from each whole nerve bundle of the trigemino-facial complex nerve revealed that gustatory receptors on the snout of the carp were extremely sensitive to salts, acids and the extract of silk worm pupae. Quinine-HCl and sucrose elicited relatively small responses. Responses occurred to several amino acids, and especially to betaine. The threshold concentration for both mono- and di-valent salts was estimated to be about 5 X 10-3 M and that for acids about 10-4 M. Single fiber analysis was performed on 77 preparations. According to responsiveness to the 4 basic chemicals, the fibers were classified into 5 types: type I, activated by one stimulus (22 fibers out of 77); type II by two (29); type III by three (11); type IV by four (13); and type V showing inhibition by quinine-HCl (2) as their notable feature. Single fibers responsive to several amino acids, and the worm extract were found, among which the last was the most effective stimulus as shown in the whole nerve experiments.

  1. Fetal alcohol exposure reduces responsiveness of taste nerves and trigeminal chemosensory neurons to ethanol and its flavor components.

    PubMed

    Glendinning, John I; Tang, Joyce; Morales Allende, Ana Paula; Bryant, Bruce P; Youngentob, Lisa; Youngentob, Steven L

    2017-08-01

    Fetal alcohol exposure (FAE) leads to increased intake of ethanol in adolescent rats and humans. We asked whether these behavioral changes may be mediated in part by changes in responsiveness of the peripheral taste and oral trigeminal systems. We exposed the experimental rats to ethanol in utero by administering ethanol to dams through a liquid diet; we exposed the control rats to an isocaloric and isonutritive liquid diet. To assess taste responsiveness, we recorded responses of the chorda tympani (CT) and glossopharyngeal (GL) nerves to lingual stimulation with ethanol, quinine, sucrose, and NaCl. To assess trigeminal responsiveness, we measured changes in calcium levels of isolated trigeminal ganglion (TG) neurons during stimulation with ethanol, capsaicin, mustard oil, and KCl. Compared with adolescent control rats, the adolescent experimental rats exhibited diminished CT nerve responses to ethanol, quinine, and sucrose and GL nerve responses to quinine and sucrose. The reductions in taste responsiveness persisted into adulthood for quinine but not for any of the other stimuli. Adolescent experimental rats also exhibited reduced TG neuron responses to ethanol, capsaicin, and mustard oil. The lack of change in responsiveness of the taste nerves to NaCl and the TG neurons to KCl indicates that FAE altered only a subset of the response pathways within each chemosensory system. We propose that FAE reprograms development of the peripheral taste and trigeminal systems in ways that reduce their responsiveness to ethanol and surrogates for its pleasant (i.e., sweet) and unpleasant (i.e., bitterness, oral burning) flavor attributes.NEW & NOTEWORTHY Pregnant mothers are advised to avoid alcohol. This is because even small amounts of alcohol can alter fetal brain development and increase the risk of adolescent alcohol abuse. We asked how fetal alcohol exposure (FAE) produces the latter effect in adolescent rats by measuring responsiveness of taste nerves and trigeminal

  2. Alteration of amiloride-sensitive salt taste nerve responses in aldosterone/NaCl-induced hypertensive rats.

    PubMed

    Sakamoto, Takashi; Fujii, Akihiko; Saito, Naoko; Kondo, Hidehiko; Ohuchi, Atsushi

    2016-07-01

    Salt taste sensitivity is related to physiological condition, and declined in hypertensive patients. However, little is known about the mechanism underlying changes in salt taste sensitivity during the development of hypertension. This is largely due to lack of an appropriate animal model which shows the decline of salt taste sensitivity caused by hypertension. Previous studies have suggested that one of main causes of salt-sensitive hypertension is dysfunction of the renin-angiotensin-aldosterone system (RAAS). To examine the involvement of RAAS in modulation of salt taste sensitivity, we utilized aldosterone/NaCl-treated rats as a well-established model of salt-sensitive hypertension caused by RAAS dysfunction. Amount of sodium intake in aldosterone/NaCl-treated rats was higher than that in control rats. In addition to behavioral changes, the amiloride-sensitive salt taste nerve responses in aldosterone/NaCl-treated rats were remarkably lower by approximately 90% than those in the other groups. Moreover, αENaC mRNA expression in the epithelium of circumvallate papillae was significantly low in aldosterone/NaCl-treated rats. Thus, RAAS modulates salt taste system as is case in hypertensive patients. This report is to our knowledge the first to describe an animal model with decline of amiloride-sensitive salt taste nerve responses by RAAS dysfunction-mediated salt-sensitive hypertension.

  3. The K+-H+ Exchanger, Nigericin, Modulates Taste Cell pH and Chorda Tympani Taste Nerve Responses to Acidic Stimuli

    PubMed Central

    Sturz, Gregory R.; Phan, Tam-Hao T.; Mummalaneni, Shobha; Ren, ZuoJun; DeSimone, John A.

    2011-01-01

    The relationship between acidic pH, taste cell pHi, and chorda tympani (CT) nerve responses was investigated before and after incorporating the K+-H+ exchanger, nigericin, in the apical membrane of taste cells. CT responses were recorded in anesthetized rats in vivo, and changes in pHi were monitored in polarized fungiform taste cells in vitro. Under control conditions, stimulating the tongue with 0.15 M potassium phosphate (KP) or 0.15 M sodium phosphate (NaP) buffers of pHs between 8.0 and 4.6, KP or NaP buffers did not elicit a CT response. Post-nigericin (500 × 10−6 M), KP buffers, but not NaP buffers, induced CT responses at pHs ≤ 6.6. The effect of nigericin was reversed by the topical lingual application of carbonyl cyanide 3-chloro-phenylhydrazone, a protonophore. Post-nigericin (150 × 10−6 M), KP buffers induced a greater decrease in taste cell pHi relative to NaP buffers and to NaP and KP buffers under control conditions. A decrease in pHi to about 6.9 induced by KP buffers was sufficient to elicit a CT response. The results suggest that facilitating apical H+ entry via nigericin decreases taste cell pHi and demonstrates directly a strong correlation between pHi and the magnitude of the CT response. PMID:21257734

  4. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice

    PubMed Central

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-01-01

    Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The

  5. Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve

    PubMed Central

    1993-01-01

    Beidler's work in the 1950s showed that anions can strongly influence gustatory responses to sodium salts. We have demonstrated "anion inhibition" in the hamster by showing that the chorda tympani nerve responds more strongly to NaCl than to Na acetate over a wide range of concentrations. Iontophoretic presentation of Cl- and acetate to the anterior tongue elicited no response in the chorda tympani, suggesting that these anions are not directly stimulatory. Drugs (0.01, 1.0, and 100 microM anthracene-9-carboxylate, diphenylamine-2-carboxylate, 4- acetamido-4'-isothiocyanatostilbene-2,2'-disulfonate, and furosemide) that interfere with movements of Cl- across epithelial cells were ineffective in altering chorda tympani responses to 0.03 M of either NaCl or Na acetate. Anion inhibition related to movements of anions across epithelial membranes therefore seems unlikely. The chorda tympani contains a population of nerve fibers highly selective for Na+ (N fibers) and another population sensitive to Na+ as well as other salts and acids (H fibers). We found that N fibers respond similarly to NaCl and Na acetate, with spiking activity increasing with increasing stimulus concentration (0.01-1.0 M). H fibers, however, respond more strongly to NaCl than to Na acetate. Furthermore, H fibers increase spiking with increases in NaCl concentration, but generally decrease their responses to increasing concentrations of Na acetate. It appears that anion inhibition applies to taste cells innervated by H fibers but not by N fibers. Taste cells innervated by N fibers use an apical Na+ channel, whereas those innervated by H fibers may use a paracellularly mediated, basolateral site of excitation. PMID:8473851

  6. TRPM5-dependent amiloride- and benzamil-insensitive NaCl chorda tympani taste nerve response.

    PubMed

    Ren, ZuoJun; Rhyu, Mee-Ra; Phan, Tam-Hao T; Mummalaneni, Shobha; Murthy, Karnam S; Grider, John R; DeSimone, John A; Lyall, Vijay

    2013-07-01

    Transient receptor potential (TRP) subfamily M member 5 (TRPM5) cation channel is involved in sensing sweet, bitter, umami, and fat taste stimuli, complex-tasting divalent salts, and temperature-induced changes in sweet taste. To investigate if the amiloride- and benzamil (Bz)-insensitive NaCl chorda tympani (CT) taste nerve response is also regulated in part by TRPM5, CT responses to 100 mM NaCl + 5 μM Bz (NaCl + Bz) were monitored in Sprague-Dawley rats, wild-type (WT) mice, and TRP vanilloid subfamily member 1 (TRPV1) and TRPM5 knockout (KO) mice in the presence of resiniferatoxin (RTX), a TRPV1 agonist. In rats, NaCl + Bz + RTX CT responses were also monitored in the presence of triphenylphosphine oxide, a specific TRPM5 blocker, and capsazepine and N-(3-methoxyphenyl)-4-chlorocinnamid (SB-366791), specific TRPV1 blockers. In rats and WT mice, RTX produced biphasic effects on the NaCl + Bz CT response, enhancing the response at 0.5-1 μM and inhibiting it at >1 μM. The NaCl + Bz + SB-366791 CT response in rats and WT mice and the NaCl + Bz CT response in TRPV1 KO mice were inhibited to baseline level and were RTX-insensitive. In rats, blocking TRPV1 by capsazepine or TRPM5 by triphenylphosphine oxide inhibited the tonic NaCl + Bz CT response and shifted the relationship between RTX concentration and the magnitude of the tonic CT response to higher RTX concentrations. TRPM5 KO mice elicited no constitutive NaCl + Bz tonic CT response. The relationship between RTX concentration and the magnitude of the tonic NaCl + Bz CT response was significantly attenuated and shifted to higher RTX concentrations. The results suggest that pharmacological or genetic alteration of TRPM5 activity modulates the Bz-insensitive NaCl CT response and its modulation by TRPV1 agonists.

  7. The K+-H+ exchanger, nigericin, modulates taste cell pH and chorda tympani taste nerve responses to acidic stimuli.

    PubMed

    Sturz, Gregory R; Phan, Tam-Hao T; Mummalaneni, Shobha; Ren, Zuojun; DeSimone, John A; Lyall, Vijay

    2011-05-01

    The relationship between acidic pH, taste cell pH(i), and chorda tympani (CT) nerve responses was investigated before and after incorporating the K(+)-H(+) exchanger, nigericin, in the apical membrane of taste cells. CT responses were recorded in anesthetized rats in vivo, and changes in pH(i) were monitored in polarized fungiform taste cells in vitro. Under control conditions, stimulating the tongue with 0.15 M potassium phosphate (KP) or 0.15 M sodium phosphate (NaP) buffers of pHs between 8.0 and 4.6, KP or NaP buffers did not elicit a CT response. Post-nigericin (500 × 10(-6) M), KP buffers, but not NaP buffers, induced CT responses at pHs ≤ 6.6. The effect of nigericin was reversed by the topical lingual application of carbonyl cyanide 3-chloro-phenylhydrazone, a protonophore. Post-nigericin (150 × 10(-6) M), KP buffers induced a greater decrease in taste cell pH(i) relative to NaP buffers and to NaP and KP buffers under control conditions. A decrease in pH(i) to about 6.9 induced by KP buffers was sufficient to elicit a CT response. The results suggest that facilitating apical H(+) entry via nigericin decreases taste cell pH(i) and demonstrates directly a strong correlation between pH(i) and the magnitude of the CT response.

  8. THE EFFECTS OF DIETARY PROTEIN RESTRICTION ON CHORDA TYMPANI NERVE TASTE RESPONSES AND TERMINAL FIELD ORGANIZATION

    PubMed Central

    THOMAS, J. E.; HILL, D. L.

    2008-01-01

    Prenatal dietary sodium restriction produces profound developmental effects on rat functional taste responses and formation of neural circuits in the brainstem. Converging evidence indicates that the underlying mechanisms for these effects are related to a compromised nutritional state and not to direct stimulus-receptor interactions. We explored whether early malnourishment produces similar functional and structural effects to those seen following dietary sodium restriction by using a protein deficient, sodium replete diet. To determine if early dietary protein-restriction affects the development of the peripheral gustatory system, multi-fiber neurophysiological recordings were made from the chorda tympani nerve and anterograde track tracing of the chorda tympani nerve into the nucleus of the solitary tract (NTS) was accomplished in rats fed a protein-restricted or a control diet (6% and 20%, respectively). The dietary regimens began on embryonic day 7 and continued until rats were used for neurophysiological recordings (postnatal days (P) 35–50) or for chorda tympani terminal field labeling (P40–50). Responses to a concentration series of NaCl, sodium acetate, KCl, and to 0.50 M sucrose, 0.03 M quinine-HCl, and 0.01 N HCl revealed attenuated responses (30–60%) to sodium-specific stimuli in rats fed the 6% protein diet compared with those fed the 20% protein diet. Responses to all other stimuli were similar between groups. Terminal field volumes were nearly twofold larger in protein-restricted rats compared with controls, with the differences located primarily in the dorsal-caudal zone of the terminal field. These results are similar to the results seen previously in rats fed a sodium-restricted diet throughout pre- and postnatal development, suggesting that dietary sodium- and protein-restriction share similar mechanisms in altering gustatory development. PMID:18845228

  9. The effects of dietary protein restriction on chorda tympani nerve taste responses and terminal field organization.

    PubMed

    Thomas, J E; Hill, D L

    2008-11-19

    Prenatal dietary sodium restriction produces profound developmental effects on rat functional taste responses and formation of neural circuits in the brainstem. Converging evidence indicates that the underlying mechanisms for these effects are related to a compromised nutritional state and not to direct stimulus-receptor interactions. We explored whether early malnourishment produces similar functional and structural effects to those seen following dietary sodium restriction by using a protein deficient, sodium replete diet. To determine if early dietary protein-restriction affects the development of the peripheral gustatory system, multi-fiber neurophysiological recordings were made from the chorda tympani nerve and anterograde track tracing of the chorda tympani nerve into the nucleus of the solitary tract (NTS) was accomplished in rats fed a protein-restricted or a control diet (6% and 20%, respectively). The dietary regimens began on embryonic day 7 and continued until rats were used for neurophysiological recordings (postnatal days (P) 35-50) or for chorda tympani terminal field labeling (P40-50). Responses to a concentration series of NaCl, sodium acetate, KCl, and to 0.50 M sucrose, 0.03 M quinine-HCl, and 0.01 N HCl revealed attenuated responses (30-60%) to sodium-specific stimuli in rats fed the 6% protein diet compared with those fed the 20% protein diet. Responses to all other stimuli were similar between groups. Terminal field volumes were nearly twofold larger in protein-restricted rats compared with controls, with the differences located primarily in the dorsal-caudal zone of the terminal field. These results are similar to the results seen previously in rats fed a sodium-restricted diet throughout pre- and postnatal development, suggesting that dietary sodium- and protein-restriction share similar mechanisms in altering gustatory development.

  10. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  11. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  12. Depression of gustatory receptor potential in frog taste cell by parasympathetic nerve-induced slow hyperpolarizing potential.

    PubMed

    Sato, Toshihide; Nishishita, Kazuhisa; Mineda, Takao; Okada, Yukio; Toda, Kazuo

    2007-01-01

    Parasympathetic nerve (PSN) innervates taste cells of the frog taste disk, and electrical stimulation of PSN elicited a slow hyperpolarizing potential (HP) in taste cells. Here we report that gustatory receptor potentials in frog taste cells are depressed by PSN-induced slow HPs. When PSN was stimulated at 30 Hz during generation of taste cell responses, the large amplitude of depolarizing receptor potential for 1 M NaCl and 1 mM acetic acid was depressed by approximately 40% by slow HPs, but the small amplitude of the depolarizing receptor potential for 10 mM quinine-HCl (Q-HCl) and 1 M sucrose was completely depressed by slow HPs and furthermore changed to the hyperpolarizing direction. The duration of the depolarizing receptor potentials depressed by slow HPs prolonged with increasing period of PSN stimulation. As tastant-induced depolarizing receptor potentials were increased, the amplitude of PSN-induced slow HPs inhibiting the receptor potentials gradually decreased. The mean reversal potentials of the slow HPs were approximately -1 mV under NaCl and acetic acid stimulations, but approximately -14 mV under Q-HCl and sucrose stimulations. This implies that when a slow HP was evoked on the same amplitude of depolarizing receptor potentials, the depression of the NaCl and acetic acid responses in taste cells was larger than that of Q-HCl and sucrose responses. It is concluded that slow HP-induced depression of gustatory depolarizing receptor potentials derives from the interaction between gustatory receptor current and slow hyperpolarizing current in frog taste cells and that the interaction is stronger for NaCl and acetic acid stimulations than for Q-HCl and sucrose stimulations.

  13. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors.

  14. Sense of taste in a new world monkey, the common marmoset: recordings from the chorda tympani and glossopharyngeal nerves.

    PubMed

    Danilova, Vicktoria; Danilov, Yuri; Roberts, Thomas; Tinti, Jean-Marie; Nofre, Claude; Hellekant, Göran

    2002-08-01

    Whole nerve, as well as single fiber, responses in the chorda tympani proper (CT) and glossopharyngeal (NG) nerves of common marmosets were recorded during taste stimulation with three salts, four acids, six bitter compounds and more than 30 sweeteners. We recorded responses of 49 CT and 41 NG taste fibers. The hierarchical cluster analysis distinguished three major clusters in both CT and NG: S, Q, and H. The S(CT) fibers, 38% of all CT fibers, responded only to sweeteners. The S(CT) fibers did not respond during stimulation with salts, acids, and bitter compounds but exhibited OFF responses after citric and ascorbic acids, quinine hydrochloride (QHCl), and salts (in 80% of S(CT) fibers). S(NG) fibers, 50% of all NG fibers, also responded to sweeteners but not to stimuli of other taste qualities (except for citric acid, which stimulated 70% of the S(NG) fibers). Some sweeteners, including natural (the sweet proteins brazzein, monellin) and artificial [cyclamate, neohesperidin dihydrochalcone (NHDHC), N-3,5-dichlorophenyl-N'-(S)-alpha-methylbenzylguanidineacetate (DMGA), N-4-cyanophenylcarbamoyl-(R,S)-3-amino-3-(3,4-methylenedioxyphenyl) propionic acid (CAMPA)] did not elicit responses in the S fibers. In general, the response profiles of the S(CT) and S(NG) clusters were very similar, the correlation coefficient between the responses to sweeteners in these clusters was 0.94. Both the Q(CT) and the Q(NG) fibers (40 and 46% of all fibers) were predominantly responsive to bitter compounds, although their responses to the same set of bitter compounds were quite different. Sweeteners with sweet/bitter taste for humans also stimulated the Q clusters. The H clusters (22 and 3% of all fibers) were predominantly responsive to acids and did not respond to stimuli of other taste qualities. However, bitter stimuli, mainly QHCl, inhibited activity in 70% of H(CT) fibers. Among a total of 90 fibers from both nerves there was only 1 NaCl-best fiber in CT. We found, however, that

  15. Attenuation of peripheral salt taste responses and local immune function contralateral to gustatory nerve injury: effects of aldosterone

    PubMed Central

    Guagliardo, Nick A.; West, Katie Nicole; McCluskey, Lynnette P.

    2009-01-01

    Dietary sodium restriction coupled with axotomy of the rat chorda tympani nerve (CTX) results in selectively attenuated taste responses to sodium salts in the contralateral, intact chorda tympani nerve. Converging evidence indicates that sodium deficiency also diminishes the activated macrophage response to injury on both the sectioned and contralateral, intact sides of the tongue. Because a sodium-restricted diet causes a robust increase in circulating aldosterone, we tested the hypothesis that changes in neurophysiological and immune responses contralateral to the CTX could be mimicked by aldosterone administration instead of the low-sodium diet. Taste responses in rats with CTX and supplemental aldosterone for 4–6 days were similar to rats with CTX and dietary sodium restriction. Responses to sodium salts were as much as 50% lower compared with sham-operated and vehicle-supplemented rats. The group-related functional differences were eliminated with lingual application of amiloride, suggesting that a major transduction pathway affected was through epithelial sodium channels. Consistent with the functional results, few macrophages were observed on either side of the tongue in rats with CTX and aldosterone. In contrast, macrophages were elevated on both sides of the tongue in rats with CTX and the vehicle. These results show that sodium deficiency or administration of aldosterone suppresses the immune response to neural injury, resulting in attenuation of peripheral gustatory function. They also show a potential key link among downstream consequences of sodium imbalance, taste function, and immune activity. PMID:19675282

  16. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract

    PubMed Central

    Sun, Chengsan; Hummler, Edith

    2017-01-01

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case

  17. Taste transductions in taste receptor cells: basic tastes and moreover.

    PubMed

    Iwata, Shusuke; Yoshida, Ryusuke; Ninomiya, Yuzo

    2014-01-01

    In the oral cavity, taste receptor cells dedicate to detecting chemical compounds in foodstuffs and transmitting their signals to gustatory nerve fibers. Heretofore, five taste qualities (sweet, umami, bitter, salty and sour) are generally accepted as basic tastes. Each of these may have a specific role in the detection of nutritious and poisonous substances; sweet for carbohydrate sources of calories, umami for protein and amino acid contents, bitter for harmful compounds, salty for minerals and sour for ripeness of fruits and spoiled foods. Recent studies have revealed molecular mechanisms for reception and transduction of these five basic tastes. Sweet, umami and bitter tastes are mediated by G-protein coupled receptors (GPCRs) and second-messenger signaling cascades. Salty and sour tastes are mediated by channel-type receptors. In addition to five basic tastes, taste receptor cells may have the ability to detect fat taste, which is elicited by fatty acids, and calcium taste, which is elicited by calcium. Taste compounds eliciting either fat taste or calcium taste may be detected by specific GPCRs expressed in taste receptor cells. This review will focus on transduction mechanisms and cellular characteristics responsible for each of basic tastes, fat taste and calcium taste.

  18. Residual Chemoresponsiveness to Acids in the Superior Laryngeal Nerve in “Taste-Blind” (P2X2/P2X3 Double-KO) Mice

    PubMed Central

    Ohkuri, Tadahiro; Horio, Nao; Stratford, Jennifer M.; Finger, Thomas E.; Ninomiya, Yuzo

    2012-01-01

    Mice lacking both the P2X2 and the P2X3 purinergic receptors (P2X-dblKO) exhibit loss of responses to all taste qualities in the taste nerves innervating the tongue. Similarly, these mice exhibit a near total loss of taste-related behaviors in brief access tests except for a near-normal avoidance of acidic stimuli. This persistent avoidance of acids despite the loss of gustatory neural responses to sour was postulated to be due to continued responsiveness of the superior laryngeal (SL) nerve. However, chemoresponses of the larynx are attributable both to taste buds and to free nerve endings. In order to test whether the SL nerve of P2X-dblKO mice remains responsive to acids but not to other tastants, we recorded responses from the SL nerve in wild-type (WT) and P2X-dblKO mice. WT mice showed substantial SL responses to monosodium glutamate, sucrose, urea, and denatonium—all of which were essentially absent in P2X-dblKO animals. In contrast, the SL nerve of P2X-dblKO mice exhibited near-normal responses to citric acid (50 mM) although responsiveness of both the chorda tympani and the glossopharyngeal nerves to this stimulus were absent or greatly reduced. These results are consistent with the hypothesis that the residual avoidance of acidic solutions by P2X-dblKO mice may be attributable to the direct chemosensitivity of nerve fibers innervating the laryngeal epithelium and not to taste. PMID:22362867

  19. Responses of single taste fibers and whole chorda tympani and glossopharyngeal nerve in the domestic pig, Sus scrofa.

    PubMed

    Danilova, V; Roberts, T; Hellekant, G

    1999-06-01

    Whole nerve, as well as single fiber, responses in the chorda tympani proper (CT) and glossopharyngeal (NG) nerves of 1- to 7-week-old pigs were recorded during taste stimulation. In the CT acids and in the NG bitter compounds gave the largest responses. Both nerves exhibited large responses to monosodium glutamate (MSG), MSG with guanosine 5'-monophosphate (GMP) and MSG with inositine 5'-monophosphate (IMP) as well as to glycine, xylitol, sucrose, fructose and glucose. Alitame, aspartame, betaine, neohesperedin dihydrochalcone (NHDHC), super-aspartame, saccharin and thaumatin elicited no or little response. Hierarchical cluster analysis of 49 CT fibers separated four major clusters. The M cluster, comprising 28.5% of all fibers, is characterized by strong responses to MSG, KCl, LiCl and NaCl. The responses to NaCl and LiCl were unaffected by amiloride. The H cluster (24.5%) includes units responding principally to acids. The Q cluster (18.5%) responds to quinine hydrochloride (QHCl), sucrose octaacetate (SOA) and salts with amiloride. The S cluster (28.5%) exhibits strong responses to xylitol, glycine and the carbohydrates as well as to MSG alone and to MSG with GMP or IMP. In 31 NG fibers, hierarchical cluster analysis revealed four clusters: the M cluster (10%), responding to MSG and MSG with GMP or IMP; the H cluster (13%), responding to acids; the Q cluster (29%), responding strongly to QHCl, SOA and tilmicosinR; and the S cluster (48%), responding best to xylitol, carbohydrates and glycine but also to the umami compounds. Multidimensional scaling analysis across fiber responses to all stimuli showed the best separation between compounds with different taste qualities when information from both nerves was utilized.

  20. A Retrospective Cohort Study of Glossopharyngeal Nerve Taste in Children with Recurrent Acute Tonsillitis.

    PubMed

    Hill, Courtney A; Dang, Suveera; Beach, Michael; Chen, Eunice Y

    2017-01-01

    Objective To compare glossopharyngeal taste between healthy children and those with recurrent acute tonsillitis. Study Design Retrospective cohort study. Setting Pediatric clinics in a tertiary care medical center and satellite location. Subjects and Methods Smell and taste testing was administered to 80 well children and 64 children with recurrent acute tonsillitis (age range, 6-17 years). Smell testing was performed with the NIH Toolbox Odor Identification Test, with scores based on national averages for age and sex. Validated Taste Strips were placed on the midline of the tongue at the circumvallate papillae in random tastant order and in increasing concentrations to test sweet, salty, sour, and bitter. Ordinal logistic regression was used for multivariate analysis. Results The healthy and tonsillitis groups were similar, with mean ages of 11.3 and 10.8 years ( P = .34), respectively. The tonsillitis group had fewer boys (n = 18 vs 43, P = .002), higher mean body mass index (BMI) percentile (n = 72.2 vs 59.8, P = .01), and more subjects with public or no insurance (n = 24 vs 13, P = .004). Univariate analysis revealed no statistically significant differences in rate of normal overall taste (67.2% vs 60%, P = .39) and in sweet (79.7% vs 82.5%, P = .67), salty (85.9% vs 82.8%, P = .82), sour (64.1% vs 70%, P = .48), and bitter (90.6% vs 86.3%, P = .45). In multivariate analysis, smell ability, sex, BMI percentile, parent BMI, and insurance type did not affect overall taste or sweet, salty, sour, or bitter alone. Conclusion Despite controlling for potential intrinsic (sex, smell, BMI) and extrinsic (parent BMI, insurance type) confounders, there was no statistically significant difference in taste among children with recurrent acute tonsillitis as compared with healthy children.

  1. Effects of gymnemic acid on the chorda tympani proper nerve responses to sweet, sour, salty and bitter taste stimuli in the chimpanzee.

    PubMed

    Hellekant, G; af Segerstad, C H; Roberts, T; van der Wel, H; Brouwer, J N; Glaser, D; Haynes, R; Eichberg, J W

    1985-07-01

    In man gymnemic acid is able to abolish the sweet taste. Also in man, the neural correlate of that effect is a disappearance of the response to sweet stimuli in the taste nerves, as indicated by the observations of Diamant et al. (1965). Although a variety of other mammals also show neural responses to sweet-tasting compounds, the corresponding effect of gymnemic acid has not been demonstrated. This study presents chorda tympani proper nerve recordings from the chimpanzee before and after gymnemic acid. On the chimpanzee tongue, application of 2 ml gymnemic acid (3-10 mg X ml-1 for 3-4 min) completely abolished the taste responses to 0.0035 M acesulfam-K, 0.0018 M aspartame, 0.015 M D-tryptophan, 0.02% monellin, and 0.02% thaumatin, reduced by 75% the response to 0.3 M sucrose, and by 50% that of 0.76 M xylitol. No decrease was recorded in the responses to 0.001 M quinine, 0.1 M NaCl, 0.02 and 0.04 M ascorbic acid, 0.02 and 0.04 M citric acid. The response to the sweeteners recovered with time and the recovery was complete or nearly complete after one and a half hours. It was also found that after application of 2 ml miraculin, 3 mg X ml-1 for 3 min to the tongue the neural response to acids was about 1.5 times as large as before. Gymnemic acid applied before miraculin prevented this enhancement and gymnemic acid after miraculin depressed the enhancement by miraculin of the response to citric and ascorbic acid.

  2. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    PubMed

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs.

  3. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats

    PubMed Central

    King, Camille Tessitore; Garcea, Mircea; Spector, Alan C.

    2014-01-01

    Remarkably, when lingual gustatory nerves are surgically re-routed to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos-immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, despite that this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells rostrally situated. Quinine-stimulated neurons were found throughout the gustatory cortex but a ‘hot spot’ was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostral-most CeA and in the subregion approximating dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. PMID:24477770

  4. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats.

    PubMed

    King, Camille Tessitore; Garcea, Mircea; Spector, Alan C

    2014-08-01

    Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. © 2014 Wiley Periodicals, Inc.

  5. Taste - impaired

    MedlinePlus

    ... longer. Causes of impaired taste include: Bell's palsy Common cold Flu and other viral infections Nasal infection, nasal ... your diet. For taste problems due to the common cold or flu, normal taste should return when the ...

  6. Taste Disorders

    MedlinePlus

    ... combine with a food’s aroma to produce a perception of flavor. It is flavor that lets you ... The most common taste disorder is phantom taste perception : a lingering, often unpleasant taste even though there ...

  7. DEVELOPING A SENSE OF TASTE

    PubMed Central

    Kapsimali, Marika; Barlow, Linda A.

    2012-01-01

    Taste buds are found in a distributed array on the tongue surface, and are innervated by cranial nerves that convey taste information to the brain. For nearly a century, taste buds were thought to be induced by nerves late in embryonic development. However, this view has shifted dramatically. A host of studies now indicate that taste bud development is initiated and proceeds via processes that are nerve-independent, occur long before birth, and governed by cellular and molecular mechanisms intrinsic to the developing tongue. Here we review the state of our understanding of the molecular and cellular regulation of taste bud development, incorporating important new data obtained through the use of two powerful genetic systems, mouse and zebrafish. PMID:23182899

  8. Influences of age, tongue region, and chorda tympani nerve sectioning on signal detection measures of lingual taste sensitivity.

    PubMed

    Doty, Richard L; Heidt, Julie M; MacGillivray, Michael R; Dsouza, Merle; Tracey, Elisabeth H; Mirza, Natasha; Bigelow, Douglas

    2016-03-01

    Although the ability to taste is critical for ingestion, nutrition, and quality of life, a clear understanding of the influences of age, sex, and chorda tympani (CT) resection on taste function in different regions of the anterior tongue is generally lacking. In this study we employed criterion-free signal detection analysis to assess electric and chemical taste function on multiple tongue regions in normal individuals varying in age and sex and in patients with unilateral CT resections. The subjects were 33 healthy volunteers, ranging from 18 to 87 years of age, and 9 persons, 27 to 77 years of age, with unilateral CT lesions. The influences of age, sex, tongue region, and chorda tympani resections on signal detection sensitivity (d') and response bias (β) measures was assessed in 16 tongue regions to weak electric currents and solutions of sucrose, sodium chloride, and caffeine. Significant age-related decrements in d' were found for sucrose (p=0.012), sodium chloride (p=0.002), caffeine (p=0.006), and electric current (EC) (p=0.0001). Significant posterior to anterior, and medial to lateral, gradients of increasing performance were present for most stimuli. β was larger on the anterior than the posterior tongue for the electrical stimulus in the youngest subjects, whereas the opposite was true for sucrose in the oldest subjects. No sex differences were apparent. d' was depressed ipsilateral to the CT lesion side to varying degrees in all tongue regions, with the weakest influences occurring on the medial and anterior tongue. CT did not meaningfully influence β. This study is the first to employ signal detection analysis to assess the regional sensitivity of the tongue to chemical and electrical stimuli. It clearly demonstrates that tongue regions differ from one another in terms of their age-related sensitivity and their susceptibility to CT lesions.

  9. A taste for ATP: neurotransmission in taste buds

    PubMed Central

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  10. A taste for ATP: neurotransmission in taste buds.

    PubMed

    Kinnamon, Sue C; Finger, Thomas E

    2013-12-18

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells.

  11. Responses of the Hamster Chorda Tympani Nerve to Sucrose+Acid and Sucrose+Citrate Taste Mixtures

    PubMed Central

    Lin, Hsung; Hettinger, Thomas P.; Frank, Marion E.

    2009-01-01

    Studies of taste receptor cells, chorda tympani (CT) neurons, and brainstem neurons show stimulus interactions in the form of inhibition or enhancement of the effectiveness of sucrose when mixed with acids or citrate salts, respectively. To investigate further the effects of acids and the trivalent citrate anion on sucrose responses in hamsters (Mesocricetus auratus), we recorded multifiber CT responses to 100 mM sucrose; a concentration series of HCl, citric acid, acetic acid, sodium citrate (with and without amiloride added), potassium citrate, and all binary combinations of acids and salts with 100 mM sucrose. Compared with response additivity, sucrose responses were increasingly suppressed in acid + sucrose mixtures with increases in titratable acidity, but HCl and citric acid were more effective suppressors than acetic acid. Citrate salts suppressed sucrose responses and baseline CT neural activity to a similar degree. Citrate salts also elicited prolonged, concentration-dependent, water-rinse responses. The specific loss in sucrose effectiveness as a CT stimulus with increasing titratable acidity was confirmed; however, no increase in sucrose effectiveness was found with the addition of citrate. Further study is needed to define the chemical basis for effects of acids and salts in taste mixtures. PMID:19620386

  12. The taste of table salt.

    PubMed

    Roper, Stephen D

    2015-03-01

    Solutions of table salt (NaCl) elicit several tastes, including of course saltiness but also sweet, sour, and bitter. This brief review touches on some of the mileposts concerning what is known about taste transduction for the Na(+) ion, the main contributor to saltiness. Electrophysiological recordings, initially from single gustatory nerve fibers, and later, integrated impulse activity from gustatory nerves led researchers to predict that Na(+) ions interacted with a surface molecule. Subsequent studies have resolved that this molecule is likely to be an epithelial sodium channel, ENaC. Other Na(+) transduction mechanisms are also present in taste buds but have not yet been identified. The specific type(s) of taste cells responsible for salt taste also remains unknown.

  13. Taste discrimination between NaCl and KCl is disrupted by amiloride in inbred mice with amiloride-insensitive chorda tympani nerves.

    PubMed

    Eylam, Shachar; Spector, Alan C

    2005-05-01

    The amiloride-sensitive salt transduction pathway is thought to be critical for the discrimination between sodium and nonsodium salts in rodents. In rats, lingual application of amiloride appears to render NaCl qualitatively indistinguishable from KCl. In this study, we tested four strains of mice for salt discriminability. In one strain (C57BL/6J), chorda tympani nerve (CT) responses to NaCl are attenuated by amiloride, and in the other three strains (BALB/cByJ, 129P3/J, DBA/2J) they are not. Under water-restriction conditions, these mice (7 mice/strain) were trained in a gustometer to lick for water from one reinforcement spout in response to a five-lick presentation of NaCl and to lick from another in response to KCl [salt concentration was varied (0.1-1 M) to render intensity irrelevant]. Mice were then tested with the stimuli dissolved in amiloride hydrochloride, and the latter was used as the reinforcer as well. Each concentration of amiloride (0.1-100 microM) was used on 2 separate days with control sessions interposed. Mice from all four strains were able to discriminate NaCl from KCl reliably. Amiloride impaired this discrimination in a dose-dependent fashion. Moreover, performance on NaCl trials appeared to be more affected by amiloride than that on KCl trials in all four strains. Thus, in contrast to the predictions based on CT recordings, discrimination in all four strains appeared to depend on the amiloride-sensitive transduction pathway, which, in the case of BALB/cByJ, 129P3/J, and DBA/2J (and perhaps C57BL/6 as well), may exist in taste buds innervated by nerves other than the CT.

  14. Physiological studies on umami taste.

    PubMed

    Kurihara, K; Kashiwayanagi, M

    2000-04-01

    The first electrophysiological studies on umami taste were conducted with rats and cats. Unlike humans, these animals did not show a large synergism between monosodium glutamate (MSG) and disodium guanylate (GMP) or disodium inosinate (IMP). The taste nerve responses of these animals to umami substances were not differentiated from the salt responses. The canine taste system was sensitive to umami substances and showed a large synergism between MSG and GMP or IMP. The umami substances showed no enhancing effects on other basic tastes. Amiloride, an inhibitor for the response to NaCl, did not inhibit the large response induced by the synergism between MSG and the nucleotides, indicating that the response to the umami substances is independent of the response to salt. Single-fiber analysis on the responses of mouse glossopharyngeal nerve and monkey primary taste cortex neurons also showed that the responses to umami substances are independent of other basic tastes. On the basis of these results, it was proposed that the umami taste is a fifth basic taste, and that there is a unique receptor for umami substances. Hence, we compared the taste of agonists for brain glutamate receptors. In humans, the order of intensity of umami taste induced by a mixture of 0.5 mmol/L GMP and 1.5 mmol/L of various agonists was glutamate > ibotenate > L(+)-2-amino-4-phosphonobutyric acid (L-AP4) = (+/-)1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD). Kainate, N-methyl-D-aspartic acid (NMDA) and (RS)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), which are agonists for ionotropic receptors, had no umami taste. It was concluded that the umami receptor is not identical to any known glutamate receptors; there seems, therefore, to be a unique receptor for umami.

  15. Peptide regulators of peripheral taste function

    PubMed Central

    Dotson, Cedrick D.; Geraedts, Maartje C.P.; Munger, Steven D.

    2013-01-01

    The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode gustatory stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. PMID:23348523

  16. Posttonsillectomy taste distortion: a significant complication.

    PubMed

    Goins, Michael R; Pitovski, Dimitri Z

    2004-07-01

    Tonsillectomy is among the most commonly performed procedures. As with any surgery, head and neck surgeons must be aware of possible complications and their potential affects. At our smell and taste center, we have been referred several patients in a 6-month period with the complaint of taste distortion after tonsillectomy. We report in this article a patient that complains of taste distortion after a right tonsillectomy for unilateral tonsillar hypertrophy. A prospective study documenting taste distortion after tonsillectomy using clinical, subjective, and objective evaluation. The clinical course of a patient with taste distortion after a tonsillectomy is described. The gustatory function was investigated by conducting electrogustometry and spatial taste testing. Threshold measurements were determined at three left- and three right-side tongue regions: 1) the tongue tip region (innervated by the chorda tympani branch of the facial nerve), 2) the lateral margin of the tongue (anterior to the foliate papillae), and 3) the posterior tongue region (innervated by the lingual branch of the glossopharyngeal nerve). After a complete clinical evaluation and taste testing, it was found that the patient suffered an injury to the right lingual branch of the glossopharyngeal nerve. The close anatomic relationship between the palatine tonsil and lingual branch of the glossopharyngeal nerve makes the nerve vulnerable during tonsillectomy. This injury has caused the patient to suffer ageusia to the right posterior one third of the tongue, compensated by a contralateral phantogeusia (phantom taste) with clinical dysgeusia. The phantogeusia was abolished by application of anesthetic to the area where the phantom was perceived. We propose that the phantogeusia is the result of release-of-inhibition in the contralateral glossopharyngeal nerve. Taste distortion (including, phantogeusia and dysgeusia) after tonsillectomy is rarely reported as a complication but has a significant

  17. Glycoconjugate in rat taste buds.

    PubMed

    Kano, K; Ube, M; Taniguchi, K

    2001-05-01

    The taste buds of the fungiform papillae, circumvallate papilla, foliate papillae, soft palate and epiglottis of the rat oral cavity were examined by lectin histochemistry to elucidate the relationships between expression of glycoconjugates and innervation. Seven out of 21 lectins showed moderate to intense staining in at least more than one taste bud. They were succinylated wheat germ agglutinin (s-WGA). Dolichos biflorus agglutinin (DBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-I), peanut agglutinin (PNA), Ulex europaeus agglutinin-I (UEA-I) and Phaseolus vulgaris agglutinin-L (PHA-L). UEA-I and BSL-I showed moderate to intense staining in all of the taste buds examined. They strongly stained the taste buds of the epiglottis, which are innervated by the cranial nerve X. UEA-I intensely stained the taste buds of the fungiform papillae and soft palate, both of which are innervated by the cranial nerve VII. The taste buds of circumvallate papilla and foliate papillae were innervated by the cranial nerve IX and strongly stained by BSL-I. Thus, UEA-I and BSL-I binding glycoconjugates, probably alpha-linked fucose and alpha-D-galactose, respectively, might be specific for taste buds. Although the expression of these glycoconjugates would be related to the innervation of the cranial nerve X, the differential expression of alpha-linked fucose and alpha-D-galactose might be related to the innervation of the cranial nerve VII and IX, respectively.

  18. TRPs in Taste and Chemesthesis

    PubMed Central

    2015-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971

  19. TRPs in taste and chemesthesis.

    PubMed

    Roper, Stephen D

    2014-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.

  20. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    PubMed

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs.

  1. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  2. Receptors and transduction of umami taste stimuli.

    PubMed

    Kinnamon, Sue C; Vandenbeuch, Aurelie

    2009-07-01

    L-glutamate and 5'-ribonucleotides, such as GMP and IMP, elicit the "umami" taste, also known as the fifth taste. This review will highlight recent advancements in our understanding of umami taste receptors and their downstream signaling effectors in taste receptor cells. Several G protein-coupled receptors that bind umami stimuli have been identified in taste buds, including the heterodimer T1R1/T1R3, truncated and brain forms of mGluR4 and mGluR1, brain mGluR2, and brain mGluR3. Further, ionotropic glutamate receptors are expressed in taste cells and may play a role in glutamate transduction or signaling between taste cells and/or nerve fibers. Knockout of T1R1 or T1R3 reduces, but does not eliminate, responses to umami stimuli, suggesting that multiple receptors contribute to umami taste. The signaling effectors downstream of umami G protein-coupled receptors involve Gbetagamma activation of PLCbeta2 to elicit Ca(2+) release from intracellular stores and activation of a cation channel, TRPM5. In fungiform and palatal taste buds, T1R1/T1R3 is co-expressed with Galpha gustducin and transducin, but the Galpha proteins involved in circumvallate taste buds have not been identified. In most taste fields, however, cAMP antagonizes responses to umami stimuli, suggesting that the Galpha subunit serves to modulate umami taste sensitivity.

  3. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  4. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  5. Umami taste transduction mechanisms1234

    PubMed Central

    2009-01-01

    l-Glutamate elicits the umami taste sensation, now recognized as a fifth distinct taste quality. A characteristic feature of umami taste is its potentiation by 5′-ribonucleotides such as guanosine-5'-monophosphate and inosine 5′-monophosphate, which also elicit the umami taste on their own. Recent data suggest that multiple G protein–coupled receptors contribute to umami taste. This review will focus on events downstream of the umami taste receptors. Ligand binding leads to Gβγ activation of phospholipase C β2, which produces the second messengers inositol trisphosphate and diacylglycerol. Inositol trisphosphate binds to the type III inositol trisphosphate receptor, which causes the release of Ca2+ from intracellular stores and Ca2+-dependent activation of a monovalent-selective cation channel, TRPM5. TRPM5 is believed to depolarize taste cells, which leads to the release of ATP, which activates ionotropic purinergic receptors on gustatory afferent nerve fibers. This model is supported by knockout of the relevant signaling effectors as well as physiologic studies of isolated taste cells. Concomitant with the molecular studies, physiologic studies show that l-glutamate elicits increases in intracellular Ca2+ in isolated taste cells and that the source of the Ca2+ is release from intracellular stores. Both Gα gustducin and Gα transducin are involved in umami signaling, because the knockout of either subunit compromises responses to umami stimuli. Both α-gustducin and α-transducin activate phosphodiesterases to decrease intracellular cAMP. The target of cAMP in umami transduction is not known, but membrane-permeant analogs of cAMP antagonize electrophysiologic responses to umami stimuli in isolated taste cells, which suggests that cAMP may have a modulatory role in umami signaling. PMID:19571214

  6. Elucidating coding of taste qualities with the taste modifier miraculin in the common marmoset.

    PubMed

    Danilova, Vicktoria; Hellekant, Göran

    2006-01-30

    To investigate the relationships between the activity in different types of taste fibers and the gustatory behavior in marmosets, we used the taste modifier miraculin, which in humans adds a sweet taste quality to sour stimuli. In behavioral experiments, we measured marmosets' consumption of acids before and after tongue application of miraculin. In electrophysiological experiments responses of single taste fibers in chorda tympani and glossopharyngeal nerves were recorded before and after tongue application of miraculin. We found that after miraculin marmosets consumed acids more readily. Taste nerve recordings showed that after miraculin taste fibers which usually respond only to sweeteners, S fibers, became responsive to acids. These results further support our hypothesis that the activity in S fibers is translated into a hedonically positive behavioral response.

  7. Taste responses of bullfrog to pungent stimuli.

    PubMed

    Yoshii, K; Matui, T

    1994-02-21

    Taste responses of bullfrogs to various pungent compounds and taste substances were electrophysiologically recorded from glossopharyngeal nerves. The threshold concentrations were approximately 10(-7) M for piperine, approximately 10(-6) M for capsaicin and approximately 10(-4) M for allyl isothiocyanate. At any concentration examined, piperine was more potent than capsaicin. Both piperine and capsaicin elicited desensitizing responses, but the taste receptors recovered from the desensitization within 10 min after washing with deionized water. Cross-adaptation experiments revealed that capsaicin only partially desensitizes receptors for piperine, L-leucine, HCl or quinine. Perfusion of the lingual artery with a solution containing no added Ca decreased the responses to capsaicin. Such a solution has been shown to suppress the taste nerve responses by blocking synaptic transmissions between taste cells and taste nerves [8]. These results suggest that the gustatory effects of capsaicin are different from its pharmacological effects on sensory neurons. It is likely that capsaicin and other pungent compounds, when they act as seasonings, stimulate taste cells rather than the free nerve endings of the sensory neurons.

  8. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    PubMed Central

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  9. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    PubMed

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  10. Smell and Taste

    MedlinePlus

    ... ENTCareers Marketplace Find an ENT Doctor Near You Smell & Taste Smell & Taste Patient Health Information News media ... passages, or, at times, brain tumors. HOW DO SMELL AND TASTE WORK? Smell and taste belong to ...

  11. Role of the ectonucleotidase NTPDase2 in taste bud function

    PubMed Central

    Vandenbeuch, Aurelie; Anderson, Catherine B.; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C.; Finger, Thomas E.; Kinnamon, Sue C.

    2013-01-01

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses. PMID:23959882

  12. Gustatory signaling in the periphery: detection, transmission, and modulation of taste information.

    PubMed

    Niki, Mayu; Yoshida, Ryusuke; Takai, Shingo; Ninomiya, Yuzo

    2010-01-01

    Gustatory signaling begins with taste receptor cells that express taste receptors. Recent molecular biological studies have identified taste receptors and transduction components for basic tastes (sweet, salty, sour, bitter, and umami). Activation of these receptor systems leads to depolarization and an increase in [Ca(2+)](i) in taste receptor cells. Then transmitters are released from taste cells and activate gustatory nerve fibers. The connection between taste cells and gustatory nerve fibers would be specific because there may be only limited divergence of taste information at the peripheral transmission. Recent studies have demonstrated that sweet taste information can be modulated by hormones or other endogenous factors that could act on their receptors in a specific group of taste cells. These peripheral modulations of taste information may influence preference behavior and food intake. This paper summarizes data on molecular mechanisms for detection and transduction of taste signals in taste bud cells, information transmission from taste cells to gustatory nerve fibers, and modulation of taste signals at peripheral taste organs, in particular for sweet taste, which may play important roles in regulating energy homeostasis.

  13. Drosophila Bitter Taste(s)

    PubMed Central

    French, Alice; Ali Agha, Moutaz; Mitra, Aniruddha; Yanagawa, Aya; Sellier, Marie-Jeanne; Marion-Poll, Frédéric

    2015-01-01

    Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus

  14. Taste sense in patients with hemifacial spasm.

    PubMed

    Kim, Han-Joon; Lee, Dong-Ha; Cho, Joong-Yang; Cho, Yong-Jin; Hong, Keun-Sik

    2010-07-01

    In the cerebellopontine angle cistern, the nervus intermedius (NI) runs close to the motor division of the facial nerve (FN). A vascular loop compressing the FN in patients with hemifacial spasm (HFS) can thus also affect the NI. However, to our knowledge, taste has not been investigated in patients with HFS. In this pilot study, we assessed the sense of taste quantitatively in 10 female patients with HFS using filter paper strips impregnated with four taste qualities (sweet, sour, salty, and bitter) at four concentrations. The taste score did not differ between the ipsilateral and contralateral sides. The taste score for salty on the ipsilateral side increased with disease duration. Our findings suggest that a vascular loop compressing the FN does not affect the function of the NI. Further studies with greater numbers of patients are needed to confirm our results.

  15. Oxytocin signaling in mouse taste buds.

    PubMed

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite

  16. What Are Taste Buds?

    MedlinePlus

    ... your taste buds for letting you appreciate the saltiness of pretzels and the sweetness of ice cream. ... allow you to experience tastes that are sweet, salty, sour, and bitter. How exactly do your taste ...

  17. Taste and Smell Disorders

    MedlinePlus

    Our senses of taste and smell give us great pleasure. Taste helps us enjoy food and beverages. Smell lets us enjoy the scents and fragrances like roses or coffee. Taste and smell also protect us, letting us know when food ...

  18. Intensity of regionally applied tastes in relation to administration method: an investigation based on the "taste strips" test.

    PubMed

    Manzi, Brian; Hummel, Thomas

    2014-02-01

    To compare various methods to apply regional taste stimuli to the tongue. "Taste strips" are a clinical tool to determine gustatory function. How a patient perceives the chemical environment in the mouth is a result of many factors such as taste bud distribution and interactions between the cranial nerves. To date, there have been few studies describing the different approaches to administer taste strips to maximize taste identification accuracy and intensity. This is a normative value acquisition pilot and single-center study. The investigation involved 30 participants reporting a normal sense of smell and taste (18 women, 12 men, mean age 33 years). The taste test was based on spoon-shaped filter paper strips impregnated with four taste qualities (sweet, sour, salty, and bitter) at concentrations shown to be easily detectable by young healthy subjects. The strips were administered in three methods (held stationary on the tip of the tongue, applied across the tongue, held in the mouth), resulting in a total of 12 trials per participant. Subjects identified the taste from a list of four descriptors, (sweet, sour, salty, bitter) and ranked the intensity on a scale from 0 to 10. Statistical analyses were performed on the accuracy of taste identification and rated intensities. The participants perceived in order of most to least intense: salt, sour, bitter, sweet. Of the four tastes, sour consistently was least accurately identified. Presenting the taste strip inside the closed mouth of the participants produced the least accurate taste identification, whereas moving the taste strip across the tongue led to a significant increase in intensity for the sweet taste. In this study of 30 subjects at the second concentration, optimized accuracy and intensity of taste identification was observed through administration of taste strips laterally across the anterior third of the extended tongue. Further studies are required on more subjects and the additional concentrations

  19. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    PubMed

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation.

  20. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    PubMed Central

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  1. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    PubMed Central

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  2. Sensing of Taste

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    A taste sensor with global selectivity, i. e., electronic tongue, is composed of several kinds of lipid/polymer membranes for transforming information of taste substances into electric signal. The sensor output shows different patterns for chemical substances which have different taste qualities such as saltiness and sourness. Taste interactions such as suppression effect, which occurs between bitterness and sweetness, can be detected and quantified using the taste sensor. Amino acids can be classified into several groups according to their own tastes from sensor outputs. The taste of foodstuffs such as beer, coffee, mineral water and milk can be discussed quantitatively. The taste sensor provides the objective scale for the human sensory expression. We are now standing at the beginning of a new age of communication using digitized taste.

  3. Genetics of Taste Receptors

    PubMed Central

    Bachmanov, Alexander A.; Bosak, Natalia P.; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R.; Nelson, Theodore M.

    2016-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical “tastes” as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications. PMID:23886383

  4. Taste quality decoding parallels taste sensations.

    PubMed

    Crouzet, Sébastien M; Busch, Niko A; Ohla, Kathrin

    2015-03-30

    In most species, the sense of taste is key in the distinction of potentially nutritious and harmful food constituents and thereby in the acceptance (or rejection) of food. Taste quality is encoded by specialized receptors on the tongue, which detect chemicals corresponding to each of the basic tastes (sweet, salty, sour, bitter, and savory [1]), before taste quality information is transmitted via segregated neuronal fibers [2], distributed coding across neuronal fibers [3], or dynamic firing patterns [4] to the gustatory cortex in the insula. In rodents, both hardwired coding by labeled lines [2] and flexible, learning-dependent representations [5] and broadly tuned neurons [6] seem to coexist. It is currently unknown how, when, and where taste quality representations are established in the cortex and whether these representations are used for perceptual decisions. Here, we show that neuronal response patterns allow to decode which of four tastants (salty, sweet, sour, and bitter) participants tasted in a given trial by using time-resolved multivariate pattern analyses of large-scale electrophysiological brain responses. The onset of this prediction coincided with the earliest taste-evoked responses originating from the insula and opercular cortices, indicating that quality is among the first attributes of a taste represented in the central gustatory system. These response patterns correlated with perceptual decisions of taste quality: tastes that participants discriminated less accurately also evoked less discriminated brain response patterns. The results therefore provide the first evidence for a link between taste-related decision-making and the predictive value of these brain response patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. What Are Taste Buds?

    MedlinePlus

    ... taste buds all the credit for your favorite flavors, it's important to thank your nose . Olfactory (say: ... with your taste buds to create the true flavor of that yummy slice of pizza by telling ...

  6. Behavioral genetics and taste

    PubMed Central

    Boughter, John D; Bachmanov, Alexander A

    2007-01-01

    This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste. PMID:17903279

  7. Transsynaptic Tracing from Taste Receptor Cells Reveals Local Taste Receptor Gene Expression in Gustatory Ganglia and Brain.

    PubMed

    Voigt, Anja; Bojahr, Juliane; Narukawa, Masataka; Hübner, Sandra; Boehm, Ulrich; Meyerhof, Wolfgang

    2015-07-01

    Taste perception begins in the oral cavity by interactions of taste stimuli with specific receptors. Specific subsets of taste receptor cells (TRCs) are activated upon tastant stimulation and transmit taste signals to afferent nerve fibers and ultimately to the brain. How specific TRCs impinge on the innervating nerves and how the activation of a subset of TRCs leads to the discrimination of tastants of different qualities and intensities is incompletely understood. To investigate the organization of taste circuits, we used gene targeting to express the transsynaptic tracer barley lectin (BL) in the gustatory system of mice. Because TRCs are not synaptically connected with the afferent nerve fibers, we first analyzed tracer production and transfer within the taste buds (TBs). Surprisingly, we found that BL is laterally transferred across all cell types in TBs of mice expressing the tracer under control of the endogenous Tas1r1 and Tas2r131 promotor, respectively. Furthermore, although we detected the BL tracer in both ganglia and brain, we also found local low-level Tas1r1 and Tas2r131 gene, and thus tracer expression in these tissues. Finally, we identified the Tas1r1 and Tas2r131-expressing cells in the peripheral and CNS using a binary genetic approach. Together, our data demonstrate that genetic transsynaptic tracing from bitter and umami receptor cells does not selectively label taste-specific neuronal circuits and reveal local taste receptor gene expression in the gustatory ganglia and the brain. Previous papers described the organization of taste pathways in mice expressing a transsynaptic tracer from transgenes in bitter or sweet/umami-sensing taste receptor cells. However, reported results differ dramatically regarding the numbers of synapses crossed and the reduction of signal intensity after each transfer step. Nevertheless, all groups claimed this approach appropriate for quality-specific visualization of taste pathways. In the present study, we

  8. Smell and taste disorders in primary care.

    PubMed

    Malaty, John; Malaty, Irene A C

    2013-12-15

    Smell and taste disorders can be challenging to diagnose because of the large number of potential etiologies. Patients are often unable to provide a clear history of symptoms, because they frequently cannot distinguish between difficulties with smell and taste. Standardized questionnaires may be helpful in diagnosis. Smell and taste dysfunction have been implicated in loss of appetite, unintended weight loss, malnutrition, and reduced quality of life. Taste dysfunction may be complete or partial, and affect one or more aspects of taste (sweetness, bitterness, sourness, saltiness, and umami [savory]). An estimated 95% of taste disorders are caused by impairment of smell rather than gustatory loss. The most common causes of olfactory dysfunction include allergic rhinitis, chronic rhinosinusitis (with or without sinonasal polyps), and upper respiratory infection. Other potential causes include head trauma, neurodegenerative diseases (including Parkinson disease and cognitive impairments), and medications. Examination of the nose, mouth, and oropharynx as well as neurologic examination (focusing on cranial nerves I, VII, IX, and X) is essential. Additional assessment such as cognitive testing, nasal endoscopy, computed tomography of the sinuses or nose, or brain magnetic resonance imaging may be indicated. Up to one-half of patients with olfactory dysfunction improve over time. Improvement in olfactory function is inversely correlated with severity and duration of loss, age, smoking, and male sex.

  9. Angiotensin II modulates salty and sweet taste sensitivities.

    PubMed

    Shigemura, Noriatsu; Iwata, Shusuke; Yasumatsu, Keiko; Ohkuri, Tadahiro; Horio, Nao; Sanematsu, Keisuke; Yoshida, Ryusuke; Margolskee, Robert F; Ninomiya, Yuzo

    2013-04-10

    Understanding the mechanisms underlying gustatory detection of dietary sodium is important for the prevention and treatment of hypertension. Here, we show that Angiotensin II (AngII), a major mediator of body fluid and sodium homeostasis, modulates salty and sweet taste sensitivities, and that this modulation critically influences ingestive behaviors in mice. Gustatory nerve recording demonstrated that AngII suppressed amiloride-sensitive taste responses to NaCl. Surprisingly, AngII also enhanced nerve responses to sweeteners, but had no effect on responses to KCl, sour, bitter, or umami tastants. These effects of AngII on nerve responses were blocked by the angiotensin II type 1 receptor (AT1) antagonist CV11974. In behavioral tests, CV11974 treatment reduced the stimulated high licking rate to NaCl and sweeteners in water-restricted mice with elevated plasma AngII levels. In taste cells AT1 proteins were coexpressed with αENaC (epithelial sodium channel α-subunit, an amiloride-sensitive salt taste receptor) or T1r3 (a sweet taste receptor component). These results suggest that the taste organ is a peripheral target of AngII. The specific reduction of amiloride-sensitive salt taste sensitivity by AngII may contribute to increased sodium intake. Furthermore, AngII may contribute to increased energy intake by enhancing sweet responses. The linkage between salty and sweet preferences via AngII signaling may optimize sodium and calorie intakes.

  10. Regulation of bitter taste responses by tumor necrosis factor

    PubMed Central

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A.; Huang, Liquan; Wang, Hong

    2015-01-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. PMID:25911043

  11. Regulation of bitter taste responses by tumor necrosis factor.

    PubMed

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases.

  12. AP1 transcription factors are required to maintain the peripheral taste system

    PubMed Central

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-01-01

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance. PMID:27787515

  13. The Taste of Carbonation

    PubMed Central

    Chandrashekar, Jayaram; Yarmolinsky, David; von Buchholtz, Lars; Oka, Yuki; Sly, William; Ryba, Nicholas J. P.; Zuker, Charles S.

    2013-01-01

    Summary Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have now identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrate that the sour-sensing cells act as the taste sensors for carbonation, and show that carbonic anhydrase 4, a glycosyl-phosphatidyl inositol (GPI)-anchored enzyme, functions as the principal CO2 taste sensor. These studies reveal the basis of the taste of carbonation, and the contribution of taste cells in the orosensory response to CO2. PMID:19833970

  14. The taste of carbonation.

    PubMed

    Chandrashekar, Jayaram; Yarmolinsky, David; von Buchholtz, Lars; Oka, Yuki; Sly, William; Ryba, Nicholas J P; Zuker, Charles S

    2009-10-16

    Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO2.

  15. Are there efferent synapses in fish taste buds?

    PubMed

    Reutter, Klaus; Witt, Martin

    2004-12-01

    In fish, nerve fibers of taste buds are organized within the bud's nerve fiber plexus. It is located between the sensory epithelium consisting of light and dark elongated cells and the basal cells. It comprises the basal parts and processes of light and dark cells that intermingle with nerve fibers, which are the dendritic endings of the taste sensory neurons belonging to the cranial nerves VII, IX or X. Most of the synapses at the plexus are afferent; they have synaptic vesicles on the light (or dark) cells side, which is presynaptic. In contrast, the presumed efferent synapses may be rich in synaptic vesicles on the nerve fibers (presynaptic) side, whereas the cells (postsynaptic) side may contain a subsynaptic cistern; a flat compartment of the smooth endoplasmic reticulum. This structure is regarded as a prerequisite of a typical efferent synapse, as occurring in cochlear and vestibular hair cells. In fish taste buds, efferent synapses are rare and were found only in a few species that belong to different taxa. The significance of efferent synapses in fish taste buds is not well understood, because efferent connections between the gustatory nuclei of the medulla with taste buds are not yet proved.

  16. Selective inhibition of bitter taste of various drugs by lipoprotein.

    PubMed

    Katsuragi, Y; Sugiura, Y; Lee, C; Otsuji, K; Kurihara, K

    1995-05-01

    Previously, we demonstrated that lipoprotein composed of phosphatidic acid (PA) and beta-lactoglobulin (LG) selectively and reversibly suppress the frog taste nerve response to bitter substances. In the present study, we examined the effects of various lipoproteins on the taste sensation to various stimuli in humans by a psychophysical method. Among various lipoproteins composed of different of lipids and proteins, the lipoproteins composed of PA and proteins were most effective in suppressing bitter taste. The lipoproteins composed of PA and LG, bovine serum albumin, ovalbumin, alpha-lactoalbumin or casein similarly suppressed effects on sensation of bitter taste. Using PA-LG, the effects on taste sensation to various stimuli were examined. The bitter taste of all twelve substances examined was inhibited, while saltiness of NaCl and sweetness of sucrose were not inhibited. The inhibition of bitter taste was completely reversible. Masking of the target sites for bitter substances on the taste receptor membranes with PA-LG seems to contribute to the inhibition of bitter taste. Direct binding of the bitter substances to PA-LG in the medium also contributes to the inhibition of bitter taste of certain substances. Among various drugs, basic and hydrophobic substances such as quinine, denatortium and propranolol have low taste thresholds and are said to be the most bitter. PA-LG most effectively suppressed the bitter taste of such substances. PA originates from soybeans and the proteins used except for bovine serum albumin originate from milk or eggs, and hence the lipoproteins can be safely used to mask the bitter taste of drugs.

  17. Taste responses in mice lacking taste receptor subunit T1R1

    PubMed Central

    Kusuhara, Yoko; Yoshida, Ryusuke; Ohkuri, Tadahiro; Yasumatsu, Keiko; Voigt, Anja; Hübner, Sandra; Maeda, Katsumasa; Boehm, Ulrich; Meyerhof, Wolfgang; Ninomiya, Yuzo

    2013-01-01

    The T1R1 receptor subunit acts as an umami taste receptor in combination with its partner, T1R3. In addition, metabotropic glutamate receptors (brain and taste variants of mGluR1 and mGluR4) are thought to function as umami taste receptors. To elucidate the function of T1R1 and the contribution of mGluRs to umami taste detection in vivo, we used newly developed knock-out (T1R1−/−) mice, which lack the entire coding region of the Tas1r1 gene and express mCherry in T1R1-expressing cells. Gustatory nerve recordings demonstrated that T1R1−/− mice exhibited a serious deficit in inosine monophosphate-elicited synergy but substantial residual responses to glutamate alone in both chorda tympani and glossopharyngeal nerves. Interestingly, chorda tympani nerve responses to sweeteners were smaller in T1R1−/− mice. Taste cell recordings demonstrated that many mCherry-expressing taste cells in T1R1+/− mice responded to sweet and umami compounds, whereas those in T1R1−/− mice responded to sweet stimuli. The proportion of sweet-responsive cells was smaller in T1R1−/− than in T1R1+/− mice. Single-cell RT-PCR demonstrated that some single mCherry-expressing cells expressed all three T1R subunits. Chorda tympani and glossopharyngeal nerve responses to glutamate were significantly inhibited by addition of mGluR antagonists in both T1R1−/− and T1R1+/− mice. Conditioned taste aversion tests demonstrated that both T1R1−/− and T1R1+/− mice were equally capable of discriminating glutamate from other basic taste stimuli. Avoidance conditioned to glutamate was significantly reduced by addition of mGluR antagonists. These results suggest that T1R1-expressing cells mainly contribute to umami taste synergism and partly to sweet sensitivity and that mGluRs are involved in the detection of umami compounds. PMID:23339178

  18. Taste damage (otitis media, tonsillectomy and head and neck cancer), oral sensations and BMI.

    PubMed

    Bartoshuk, Linda M; Catalanotto, Frank; Hoffman, Howard; Logan, Henrietta; Snyder, Derek J

    2012-11-05

    Otitis media and tonsillectomy are associated with enhanced palatability of energy dense foods and with weight gain. Otitis media can damage the chorda tympani nerve (CN VII); tonsillectomy and head and neck radiation treatment can damage the glossopharyngeal nerve (CN IX). Both of these nerves function prominently in taste sensation. The present study utilizes these sources of damage to study central interactions among the nerves that mediate oral sensations. Mild damage restricted to one of these nerves can actually intensify sensations evoked from undamaged nerves (i.e., whole-mouth taste, oral tactile sensations evoked by fats and irritants). These intensifications may result from disruption of central inhibitory taste circuits, as taste damage appears to disinhibit other oral sensory nerves. In addition, mild damage restricted to one taste nerve can intensify odors perceived from foods in the mouth during chewing and swallowing (i.e., retronasal olfaction); this may be a secondary consequence of the intensification of whole-mouth taste. Damage to both nerves leads to widespread oral sensory loss. At present, the link between sensory alterations and weight gain has not been established for adults (e.g., does increased fat preference occur in individuals with oral sensory intensifications, those with losses, or both?). Finally, pain in non-oral locations is also related to taste loss. When participants rated "the most intense pain of any kind they had ever experienced," those with the greatest taste loss gave the highest ratings. These effects suggest that taste loss significantly influences long-term health outcomes.

  19. Modulation of taste sensitivity by GLP-1 signaling.

    PubMed

    Shin, Yu-Kyong; Martin, Bronwen; Golden, Erin; Dotson, Cedrick D; Maudsley, Stuart; Kim, Wook; Jang, Hyeung-Jin; Mattson, Mark P; Drucker, Daniel J; Egan, Josephine M; Munger, Steven D

    2008-07-01

    In many sensory systems, stimulus sensitivity is dynamically modulated through mechanisms of peripheral adaptation, efferent input, or hormonal action. In this way, responses to sensory stimuli can be optimized in the context of both the environment and the physiological state of the animal. Although the gustatory system critically influences food preference, food intake and metabolic homeostasis, the mechanisms for modulating taste sensitivity are poorly understood. In this study, we report that glucagon-like peptide-1 (GLP-1) signaling in taste buds modulates taste sensitivity in behaving mice. We find that GLP-1 is produced in two distinct subsets of mammalian taste cells, while the GLP-1 receptor is expressed on adjacent intragemmal afferent nerve fibers. GLP-1 receptor knockout mice show dramatically reduced taste responses to sweeteners in behavioral assays, indicating that GLP-1 signaling normally acts to maintain or enhance sweet taste sensitivity. A modest increase in citric acid taste sensitivity in these knockout mice suggests GLP-1 signaling may modulate sour taste, as well. Together, these findings suggest a novel paracrine mechanism for the regulation of taste function.

  20. Transient receptor potential (TRP) channels and taste sensation.

    PubMed

    Ishimaru, Y; Matsunami, H

    2009-03-01

    Humans have 5 basic taste sensations: sweet, bitter, sour, salty, and umami (taste of 1-amino acids). Among 33 genes related to transient receptor potential (TRP) channels, 3--including TRP-melastatin 5 (TRPM5), polycystic kidney disease-1-like 3 (PKD1L3), and polycystic kidney disease-2-like 1 (PKD2L1)--are specifically and abundantly expressed in taste receptor cells. TRP-melastatin 5 is co-expressed with taste receptors T1Rs and T2Rs, and functions as a common downstream component in sweet, bitter, and umami taste signal transduction. In contrast, polycystic kidney disease-1-like 3 and polycystic kidney disease-2-like 1 are co-expressed in distinct subsets of taste receptor cells not expressing TRP-melastatin 5. In the heterologous expression system, cells expressing both polycystic kidney disease-1-like 3 and polycystic kidney disease-2-like 1 responded to sour stimuli, showing a unique "off-response" property. Genetic ablation of poly-cystic kidney disease-2-like 1-expressing cells resulted in elimination of gustatory nerve response to sour stimuli, indicating that cells expressing polycystic kidney disease-2-like 1 function as sour taste detectors. These results suggest that polycystic kidney disease-1-like 3/polycystic kidney disease-2-like 1 may play a significant role, possibly as taste receptors, in sour taste sensation.

  1. Taste preference changes throughout different life stages in male rats

    PubMed Central

    Yamamoto, Takashi; Ueda, Katsura; Nakatsuka, Michiko; Kumabe, Shunji; Inui, Tadashi; Iwai, Yasutomo

    2017-01-01

    Taste preference, a key component of food choice, changes with aging. However, it remains unclear how this occurs. To determine differences in taste preference between rats in different life stages, we examined the consumption of taste solutions and water using a two-bottle test. Male Sprague-Dawley rats of different ages were used: juvenile (3–6 weeks), young adult (8–11 weeks), adult (17–20 weeks), middle-aged (34–37 weeks), and old-aged (69–72 weeks). The intakes of the high and low concentration solutions presented simultaneously were measured. We observed that the old-aged group had lower preference ratios for 0.3 M sucrose and 0.1 M MSG in comparison with other groups. The preference ratio for 0.03 mM QHCl was higher in the middle-aged group than in the three younger groups and higher in the old-aged group than the juvenile group. The taste preferences for HCl and NaCl did not significantly differ among the age groups. The old-aged group tended to prefer high concentrations of sucrose, QHCl, NaCl, and MSG to low concentrations, indicating age-related decline in taste sensitivity. We also aimed to investigate differences between life stages in the electrophysiological responses of the chorda tympani nerve, one of the peripheral gustatory nerves, to taste stimuli. The electrophysiological recordings showed that aging did not alter the function of the chorda tympani nerve. This study showed that aging induced alterations in taste preference. It is likely that these alterations are a result of functional changes in other peripheral taste nerves, the gastrointestinal system, or the central nervous system. PMID:28742813

  2. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  3. [Electrometric method of studying taste in brain diseases].

    PubMed

    Blagoveshchenskaia, N S; Mukhamedzhanov, N Z

    1980-01-01

    Disorders of the sense of taste were studied in 355 patients with craniocerebral pathology, among whom 70 had tumors of the acoustic nerve, 64 had a craniocerebral trauma, 60 had tumors of the cerebral hemispheres. The most coarse disorders with the loss of the sense of taste on the anterior 2/3 of the tongue were encountered in tumors of the acoustic nerve and in transverse infracture of the pyramid of the temporal bone. Longitudinal infractures of the pyramid usually cause a diminished sense of taste on the anterior 2/3 of the tongue in the acute period, with improvment of the taste in the late periods after the trauma. The test for the sense of taste on the anterior 2/3 of the tongue in tumors of the acoustic nerve, in infractures of the temporal bone pyramid, and in arachnoiditis of the cerebellopontine angle is one of the diagnostic methods. Electrogustometry makes it possible to detect the earliest disorders in the sense of taste and make a more precise diagnosis.

  4. CAPACITANCE MEASUREMENTS OF REGULATED EXOCYTOSIS IN MOUSE TASTE CELLS

    PubMed Central

    Vandenbeuch, Aurelie; Zorec, Robert; Kinnamon, Sue C.

    2010-01-01

    Exocytosis, consisting of the merger of vesicle and plasma membrane, is a common mechanism used by different types of nucleated cells to release their vesicular contents. Taste cells possess vesicles containing various neurotransmitters to communicate with adjacent taste cells and afferent nerve fibers. However, whether these vesicles engage in exocytosis upon a stimulus is not known. Since vesicle membrane merger with the plasma membrane is reflected in plasma membrane area fluctuations, we measured membrane capacitance (Cm), a parameter linearly related to membrane surface area. To investigate whether taste cells undergo regulated exocytosis, we used the compensated tight-seal whole-cell recording technique to monitor depolarization-induced changes in Cm in the different types of taste cells. To identify taste cell types, mice expressing green fluorescent protein (GFP) from the TRPM5 promoter or from the GAD67 promoter were used to discriminate Type II and Type III taste cells, respectively. Moreover, the cell types were also identified by monitoring their voltage-current properties. The results demonstrate that only Type III taste cells show significant depolarization-induced increases in Cm, which were correlated to the voltage-activated calcium currents. The results suggest that Type III, but neither Type II nor Type I cells exhibit depolarization-induced regulated exocytosis to release transmitter and activate gustatory afferent nerve fibers. PMID:21048127

  5. Genome-Wide Analysis of Gene Expression in Primate Taste Buds Reveals Links to Diverse Processes

    PubMed Central

    Lu, Min; Gao, Na; White, Evan; Echeverri, Fernando; Kalabat, Dalia; Soto, Hortensia; Laita, Bianca; Li, Cherry; Yeh, Shaoyang Anthony; Zoller, Mark; Zlotnik, Albert

    2009-01-01

    Efforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM) procured fungiform (FG) and circumvallate (CV) taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology. PMID:19636377

  6. Taste of Fat: A Sixth Taste Modality?

    PubMed

    Besnard, Philippe; Passilly-Degrace, Patricia; Khan, Naim A

    2016-01-01

    An attraction for palatable foods rich in lipids is shared by rodents and humans. Over the last decade, the mechanisms responsible for this specific eating behavior have been actively studied, and compelling evidence implicates a taste component in the orosensory detection of dietary lipids [i.e., long-chain fatty acids (LCFA)], in addition to textural, olfactory, and postingestive cues. The interactions between LCFA and specific receptors in taste bud cells (TBC) elicit physiological changes that affect both food intake and digestive functions. After a short overview of the gustatory pathway, this review brings together the key findings consistent with the existence of a sixth taste modality devoted to the perception of lipids. The main steps leading to this new paradigm (i.e., chemoreception of LCFA in TBC, cell signaling cascade, transfer of lipid signals throughout the gustatory nervous pathway, and their physiological consequences) will be critically analyzed. The limitations to this concept will also be discussed in the light of our current knowledge of the sense of taste. Finally, we will analyze the recent literature on obesity-related dysfunctions in the orosensory detection of lipids ("fatty" taste?), in relation to the overconsumption of fat-rich foods and the associated health risks.

  7. Processing umami and other tastes in mammalian taste buds.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  8. The taste of music.

    PubMed

    Mesz, Bruno; Trevisan, Marcos A; Sigman, Mariano

    2011-01-01

    Zarlino, one of the most important music theorists of the XVI century, described the minor consonances as 'sweet' (dolci) and 'soft' (soavi) (Zarlino 1558/1983, in On the Modes New Haven, CT: Yale University Press, 1983). Hector Berlioz, in his Treatise on Modern Instrumentation and Orchestration (London: Novello, 1855), speaks about the 'small acid-sweet voice' of the oboe. In line with this tradition of describing musical concepts in terms of taste words, recent empirical studies have found reliable associations between taste perception and low-level sound and musical parameters, like pitch and phonetic features. Here we investigated whether taste words elicited consistent musical representations by asking trained musicians to improvise on the basis of the four canonical taste words: sweet, sour, bitter, and salty. Our results showed that, even in free improvisation, taste words elicited very reliable and consistent musical patterns:'bitter' improvisations are low-pitched and legato (without interruption between notes), 'salty' improvisations are staccato (notes sharply detached from each other), 'sour' improvisations are high-pitched and dissonant, and 'sweet' improvisations are consonant, slow, and soft. Interestingly, projections of the improvisations of taste words to musical space (a vector space defined by relevant musical parameters) revealed that, in musical space, improvisations based on different taste words were nearly orthogonal or opposite. Decoding methods could classify binary choices of improvisations (i.e., identify the improvisation word from the melody) at performance of around 80%--well above chance. In a second experiment we investigated the mapping from perception of music to taste words. Fifty-seven non-musical experts listened to a fraction of the improvisations. We found that listeners classified with high performance the taste word which had elicited the improvisation. Our results, furthermore, show that associations of taste and music

  9. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.

  10. The "Taste" for Discrimination.

    ERIC Educational Resources Information Center

    Chiswick, Barry R.

    1985-01-01

    Discusses, in terms of consumers, employers, and employees, how a "taste for discrimination," that is, someone's preference for or against association with some group in the labor market, can influence behavior and hence who gets hired. Argues that people with the strongest tastes for discrimination pay the heaviest cost. (RDN)

  11. Peripheral coding of taste

    PubMed Central

    Liman, Emily R.; Zhang, Yali V.; Montell, Craig

    2014-01-01

    Five canonical tastes, bitter, sweet, umami (amino acid), salty and sour (acid) are detected by animals as diverse as fruit flies and humans, consistent with a near universal drive to consume fundamental nutrients and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste in each are highly divergent. The identification over the last two decades of receptors and other molecules that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduction and coding of information by the gustatory systems of vertebrates and invertebrates. In this review, we discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight principles that are common across species, despite stark differences in receptor types. PMID:24607224

  12. Effects of subdiaphragmatic vagotomy on the acquisition of a radiation-induced conditioned taste aversion

    SciTech Connect

    Hunt, W.A.; Rabin, B.M.; Lee, J.

    1987-01-01

    The effect of subdiaphragmatic vagotomy on the acquisition of a radiation-induced taste aversion was examined to assess the importance of the vagus nerve in transmitting information on the peripheral toxicity of radiation to the brain. Vagotomy had no effect on taste aversion learning, consistent with reports using other toxins. The data support the involvement of a blood-borne factor in the acquisition of taste aversion induced by ionizing radiation.

  13. L-theanine elicits an umami taste with inosine 5'-monophosphate.

    PubMed

    Narukawa, Masataka; Morita, Kanako; Hayashi, Yukako

    2008-11-01

    We investigated the taste synergy between L-theanine and the flavour enhancer, inosine 5'-monophosphate (IMP), by using a human sensory evaluation. When L-theanine was added to IMP, only the umami taste was enhanced. We then investigated this synergistic effect of L-theanine in mice by gustatory nerve recording. We confirmed the synergism between L-theanine and IMP for the umami taste.

  14. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities

    PubMed Central

    Anderson, Catherine B.; Kinnamon, Sue C.

    2015-01-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. PMID:26136251

  15. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli.

  16. Cracking Taste Codes by Tapping into Sensory Neuron Impulse Traffic

    PubMed Central

    Frank, Marion E.; Lundy, Robert F.; Contreras, Robert J.

    2008-01-01

    Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from “taste” nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na+-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well-characterized. Specialists are associated with species’ nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor: T1R, and N specialists, associated with the epithelial sodium channel: ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific thanT1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will

  17. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    PubMed

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  18. The cell biology of taste

    PubMed Central

    2010-01-01

    Taste buds are aggregates of 50–100 polarized neuroepithelial cells that detect nutrients and other compounds. Combined analyses of gene expression and cellular function reveal an elegant cellular organization within the taste bud. This review discusses the functional classes of taste cells, their cell biology, and current thinking on how taste information is transmitted to the brain. PMID:20696704

  19. The cell biology of taste.

    PubMed

    Chaudhari, Nirupa; Roper, Stephen D

    2010-08-09

    Taste buds are aggregates of 50-100 polarized neuroepithelial cells that detect nutrients and other compounds. Combined analyses of gene expression and cellular function reveal an elegant cellular organization within the taste bud. This review discusses the functional classes of taste cells, their cell biology, and current thinking on how taste information is transmitted to the brain.

  20. Inflammation and taste disorders: mechanisms in taste buds

    PubMed Central

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2009-01-01

    Taste disorders, including taste distortion and taste loss, negatively impact general health and quality of life. To understand the underlying molecular and cellular mechanisms, we set out to identify inflammation-related molecules in taste tissue and to assess their role in the development of taste dysfunctions. We found that 10 out of 12 mammalian Toll-like receptors (TLRs), type I and II interferon (IFN) receptors and their downstream signaling components are present in taste tissue. Some TLRs appear to be selectively or more abundantly expressed in taste buds than in non-gustatory lingual epithelium. Immunohistochemistry with antibodies against TLRs 1, 2, 3, 4, 6 and 7 confirmed the presence of these receptor proteins in taste bud cells, of which TLRs 2, 3 and 4 are expressed in the gustducin-expressing type II taste bud cells. Administration of TLR receptor ligands, lipopolysaccharide (LPS) and double-stranded RNA (dsRNA) polyinosinic: polycytidylic acid (poly(I:C)) that mimics bacterial or viral infection, activates the IFN signaling pathways, up-regulates the expression of IFN-inducible genes but down-regulates the expression of c-fos in taste buds. Finally, systemic administration of IFNs augments apoptosis of taste bud cells in mice. Taken together, these data suggest that TLR and IFN pathways function collaboratively in recognizing pathogens and mediating inflammatory responses in taste tissue. This process, however, may interfere with normal taste transduction and taste bud cell turnover and contributes to the development of taste disorders. PMID:19686199

  1. Evidence for a role of glutamate as an efferent transmitter in taste buds

    PubMed Central

    2010-01-01

    Background Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds. Results Using molecular and immunohistochemical techniques, we show that the vesicular transporters for glutamate, VGLUT 1 and 2, but not VGLUT3, are expressed in the nerve fibers surrounding taste buds but likely not in taste cells themselves. Further, we show that P2X2, a specific marker for gustatory but not trigeminal fibers, co-localizes with VGLUT2, suggesting the VGLUT-expressing nerve fibers are of gustatory origin. Calcium imaging indicates that GAD67-GFP Type III taste cells, but not T1R3-GFP Type II cells, respond to glutamate at concentrations expected for a glutamate transmitter, and further, that these responses are partially blocked by NBQX, a specific AMPA/Kainate receptor antagonist. RT-PCR and immunohistochemistry confirm the presence of the Kainate receptor GluR7 in Type III taste cells, suggesting it may be a target of glutamate released from gustatory nerve fibers. Conclusions Taken together, the results suggest that glutamate may be released from gustatory nerve fibers using a vesicular mechanism to modulate Type III taste cells via GluR7. PMID:20565975

  2. Evidence for a role of glutamate as an efferent transmitter in taste buds.

    PubMed

    Vandenbeuch, Aurelie; Tizzano, Marco; Anderson, Catherine B; Stone, Leslie M; Goldberg, Daniel; Kinnamon, Sue C

    2010-06-21

    Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds. Using molecular and immunohistochemical techniques, we show that the vesicular transporters for glutamate, VGLUT 1 and 2, but not VGLUT3, are expressed in the nerve fibers surrounding taste buds but likely not in taste cells themselves. Further, we show that P2X2, a specific marker for gustatory but not trigeminal fibers, co-localizes with VGLUT2, suggesting the VGLUT-expressing nerve fibers are of gustatory origin. Calcium imaging indicates that GAD67-GFP Type III taste cells, but not T1R3-GFP Type II cells, respond to glutamate at concentrations expected for a glutamate transmitter, and further, that these responses are partially blocked by NBQX, a specific AMPA/Kainate receptor antagonist. RT-PCR and immunohistochemistry confirm the presence of the Kainate receptor GluR7 in Type III taste cells, suggesting it may be a target of glutamate released from gustatory nerve fibers. Taken together, the results suggest that glutamate may be released from gustatory nerve fibers using a vesicular mechanism to modulate Type III taste cells via GluR7.

  3. Smelling and Tasting Underwater.

    ERIC Educational Resources Information Center

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  4. STS-125 Food Tasting

    NASA Image and Video Library

    2008-01-24

    JSC2008-E-006897 (24 Jan. 2008) --- Astronauts Scott D. Altman (left), STS-125 commander, and Andrew J. Feustel, mission specialist, participate in a food tasting session in the Flight Projects Division Laboratory at the Johnson Space Center.

  5. Smelling and Tasting Underwater.

    ERIC Educational Resources Information Center

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  6. Smell and taste disorders

    PubMed Central

    Hummel, Thomas; Landis, Basile N.; Hüttenbrink, Karl-Bernd

    2012-01-01

    Smell and taste disorders can markedly affect the quality of life. In recent years we have become much better in the assessment of the ability to smell and taste. In addition, information is now available to say something about the prognosis of individual patients. With regard to therapy there also seems to be low but steady progress. Of special importance for the treatment is the ability of the olfactory epithelium to regenerate. PMID:22558054

  7. Smell and taste disorders.

    PubMed

    Hummel, Thomas; Landis, Basile N; Hüttenbrink, Karl-Bernd

    2011-01-01

    Smell and taste disorders can markedly affect the quality of life. In recent years we have become much better in the assessment of the ability to smell and taste. In addition, information is now available to say something about the prognosis of individual patients. With regard to therapy there also seems to be low but steady progress. Of special importance for the treatment is the ability of the olfactory epithelium to regenerate.

  8. [The sense of taste].

    PubMed

    Rabinerson, David; Horovitz, Eran; Beloosesky, Yeshayahoo

    2006-08-01

    The taste sense is one of the five human senses. It is essential to our survival because it enables the individual the choice of correct food, which, in turn, is crucial for one's existence, maintenance and function. This is a complicated chemical sense, which operates in conjunction with other senses such as vision, smell and touch, and is also associated with the operation of temperature and consistency receptors. There are five basic tastes: bitter, sweet, sour, salty and "fleshy" (umami), each of which has a role in food selection, being responsible for the recognition of certain chemicals, which may be either necessary or dangerous to our body. The taste cell is located in the taste buds, which, in turn, are situated in the tongue, oral cavity and the proximal third of the esophagus. This translates the chemical signal of tastants in food to electrical stimulation that transfers the signal to higher processing centers in the brain, in a process called transduction, which is explained in this review. Disturbances in the taste sense, as well as effects of industrial exposure on this sense are also described. The accumulated knowledge about the taste sense might enable future breakthroughs in the processed food industry.

  9. Taste and the taste of foods

    NASA Astrophysics Data System (ADS)

    Boudreau, James C.

    1980-01-01

    At least 12 distinct taste sensations can be elicited from different parts of the oral cavity by distinct chemical compounds. The chemicals eliciting each sensation are often common constituents of foods, thus the umami sensations arise with stimulation by monosodium glutamate and nucleotides. These sensations can often be related to different physical/chemical stimulus parameters (e.g., bitterness and hydrophobicity) and neural activity in distinct chemosensory channels.

  10. Gustatory insular cortex, aversive taste memory and taste neophobia.

    PubMed

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2015-03-01

    Prior research indicates a role for the gustatory insular cortex (GC) in taste neophobia. Rats with lesions of the GC show much weaker avoidance to a novel and potentially dangerous taste than do neurologically intact animals. The current study used the retention of conditioned taste aversion (CTA) as a tool to determine whether the GC modulates neophobia by processing taste novelty or taste danger. The results show that GC lesions attenuate CTA retention (Experiment 1) and impair taste neophobia (Experiment 2). Given that normal CTA retention does not involve the processing of taste novelty, the pattern of results suggests that the GC is involved in taste neophobia via its function in processing the danger conveyed by a taste stimulus.

  11. Nerve and behavioral responses of mice to various umami substances.

    PubMed

    Narukawa, Masataka; Morita, Kanako; Uemura, Masahide; Kitada, Ryo; Oh, Seong-Hee; Hayashi, Yukako

    2011-01-01

    Food contains various taste substances. Among them, umami substances play an important role with regard to the perception of the taste of food, but, few studies have examined the taste characteristics of representative umami substances other than monosodium L-glutamate (MSG). By conducting mouse behavioral studies (the 48-h 2-bottle preference test and the conditioned taste aversion test) and assessing gustatory nerve responses, we investigated the taste characteristics of unique umami substances, including sodium succinate, L-theanine, betaine, and the enantiomer of MSG, D-MSG. Furthermore, we examined the synergy of umami with inosine 5'-monophoshate (IMP). In the case of the mice, sodium succinate had an umami taste and showed strong synergy with IMP. L-theanine showed synergy with IMP but did not have an umami taste without IMP. In contrast, betaine did not have an umami taste or synergy with IMP. D-MSG might have weak synergy with IMP.

  12. A crossmodal role for audition in taste perception.

    PubMed

    Yan, Kimberly S; Dando, Robin

    2015-06-01

    Our sense of taste can be influenced by our other senses, with several groups having explored the effects of olfactory, visual, or tactile stimulation on what we perceive as taste. Research into multisensory, or crossmodal perception has rarely linked our sense of taste with that of audition. In our study, 48 participants in a crossover experiment sampled multiple concentrations of solutions of 5 prototypic tastants, during conditions with or without broad spectrum auditory stimulation, simulating that of airline cabin noise. Airline cabins are an unusual environment, in which food is consumed routinely under extreme noise conditions, often over 85 dB, and in which the perceived quality of food is often criticized. Participants rated the intensity of solutions representing varying concentrations of the 5 basic tastes on the general Labeled Magnitude Scale. No difference in intensity ratings was evident between the control and sound condition for salty, sour, or bitter tastes. Likewise, panelists did not perform differently during sound conditions when rating tactile, visual, or auditory stimulation, or in reaction time tests. Interestingly, sweet taste intensity was rated progressively lower, whereas the perception of umami taste was augmented during the experimental sound condition, to a progressively greater degree with increasing concentration. We postulate that this effect arises from mechanostimulation of the chorda tympani nerve, which transits directly across the tympanic membrane of the middle ear.

  13. Taste Receptors in Innate Immunity

    PubMed Central

    Lee, Robert J.

    2014-01-01

    Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein coupled–receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions. PMID:25323130

  14. Loss of taste-induced hypertension--caveat for taste modulation as a therapeutic option in obesity.

    PubMed

    Czupryniak, L; Loba, J

    2007-03-01

    Effective treatment of obesity is extremely difficult, and taste modulation has been suggested as a feasible option. We aim at presenting dangers associated with stroke-induced taste impairment. A case report is presented with clinical and laboratory findings. We review literature on the effect of taste modulation on body weight. Eight months after suffering stroke, a 63-year old obese woman with a nine year-old history of type 2 diabetes reported headache and poor general feeling. Physical examination revealed significantly elevated blood pressure of 190/110 mmHg. The patient had never had elevated blood pressure before nor ever been taking any antihypertensive medication. However, stroke resulted in severe persisting dysgeusia. We found out that she had been using up to 110 g of salt daily to make her meals palatable. Standard gustatory tests confirmed severe taste impairment, reflecting the lesion of the glossopharyngeal nerve. Taste loss was not associated with body weight reduction. Limiting daily salt intake to 5 g within 4 weeks resulted in lowering blood pressure to 120/70 mmHg. Stroke-induced dysgeusia may lead to increased salt intake in a type 2 diabetes patient, which caused development of severe hypertension. The taste loss did not yield any weight reduction. We suggest that aiming at reducing body weight by means of taste modulation should be done with caution. Physicians must be aware that patients may try to overcome dysgeusia by additional salt intake, if not adequately informed of the risk thereof.

  15. 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?

    PubMed

    Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E

    2017-07-01

    Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT3 receptors on the gustatory nerves. We show here, using 5-HT3A GFP mice, that 5-HT3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.

  16. Associations between taste genetics, oral sensation and alcohol intake.

    PubMed

    Duffy, Valerie B; Peterson, Julie M; Bartoshuk, Linda M

    2004-09-15

    Alcohol produces a range of oral sensations, some of which have been shown to vary with the perceived bitterness of 6-n-propylthiouracil (PROP), one marker for genetic variation in taste. Some studies report that offspring of alcoholics are most likely to be PROP nontasters [Physiol. Behav. 51 (1992) 1261; Physiol. Behav. 64 (1998) 147], yet others report the offspring as more responsive to sodium chloride (NaCl) and citric acid, which appears to contradict the taste genetic hypothesis. We predicted alcohol sensation and intake from measures of taste genetics (PROP bitterness and number of fungiform papilla), NaCl and citric acid intensity, and spatial taste pattern in 40 females and 43 males. Subjects used the general Labeled Magnitude Scale (gLMS) [Chem. Senses 18 (1993) 683; J. Food Qual. Pref. 14 (2002) 125] as an intensity and hedonic scale. Those who tasted PROP as most bitter or had highest numbers of fungiform papilla reported greatest oral burn from an alcohol probe; those who tasted least PROP bitterness consumed alcoholic beverages most frequently. Although higher NaCl and citric acid ratings associated with more frequent consumption of alcoholic beverages, the findings could be explained by lower intensity of tastants on the tongue tip (chorda tympani nerve) relative to whole mouth perception. In multiple regression analyses, PROP bitterness and the spatial pattern of taste perception were independent contributors to the prediction of alcohol intake. In summary, the results support that variation in oral sensation associates with alcohol intake. Those who taste PROP as least bitter and have low chorda tympani relative to whole mouth taste intensity appear to have fewest oral sensory hindrances to the consumption of alcoholic beverages.

  17. The Taste of Typeface

    PubMed Central

    Woods, Andy T.; Hyndman, Sarah; Spence, Charles

    2015-01-01

    Previous research has demonstrated that typefaces can convey meaning over-and-above the actual semantic content of whatever happens to be written. Here, we demonstrate for the first time that people match basic taste words (sweet, sour, salty, and bitter) to typefaces varying in their roundness versus angularity. In Experiment 1, the participants matched rounder typefaces with the word “sweet,” while matching more angular typefaces with the taste words “bitter,” “salty,” and “sour.” Experiment 2 demonstrates that rounder typefaces are liked more and are judged easier to read than their more angular counterparts. We conclude that there is a strong relationship between roundness/angularity, ease of processing, and typeface liking, which in turn influences the correspondence between typeface and taste. These results are discussed in terms of the notion of affective crossmodal correspondences. PMID:27433316

  18. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice

    PubMed Central

    Inoue, Masashi; Glendinning, John I.; Theodorides, Maria L.; Harkness, Sarah; Li, Xia; Bosak, Natalia; Beauchamp, Gary K.; Bachmanov, Alexander A.

    2008-01-01

    The Tas1r3 gene encodes the T1R3 receptor protein, which is involved in sweet taste transduction. To characterize ligand specificity of the T1R3 receptor and the genetic architecture of sweet taste responsiveness, we analyzed taste responses of 129.B6-Tas1r3 congenic mice to a variety of chemically diverse sweeteners and glucose polymers with three different measures: consumption in 48-h two-bottle preference tests, initial licking responses, and responses of the chorda tympani nerve. The results were generally consistent across the three measures. Allelic variation of the Tas1r3 gene influenced taste responsiveness to nonnutritive sweeteners (saccharin, acesulfame-K, sucralose, SC-45647), sugars (sucrose, maltose, glucose, fructose), sugar alcohols (erythritol, sorbitol), and some amino acids (d-tryptophan, d-phenylalanine, l-proline). Tas1r3 genotype did not affect taste responses to several sweet-tasting amino acids (l-glutamine, l-threonine, l-alanine, glycine), glucose polymers (Polycose, maltooligosaccharide), and nonsweet NaCl, HCl, quinine, monosodium glutamate, and inosine 5′-monophosphate. Thus Tas1r3 polymorphisms affect taste responses to many nutritive and nonnutritive sweeteners (all of which must interact with a taste receptor involving T1R3), but not to all carbohydrates and amino acids. In addition, we found that the genetic architecture of sweet taste responsiveness changes depending on the measure of taste response and the intensity of the sweet taste stimulus. Variation in the T1R3 receptor influenced peripheral taste responsiveness over a wide range of sweetener concentrations, but behavioral responses to higher concentrations of some sweeteners increasingly depended on mechanisms that could override input from the peripheral taste system. PMID:17911381

  19. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice.

    PubMed

    Inoue, Masashi; Glendinning, John I; Theodorides, Maria L; Harkness, Sarah; Li, Xia; Bosak, Natalia; Beauchamp, Gary K; Bachmanov, Alexander A

    2007-12-19

    The Tas1r3 gene encodes the T1R3 receptor protein, which is involved in sweet taste transduction. To characterize ligand specificity of the T1R3 receptor and the genetic architecture of sweet taste responsiveness, we analyzed taste responses of 129.B6-Tas1r3 congenic mice to a variety of chemically diverse sweeteners and glucose polymers with three different measures: consumption in 48-h two-bottle preference tests, initial licking responses, and responses of the chorda tympani nerve. The results were generally consistent across the three measures. Allelic variation of the Tas1r3 gene influenced taste responsiveness to nonnutritive sweeteners (saccharin, acesulfame-K, sucralose, SC-45647), sugars (sucrose, maltose, glucose, fructose), sugar alcohols (erythritol, sorbitol), and some amino acids (D-tryptophan, D-phenylalanine, L-proline). Tas1r3 genotype did not affect taste responses to several sweet-tasting amino acids (L-glutamine, L-threonine, L-alanine, glycine), glucose polymers (Polycose, maltooligosaccharide), and nonsweet NaCl, HCl, quinine, monosodium glutamate, and inosine 5'-monophosphate. Thus Tas1r3 polymorphisms affect taste responses to many nutritive and nonnutritive sweeteners (all of which must interact with a taste receptor involving T1R3), but not to all carbohydrates and amino acids. In addition, we found that the genetic architecture of sweet taste responsiveness changes depending on the measure of taste response and the intensity of the sweet taste stimulus. Variation in the T1R3 receptor influenced peripheral taste responsiveness over a wide range of sweetener concentrations, but behavioral responses to higher concentrations of some sweeteners increasingly depended on mechanisms that could override input from the peripheral taste system.

  20. A National Test of Taste and Smell

    MedlinePlus

    ... Javascript on. Feature: Taste, Smell, Hearing, Language, Voice, Balance At Last: A National Test of Taste and ... smell. Read More "Taste, Smell, Hearing, Language, Voice, Balance" Articles At Last: A National Test of Taste ...

  1. Taste avoidance and taste aversion: evidence for two different processes.

    PubMed

    Parker, Linda A

    2003-05-01

    The terms conditioned taste avoidance and conditioned taste aversion are often used interchangeably in the literature; however, considerable evidence indicates that they may represent different processes. Conditioned taste avoidance is measured by the amount that a rat consumes in a consumption test that includes both appetitive phases and consummatory phases of responding. However, conditioned taste aversion is more directly assessed with the taste reactivity test, which includes only the consummatory phase of responding. Rats display a conditioned taste aversion as conditioned rejection reactions (gapes, chin rubs, and paw treads) during an intraoral infusion of a nausea-paired flavored solution. Treatments that produce nausea are not necessary for the establishment of taste avoidance, but they are necessary for the establishment of taste aversion. Furthermore, treatments that alleviate nausea modulate neither the establishment nor the expression of taste avoidance, but they interfere with both the establishment and the expression of taste aversion. Considerable evidence exists indicating that these two measures are independent of one another. Taste avoidance may be motivated by conditioned fear rather than conditioned nausea, but taste aversion (as reflected by rejection reactions) may be motivated by conditioned nausea.

  2. Smell and taste disorders.

    PubMed

    Allis, Terah J; Leopold, Donald A

    2012-02-01

    Olfaction and taste promote satisfaction and protection in daily life. The astute facial plastic surgeon recognizes the importance of a baseline smell test to document the patients' olfactory status before surgery. After surgery, the surgeon must be alert to the possible mechanisms of hyposmia and anosmia and the pertinent treatment strategies. The surgeon must also understand the importance of counseling the patient and family regarding the cause of the dysfunction and the proper treatments. This article updates the facial plastic surgeon on the importance of smell and taste and associated disorders with a current review of the literature. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice

    PubMed Central

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-01-01

    Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor

  4. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice.

    PubMed

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-06-01

    Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1 : AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA

  5. Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells.

    PubMed

    Parker, M Rockwell; Feng, Dianna; Chamuris, Brianna; Margolskee, Robert F

    2014-06-13

    Stress increases the secretion of glucocorticoids (GCs), potent steroid hormones that exert their effects on numerous target tissues by acting through glucocorticoid receptors (GRs). GC signaling significantly affects ingestive behavior and taste preferences in humans and rodent models, but far less is known about the hormonal modulation of the peripheral sensory system that detects and assesses nutrient content of foods. A previous study linked restraint stress in rats to diminished expression of mRNA for one subunit of the sweet taste receptor (Tas1r3) in taste tissue and reduced gustatory nerve excitation by sweet compounds. Using RT-PCR, we detected mRNAs for GRα in circumvallate taste papillae and in oral epithelium devoid of taste buds ("non-taste" tissue). Further, circumvallate tissue was significantly enriched in GR mRNA compared to non-taste tissue based on quantitative PCR. Histologically, GR protein was expressed in all taste bud populations examined (circumvallate, foliate and fungiform papillae). Using transgenic mice expressing green fluorescent protein, almost all (97%) Tas1r3-positive taste cells (sweet-/umami-sensitive) expressed GR compared to a significantly smaller percentage (89%) of TrpM5-positive taste cells (sweet-, umami- and bitter-sensitive). When mice (n=4) were restrain stressed, GR protein mobilized to the nucleus in Tas1r3-GFP taste cells (1.7-fold over controls). Our results suggest that GR can be activated in taste receptor cells and may play a role in specific taste qualities (e.g., sweet, umami, and bitter) to shape how the taste system responds to stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue.

    PubMed

    Mbiene, Joseph-Pascal

    2004-12-01

    Tongue embryonic taste buds begin to differentiate before the onset of gustatory papilla formation in murine. In light of this previous finding, we sought to reexamine the developing sensory innervation as it extends toward the lingual epithelium between E 11.5 and 14.5. Nerve tracings with fluorescent lipophilic dyes followed by confocal microscope examination were used to study the terminal branching of chorda tympani and lingual nerves. At E11.5, we confirmed that the chorda tympani nerve provided for most of the nerve branching in the tongue swellings. At E12.5, we show that the lingual nerve contribution to the overall innervation of the lingual swellings increased to the extent that its ramifications matched those of the chorda tympani nerve. At E13.0, the chorda tympani nerve terminal arborizations appeared more complex than those of the lingual nerve. While the chorda tympani nerve terminal branching appeared close to the lingual epithelium that of the trigeminal nerve remained rather confined to the subepithelial mesenchymal tissue. At E13.5, chorda tympani nerve terminals projected specifically to an ordered set of loci on the tongue dorsum corresponding to the epithelial placodes. In contrast, the lingual nerve terminals remained subepithelial with no branches directed towards the placodes. At E14.5, chorda tympani nerve filopodia first entered the apical epithelium of the developing fungiform papilla. The results suggest that there may be no significant delay between the differentiation of embryonic taste buds and their initial innervation.

  7. Potable water taste enhancement

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was conducted to determine the causes of and remedies for the unpalatability of potable water in manned spacecraft. Criteria and specifications for palatable water were established and a quantitative laboratory analysis technique was developed for determinig the amounts of volatile organics in good tasting water. Prototype spacecraft water reclamation systems are evaluated in terms of the essential palatability factors.

  8. STS-125 Food Tasting

    NASA Image and Video Library

    2008-01-24

    JSC2008-E-006896 (24 Jan. 2008) --- Astronauts John M. Grunsfeld (left), STS-125 mission specialist; Gregory C. Johnson, pilot; and Michael J. Massimino, mission specialist, participate in a food tasting session in the Flight Projects Division Laboratory at the Johnson Space Center.

  9. Detecting sweet and umami tastes in the gastrointestinal tract.

    PubMed

    Iwatsuki, K; Ichikawa, R; Uematsu, A; Kitamura, A; Uneyama, H; Torii, K

    2012-02-01

    Information about nutrients is a critical part of food selection in living creatures. Each animal species has developed its own way to safely seek and obtain the foods necessary for them to survive and propagate. Necessarily, humans and other vertebrates have developed special chemosensory organs such as taste and olfactory organs. Much attention, recently, has been given to the gastrointestinal (GI) tract as another chemosensory organ. Although the GI tract had been considered to be solely for digestion and absorption of foods and nutrients, researchers have recently found taste-signalling elements, including receptors, in this tissue. Further studies have revealed that taste cells in the oral cavity and taste-like cells in the GI tract appear to share common characteristics. Major receptors to detect umami, sweet and bitter are found in the GI tract, and it is now proposed that taste-like cells reside in the GI tract to sense nutrients and help maintain homeostasis. In this review, we summarize recent findings of chemoreception especially through sweet and umami sensors in the GI tract. In addition, the possibility of purinergic transmission from taste-like cells in the GI tract to vagus nerves is discussed.

  10. REVIEW ARTICLE: A taste sensor

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi

    1998-12-01

    A multichannel taste sensor, namely an electronic tongue, with global selectivity is composed of several kinds of lipid/polymer membranes for transforming information about substances producing taste into electrical signals, which are input to a computer. The sensor output exhibits different patterns for chemical substances which have different taste qualities such as saltiness, sourness and bitterness, whereas it exhibits similar patterns for chemical substances with similar tastes. The sensor responds to the taste itself, as can be understood from the fact that taste interactions such as the suppression effect, which appears for mixtures of sweet and bitter substances, can be reproduced well. The suppression of the bitterness of quinine and a drug substance by sucrose can be quantified. Amino acids can be classified into several groups according to their own tastes on the basis of sensor outputs. The tastes of foodstuffs such as beer, coffee, mineral water, milk, sake, rice, soybean paste and vegetables can be discussed quantitatively using the taste sensor, which provides the objective scale for the human sensory expression. The flavour of a wine is also discriminated using the taste-odour sensory fusion conducted by combining the taste sensor and an odour-sensor array using conducting polymer elements. The taste sensor can also be applied to measurements of water pollution. Miniaturization of the taste sensor using FET produces the same characteristics as those of the above taste sensor by measuring the gate-source voltage. Use of the taste sensor will lead to a new era of food and environmental sciences.

  11. NaCl Taste Thresholds in 13 Inbred Mouse Strains

    PubMed Central

    Ishiwatari, Yutaka

    2012-01-01

    Molecular mechanisms of salty taste in mammals are not completely understood. We use genetic approaches to study these mechanisms. Previously, we developed a high-throughput procedure to measure NaCl taste thresholds, which involves conditioning mice to avoid LiCl and then examining avoidance of NaCl solutions presented in 48-h 2-bottle preference tests. Using this procedure, we measured NaCl taste thresholds of mice from 13 genealogically divergent inbred stains: 129P3/J, A/J, BALB/cByJ, C3H/HeJ, C57BL/6ByJ, C57BL/6J, CBA/J, CE/J, DBA/2J, FVB/NJ, NZB/BlNJ, PWK/PhJ, and SJL/J. We found substantial strain variation in NaCl taste thresholds: mice from the A/J and 129P3/J strains had high thresholds (were less sensitive), whereas mice from the BALB/cByJ, C57BL/6J, C57BL/6ByJ, CE/J, DBA/2J, NZB/BINJ, and SJL/J had low thresholds (were more sensitive). NaCl taste thresholds measured in this study did not significantly correlate with NaCl preferences or amiloride sensitivity of chorda tympani nerve responses to NaCl determined in the same strains in other studies. To examine whether strain differences in NaCl taste thresholds could have been affected by variation in learning ability or sensitivity to toxic effects of LiCl, we used the same method to measure citric acid taste thresholds in 4 inbred strains with large differences in NaCl taste thresholds but similar acid sensitivity in preference tests (129P3/J, A/J, C57BL/6J, and DBA/2J). Citric acid taste thresholds were similar in these 4 strains. This suggests that our technique measures taste quality–specific thresholds that are likely to represent differences in peripheral taste responsiveness. The strain differences in NaCl taste sensitivity found in this study provide a basis for genetic analysis of this phenotype. PMID:22293936

  12. Functional diversification of taste cells in vertebrates

    PubMed Central

    Matsumoto, Ichiro; Ohmoto, Makoto; Abe, Keiko

    2012-01-01

    Tastes are senses resulting from the activation of taste cells distributed in oral epithelia. Sweet, umami, bitter, sour, and salty tastes are called the five “basic” tastes, but why five, and why these five? In this review, we dissect the peripheral gustatory system in vertebrates from molecular and cellular perspectives. Recent behavioral and molecular genetic studies have revealed the nature of functional taste receptors and cells and show that different taste qualities are accounted for by the activation of different subsets of taste cells. Based on this concept, the diversity of basic tastes should be defined by the diversity of taste cells in taste buds, which varies among species. PMID:23085625

  13. A Functional Role for IL-1 in the Injured Peripheral Taste System

    PubMed Central

    Shi, Liqiao; He, Lianying; Sarvepalli, Padma; McCluskey, Lynnette Phillips

    2011-01-01

    The peripheral taste system presents an excellent model for studying the consequences of neural injury, for the damaged nerve and sensory cells and the neighboring, intact neural cells. Sectioning a primary afferent nerve, the chorda tympani (CT), rapidly recruits neutrophils to both sides of the tongue. The bilateral neutrophil response induces transient functional deficits in the intact CT. Normal function is subsequently restored as macrophages respond to injury. We hypothesized that macrophages produce the proinflammatory cytokine, interleukin (IL)-1, which contributes to the maintenance of normal taste function after nearby injury. We demonstrate that IL-1β protein levels are significantly increased on the injured side of the tongue at day 2 after injury. Dietary sodium deficiency, a manipulation which prevents macrophage recruitment, inhibits the elevation in IL-1β. IL-1β was expressed in several cell populations, including taste receptor cells and infiltrating neutrophils and macrophages. To test whether IL-1 modulates taste function after injury, we blocked signaling with an IL-1 receptor antagonist (IL-1 RA) and recorded taste responses from the intact CT. This treatment inhibited the bilateral macrophage response to injury, and impaired taste responses in the intact CT. Cytokine actions in the taste system are largely unstudied. These results demonstrate that IL-1 has a beneficial effect on taste function after nearby injury, in contrast to its detrimental role in the injured central nervous system (CNS). PMID:22213141

  14. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.

    PubMed

    Hellekant, Göran; Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A

    2015-07-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span.

  15. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span

    PubMed Central

    Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A.

    2015-01-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. PMID:25855639

  16. Learning through the taste system

    PubMed Central

    Scott, Thomas R.

    2011-01-01

    Taste is the final arbiter of which chemicals from the environment will be admitted to the body. The action of swallowing a substance leads to a physiological consequence of which the taste system should be informed. Accordingly, taste neurons in the central nervous system are closely allied with those that receive input from the viscera so as to monitor the impact of a recently ingested substance. There is behavioral, anatomical, electrophysiological, gene expression, and neurochemical evidence that the consequences of ingestion influence subsequent food selection through development of either a conditioned taste aversion (CTA) (if illness ensues) or a conditioned taste preference (CTP) (if nutrition). This ongoing communication between taste and the viscera permits the animal to tailor its taste system to its individual needs over a lifetime. PMID:22131967

  17. Characterization of ligands for fish taste receptors.

    PubMed

    Oike, Hideaki; Nagai, Toshitada; Furuyama, Akira; Okada, Shinji; Aihara, Yoshiko; Ishimaru, Yoshiro; Marui, Takayuki; Matsumoto, Ichiro; Misaka, Takumi; Abe, Keiko

    2007-05-23

    Recent progress in the molecular biology of taste reception has revealed that in mammals, the heteromeric receptors T1R1/3 and T1R2/3 respond to amino acids and sweeteners, respectively, whereas T2Rs are receptors for bitter tastants. Similar taste receptors have also been characterized in fish, but their ligands have not been identified yet. In the present study, we conducted a series of experiments to identify the fish taste receptor ligands. Facial nerve recordings in zebrafish (Danio rerio) demonstrated that the fish perceived amino acids and even denatonium, which is a representative of aversive bitter compounds for mammals and Drosophila. Calcium imaging analysis of T1Rs in zebrafish and medaka fish (Oryzias latipes) using an HEK293T heterologous expression system revealed that both T1R1/3 and a series of T1R2/3 responded to amino acids but not to sugars. A triple-labeling, in situ hybridization analysis demonstrated that cells expressing T1R1/3 and T1R2/3s exist in PLCbeta2-expressing taste bud cells of medaka fish. Functional analysis using T2Rs showed that zfT2R5 and mfT2R1 responded to denatonium. Behavior observations confirmed that zebrafish prefer amino acids and avoid denatonium. These results suggest that, although there may be some fish-specific way of discriminating ligands, vertebrates could have a conserved gustatory mechanism by which T1Rs and T2Rs respond to attractive and aversive tastants, respectively.

  18. Defects in the Peripheral Taste Structure and Function in the MRL/lpr Mouse Model of Autoimmune Disease

    PubMed Central

    Ohkuri, Tadahiro; Sauers, Daniel; Cohn, Zachary J.; Chai, Jinghua; Nelson, Theodore; Bachmanov, Alexander A.; Huang, Liquan; Wang, Hong

    2012-01-01

    While our understanding of the molecular and cellular aspects of taste reception and signaling continues to improve, the aberrations in these processes that lead to taste dysfunction remain largely unexplored. Abnormalities in taste can develop in a variety of diseases, including infections and autoimmune disorders. In this study, we used a mouse model of autoimmune disease to investigate the underlying mechanisms of taste disorders. MRL/MpJ-Faslpr/J (MRL/lpr) mice develop a systemic autoimmunity with phenotypic similarities to human systemic lupus erythematosus and Sjögren's syndrome. Our results show that the taste tissues of MRL/lpr mice exhibit characteristics of inflammation, including infiltration of T lymphocytes and elevated levels of some inflammatory cytokines. Histological studies reveal that the taste buds of MRL/lpr mice are smaller than those of wild-type congenic control (MRL/+/+) mice. 5-Bromo-2′-deoxyuridine (BrdU) pulse-chase experiments show that fewer BrdU-labeled cells enter the taste buds of MRL/lpr mice, suggesting an inhibition of taste cell renewal. Real-time RT-PCR analyses show that mRNA levels of several type II taste cell markers are lower in MRL/lpr mice. Immunohistochemical analyses confirm a significant reduction in the number of gustducin-positive taste receptor cells in the taste buds of MRL/lpr mice. Furthermore, MRL/lpr mice exhibit reduced gustatory nerve responses to the bitter compound quinine and the sweet compound saccharin and reduced behavioral responses to bitter, sweet, and umami taste substances compared with controls. In contrast, their responses to salty and sour compounds are comparable to those of control mice in both nerve recording and behavioral experiments. Together, our results suggest that type II taste receptor cells, which are essential for bitter, sweet, and umami taste reception and signaling, are selectively affected in MRL/lpr mice, a model for autoimmune disease with chronic inflammation. PMID

  19. Fluid Mechanics of Taste

    NASA Astrophysics Data System (ADS)

    Noel, Alexis; Bhatia, Nitesh; Carter, Taren; Hu, David

    2015-11-01

    Saliva plays a key role in digestion, speech and tactile sensation. Lack of saliva, also known as dry mouth syndrome, increases risk of tooth decay and alters sense of taste; nearly 10% of the general population suffer from this syndrome. In this experimental study, we investigate the spreading of water drops on wet and dry tongues of pigs and cows. We find that drops spread faster on a wet tongue than a dry tongue. We rationalize the spreading rate by consideration of the tongue microstructure, such as as papillae, in promoting wicking. By investigating how tongue microstructure affects spreading of fluids, we may begin to how understand taste receptors are activated by eating and drinking.

  20. Tasting edge effects

    NASA Astrophysics Data System (ADS)

    Bocquet, Lydéric

    2007-02-01

    We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.

  1. Genetics of sweet taste preferences†

    PubMed Central

    Bachmanov, Alexander A; Bosak, Natalia P; Floriano, Wely B; Inoue, Masashi; Li, Xia; Lin, Cailu; Murovets, Vladimir O; Reed, Danielle R; Zolotarev, Vasily A; Beauchamp, Gary K

    2011-01-01

    Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a significant portion of variation in sweetener preferences depends on genes that are not involved in peripheral taste processing. These genes are likely involved in central mechanisms of sweet taste processing, reward and/or motivation. Genetic variation in sweet taste not only influences food choice and intake, but is also associated with proclivity to drink alcohol. Both peripheral and central mechanisms of sweet taste underlie correlation between sweet-liking and alcohol consumption in animal models and humans. All these data illustrate complex genetics of sweet taste preferences and its impact on human nutrition and health. Identification of genes responsible for within- and between-species variation in sweet taste can provide tools to better control food acceptance in humans and other animals. PMID:21743773

  2. Genetics of sweet taste preferences.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Floriano, Wely B; Inoue, Masashi; Li, Xia; Lin, Cailu; Murovets, Vladimir O; Reed, Danielle R; Zolotarev, Vasily A; Beauchamp, Gary K

    2011-07-01

    Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a significant portion of variation in sweetener preferences depends on genes that are not involved in peripheral taste processing. These genes are likely involved in central mechanisms of sweet taste processing, reward and/or motivation. Genetic variation in sweet taste not only influences food choice and intake, but is also associated with proclivity to drink alcohol. Both peripheral and central mechanisms of sweet taste underlie correlation between sweet-liking and alcohol consumption in animal models and humans. All these data illustrate complex genetics of sweet taste preferences and its impact on human nutrition and health. Identification of genes responsible for within- and between-species variation in sweet taste can provide tools to better control food acceptance in humans and other animals.

  3. Drug-Induced Taste Disorders In Clinical Practice And Preclinical Safety Evaluation.

    PubMed

    Wang, Tao; Glendinning, John; Grushka, Miriam; Hummel, Thomas; Mansfield, Keith

    2017-01-23

    More than 200 medications can induce taste disorders in patients. They not only reduce quality of life for those affected, but can lead to malnutrition, severe dehydration and difficulty in maintaining a therapeutic regimen. Nevertheless, the impact of drug candidates on taste is rarely evaluated in preclinical toxicology studies during the early stage of drug development. Moreover, knowledge about how to investigate these adverse effect is scarce in the toxicology field. Here, we discuss the clinical status of drug-induced taste disorders in patients, with the goal of providing toxicologists with a broad understanding its prevalence, and how stressful and even dangerous it can be to affected patients. Because taste, smell and oral trigeminal sensation are highly interdependent, we also address drug-induced changes in olfactory and oral somatosensory perceptions. We then review the biology of the gustatory system (including anatomy and histology), and the latest developments about how taste contributes to flavor perception. Finally, we feature recently optimized preclinical approaches to investigate drug-induced taste change in animal models, including the development of biomarkers, morphological evaluation of taste buds and taste cells, gustatory nerve recording, and behavioral testing. Our goals are to raise awareness of drug-induced taste disorders among toxicologists, share an overview of new approaches and key studies that can be used to identify drug-induced gustatory system toxicity early in the drug development process, and to stimulate further research at this emerging interface of chemosensory disorders with toxicology.

  4. Calcium signaling in taste cells.

    PubMed

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  5. Taste does not determine daily intake of dilute sugar solutions in mice

    PubMed Central

    Beltran, F.; Benton, L.; Cheng, S.; Gieseke, J.; Gillman, J.; Spain, H. N.

    2010-01-01

    When a rodent licks a sweet-tasting solution, taste circuits in the central nervous system that facilitate stimulus identification, motivate intake, and prepare the body for digestion are activated. Here, we asked whether taste also determines daily intake of sugar solutions in C57BL/6 mice. We tested several dilute concentrations of glucose (167, 250, and 333 mM) and fructose (167, 250, and 333 mM). In addition, we tested saccharin (38 mM), alone and in binary mixture with each of the sugar concentrations, to manipulate sweet taste intensity while holding caloric value constant. In experiment 1, we measured taste responsiveness to the sweetener solutions in two ways: chorda tympani nerve responses and short-term lick tests. For both measures, the mice exhibited the following relative magnitude of responsiveness: binary mixtures > saccharin > individual sugars. In experiment 2, we asked whether the taste measures reliably predicted daily intake of the sweetener solutions. No such relationship was observed. The glucose solutions elicited weak taste responses but high daily intakes, whereas the fructose solutions elicited weak taste responses and low daily intakes. On the other hand, the saccharin + glucose solutions elicited strong taste responses and high daily intakes, while the saccharin + fructose solutions elicited strong taste responses but low daily intakes. Overall, we found that 1) daily intake of the sweetener solutions varied independently of the magnitude of the taste responses and 2) the solutions containing glucose stimulated substantially higher daily intakes than did the solutions containing isomolar concentrations of fructose. Given prior work demonstrating greater postoral stimulation of feeding by glucose than fructose, we propose that the magnitude of postoral nutritive stimulation plays a more important role than does taste in determining daily intake of dilute sugar solutions. PMID:20702804

  6. Effect of taste sensation on cough reflex sensitivity.

    PubMed

    Wise, Paul M; Breslin, Paul A S; Dalton, Pamela

    2014-02-01

    Cough is among the most common symptoms with which people present for medical attention, but evidence-based treatments remain limited. One issue compromising interpretation of clinical trials of cough preparations is that control formulations often are nearly as effective as those that contain active ingredients. This observation has caused some researchers to propose that one or more nominally inactive ingredients may have some physiological effects. For example, most liquid cough preparations are highly sweetened, and it has been suggested that sweet taste might modulate cough sensitivity. The fact that honey has been used for thousands of years as a cough remedy is consistent with this idea. However, empirical evidence for modulation of cough sensitivity by taste was lacking. Evidence is still sparse, but relevant experiments have now been published: rinsing the mouth with a sweet sucrose solution increased cough thresholds in a single-inhalation capsaicin challenge. Furthermore, rinsing the mouth with a bitter solution did not affect thresholds, an important demonstration of specificity. The underlying mechanisms of cough suppression by sweet taste are still unclear. However, extant data suggest that modulation of cough sensitivity by taste is a promising area for further investigation. Such work may lead to greater understanding of apparent placebo effects in clinical trials and provide empirical support for therapies based on stimulation of taste nerves.

  7. Development of Frequency Based Taste Receptors Using Bioinspired Glucose Nanobiosensor.

    PubMed

    TermehYousefi, Amin; Tateno, Katsumi; Bagheri, Samira; Tanaka, Hirofumi

    2017-05-09

    A method to fabricate a bioinspired nanobiosensor using electronic-based artificial taste receptors for glucose diagnosis is presented. Fabricated bioinspired glucose nanobiosensor designated based on an artificial taste bud including an amperometric glucose biosensor and taste bud-inspired circuits. In fact, the design of the taste bud-inspired circuits was inspired by the signal-processing mechanism of taste nerves which involves two layers. The first, known as a type II cell, detects the glucose by glucose oxidase and transduces the current signal obtained for the pulse pattern is conducted to the second layer, called type III cell, to induce synchronisation of the neural spiking activity. The oscillation results of fabricated bioinspired glucose nanobiosensor confirmed an increase in the frequency of the output pulse as a function of the glucose concentration. At high glucose concentrations, the bioinspired glucose nanobiosensor showed a pulse train of alternating short and long interpulse intervals. A computational analysis performed to validate the hypothesis, which was successfully reproduced the alternating behaviour of bioinspired glucose our nanobiosensor by increasing the output frequency and alternation of pulse intervals according to the reduction in the resistivity of the biosensor.

  8. GLIAL RESPONSES AFTER CHORDA TYMPANI NERVE INJURY

    PubMed Central

    Bartel, Dianna L.

    2013-01-01

    The chorda tympani (CT) nerve innervates lingual taste buds and is susceptible to damage during dental and inner ear procedures. Interruption of the CT results in a disappearance of taste buds, which can be accompanied by taste disturbances. Because the CT usually regenerates to reinnervate taste buds successfully in a few weeks, a persistence of taste disturbances may indicate alterations in central nervous function. Peripheral injury to other sensory nerves leads to glial responses at central terminals, which actively contribute to abnormal sensations arising from nerve damage. Therefore, the current study examined microglial and astrocytic responses in the first central gustatory relay -the nucleus of the solitary tract (nTS)- after transection of the CT. Damage to the CT resulted in significant microglial responses in terms of morphological reactivity and an increased density of microglial cells from 2-20 days after injury. This increased microglial population primarily resulted from microglial proliferation from 1.5-3 days, which was supplemented by microglial migration within sub-divisions of the nTS between days 2-3. Unlike other nerve injuries, CT injury did not result in recruitment of bone marrow-derived precursors. Astrocytes also reacted in the nTS with increased levels of GFAP by 3 days, although none showed evidence of cell division. GFAP levels remained increased at 30 days by which time microglial responses had resolved. These results show that nerve damage to the CT results in central glial responses, which may participate in long lasting taste alterations following CT lesion. PMID:22315167

  9. Effect of Maillard reacted peptides on human salt taste and the amiloride-insensitive salt taste receptor (TRPV1t).

    PubMed

    Katsumata, Tadayoshi; Nakakuki, Hiroko; Tokunaga, Chikara; Fujii, Noboru; Egi, Makoto; Phan, Tam-Hao T; Mummalaneni, Shobha; DeSimone, John A; Lyall, Vijay

    2008-09-01

    Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000-5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague-Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t.

  10. Conditioned taste aversion induced by motion is prevented by selective vagotomy in the rat

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Mckenna, Susan

    1991-01-01

    The role of the vagus nerve in motion-induced conditioned taste aversion (CTA) was studied in hooded rats. Animals with complete, selective gastric vagotomy failed to form conditioned taste aversion after multiple conditioning sessions in which the conditioned stimulus (a cider vinegar solution) was drunk immediately before a 30-min exposure to vertical axis rotation at 150 deg/s. Results are discussed with reference to the use of CTA as a measure of motion-induced 'sickness' or gastrointestinal disturbance, and because motion-induced CTA requires that both the vagus nerve and the vestibular apparatus be intact, in light of the possible convergence of vegal and vestibular functions.

  11. Hippocampal Inactivation Enhances Taste Learning

    ERIC Educational Resources Information Center

    Stone, Martha E.; Grimes, Brandon S.; Katz, Donald B.

    2005-01-01

    Learning tasks are typically thought to be either hippocampal-dependent (impaired by hippocampal lesions) or hippocampal-independent (indifferent to hippocampal lesions). Here, we show that conditioned taste aversion (CTA) learning fits into neither of these categories. Rats were trained to avoid two taste stimuli, one novel and one familiar.…

  12. Tasting Wine: A Learning Experience

    ERIC Educational Resources Information Center

    King, Tanya J.; Donaldson, Jilleen A.; Harry, Emma

    2012-01-01

    This paper describes a field trip by senior undergraduate anthropology students to a local winery, where they participated in a wine-tasting class with winery staff. In response to explicit hints from a wine-tasting facilitator, and more subtle cues from the cultural capital embedded in their surroundings and the winery staff, the students…

  13. Tasting Wine: A Learning Experience

    ERIC Educational Resources Information Center

    King, Tanya J.; Donaldson, Jilleen A.; Harry, Emma

    2012-01-01

    This paper describes a field trip by senior undergraduate anthropology students to a local winery, where they participated in a wine-tasting class with winery staff. In response to explicit hints from a wine-tasting facilitator, and more subtle cues from the cultural capital embedded in their surroundings and the winery staff, the students…

  14. Taste changing in staggered quarks

    SciTech Connect

    Quentin Mason et al.

    2004-01-05

    The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.

  15. Limited taste discrimination in Drosophila.

    PubMed

    Masek, Pavel; Scott, Kristin

    2010-08-17

    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  16. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste.

    PubMed

    Talavera, Karel; Yasumatsu, Keiko; Voets, Thomas; Droogmans, Guy; Shigemura, Noriatsu; Ninomiya, Yuzo; Margolskee, Robert F; Nilius, Bernd

    2005-12-15

    TRPM5, a cation channel of the TRP superfamily, is highly expressed in taste buds of the tongue, where it has a key role in the perception of sweet, umami and bitter tastes. Activation of TRPM5 occurs downstream of the activation of G-protein-coupled taste receptors and is proposed to generate a depolarizing potential in the taste receptor cells. Factors that modulate TRPM5 activity are therefore expected to influence taste. Here we show that TRPM5 is a highly temperature-sensitive, heat-activated channel: inward TRPM5 currents increase steeply at temperatures between 15 and 35 degrees C. TRPM4, a close homologue of TRPM5, shows similar temperature sensitivity. Heat activation is due to a temperature-dependent shift of the activation curve, in analogy to other thermosensitive TRP channels. Moreover, we show that increasing temperature between 15 and 35 degrees C markedly enhances the gustatory nerve response to sweet compounds in wild-type but not in Trpm5 knockout mice. The strong temperature sensitivity of TRPM5 may underlie known effects of temperature on perceived taste in humans, including enhanced sweetness perception at high temperatures and 'thermal taste', the phenomenon whereby heating or cooling of the tongue evoke sensations of taste in the absence of tastants.

  17. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds.

  18. Gustatory papillae and taste bud development and maintenance in the absence of TrkB ligands BDNF and NT-4.

    PubMed

    Ito, Akira; Nosrat, Christopher A

    2009-09-01

    Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF(-/-)xNT-4(-/-) and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF(-/-)xNT-4(-/-) mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance.

  19. Development of an Umami Taste Sensitivity Test and Its Clinical Use

    PubMed Central

    Satoh-Kuriwada, Shizuko; Kawai, Misako; Iikubo, Masahiro; Sekine-Hayakawa, Yuki; Shoji, Noriaki; Uneyama, Hisayuki; Sasano, Takashi

    2014-01-01

    There is a close relationship between perception of umami, which has become recognized as the fifth taste, and the human physical condition. We have developed a clinical test for umami taste sensitivity using a filter paper disc with a range of six monosodium glutamate (MSG) concentrations. We recruited 28 patients with taste disorders (45–78 years) and 184 controls with no taste disorders (102 young [18–25 years] and 82 older [65–89 years] participants). Filter paper discs (5 mm dia.) were soaked in aqueous MSG solutions (1, 5, 10, 50, 100 and 200 mM), then placed on three oral sites innervated by different taste nerves. The lowest concentration participants correctly identified was defined as the recognition threshold (RT) for MSG. This test showed good reproducibility for inter- and intra-observer variability. We concluded that: (1) The RT of healthy controls differed at measurement sites innervated by different taste nerves; that is, the RT of the anterior tongue was higher than that of either the posterior tongue or the soft palate in both young and older individuals. (2) No significant difference in RT was found between young adults and older individuals at any measurement site. (3) The RT of patients with taste disorders was higher before treatment than that of the healthy controls at any measurement site. (4) The RT after treatment in these patients improved to the same level as that of the healthy controls. (5) The cutoff values of RT, showing the highest diagnostic accuracy (true positives + true negatives), were 200 mM MSG for AT and 50 mM MSG for PT and SP. The diagnostic accuracy at these cutoff values was 0.92, 0.87 and 0.86 for AT, PT and SP, respectively. Consequently, this umami taste sensitivity test is useful for discriminating between normal and abnormal umami taste sensations. PMID:24748056

  20. What Does Diabetes "Taste" Like?

    PubMed

    Neiers, Fabrice; Canivenc-Lavier, Marie-Chantal; Briand, Loïc

    2016-06-01

    The T1R2 (taste type 1 receptor, member 2)/T1R3 (taste type 1 receptor, member 3) sweet taste receptor is expressed in taste buds on the tongue, where it allows the detection of energy-rich carbohydrates of food. This single receptor responds to all compounds perceived as sweet by humans, including natural sugars and natural and artificial sweeteners. Importantly, the T1R2/T1R3 sweet taste receptor is also expressed in extra-oral tissues, including the stomach, pancreas, gut, liver, and brain. Although its physiological role remains to be established in numerous organs, T1R2/T1R3 is suspected to be involved in the regulation of metabolic processes, such as sugar sensing, glucose homeostasis, and satiety hormone release. In this review, the physiological role of the sweet taste receptor in taste perception and metabolic regulation is discussed by focusing on dysfunctions leading to diabetes. Current knowledge of T1R2/T1R3 inhibitors making this receptor a promising therapeutic target for the treatment of type 2 diabetes is also summarized and discussed.

  1. Drug-induced taste disorders.

    PubMed

    Naik, B Sadananda; Shetty, Nagaraj; Maben, E V S

    2010-06-01

    Taste and smell are critical components to a person's overall sense of well-being and quality of life. Taste related problems can cause pain and discomfort and can hinder the maintenance of a satisfying and nutritious diet. Loss of taste interferes with pleasure derived from food and food-related activities. Many drugs can affect this special sense and contribute significantly to the morbidity of the associated illness. This article gives a brief account of this problem and emphasizes the need for more awareness of the clinicians about this problem. Copyright 2010 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  2. Insights on consciousness from taste memory research.

    PubMed

    Gallo, Milagros

    2016-01-01

    Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.

  3. Validation of Edible Taste Strips for Assessing PROP Taste Perception

    PubMed Central

    2013-01-01

    A novel delivery method is described that incorporates taste stimuli into edible strips for determining n-propylthiouracil (PROP) taster status. Edible strips that contained 400 or 600nanomoles of PROP were prepared for psychophysical studies. Using these strips, we measured taste intensity, taste hedonics, and taste quality responses in a sample of healthy volunteers (n = 118). Participants were also asked to assess a single NaCl strip, a quinine strip, 3 NaCl solutions, and 3 PROP solutions. All psychophysical data were subsequently analyzed as a function of TAS2R38 genotype. The use of PROP strips for distinguishing between individuals with at least 1 PAV allele and individuals with other genotypes was assessed and compared with the use of PROP solutions for making this same distinction. For the 2 PROP strips and PROP solutions, individuals who expressed at least 1 PAV allele could perceive the bitter taste of PROP. Individuals who expressed 2 AVI alleles responded similarly to 400nanomole PROP strips and blank strips. Furthermore, individuals with 2 AVI alleles responded to 0.032 and 0.32mM PROP solutions at intensities that were similar to water, though intensity ratings to 3.2mM PROP solution exceeded water. In general, those with at least 1 PAV allele rated the bitter taste of PROP as unpleasant in both delivery methods (strips or solutions). Psychophysical data from PROP strips and solutions were consistent with TAS2R38 genotype. These results support the validity of edible taste strips as a method for assessing PROP taste perception in humans. PMID:23761681

  4. Type 1 Taste Receptors in Taste and Metabolism.

    PubMed

    Kochem, Matthew

    2017-01-01

    Our sense of taste allows us to evaluate the nutritive value of foods prior to ingesting them. Sweet taste signals the presence of sugars, and savory taste signals the presence of amino acids. The ability to identify these macronutrients in foods was likely crucial for the survival of our species when nourishing food sources were sparse. In modern, industrialized settings, taste perception continues to play an important role in human health as we attempt to prevent and treat conditions stemming from overnutrition. Recent research has revealed that type 1 taste receptors (T1Rs), which are largely responsible for sweet and umami taste, may also influence the absorption and metabolism of the foods we eat. Preliminary research shows that T1Rs contribute to intestinal glucose absorption, blood sugar and insulin regulation, and the body's responses to excessive energy intake. In light of these findings, T1Rs have come to be understood as nutrient sensors, among other roles, that facilitate the selection, digestion, and metabolism of foods. © 2017 S. Karger AG, Basel.

  5. Ultrastructure of the taste buds in the blind cave fish Astyanax jordani ("Anoptichthys") and the sighted river fish Astyanax mexicanus (Teleostei, Characidae).

    PubMed

    Boudriot, F; Reutter, K

    2001-06-11

    This study describes the ultrastructure of the taste buds of the sighted river fish Astyanax mexicanus and of the blind cave fish Astyanax jordani (= Anoptichthys) (Teleostei, Characiformes, Characidae). In Astyanax and Anoptichthys, taste buds occur in the epithelia of the lips, oral cavity, and, in Anoptichthys, lower jaw. Both possess three types of taste buds: type I (elevated), type II (slightly elevated), and type III taste buds (not elevated or sunken). The taste buds are up to 60 microm high and up to 35 microm wide. The taste bud's sensory epithelium consists of 100--130 elongated cells: light cells, dense-cored-vesicles (dcv) -cells, dark cells, and degenerating cells. The dcv-cells are rich in dense-cored vesicles and are described for the first time in a teleostean taste bud. At the taste bud's base, there lie two to three basal cells. The basal cells of type I and type II taste buds have microvillus (spine)-like processes, in contrast to those of type III taste buds. The taste bud's nerve fiber plexus is situated between the bases of the elongated taste bud cells and the basal cells. Afferent synapses occur between dcv-cells and basal cells (presynaptic sides) and axons (postsynaptic side). Indistinct synapses occur between light cells and dark cells (presynaptic sides) and axons (postsynaptic side). The nerve fiber plexes of Anoptichthys type II and type III taste buds contain significantly more axon profiles than those of Astyanax. This may be associated with a compensatory improvement of the sense of taste in the blind, cave-dwelling fish. Copyright 2001 Wiley-Liss, Inc.

  6. The sense of taste in the upper gastrointestinal tract.

    PubMed

    Kitamura, Akihiko; Tsurugizawa, Tomokazu; Uematsu, Akira; Uneyama, Hisayuki

    2014-01-01

    Digestion and the absorption of food and nutrients have been considered the only functions of the gastrointestinal (GI) tract. However, recent studies suggest that taste cells in the oral cavity and taste-like cells in the GI tract share many common characteristics (taste receptors and transduction signaling). Over the last two decades, it has been revealed that the GI tract is a chemosensory organ that transfers nutrient information via GI hormone secretion (glucagon-like peptide-1, Peptide YY, oxyntomodulin, glucose-dependent insulinotropic polypeptide and others) and the activation of abdominal vagus afferents. In addition, the information relayed via the abdominal vagus nerve plays an important role in autonomic reflexes. This information, both humoral and neural, contributes to the maintenance of homeostasis (digestion, absorption, metabolism and food intake) in the body. In this review, we provide a brief overview of the following: GI chemosensory molecules, their distribution, the effect of nutrients on GI hormone secretion and the activation of vagus afferent nerves. We also focus on the possibility of clinical applications that control abdominal vagus activity.

  7. Understanding taste dysfunction in patients with cancer.

    PubMed

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  8. Behavioral comparison of sucrose and l-2-amino-4-phosphonobutyrate (L-AP4) tastes in rats: does L-AP4 have a sweet taste?

    PubMed

    Eschle, B K; Eddy, M C; Spang, C H; Delay, E R

    2008-08-13

    Even though it is generally thought that umami stimuli such as monosodium glutamate (MSG) and sweet stimuli such as sucrose are detected by different taste receptors, these stimuli appear to share taste qualities when amiloride (a sodium channel blocker) is present to reduce the sodium taste. Single fiber recording studies of the facial and glossopharyngeal nerves have shown that encoding of L-2-amino-4-phosphonobutyrate (L-AP4), a potent mGluR4 agonist that elicits a taste quite similar to MSG, may occur in the same fibers that also encode sweet stimuli. This suggests that L-AP4 and sweet substances may activate common receptors or afferent signaling mechanisms. We report results of behavioral experiments that test this hypothesis. In the first study, rats conditioned to avoid sucrose or L-AP4 generalized the aversion to the opposite substance, indicating that both substances elicited similar tastes. However, two taste discrimination experiments showed that rats easily discriminated between sucrose and L-AP4 over a wide range of concentrations, even when the cue function of sodium associated with L-AP4 was reduced by amiloride and neutralized by adding equimolar concentrations of NaCl to sucrose. These data suggest that even though L-AP4 and sucrose elicit similar taste qualities, one or both substances also elicit other taste qualities not shared by the opposite substance. They also suggest that the taste-mGluR4 receptor and the signal pathway activated by L-AP4 are not the same as those activated by sucrose. These data, when combined with fiber recording data, suggest that there is convergence of L-AP4 and sucrose signals at some point early in the gustatory pathway.

  9. A physiologic role for serotonergic transmission in adult rat taste buds.

    PubMed

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the

  10. A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds

    PubMed Central

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the

  11. Honing in on the ATP Release Channel in Taste Cells

    PubMed Central

    2015-01-01

    Studies over the last 8 years have identified 3 potential channels that appear to release ATP from Type II cells in response to taste stimuli. These studies have taken different methodological approaches but have all provided data supporting their candidate channel as the ATP release channel. These potential channels include Pannexin 1, Connexins (30 and/or 43), and most recently, the Calhm1 channel. Two papers in this issue of Chemical Senses provide compelling new evidence that Pannexin 1 is not the ATP release channel. Tordoff et al. did a thorough behavioral analysis of the Pannexin1 knock out mouse and found that these animals have the same behavioral responses as wild type mice for 7 different taste stimuli that were tested. Vandenbeuch et al. presented an equally thorough analysis of the gustatory nerve responses in the Pannexin1 knock out mouse and found no differences compared with controls. Thus when the role of Pannexin 1 is analyzed at the systems level, it is not required for normal taste perception. Further studies are needed to determine the role of this hemichannel in taste cells. PMID:26126730

  12. Maintenance of Mouse Gustatory Terminal Field Organization Is Disrupted following Selective Removal of Peripheral Sodium Salt Taste Activity at Adulthood.

    PubMed

    Skyberg, Rolf; Sun, Chengsan; Hill, David L

    2017-08-09

    Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience.SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be

  13. Acquiring a Taste for Biology

    ERIC Educational Resources Information Center

    Capuano, Carolyn

    1977-01-01

    Describes taste experiences that are used to spark interest in studying high school biology. Emphasizes learning about survival, poisonous plants, endangered species, economic and nutritional importance of various organisms, and cultural education. (CS)

  14. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107050 (4 May 2009) --- Astronauts Leland Melvin (left), Robert Satcher and Randy Bresnik, all STS-129 mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  15. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107056 (4 May 2009) --- Astronauts Leland Melvin (left) and Robert Satcher, both STS-129 mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  16. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107054 (4 May 2009) --- Astronauts Charlie Hobaugh (left), STS-129 commander; Leland Melvin and Robert Satcher, both mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  17. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107048 (4 May 2009) --- Astronaut Randy Bresnik, STS-129 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  18. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107051 (4 May 2009) --- Astronauts Barry Wilmore (left), STS-129 pilot; and Mike Foreman, mission specialist, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  19. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107047 (4 May 2009) --- Astronaut Leland Melvin, STS-129 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  20. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107052 (4 May 2009) --- Astronauts Leland Melvin (left), Robert Satcher and Randy Bresnik, all STS-129 mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  1. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107059 (4 May 2009) --- Astronauts Robert Satcher (left) and Randy Bresnik, both STS-129 mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  2. In pursuit of taste phenotypes.

    PubMed

    Green, Barry G

    2013-05-01

    Notable progress has been made relating individual differences in bitter taste sensitivity to specific alleles and TAS2R receptors, but psychophysical evidence of reliable phenotypes for other tastes has been more elusive. In this issue, Wise and Breslin report a study of individual differences in threshold sensitivity to sour and salty taste, which, though failing to find clear phenotypes, exemplifies the type of approach and analysis necessary to disentangle sources of variance inherent in the psychophysical measures applied from those attributable to true differences in sensitivity. Methodological and theoretical lessons that can be taken from this work are discussed in the context of the early and dramatic evidence of chemosensory phenotypes that belied the complexity of taste receptor genetics and focused attention solely on peripheral determinants of sensitivity.

  3. Acquiring a Taste for Biology

    ERIC Educational Resources Information Center

    Capuano, Carolyn

    1977-01-01

    Describes taste experiences that are used to spark interest in studying high school biology. Emphasizes learning about survival, poisonous plants, endangered species, economic and nutritional importance of various organisms, and cultural education. (CS)

  4. Molecular neurobiology of Drosophila taste

    PubMed Central

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-01-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation. PMID:26102453

  5. Molecular neurobiology of Drosophila taste.

    PubMed

    Freeman, Erica Gene; Dahanukar, Anupama

    2015-10-01

    Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families. There has also been significant progress in terms of understanding how tastant information is processed and conveyed to higher brain centers, and modulated by prior dietary experience or starvation. Copyright © 2015. Published by Elsevier Ltd.

  6. Disorders of Taste and Smell.

    PubMed

    DeVere, Ronald

    2017-04-01

    This article aims to educate clinical neurologists on the importance of taste and smell disorders in clinical neurology. These disorders commonly occur in head trauma, multiple sclerosis, seizure disorders, and neurodegenerative diseases such as idiopathic Parkinson disease and dementia, mild cognitive impairment, and Alzheimer disease, just to name a few. This article covers the basic anatomy of smell and taste, notes the important points of taking a proper history, and discusses smell and taste testing, which are inexpensive, minimally time-consuming procedures. Recurrent bad smells and tastes are not uncommon in these disorders, which cause major impairment in quality of life, including loss of appetite, decreased eating, and weight loss. The diagnosis and treatment of these disorders will also be discussed. Despite past widespread negative prognoses of taste and smell disorders, more recent work in the last 10 years has shown an improved prognosis for smell and taste recovery in most disorders, and recommendations for changes in food preparation have helped many patients enjoy their food and increase their appetite. Recent experimental evidence has shown that smell loss and testing can assist in separating idiopathic Parkinson disease from other parkinsonian syndromes, can suggest which patients with rapid eye movement (REM) sleep behavior disorder will more likely develop Parkinson disease, and can be predictive of the progression of cognitive impairment and Alzheimer dementia. This article discusses the common smell and taste disorders that a clinical neurologist will encounter in practice. The anatomy and function of smell and taste will be reviewed, followed by office evaluation and testing. The common disorders will be reviewed, along with their prognosis and management.

  7. Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception

    PubMed Central

    Iguchi, Naoko; Ohkuri, Tadahiro; Slack, Jay P.; Zhong, Ping; Huang, Liquan

    2011-01-01

    The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca2+ concentration ([Ca2+]c) for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca2+]c from the cytosol of taste receptor cells (TRCs) and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca2+ clearance in TRCs, we sought the molecules involved in [Ca2+]c regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family that sequesters cytosolic Ca2+ into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca2+ release for signaling. Serca3-knockout (KO) mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca2+ clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception. PMID:21829714

  8. Knocking out P2X receptors reduces transmitter secretion in taste buds

    PubMed Central

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  9. The neural processing of taste

    PubMed Central

    Lemon, Christian H; Katz, Donald B

    2007-01-01

    Although there have been many recent advances in the field of gustatory neurobiology, our knowledge of how the nervous system is organized to process information about taste is still far from complete. Many studies on this topic have focused on understanding how gustatory neural circuits are spatially organized to represent information about taste quality (e.g., "sweet", "salty", "bitter", etc.). Arguments pertaining to this issue have largely centered on whether taste is carried by dedicated neural channels or a pattern of activity across a neural population. But there is now mounting evidence that the timing of neural events may also importantly contribute to the representation of taste. In this review, we attempt to summarize recent findings in the field that pertain to these issues. Both space and time are variables likely related to the mechanism of the gustatory neural code: information about taste appears to reside in spatial and temporal patterns of activation in gustatory neurons. What is more, the organization of the taste network in the brain would suggest that the parameters of space and time extend to the neural processing of gustatory information on a much grander scale. PMID:17903281

  10. Taste of Clindamycin and Acetaminophen.

    PubMed

    Hashiba, Kimberlee A; Wo, Shane R; Yamamoto, Loren G

    2017-02-01

    This study evaluated the taste palatability of liquid clindamycin and acetaminophen products on the market. Subjects rated the palatability of 3 clindamycin suspensions, 1 amoxicillin suspension (tasted twice), an acetaminophen elixir, and an acetaminophen suspension in a randomized blinded fashion on a 0 to 5 scale. Forty-six adults aged 20 to 82 years volunteered for this study. Means (and 95% confidence intervals) were as follows: amoxicillin-first taste 3.6 (3.3-3.9), amoxicillin-second taste 3.5 (3.2-3.7). Clindamycin Rising, Perrigo, Greenstone; 2.0 (1.6-2.5), 3.0 (2.7-3.3), and 2.2 (1.8-2.6), respectively. Acetaminophen elixir 0.6 (0.4-0.8) and acetaminophen suspension 3.4 (3.1-3.6). One clindamycin tasted significantly better than the others. Additionally, although 2 acetaminophen formulations are currently available over-the-counter, the suspension is more palatable and less costly. Medicaid drug programs that perpetuate the use of elixir should change their coverage to save money and provide patients access to better tasting acetaminophen.

  11. Modulation of taste peripheral signal through interpapillar inhibition in hamsters.

    PubMed

    Vandenbeuch, Aurélie; Pillias, Anne-Marie; Faurion, Annick

    2004-03-25

    Single taste buds from fungiform papillae were iontophoretically stimulated with chemicals filling glass microelectrodes while a single unit was recorded in the taste pore of a neighbor papilla. High signal-to-noise ratio responses were observed in the recorded papilla as antidromic action potentials. These responses were possibly modulated by the simultaneous stimulation of another adjacent papilla. A decrease in the frequency of firing and/or both decrementing spikes were observed during such dual papillae stimulations. These inhibitory effects were not modified by the section of the chordo-lingual nerve, suggesting the tongue is able to process the gustatory information thanks to interpapillar negative feedback, prior to transmitting the signal to the central nervous system. Branched chorda tympani fibers can account for responses observed for single papillae stimulations; inhibitions and decrementing spikes may suggest the contribution of another mechanism of interaction between two different single fibers.

  12. Taste responsiveness to sweeteners is resistant to elevations in plasma leptin.

    PubMed

    Glendinning, John I; Elson, Amanda E T; Kalik, Salina; Sosa, Yvett; Patterson, Christa M; Myers, Martin G; Munger, Steven D

    2015-05-01

    There is uncertainty about the relationship between plasma leptin and sweet taste in mice. Whereas 2 studies have reported that elevations in plasma leptin diminish responsiveness to sweeteners, another found that they enhanced responsiveness to sucrose. We evaluated the impact of plasma leptin on sweet taste in C57BL/6J (B6) and leptin-deficient ob/ob mice. Although mice expressed the long-form leptin receptor (LepRb) selectively in Type 2 taste cells, leptin failed to activate a critical leptin-signaling protein, STAT3, in taste cells. Similarly, we did not observe any impact of intraperitoneal (i.p.) leptin treatment on chorda tympani nerve responses to sweeteners in B6 or ob/ob mice. Finally, there was no effect of leptin treatment on initial licking responses to several sucrose concentrations in B6 mice. We confirmed that basal plasma leptin levels did not exceed 10ng/mL, regardless of time of day, physiological state, or body weight, suggesting that taste cell LepRb were not desensitized to leptin in our studies. Furthermore, i.p. leptin injections produced plasma leptin levels that exceeded those previously reported to exert taste effects. We conclude that any effect of plasma leptin on taste responsiveness to sweeteners is subtle and manifests itself only under specific experimental conditions.

  13. Taste Responsiveness to Sweeteners Is Resistant to Elevations in Plasma Leptin

    PubMed Central

    Elson, Amanda E.T.; Kalik, Salina; Sosa, Yvett; Patterson, Christa M.; Myers, Martin G.; Munger, Steven D.

    2015-01-01

    There is uncertainty about the relationship between plasma leptin and sweet taste in mice. Whereas 2 studies have reported that elevations in plasma leptin diminish responsiveness to sweeteners, another found that they enhanced responsiveness to sucrose. We evaluated the impact of plasma leptin on sweet taste in C57BL/6J (B6) and leptin-deficient ob/ob mice. Although mice expressed the long-form leptin receptor (LepRb) selectively in Type 2 taste cells, leptin failed to activate a critical leptin-signaling protein, STAT3, in taste cells. Similarly, we did not observe any impact of intraperitoneal (i.p.) leptin treatment on chorda tympani nerve responses to sweeteners in B6 or ob/ob mice. Finally, there was no effect of leptin treatment on initial licking responses to several sucrose concentrations in B6 mice. We confirmed that basal plasma leptin levels did not exceed 10ng/mL, regardless of time of day, physiological state, or body weight, suggesting that taste cell LepRb were not desensitized to leptin in our studies. Furthermore, i.p. leptin injections produced plasma leptin levels that exceeded those previously reported to exert taste effects. We conclude that any effect of plasma leptin on taste responsiveness to sweeteners is subtle and manifests itself only under specific experimental conditions. PMID:25740302

  14. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    PubMed

    Moyer, Bryan D; Hevezi, Peter; Gao, Na; Lu, Min; Kalabat, Dalia; Soto, Hortensia; Echeverri, Fernando; Laita, Bianca; Yeh, Shaoyang Anthony; Zoller, Mark; Zlotnik, Albert

    2009-12-04

    Using fungiform (FG) and circumvallate (CV) taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive), sour cells (PKD2L1-positive), as well as other taste cell populations. Transmembrane protein 44 (TMEM44), a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1), a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1), a calcium-binding transmembrane protein; and anoctamin 7 (ANO7), a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B), a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. Identification of genes encoding multi-transmembrane domain proteins expressed in primate taste buds provides new insights into the processes of taste cell

  15. Expression of Genes Encoding Multi-Transmembrane Proteins in Specific Primate Taste Cell Populations

    PubMed Central

    Gao, Na; Lu, Min; Kalabat, Dalia; Soto, Hortensia; Echeverri, Fernando; Laita, Bianca; Yeh, Shaoyang Anthony; Zoller, Mark; Zlotnik, Albert

    2009-01-01

    Background Using fungiform (FG) and circumvallate (CV) taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. Methodology/Principal Findings Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive), sour cells (PKD2L1-positive), as well as other taste cell populations. Transmembrane protein 44 (TMEM44), a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1), a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1), a calcium-binding transmembrane protein; and anoctamin 7 (ANO7), a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B), a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. Conclusions/Significance Identification of genes encoding multi-transmembrane domain proteins expressed in primate

  16. Neurophysiological and biophysical evidence on the mechanism of electric taste

    PubMed Central

    1985-01-01

    The phenomenon of electric taste was investigated by recording from the chorda tympani nerve of the rat in response to both electrical and chemical stimulations of the tongue with electrolytes in order to gain some insight into its mechanism on both a neurophysiological and biophysical basis. The maximum neural response levels were identical for an individual salt (LiCl, NaCl, KCl, or CaCl2), whether it was presented as a chemical solution or as an anodal stimulus through a subthreshold solution. These observations support the idea that stimulation occurs by iontophoresis of ions to the receptors at these current densities (less than 100 microA/cm2). Electric responses through dilute HCl were smaller than the chemically applied stimulations, but the integrated anodal responses appeared similar to chemical acid responses, as evidenced by an OFF response to both forms of stimuli. Hydrogen may be more permeant to the lingual epithelium and would thus be shunted away from the taste receptors during anodal stimulation. When the anion of electric taste was varied via subthreshold salt solutions, the response magnitude increased as the mobility of the anion decreased. The transport numbers of the salts involved adequately explains these differences. The physical aspects of ion migration occurring within the adapting fluid on the tongue are also discussed. Direct neural stimulation by the current appears to occur only at higher current densities (greater than 300 microA/cm2). If the taste cells of the tongue were inactivated with either iodoacetic acid (IAA) or N-ethyl maleimide (NEM), or removed with collagenase, then responses from the chorda tympani could be obtained only at these higher current densities. Latency measurements before and after IAA or NEM treatment corroborated these findings. The results are discussed in terms of several proposed mechanisms of electric taste and it is concluded that an ion accumulation mechanism can adequately explain the data. PMID

  17. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey

    PubMed Central

    Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran

    2009-01-01

    Background Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. Results We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. Conclusion In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while

  18. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey.

    PubMed

    Wang, Yiwen; Danilova, Vicktoria; Cragin, Tiffany; Roberts, Thomas W; Koposov, Alexey; Hellekant, Göran

    2009-02-18

    Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non

  19. The endocrinology of taste receptors

    PubMed Central

    Santa-Cruz Calvo, Sara; Egan, Josephine M.

    2016-01-01

    Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual’s lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity. PMID:25707779

  20. The Impact of Pregnancy on Taste Function.

    PubMed

    Choo, Ezen; Dando, Robin

    2017-05-01

    It is common for women to report a change in taste (for instance an increased bitter or decreased sweet response) during pregnancy, however specifics of any variation in taste with pregnancy remain elusive. Here we review studies of taste in pregnancy, and discuss how physiological changes occurring during pregnancy may influence taste signaling. We aim to consolidate studies of human pregnancy and "taste function" (studies of taste thresholds, discrimination, and intensity perception, rather than hedonic response or self-report), discussing differences in methodology and findings. Generally, the majority of studies report either no change, or an increase in threshold/decrease in perceived taste intensity, particularly in the early stages of pregnancy, suggesting a possible decrease in taste acuity when pregnant. We further discuss several non-human studies of taste and pregnancy that may extend our understanding. Findings demonstrate that taste buds express receptors for many of the same hormones and circulating factors that vary with pregnancy. Circulating gonadal hormones or other contributions from the endocrine system, as well as physiological changes in weight and immune response could all bear some responsibility for such a modulation of taste during pregnancy. Given our growing understanding of taste, we propose that a change in taste function during pregnancy may not be solely driven by hormonal fluctuations of progesterone and estrogen, as many have suggested. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Ingestion of bacterial lipopolysaccharide inhibits peripheral taste responses to sucrose in mice

    PubMed Central

    Zhu, Xiaobin; He, Lianying; McCluskey, Lynnette Phillips

    2013-01-01

    A fundamental role of the taste system is to discriminate between nutritive and toxic foods. However, it is unknown whether bacterial pathogens that might contaminate food and water modulate the transmission of taste input to the brain. We hypothesized that exogenous, bacterially-derived lipopolysaccharide (LPS), modulates neural responses to taste stimuli. Neurophysiological responses from the chorda tympani nerve, which innervates taste cells on the anterior tongue, were unchanged by acute exposure to LPS. Instead, neural responses to sucrose were selectively inhibited in mice that drank LPS during a single overnight period. Decreased sucrose sensitivity appeared 7 days after LPS ingestion, in parallel with decreased lingual expression of Tas1r2 and Tas1r3 transcripts, which are translated to T1R2+T1R3 subunits forming the sweet taste receptor. Tas1r2 and Tas1r3 mRNA expression levels and neural responses to sucrose were restored by 14 days after LPS consumption. Ingestion of LPS, rather than contact with taste receptor cells, appears to be necessary to suppress sucrose responses. Furthermore, mice lacking the Toll-like receptor (TLR) 4 for LPS were resistant to neurophysiological changes following LPS consumption. These findings demonstrate that ingestion of LPS during a single period specifically and transiently inhibits neural responses to sucrose. We suggest that LPS drinking initiates TLR4-dependent hormonal signals that downregulate sweet taste receptor genes in taste buds. Delayed inhibition of sweet taste signaling may influence food selection and the complex interplay between gastrointestinal bacteria and obesity. PMID:24215981

  2. Ingestion of bacterial lipopolysaccharide inhibits peripheral taste responses to sucrose in mice.

    PubMed

    Zhu, X; He, L; McCluskey, L P

    2014-01-31

    A fundamental role of the taste system is to discriminate between nutritive and toxic foods. However, it is unknown whether bacterial pathogens that might contaminate food and water modulate the transmission of taste input to the brain. We hypothesized that exogenous, bacterially-derived lipopolysaccharide (LPS), modulates neural responses to taste stimuli. Neurophysiological responses from the chorda tympani nerve, which innervates taste cells on the anterior tongue, were unchanged by acute exposure to LPS. Instead, neural responses to sucrose were selectively inhibited in mice that drank LPS during a single overnight period. Decreased sucrose sensitivity appeared 7days after LPS ingestion, in parallel with decreased lingual expression of Tas1r2 and Tas1r3 transcripts, which are translated to T1R2+T1R3 subunits forming the sweet taste receptor. Tas1r2 and Tas1r3 mRNA expression levels and neural responses to sucrose were restored by 14 days after LPS consumption. Ingestion of LPS, rather than contact with taste receptor cells, appears to be necessary to suppress sucrose responses. Furthermore, mice lacking the Toll-like receptor (TLR) 4 for LPS were resistant to neurophysiological changes following LPS consumption. These findings demonstrate that ingestion of LPS during a single period specifically and transiently inhibits neural responses to sucrose. We suggest that LPS drinking initiates TLR4-dependent hormonal signals that downregulate sweet taste receptor genes in taste buds. Delayed inhibition of sweet taste signaling may influence food selection and the complex interplay between gastrointestinal bacteria and obesity. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Taste-modifying protein from miracle fruit.

    PubMed

    Kurihara, K; Beidler, L M

    1968-09-20

    The active principle of miracle fruit (Synsepalum dulcificum) is a basic glycoprotein with a probable molecular weight of 44,000. Application of the protein to the tongue modifies the taste so that one tastes sour substances as sweet.

  4. Evolution: a study in bad taste?

    PubMed

    Wooding, Stephen

    2005-10-11

    Bitter tastes are among the most salient of life's experiences--who can forget one's first encounter with dandelion milk or a stout beer? Studies of the genes underlying these tastes are providing new perspectives on human origins and health.

  5. Taste bud regeneration and the search for taste progenitor cells

    PubMed Central

    Miura, Hirohito; Barlow, Linda A.

    2012-01-01

    SUMMARY While the taste periphery has been studied for over a century, we are only beginning to understand how this important sensory system is maintained throughout adult life. With the advent of molecular genetics in rodent models, and the upswing in translational approaches that impact human patients, we expect the field will make significant advances in the near future. PMID:20830973

  6. Preexposure to Salty and Sour Taste Enhances Conditioned Taste Aversion to Novel Sucrose

    ERIC Educational Resources Information Center

    Flores, Veronica L.; Moran, Anan; Bernstein, Max; Katz, Donald B.

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty--the fact that preexposure to the taste conditioned stimulus (CS)…

  7. Preexposure to Salty and Sour Taste Enhances Conditioned Taste Aversion to Novel Sucrose

    ERIC Educational Resources Information Center

    Flores, Veronica L.; Moran, Anan; Bernstein, Max; Katz, Donald B.

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty--the fact that preexposure to the taste conditioned stimulus (CS)…

  8. Saliva secretion in engrafted mouse bioengineered salivary glands using taste stimulation.

    PubMed

    Ogawa, Miho; Yamashita, Kentaro; Niikura, Minori; Nakajima, Kei; Toyoshima, Koh-ei; Oshima, Masamitsu; Tsuji, Takashi

    2014-01-01

    The aim of this study was to compare saliva flow and protein composition induced using five basic taste stimulations between natural and bioengineered salivary glands. We developed a mouse saliva secretion model using taste stimulation and analyzed the saliva secretion from natural and bioengineered salivary glands using an assay. The protein components and alpha-amylase in the natural and bioengineered saliva were analyzed by gel electrophoresis and Western blotting. The salivary flow responses induced by sour (citric acid) and bitter (quinine-HCl) stimuli were significantly high in the natural and bioengineered salivary glands. Although the protein concentrations in the natural and bioengineered saliva induced using five basic taste stimulations were similar, the protein composition and the amylase concentration in the natural saliva after taste stimulation had different profiles. Sympathetic and non-sympathetic nerves were observed around the acini and ducts in the natural and bioengineered salivary glands. However, the frequency of neuropeptide Y-positive sympathetic nerves in the bioengineered gland was relatively high compared to that in the natural gland. These results suggest that the signal balance between the sympathetic and parasympathetic components of the efferent nerves in an engrafted bioengineered salivary gland may differ from that in a natural salivary gland. Copyright © 2013 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Saliva and other taste stimuli are important for gustatory processing of linoleic acid.

    PubMed

    Stratford, Jennifer M; Contreras, Robert J

    2009-10-01

    Paradoxically, bilateral transection of the chorda tympani nerve (CTX) raises the taste discrimination threshold for the free fatty acid, linoleic acid (LA), yet the chorda tympani nerve (CT) is unresponsive to lingual application of LA alone. LA may require a background of saliva to activate taste cells, since CTX decreases saliva production through denervation of the submaxillary and sublingual salivary glands. To assess the role of saliva, we measured LA taste discrimination thresholds for animals whose submaxillary and sublingual salivary glands were removed and also recorded CT responses to LA mixed in artificial saliva. Partial desalivation shifted LA discrimination thresholds from between 5.5 and 11 microM to between 11 and 22 microM. However, this effect was not as pronounced as previously seen with CTX animals. Surprisingly, the CT was unresponsive to LA mixed with artificial saliva, suggesting that artificial saliva may lack components necessary for LA taste. Additionally, fats may primarily enhance other tastes. We previously reported that LA increases CT responses to monosodium glutamate (MSG). Thus we also recorded CT whole nerve responses to taste mixtures of LA and sodium chloride (NaCl), sucrose (SUC), citric acid (CA), or quinine hydrochloride (QHCl) in anesthetized rats. We found that LA increased CT responses to NaCl but did not alter CT responses to SUC, CA, and QHCl. Thus CT recordings either lack the sensitivity to detect small changes to SUC, CA, and QHCl or LA may affect CT responses to MSG and NaCl only, perhaps by specifically modulating gustatory processing of Na(+).

  10. Functional expression of ionotropic purinergic receptors on mouse taste bud cells

    PubMed Central

    Hayato, Ryotaro; Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2007-01-01

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 μm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca2+ imaging showed that similarly applied 1 μm ATP, 30 μm BzATP (a P2X7 agonist), or 1 μm 2MeSATP (a P2Y1 and P2Y11 agonist) increased intracellular Ca2+ concentration, but 100 μm UTP (a P2Y2 and P2Y4 agonist) and α,β-meATP (a P2X agonist except for P2X2, P2X4 and P2X7) did not. RT-PCR suggested the expression of P2X2, P2X4, P2X7, P2Y1, P2Y13 and P2Y14 among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X2. The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 μm PPADS (a non-selective P2 blocker) and 1 μm KN-62 (a P2X7 blocker). These results showed for the first time the functional expression of P2X2 and P2X7 on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed. PMID:17702819

  11. Discrimination of Taste of Amino Acids with a Multichannel Taste Sensor

    NASA Astrophysics Data System (ADS)

    Kikkawa, Yukiko; Toko, Kiyoshi; Matsuno, Tetsuya; Yamafuji, Kaoru

    1993-12-01

    Taste of amino acids was studied using a multichannel taste sensor with lipid membranes as the transducer of taste substances. The study on taste of amino acids has drawn much attention so far because each of them elicits complicated mixed taste. The response of the sensor to amino acids was compared with results of panel tests, and response potentials from the eight membranes were transformed to terms representing five basic tastes by multiple linear regression. This expression of five basic tastes reproduced human taste sensation very well. The taste was expressed more quantitatively by assuming new channels, which are represented by multiplication of the response potentials of the original channels. This new set of channels implies the existence of processes involving the nervous system which is connected with taste cells.

  12. Developing and regenerating a sense of taste.

    PubMed

    Barlow, Linda A; Klein, Ophir D

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. © 2015 Elsevier Inc. All rights reserved.

  13. Cultivating Reading Interest with Book Tasting

    ERIC Educational Resources Information Center

    Hamilton, Buffy J.

    2012-01-01

    Since 2009, the author has been using an activity that she calls "book tasting" to help teens select books for independent reading assignments. While she is sure she is not the first to do this kind of activity, the term "book tasting" seems to appeal to the teens. Book tasting has been extremely successful in pairing up students with texts that…

  14. Developing and regenerating a sense of taste

    PubMed Central

    Barlow, Linda A.; Klein, Ophir D.

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depends on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. PMID:25662267

  15. Cultivating Reading Interest with Book Tasting

    ERIC Educational Resources Information Center

    Hamilton, Buffy J.

    2012-01-01

    Since 2009, the author has been using an activity that she calls "book tasting" to help teens select books for independent reading assignments. While she is sure she is not the first to do this kind of activity, the term "book tasting" seems to appeal to the teens. Book tasting has been extremely successful in pairing up students with texts that…

  16. Regeneration of the Nerves in the Aerial Cavity with an Artificial Nerve Conduit -Reconstruction of Chorda Tympani Nerve Gaps-

    PubMed Central

    Yamanaka, Toshiaki; Hosoi, Hiroshi; Murai, Takayuki; Kobayashi, Takehiko; Inada, Yuji; Nakamura, Tatsuo

    2014-01-01

    Objectives/Hypothesis Due to its anatomical features, the chorda tympani nerve (CTN) is sometimes sacrificed during middle ear surgery, resulting in taste dysfunction. We examined the effect of placing an artificial nerve conduit, a polyglycolic acid (PGA)-collagen tube, across the gap in the section of the resected chorda tympani nerve (CTN) running through the tympanic cavity. Methods The CTN was reconstructed with a PGA-collagen tube in three patients with taste disturbance who underwent CTN resection. To evaluate the effect of the reconstruction procedure on the patients' gustatory function, we measured the patients' electrogustometry (EGM) thresholds. The patients were followed-up for at least two years. Results Gustatory function was completely restored in all of the patients after the reconstruction. The patients' EGM thresholds exhibited early improvements within one to two weeks and had returned to their normal ranges within three months. They subsequently remained stable throughout the two-year follow-up period. In a patient who underwent a second surgical procedure, it was found that the PGA-collagen tube used in the first surgical procedure had been absorbed and replaced by new CTN fibers with blood vessels on their surfaces. Conclusion These results suggest that reconstruction of the CTN with an artificial nerve conduit, a PGA-collagen tube, allows functional and morphological regeneration of the nerve and facilitates the recovery of taste function. PGA-collagen tubes might be useful for repairing CTNs that are resected during middle ear surgery. Further research is required to confirm these preliminary results although this is the first report to describe the successful regeneration of a nerve running through an aerial space. PMID:24691095

  17. Immunocytochemical organization and sour taste activation in the rostral nucleus of the solitary tract of mice.

    PubMed

    Stratford, Jennifer M; Thompson, John A; Finger, Thomas E

    2017-02-01

    Sensory inputs from the oropharynx terminate in both the trigeminal brainstem complex and the rostral part of the nucleus of the solitary tract (nTS). Taste information is conveyed via the facial and glossopharyngeal nerves, while general mucosal innervation is carried by the trigeminal and glossopharyngeal nerves. In contrast, the caudal nTS receives general visceral information largely from the vagus nerve. Although the caudal nTS shows clear morphological and molecularly delimited subdivisions, the rostral part does not. Thus, linking taste-induced patterns of activity to morphological subdivisions in the nTS is challenging. To test whether molecularly defined features of the rostral nTS correlate with patterns of taste-induced activity, we combined immunohistochemistry for markers of various visceral afferent and efferent systems with c-Fos-based activity maps generated by stimulation with a sour tastant, 30 mM citric acid. We further dissociated taste-related activity from activity arising from acid-sensitive general mucosal innervation by comparing acid-evoked c-Fos in wild-type and "taste blind" P2X2 /P2X3 double knockout (P2X-dbl KO) mice. In wild-type mice, citric acid stimulation evoked significant c-Fos activation in the central part of the rostral nTS-activity that was largely absent in the P2X-dbl KO mice. P2X-dbl KO mice, like wild-type mice, did exhibit acid-induced c-Fos activity in the dorsomedial trigeminal brainstem nucleus situated laterally adjacent to the rostral nTS. This dorsomedial nucleus also showed substantial innervation by trigeminal nerve fibers immunoreactive for calcitonin gene-related peptide (CGRP), a marker for polymodal nociceptors, suggesting that trigeminal general mucosal innervation carries information about acids in the oral cavity. J. Comp. Neurol. 525:271-290, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. [Oral medicine 4. Clinical aspects and treatment of taste and smell disorders].

    PubMed

    Vissink, A; Jager-Wittenaar, H; Visser, A; Spijkervet, F K L; van Weissenbruch, R; van Nieuw Amerongen, A

    2013-03-01

    Taste and smell perception are closely related. Many chemosensory disorders which result in faulty taste are in fact smell disorders. Causes ofchemosensory disorders which call for attention are ageing, medication, natural proteins, burning mouth syndrome, nerve injuries, aerate disorders in the neighbourhood of the sense ofsmell, damage to the smell epithelium, and oncologic diseases or their treatment. A chemosensory disorder has implications for food delight and psychological well-being, may lead to weight loss or increase and to deficient intake of vitamins and minerals. A chemosensory disorder can be treated by medication, surgical intervention, improvement of oral health, smell rehabilitation, and dietary advice.

  19. Taste information derived from T1R-expressing taste cells in mice.

    PubMed

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  20. Responses of single facial taste fibers in the sea catfish, Arius felis, to amino acids.

    PubMed

    Michel, W; Caprio, J

    1991-07-01

    1. Taste buds in catfish are found not only within the oropharyngeal cavity, as in mammals, but are also located along the external body surface of the animal from the barbels and lips to the caudal fin. Because these taste buds are innervated by the facial (cranial VII) nerve, the extraoral taste system of catfish is analogous to the mammalian taste system of the anterior two-thirds of the tongue, which contains taste buds innervated by the chorda tympani nerve, and of the soft palate and nasoincisor ducts, which contain taste buds innervated by the greater superficial petrosal nerve. 2. The majority of information concerning the specificity of individual taste fibers in vertebrates has been obtained primarily in mammals to stimuli representing the four basic human taste qualities (i.e., salty, sweet, sour, and bitter). In the present report, we examine the evidence for gustatory fiber types within the stimulus class of amino acids, compounds known to be especially relevant gustatory stimuli for catfish and other teleosts. 3. Action potentials were recorded from 60 individual facial taste neurons obtained from 28 sea catfish (Arius felis). Stimuli were 10(-4) M concentrations of L-alanine, D-alanine, glycine, L-proline, L-histidine, and L-arginine, compounds selected from an original stimulus list of 28 amino acids. Responses were quantified as the number of action potentials evoked at various time intervals from the first 0.5 s up to 10 s of response time. 4. The spontaneous activity of 42 fully characterized neurons was 0.8 +/- 2.1 SD spikes/3 s. The average rate of spike discharge increased 50-fold during stimulation with the most effective amino acid (42 +/- 31 spikes/3 s, mean +/- SD). The majority of the sampled neurons were not narrowly tuned to the amino acid stimulants tested (mean breadth of responsiveness, H = 0.60; range 0-0.95). 5. Hierarchical cluster analysis of the fully characterized neurons identified two large and two small groups of cells. The

  1. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107053 (4 May 2009) --- STS-129 crewmembers participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Pictured from the left are astronauts Barry Wilmore, pilot; Mike Foreman, mission specialist; Charlie Hobaugh, commander; Leland Melvin, Robert Satcher and Randy Bresnik, all mission specialists.

  2. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107057 (4 May 2009) --- Astronauts Charlie Hobaugh (right), STS-129 commander; Barry Wilmore (left), pilot; and Mike Foreman, mission specialist, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  3. STS-129 food tasting session.

    NASA Image and Video Library

    2009-05-04

    JSC2009-E-107049 (4 May 2009) --- Astronauts Charlie Hobaugh (right), STS-129 commander; Mike Foreman (center), mission specialist; and Barry Wilmore, pilot, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  4. Modifying Students' Tastes in Poetry.

    ERIC Educational Resources Information Center

    Erickson, John Edward

    To test whether student tastes in poetry could be modified by a particular method of teaching it, the poetic preferences of 751 eighth grade students were pretested and compared with the poetic choices made by a panel of English educators, 35 student teachers in English, and the students' own English teachers. Consistently, poems selected by any…

  5. Taste perception in honey bees.

    PubMed

    de Brito Sanchez, Maria Gabriela

    2011-10-01

    Taste is crucial for honeybees for choosing profitable food sources, resins, water sources, and for nestmate recognition. Peripheral taste detection occurs within cuticular hairs, the chaetic and basiconic sensilla, which host gustatory receptor cells and, usually a mechanoreceptor cell. Gustatory sensilla are mostly located on the distal segment of the antennae, on the mouthparts, and on the tarsi of the forelegs. These sensilla respond with varying sensitivity to sugars, salts, and possibly amino acids, proteins, and water. So far, no responses of receptor cells to bitter substances were found although inhibitory effects of these substances on sucrose receptor cells could be recorded. When bees are free to express avoidance behaviors, they reject highly concentrated bitter and saline solutions. However, such avoidance disappears when bees are immobilized in the laboratory. In this case, they ingest these solutions, even if they suffer afterward a malaise-like state or even die from such ingestion. Central processing of taste occurs mainly in the subesophageal ganglion, but the nature of this processing remains unknown. We suggest that coding tastants in terms of their hedonic value, thus classifying them in terms of their palatability, is a basic strategy that a central processing of taste should achieve for survival.

  6. Accumulating Evidence Supports a Taste Component for Free Fatty Acids in Humans

    PubMed Central

    Mattes, Richard D.

    2011-01-01

    The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA. PMID:21557960

  7. The effect of taste and palatability on lingual swallowing pressure.

    PubMed

    Pelletier, Cathy A; Dhanaraj, Glory E

    2006-04-01

    There is evidence that a strong, unpalatable, sour bolus improves swallowing in neurogenic dysphagia. It is not known whether other tastes may alter swallowing physiology. This study investigated the effect of moderate versus high taste concentrations (sweet, sour, salty, bitter) and barium taste samples on lingual swallowing pressure in ten healthy young adults, using a three-bulb lingual pressure array secured to the hard palate. Palatability of the samples was analyzed using the nine-point hedonic scale. Results showed that moderate sucrose, high salt, and high citric acid elicited significantly higher lingual swallowing pressures compared with the pressures generated by water. Pressures in the anterior bulb were significantly higher than those recorded from the middle or posterior bulb. There was no significant effect of palatability on lingual swallowing pressures. High salt and citric acid are known to elicit chemesthesis mediated by the trigeminal nerve. These results suggest that chemesthesis may play a crucial role in swallowing physiology. If true, dysphagia diet recommendations that include trigeminal irritants such as carbonation may be beneficial to individuals with dysphagia. However, before this recommendation more research is needed to examine how food properties and their perception affect swallowing in individuals with and without dysphagia.

  8. Taste reactivity in the hamster.

    PubMed

    Brining, S K; Belecky, T L; Smith, D V

    1991-06-01

    Taste reactivity, which was first described in the rat, consists of ingestive and aversive response components, the latter seen mostly to bitter-tasting stimuli. The present experiment characterized the hamster's taste reactivity to an array of stimuli (sugars: 1 M sucrose, d-fructose and d-glucose; sodium salts: 1 M NaCl, Na2SO4 and NaNO3; acids: 30 mM HCl, tartaric acid and citric acid; bitter-tasting stimuli: 100 mM quinine hydrochloride and nicotine sulfate and 10 mM denatonium benzoate). These 12 stimuli were chosen to represent 3 examples each of stimuli that taste sweet, salty, sour, or bitter to humans; they were presented in random order via an intraoral fistula, one stimulus each day per animal (n = 10). Infusions of 0.6 ml were delivered over a 1-min period from a syringe pump. Orofacial and somatic motor responses were recorded on videotape for later analysis and were also coded online into a computer. Ingestive responses included forward and lateral tongue protrusions and aversive responses included gaping, chin rubbing, forelimb flailing, fluid rejection, increased locomotion, and aversive posturing. Each stimulus group produced a characteristic pattern of these behaviors, with sugars eliciting only ingestive behaviors and the bitter stimuli evoking predominantly aversive responses. Both sodium salts and acids produced ingestive responses, as seen previously in the rat, although these stimuli also elicited aversive behaviors in the hamster, including apes. The patterns of responses were characterized using multivariate procedures; the stimuli fell into distinct groups that were separated primarily along an hedonic dimension.

  9. [Loss of taste sensation in terbinafine administration].

    PubMed

    Stricker, B H; de Jong, P A; Schreuder, F; Bijlmer-Iest, J C; Herrmann, W A; van Ulsen, J

    1992-12-05

    Terbinafine is a new antifungal agent for oral treatment of dermatomycosis. Seven patients are reported who developed taste loss after treatment with terbinafine. In four of them, taste loss was complete while one patient was still able to taste sweet products, and a second and third patient no longer tasted salty and sweet products, respectively. In all patients, the onset of the adverse reaction occurred 4-8 weeks after starting treatment. As far as known, taste loss is a transient effect which disappears within 3-6 weeks after discontinuation of terbinafine.

  10. Sugars, Sweet Taste Receptors, and Brain Responses.

    PubMed

    Lee, Allen A; Owyang, Chung

    2017-06-24

    Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus.

  11. Intravital Microscopic Interrogation of Peripheral Taste Sensation

    PubMed Central

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-01-01

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo. PMID:25726964

  12. Intravital Microscopic Interrogation of Peripheral Taste Sensation

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-01

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  13. Intravital microscopic interrogation of peripheral taste sensation.

    PubMed

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-02

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  14. The taste system of small fish species.

    PubMed

    Okada, Shinji

    2015-01-01

    Small fish species such as the zebrafish (Danio rerio) and medaka fish (Oryzias latipes) are advantageous animal models and have been used as model organisms in many research areas. However, they have not been utilized for studying the taste system, primarily because of a dearth of molecular biological knowledge. Quantitative methods for analyzing the taste preferences of fish species have also been lacking. Recent progress of the fish genome project has enabled the elucidation of the molecular mechanisms of taste sensation. Taste receptors and a number of signal transduction molecules have been identified. Additionally, the development of quantitative methods of feeding using fluorescently labeled artificial foods has demonstrated taste preferences in small fish species. Comparisons between these results in fish and reports on mammals have proposed a general logic and evolution of vertebrate taste systems. Analysis on the transsynaptic tracer-expressing transgenic medaka fish also suggests the usefulness of small fish in the research of neural circuits for taste.

  15. Oleogustus: The Unique Taste of Fat.

    PubMed

    Running, Cordelia A; Craig, Bruce A; Mattes, Richard D

    2015-09-01

    Considerable mechanistic data indicate there may be a sixth basic taste: fat. However, evidence demonstrating that the sensation of nonesterified fatty acids (NEFA, the proposed stimuli for "fat taste") differs qualitatively from other tastes is lacking. Using perceptual mapping, we demonstrate that medium and long-chain NEFA have a taste sensation that is distinct from other basic tastes (sweet, sour, salty, and bitter). Although some overlap was observed between these NEFA and umami taste, this overlap is likely due to unfamiliarity with umami sensations rather than true similarity. Shorter chain fatty acids stimulate a sensation similar to sour, but as chain length increases this sensation changes. Fat taste oral signaling, and the different signals caused by different alkyl chain lengths, may hold implications for food product development, clinical practice, and public health policy.

  16. CHARACTERIZATION OF THE EXPRESSION PATTERN OF ADRENERGIC RECEPTORS IN RAT TASTE BUDS

    PubMed Central

    ZHANG, Y.; KOLLI, T.; HIVLEY, R.; JABER, L.; ZHAO, F-l.; YAN, J.; HERNESS, S.

    2010-01-01

    Taste buds signal the presence of chemical stimuli in the oral cavity to the central nervous system using both early transduction mechanisms, which allow single cells to be depolarized via receptor-mediated signaling pathways, and late transduction mechanisms, which involve extensive cell-to-cell communication among the cells in the bud. The latter mechanisms, which involve a large number of neurotransmitters and neuropeptides, are less well understood. Among neurotransmitters, multiple lines of evidence suggest that norepinephrine plays a yet unknown role in the taste bud. This study investigated the expression pattern of adrenergic receptors in the rat posterior taste bud. Expression of α1A, α1B, α1D, α2A, α2B, α2C, β1, and the β2 adrenoceptor subtypes was observed in taste buds using RT-PCR and immunocytochemical techniques. Taste buds also expressed the biosynthetic enzyme for norepinephrine, dopamine β-hydroxylase (DβH), as well as the norepinephrine transporter. Further, expression of the epinephrine synthetic enzyme, phenylethanolamine N-methyltransferase (PNMT), was observed suggesting a possible role for this transmitter in the bud. Phenotyping adrenoceptor expression patterns with double labeling experiments to gustducin, synaptosomal-associated protein 25 (SNAP-25), and neural cell adhesion molecule (NCAM) suggests they are prominently expressed in subsets of cells known to express taste receptor molecules but segregated from cells known to have synapses with the afferent nerve fiber. Alpha and beta adrenoceptors co-express with one another in unique patterns as observed with immunocytochemistry and single cell RT-PCR. These data suggest that single cells express multiple adrenergic receptors and that adrenergic signaling may be particularly important in bitter, sweet, and umami taste qualities. In summary, adrenergic signaling in the taste bud occurs through complex pathways that include presynaptic and postsynaptic receptors and likely play

  17. Oral sensory nerve damage: Causes and consequences.

    PubMed

    Snyder, Derek J; Bartoshuk, Linda M

    2016-06-01

    Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage.

  18. Electrical responses to frog taste cells to chemical stimuli.

    PubMed Central

    Akaike, N; Noma, A; Sato, M

    1976-01-01

    1. Cells inside a fungiform papilla of the frog tongue were impaled with a glass capillary micro-electrode filled with 3 M-KCl. Cells considered to be taste cells showed a resting potential of about -35 mV and an input resistance of 17 Momega on the average. 2. Application of chemical stimuli such as salts, acids and quinine produced a sustained depolarization in a taste cell, the magnitude of depolarization being dependent on the stimulus concentration. Water and weak NaCl solution yielded a hyperpolarization. The thresholds for depolarization as well as the concentration-response relationships for various chemical stimuli in taste cells are in approximate agreement with those determined from the glossopharyngeal nerve responses. 3. The magnitude of depolarization produced by 0-1 M-NaCl and 0-03 M-CaCl2 was dependent on the membrane potential level and reduced linearly with a rise in the latter. However, depolarizations generated by 0-001 M-HDl and 0-02 M quinine changed little in magnitude by a membrane potential change over a wide range. 4. During depolarizations induced by NaCl and KCl a marked reduction in the input resistance of a cell was observed, the amount of the reduction depending on the stimulus concentration. The reduction was also produced by CaCl2 and HCl, but it is small compared with those by NaCl and KCl. Quinine produced an increase in the resistance associated with a depolarization. Water and weak NaCl solution produced an increase in the resistance associated with hyperpolarization. 5. The receptive mechanisms for various kinds of chemical stimuli are discussed in relation to changes in the membrane potential and the membrane conductance of taste cells. PMID:1082505

  19. Expected taste intensity affects response to sweet drinks in primary taste cortex.

    PubMed

    Woods, Andrew T; Lloyd, Donna M; Kuenzel, Johanna; Poliakoff, Ellen; Dijksterhuis, Garmt B; Thomas, Anna

    2011-06-11

    Expectations about a food can impact on its taste, but this may represent a perceptual change or a bias in response at the decision-making stage. We hypothesised that expectation of taste intensity should be underpinned by modulation of activity in primary taste cortex. Using functional magnetic resonance imaging, we found that expecting a very sweet drink, but receiving a less sweet drink, enhanced the reported sweetness and bolstered activity in taste cortex, relative to a less sweet drink without this expectation. The activation overlapped with primary taste cortex activation found in 11 recent taste studies. Our findings provide evidence that taste expectation modulates activity in an area consistently reported as primary taste cortex, implying that expectation effects do indeed impact on taste perception.

  20. Pituitary adenylatecyclase-activating polypeptide-immunoreactive nerve fibers in the rat epiglottis and pharynx.

    PubMed

    Kano, Mitsuhiro; Shimizu, Yoshinaka; Suzuki, Yujiro; Furukawa, Yusuke; Ishida, Hiroko; Oikawa, Miho; Kanetaka, Hiroyasu; Ichikawa, Hiroyuki; Suzuki, Toshihiko

    2011-12-20

    The distribution of pituitary adenylatecyclase-activating polypeptide-immunoreactive (PACAP-IR) nerve fibers was studied in the rat epiglottis and pharynx. PACAP-IR nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant on the laryngeal side of the epiglottis and in the dorsal and lateral border region between naso-oral and laryngeal parts of the pharynx. PACAP-IR nerve fibers were also detected in taste buds within the epiglottis and pharynx. In addition, many PACAP-IR nerve fibers were found around acinar cells and blood vessels. The double immunofluorescence method demonstrated that distribution of PACAP-IR nerve fibers was similar to that in CGRP-IR nerve fibers in the epithelium and taste bud. However, distributions of PACAP-IR and CGRP-IR nerve fibers innervating mucous glands and blood vessels were different. The retrograde tracing method also demonstrated that PACAP and CGRP were co-expressed by vagal and glossopharyngeal sensory neurons innervating the pharynx. These findings suggest that PACAP-IR nerve fibers in the epithelium and taste bud of the epiglottis and pharynx which originate from the vagal and glossopharyngeal sensory ganglia include nociceptors and chemoreceptors. The origin of PACAP-IR nerve fibers which innervate mucous glands and blood vessels may be the autonomic ganglion. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli

    PubMed Central

    DeSimone, John A.; Ren, ZuoJun; Phan, Tam-Hao T.; Heck, Gerard L.; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) Ca2+ concentration ([Ca2+]i) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO2, and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca2+-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca2+]i attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na+ conductance. A decrease in TRC [Ca2+]i enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na+ conductance but did not affect CT responses to KCl or NH4Cl. An increase in TRC [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H+]i and [Ca2+]i was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release. PMID:22956787

  2. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli.

    PubMed

    Desimone, John A; Ren, Zuojun; Phan, Tam-Hao T; Heck, Gerard L; Mummalaneni, Shobha; Lyall, Vijay

    2012-12-01

    The relationship between taste receptor cell (TRC) Ca(2+) concentration ([Ca(2+)](i)) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO(2), and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca(2+), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca(2+)-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca(2+)](i) attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na(+) conductance. A decrease in TRC [Ca(2+)](i) enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na(+) conductance but did not affect CT responses to KCl or NH(4)Cl. An increase in TRC [Ca(2+)](i) did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca(2+)](i) did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H(+)](i) and [Ca(2+)](i) was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca(2+)](i)-dependent and [Ca(2+)](i)-independent mechanisms. Changes in TRC [Ca(2+)](i) in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca(2+)](i) in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release.

  3. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli.

    PubMed

    Desimone, John A; Phan, Tam-Hao T; Ren, Zuojun; Mummalaneni, Shobha; Lyall, Vijay

    2012-12-01

    The relationship between taste receptor cell (TRC) intracellular Ca(2+) ([Ca(2+)](i)) and rat chorda tympani (CT) nerve responses to bitter (quinine and denatonium), sweet (sucrose, glycine, and erythritol), and umami [monosodium glutamate (MSG) and MSG + inosine 5'-monophosphate (IMP)] taste stimuli was investigated before and after lingual application of ionomycin (Ca(2+) ionophore) + Ca(2+), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM; Ca(2+) chelator), U73122 (phospholipase C blocker), thapsigargin (Ca(2+)-ATPase blocker), and diC8-PIP(2) (synthetic phosphatidylinositol 4,5-bisphosphate). The phasic CT response to quinine was indifferent to changes in [Ca(2+)](i). However, a decrease in [Ca(2+)](i) inhibited the tonic part of the CT response to quinine. The CT responses to sweet and umami stimuli were indifferent to changes in TRC [Ca(2+)](i). However, a decrease in [Ca(2+)](i) attenuated the synergistic effects of ethanol on the CT response to sweet stimuli and of IMP on the glutamate CT response. U73122 and thapsigargin inhibited the phasic and tonic CT responses to bitter, sweet, and umami stimuli. Although diC8-PIP(2) increased the CT response to bitter and sweet stimuli, it did not alter the CT response to glutamate but did inhibit the synergistic effect of IMP on the glutamate response. The results suggest that bitter, sweet, and umami taste qualities are transduced by [Ca(2+)](i)-dependent and [Ca(2+)](i)-independent mechanisms. Changes in TRC [Ca(2+)](i) in the BAPTA-sensitive cytosolic compartment regulate quality-specific taste receptors and ion channels that are involved in the neural adaptation and mixture interactions. Changes in TRC [Ca(2+)](i) in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA and ionomycin + Ca(2+), are associated with neurotransmitter release.

  4. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli

    PubMed Central

    DeSimone, John A.; Phan, Tam-Hao T.; Ren, ZuoJun; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) intracellular Ca2+ ([Ca2+]i) and rat chorda tympani (CT) nerve responses to bitter (quinine and denatonium), sweet (sucrose, glycine, and erythritol), and umami [monosodium glutamate (MSG) and MSG + inosine 5′-monophosphate (IMP)] taste stimuli was investigated before and after lingual application of ionomycin (Ca2+ ionophore) + Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM; Ca2+ chelator), U73122 (phospholipase C blocker), thapsigargin (Ca2+-ATPase blocker), and diC8-PIP2 (synthetic phosphatidylinositol 4,5-bisphosphate). The phasic CT response to quinine was indifferent to changes in [Ca2+]i. However, a decrease in [Ca2+]i inhibited the tonic part of the CT response to quinine. The CT responses to sweet and umami stimuli were indifferent to changes in TRC [Ca2+]i. However, a decrease in [Ca2+]i attenuated the synergistic effects of ethanol on the CT response to sweet stimuli and of IMP on the glutamate CT response. U73122 and thapsigargin inhibited the phasic and tonic CT responses to bitter, sweet, and umami stimuli. Although diC8-PIP2 increased the CT response to bitter and sweet stimuli, it did not alter the CT response to glutamate but did inhibit the synergistic effect of IMP on the glutamate response. The results suggest that bitter, sweet, and umami taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in the BAPTA-sensitive cytosolic compartment regulate quality-specific taste receptors and ion channels that are involved in the neural adaptation and mixture interactions. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA and ionomycin + Ca2+, are associated with neurotransmitter release. PMID:22993258

  5. Taste receptors in the gut - A new target for health promoting properties in diet.

    PubMed

    Ekstrand, Bo; Young, Jette Feveile; Rasmussen, Martin Krøyer

    2017-10-01

    In this review we describe a new target for food functionality, the taste receptors in the gastrointestinal tract. These receptors are involved in an intricate signalling network for monitoring of taste and nutrient intake, homeostasis and energy metabolism, and they are also an early warning system for toxic substances in our diet. Especially the receptors for bitter taste provide a new possibility to activate a number of health related signalling pathways, already at low concentrations of the active substance, without requiring uptake into the body and transport via the circulation. When ligands bind to these receptors, signalling is induced either via peptide hormones into the circulation to other organs in the body, or via nerve fibers directly to the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Wine Expertise Predicts Taste Phenotype

    PubMed Central

    Hayes, John E; Pickering, Gary J

    2011-01-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance – with appropriate caveats about populations tested, outcomes measured and psychophysical methods used – an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli. PMID:22888174

  7. Wine Expertise Predicts Taste Phenotype.

    PubMed

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  8. Taste perception and food choices.

    PubMed

    Negri, Rossella; Di Feola, Mariarosaria; Di Domenico, Simone; Scala, M Giuseppa; Artesi, Ginevra; Valente, Serena; Smarrazzo, Andrea; Turco, Francesca; Morini, Gabriella; Greco, Luigi

    2012-05-01

    The extent to which variation in taste perception influences food preferences is, to date, controversial. Bitterness in food triggers an innate aversion that is responsible for dietary restriction in children. We investigated the association among genetic variations in bitter receptor TAS2R38 and food choices in healthy children in the Mediterranean area, to develop appropriate tools to evaluate the relation among genetic predisposition, dietary habits, and feeding disorders. The aims of the study were to get a first baseline picture of taste sensitivity in healthy adults and their children and to explore taste sensitivity in a preliminary sample of obese children and in samples affected by functional gastrointestinal diseases. Individuals (98 children, 87 parents, 120 adults) were recruited from the general population in southern Italy. Bitterness sensitivity was assessed by means of a suprathreshold method with 6-propyl-2-thiouracil. Genomic DNA from saliva was used to genotype individuals for 3 polymorphisms of TAS2R38 receptor, A49P, A262 V, and V296I. Food intake was assessed by a food frequency questionnaire. Children's taste sensation differed from that of adults: we observed a higher frequency of supertasters among children even in the mother-child dyads with the same diplotypes. Among adults, supertaster status was related with proline-alanine-valine (taster allele) homozygous haplotype, whereas supertaster children were mainly heterozygous. Regarding the food choices, we found that a higher percentage of taster children avoided bitter vegetables or greens altogether compared with taster adults. Taster status was also associated with body mass index in boys. Greater sensitivity to 6-propyl-2-thiouracil predicts lower preferences for vegetables in children, showing an appreciable effect of the genetic predisposition on food choices. None of the obese boys was a supertaster.

  9. Coevolutionary patterning of teeth and taste buds

    PubMed Central

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  10. Coevolutionary patterning of teeth and taste buds.

    PubMed

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-03

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  11. Nerve Blocks

    MedlinePlus

    ... Sometimes the needle has to be inserted fairly deep to reach the nerve causing your problem. This ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  12. Integrative role of the histaminergic system in feeding and taste perception.

    PubMed

    Ishizuka, Tomoko; Yamatodani, Atsushi

    2012-01-01

    Feeding behavior is regulated by a complex interplay of many endogenous substances, such as peptides and neurotransmitters in the central nervous system. Histamine is a neurotransmitter which expresses an anorectic effect on food intake via histamine H(1) receptors. The histaminergic system exists downstream of leptin, a satiety factor secreted from white adipose tissue. Because direct stimulation of the histaminergic system by histamine H(3)-inverse agonists or antagonists can normalize the obese phenotype in which animal models with exogenous leptin resistance, which resembles human obesity, the potential roles of histamine H(3) receptors as a therapeutic target now draw attention. Histaminergic activity is enhanced during feeding, and an oral somatic sensation is thought to affect histaminergic activity while blood glucose levels do not. In addition, gustatory information can modulate histaminergic activity by two mechanisms: by physiological excitation of the chorda tympani nerve, one of the taste nerves and by emotions elicited by taste perception, i.e., taste palatability. Particularly, aversive and hazardous taste stimuli tonically facilitate histaminergic activity, suggesting that the histaminergic system is involved in the response to harmful stimuli. Together with recent findings, it is postulated that the histaminergic system responds to both mechanical and chemical sensory input from the oral cavity during feeding and is exerted as a part of the danger response system.

  13. Human receptors for sweet and umami taste

    PubMed Central

    Li, Xiaodong; Staszewski, Lena; Xu, Hong; Durick, Kyle; Zoller, Mark; Adler, Elliot

    2002-01-01

    The three members of the T1R class of taste-specific G protein-coupled receptors have been hypothesized to function in combination as heterodimeric sweet taste receptors. Here we show that human T1R2/T1R3 recognizes diverse natural and synthetic sweeteners. In contrast, human T1R1/T1R3 responds to the umami taste stimulus l-glutamate, and this response is enhanced by 5′-ribonucleotides, a hallmark of umami taste. The ligand specificities of rat T1R2/T1R3 and T1R1/T1R3 correspond to those of their human counterparts. These findings implicate the T1Rs in umami taste and suggest that sweet and umami taste receptors share a common subunit. PMID:11917125

  14. Evaluation of taste solutions by sensor fusion

    SciTech Connect

    Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko; Nakashima, Miki; Kato, Yukihisa; Nonoue, Koichi; Yamano, Yoshimasa

    2009-05-23

    In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surface plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.

  15. Taste Preference Assay for Adult Drosophila.

    PubMed

    Bantel, Andrew P; Tessier, Charles R

    2016-09-08

    Olfactory and gustatory perception of the environment is vital for animal survival. The most obvious application of these chemosenses is to be able to distinguish good food sources from potentially dangerous food sources. Gustation requires physical contact with a chemical compound which is able to signal through taste receptors that are expressed on the surface of neurons. In insects, these gustatory neurons can be located across the animal's body allowing taste to play an important role in many different behaviors. Insects typically prefer compounds containing sugars, while compounds that are considered bitter tasting are avoided. Given the basic biological importance of taste, there is intense interest in understanding the molecular mechanisms underlying this sensory modality. We describe an adult Drosophila taste assay which reflects the preference of the animals for a given tastant compound. This assay may be applied to animals of any genetic background to examine the taste preference for a desired soluble compound.

  16. [Sensors for Measuring Taste and Smell].

    PubMed

    Toko, Kiyoshi

    2017-05-01

    Gustatory and olfactory senses receive chemical substances at the biological membranes of taste and olfactory cells, respectively. The present review article describes electronic tongue (taste sensor) and electronic nose (odor sensor) developed based on biomimetic technology. A taste sensor is now commercially sold and utilized in pharmaceutical and food companies across the world. An electronic nose with high sensitivity was also commercialized in Japan. These sensors provide novel methods for analyzing chemical substances instead of using conventional tools.

  17. Smell and taste acuity in epileptic syndromes.

    PubMed

    Campanella, G; Filla, A; De Michele, G

    1978-01-01

    Taste and smell acuity were determined in 50 normal subjects and 48 epileptic patients by means of Henkin's method. Smell detection thresholds are greatly reduced in epileptic patients, mainly those suffering from partial seizures with complex symptomatology. Epileptic patients show also a reduced threshold for sweet and bitter taste. Age, sex and antiepileptic drugs do not affect taste and smell acuity. The significance of these findings in the pathogenesis of epileptic seizures is discussed.

  18. Glucagon signaling modulates sweet taste responsiveness.

    PubMed

    Elson, Amanda E T; Dotson, Cedrick D; Egan, Josephine M; Munger, Steven D

    2010-10-01

    The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.

  19. Responses of Single Chorda Tympani Taste Fibers of the Calf (Bos taurus)

    PubMed Central

    Roberts, Thomas; Elmer, Donald; Cragin, Tiffany; Danilova, Vicktoria

    2010-01-01

    In spite of a wealth of information on feed and nutrition in cattle, there little is published of what they actually can taste. Here, we attempt to remedy some of this deficiency by presenting recordings of the chorda tympani proper nerve of young Holstein calves during stimulation of approximately 30 compounds. Hierarchical cluster analysis of 46 single taste fibers separated 4 fiber clusters: N (salt best), H (sour best), and 2 clusters, which could not be related to any human taste quality. The N fibers responded best to LiCl, NaCl, urea, monosodium glutamate, and KCl, whereas the H fibers responded strongly to citric and ascorbic acid. Interestingly, propionic and butyric acid stimulated best the 3rd cluster, whereas the 4th cluster responded best to denatonium benzoate and only to a small extent to quinine hydrochloride. Sweeteners stimulated moderately all clusters. Beginning with the largest response to sweet, the order between the responses was: acesulfame-K, saccharin, D-phenylalanine, glycine, sucrose, fructose, erythritol, cyclamate, and lactose. Alitame, aspartame, and super-aspartame evoked no or little responses. Three and 5 M ethanol stimulated all clusters. Comparison with taste fibers in other species suggests that the taste world of cattle is quite different from other species’. PMID:20212013

  20. Responses of single chorda tympani taste fibers of the calf (Bos taurus).

    PubMed

    Hellekant, Göran; Roberts, Thomas; Elmer, Donald; Cragin, Tiffany; Danilova, Vicktoria

    2010-06-01

    In spite of a wealth of information on feed and nutrition in cattle, there little is published of what they actually can taste. Here, we attempt to remedy some of this deficiency by presenting recordings of the chorda tympani proper nerve of young Holstein calves during stimulation of approximately 30 compounds. Hierarchical cluster analysis of 46 single taste fibers separated 4 fiber clusters: N (salt best), H (sour best), and 2 clusters, which could not be related to any human taste quality. The N fibers responded best to LiCl, NaCl, urea, monosodium glutamate, and KCl, whereas the H fibers responded strongly to citric and ascorbic acid. Interestingly, propionic and butyric acid stimulated best the 3rd cluster, whereas the 4th cluster responded best to denatonium benzoate and only to a small extent to quinine hydrochloride. Sweeteners stimulated moderately all clusters. Beginning with the largest response to sweet, the order between the responses was: acesulfame-K, saccharin, D-phenylalanine, glycine, sucrose, fructose, erythritol, cyclamate, and lactose. Alitame, aspartame, and super-aspartame evoked no or little responses. Three and 5 M ethanol stimulated all clusters. Comparison with taste fibers in other species suggests that the taste world of cattle is quite different from other species'.

  1. Taste, visceral information and exocrine reflexes with glutamate through umami receptors.

    PubMed

    San Gabriel, Ana; Nakamura, Eiji; Uneyama, Hisayuki; Torii, Kunio

    2009-01-01

    Chemical substances of foods drive the cognitive recognition of taste with the subsequent regulation of digestion in the gastrointestinal (GI) tract. Tastants like glutamate can bind to taste membrane receptors on the tip of specialized taste cells eliciting umami taste. In chemical-sensing cells diffused through the GI tract, glutamate induces functional changes. Most of the taste-like receptor-expressing cells from the stomach and intestine are neuroendocrine cells. The signaling molecules produced by these neuroendocrine cells either activate afferent nerve endings or release peptide hormones that can regulate neighboring cells in a paracrine fashion or travel through blood to their target receptor. Once afferent sensory fibers transfer the chemical information of the GI content to the central nervous system (CNS) facilitating the gut-brain signaling, the CNS regulates the GI through efferent cholinergic and noradrenergic fibers. Thus, this is a two-way extrinsic communication process. Glutamate within the lumen of the stomach stimulates afferent fibers and increases acid and pepsinogen release; whereas on the duodenum, glutamate increases the production of mucous to protect the mucosa against the incoming gastric acid. The effects of glutamate are believed to be mediated by G protein-coupled receptors expressed at the lumen of GI cells. The specific cell-type and molecular function of each of these receptors are not completely known. Here we will examine some of the glutamate receptors and their already understood role on GI function regulation.

  2. Taste receptors of the gut: emerging roles in health and disease.

    PubMed

    Depoortere, Inge

    2014-01-01

    Recent progress in unravelling the nutrient-sensing mechanisms in the taste buds of the tongue has triggered studies on the existence and role of chemosensory cells in the gut. Indeed, the gastrointestinal tract is the key interface between food and the human body and can sense basic tastes in much the same way as the tongue, through the use of similar G-protein-coupled taste receptors. These receptors 'taste' the luminal content and transmit signals that regulate nutrient transporter expression and nutrient uptake, and also the release of gut hormones and neurotransmitters involved in the regulation of energy and glucose homeostasis. Hence, they play a prominent role in the communication between the lumen, epithelium, smooth muscle cells, afferent nerve fibres and the brain to trigger adaptive responses that affect gastrointestinal function, food intake and glucose metabolism. This review summarises how sensing of nutrients by taste receptors along the gut plays a key role in the process of digestion, and how disturbances or adaptations of these chemosensory signalling pathways may contribute to the induction or resolution of a number of pathological conditions related to diabetes, obesity, or diet-induced symptom generation in irritable bowel syndrome. Targeting these receptors may represent a promising novel route for the treatment of a number of these diseases.

  3. Impairments in the Perception of Odor-Induced Tastes and Their Relationship to Impairments in Taste Perception

    ERIC Educational Resources Information Center

    Stevenson, Richard J.; Miller, Laurie A.; Thayer, Zoe C.

    2008-01-01

    Certain odors have tastelike qualities when sniffed. To the extent that these qualities are akin to real taste experiences, impairment in perception of odor-induced tastes should be accompanied by taste impairment, and vice versa. Twelve patients were selected with possible odor-induced taste impairments or general taste impairments via a…

  4. Optic Nerve Decompression

    MedlinePlus

    ... Nerve Decompression Dacryocystorhinostomy (DCR) Disclosure Statement Printer Friendly Optic Nerve Decompression John Lee, MD Introduction Optic nerve decompression is a surgical procedure aimed at ...

  5. Ulnar nerve dysfunction

    MedlinePlus

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... compressed in the elbow, a problem called cubital tunnel syndrome may result. When damage destroys the nerve ...

  6. Effects of selective lingual gustatory deafferentation on suprathreshold taste intensity discrimination of NaCl in rats.

    PubMed

    Colbert, Connie L; Garcea, Mircea; Spector, Alan C

    2004-12-01

    In rats, chorda tympani nerve transection (CTX) greatly increases the detection threshold of sodium chloride (NaCl) and severely disrupts salt discriminability. Here it is shown that CTX has surprisingly little effect, if any, on suprathreshold intensity discrimination. Glossopharyngeal nerve transection (GLX), which has no reported effect on salt sensibility, also did not affect performance. Rats were tested in a 2-response, operant taste intensity discrimination task. Difference thresholds for CTX rats were only slightly higher (-0.15 log/10 unit) than those for GLX and sham-transected rats, when 0.05 M served as the standard, and did not significantly differ when 0.1 M NaCl was the standard. Although the perceived intensity of NaCl might be reduced by CTX, input from remaining taste nerves sufficiently maintains the relative discriminability of suprathreshold NaCl concentrations.

  7. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  8. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  9. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  10. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  11. Acid Stimulation (Sour Taste) Elicits GABA and Serotonin Release from Mouse Taste Cells

    PubMed Central

    Huang, Yijen A.; Pereira, Elizabeth; Roper, Stephen D.

    2011-01-01

    Several transmitter candidates including serotonin (5-HT), ATP, and norepinephrine (NE) have been identified in taste buds. Recently, γ-aminobutyric acid (GABA) as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO) cells stably co-expressing GABAB receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour) taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca2+-dependent; removing Ca2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III) cells and not from Receptor (Type II) cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion [1], the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses. PMID:22028776

  12. Peripheral Nerve Disorders

    MedlinePlus

    ... Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  13. Vagus Nerve Stimulation

    MedlinePlus

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  14. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  15. Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose.

    PubMed

    Flores, Veronica L; Moran, Anan; Bernstein, Max; Katz, Donald B

    2016-05-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty-the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion-a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This "non-CS preexposure effect" scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes.

  16. Water Treatment Technology - Taste, Odor & Color.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of…

  17. Modulation of Taste Processing by Temperature.

    PubMed

    Lemon, Christian H

    2017-08-09

    Taste stimuli have a temperature that can stimulate thermosensitive neural machinery in the mouth during gustatory experience. Although taste and oral temperature are sometimes discussed as different oral sensory modalities, there is a body of literature that demonstrates temperature is an important component and modulator of the intensity of gustatory neural and perceptual responses. Available data indicate that the influence of temperature on taste, herein referred to as "thermogustation", can vary across taste qualities, can also vary among stimuli presumed to share a common taste quality, and is conditioned on taste stimulus concentration, with neuronal and psychophysical data revealing larger modulatory effects of temperature on gustatory responding to weakened taste solutions compared to concentrated. What is more, thermogustation is evidenced to involve interplay between mouth and stimulus temperature. Given these and other dependencies, identifying principles by which thermal input affects gustatory information flow in the nervous system may be important for ultimately unravelling the organization of neural circuits for taste and defining their involvement with multisensory processing related to flavor. Yet thermal effects are relatively understudied in gustatory neuroscience. Major gaps in our understanding of the mechanisms and consequences of thermogustation include delineating supporting receptors, the potential involvement of oral thermal and somatosensory trigeminal neurons in thermo-gustatory interactions, and the broader operational roles of temperature in gustatory processing. This review will discuss these and other issues in the context of the literature relevant to understanding thermogustation. Copyright © 2017, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

  18. Why do taste cells generate action potentials?

    PubMed Central

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2009-01-01

    Taste cells regularly generate action potentials, but their functional significance in taste signaling is unclear. A paper in BMC Neuroscience reveals the identity of the voltage-gated Na+ channels underlying action potentials, providing the foundation for insights into their function. PMID:19439032

  19. Sensing Basic Tastes by Electronic Tongue Sensors

    NASA Astrophysics Data System (ADS)

    Kovács, Zoltán; Szöllősi, Dániel; Fekete, András; Isz, Sandrine

    2011-09-01

    There is an increasing demand to develop method for simulating the human taste perception by objective instruments1. The task was to develop method for the assessment of definite taste attributes. Therefore, our objective was to develop complete method for sensing different taste attributes. The subject of this work was to test the Specific Sensor Array for taste screening developed by Alpha M.O.S. Different brands of carrot juices were analyzed by an Alpha Astree Electronic Tongue (ET) and a trained sensory panel. The results of the sensory evaluation showed that the different carrot juice samples were significantly different from each other in some taste attributes. The electronic tongue was able to distinguish the tested samples according to the measurement results evaluated by multivariate statistics. Furthermore, the relevant taste attributes of carrot juice samples such as sour taste could be predicted by definite sensors of the electronic tongue. Based on our results we concluded that the selected sensors of the Specific Sensor Array could be an appropriate tool for estimating important taste attributes of the tested carrot juice samples.

  20. Water Treatment Technology - Taste, Odor & Color.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of…

  1. The taste response to ammonia in Drosophila

    PubMed Central

    Delventhal, R.; Menuz, K.; Joseph, R.; Park, J.; Sun, J. S.; Carlson, J. R.

    2017-01-01

    Ammonia is both a building block and a breakdown product of amino acids and is found widely in the environment. The odor of ammonia is attractive to many insects, including insect vectors of disease. The olfactory response of Drosophila to ammonia has been studied in some detail, but the taste response has received remarkably little attention. Here, we show that ammonia is a taste cue for Drosophila. Nearly all sensilla of the major taste organ of the Drosophila head house a neuron that responds to neutral solutions of ammonia. Ammonia is toxic at high levels to many organisms, and we find that it has a negative valence in two paradigms of taste behavior, one operating over hours and the other over seconds. Physiological and behavioral responses to ammonia depend at least in part on Gr66a+ bitter-sensing taste neurons, which activate a circuit that deters feeding. The Amt transporter, a critical component of olfactory responses to ammonia, is widely expressed in taste neurons but is not required for taste responses. This work establishes ammonia as an ecologically important taste cue in Drosophila, and shows that it can activate circuits that promote opposite behavioral outcomes via different sensory systems. PMID:28262698

  2. Altering expectancy dampens neural response to aversive taste in primary taste cortex.

    PubMed

    Nitschke, Jack B; Dixon, Gregory E; Sarinopoulos, Issidoros; Short, Sarah J; Cohen, Jonathan D; Smith, Edward E; Kosslyn, Stephen M; Rose, Robert M; Davidson, Richard J

    2006-03-01

    The primary taste cortex consists of the insula and operculum. Previous work has indicated that neurons in the primary taste cortex respond solely to sensory input from taste receptors and lingual somatosensory receptors. Using functional magnetic resonance imaging, we show here that expectancy modulates these neural responses in humans. When subjects were led to believe that a highly aversive bitter taste would be less distasteful than it actually was, they reported it to be less aversive than when they had accurate information about the taste and, moreover, the primary taste cortex was less strongly activated. In addition, the activation of the right insula and operculum tracked online ratings of the aversiveness for each taste. Such expectancy-driven modulation of primary sensory cortex may affect perceptions of external events.

  3. Polycose taste pre-exposure fails to influence behavioral and neural indices of taste novelty.

    PubMed

    Barot, Sabiha K; Bernstein, Ilene L

    2005-12-01

    Taste novelty can strongly modulate the speed and efficacy of taste aversion learning. Novel sweet tastes enhance c-Fos-like immunoreactivity (FLI) in the central amygdala and insular cortex. The present studies examined whether this neural correlate of novelty extends to different taste types by measuring FLI signals after exposure to novel and familiar polysaccharide (Polycose) and salt (NaCl) tastes. Novel Polycose not only failed to elevate FLI expression in central amygdala and insular cortex, but also failed to induce stronger taste aversion learning than familiar Polycose. Novel NaCl, on the other hand, showed patterns of FLI activation and aversion learning similar to that of novel sweet tastes. Possible reasons for the resistance of Polycose to typical pre-exposure effects are discussed. Copyright (c) 2006 APA, all rights reserved.

  4. The chemistry of sour taste and the strategy to reduce the sour taste of beer.

    PubMed

    Li, Hong; Liu, Fang

    2015-10-15

    The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species.

  5. Taste in chimpanzees II: single chorda tympani fibers.

    PubMed

    Hellekant, G; Ninomiya, Y; Danilova, V

    1997-06-01

    Data are presented from 48 taste fibers in chorda tympani nerves of 10 chimpanzees during taste stimulation with 29 stimuli. The results demonstrated a higher taste fiber specificity than in any other mammalian species reported; breadth of tuning equals 0.3. Hierarchical cluster analysis separated an S-cluster (50% of all fibers), an N-cluster (31%), and a Q-cluster (19%). The S-cluster showed the highest specificity. Its fibers responded, with few exceptions, to every sweetener tested, including the sweet proteins brazzein and monellin. The response grew with increasing sweetener concentration. A large response to one sweetener was generally accompanied by a large response to all other sweeteners, and vice versa. Except for one broadly tuned fiber, the fibers of the S-cluster never responded to the bitter compounds. The fibers of the Q-cluster were more broadly tuned than any other fibers. Quinine hydrochloride was their best stimulus, but most fibers were also stimulated by KCl and NaCl with amiloride. Acids stimulated some of these fibers. The N-cluster could be divided into 3 subclusters: an Na-subcluster (3 fibers), Na-K subcluster (10 fibers), and M-subcluster (3 fibers). The Na-fibers responded strongly to, and were quite specific to, NaCl and LiCl stimulation but not to KCl, and fibers of the Na-K subcluster responded equally well to NaCl and KCl. The response to NaCl was suppressed by amiloride in the fibers of the Na-subcluster, but not in the fibers of the Na-K subcluster. Umami compounds elicited the strongest responses in the M-subcluster.

  6. Sugars, Sweet Taste Receptors, and Brain Responses

    PubMed Central

    Lee, Allen A.; Owyang, Chung

    2017-01-01

    Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus. PMID:28672790

  7. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments.

    PubMed

    Scharbert, Susanne; Hofmann, Thomas

    2005-06-29

    Recently, bioresponse-guided fractionation of black tea infusions indicated that neither the high molecular weight thearubigens nor the theaflavins, but a series of 14 flavon-3-ol glycopyranosides besides some catechins, might be important contributors to black tea taste. To further bridge the gap between pure structural chemistry and human taste perception, in the present investigation 51 putative taste compounds have been quantified in a black tea infusion, and their dose-over-threshold (Dot) factors have been calculated on the basis of a dose/threshold relationship. To confirm these quantitative results, an aqueous taste model was prepared by blending aqueous solutions of 15 amino acids, 14 flavonol-glycosides, 8 flavan-3-ols, 5 theaflavins, 5 organic acids, 3 sugars, and caffeine in their "natural" concentrations. Sensory analyses revealed that the taste profile of this artificial cocktail did not differ significantly from the taste profile of the authentic tea infusion. To further narrow the number of key taste compounds, finally, taste omission experiments have been performed, on the basis of which a reduced recombinate was prepared containing the bitter-tasting caffeine, nine velvety astringent flavonol-3-glycosides, and the puckering astringent catechin as well as the astringent and bitter epigallocatechin-3-gallate. The taste profile of this reduced recombinate differed not significantly from that of the complete taste recombinate, thus confirming these 12 compounds as the key taste compounds of the tea infusion. Additional sensory studies demonstrated for the first time that the flavanol-3-glycosides not only impart a velvety astringent taste sensation to the oral cavity but also contribute to the bitter taste of tea infusions by amplifying the bitterness of caffeine.

  8. Taste Coding after Selective Inhibition by Chlorhexidine

    PubMed Central

    Wang, Miao-Fen; Marks, Lawrence E.

    2009-01-01

    Coding of the complex tastes of ionic stimuli in humans was studied by combining taste confusion matrix (TCM) methodology and treatment with chlorhexidine gluconate. The TCM evaluates discrimination of multiple stimuli simultaneously. Chlorhexidine, a bis-biguanide antiseptic, reversibly inhibits salty taste and tastes of a subset of bitter stimuli, including quinine hydrochloride. Identifications of salty (NaCl, “salt”), bitter (quinine·HCl, “quinine”), sweet (sucrose, “sugar”), and sour (citric acid, “acid”) prototypes, alone and as components of binary mixtures, were measured under 4 conditions. One was a water-rinse control and the others had the salt and quinine tastes progressively reduced by treatment with 1 mM chlorhexidine, 3 mM chlorhexidine, and ultimately to zero by elimination of NaCl and quinine·HCl. Treatment with chlorhexidine perturbed identification of salt more than quinine; both were thereafter more often confused with “water” and unidentified when mixed with sucrose or citric acid. All pairwise discriminations that depended on the tastes of NaCl and quinine·HCl deteriorated, and although H2O was mistakenly identified as quinine after chlorhexidine, this may have been a decisional bias. Other confusions reflected “unprompted mixture analysis” and an obscuring of salt taste by a less-inhibited stronger quinine or sugar or acid tastes in mixtures. Partial inhibition of the tastes of NaCl and quinine·HCl by chlorhexidine was considered in the context of multiple receptors for the 2 compounds. Discrimination among prototypic stimuli with varying strengths was consistent with a gustatory system that evaluates a small number of independent tastes. PMID:19703921

  9. Taste-related sensations in old age.

    PubMed

    Ogawa, T; Annear, M J; Ikebe, K; Maeda, Y

    2017-03-02

    The sense of taste is important as it allows for assessment of nutritional value, safety and quality of foods as well as for food enjoyment and quality of life. Several factors are suggested to be associated with taste sensitivity, and higher prevalence of taste disorder has been reported among older adults. This review focused on the reported causes and correlates of taste decline in older adults, with the aim to consolidating existing evidence and identifying gaps and limitations. Using a scoping review methodology, we sought relevant literature from the last 20 years. Search terms included taste, gustatory sense, older adults and geriatric. Considered research was limited to reports that involved research participants over 60 years old, papers written in English, and manuscripts published after 1995. We have consolidated available evidences on the influences on taste-related sensations among international cohorts of older adults. Influences can be reflected under the topics of physiological changes in the sensory organs, physiological and behavioural variables related to taste sensation. This review identified three areas of historic and current research endeavour related to studies of taste sensation in older subjects: physiological changes in the sensory organs, factors related to the ageing of the individual and behavioural variables affecting taste-related sensation. Key limitations and gaps in the current literature include notable lack of consideration of potential confounding, mediating and moderating effects, while future research is indicated in the areas of measuring the quality of health and life. As global population ageing accelerates in the coming decades, maintaining taste sensations and sensitivity in older adults will be a key measure to ensuring quality of health and life.

  10. The Effect of Temperature on Umami Taste

    PubMed Central

    Alvarado, Cynthia; Andrew, Kendra; Nachtigal, Danielle

    2016-01-01

    The effect of temperature on umami taste has not been previously studied in humans. Reported here are 3 experiments in which umami taste was measured for monopotassium glutamate (MPG) and monosodium glutamate (MSG) at solution temperatures between 10 and 37 °C. Experiment 1 showed that for subjects sensitive to MPG on the tongue tip, 1) cooling reduced umami intensity whether sampled with the tongue tip or in the whole mouth, but 2) had no effect on the rate of umami adaptation on the tongue tip. Experiment 2 showed that temperature had similar effects on the umami taste of MSG and MPG on the tongue tip but not in the whole mouth, and that contrary to umami taste, cooling to 10 °C increased rather than decreased the salty taste of both stimuli. Experiment 3 was designed to investigate the contribution of the hT1R1–hT1R3 glutamate receptor to the cooling effect on umami taste by using the T1R3 inhibitor lactisole. However, lactisole failed to block the umami taste of MPG at any temperature, which supports prior evidence that lactisole does not block umami taste for all ligands of the hT1R1–hT1R3 receptor. We conclude that temperature can affect sensitivity to the umami and salty tastes of glutamates, but in opposite directions, and that the magnitude of these effects can vary across stimuli and modes of tasting (i.e., whole mouth vs. tongue tip exposures). PMID:27102813

  11. Oral pain perception and taste in burning mouth syndrome.

    PubMed

    Just, T; Steiner, S; Pau, H W

    2010-01-01

    Aim of this study was to investigate the effect of idiopathic burning mouth syndrome (BMS) on both, the pain perception within trigeminal lingual nerve distribution and gustatory sensitivity using capsaicin threshold test, and regional taste tests, respectively. Pain thresholds for capsaicin were assessed using capsaicin-impregnated filter-paper strips. The strips were placed midline on the tongue tip for whole mouth testing with the mouth closed, and on the left or right edge of the extended anterior tongue for lateralized testing. Measures of gustatory function were obtained by validated "taste strips" test kit and electrogustometry. The tests were applied to 13 patients with BMS. Results were compared with those from 28 healthy subjects. Patients with BMS exhibited a decreased gustatory and somatosensory perception compared with healthy controls. These changes were found for lateralized tests but not for the whole mouth test procedure. Duration of disorder showed an effect on the capsaicin threshold, with patients being less sensitive to capsaicin exhibiting an increased duration of disorder. Both pain-related and gustatory sensitivies of the tongue are found to be decreased in BMS.

  12. Genetic tracing of the gustatory neural pathway originating from Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae

    PubMed Central

    Yamamoto, Kurumi; Ishimaru, Yoshiro; Ohmoto, Makoto; Matsumoto, Ichiro; Asakura, Tomiko; Abe, Keiko

    2011-01-01

    Polycystic kidney disease 1-like 3 (Pkd1l3) is expressed specifically in sour-sensing type III taste cells that have synaptic contacts with afferent nerve fibers in circumvallate and foliate papillae located in the posterior region of the tongue, though not in fungiform papillae or the palate. To visualize the gustatory neural pathways that originate from type III taste cells in circumvallate and foliate papillae, we established transgenic mouse lines that express the transneuronal tracer wheat germ agglutinin (WGA) under the control of the mouse Pkd1l3 gene promoter/enhancer. The WGA transgene was accurately expressed in Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae. Punctate WGA protein signals appeared to be detected specifically in type III taste cells but not in other types of taste cells. WGA protein was transferred primarily to a subset of neurons located in close proximity to the glossopharyngeal nerve bundles in the nodose/petrosal ganglion. WGA signals were also observed in a small population of neurons in the geniculate ganglion. This result demonstrates the anatomical connection between taste receptor cells in the foliate papillae and the chorda tympani nerves. WGA protein was further conveyed to neurons in a rostro-central subdivision of the nucleus of the solitary tract. These findings demonstrate that the approximately 10 kb 5’-flanking region of the mouse Pkd1l3 gene functions as a type III taste cell-specific promoter/enhancer. In addition, experiments using the pkd1l3-WGA transgenic mice reveal a sour gustatory pathway that originates from taste receptor cells in the posterior region of the tongue. PMID:21883212

  13. Gustatory responses of the mouse chorda tympani nerve vary based on region of tongue stimulation.

    PubMed

    Dana, Rachel M; McCaughey, Stuart A

    2015-06-01

    Different parts of the mouth vary in their taste responsiveness and gustatory transduction components. However, there have been few attempts to consider regional variation among areas innervated by a single nerve branch or containing only one type of gustatory papilla. Here, we examined whether taste-elicited responses of a single nerve, the chorda tympani (CT), depend on where taste solutions are delivered on the tongue in mice. In experiment 1, multiunit CT responses to NaCl and sucrose were larger if sapid taste solutions were applied to the tongue tip, which contains the anterior-most fungiform papillae, than if they were flowed over fungiform and foliate papillae on the posterior tongue. Further, the epithelial sodium channel (ENaC) blocker amiloride suppressed NaCl responses to a greater degree for the tongue tip. In experiment 2, CT nerve responses were compared between the tongue tip and a region further back that contained only fungiform papillae. NaCl and sucrose solutions applied to posterior fungiform papillae produced smaller responses than did those elicited by the same taste stimuli applied to anterior fungiform papillae on the tongue tip. Amiloride suppressed the response to NaCl delivered to the anterior fungiform but not posterior fungiform papillae. These results indicate that the CT response is tongue-region dependent in the mouse. Furthermore, the spatial location of a fungiform papilla provides important information about its properties, such as whether sodium taste transduction is mediated by amiloride-sensitive ENaCs.

  14. Taste of Milk from Inflamed Breasts of Breastfeeding Mothers with Mastitis Evaluated Using a Taste Sensor

    PubMed Central

    Yoshida, Michiko; Shinohara, Hitomi; Sugiyama, Toshihiro; Kumagai, Masanori; Muto, Hajime

    2014-01-01

    Abstract Background: The refusal of infants to suckle from a breast that is inflamed with mastitis suggests that the taste of the milk has changed. However, the taste of milk from a breast with mastitis has never been empirically determined. The present study compares the taste of milk from breastfeeding mothers with or without mastitis and identifies specific changes in the taste of milk from mothers with mastitis. Subjects and Methods: The intensity of four basic tastes (sourness, saltiness, bitterness, and umami) of breastmilk from 24 healthy mothers at 3–5 days and at 2–3, 4–5, and 8–10 weeks postpartum and from 14 mothers with mastitis was determined objectively using a taste sensor. The intensity of each basic taste and the concentrations of main taste substances in milk were compared between the inflamed breasts and the normal breasts of control mothers or the contralateral asymptomatic breast of mothers with unilateral mastitis. Results: The transition from colostrum to mature milk was accompanied by changes in the taste of the milk, such as decreased saltiness and umami and increased bitterness and sourness. Umami and saltiness increased in milk from inflamed breasts. Contents of sodium, glutamate, and guanosine monophosphate increased in milk from inflamed breasts. Conclusions: Tastes that were specifically associated with inflamed breasts appeared to include an increase in umami and saltiness, which might have resulted from an increased content in factors associated with umami and sodium. PMID:24350703

  15. Taste of milk from inflamed breasts of breastfeeding mothers with mastitis evaluated using a taste sensor.

    PubMed

    Yoshida, Michiko; Shinohara, Hitomi; Sugiyama, Toshihiro; Kumagai, Masanori; Muto, Hajime; Kodama, Hideya

    2014-03-01

    The refusal of infants to suckle from a breast that is inflamed with mastitis suggests that the taste of the milk has changed. However, the taste of milk from a breast with mastitis has never been empirically determined. The present study compares the taste of milk from breastfeeding mothers with or without mastitis and identifies specific changes in the taste of milk from mothers with mastitis. The intensity of four basic tastes (sourness, saltiness, bitterness, and umami) of breastmilk from 24 healthy mothers at 3-5 days and at 2-3, 4-5, and 8-10 weeks postpartum and from 14 mothers with mastitis was determined objectively using a taste sensor. The intensity of each basic taste and the concentrations of main taste substances in milk were compared between the inflamed breasts and the normal breasts of control mothers or the contralateral asymptomatic breast of mothers with unilateral mastitis. The transition from colostrum to mature milk was accompanied by changes in the taste of the milk, such as decreased saltiness and umami and increased bitterness and sourness. Umami and saltiness increased in milk from inflamed breasts. Contents of sodium, glutamate, and guanosine monophosphate increased in milk from inflamed breasts. Tastes that were specifically associated with inflamed breasts appeared to include an increase in umami and saltiness, which might have resulted from an increased content in factors associated with umami and sodium.

  16. Why do sugars taste good?

    PubMed

    Ramirez, I

    1990-01-01

    The preference humans and animals show for sweet solutions has been the subject of hundreds of publications. Nevertheless, the evolutionary origin of sweet preference remains enigmatic because of the relatively low nutritional value of sugars and the absence of specific tastes for other, more essential, nutrients. Moderate concentrations of sugars are found in most plant foods because sugars play an important role in plant physiology. Widespread occurrence of sugars in plants is paralleled by widespread preference for sugar solutions in mammals. These observations suggest that preference for sugars evolved because they are common in plants and easy to detect rather than because of any special nutritional merits they offer. Perception of sweetness cannot be used to accurately meter the metabolizable energy or nutritive value of a food.

  17. Taste in chimpanzees. III: Labeled-line coding in sweet taste.

    PubMed

    Hellekant, G; Ninomiya, Y; Danilova, V

    1998-11-15

    In peripheral taste the coding mechanism remains an enigma. Among coding theories the "across-fiber pattern" argues that activity across fibers codes for taste, whereas the "labeled line" claims that activity in a particular set of fibers underlies a taste quality. We showed previously that chimpanzee chorda tympani taste fibers grouped according to human taste qualities into an S-cluster, responding predominantly to sweet stimuli, a Q-cluster, sensitive to bitter tastants, and an N-cluster, stimulated by salts. The analysis showed that information in the S-line suffices to distinguish stimuli of one taste quality from the others. However, one condition for the labeled line remained: that blockage of activity in a particular line must cause blockage of one taste quality, but of no other, or its onset give rise to the sensation of a taste quality. Here we studied this requirement with gymnemic acids and miraculin. In humans and chimpanzees, gymnemic acids suppress the sweet taste of all sweeteners whereas miraculin adds a sweet taste quality to sour stimuli. Gymnemic acids also abolish miraculin-induced sweet taste. We found that gymnemic acids practically abolished the response to every sweetener in the chimpanzee S-cluster. Equally important, they had no effect on the responses of the Q- and N-clusters. After miraculin, the S-cluster fibers responded to acids as well as to sweeteners, although they had not responded to acids before miraculin. Gymnemic acids abolished this miraculin-induced response to acids and responses to sweeteners in the S-fibers. These results link the sweet taste quality to activity in fibers of the S-cluster. Thus the S-cluster fibers satisfy the definition of the labeled-line theory: "that activity in a particular fiber type represents a specific taste quality."

  18. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    PubMed Central

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792

  19. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Implementaton of SOIS in TASTE

    NASA Astrophysics Data System (ADS)

    Delange, Julien; Torelli, Felice; Terraillon, Jean-Loup

    2012-08-01

    The design and implementation of space software needs to be rigorous: as mission- or life-critical systems, they must be designed without error. For that purpose, developers have to use methods, tools and libraries that provide guidance during the production process. In addition, to ease software reuse through different projects, reduce development costs and avoid revalidation of software that provides the same functions, reference on-board software architecture are defined, and standardized interfaces are introduced. They define interaction methods between system components, either software or hardware. The past years have also shown the emerging need to abstract system specifications using models, also at software or hardware level. This consists in capturing system architecture with its requirements using specific tools that automatically check their correctness and produce implementation to be deployed on the target.Therefore, the reference architecture and system interfaces must be consistent with development tools. The code generator must generates the right calls to the standardized interface. In the case of communication interface, the communication services can be implemented either in a hidden way within the generated code, or as explicit design patterns of the application software model. Thus, integrating existing standards into the reference architecture is still under investigation and different integration scenarios could be envisioned and so, need to be evaluated.In this paper, we explain the mapping of the CCSDS standardized communication interface (the Spacecraft Onboard Interface Service, SOIS) into an established modelling technology (TASTE). We detail SOIS integration into models so that engineers can directly use them from modelling tool that automatically calls appropriate procedure when generating the implementation. We also assess the meaning of being "SOIS compliant" with the example of TASTE.

  1. Peripheral nerve palsy by torsional nerve injury.

    PubMed

    Guerra, Waltraud Kleist-Welch; Schroeder, Henry W S

    2011-04-01

    Peripheral nerve palsy caused by torsional nerve injury is rare. Only a few patients have been reported in the literature. The etiology of this type of nerve lesion is poorly understood. To report on 5 patients presenting with peripheral nerve palsy caused by a torsional nerve injury. Five patients presented with 6 upper peripheral nerve palsy involving the axillary nerve (n = 2), musculocutaneous nerve (n = 2), radial nerve (n = 1), and suprascapular nerve (n = 1). There was no history of trauma in 3 patients, but in the other 2 patients, nerve palsy occurred after a traumatic event. Because of a lack of spontaneous recovery, surgical exploration was performed. Torsion of the whole nerve (n = 5) or only 1 fascicle (n = 1) was found. Epifascicular epineurectomy and detorsion, as well as resection of the torsion site with subsequent primary nerve suture, were performed in 3 lesions. Good to excellent recovery of motor function was achieved in all 5 patients. In the last patient who presented with 2 nerve torsions, the follow-up period after the last surgery is too short to allow evaluation. Although not a frequent event, torsional nerve injury should be taken into consideration when dealing with peripheral nerve injuries. Surgical exploration with detorsion or suture results in good recovery.

  2. Taste masking by spray-drying technique.

    PubMed

    Bora, Divyakumar; Borude, Priyanka; Bhise, Kiran

    2008-01-01

    The purpose of this research was to develop the taste-masked microspheres of intensely bitter drug ondansetron hydrochloride (OSH) by spray-drying technique. The bitter taste threshold value of OSH was determined. Three different polymers viz. Chitosan, Methocel E15 LV, and Eudragit E100 were used for microsphere formation, and the effect of different polymers and drug-polymer ratios on the taste masking and release properties of microspheres was investigated. The microspheres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, Drug loading, in vitro bitter taste evaluation, and drug-release properties. The taste masking was absent in methocel microspheres at all the drug-polymer ratios. The Eudragit microspheres depicted taste masking at 1:2 drug-polymer ratio whereas with Chitosan microspheres the taste masking was achieved at 1:1 drug-polymer ratio. The drug release was about 96.85% for eudragit microspheres and 40.07% for Chitosan microspheres in 15 min.

  3. Fabrication of taste sensor for education

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  4. Taste Changes in Vitamin A Deficiency

    PubMed Central

    Bernard, Rudy A.; Halpern, Bruce P.

    1968-01-01

    Taste preferences were studied in two groups of rats depleted of vitamin A by dietary restriction. One group received sufficient vitamin A acid supplement to maintain normal growth. The other group was repleted with vitamin A alcohol after the classical deficiency symptoms had appeared; this group gradually lost normal preferences for NaCl and aversion to quinine solutions during depletion. Vitamin A alcohol repletion tended to restore taste preferences to normal. In contrast, the group receiving vitamin A acid showed normal taste preferences throughout the depletion period. When the vitamin A acid supplement was removed taste preferences became abnormal and returned to normal when vitamin A acid was restored. Peripheral gustatory neural activity of depleted rats without any form of vitamin A was less than normal both at rest and when the tongue was stimulated with NaCl solutions. Histological examination showed keratin infiltrating the pores of the taste buds. Accessory glandular tissues were atrophied and debris filled the trenches of the papillae. It is concluded that vitamin A acid can provide the vitamin A required for normal taste, as contrasted with its inability to maintain visual function. It is suggested that the effect of vitamin A is exerted at the receptor level, as a result of its role in the biosynthesis of mucopolysaccharides, which have been recently identified in the pore area of taste buds, as well as being present in the various secretions of the oral cavity. PMID:4299794

  5. Taste Receptors in Upper Airway Immunity.

    PubMed

    Carey, Ryan M; Lee, Robert J; Cohen, Noam A

    2016-01-01

    Taste receptors are well known for their role in communicating information from the tongue to the brain about nutritional value or potential toxicity of ingested substances. More recently, it has been shown that taste receptors are expressed in other locations throughout the body, including the airway, gastrointestinal tract, brain and pancreas. The roles of some 'extraoral' taste receptors are largely unknown, but emerging research suggests that bitter and sweet taste receptors in the airway are capable of sensing bacteria and modulating innate immunity. This chapter focuses on the role of bitter and sweet taste receptors in human airway innate immunity and their clinical relevance to rhinosinusitis. The bitter taste receptor T2R38 expressed in sinonasal cilia detects bitter bacterial quorum-sensing molecules and activates a nitric oxide-dependent innate immune response; moreover, there are polymorphisms in T2R38 that underlie susceptibility to chronic rhinosinusitis (CRS). Bitter and sweet receptors in sinonasal solitary chemosensory cells control secretion of antimicrobial peptides in the upper airway and may have a profound impact on airway infections in patients with CRS and diabetes. Future research on taste receptors in the airway has enormous potential to expand our understanding of host-pathogen immune interactions and provide novel therapeutic targets.

  6. Radiation effects on bovine taste bud membranes

    SciTech Connect

    Shatzman, A.R.; Mossman, K.L.

    1982-11-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy.

  7. Influence of smell loss on taste function.

    PubMed

    Stinton, Natalie; Atif, Muhammad Ali; Barkat, Nureen; Doty, Richard L

    2010-04-01

    The influence of damage to one sensory system on the functioning of other sensory systems has been of scientific interest for over a century. Recently it has been suggested that damage to the olfactory system (CN I) decreases the ability to taste; that is, to perceive sweet, sour, bitter and salty sensations via CN VII, IX, and X. If true, this would be in contrast to most other sensory systems, where compromise typically leads to either cross-modal enhancement of function or to no effects at all. In the present study, data from both regional and whole-mouth taste tests of 581 patients presenting to a smell and taste center with varying degrees of olfactory function were evaluated to address whether olfactory loss is associated with taste loss. No significant influence of olfactory dysfunction on any measure of taste perception was found when the effects of sex, age, and etiology were controlled. These data suggest that smell loss, per se, has no meaningful influence on taste function, and that clinical associations between smell and taste dysfunction, when observed, likely reflect comorbid influences.

  8. Exploring Ethnic Differences in Taste Perception.

    PubMed

    Williams, Johnny A; Bartoshuk, Linda M; Fillingim, Roger B; Dotson, Cedrick D

    2016-06-01

    It is well known that nutritional intake can vary substantially as a function of demographic variables such as ethnicity and/or sex. Although a variety of factors are known to underlie the relationship between these demographic variables and nutritional intake, it is interesting to speculate that variation in food intake associated with ethnicity or sex may result, in part, from differences in the perceived taste of foods in these different populations. Thus, we initiated a study to evaluate taste responsiveness in different ethnic groups. Moreover, because of the known differences in taste responsiveness between males and females, analyses were stratified by sex. The ethnic groups tested differed significantly from one another in reported perceived taste intensity. Our results showed that Hispanics and African Americans rated taste sensations higher than non-Hispanic Whites and that these differences were more pronounced in males. Understanding the nature of these differences in taste perception is important, because taste perception may contribute to dietary health risk. When attempting to modify diet, individuals of different ethnicities may require personalized interventions that take into account the different sensory experience that these individuals may have when consuming foods.

  9. Optic Nerve.

    PubMed

    Gordon, Lynn K

    2016-10-28

    Optic nerve diseases arise from many different etiologies including inflammatory, neoplastic, genetic, infectious, ischemic, and idiopathic. Understanding some of the characteristics of the most common optic neuropathies along with therapeutic approaches to these diseases is helpful in designing recommendations for individual patients. Although many optic neuropathies have no specific treatment, some do, and it is those potentially treatable or preventable conditions which need to be recognized in order to help patients regain their sight or develop a better understanding of their own prognosis. In this chapter several diseases are discussed including idiopathic intracranial hypertension, optic neuritis, ischemic optic neuropathies, hereditary optic neuropathies, trauma, and primary tumors of the optic nerve. For each condition there is a presentation of the signs and symptoms of the disease, in some conditions the evaluation and diagnostic criteria are highlighted, and where possible, current therapy or past trials are discussed.

  10. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides.

    PubMed

    Sukumaran, Sunil K; Yee, Karen K; Iwata, Shusuke; Kotha, Ramana; Quezada-Calvillo, Roberto; Nichols, Buford L; Mohan, Sankar; Pinto, B Mario; Shigemura, Noriatsu; Ninomiya, Yuzo; Margolskee, Robert F

    2016-05-24

    The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K(+) (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal "brush border" disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways.

  11. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors.

    PubMed

    Riera, Céline E; Vogel, Horst; Simon, Sidney A; le Coutre, Johannes

    2007-08-01

    Throughout the world many people use artificial sweeteners (AS) for the purpose of reducing caloric intake. The most prominently used of these molecules include saccharin, aspartame (Nutrasweet), acesulfame-K, and cyclamate. Despite the caloric advantage they provide, one key concern in their use is their aversive aftertaste that has been characterized on a sensory level as bitter and/or metallic. Recently, it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. To more fully understand the biology behind these phenomena we have addressed the question of whether AS could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the AS aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons, we find that in both systems, AS activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. We also found that TRPV1 receptors are activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, our results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts.

  12. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    PubMed

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction.

  13. Sensory outcomes of the anterior tongue after lingual nerve repair in oropharyngeal cancer.

    PubMed

    Elfring, T T; Boliek, C A; Seikaly, H; Harris, J; Rieger, J M

    2012-03-01

    Primary treatment of oropharyngeal cancer often involves surgical resection and reconstruction of the affected area. However, during base of tongue reconstruction the lingual nerve is often severed on one or both sides, affecting sensation in the preserved tissue of the anterior tongue. The loss of specific tongue sensations could negatively affect a person's oral function and quality of life. The aim of this study was to explore the effects of different types of lingual nerve intervention on sensory function for patients with base of tongue cancer as compared to healthy, age-matched adults. Subjects included 30 patients who had undergone primary oropharyngeal reconstruction with a radial forearm free-flap and 30 matched controls. Sensations tested were temperature, two-point discrimination, light touch, taste, oral stereognosis and texture on the anterior two-thirds of the tongue. Results indicated that type of surgical nerve repair may not have a significant impact on overall sensory outcomes, providing mixed results for either nerve repair technique. Sensations for the nonoperated tongue side and operated side with lingual nerve intact were comparable to matched controls, with mixed outcomes for nerve repair. The poorest sensory outcomes were observed in patients with the lingual nerve severed, while all patients with lingual nerve intervention exhibited deteriorated taste sensation on the affected tongue side. Overall, patients in this study who had undergone oropharyngeal reconstruction with lingual nerve intervention exhibited decreased levels of sensation on the operated tongue side, with minimal differences between types of lingual nerve repair. © 2011 Blackwell Publishing Ltd.

  14. Taste Identification in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Tavassoli, T.; Baron-Cohen, S.

    2012-01-01

    Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). "Taste strips" were used to measure taste identification overall, as well as…

  15. Taste Identification in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Tavassoli, T.; Baron-Cohen, S.

    2012-01-01

    Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). "Taste strips" were used to measure taste identification overall, as well as…

  16. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    PubMed

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  17. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  18. Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila

    PubMed Central

    Thoma, Vladimiros; Knapek, Stephan; Arai, Shogo; Hartl, Marion; Kohsaka, Hiroshi; Sirigrivatanawong, Pudith; Abe, Ayako; Hashimoto, Koichi; Tanimoto, Hiromu

    2016-01-01

    Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food. PMID:26893070

  19. Interventions for the management of taste disturbances.

    PubMed

    Nagraj, Sumanth Kumbargere; Naresh, Shetty; Srinivas, Kandula; Renjith George, P; Shrestha, Ashish; Levenson, David; Ferraiolo, Debra M

    2014-11-26

    The sense of taste is very much essential to the overall health of the individual. It is a necessary component to enjoying one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper the quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane systematic review was undertaken. To assess the effects of interventions for the management of patients with taste disturbances. We searched the Cochrane Oral Health Group Trials Register (to 5 March 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 1, 2014), MEDLINE via OVID (1948 to 5 March 2014), EMBASE via OVID (1980 to 5 March 2014), CINAHL via EBSCO (1980 to 5 March 2014) and AMED via OVID (1985 to 5 March 2014). We also searched the relevant clinical trial registries and conference proceedings from the International Association of Dental Research/American Association of Dental Research (to 5 March 2014), Association for Research in Otolaryngology (to 5 March 2014), the US National Institutes of Health Trials Register (to 5 March 2014), metaRegister of Controlled Trials (mRCT) (to 5 March 2014), World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) (to 5 March 2014) and International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) Clinical Trials Portal (to 5 March 2014). We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review. Two authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted study authors for additional information. We collected

  20. Taste responses to sweet stimuli in alpha-gustducin knockout and wild-type mice.

    PubMed

    Danilova, Vicktoria; Damak, Sami; Margolskee, Robert F; Hellekant, Göran

    2006-07-01

    The importance of alpha-gustducin in sweet taste transduction is based on data obtained with sucrose and the artificial sweetener SC45647. Here we studied the role of alpha-gustducin in sweet taste. We compared the behavioral and electrophysiological responses of alpha-gustducin knockout (KO) and wild-type (WT) mice to 11 different sweeteners, representing carbohydrates, artificial sweeteners, and sweet amino acids. In behavioral experiments, over 48-h preference ratios were measured in two-bottle preference tests. In electrophysiological experiments, integrated responses of chorda tympani (CT) and glossopharyngeal (NG) nerves were recorded. We found that preference ratios of the KO mice were significantly lower than those of WT for acesulfame-K, dulcin, fructose, NC00174, D-phenylalanine, L-proline, D-tryptophan, saccharin, SC45647, sucrose, but not neotame. The nerve responses to all sweeteners, except neotame, were smaller in the KO mice than in the WT mice. The differences between the responses in WT and KO mice were more pronounced in the CT than in the NG. These data indicate that alpha-gustducin participates in the transduction of the sweet taste in general.

  1. Effects of binary taste stimuli on the neural activity of the hamster chorda tympani

    PubMed Central

    1980-01-01

    Binary mixtures of taste stimuli were applied to the tongue of the hamster and the reaction of the whole corda tympani was recorded. Some of the chemicals that were paired in mixtures (HCl, NH4Cl, NaCl, CaCl2, sucrose, and D-phenylalanine) have similar tastes to human and/or hamster, and/or common stimulatory effects on individual fibers of the hamster chorda tympani; other pairs of these chemicals have dissimilar tastes and/or distinct neural stimulatory effects. The molarity of each chemical with approximately the same effect on the activity of the nerve as 0.01 M NaCl was selected, and an established relation between stimulus concentration and response allowed estimation of the effect of a "mixture" of two concentrations of one chemical. Each mixture elicited a response that was smaller than the sum of the responses to its components. However, responses to some mixtures approached this sum, and responses to other mixtures closely approached the response to a "mixture" of two concentrations of one chemical. Responses of the former variety were generated by mixtures of an electrolyte and a nonelectrolyte and the latter by mixtures of two electrolytes or two nonelectrolytes. But, beyond the distinction between electrolytes and nonelectrolytes, the whole-nerve response to a mixture could not be predicted from the known neural or psychophysical effects of its components. PMID:7411114

  2. Intact Hedonic Responses to Sweet Tastes in Autism Spectrum Disorder

    PubMed Central

    Damiano, Cara R.; Aloi, Joseph; Burrus, Caley; Garbutt, James C.; Kampov-Polevoy, Alexei B.; Dichter, Gabriel S.

    2014-01-01

    The Sweet Taste Test (STT) is a standardized measure designed to index the ability to detect differences in sweet tastes (sweet taste sensitivity) and hedonic responses to sweet tastes (sweet taste liking). Profiles of response on the STT suggest enhanced hedonic responses to sweet tastes in psychiatric disorders characterized by dysfunctional reward processing systems, including binge-eating disorders and substance use disorders, and a putative mechanism governing STT responses is the brain opioid system. The present study examined STT responses in 20 adults with autism spectrum disorder (ASD) and 38 healthy control adults. There were no differences in sweet taste sensitivity or hedonic response to sweet tastes between the ASD and control groups. Within the ASD sample, ASD symptom severity was associated with sweet taste sensitivity, but not hedonic response to sweet taste. Results may ultimately shed light on brain opioid system functioning in ASD. PMID:24563662

  3. Intact Hedonic Responses to Sweet Tastes in Autism Spectrum Disorder.

    PubMed

    Damiano, Cara R; Aloi, Joseph; Burrus, Caley; Garbutt, James C; Kampov-Polevoy, Alexei B; Dichter, Gabriel S

    2014-03-01

    The Sweet Taste Test (STT) is a standardized measure designed to index the ability to detect differences in sweet tastes (sweet taste sensitivity) and hedonic responses to sweet tastes (sweet taste liking). Profiles of response on the STT suggest enhanced hedonic responses to sweet tastes in psychiatric disorders characterized by dysfunctional reward processing systems, including binge-eating disorders and substance use disorders, and a putative mechanism governing STT responses is the brain opioid system. The present study examined STT responses in 20 adults with autism spectrum disorder (ASD) and 38 healthy control adults. There were no differences in sweet taste sensitivity or hedonic response to sweet tastes between the ASD and control groups. Within the ASD sample, ASD symptom severity was associated with sweet taste sensitivity, but not hedonic response to sweet taste. Results may ultimately shed light on brain opioid system functioning in ASD.

  4. How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel

    PubMed Central

    Taruno, Akiyuki; Matsumoto, Ichiro; Ma, Zhongming; Marambaud, Philippe; Foskett, J. Kevin

    2014-01-01

    CALHM1 was recently demonstrated to be a voltage-gated ATP-permeable ion channel and to serve as a bona fide conduit for ATP release from sweet-, umami-, and bitter-sensing type II taste cells. Calhm1 is expressed in taste buds exclusively in type II cells and its product has structural and functional similarities with connexins and pannexins, two families of channel protein candidates for ATP release by type II cells. Calhm1 knockout in mice leads to loss of perception of sweet, umami, and bitter compounds and to impaired gustatory nerve responses to these tastants. These new studies validate the concept of ATP as the primary neurotransmitter from type II cells to gustatory neurons. Furthermore, they identify voltage-gated ATP release through CALHM1 as an essential molecular mechanism of ATP release in taste buds. We discuss these new findings, as well as unresolved issues in peripheral taste signaling that we hope will stimulate future research. PMID:24105910

  5. Development of Bitter Taste Sensor Using Ionic-Liquid/Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Akutagawa, Nobuyuki; Toida, Jinichi; Amano, Yoshihiko; Ikezaki, Hidekazu; Toko, Kiyoshi; Arikawa, Yukihiko

    A taste sensor is composed of several kinds of lipid/polymer membranes as transducers which convert taste information to electric signal. Thus, the role of membranes is very important to detect various taste components. In this paper, we developed novel membranes which specifically respond to quinine that is typical bitter substances. These membranes were composed of hydrophobic ionic liquid such as N, N, N-trimethyl-N-propylammonium bis(trifluoromethansulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butylpyridinium hexafluorophosphate, a plasticizer, 2-nitrophenyl octyl ether and a polymer, polyvinyl chloride. In addition to quinine, they also showed response to both several kinds of alkaloids such as caffeine and strychnine, and non-alkaloid such as phenylthiocarbamide. The order of these responses was equal to that of the tongue glossopharyngeal nerve of flog. Furthermore, there were the other alkaloids which response to these membranes. Especially in these alkaloids, they showed high response to denatonium benzoate and berberin chloride which have a strong bitter taste.

  6. Longitudinal Analysis of Calorie Restriction on Rat Taste Bud Morphology and Expression of Sweet Taste Modulators

    PubMed Central

    Cai, Huan; Daimon, Caitlin M.; Cong, Wei-na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen

    2014-01-01

    Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste–related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste–related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR. PMID:24077597

  7. Recombinant curculin heterodimer exhibits taste-modifying and sweet-tasting activities.

    PubMed

    Suzuki, Maiko; Kurimoto, Eiji; Nirasawa, Satoru; Masuda, Yutaka; Hori, Kouichi; Kurihara, Yoshie; Shimba, Nobuhisa; Kawai, Misako; Suzuki, Ei-Ichiro; Kato, Koichi

    2004-08-27

    Curculin from Curculigo latifolia is a unique sweet protein that exhibits both sweet-tasting and taste-modifying activities. We isolated a gene that encodes a novel protein highly homologous to curculin. Using cDNAs of the previously known curculin (designated as curculin1) and the novel curculin isoform (curculin2), we produced a panel of homodimeric and heterodimeric recombinant curculins by Escherichia coli expression systems. It was revealed that sweet-tasting and taste-modifying activities were exhibited solely by the heterodimer of curculin1 and curculin2.

  8. Heat Effect on the Taste of Milk Studied Using a Taste Sensor

    NASA Astrophysics Data System (ADS)

    Toko, Kiyoshi; Iyota, Teru; Mizota, Yasumichi; Matsuno, Tetsuya; Yoshioka, Toshihiro; Doi, Toyohiko; Iiyama, Satoru; Kato, Tomihisa; Yamafuji, Kaoru; Watanabe, Ryozo

    1995-11-01

    The effect of heat treatment on the taste of milk was investigated using a taste sensor. The transducer is composed of seven electrodes with different kinds of lipid membranes. Sensory evaluations by humans were made in terms of three taste characteristics of “richness (koku),” “cooked flavor” and “deliciousness” together with a measurement of whey protein denaturation. This study provided a quantitative description of the taste change caused by heat treatment of milk, because the output showed high correlations with richness and the degree of protein denaturation.

  9. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  10. Gustatory processing and taste memory in Drosophila.

    PubMed

    Masek, Pavel; Keene, Alex C

    2016-06-01

    Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit.

  11. Molecular mechanism for the umami taste synergism

    PubMed Central

    Zhang, Feng; Klebansky, Boris; Fine, Richard M.; Xu, Hong; Pronin, Alexey; Liu, Haitian; Tachdjian, Catherine; Li, Xiaodong

    2008-01-01

    Umami is one of the 5 basic taste qualities. The umami taste of L-glutamate can be drastically enhanced by 5′ ribonucleotides and the synergy is a hallmark of this taste quality. The umami taste receptor is a heteromeric complex of 2 class C G-protein-coupled receptors, T1R1 and T1R3. Here we elucidate the molecular mechanism of the synergy using chimeric T1R receptors, site-directed mutagenesis, and molecular modeling. We propose a cooperative ligand-binding model involving the Venus flytrap domain of T1R1, where L-glutamate binds close to the hinge region, and 5′ ribonucleotides bind to an adjacent site close to the opening of the flytrap to further stabilize the closed conformation. This unique mechanism may apply to other class C G-protein-coupled receptors. PMID:19104071

  12. Musical taste, employment, education, and global region.

    PubMed

    North, Adrian C; Davidson, Jane W

    2013-10-01

    Sociologists have argued that musical taste should vary between social groups, but have not considered whether the effect extends beyond taste into uses of music and also emotional reactions to music. Moreover, previous research has ignored the culture in which participants are located. The present research employed a large sample from five post-industrial global regions and showed that musical taste differed between regions but not according to education and employment; and that there were three-way interactions between education, employment, and region in the uses to which participants put music and also their typical emotional reactions. In addition to providing partial support for existing sociological theory, the findings highlight the potential of culture as a variable in future quantitative research on taste.

  13. The anatomy of mammalian sweet taste receptors.

    PubMed

    Chéron, Jean-Baptiste; Golebiowski, Jérôme; Antonczak, Serge; Fiorucci, Sébastien

    2017-02-01

    All sweet-tasting compounds are detected by a single G-protein coupled receptor (GPCR), the heterodimer T1R2-T1R3, for which no experimental structure is available. The sweet taste receptor is a class C GPCR, and the recently published crystallographic structures of metabotropic glutamate receptor (mGluR) 1 and 5 provide a significant step forward for understanding structure-function relationships within this family. In this article, we recapitulate more than 600 single point site-directed mutations and available structural data to obtain a critical alignment of the sweet taste receptor sequences with respect to other class C GPCRs. Using this alignment, a homology 3D-model of the human sweet taste receptor is built and analyzed to dissect out the role of key residues involved in ligand binding and those responsible for receptor activation. Proteins 2017; 85:332-341. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Sense of taste in the gastrointestinal tract.

    PubMed

    Iwatsuki, Ken; Uneyama, Hisayuki

    2012-01-01

    Recent advances in molecular biology have led to the investigation of the molecular mechanism by which chemicals such as odors and tastants are perceived by specific chemosensory organs. For example, G protein-coupled receptors expressed within the nasal epithelium and taste receptors in the oral cavity have been identified as odorant and taste receptors, respectively. However, there is much evidence to indicate that these chemosensory receptors are not restricted to primary chemosensory cells; they are also expressed and have function in other cells such as those in the airways and gastrointestinal (GI) tract. This short review describes the possible mechanisms by which taste signal transduction occurs in the oral cavity and tastants/nutrients are sensed in the GI tract by taste-like cells, mainly enteroendocrine and brush cells. Furthermore, it discusses the future perspectives of chemosensory studies.

  15. Phenylthiocarbamide produces conditioned taste aversions in mice.

    PubMed

    St John, Steven J; Pour, Lindsay; Boughter, John D

    2005-06-01

    Previous work has demonstrated that SWR/J (SW) mice avoid phenylthiocarbamide (PTC) to a greater degree than C3HeB/FeJ mice in 48 h, two-bottle preference tests given in ascending series. The authors hypothesized, based also on previous work, that SW mice might form a conditioned taste aversion over time due to the toxic properties of PTC. We directly tested this hypothesis by attempting to condition a taste aversion to sucrose by injections of PTC. In experiment 1, PTC was nearly as effective as a strong dose of LiCl in reducing sucrose drinking. In experiment 2, the sucrose aversions were parametrically modified by both sucrose concentration and PTC dose, a hallmark of conditioned taste aversion. We conclude that PTC can cause a conditioned taste aversion and discuss the importance of considering toxic effects of aversive tastants when analyzing behavioral strain differences.

  16. Taste rejection of nonnutritive sweeteners in cats.

    PubMed

    Bartoshuk, L M; Jacobs, H L; Nichols, T L; Hoff, L A; Ryckman, J J

    1975-10-01

    Cats reject saccharin and cyclamate and are indifferent to dulcin, although they, like other mammals, prefer sucrose. The rejection threshold for saccharin found in this experiments, .0001 M, is about 2 log steps lower than a previously reported rejection threshold for sodium saccharin. Water produces a taste in cats adapted to their own saliva. The high sodium saccharin threshold may have resulted because the taste of the sodium saccharin was masked by the taste of the water solvent; however, saccharin may also be somewhat more aversive to the cat than sodium saccharin. Saccharin may produce an aversive taste because it stimulates receptor sites sensitive to substances bitter to man as well as those sensitive to sugars. In addition, saccharin may not be an effective stimulus for all sugar-sensitive sites.

  17. [Determination of taste sensitivity with mixed solutions].

    PubMed

    Marco Algarra, R

    1990-01-01

    In the second part of our study we present the results of the mixture of four basic tastes in comparison with those of the simple solutions, mea ng as well the fatigue phenomenon with the mixed solutions.

  18. Molecular mechanism of the sweet taste enhancers

    PubMed Central

    Zhang, Feng; Klebansky, Boris; Fine, Richard M.; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-01-01

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor. PMID:20173095

  19. Molecular mechanism of the sweet taste enhancers.

    PubMed

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-03-09

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.

  20. Molecular mechanism for the umami taste synergism.

    PubMed

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Xu, Hong; Pronin, Alexey; Liu, Haitian; Tachdjian, Catherine; Li, Xiaodong

    2008-12-30

    Umami is one of the 5 basic taste qualities. The umami taste of L-glutamate can be drastically enhanced by 5' ribonucleotides and the synergy is a hallmark of this taste quality. The umami taste receptor is a heteromeric complex of 2 class C G-protein-coupled receptors, T1R1 and T1R3. Here we elucidate the molecular mechanism of the synergy using chimeric T1R receptors, site-directed mutagenesis, and molecular modeling. We propose a cooperative ligand-binding model involving the Venus flytrap domain of T1R1, where L-glutamate binds close to the hinge region, and 5' ribonucleotides bind to an adjacent site close to the opening of the flytrap to further stabilize the closed conformation. This unique mechanism may apply to other class C G-protein-coupled receptors.

  1. Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste.

    PubMed

    Veldhuizen, Maria G; Bender, Genevieve; Constable, R Todd; Small, Dana M

    2007-07-01

    Selective attention is thought to be associated with enhanced processing in modality-specific cortex. We used functional magnetic resonance imaging to evaluate brain response during a taste detection task. We demonstrate that trying to detect the presence of taste in a tasteless solution results in enhanced activity in insula and overlying operculum. The same task does not recruit orbitofrontal cortex (OFC). Instead, the OFC responds preferentially during receipt of an unpredicted taste stimulus. These findings demonstrate functional specialization of taste cortex in which the insula and the overlying operculum are recruited during taste detection and selective attention to taste, and the OFC is recruited during receipt of an unpredicted taste stimulus.

  2. Presentation order effects in product taste tests.

    PubMed

    Dean, M L

    1980-05-01

    Presentation order in paired-comparison testing was varied to measure the impact of primacy versus recency effects on consumer product evaluations. Overall preference and product rating scores were gathered for 1196 male and female Ss aged 13--49 years in two consumer research studies covering 11 taste tests. First position preference bias characterized the findings, lending support to the attention decrement hypothesis or a suggested palate desensitization effect on subsequent taste trial behavior.

  3. Inflammatory stimuli acutely modulate peripheral taste function.

    PubMed

    Kumarhia, Devaki; He, Lianying; McCluskey, Lynnette Phillips

    2016-06-01

    Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye. IL-1β elicited an amiloride-sensitive increase in Na(+) transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na(+) flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na(+) transport systems. The speed and partial amiloride sensitivity of these changes in Na(+) flux indicate that IL-1β and TNF-α modulate epithelial Na(+) channel (ENaC) function. A portion of the TNF-mediated decrease in Na(+) flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na(+) transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na(+) were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na(+) flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na(+) taste function, which may limit salt consumption during illness. Copyright © 2016 the American Physiological Society.

  4. Inflammatory stimuli acutely modulate peripheral taste function

    PubMed Central

    Kumarhia, Devaki; He, Lianying

    2016-01-01

    Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na+ transport in taste buds. To test this, we measured acute changes in Na+ flux in polarized fungiform taste buds loaded with a Na+ indicator dye. IL-1β elicited an amiloride-sensitive increase in Na+ transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na+ flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na+ transport systems. The speed and partial amiloride sensitivity of these changes in Na+ flux indicate that IL-1β and TNF-α modulate epithelial Na+ channel (ENaC) function. A portion of the TNF-mediated decrease in Na+ flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na+ transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na+ were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na+ flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na+ taste function, which may limit salt consumption during illness. PMID:27009163

  5. Taste Receptor Signaling-- From Tongues to Lungs

    PubMed Central

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  6. Understanding the impact of taste changes in oncology care.

    PubMed

    Epstein, Joel B; Smutzer, Gregory; Doty, Richard L

    2016-04-01

    Taste perception is frequently altered in cancer patients. The purpose of this review is to provide an update on advances in understanding of the basic biology and physiology of taste and how taste and flavor may be impacted in cancer and its treatment. A succinct review of the literature on the biology and neurology of taste, taste evaluation, and the impact in oncology is provided. Advances have occurred in the study of the gustatory system. Taste and smell are commonly affected during cancer care, and specific chemosensory complaints may persist in large numbers of cancer survivors. Limited study in oncology patients is available despite the significant impact that taste and smell have on oral intake and general physical and social well-being. Taste and flavor has had limited study in cancer therapy. Impact on taste and flavor can result in changes ranging from elimination of taste to taste distortions that may be associated with taste aversions, nausea, and dietary compromise. New therapeutics and new approaches in oncology may have additional impact upon taste that requires further study. This paper reviews the current understanding of taste function, taste testing, and its potential impact on cancer care, to serve as a guide for directing further research.

  7. Caffeine Taste Signaling in Drosophila Larvae

    PubMed Central

    Apostolopoulou, Anthi A.; Köhn, Saskia; Stehle, Bernhard; Lutz, Michael; Wüst, Alexander; Mazija, Lorena; Rist, Anna; Galizia, C. Giovanni; Lüdke, Alja; Thum, Andreas S.

    2016-01-01

    The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors. PMID:27555807

  8. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  9. Smell and taste in inflammatory bowel disease.

    PubMed

    Steinbach, Silke; Reindl, Wolfgang; Dempfle, Astrid; Schuster, Anna; Wolf, Petra; Hundt, Walter; Huber, Wolfgang

    2013-01-01

    To investigate the olfactory/gustatory functions of patients with inflammatory bowel disease (IBD) by smell/taste tests, and to determine if disease activity or medication might influence the olfactory/gustatory functions of patients. In total, 59 IBD patients (37 Crohn's disease (CD) and 22 ulcerative colitis (UC) patients) were studied using "Sniffin' sticks" and "taste strips" for olfactory and gustatory tests, respectively, and compared to healthy controls and published normative data. Among IBD (CD and UC) patients, the values for odor threshold, but not for odor identification or discrimination, were significantly lower than that of the normative data. Further, these patients showed lower values than the normative taste values and the control group for all tastes, except sour; 57.6% of the IBD patients were hyposmic, while 30.5% were hypogeusic. Subjective self-assessments showed that the patients were not aware of their reduced olfactory/gustatory functions. There were no relevant differences in taste and smell abilities between the CD and UC patients. Disease activity and treatment did not influence the olfactory/gustatory functions. IBD (CD and UC) patients exhibited significant reductions in the olfactory and gustatory functions. Therefore, patients should be tested by smell/taste tests, in order to be adequately informed of their olfactory/gustatory functions and provided an understanding of how to overcome their limitations, and thus improve their quality of life.

  10. Smell and Taste in Inflammatory Bowel Disease

    PubMed Central

    Dempfle, Astrid; Schuster, Anna; Wolf, Petra; Hundt, Walter; Huber, Wolfgang

    2013-01-01

    Objective To investigate the olfactory/gustatory functions of patients with inflammatory bowel disease (IBD) by smell/taste tests, and to determine if disease activity or medication might influence the olfactory/gustatory functions of patients. Patients and Methods In total, 59 IBD patients (37 Crohn's disease (CD) and 22 ulcerative colitis (UC) patients) were studied using “Sniffin' sticks” and “taste strips” for olfactory and gustatory tests, respectively, and compared to healthy controls and published normative data. Results Among IBD (CD and UC) patients, the values for odor threshold, but not for odor identification or discrimination, were significantly lower than that of the normative data. Further, these patients showed lower values than the normative taste values and the control group for all tastes, except sour; 57.6% of the IBD patients were hyposmic, while 30.5% were hypogeusic. Subjective self-assessments showed that the patients were not aware of their reduced olfactory/gustatory functions. There were no relevant differences in taste and smell abilities between the CD and UC patients. Disease activity and treatment did not influence the olfactory/gustatory functions. Conclusion IBD (CD and UC) patients exhibited significant reductions in the olfactory and gustatory functions. Therefore, patients should be tested by smell/taste tests, in order to be adequately informed of their olfactory/gustatory functions and provided an understanding of how to overcome their limitations, and thus improve their quality of life. PMID:24086282

  11. Enhancement of Retronasal Odors by Taste

    PubMed Central

    Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2012-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste (“sweet,” “sour,” “salty,” and “bitter”) and odor (“other”) intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste–odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of “cherry” and “vanilla” flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods. PMID:21798851

  12. Metallic Taste from Electrical and Chemical Stimulation

    PubMed Central

    Lawless, Harry T.; Stevens, David A.; Chapman, Kathryn W.; Kurtz, Anne

    2005-01-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word ‘metallic’ was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors. PMID:15741603

  13. Reduced taste sensitivity in congenital blindness.

    PubMed

    Gagnon, Lea; Kupers, Ron; Ptito, Maurice

    2013-07-01

    Sight is undoubtedly not only important for food identification and selection but also for the modulation of gustatory sensitivity. We can, therefore, assume that taste sensitivity and eating habits are affected by visual deprivation from birth. We measured taste detection and identification thresholds of the 5 basic tastants in 13 congenitally blind and 13 sighted control subjects. Participants also answered several eating habits questionnaires, including the Food Neophobia Scale, the Food Variety Seeking Tendency Scale, the Intuitive Eating Scale, and the Body Awareness Questionnaire. Our behavioral results showed that compared with the normal sighted, blind subjects have increased thresholds for taste detection and taste identification. This finding is at odds with the superior performance of congenitally blind subjects in several tactile, auditory and olfactory tasks. Our psychometric data further indicate that blind subjects more strongly rely on internal hunger and satiety cues, instead of external contextual or emotional cues, to decide when and what to eat. We suggest that the lower taste sensitivity observed in congenitally blind individuals is due to various blindness-related obstacles when shopping for food, cooking and eating out, all of which contribute to underexpose the gustatory system to a larger variety of taste stimuli.

  14. Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1

    PubMed Central

    2011-01-01

    Background Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene. Results Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types. Conclusions p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia and tissue disruption seen

  15. Genetic tracing of the gustatory neural pathway originating from Pkd1l3-expressing type III taste cells in circumvallate and foliate papillae.

    PubMed

    Yamamoto, Kurumi; Ishimaru, Yoshiro; Ohmoto, Makoto; Matsumoto, Ichiro; Asakura, Tomiko; Abe, Keiko

    2011-11-01

    Polycystic kidney disease 1-like 3 (Pkd1l3) is expressed specifically in sour-sensing type III taste cells that have synaptic contacts with afferent nerve fibers in circumvallate (CvP) and foliate papillae (FoP) located in the posterior region of the tongue, although not in fungiform papillae (FuP) or the palate. To visualize the gustatory neural pathways that originate from type III taste cells in CvP and FoP, we established transgenic mouse lines that express the transneuronal tracer wheat germ agglutinin (WGA) under the control of the mouse Pkd1l3 gene promoter/enhancer. The WGA transgene was accurately expressed in Pkd1l3-expressing type III taste cells in CvP and FoP. Punctate WGA protein signals appeared to be detected specifically in type III taste cells but not in other types of taste cells. WGA protein was transferred primarily to a subset of neurons located in close proximity to the glossopharyngeal (GL) nerve bundles in the nodose/petrosal ganglion (NPG). WGA signals were also observed in a small population of neurons in the geniculate ganglion (GG). This result demonstrates the anatomical connection between taste receptor cells (TRCs) in the FoP and the chorda tympani (CT) nerves. WGA protein was further conveyed to neurons in a rostro-central subdivision of the nucleus of the solitary tract (NST). These findings demonstrate that the approximately 10 kb 5'-flanking region of the mouse Pkd1l3 gene functions as a type III taste cell-specific promoter/enhancer. In addition, experiments using the pkd1l3-WGA transgenic mice reveal a sour gustatory pathway that originates from TRCs in the posterior region of the tongue. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  16. Sweet taste and chorda tympani transection alter capsaicin-induced lingual pain perception in adult human subjects.

    PubMed

    Schöbel, N; Kyereme, J; Minovi, A; Dazert, S; Bartoshuk, L; Hatt, H

    2012-10-10

    Sweetness signals the nutritional value of food and may moreover be accompanied by a sensory suppression that leads to higher pain tolerance. This effect is well documented in infant rats and humans. However, it is still debated whether sensory suppression is also present in adult humans. Thus, we investigated the effects of sweet taste on the perception of the painful trigeminal stimulus capsaicin in two groups of healthy adult human subjects. A solution of 100 μM capsaicin was applied to the tip of the subject's tongues in order to stimulate trigeminal Aδ- and C-fiber nociceptors. When swallowed, 1M sucrose reduced the capsaicin-induced burning sensation by 29% (p ≤ 0.05) whereas a solution of similar taste intensity containing 1 μM quinine did not. Similarly, sucrose application to the frontal hemitongue suppressed the perception of the burning sensation induced by contralaterally applied capsaicin by 25% (p ≤ 0.01). We furthermore investigated the effects of documented unilateral transection of the chorda tympani nerve on capsaicin perception. In accordance with the ipsi-to-contralateral effect of sucrose on capsaicin perception in healthy subjects, hemiageusic subjects were more sensitive for capsaicin on the tongue contralateral to the taste nerve lesion (+38%; p ≤ 0.01). Taken together, these results argue I) for the existence of food intake-induced sensory suppression, if not analgesia, in adult humans and II) a centrally mediated suppression of trigeminal sensation by taste inputs that III) becomes disinhibited upon peripheral taste nerve lesion.

  17. Taste sensing in the colon.

    PubMed

    Kaji, Izumi; Karaki, Shin-ichiro; Kuwahara, Atsukazu

    2014-01-01

    The colonic lumen is continually exposed to many compounds, including beneficial and harmful compounds that are produced by colonic microflora. The intestinal epithelia form a barrier between the internal and luminal (external) environments. Chemical receptors that sense the luminal environment are thought to play important roles as sensors and as modulators of epithelial cell functions. The recent molecular identification of various membrane receptor proteins has revealed the sensory role of intestinal epithelial cells. Nutrient sensing by these receptors in the small intestine is implicated in nutrient absorption and metabolism. However, little is known about the physiological roles of chemosensors in the large intestine. Since 1980s, researchers have examined the effects of short-chain fatty acids (SCFA), the primary products of commensal bacteria, on gut motility, secretion, and incretin release, for example. In this decade, the SCFA receptor genes and their expression were identified in the mammalian colon. Furthermore, many other chemical receptors, including taste and olfactory receptors have been found in colonic epithelial cells. These findings indicate that the large intestinal epithelia express chemosensors that detect the luminal contents, particularly bacterial metabolites, and induce the host defense systems and the modulation of systemic metabolism via incretin release. In this review, we describe the local effects of chemical stimuli on the lumen associated with the expression pattern of sensory receptors. We propose that sensory receptors expressed in the colonic mucosa play important roles in luminal chemosensing to maintain homeostasis.

  18. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    PubMed

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.

  19. Taste preferences and taste thresholds to classical taste substances in the carnivorous fish, kutum Rutilus frisii kutum (Teleostei: Cyprinidae).

    PubMed

    Goli, Sheyda; Jafari, Valiollah; Ghorbani, Rassol; Kasumyan, Alexander

    2015-03-01

    The objective of this study was to compare the taste preferences in the closely related sympatric fish species with different feeding patterns. For this purpose, palatability for four classical taste substances was evaluated for carnivorous kutum Rutilus frisii kutum and the results were compared with the taste preferences of the omnivorous roach Rutilus rutilus which had been studied earlier. In addition, the threshold concentration and the dose-response relationship of the most palatable tastants were evaluated and the ability of kutum to differentiate food with tastants in different concentrations was estimated. It was found that citric acid significantly increases the agar gel pellet consumption within the range of concentrations from 0.01M to 0.52M; the pellets with a concentration of 0.026M were the most palatable. The pellet consumption is significantly different if the concentration of citric acid in the pellets differs more than two times. The absolute threshold concentration is 0.01M, or 2.74μg of citric acid per pellet. Sucrose and NaCl have deterrent taste at the highest concentrations tested (0.29 and 1.73M, respectively). Both substances are palatable at 10 times lower concentrations and become indifferent after further gradual decrease in their concentration. CaCl2 decreases the pellets consumption at 0.9M but is an indifferent tastant at lower concentrations (0.45, 0.09 and 0.045M). The number of rejections and repeated grasps of a food pellet is fewness and is not related to the pellet's palatability, while the retention time of pellet in the oral cavity positively and highly correlates with the pellet's palatability. Kutum have opposite taste preferences for most substances tested in comparison with the roach. It indicates that the taste preferences mediated by the oral taste receptors are different in closely related sympatric fish displayed diet divergences.

  20. Relationship between gustatory function and average number of taste buds per fungiform papilla measured by confocal laser scanning microscopy in humans.

    PubMed

    Saito, Takehisa; Ito, Tetsufumi; Ito, Yumi; Manabe, Yasuhiro; Sano, Kazuo

    2017-02-01

    The aim of this study was to elucidate the relationship between the gustatory function and average number of taste buds per fungiform papilla (FP) in humans. Systemically healthy volunteers (n = 211), pre-operative patients with chronic otitis media (n = 79), and postoperative patients, with or without a chorda tympani nerve (CTN) severed during middle ear surgery (n = 63), were included. Confocal laser scanning microscopy was employed to observe fungiform taste buds because it allows many FP to be observed non-invasively in a short period of time. Taste buds in an average of 10 FP in the midlateral region of the tongue were counted. In total, 3,849 FP were observed in 353 subjects. The gustatory function was measured by electrogustometry (EGM). An inverse relationship was found between the gustatory function and average number of fungiform taste buds per papilla. The healthy volunteers showed a lower EGM threshold (better gustatory function) and had more taste buds than did the patients with otitis media, and the patients with otitis media showed a lower EGM threshold and had more taste buds than did postoperative patients, reflecting the severity of damage to the CTN. It was concluded that the confocal laser scanning microscope is a very useful tool for using to observe a large number of taste buds non-invasively.

  1. Nerve conduction velocity

    MedlinePlus

    ... polyneuropathy Tibial nerve dysfunction Ulnar nerve dysfunction Any peripheral neuropathy can cause abnormal results. Damage to the spinal ... Herniated disk Lambert-Eaton syndrome Mononeuropathy Multiple ... azotemia Primary amyloidosis Radial nerve dysfunction Sciatica ...

  2. Lingual nerve paralysis after endobronchial ultrasound utilizing laryngeal mask airway.

    PubMed

    Dhillon, Samjot Singh; O'Leary, Kathleen

    2012-01-01

    A 52-year-old woman developed loss of sensation and taste in the anterior two thirds of her tongue after undergoing endobronchial ultrasound-guided transbronchial needle aspiration using a laryngeal mask airway (LMA). This was believed to be due to bilateral lingual nerve injury, likely caused by stretching of tissue of the upper airway because of repetitive movements of LMA during attempts to obtain a clearer ultrasound image to direct needle insertion. To the best of our knowledge, this is the first report of lingual nerve injury after an endobronchial ultrasound procedure using LMA.

  3. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains.

    PubMed

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-05-10

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states.

  4. The Addition of Saccharin to Taste Cues Affects Taste Preference Conditioning in Thirsty Rats

    ERIC Educational Resources Information Center

    Forestell, Catherine A.; LoLordo, Vincent M.

    2004-01-01

    Previous failures to condition preferences for the unacceptable taste cues sucrose octaacetate (SOA) and citric acid (CA) using a reverse-order, differential conditioning procedure (Forestell & LoLordo, 2000) may have been the result of low consumption of the taste cues in training or of their relatively low acceptability to rats that are thirsty…

  5. Facilitation of Taste Memory Acquisition by Experiencing Previous Novel Taste Is Protein-Synthesis Dependent

    ERIC Educational Resources Information Center

    Merhav, Maayan; Rosenblum, Kobi

    2008-01-01

    Very little is known about the biological and molecular mechanisms that determine the effect of previous experience on implicit learning tasks. In the present study, we first defined weak and strong taste inputs according to measurements in the behavioral paradigm known as latent inhibition of conditioned taste aversion. We then demonstrated that…

  6. The Addition of Saccharin to Taste Cues Affects Taste Preference Conditioning in Thirsty Rats

    ERIC Educational Resources Information Center

    Forestell, Catherine A.; LoLordo, Vincent M.

    2004-01-01

    Previous failures to condition preferences for the unacceptable taste cues sucrose octaacetate (SOA) and citric acid (CA) using a reverse-order, differential conditioning procedure (Forestell & LoLordo, 2000) may have been the result of low consumption of the taste cues in training or of their relatively low acceptability to rats that are thirsty…

  7. Facilitation of Taste Memory Acquisition by Experiencing Previous Novel Taste Is Protein-Synthesis Dependent

    ERIC Educational Resources Information Center

    Merhav, Maayan; Rosenblum, Kobi

    2008-01-01

    Very little is known about the biological and molecular mechanisms that determine the effect of previous experience on implicit learning tasks. In the present study, we first defined weak and strong taste inputs according to measurements in the behavioral paradigm known as latent inhibition of conditioned taste aversion. We then demonstrated that…

  8. Curculin exhibits sweet-tasting and taste-modifying activities through its distinct molecular surfaces.

    PubMed

    Kurimoto, Eiji; Suzuki, Maiko; Amemiya, Eiko; Yamaguchi, Yoshiki; Nirasawa, Satoru; Shimba, Nobuhisa; Xu, Ningchun; Kashiwagi, Tatsuki; Kawai, Misako; Suzuki, Ei-ichiro; Kato, Koichi

    2007-11-16

    Curculin isolated from Curculigo latifolia, a plant grown in Malaysia, has an intriguing property of modifying sour taste into sweet taste. In addition to this taste-modifying activity, curculin itself elicits a sweet taste. Although these activities have been attributed to the heterodimeric isoform and not homodimers of curculin, the underlying mechanisms for the dual action of this protein have been largely unknown. To identify critical sites for these activities, we performed a mutational and structural study of recombinant curculin. Based on the comparison of crystal structures of curculin homo- and heterodimers, a series of mutants was designed and subjected to tasting assays. Mapping of amino acid residues on the three-dimensional structure according to their mutational effects revealed that the curculin heterodimer exhibits sweet-tasting and taste-modifying activities through its partially overlapping but distinct molecular surfaces. These findings suggest that the two activities of the curculin heterodimer are expressed through its two different modes of interactions with the T1R2-T1R3 heterodimeric sweet taste receptor.

  9. Extinction, Spontaneous Recovery and Renewal of Flavor Preferences Based on Taste-Taste Learning

    ERIC Educational Resources Information Center

    Diaz, Estrella; De la Casa, L. G.

    2011-01-01

    This paper presents evidence of extinction, spontaneous recovery and renewal in a conditioned preferences paradigm based on taste-taste associations. More specifically, in three experiments rats exposed to a simultaneous compound of citric acid-saccharin solution showed a preference for the citric solution when the preference was measured with a…

  10. Extinction, Spontaneous Recovery and Renewal of Flavor Preferences Based on Taste-Taste Learning

    ERIC Educational Resources Information Center

    Diaz, Estrella; De la Casa, L. G.

    2011-01-01

    This paper presents evidence of extinction, spontaneous recovery and renewal in a conditioned preferences paradigm based on taste-taste associations. More specifically, in three experiments rats exposed to a simultaneous compound of citric acid-saccharin solution showed a preference for the citric solution when the preference was measured with a…

  11. Collagen nerve wrap for median nerve scarring.

    PubMed

    Kokkalis, Zinon T; Mavrogenis, Andreas F; Ballas, Efstathios G; Papagelopoulos, Panayiotis J; Soucacos, Panayotis N

    2015-02-01

    Nerve wrapping materials have been manufactured to inhibit nerve tissue adhesions and diminish inflammatory and immunologic reactions in nerve surgery. Collagen nerve wrap is a biodegradable type I collagen material that acts as an interface between the nerve and the surrounding tissues. Its main advantage is that it stays in place during the period of tissue healing and is then gradually absorbed once tissue healing is completed. This article presents a surgical technique that used a collagen nerve wrap for the management of median nerve tissue adhesions in 2 patients with advanced carpal tunnel syndrome due to median nerve scarring and adhesions. At last follow-up, both patients had complete resolution with no recurrence of their symptoms. Complications related to the biodegradable material were not observed. Copyright 2015, SLACK Incorporated.

  12. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  13. Nerve Impulses in Plants

    ERIC Educational Resources Information Center

    Blatt, F. J.

    1974-01-01

    Summarizes research done on the resting and action potential of nerve impulses, electrical excitation of nerve cells, electrical properties of Nitella, and temperature effects on action potential. (GS)

  14. Exploring taste hyposensitivity in Japanese senior high school students.

    PubMed

    Ohnuki, Mari; Shinada, Kayoko; Ueno, Masayuki; Zaitsu, Takashi; Wright, Fredrick Allan Clive; Kawaguchi, Yoko

    2012-02-01

    The main objective of this study was to investigate the prevalence of taste hyposensitivity and the relationships between sex, oral health status, and eating habits with taste hyposensitivity in Japanese senior high school students. Oral examinations, sweet and salt whole-mouth taste tests, and a questionnaire about eating habits were conducted on 234 senior high school students. Factors affecting taste hyposensitivity were investigated using a multivariate analysis. Sweet-taste hyposensitivity was observed in 7.3% of the students, and salt-taste hyposensitivity in 22.2%. Approximately 3% of the students had both sweet- and salt-taste hyposensitivity, and 22.6% had either sweet- or salt-taste hyposensitivity. In total, 26% had a taste hyposensitivity. There were significant relationships between the intake of instant noodles with sweet-taste hyposensitivity, and the intake of vegetables or isotonic drinks with salt-taste hyposensitivity. There was a significant association between eating habits and taste hyposensitivity in Japanese senior high school students. Taste tests would be a helpful adjunct for students to recognize variations in taste sensitivity, and a questionnaire about their eating habits might provide an effective self-review of their eating habits, and therefore, provide motivation to change. © 2011 Blackwell Publishing Asia Pty Ltd.

  15. Using sound-taste correspondences to enhance the subjective value of tasting experiences

    PubMed Central

    Reinoso Carvalho, Felipe; Van Ee, Raymond; Rychtarikova, Monika; Touhafi, Abdellah; Steenhaut, Kris; Persoone, Dominique; Spence, Charles

    2015-01-01

    The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate’s taste while listening to an auditory stimulus. Four different conditions were presented in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop’s own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food’s identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations. PMID:26388813

  16. Using sound-taste correspondences to enhance the subjective value of tasting experiences.

    PubMed

    Reinoso Carvalho, Felipe; Van Ee, Raymond; Rychtarikova, Monika; Touhafi, Abdellah; Steenhaut, Kris; Persoone, Dominique; Spence, Charles

    2015-01-01

    The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate's taste while listening to an auditory stimulus. Four different conditions were presented in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop's own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food's identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations.

  17. Lingual Nerve Entrapment in Muscular and Osseous Structures

    PubMed Central

    Piagkou, Maria; Demesticha, Theano; Piagkos, Giannoulis; Georgios, Androutsos; Panagiotis, Skandalakis

    2010-01-01

    Running through the infratemporal fossa is the lingual nerve (i.e. the third branch of the posterior trunk of the mandibular nerve). Due to its location, there are various anatomic structures that might entrap and potentially compress the lingual nerve. These anatomical sites of entrapment are: (a) the partially or completely ossified pterygospinous or pterygoalar ligaments; (b) the large lamina of the lateral plate of the pterygoid process; and (c) the medial fibers of the anterior region of the lateral pterygoid muscle. Due to the connection between these nerve and anatomic structures, a contraction of the lateral pterygoid muscle, for example, might cause a compression of the lingual nerve. Any variations in the course of the lingual nerve can be of clinical significance to surgeons and neurologists because of the significant complications that might occur. To name a few of such complications, lingual nerve entrapment can lead to: (a) numbness, hypoesthesia or even anesthesia of the tongue's mucous glands; (b) anesthesia and loss of taste in the anterior two-thirds of the tongue; (c) anesthesia of the lingual gums; and (d) pain related to speech articulation disorder. Dentists should, therefore, be alert to possible signs of neurovascular compression in regions where the lingual nerve is distributed. PMID:21404967

  18. Morphology of nerve endings in vocal fold of human newborn.

    PubMed

    Gonçalves da Silva Leite, Janaina; Costa Cavalcante, Maria Luzete; Fechine-Jamacaru, Francisco Vagnaldo; de Lima Pompeu, Margarida Maria; Leite, José Alberto Dias; Nascimento Coelho, Dulce Maria; Rabelo de Freitas, Marcos

    2016-10-01

    Sensory receptors are distributed throughout the oral cavity, pharynx, and larynx. Laryngeal sensitivity is crucial for maintaining safe swallowing, thus avoiding silent aspiration. Morphologic description of different receptor types present in larynx vary because of the study of many different species, from mouse to humans. The most commonly sensory structures described in laryngeal mucosa are free nerve endings, taste buds, muscle spindles, glomerular and corpuscular receptors. This study aimed at describing the morphology and the distribution of nerve endings in premature newborn glottic region. Transversal serial frozen sections of the whole vocal folds of three newborns were analyzed using an immuno-histochemical process with a pan-neuronal marker anti-protein gene product 9.5 (PGP 9.5). Imaging was done using a confocal laser microscope. Nerve fiber density in vocal cord was calculated using panoramic images in software Morphometric Analysis System v1.0. Some sensory structures, i.e. glomerular endings and intraepithelial free nerve endings were found in the vocal cord mucosa. Muscle spindles, complex nerve endings (Meissner-like, spherical, rectangular and growing) spiral-wharves nerve structures were identified in larynx intrinsic muscles. Nervous total mean density in vocal cord was similar in the three newborns, although they had different gestational age. The mean nerve fiber density was higher in the posterior region than anterior region of vocal cord. The present results demonstrate the occurrence of different morphotypes of sensory corpuscles and nerve endings premature newborn glottic region and provide information on their sensory systems.

  19. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    PubMed Central

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  20. The anion in salt taste: a possible role for paracellular pathways.

    PubMed

    Elliott, E J; Simon, S A

    1990-12-03

    It is well established from psychophysical and electrophysiological measurements that both Na and Cl contribute to the taste response to NaCl. The contribution of Na to the NaCl response can be studied using amiloride, a drug that inhibits Na transport in taste and other epithelial cells. The pathways involved in response to Cl are less well understood. We undertook a series of experiments in the rat to determine whether tonic chorda tympani responses to NaCl are inhibited by specific inhibitors of anion transport. Whole nerve responses to NaCl were unchanged by bathing the tongue in SITS, DIDS, bumetanide, furosemide, 9-anthracene carboxylic acid, or an antibody that blocks Cl conductance pathways in many epithelia. Thus, Cl co-transporters, exchangers, and channels (at least in the apical membrane of taste cells) are probably not involved in NaCl taste responses. When other anions (acetate, isethionate, methane sulfonate, gluconate, tartrate), which are generally impermeant in other Cl-selective pathways, were substituted for Cl, the dose-response curves for the chorda tympani response were shifted toward higher concentrations than the response to NaCl, but achieved the same maximum value at sufficiently high concentrations (1.0 M Na). For all the organic Na salts, the amiloride-insensitive portion of the response was substantially less than for NaCl. Experiments with Na acetate at different pHs showed that intracellular acidification is not responsible for the differences between NaCl and organic salts of Na. One possibility which remains is that apical stimulation with these other Na salts results in a taste cell membrane potential that is hyperpolarized with respect to the membrane potential in NaCl.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Expectations influence sensory experience in a wine tasting.

    PubMed

    Siegrist, Michael; Cousin, Marie-Eve

    2009-06-01

    Information about a product may shape consumers' taste experience. In a wine tasting experiment, participants received (positive or negative) information about the wine prior to or after the tasting. When the information was given prior to the tasting, negative information about the wine resulted in lower ratings compared to the group that received positive information. No such effect was observed when participants received the information after the tasting but before they evaluated the wine. Results suggest that the information about the wine affected the experience itself and not only participants' overall assessment of the wine after the tasting.

  2. Evidence that humans can taste glucose polymers.

    PubMed

    Lapis, Trina J; Penner, Michael H; Lim, Juyun

    2014-11-01

    The sense of taste is essential for identifying potential nutrients and poisons. Accordingly, specialized taste receptor cells are activated by food-derived chemicals. Because of its importance in the human diet, oral detection of starch, or its degradation products, would presumably be highly beneficial. Yet, it has long been assumed that simple sugars are the only class of carbohydrates that humans can taste. There is, however, considerable evidence that rodents can taste starch degradation products (i.e., glucose polymers composed of maltooligosaccharides with 3-10 glucose units and maltopolysaccharides with >10 glucose units) and that their detection is independent of the sweet taste receptor, T1R2/T1R3. The present study was designed 1) to measure individual differences in human taste perception of glucose polymers, 2) to understand individual differences in the activity of salivary α-amylase, and 3) to investigate the role that salivary α-amylase may play in the taste perception of glucose polymers. In the first experiment, subjects rated taste intensity of glucose, sucrose, NaCl, and glucose polymers of various chain lengths, while their noses were clamped. Saliva samples from the subjects were also collected and their salivary α-amylase activity was assayed. Results showed that the perceived intensities of glucose, sucrose, and NaCl were significantly correlated (r = 0.75-0.85, P < 0.001), but not with the longer chain glucose polymers, whereas intensity ratings of all glucose polymers were highly correlated with one another (r = 0.69-0.82, P < 0.001). Importantly, despite large individual differences in α-amylase activity among subjects, responsiveness to glucose polymers did not significantly differ between individuals with high and low α-amylase activity. A follow up experiment was conducted to quantify the concentrations of glucose and maltose that were inherently present in the glucose polymer stimuli and to determine whether the amounts were

  3. Taste masking microspheres for orally disintegrating tablets.

    PubMed

    Xu, Jianchen; Bovet, Li Li; Zhao, Kang

    2008-07-09

    The purpose of this study was to evaluate the potential of microspheres for taste masking when incorporated into orally disintegrating tablets. The microspheres were produced by spray drying a mixture of the model compound (famotidine) with taste masking material. The spray process was optimized using a central composite design for two variables to obtain microspheres with desirable characteristics. Then the microspheres were mixed with other excipients to form orally disintegrating tablets. The optimal spray-drying process parameters were 34mg/ml for solid concentration and 7ml/min for feed rate. The drug encapsulation efficiency of the spray-dried microspheres ranges from of 37.59 to 61.56%, with a mean diameter of less than 10microm size and low moisture content (less than 4%). Results from an evaluation by a panel of six human volunteers demonstrated that the orally disintegrating tablets with taste masking microspheres improved the taste significantly. Furthermore, an in vivo study in rats showed that the microspheres neither decrease the bioavailability nor retard the release of famotidine significantly. In conclusion, spray-dried microspheres can effectively mask the bitter taste of the active pharmaceutical ingredients in combination with the orally disintegrating tablets.

  4. Disentangling taste and toxicity in aposematic prey.

    PubMed

    Holen, Øistein Haugsten

    2013-02-22

    Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry.

  5. Food Science of Dashi and Umami Taste.

    PubMed

    Ninomiya, Kumiko

    2016-01-01

     Umami is a basic tastes, along with sweet, salty, bitter and sour, which is imparted by glutamate, one of the free amino acids in foods. Since its discovery of umami by a Japanese scientist in 1908, umami is now perceived globally a basic taste. Recent collaboration among chefs and researchers on traditional soup stocks showed a difference in taste profiles of Japanese soup stock 'dashi' and Western style soup stock. The free amino acids profile's in dashi and soup stock showed how Japanese have traditionally adopted a simple umami taste. The exchange of knowledge on cooking methods and diverse types of umami rich foods in different countries displays the blending of the culinary arts, food science and technology for healthy and tasty solutions. Since Japanese cuisine 'WASHOKU' was listed in the 'Intangible Heritage of UNESCO' in 2013, many people in the world now have great interest in Japanese cuisine. One of the unique characteristics of this cuisine is that 'dashi' is an indispensable material for cooking a variety of Japanese dishes. Many chefs from Europe, US and South America have come to Japan to learn Japanese cuisine in the last 10 years, and umami has become recognized as a common taste worldwide. Researchers and culinary professionals have begun to pay attention to the traditional seasonings and condiments rich in glutamate available throughout the world.

  6. Hypoxanthine enhances the cured meat taste

    PubMed Central

    Nakamura, Yukinobu; Yoshida, Yuka; Hattori, Akihito

    2016-01-01

    Abstract We evaluated the enhancement of cured meat taste during maturation by sensory analysis. We focused on the heat‐stable sarcoplasmic fraction (HSSF) to identify the factors related to cured meat taste. Because the dry matter of HSSF contained more than 30% nitrogen, nitrogen compounds such as free amino acids, small peptides and adenosine triphosphate‐related compounds seemed to be the important components of HSSF. The samples cured with HSSF for 2 h exhibited the same taste profile as ones cured without HSSF for 168 h. Therefore, the changes in the amount and fractions of nitrogen compounds were examined in HSSF during incubation from 0 to 168 h. The concentration of hypoxanthine (Hx) gradually increased, while inosine‐5′‐monophosphate decreased during the incubation. The samples cured with pickles containing various concentrations of Hx were subjected to sensory analysis. The addition of Hx, in a dose‐dependent fashion, enhanced cured meat taste by maturation for 2 h. It was concluded that Hx is essential for the enhancement of cured meat taste. PMID:27169902

  7. Hypoxanthine enhances the cured meat taste.

    PubMed

    Ichimura, Sayaka; Nakamura, Yukinobu; Yoshida, Yuka; Hattori, Akihito

    2017-02-01

    We evaluated the enhancement of cured meat taste during maturation by sensory analysis. We focused on the heat-stable sarcoplasmic fraction (HSSF) to identify the factors related to cured meat taste. Because the dry matter of HSSF contained more than 30% nitrogen, nitrogen compounds such as free amino acids, small peptides and adenosine triphosphate-related compounds seemed to be the important components of HSSF. The samples cured with HSSF for 2 h exhibited the same taste profile as ones cured without HSSF for 168 h. Therefore, the changes in the amount and fractions of nitrogen compounds were examined in HSSF during incubation from 0 to 168 h. The concentration of hypoxanthine (Hx) gradually increased, while inosine-5'-monophosphate decreased during the incubation. The samples cured with pickles containing various concentrations of Hx were subjected to sensory analysis. The addition of Hx, in a dose-dependent fashion, enhanced cured meat taste by maturation for 2 h. It was concluded that Hx is essential for the enhancement of cured meat taste.

  8. Taste and olfaction in middle ear surgery.

    PubMed

    Ciofalo, Andrea; Zambetti, Giampietro; Romeo, Martina; Vestri, Anna Rita; Iannella, Giannicola; Re, Massimo; Magliulo, Giuseppe

    2015-04-01

    The aim of this study was to assess pre- and postoperative taste ability in patients undergoing middle ear surgery for otosclerosis or chronic otitis media. Olfactory function was also evaluated to rule out taste deficits due to concomitant nasal pathology. All patients underwent ear, nose, and throat examination, otomicroscopy, nasal endoscopy, anterior rhinomanometry, taste testing, and olfactory testing. Patients were evaluated at 1 to 5 days preoperatively (T0), and at 1 (T1), 6 (T6), and 12 (T12) months postoperatively. Both groups of patients experienced worsening of the mean taste threshold postoperatively. This phenomenon was more serious in poststapedotomy patients. Follow-up showed progressive improvement in both groups. All values of olfactory testing were within the normal range for otosclerosis patients. Patients with chronic otitis media showed variable postoperative findings. Chorda tympani function can be negatively affected by middle ear surgery. Deficits may be more marked in stapedotomy patients than in those undergoing tympanoplasty. Postoperative recovery of taste is satisfactory, although with different timelines for the 2 types of pathology. © The Author(s) 2014.

  9. Smell and Taste Impairment After Total Laryngectomy.

    PubMed

    Riva, Giuseppe; Sensini, Matteo; Corvino, Andrea; Pecorari, Giancarlo; Garzaro, Massimiliano

    2017-07-01

    Aim of this observational study is the evaluation of olfactory and gustatory impairments in laryngectomized long-term survivors compared to control subjects. Correlation between smell and taste alterations, age, and previous adjuvant treatments in laryngectomees was investigated. Fifty control subjects and 50 patients who underwent total laryngectomy for advanced laryngeal carcinoma were evaluated. All subjects underwent symptoms evaluation, oropharyngeal exam, endoscopic fiberoptic nasal examination, and Taste Strips and Sniffin' Sticks tests. Hyposmia was reported by all laryngectomees and hypogeusia by 54% of patients. Sniffin' Sticks and Taste Strips tests demonstrated a statistically significant difference between controls and laryngectomees regarding olfactory threshold, odor discrimination and identification, Threshold Discrimination Identification (TDI) score, and sour, salty, and gustatory Total Taste score ( P < .05). Multivariate analysis for Total Taste score in laryngectomees showed a statistically significant correlation with aging, having an odds ratio of 0.127 for age ≥65 years, but not with TDI score, radiotherapy, and follow-up time, whereas multivariate analysis for TDI score demonstrated no correlation with radiotherapy, age, and follow-up time. Total laryngectomy determines olfactory and gustatory impairments that should be taken into account in clinical practice. Relationships between sensorial alterations, aging, follow-up period, and adjuvant treatments should be further evaluated in prospective studies.

  10. Disentangling taste and toxicity in aposematic prey

    PubMed Central

    Holen, Øistein Haugsten

    2013-01-01

    Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and Batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry. PMID:23256198

  11. How taste works: cells, receptors and gustatory perception.

    PubMed

    Kikut-Ligaj, Dariusz; Trzcielińska-Lorych, Joanna

    2015-12-01

    The sensitivity of taste in mammals varies due to quantitative and qualitative differences in the structure of the taste perception organs. Gustatory perception is made possible by the peripheral chemosensory organs, i.e., the taste buds, which are distributed in the epithelium of the taste papillae of the palate, tongue, epiglottis, throat and larynx. Each taste bud consists of a community of ~100 cells that process and integrate taste information with metabolic needs. Mammalian taste buds are contained in circumvallate, fungiform and foliate papillae and react to sweet, salty, sour, bitter and umami stimuli. The sensitivity of the taste buds for individual taste stimuli varies extensively and depends on the type of papillae and the part of the oral cavity in which they are located. There are at least three different cell types found in mammalian taste buds: type I cells, receptor (type II) cells and presynaptic (type III) cells. This review focuses on the biophysiological mechanisms of action of the various taste stimuli in humans. Currently, the best-characterized proteins are the receptors (GPCR). In addition, the activation of bitter, sweet and umami tastes are relatively well known, but the activation of salty and sour tastes has yet to be clearly explained.

  12. Microvascular Cranial Nerve Palsy

    MedlinePlus

    ... Español Eye Health / Eye Health A-Z Microvascular Cranial Nerve Palsy Sections What Is Microvascular Cranial Nerve Palsy? ... Microvascular Cranial Nerve Palsy Treatment What Is Microvascular Cranial Nerve Palsy? Leer en Español: ¿Qué Es una Parálisis ...

  13. Taste-immunosuppression engram: reinforcement and extinction.

    PubMed

    Niemi, Maj-Britt; Härting, Margarete; Kou, Wei; Del Rey, Adriana; Besedovsky, Hugo O; Schedlowski, Manfred; Pacheco-López, Gustavo

    2007-08-01

    Several Pavlovian conditioning paradigms have documented the brain's abilities to sense immune-derived signals or immune status, associate them with concurrently relevant extereoceptive stimuli, and reinstate such immune responses on demand. Specifically, the naturalistic relation of food ingestion with its possible immune consequences facilitates taste-immune associations. Here we demonstrate that the saccharin taste can be associated with the immunosuppressive agent cyclosporine A, and that such taste-immune associative learning is subject to reinforcement. Furthermore, once consolidated, this saccharin-immunosuppression engram is resistant to extinction when avoidance behavior is assessed. More importantly, the more this engram is activated, either at association or extinction phases, the more pronounced is the conditioned immunosuppression.

  14. Sensing via Intestinal Sweet Taste Pathways

    PubMed Central

    Young, Richard L.

    2010-01-01

    The detection of nutrients in the gastrointestinal (GI) tract is of fundamental significance to the control of motility, glycemia and energy intake, and yet we barely know the most fundamental aspects of this process. This is in stark contrast to the mechanisms underlying the detection of lingual taste, which have been increasingly well characterized in recent years, and which provide an excellent starting point for characterizing nutrient detection in the intestine. This review focuses on the form and function of sweet taste transduction mechanisms identified in the intestinal tract; it does not focus on sensors for fatty acids or proteins. It examines the intestinal cell types equipped with sweet taste transduction molecules in animals and humans, their location, and potential signals that transduce the presence of nutrients to neural pathways involved in reflex control of GI motility. PMID:21519398

  15. Is fat taste ready for primetime?

    PubMed Central

    DiPatrizio, Nicholas V.

    2014-01-01

    Mounting evidence suggests that gustation is important for the orosensory detection of dietary fats, and might contribute to preferences that humans, rodents, and possibly other mammals exhibit for fat-rich foods. In contrast to sweet, sour, salty, bitter, and umami, fat is not widely recognized as a primary taste quality. Recent investigations, however, provide a wealth of information that is helping to elucidate the specific molecular, cellular, and neural mechanisms required for fat detection in mammals. The latest evidence supporting a fat taste will be explored in this review, with a particular focus on recent studies that suggest a surprising role for gut-brain endocannabinoid signaling in controlling intake and preference for fats based on their proposed taste properties. PMID:24631296

  16. Major taste loss in carnivorous mammals.

    PubMed

    Jiang, Peihua; Josue, Jesusa; Li, Xia; Glaser, Dieter; Li, Weihua; Brand, Joseph G; Margolskee, Robert F; Reed, Danielle R; Beauchamp, Gary K

    2012-03-27

    Mammalian sweet taste is primarily mediated by the type 1 taste receptor Tas1r2/Tas1r3, whereas Tas1r1/Tas1r3 act as the principal umami taste receptor. Bitter taste is mediated by a different group of G protein-coupled receptors, the Tas2rs, numbering 3 to ∼66, depending on the species. We showed previously that the behavioral indifference of cats toward sweet-tasting compounds can be explained by the pseudogenization of the Tas1r2 gene, which encodes the Tas1r2 receptor. To examine the generality of this finding, we sequenced the entire coding region of Tas1r2 from 12 species in the order Carnivora. Seven of these nonfeline species, all of which are exclusive meat eaters, also have independently pseudogenized Tas1r2 caused by ORF-disrupting mutations. Fittingly, the purifying selection pressure is markedly relaxed in these species with a pseudogenized Tas1r2. In behavioral tests, the Asian otter (defective Tas1r2) showed no preference for sweet compounds, but the spectacled bear (intact Tas1r2) did. In addition to the inactivation of Tas1r2, we found that sea lion Tas1r1 and Tas1r3 are also pseudogenized, consistent with their unique feeding behavior, which entails swallowing food whole without chewing. The extensive loss of Tas1r receptor function is not restricted to the sea lion: the bottlenose dolphin, which evolved independently from the sea lion but displays similar feeding behavior, also has all three Tas1rs inactivated, and may also lack functional bitter receptors. These data provide strong support for the view that loss of taste receptor function in mammals is widespread and directly related to feeding specializations.

  17. Major taste loss in carnivorous mammals

    PubMed Central

    Jiang, Peihua; Josue, Jesusa; Li, Xia; Glaser, Dieter; Li, Weihua; Brand, Joseph G.; Margolskee, Robert F.; Reed, Danielle R.; Beauchamp, Gary K.

    2012-01-01

    Mammalian sweet taste is primarily mediated by the type 1 taste receptor Tas1r2/Tas1r3, whereas Tas1r1/Tas1r3 act as the principal umami taste receptor. Bitter taste is mediated by a different group of G protein-coupled receptors, the Tas2rs, numbering 3 to ∼66, depending on the species. We showed previously that the behavioral indifference of cats toward sweet-tasting compounds can be explained by the pseudogenization of the Tas1r2 gene, which encodes the Tas1r2 receptor. To examine the generality of this finding, we sequenced the entire coding region of Tas1r2 from 12 species in the order Carnivora. Seven of these nonfeline species, all of which are exclusive meat eaters, also have independently pseudogenized Tas1r2 caused by ORF-disrupting mutations. Fittingly, the purifying selection pressure is markedly relaxed in these species with a pseudogenized Tas1r2. In behavioral tests, the Asian otter (defective Tas1r2) showed no preference for sweet compounds, but the spectacled bear (intact Tas1r2) did. In addition to the inactivation of Tas1r2, we found that sea lion Tas1r1 and Tas1r3 are also pseudogenized, consistent with their unique feeding behavior, which entails swallowing food whole without chewing. The extensive loss of Tas1r receptor function is not restricted to the sea lion: the bottlenose dolphin, which evolved independently from the sea lion but displays similar feeding behavior, also has all three Tas1rs inactivated, and may also lack functional bitter receptors. These data provide strong support for the view that loss of taste receptor function in mammals is widespread and directly related to feeding specializations. PMID:22411809

  18. Synaesthesia: when coloured sounds taste sweet.

    PubMed

    Beeli, Gian; Esslen, Michaela; Jäncke, Lutz

    2005-03-03

    Synaesthesia is the involuntary physical experience of a cross-modal linkage--for example, hearing a tone (the inducing stimulus) evokes an additional sensation of seeing a colour (concurrent perception). Of the different types of synaesthesia, most have colour as the concurrent perception, with concurrent perceptions of smell or taste being rare. Here we describe the case of a musician who experiences different tastes in response to hearing different musical tone intervals, and who makes use of her synaesthetic sensations in the complex task of tone-interval identification. To our knowledge, this combination of inducing stimulus and concurrent perception has not been described before.

  19. Contribution of different taste cells and signaling pathways to the discrimination of "bitter" taste stimuli by an insect.

    PubMed

    Glendinning, John I; Davis, Adrienne; Ramaswamy, Sudha

    2002-08-15

    Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selectively to bitter taste stimuli. Each bilateral pair of bitter-sensitive taste cells has a different molecular receptive range (MRR); some of these taste cells also contain two signaling pathways with distinctive MRRs and temporal patterns of spiking. To test for discrimination, we habituated the caterpillar's taste-mediated aversive response to one bitter taste stimulus (salicin) and then asked whether this habituation phenomenon generalized to four other bitter taste stimuli (caffeine, aristolochic acid, Grindelia extract, and Canna extract). We inferred that the two compounds were discriminable if the habituation phenomenon failed to generalize (e.g., from salicin to aristolochic acid). We found that M. sexta could discriminate between salicin and those bitter taste stimuli that activate (1) different populations of bitter-sensitive taste cells (Grindelia extract and Canna extract) or (2) different signaling pathways within the same bitter-sensitive taste cell (aristolochic acid). M. sexta could not discriminate between salicin and a bitter taste stimulus that activates the same signaling pathway within the same bitter-sensitive taste cell (caffeine). We propose that the heterogeneous population of bitter-sensitive taste cells and signaling pathways within this insect facilitates the discrimination of bitter taste stimuli.

  20. Influences of food-name labels on perceived tastes.

    PubMed

    Okamoto, Masako; Wada, Yuji; Yamaguchi, Yui; Kimura, Atsushi; Dan, Haruka; Masuda, Tomohiro; Singh, Archana K; Clowney, Lester; Dan, Ippeita

    2009-03-01

    We examined whether food identity information presented as name labels would influence perception of basic tastes. To test this hypothesis, we used 10 aqueous taste solutions consisting of 2-3 of the 5 basic tastes in different ratios and presented them with one of these food names: "lemon," "coffee jelly," "caramel candy," and "consomme soup." Forty-six participants tasted samples presented with either food-name labels or random number labels. We found that participants who tasted samples with food-name labels rated tastes with significantly higher liking and familiarity scores than those presented with random numbers, especially when the names and tastes were perceived as being congruent. Though an effect on perceived intensity was not as prominent, we observed cases in which intensity ratings significantly changed. Effects of identity information have been shown in olfaction and flavors. This study demonstrates the first experimental evidence that identity information given as names also influence the perception of unimodal basic tastes.

  1. Taste perception: from the tongue to the testis.

    PubMed

    Li, Feng

    2013-06-01

    In mammals, the sense of taste helps in the evaluation and consumption of nutrients, and in avoiding toxic substances and indigestible materials. Distinct cell types expressing unique receptors detect each of the five basic tastes: salty, sour, bitter, sweet and umami. The latter three tastes are detected by two distinct families of G protein-coupled receptors: T2Rs and T1Rs. Interestingly, these taste receptors have been found in tissues other than the tongue, such as the digestive system, respiratory system, brain, testis and spermatozoa. The functional implications of taste receptors distributed throughout the body are unknown. We therefore reviewed the remarkable advances in our understanding of the molecular basis of taste perception in 'taste' and 'non-taste' tissues. We also present our speculations on the direction of further research in the field of male reproduction.

  2. [Two Cases of Invasive Thymoma with Taste Disorder].

    PubMed

    Katayama, Tatsuya; Hirai, Shinji

    2017-02-01

    Two 50s female patients with the taste disorder of sweet taste loss and stage IV a type B2 invasive thymoma underwent surgery at our hospital. One patient with myasthenia gravis (MG) developed postoperative myasthenic crisis and recovered by the treatment with plasma apheresis and steroid pulse therapy. Her taste disorder fully recovered together with her MG symptom. The taste disorder of the other patient without MG had persisted for 3 years after the surgery. The taste disorder of sweet taste loss was reported as one of non-motor symptoms caused by MG-related autoimmune mechanisms associated with thymoma, improving with the therapy for MG. Anti-Kv 1.4 antibody was reported to be positive in nearly half patients with the taste disorder and MG and is speculated to affect selectively the sweet taste receptor.

  3. Development and Evaluation of a Miniaturized Taste Sensor Chip

    PubMed Central

    Tahara, Yusuke; Ikeda, Akihiro; Maehara, Yoshihiro; Habara, Masaaki; Toko, Kiyoshi

    2011-01-01

    A miniaturized taste sensor chip was designed for use in a portable-type taste sensing system. The fabricated sensor chip (40 mm × 26 mm × 2.2 mm) has multiple taste-sensing sites consisting of a poly(hydroxyethyl methacrylate) hydrogel with KCl as the electrolyte layer for stability of the membrane potential and artificial lipid membranes as the taste sensing elements. The sensor responses to the standard taste substances showed high accuracy and good reproducibility, which is comparable with the performance of the sensor probe of the commercialized taste sensing system. Thus, the fabricated taste sensor chip could be used as a key element for the realization of a portable-type taste sensing system. PMID:22163731

  4. Expanded Terminal Fields of Gustatory Nerves Accompany Embryonic BDNF Overexpression in Mouse Oral Epithelia

    PubMed Central

    Sun, Chengsan; Dayal, Arjun

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste buds are hyperinnervated, demonstrating a disruption of nerve/target matching in the tongue. We tested the hypothesis here that overexpression of BDNF peripherally leads to a disrupted terminal field organization of nerves that carry taste information to the brainstem. The chorda tympani, greater superficial petrosal, and glossopharyngeal nerves were labeled in adult wild-type (WT) mice and in adult mice in which BDNF was overexpressed (OE) to examine the volume and density of their central projections in the nucleus of the solitary tract. We found that the terminal fields of the chorda tympani and greater superficial petrosal nerves and overlapping fields that included these nerves in OE mice were at least 80% greater than the respective field volumes in WT mice. The shapes of terminal fields were similar between the two groups; however, the density and spread of labels were greater in OE mice. Unexpectedly, there were also group-related differences in chorda tympani nerve function, with OE mice showing a greater relative taste response to a concentration series of sucrose. Overall, our results show that disruption in peripheral innervation patterns of sensory neurons have significant effects on peripheral nerve function and central organization of their terminal fields. PMID:25568132

  5. Expanded terminal fields of gustatory nerves accompany embryonic BDNF overexpression in mouse oral epithelia.

    PubMed

    Sun, Chengsan; Dayal, Arjun; Hill, David L

    2015-01-07

    Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste buds are hyperinnervated, demonstrating a disruption of nerve/target matching in the tongue. We tested the hypothesis here that overexpression of BDNF peripherally leads to a disrupted terminal field organization of nerves that carry taste information to the brainstem. The chorda tympani, greater superficial petrosal, and glossopharyngeal nerves were labeled in adult wild-type (WT) mice and in adult mice in which BDNF was overexpressed (OE) to examine the volume and density of their central projections in the nucleus of the solitary tract. We found that the terminal fields of the chorda tympani and greater superficial petrosal nerves and overlapping fields that included these nerves in OE mice were at least 80% greater than the respective field volumes in WT mice. The shapes of terminal fields were similar between the two groups; however, the density and spread of labels were greater in OE mice. Unexpectedly, there were also group-related differences in chorda tympani nerve function, with OE mice showing a greater relative taste response to a concentration series of sucrose. Overall, our results show that disruption in peripheral innervation patterns of sensory neurons have significant effects on peripheral nerve function and central organization of their terminal fields. Copyright © 2015 the authors 0270-6474/15/350409-13$15.00/0.

  6. A Preference Test for Sweet Taste That Uses Edible Strips

    PubMed Central

    Smutzer, Gregory; Patel, Janki Y.; Stull, Judith C.; Abarintos, Ray A.; Khan, Neiladri K.; Park, Kevin C.

    2014-01-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. PMID:24225255

  7. Caffeine intensifies taste of certain sweeteners: role of adenosine receptor.

    PubMed

    Schiffman, S S; Diaz, C; Beeker, T G

    1986-03-01

    Caffeine, a potent antagonist of adenosine receptors, potentiates the taste of some but not all sweeteners. It significantly enhances the taste of acesulfam-K, neohesperidin dihydrochalcone, d-tryptophan, thaumatin, stevioside, and sodium saccharin. Adenosine reverses the enhancement. Caffeine has no effect on aspartame, sucrose, fructose, and calcium cyclamate. These results suggest that the inhibitory A1 adenosine receptor plays an important local role in modulating the taste intensity of certain sweeteners and that several transduction mechanisms mediate sweet taste.

  8. A preference test for sweet taste that uses edible strips.

    PubMed

    Smutzer, Gregory; Patel, Janki Y; Stull, Judith C; Abarintos, Ray A; Khan, Neiladri K; Park, Kevin C

    2014-02-01

    A novel delivery method is described for the rapid determination of taste preferences for sweet taste in humans. This forced-choice paired comparison approach incorporates the non-caloric sweetener sucralose into a set of one-inch square edible strips for the rapid determination of sweet taste preferences. When compared to aqueous sucrose solutions, significantly lower amounts of sucralose were required to identify the preference for sweet taste. The validity of this approach was determined by comparing sweet taste preferences obtained with five different sucralose-containing edible strips to a set of five intensity-matched sucrose solutions. When compared to the solution test, edible strips required approximately the same number of steps to identify the preferred amount of sweet taste stimulus. Both approaches yielded similar distribution patterns for the preferred amount of sweet taste stimulus. In addition, taste intensity values for the preferred amount of sucralose in strips were similar to that of sucrose in solution. The hedonic values for the preferred amount of sucralose were lower than for sucrose, but the taste quality of the preferred sucralose strip was described as sweet. When taste intensity values between sucralose strips and sucralose solutions containing identical amounts of taste stimulus were compared, sucralose strips produced a greater taste intensity and more positive hedonic response. A preference test that uses edible strips for stimulus delivery should be useful for identifying preferences for sweet taste in young children, and in clinical populations. This test should also be useful for identifying sweet taste preferences outside of the lab or clinic. Finally, edible strips should be useful for developing preference tests for other primary taste stimuli and for taste mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. [Influence of a high-carbohydrate meal on taste perception].

    PubMed

    Suchecka, Wanda; Klimacka-Nawrot, Ewa; Gałazka, Andrzej; Hartman, Magdalena; Błońska-Fajfrowska, Barbara

    2011-01-01

    Taste sensitivity varies greatly in individuals and depends on many external and metabolic conditions. The studied group consisted of healthy, non-smoking 41 women and 40 men, aged 19-29. The volunteers were examined in fasting state and after a high-carbohydrate meal. Taste sensitivity to sweet, salty and sour as well as hedonic response to taste were examined by means of gustometry examination recommended by Polski Komitet Normalizacyjny (Polish Committee for Standardization). It has been shown that in women the meal did not influence the intensity of sweet taste perception of saccharose solutions or the hedonic response to taste, whereas in men it caused a statistically significant decrease in the intensity of taste perception and in the hedonic response to the sweet taste of suprathreshold saccharose solutions. The meal did not influence the salty taste perception in a statistically significant way, neither in men nor in women. After the meal, the women perceived the sour taste with more intensity than in fasting state, whereas in men such influence was not observed. 1. The consumption of a high-carbohydrate meal influences the sweet and sour taste perception and the effect is sex-dependent: - in men, both the taste sensitivity to saccharose and the hedonic response to sweet taste were decreased, whereas in women such influence was not observed; - in women, the taste sensitivity to citric acid increased and the hedonic response to sour taste decreased, whereas in men such influence was not observed. 2. There is negative correlation between the intensity of taste perception and the hedonic response to the sweet taste both in men and in women after a high-carbohydrate meal, whereas in fasting state such correlation was not observed.

  10. Common sense about taste: from mammals to insects.

    PubMed

    Yarmolinsky, David A; Zuker, Charles S; Ryba, Nicholas J P

    2009-10-16

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities.

  11. Common Sense about Taste: From Mammals to Insects

    PubMed Central

    Yarmolinsky, David A.; Zuker, Charles S.; Ryba, Nicholas J.P.

    2013-01-01

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities. PMID:19837029

  12. The effects of area postrema lesions and selective vagotomy on motion-induced conditioned taste aversion

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Sutton, R. L.; Mckenna, Susan

    1991-01-01

    Conditioned taste aversion (CTA) is one of several behaviors which was suggested as a putative measure of motion sickness in rats. A review is made of studies which used surgical disruption of area postrema or the vagus nerve to investigate whether CTA and vomiting induced by motion may depend on common neural pathways or structures. When the chemoreceptive function of the area postrema (AP) is destroyed by complete ablation, rats develop CTA and cats and monkeys develop CTA and vomit. Thus the AP is not crucially involved in either CTA or vomiting induced by motion. However, after complete denervation of the stomach or after labyrinthectomy rats do not develop CTA when motion is used as the unconditioned stimulus. Studies of brainstem projections of the vagus nerve, the area postrema, the periaqueductal grey, and the vestibular system are used as the basis for speculation about regions which could mediate both motion-induced vomiting and behavioral food aversion.

  13. Functional effects of cold stimulation on taste perception in humans.

    PubMed

    Fujiyama, Rie; Toda, Kazuo

    2017-07-01

    Thermal modulation of signaling pathways leads to excitation of taste receptor cells, but the underlying mechanisms remain unclear. Furthermore, it has long been known that there are contrast effects in various senses. In this study, we investigated cold-taste contrast and the relationship between taste and somatosensation. We lowered intraoral temperature using cold stimulus as a pretreatment, then returned to normal temperature in 249 healthy subjects, before administering room temperature taste-stimulating solutions to investigate changes in sensitivity to the four basic tastes (Sweet, Salt, Sour, and Bitter). Statistical comparisons of taste recognition thresholds before and after cold stimulus showed increased taste sensitivity for all four basic tastes. After categorizing different levels of pre-cold stimulus taste sensitivity into groups and comparing changes in sensitivity to the four basic tastes before and after stimulus, we found that the lower the sensitivity to the four basic tastes, the greater the increase in sensitivity induced by cold stimulus. These findings suggest that taste and low temperature send afferent signals which cause interaction in the afferent pathways between the peripheral and central nervous systems. Cold stimulus may offer one possible treatment strategy for dysgeusia.

  14. The Problem of Taste within the Problematic of Culture.

    ERIC Educational Resources Information Center

    Fenster, Mark

    Theories of taste are efforts to understand the processes of signification by which cultural forms take on meaning, and how subjects are inserted into such processes. One of these theories is the notion of "taste cultures," set forth by Herbert Gans in the 1960s and continued by George Lewis into the 1980s. A taste culture is an…

  15. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    ERIC Educational Resources Information Center

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  16. A comparative analysis of neural taste processing in animals

    PubMed Central

    de Brito Sanchez, Gabriela; Giurfa, Martin

    2011-01-01

    Understanding taste processing in the nervous system is a fundamental challenge of modern neuroscience. Recent research on the neural bases of taste coding in invertebrates and vertebrates allows discussion of whether labelled-line or across-fibre pattern encoding applies to taste perception. While the former posits that each gustatory receptor responds to one stimulus or a very limited range of stimuli and sends a direct ‘line’ to the central nervous system to communicate taste information, the latter postulates that each gustatory receptor responds to a wider range of stimuli so that the entire population of taste-responsive neurons participates in the taste code. Tastes are represented in the brain of the fruitfly and of the rat by spatial patterns of neural activity containing both distinct and overlapping regions, which are in accord with both labelled-line and across-fibre pattern processing of taste, respectively. In both animal models, taste representations seem to relate to the hedonic value of the tastant (e.g. palatable versus non-palatable). Thus, although the labelled-line hypothesis can account for peripheral taste processing, central processing remains either unknown or differs from a pure labelled-line coding. The essential task for a neuroscience of taste is, therefore, to determine the connectivity of taste-processing circuits in central nervous systems. Such connectivity may determine coding strategies that differ significantly from both the labelled-line and the across-fibre pattern models. PMID:21690133

  17. Taste of breath: the temporal order of taste and smell synchronized with breathing as a determinant for taste and olfactory integration.

    PubMed

    Kakutani, Yuya; Narumi, Takuji; Kobayakawa, Tatsu; Kawai, Takayuki; Kusakabe, Yuko; Kunieda, Satomi; Wada, Yuji

    2017-08-21

    Many studies have reported that subjective taste intensity is enhanced by odors which are congruent, for example a sweet taste and a vanilla odor. Some reports have suggested that subjective taste is more strongly enhanced by retronasal than by orthonasal odors; others have suggested that taste enhancements by both odor routes are identical. Differences between the two routes include the direction of airflow accompanying breath. Thus, it is possible that the order of gustatory and olfactory stimuli when breathing through either route while drinking is a determining factor for taste-odor integration. To reveal the natural relationship between taste intensity enhancement by odors and breath, synchronization of odor stimulation with the breath is necessary. Here, we examined whether the enhancement of a sweet taste is induced by a vanilla odor presented in various combinations of odor routes, immediately before and immediately after drinking. The results showed that a retronasal odor after drinking enhanced taste, but an orthonasal odor before drinking did not. The retronasal odor before drinking and the orthonasal odor after drinking did not enhance the sweet taste. These results show that congruency with the natural order of stimulus and kinetic sensation is a determining factor for odor-induced taste enhancement.

  18. Perception and hedonic value of basic tastes in domestic ruminants.

    PubMed

    Ginane, Cécile; Baumont, René; Favreau-Peigné, Angélique

    2011-10-24

    Taste is one of the five senses that give ruminants and other animals an awareness of their environment, especially for food selection. The sense of taste, which recognizes sweet, bitter, salty, sour and umami basic tastes, is often considered of paramount importance as it is the last sense in use before foods are swallowed. It thus plays a fundamental biological role in aiding animals to regulate intake of suitable food and reject unsuitable food. However, despite potentially relevant production and welfare issues, only a few studies have investigated how ruminants perceive and evaluate the basic tastes. Here we review current knowledge on tasting abilities and hedonic value of basic tastes in domestic ruminants via the analysis of both their anatomical and neurological structures and their behavioral preferences. Studies of the organization and functioning of the anatomical and neurological structures responsible for the perception of taste in ruminants have shown that sheep, cattle and goats all have lingual receptors for all five basic tastes. However, these studies have mainly focused on the sweet and bitter tastes. They have shown in particular that cows have fewer genes coding for the bitter receptors than other mammals, making them more tolerant to this taste. This pattern has been linked to the differences in the range of toxins and so potentially in the occurrence of bitterness encountered by different species in their environment, depending on the nature of their diet. Studies of ruminant feeding behavior have shown that the taste inducing the greatest consensus in preferences is the umami taste, with a high positive hedonic value. The bitter taste seems to have a rather negative hedonic value, the salty taste either a positive or a negative one depending on body needs, while the sweet taste seems to have a positive value in cattle and goats but not in sheep. Finally, the hedonic value of the sour taste is uncertain. Besides the hedonic value, the animal

  19. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    SciTech Connect

    Hwang, P.M.; Verma, A.; Bredt, D.S.; Snyder, S.H. )

    1990-10-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of {sup 45}Ca{sup 2+}, inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of ({sup 3}H)cytidine diphosphate diacylglycerol formed from ({sup 3}H)cytidine. Accumulated {sup 45}Ca{sup 2+}, inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited by low concentrations of denatonium, a potently bitter tastant.

  20. The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor.

    PubMed

    Servant, Guy; Tachdjian, Catherine; Li, Xiaodong; Karanewsky, Donald S

    2011-11-01

    A diet low in carbohydrates helps to reduce the amount of ingested calories and to maintain a healthy weight. With this in mind, food and beverage companies have reformulated a large number of their products, replacing sugar or high fructose corn syrup with several different types of zero-calorie sweeteners to decrease or even totally eliminate their caloric content. A challenge remains, however, with the level of acceptance of some of these products in the market-place. Many consumers believe that zero-calorie sweeteners simply do not taste like sugar. A recent breakthrough reveals that positive allosteric modulators of the human sweet taste receptor, small molecules that enhance the receptor activity and sweetness perception, could be more effective than other reported taste enhancers at reducing calories in consumer products without compromising on the true taste of sugar. A unique mechanism of action at the receptor level could explain the robust synergy achieved with these new modulators.

  1. Optimization and validation of a taste dilution analysis to characterize wine taste.

    PubMed

    Lopez, R; Mateo-Vivaracho, L; Cacho, J; Ferreira, V

    2007-08-01

    A procedure for the general taste dilution analysis (TDA) of wine has been optimized and applied to characterize the tastants of 5 different wines. Samples are concentrated first by vacuum distillation at 20 degrees C to obtain a dearomatized concentrate. Such concentrate is redissolved in water and injected in a semipreparative C18-high performance liquid chromatography (HPLC) column. The effluent is separated in fractions that are collected and concentrated by vacuum distillation. Sequential dilutions of the fractions are further evaluated by a sensory panel to assess the intensity of the basic tastes and in-mouth sensations. Fractions were also submitted to HPLC-mass spectrometry (MS) analysis to screen for known tastants of wines. The Taste Dilution chromatograms showed that taste differences between wines are mainly located in fractions 1, 2, and 6, and are mainly related to bitterness and astringency. Different aspects of the method setup and of its reliability are evaluated and discussed.

  2. Leaving a flat taste in your mouth: task load reduces taste perception.

    PubMed

    van der Wal, Reine C; van Dillen, Lotte F

    2013-07-01

    In recent years, people have tended to pay less attention to their meals, often consuming them while engaging in other activities. At the same time, foods have become increasingly sweet and salty. We therefore investigated how performing concurrent activities affects taste perception and how this relates to actual consumption. Participants tasted sour, sweet, and salty substances in various concentrations under differing task loads. Our results demonstrated that under high task load (relative to low task load), participants rated the substances as less intense, consumed more of the substances, and preferred stronger tastants. Our findings suggest that increased task load reduces people's taste perception by limiting attentional capacity to assess taste intensity and that people adjust their consumption accordingly.

  3. Functional plasticity of regenerated and intact taste receptors in adult rats unmasked by dietary sodium restriction.

    PubMed

    Hill, D L; Phillips, L M

    1994-05-01

    Unilateral chorda tympani nerve sectioning was combined with institution of a sodium-restricted diet in adult rats to determine the role that environment has on the functional properties of regenerating taste receptor cells. Rats receiving chorda tympani sectioning but no dietary manipulation (cut controls) and rats receiving only the dietary manipulation (diet controls) had normal responses to a concentration series of NaCl, sodium acetate (NaAc), and NH4Cl. However, responses from the regenerated nerve in NaCl-restricted rats (40-120 d postsectioning) to NaCl and NaAc were reduced by as much as 30% compared to controls, indicating that regenerating taste receptors are influenced by environmental (dietary) factors. Responses to NH4Cl were normal; therefore, the effect appears specific to sodium salts. Surprisingly, in the same rats, NaCl responses from the contralateral, intact chorda tympani were up to 40% greater than controls. Thus, in the same rat, there was over a twofold difference in sodium responses between the right and left chorda tympani nerves. A study of the time course of the functional alterations in the intact nerve revealed that responses to NaCl were extremely low immediately following sectioning (about 20% of the normal response), and then increased monotonically during the following 50 d until relative response magnitudes became supersensitive. This function occurred even when the cut chorda tympani was prevented from reinnervating lingual epithelia, demonstrating that events related to regeneration do not play a role in the functional properties of the contralateral side of the tongue.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The bad taste of medicines: overview of basic research on bitter taste.

    PubMed

    Mennella, Julie A; Spector, Alan C; Reed, Danielle R; Coldwell, Susan E

    2013-08-01

    Many active pharmaceutical ingredients taste bitter and thus are aversive to children as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dose forms. This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors as well as the cascade of events that leads to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Medicine often tastes bitter, and because children are more bitter-sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands-in animal models through human psychophysics or with "electronic tongues"-have limitations. Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children consume some medicines, they often are not effective in

  5. The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste

    PubMed Central

    Mennella, Julie A.; Spector, Alan C.; Reed, Danielle R.; Coldwell, Susan E.

    2013-01-01

    Background Many active pharmaceutical ingredients taste bitter and thus are aversive to children, as well as many adults. Encapsulation of the medicine in pill or tablet form, an effective method for adults to avoid the unpleasant taste, is problematic for children. Many children cannot or will not swallow solid dosage forms. Objective This review highlights basic principles of gustatory function, with a special focus on the science of bitter taste, derived from studies of animal models and human psychophysics. We focus on the set of genes that encode the proteins that function as bitter receptors, as well as the cascade of events that lead to multidimensional aspects of taste function, highlighting the role that animal models played in these discoveries. We also summarize psychophysical approaches to studying bitter taste in adult and pediatric populations, highlighting evidence of the similarities and differences in bitter taste perception and acceptance between adults and children and drawing on useful strategies from animal models. Results Medicine often tastes bitter, and because children are more bitter sensitive than are adults, this creates problems with compliance. Bitter arises from stimulating receptors in taste receptor cells, with signals processed in the taste bud and relayed to the brain. However, there are many gaps in our understanding of how best to measure bitterness and how to ameliorate it, including whether it is more efficiently addressed at the level of receptor and sensory signaling, at the level of central processing, or by masking techniques. All methods of measuring responsiveness to bitter ligands—in animal models, through human psychophysics, or with “electronic tongues”—have limitations. Conclusions Better-tasting medications may enhance pediatric adherence to drug therapy. Sugars, acids, salt, and other substances reduce perceived bitterness of several pharmaceuticals, and although pleasant flavorings may help children

  6. Music Taste Groups and Problem Behavior

    ERIC Educational Resources Information Center

    Mulder, Juul; ter Bogt, Tom; Raaijmakers, Quinten; Vollebergh, Wilma

    2007-01-01

    Internalizing and externalizing problems differ by musical tastes. A high school-based sample of 4159 adolescents, representative of Dutch youth aged 12 to 16, reported on their personal and social characteristics, music preferences and social-psychological functioning, measured with the Youth Self-Report (YSR). Cluster analysis on their music…

  7. Presentation Order Effects in Product Taste Tests.

    ERIC Educational Resources Information Center

    Dean, Michael L.

    1980-01-01

    Presentation order in paired-comparison testing was varied to measure the impact of primacy v recency effects on consumer product evaluation. First position preference bias characterized the findings, lending support to the attention decrement hypothesis or a suggested palate desensitization effect on subsequent taste trial behavior. (Author)

  8. Perceptual integration of tertiary taste mixtures.

    PubMed

    McBride, R L; Finlay, D C

    1990-10-01

    Integration psychophysics was used to explore the taste perception of mixtures of sucrose, fructose, and citric acid. Three levels of each stimulus were varied in a 3 x 3 x 3 factorial design. Subjects rated total intensity, sweetness, and acidity of the 27 mixtures on graphic rating scales. Consistent with earlier work, the perceived total intensity of the tertiary mixtures was found to be dictated by the intensity of the (subjectively) stronger component alone (i.e., either the integrated sweetness or the acidity, whichever was the more intense). In contrast, the sweetness and acidity of the mixture were susceptible to mutual suppression: Sweetness suppressed acidity, acidity suppressed sweetness. There was, however, a difference between sucrose and fructose in their interactions with citric acid, fructose being the more susceptible to suppression. This selectivity of suppression indicates that the two sweetnesses could not have been inextricably integrated. Implications for taste coding are discussed, and the findings are reconciled in terms of two separate coding mechanisms: one for taste intensity, another for taste quality.

  9. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  10. Music Taste Groups and Problem Behavior

    ERIC Educational Resources Information Center

    Mulder, Juul; ter Bogt, Tom; Raaijmakers, Quinten; Vollebergh, Wilma

    2007-01-01

    Internalizing and externalizing problems differ by musical tastes. A high school-based sample of 4159 adolescents, representative of Dutch youth aged 12 to 16, reported on their personal and social characteristics, music preferences and social-psychological functioning, measured with the Youth Self-Report (YSR). Cluster analysis on their music…

  11. A Taste of Sunrise: A Director's Notes.

    ERIC Educational Resources Information Center

    Hovasse, Nancy

    2001-01-01

    Describes a director's experience working with "A Taste of Sunrise," a play depicting the deaf culture. Stresses how important it is to educate the cast and provide them an opportunity to learn sign language. Notes that American Sign Language is complex and beautiful and deserves to be carefully studied and respectfully acknowledged by the hearing…

  12. Utilitarian Aggregation of Beliefs and Tastes.

    ERIC Educational Resources Information Center

    Gilboa, Itzhak; Samet, Dov; Schmeidler, David

    2004-01-01

    Harsanyi's utilitarianism is extended here to Savage's framework. We formulate a Pareto condition that implies that both society's utility function and its probability measure are linear combinations of those of the individuals. An indiscriminate Pareto condition has been shown to contradict linear aggregation of beliefs and tastes. We argue that…

  13. The Musical Taste of Young People

    ERIC Educational Resources Information Center

    Mozgot, V. G.

    2014-01-01

    Data from a longitudinal survey of the musical tastes of young people distinguish five basic vectors of its development: an orientation toward the Western paradigm; young people's unlimited amount of time spent in the consumption of music; the indiscriminate nature of their music interests; the influence that a person's membership in a particular…

  14. Phenylthiocarbamide (PTC) Tasting and Reported Depression.

    ERIC Educational Resources Information Center

    Whittemore, Paul B.

    1986-01-01

    The phenylthiocarbamide (PTC) taste test was investigated for its potential as a genetically based biological marker for depression. Results indicated PTC tasters reported significantly higher levels of depression on the Beck Depression Inventory (BDI) than nontasters and they scored higher on 5 of the 21 items. (Author/BL)

  15. Odor-induced changes in taste perception.

    PubMed

    Djordjevic, J; Zatorre, R J; Jones-Gotman, M

    2004-12-01

    We investigated odor-induced changes in taste perception (OICTP), by examining the influence of strawberry and soy sauce odors on perceived sweetness (Experiment 1) and saltiness (Experiment 2). We explored whether taste-smell interactions occur at the central level, by delivering odorants (strawberry, soy sauce, odorless water) and tastants (sucrose, sodium chloride) separately, and whether effects of imagined odors are comparable to those of physically presented odors. We found specific taste-smell interactions: sweetness enhancement induced by strawberry odor and saltiness enhancement induced by soy sauce odor. These interactions were elicited with separate delivery of olfactory and gustatory stimuli. Secondly, we found a similar but rather limited effect with the imagined odors: imagined strawberry enhanced perceived sweetness of water solutions, and imagined soy sauce enhanced perceived saltiness of weak sodium chloride solutions. We concluded that OICTP is a centrally mediated phenomenon, and that imagined odors can to some extent induce changes in perceived taste intensity comparable to those elicited by perceived odors.

  16. The Musical Taste of Young People

    ERIC Educational Resources Information Center

    Mozgot, V. G.

    2014-01-01

    Data from a longitudinal survey of the musical tastes of young people distinguish five basic vectors of its development: an orientation toward the Western paradigm; young people's unlimited amount of time spent in the consumption of music; the indiscriminate nature of their music interests; the influence that a person's membership in a particular…

  17. Utilitarian Aggregation of Beliefs and Tastes.

    ERIC Educational Resources Information Center

    Gilboa, Itzhak; Samet, Dov; Schmeidler, David

    2004-01-01

    Harsanyi's utilitarianism is extended here to Savage's framework. We formulate a Pareto condition that implies that both society's utility function and its probability measure are linear combinations of those of the individuals. An indiscriminate Pareto condition has been shown to contradict linear aggregation of beliefs and tastes. We argue that…

  18. A Taste of Sunrise: A Director's Notes.

    ERIC Educational Resources Information Center

    Hovasse, Nancy

    2001-01-01

    Describes a director's experience working with "A Taste of Sunrise," a play depicting the deaf culture. Stresses how important it is to educate the cast and provide them an opportunity to learn sign language. Notes that American Sign Language is complex and beautiful and deserves to be carefully studied and respectfully acknowledged by the hearing…

  19. Optogenetic Induction of Aversive Taste Memory

    PubMed Central

    C. Keene, Alex; Masek, Pavel

    2013-01-01

    The Drosophila melanogaster gustatory system consists of several neuronal pathways representing diverse taste modalities. The two predominant modalities are a sweet sensing pathway that mediates attraction, and a bitter sensing pathway that mediates avoidance. A central question is how flies integrate stimuli from these pathways and generate the appropriate behavioral response. We have developed a novel assay for induction of taste memories. We demonstrate that the gustatory response to fructose is suppressed when followed by the presence of bitter quinine. We employ optogenetic neural activation using infrared laser in combination with heat sensitive channel - TRPA1 to precisely activate gustatory neurons. This optogenetic system allows for spatially and temporally controlled activation of distinct neural classes in the gustatory circuit. We directly activated bitter-sensing neurons together with presentation of fructose for remote induction of aversive taste memories. Here we report that activation of bitter-sensing neurons in the proboscis suffices as a conditioning stimulus. Spatially restricted stimulation indicates that the conditioning stimulus is indeed a signal from the bitter neurons in the proboscis and it is independent of postingestive feedback. The coincidence of temporally specific activation of bitter-sensing neurons with fructose presentation is crucial for memory formation, establishing aversive taste learning in Drosophila as associative learning. Taken together, this optogenetic system provides a powerful new tool for interrogation of the central brain circuits that mediate memory formation. PMID:22820051

  20. Somatosensory factors in taste perception: effects of active tasting and solution temperature.

    PubMed

    Green, Barry G; Nachtigal, Danielle

    2012-11-05

    Touch and temperature are recognized as important factors in food perception, but much remains to be learned about how they contribute to the perception of flavor. The present paper describes human psychophysical studies that investigated two recently discovered effects of temperature and mechanical stimulation on taste: (1) enhancement of the savory taste of MSG by active tongue and mouth movements, and (2) modulation of the rate of adaptation to sucrose sweetness by temperature. The first study provides evidence that for MSG but not other taste stimuli, movement of the tongue against the palate enhances taste intensity both by increasing spatial summation between opposing gustatory surfaces and by a hypothesized interaction with touch/kinesthesis. The second study shows that the rate of adaptation to sucrose sweetness (but not quinine bitterness) on the tongue tip is strongly influenced by temperature. It is hypothesized that warming slows adaptation to sucrose by increasing the sensitivity of an early stage of taste transduction. Together these results demonstrate that models of flavor perception must include somatosensory stimuli both as components of flavor perception and as modulators of taste. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    SciTech Connect

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.

  2. Effect of concentration on taste-taste interactions in foods for elderly and young subjects.

    PubMed

    Mojet, Jos; Heidema, Johannes; Christ-Hazelhof, Elly

    2004-10-01

    An increase in concentration of one of the tastants in a 'real food' might affect not only the perception of the taste quality of that manipulated tastant but also the other perceivable taste qualities. The influence of concentration increase of sodium or potassium chloride in tomato soup, sucrose or aspartame in iced tea, acetic or citric acid in mayonnaise, caffeine or quinine HCl in chocolate drink, monosodium glutamate (MSG) or inosine 5'-monophosphate (IMP) in broth on the other perceivable taste qualities in these foods was studied in 21 young subjects (19-33 years) and 21 older subjects (60-75 years). The results showed that for each of these tastants, except for the two acids, increasing the concentration provoked significant positive or negative interaction effects on the perception of one or more other taste qualities of the product. Especially in the young, olfaction plays a larger role in the assessment of taste intensity than has been hitherto assumed. The elderly are less able to discriminate between the taste qualities in a product, whereas the young are more able to do so. Copyright 2004 Oxford University Press

  3. Taste Alteration in Patients Receiving Chemotherapy

    PubMed Central

    Sözeri, Elif; Kutlutürkan, Sevinç

    2015-01-01

    Objective This study is aimed to determine factors that affect conditions of patients receiving chemotherapy in terms of experienced taste alteration. Materials and Methods In this descriptive study, 184 patients receiving chemotherapy were included in the sample. Data were collected during the period of December 2013 to May 2014 using “Patient Characteristics Identification Form” and “Chemotherapy-induced Taste Alteration Scale (CiTAS).” The data were analyzed using SPSS 20 (SPSS Inc., Chicago IL, USA) statistical software in terms of number, percentage, Mann-Whitney U test, and Kruskal-Wallis H test. Results The mean age of the patients was 55.5±11.8 and 57.1% of them were female. The clinical diagnosis of the patients were most frequently breast cancer (n=46), colorectal cancer (n=45), and lung cancer (n=25). Furthermore, 37.5% of the patients were in clinical stage II; 15.8% of the patients received paclitaxel+herceptin and 14.1% received gemcitabine+cisplatin chemotherapy protocols. Data demonstrated significant differences in mean scores (p<0.05) taken from “Decline in Basic Taste” and “Phantogeusia and Parageusia” subscales with patients with or without xerostomia. There were significant differences in the average scores of the subscales between those with and without a sore mouth “Discomfort” and “General taste alterations” (p<0.05). Conclusion It has been established that patients receiving chemotherapy experience substantial alteration in taste by exposure of different subscales of CiTAS. Analysis of scores collected from different subscales of CiTAS with respect to sociodemographic and pathological differences showed that patients with xerostomia and sore mouth experienced more severe taste alterations.

  4. Normal Taste Acceptance and Preference of PANX1 Knockout Mice

    PubMed Central

    Aleman, Tiffany R.; Ellis, Hillary T.; Ohmoto, Makoto; Matsumoto, Ichiro; Shestopalov, Val I.; Mitchell, Claire H.; Foskett, J. Kevin; Poole, Rachel L.

    2015-01-01

    Taste compounds detected by G protein-coupled receptors on the apical surface of Type 2 taste cells initiate an intracellular molecular cascade culminating in the release of ATP. It has been suggested that this ATP release is accomplished by pannexin 1 (PANX1). However, we report here that PANX1 knockout mice do not differ from wild-type controls in response to representative taste solutions, measured using 5-s brief-access tests or 48-h two-bottle choice tests. This implies that PANX1 is unnecessary for taste detection and consequently that ATP release from Type 2 taste cells does not require PANX1. PMID:25987548

  5. Molecular basis of taste sense: involvement of GPCR receptors.

    PubMed

    Cygankiewicz, Adam I; Maslowska, Alicja; Krajewska, Wanda M

    2014-01-01

    Taste perception is one of the senses crucial for many organisms. There are five basic tastes, i.e., sweet, bitter, salty, sour, and umami, and it is suggested that the taste of fat should be included in this list. This paper reviews the current state of knowledge about the involvement of G protein coupled receptors (GPCRs) in taste sensing and intracellular signaling. GPCR receptors are focal point of interest for pharmaceutical industry. However, their ability to interact with a variety of taste substances makes these receptors interesting target for food and nutrient companies.

  6. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.

  7. Role of taste in the microstructure of quinine ingestion by rats.

    PubMed

    Spector, A C; St John, S J

    1998-06-01

    The microstructure of the licking behavior of water-deprived rats presented with either water or quinine during 45-min single-bottle tests was analyzed. The chorda tympani (CT) and glossopharyngeal (GL) nerves, which innervate the taste buds of the tongue, were transected in deeply anesthetized rats to discern their contribution to the behavioral pattern of quinine drinking. Rats were presurgically habituated to the testing protocol and postsurgically tested first with water and then novel 0.2 mM quinine-HCl in a subsequent session. The substantial decrease in intake observed in sham-operated controls (n = 16) when quinine was the stimulus was entirely a function of a decrease in lick volume and burst size (a run of licks with interlick intervals <1 s). Contrary to the intake-suppressing effects of quinine, pause duration decreased and burst number increased. Combined transection of the CT and GL (n = 6) strikingly opposed all of these quinine-induced behavioral changes, whereas CT transection (n = 7) was without effect and GL transection (n = 8) had an intermediate influence. These results suggest that taste acts more on neural circuits governing burst termination as opposed to burst initiation, which, in turn, appears to be more sensitive to signals related to physiological state. These findings are discussed in terms of other known nerve transection effects on quinine responsiveness, and the implications of the microstructural results are considered with respect to probabilistic as opposed to deterministic control of licking behavior.

  8. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds

    PubMed Central

    Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F.

    2015-01-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor–deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. PMID:26116698

  9. Differences in swallowing between high and low concentration taste stimuli.

    PubMed

    Nagy, Ahmed; Steele, Catriona M; Pelletier, Cathy A

    2014-01-01

    Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60), stratified by genetic taste status (nontasters, supertasters). Liquids with different taste qualities (sweet, sour, salty, and bitter) were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1) perceived intensity; (2) palatability; and (3) swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  10. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    PubMed

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds.

  11. Differential context effects between sweet tastes and smells.

    PubMed

    Stevenson, Richard J; Mahmut, Mehmet

    2010-11-01

    "Sweet" smells and tastes are perceptually similar, and physiological data indicate some commonality of central processing. However, sweet tastes and sweet smells do not provide interchangeable contexts in psychophysical experiments. The same sweet tastes are perceived as less intense when stronger sweet tastes are present, and they are perceived as more intense when weaker sweet tastes are present, as with sweet smells. However, complementary sets of sweet tastes and smells (e.g., weak sweet tastes, strong sweet smells) do not eliminate these differential context effects (DCEs). The present experiments examined, first, whether DCEs between sweet tastes and smells arise because of differences between odors and tastes in the way that sweetness scales with intensity as concentration rises, and, second, whether DCEs may be smaller for sweet tastes and smells, when contrasted with sweet tastes and nonsweet smells. The findings were clear: DCEs were consistently present, suggesting they are independent of perceptual similarity. These results imply that DCEs are probably not psychological in origin or centrally based; rather, they may have a subcortical locus.

  12. [Taste and smell senses estimation in patients with nasal polyps].

    PubMed

    Dzaman, Karolina; Pleskacz, Witold A; Wałkanis, Andrzej; Rapiejko, Piotr; Jurkiewicz, Dariusz

    2007-01-01

    The purpose of this study was estimation of taste and smell senses functioning in patients with nasal polyps and the analysis of correlation between taste and smell perception threshold and polyps size. The study included 86 persons. The 35 of them were patients of Otolaryngology Department of Warsaw Military Institute with nasal polyps diagnosis. There were 51 healthy people as a control group. The smell perception examination was performed using Elsberg-Levy method in Pruszewicz modification. The gustatory function was investigated using gustatory method by Börstein and electrogustometry. The Börstein method based on four substances (each of them in three increasing concentrations) related to four basic tastes: sweet (glucose), bitter (chininum hydrochloride), sour (citric acid) and salty (sodium chloride). The taste feeling threshold (POS), that meant the lowest concentration of each solution being correctly recognized by a person, was noticed for each taste. For quantitative estimation of taste perception threshold we included impulse electrogustometry with bipolar electrode. In our study the taste disturbances were observed, depending on kind of taste, in 20-70% cases in gustometry and for 13 patients in electrogustometry. Abnormal olfactory results we diagnosed in more then 57% patients. We did not confirmed correlation between taste perception threshold and polyps size but polyps size influenced on olfactory results. Smell and taste disturbances are very often symptoms of nasal polyposis. The taste and olfactory estimation ought to be integral part of routine patient examination in otolaryngology department.

  13. Using Single Colors and Color Pairs to Communicate Basic Tastes

    PubMed Central

    Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed. PMID:27698979

  14. The discovery and mechanism of sweet taste enhancers.

    PubMed

    Li, Xiaodong; Servant, Guy; Tachdjian, Catherine

    2011-08-01

    Excess sugar intake posts several health problems. Artificial sweeteners have been used for years to reduce dietary sugar content, but they are not ideal substitutes for sugar owing to their off-taste. A new strategy focused on allosteric modulation of the sweet taste receptor led to identification of sweet taste 'enhancers' for the first time. The enhancer molecules do not taste sweet, but greatly potentiate the sweet taste of sucrose and sucralose selectively. Following a similar mechanism as the natural umami taste enhancers, the sweet enhancer molecules cooperatively bind with the sweeteners to the Venus flytrap domain of the human sweet taste receptor and stabilize the active conformation. Now that the approach has proven successful, enhancers for other sweeteners and details of the molecular mechanism for the enhancement are being actively pursued.

  15. Representations of taste modality in the Drosophila brain

    PubMed Central

    Harris, David T.; Kallman, Benjamin R.; Mullaney, Brendan C.; Scott, Kristin

    2015-01-01

    Summary Gustatory receptors and peripheral taste cells have been identified in flies and mammals, revealing that sensory cells are tuned to taste modality across species. How taste modalities are processed in higher brain centers to guide feeding decisions is unresolved. Here, we developed a large-scale calcium imaging approach coupled with cell labeling to examine how different taste modalities are processed in the fly brain. These studies reveal that sweet, bitter, and water sensory cells activate different cell populations throughout the subesophageal zone, with most cells responding to a single taste modality. Pathways for sweet and bitter tastes are segregated from sensory input to motor output and this segregation is maintained in higher brain areas, including regions implicated in learning and neuromodulation. Our work reveals independent processing of appetitive and aversive tastes, suggesting that flies and mammals use a similar coding strategy to ensure innate responses to salient compounds. PMID:26051423

  16. Technique to collect fungiform (taste) papillae from human tongue.

    PubMed

    Spielman, Andrew I; Pepino, M Yanina; Feldman, Roy; Brand, Joseph G

    2010-09-18

    The sense of taste is critical for human life. It informs the body about the quality of food that will be potentially ingested and stimulates metabolic processes that prepare the alimentary canal for digestion. Steady progress is being made towards understanding the early biochemical and molecular events underlying taste transduction (for a review, Breslin and Spector, 2008). However, progress to date has largely resulted from animal models. Yet, since marked differences in receptor specificity and receptor density vary among species, human taste transduction will only be understood by using human taste tissue. Here we describe a biopsy technique to collect human fungiform papillae, visible as rounded pink anterior structures, about 0.5 mm in diameter that contain taste buds. These biopsied papillae are used for several purposes including the isolation of viable taste bud cells, in situ hybridization, immunohistochemistry and, through techniques of molecular biology, the identification of taste-specific novel proteins.

  17. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    PubMed

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  18. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    PubMed

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  19. The Examination of Fatty Acid Taste with Edible Strips

    PubMed Central

    Ebba, Sahbina; Abarintos, Ray A.; Kim, Dae G.; Tiyouh, Melissa; Stull, Judith C.; Movalia, Ankur; Smutzer, Gregory

    2012-01-01

    The objective of this study was to determine whether humans could detect long-chain fatty acids when these lipid molecules are delivered to the oral cavity by edible taste strips. For suprathreshold studies, up to 1.7 umoles of stearic acid or linoleic acid were incorporated into 0.03 mm thick, one-inch square taste strips. Normalized taste intensity values for stearic acid were in the barely detectable range, with values equal to, or slightly above control strips. One-third of test subjects described the taste quality as oily/fatty/waxy. Approximately 75% of test subjects could detect the presence of linoleic acid when this fatty acid was incorporated into dissolvable strips. Normalized taste intensity values for linoleic acid were in the weak to moderate range. The most commonly reported taste quality responses for linoleic acid were fatty/oily/waxy, or bitter. When nasal airflow was obstructed, the perceived taste intensity of linoleic acid decreased by approximately 40 percent. Taste intensity values and taste quality responses for linoleic acid were then compared among tasters and non-tasters of 6-n-propylthiouracil (PROP). Individuals who could detect the bitter taste of PROP reported higher taste intensity values for linoleic acid compared with PROP non-tasters. However, taste quality responses for linoleic acid were similar among both PROP tasters and PROP non-tasters. These results indicate that humans can detect long-chain fatty acids by both olfactory and non-olfactory pathways when these hydrophobic molecules are delivered to the oral cavity by means of edible taste strips. These studies further show that genetic variation in taste sensitivity to PROP affects chemosensory responses to the cis-unsaturated fatty acid linoleic acid in the oral cavity. PMID:22521910

  20. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    PubMed Central

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  1. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides

    PubMed Central

    Sukumaran, Sunil K.; Yee, Karen K.; Iwata, Shusuke; Kotha, Ramana; Quezada-Calvillo, Roberto; Nichols, Buford L.; Mohan, Sankar; Pinto, B. Mario; Shigemura, Noriatsu; Ninomiya, Yuzo; Margolskee, Robert F.

    2016-01-01

    The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K+ (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal “brush border” disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways. PMID:27162343

  2. Optic Nerve Disorders

    MedlinePlus

    ... There are many different types of optic nerve disorders, including: Glaucoma is a group of diseases that ... are having vision problems. Tests for optic nerve disorders may include eye exams, ophthalmoscopy (an examination of ...

  3. Distal median nerve dysfunction

    MedlinePlus

    ... Distal median nerve dysfunction is a form of peripheral neuropathy that affects the movement of or sensation in ... and the A.D.A.M. Editorial team. Peripheral Nerve Disorders Read more Latest Health News Read more Health ...

  4. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  5. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  6. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  7. Assessing nerves in leprosy.

    PubMed

    Garbino, José Antonio; Heise, Carlos Otto; Marques, Wilson

    2016-01-01

    Leprosy neuropathy is dependent on the patient's immune response and expresses itself as a focal or multifocal neuropathy with asymmetric involvement. Leprosy neuropathy evolves chronically but recurrently develops periods of exacerbation during type 1 or type 2 reactions, leading to acute neuropathy. Nerve enlargement leading to entrapment syndromes is also a common manifestation. Pain may be either of inflammatory or neuropathic origin. A thorough and detailed evaluation is mandatory for adequate patient follow-up, including nerve palpation, pain assessment, graded sensory mapping, muscle power testing, and autonomic evaluation. Nerve conduction studies are a sensitive tool for nerve dysfunction, including new lesions during reaction periods or development of entrapment syndromes. Nerve ultrasonography is also a very promising method for nerve evaluation in leprosy. The authors propose a composite nerve clinical score for nerve function assessment that can be useful for longitudinal evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  9. Overview of the Cranial Nerves

    MedlinePlus

    ... of the brain to the back). Viewing the Cranial Nerves Twelve pairs of cranial nerves emerge from the ... magnetic resonance imaging (MRI) is often needed. Testing Cranial Nerves Cranial Nerve Number Name Function Test 1st Olfactory ...

  10. Effects of drugs on olfaction and taste.

    PubMed

    Doty, Richard L; Bromley, Steven M

    2004-12-01

    The fact that so many varied medications reportedly affect taste and smell is a testament to the complexity of the gustatory and olfactory systems. The reception, transduction, propagation, and perception of a chemical tastant or odorant requires the effective operation of numerous mechanisms--all of which may be susceptible in one way or another to a prescribed medication. Just as a diuretic may block the apical ion channels on a taste bud, or an antifungal can inhibit cytochrome p450-dependent enzymes at the level of the receptors, a chemotherapeutic agent can destroy mitosis in a replicating receptor cell and a steroid can lead to candidal overgrowth on the tongue surface. Medications not only have a perceivable taste themselves at times, but they can alter the mechanisms responsible for the ultimate perception of tastes and smells--either by direct or secondary means. It should be emphasized, as noted earlier in this article, that while many medications are to blame for the impairment or distortion of the gustatory or olfactory systems, it is not uncommon that the underlying medical problem for which they are prescribed is actually the culprit. Examples include epilepsy, migraines, hypothyroidism, schizophrenia, infections, and cancer. In fact, simple partial seizures emanating from regions of the brain such as the amygdala, hippocampus, parietal operculum, and rolandic operculum can lead to the chemosensory sensations that are most commonly considered unpleasant, such as "rotten apples," "cigarette," "peculiar," or "vomitus". While removing or changing an offending medication can reverse the effects on smell or taste perception, it is important to remember that lasting impairment may occur. This is vital for a physician to recognize prior to prescribing a medication. It is also necessary to report this to patients who may be devastated by chemosensory alterations after starting a new medication (eg, pastry chef, perfumist, wine specialist, plumber). Among the

  11. Interaction between gustatory depolarizing receptor potential and efferent-induced slow depolarizing synaptic potential in frog taste cell.

    PubMed

    Sato, Toshihide; Nishishita, Kazuhisa; Okada, Yukio; Toda, Kazuo

    2009-03-01

    Electrical stimulation of parasympathetic nerve (PSN) efferent fibers in the glossopharyngeal nerve induced a slow depolarizing synaptic potential (DSP) in frog taste cells under hypoxia. The objective of this study is to examine the interaction between a gustatory depolarizing receptor potential (GDRP) and a slow DSP. The amplitude of slow DSP added to a tastant-induced GDRP of 10 mV was suppressed to 60% of control slow DSPs for NaCl and acetic acid stimulations, but to 20-30% for quinine-HCl (Q-HCl) and sucrose stimulations. On the other hand, when a GDRP was induced during a prolonged slow DSP, the amplitude of GDRPs induced by 1 M NaCl and 1 M sucrose was suppressed to 50% of controls, but that by 1 mM acetic acid and 10 mM Q-HCl unchanged. It is concluded that the interaction between GDRPs and efferent-induced slow DSPs in frog taste cells under hypoxia derives from the crosstalk between a gustatory receptor current across the receptive membrane and a slow depolarizing synaptic current across the proximal subsynaptic membrane of taste cells.

  12. Measurement of Behavioral Taste Responses in Mice: Two-Bottle Preference, Lickometer, and Conditioned Taste-Aversion Tests.

    PubMed

    Gaillard, Dany; Stratford, Jennifer M

    2016-12-01

    The natural like and dislike of foods based on taste is one of the most easily observed behaviors in animals. Animals eat palatable foods and reject aversive foods, which makes measurement of taste perception possible using various behavioral techniques. Three different methods to accurately measure taste behavior are described here. First, two-bottle preference tests evaluate whether a taste compound (tastant) is preferred over water. Second, lickometer tests quantify the like and dislike for multiple concentrations of the same tastant or multiple tastants at the same time. Finally, conditioned taste aversion tests accurately determine the perceived taste threshold for palatable tastants. Together, these diverse methods enable researchers to observe and measure behavioral taste responses in mice to any tastant. © 2016 by John Wiley & Sons, Inc.

  13. Fat taste and lipid metabolism in humans.

    PubMed

    Mattes, Richard D

    2005-12-15

    Dietary and body fat are essential for life. Fatty acids modulate fat detection, ingestion, digestion, absorption and elimination. Though direct effects occur throughout the body, much of this regulation stems from signals originating in the oral cavity. The predominant orosensory cue for dietary fat is textural, but accumulating electrophysiological, behavioral and clinical evidence supports olfactory and gustatory components. Orosensory stimulation with long-chain unsaturated, but possibly also saturated, fatty acids elicits an array of cephalic phase responses including release of gastric lipase, secretion of pancreatic digestive enzymes, mobilization of lipid stored in the intestine from the prior meal, pancreatic endocrine secretion and, probably indirectly, altered lipoprotein lipase activity. Combined, these processes influence postprandial lipemia. There is preliminary evidence of marked individual variability in fat "taste" with uncertain health implications. The possibility that fat taste sensitivity reflects systemic reactivity to fat warrants further evaluation.

  14. Odor-taste learning in Drosophila larvae.

    PubMed

    Widmann, Annekathrin; Eichler, Katharina; Selcho, Mareike; Thum, Andreas S; Pauls, Dennis

    2017-08-18

    The Drosophila larva is an attractive model system to study fundamental questions in the field of neuroscience. Like the adult fly, the larva offers a seemingly unlimited genetic toolbox, which allows one to visualize, silence or activate neurons down to the single cell level. This, combined with its simplicity in terms of cell numbers, offers a useful system to study the neuronal correlates of complex processes including associative odor-taste learning and memory formation. Here, we summarize the current knowledge about odor-taste learning and memory at the behavioral level and integrate the recent progress on the larval connectome to shed light on the sub-circuits that allow Drosophila larvae to integrate present sensory input in the context of past experience and to elicit an appropriate behavioral response. Copyright © 2017 Elsevier Ltd. All rights reserved.