Sample records for gut models based

  1. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    PubMed

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  2. New Insights to Compare and Choose TKTD Models for Survival Based on an Interlaboratory Study for Lymnaea stagnalis Exposed to Cd.

    PubMed

    Baudrot, Virgile; Preux, Sara; Ducrot, Virginie; Pave, Alain; Charles, Sandrine

    2018-02-06

    Toxicokinetic-toxicodynamic (TKTD) models, as the General Unified Threshold model of Survival (GUTS), provide a consistent process-based framework compared to classical dose-response models to analyze both time and concentration-dependent data sets. However, the extent to which GUTS models (Stochastic Death (SD) and Individual Tolerance (IT)) lead to a better fitting than classical dose-response model at a given target time (TT) has poorly been investigated. Our paper highlights that GUTS estimates are generally more conservative and have a reduced uncertainty through smaller credible intervals for the studied data sets than classical TT approaches. Also, GUTS models enable estimating any x% lethal concentration at any time (LC x,t ), and provide biological information on the internal processes occurring during the experiments. While both GUTS-SD and GUTS-IT models outcompete classical TT approaches, choosing one preferentially to the other is still challenging. Indeed, the estimates of survival rate over time and LC x,t are very close between both models, but our study also points out that the joint posterior distributions of SD model parameters are sometimes bimodal, while two parameters of the IT model seems strongly correlated. Therefore, the selection between these two models has to be supported by the experimental design and the biological objectives, and this paper provides some insights to drive this choice.

  3. An agent-based modeling framework for evaluating hypotheses on risks for developing autism: effects of the gut microbial environment.

    PubMed

    Weston, Bronson; Fogal, Benjamin; Cook, Daniel; Dhurjati, Prasad

    2015-04-01

    The number of cases diagnosed with Autism Spectrum Disorders is rising at an alarming rate with the Centers for Disease Control estimating the 2014 incidence rate as 1 in 68. Recently, it has been hypothesized that gut bacteria may contribute to the development of autism. Specifically, the relative balances between the inflammatory microbes clostridia and desulfovibrio and the anti-inflammatory microbe bifidobacteria may become destabilized prior to autism development. The imbalance leads to a leaky gut, characterized by a more porous epithelial membrane resulting in microbial toxin release into the blood, which may contribute to brain inflammation and autism development. To test how changes in population dynamics of the gut microbiome may lead to the imbalanced microbial populations associated with autism patients, we constructed a novel agent-based model of clostridia, desulfovibrio, and bifidobacteria population interactions in the gut. The model demonstrates how changing physiological conditions in the gut can affect the population dynamics of the microbiome. Simulations using our agent-based model indicate that despite large perturbations to initial levels of bacteria, the populations robustly achieve a single steady-state given similar gut conditions. These simulation results suggests that disturbance such as a prebiotic or antibiotic treatment may only transiently affect the gut microbiome. However, sustained prebiotic treatments may correct low population counts of bifidobacteria. Furthermore, our simulations suggest that clostridia growth rate is a key determinant of risk of autism development. Treatment of high-risk infants with supra-physiological levels of lysozymes may suppress clostridia growth rate, resulting in a steep decrease in the clostridia population and therefore reduced risk of autism development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. [A machine learning model using gut microbiome data for predicting changes of trimethylamine-N-oxide in healthy volunteers after choline consumption].

    PubMed

    Lu, Jun-Qi; Wang, Shan; Yin, Jia; Wu, Shan; He, Yan; Zheng, Hui-Min; Sheng, Hua-Fang; Zhou, Hong-Wei

    2017-03-20

    To establish a machine learning model based on gut microbiota for predicting the level of trimethylamine N-oxide (TMAO) metabolism in vivo after choline intake to provide guidance of individualized precision diet and evidence for screening population at high risks of cardiovascular disease. We quantified plasma levels of TMAO in 18 healthy volunteers before and 8 h after a choline challenge (ingestion of two boiled eggs). The volunteers were divided into two groups with increased or decreased TMAO level following choline challenge. Fresh fecal samples were collected before taking fasting blood samples for amplifying 16S rRNA V4 tags, and the PCR products were sequenced using the platform of Illumina HiSeq 2000. The differences in gut microbiata between subjects with increased and decreased plasma TMAO were analyzed using QIIME. Based on the gut microbiota data and TMAO levels in the two groups, the prediction model was established using the machine learning random forest algorithm, and the validity of the model was tested using a verified dataset. An obvious difference was found in beta diversity of the gut microbota between the subjects with increased and decreased plasma TMAO level following choline challenge. The area under the curve (AUC) of the model was 86.39% (95% CI: 72.7%-100%). Using the verified dataset, the model showed a much higher probability for correctly predicting TMAO variation following choline challenge. The model is feasible and reliable for predicting the level of TMAO metabolism in vivo based on gut microbiota.

  5. How informative is the mouse for human gut microbiota research?

    PubMed Central

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. PMID:25561744

  6. How informative is the mouse for human gut microbiota research?

    PubMed

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  7. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis.

    PubMed

    Seal, John B; Alverdy, John C; Zaborina, Olga; An, Gary

    2011-09-19

    There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed--i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data--i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design--i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research.

  8. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis

    PubMed Central

    2011-01-01

    Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Conclusions/Significance Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research. PMID:21929759

  9. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism.

    PubMed

    Zhang, Limin; Xie, Cen; Nichols, Robert G; Chan, Siu H J; Jiang, Changtao; Hao, Ruixin; Smith, Philip B; Cai, Jingwei; Simons, Margaret N; Hatzakis, Emmanuel; Maranas, Costas D; Gonzalez, Frank J; Patterson, Andrew D

    2016-01-01

    The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt ( p hylogenetic i nvestigation of c ommunities by r econstruction of u nobserved st ates), then validated using 1 H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr -null ( Fxr ΔIE ) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host and gut microbiota, particularly through modulation of enterohepatic circulation of bile acids. Mounting evidence suggests that genetic ablation of Fxr in the gut or gut-restricted chemical antagonism of the FXR promotes beneficial health effects, including the prevention of nonalcoholic fatty liver disease in rodent models. However, questions remain unanswered, including whether modulation of FXR activity plays a role in shaping the gut microbiota community structure and function and what metabolic pathways of the gut microbiota contribute in an FXR-dependent manner to the host phenotype. In this report, new insights are gained into the metabolic contribution of the gut microbiota to the metabolic phenotypes, including establishing a link between FXR antagonism, bacterial bile salt hydrolase activity, and fermentation. Multiple approaches, including unique mouse models as well as metabolomics and genome-scale metabolic models, were employed to confirm these results.

  10. Farnesoid X Receptor Signaling Shapes the Gut Microbiota and Controls Hepatic Lipid Metabolism

    PubMed Central

    Zhang, Limin; Xie, Cen; Nichols, Robert G.; Chan, Siu H. J.; Jiang, Changtao; Hao, Ruixin; Smith, Philip B.; Cai, Jingwei; Simons, Margaret N.; Hatzakis, Emmanuel; Maranas, Costas D.; Gonzalez, Frank J.

    2016-01-01

    ABSTRACT The gut microbiota modulates obesity and associated metabolic phenotypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-β-muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to prevent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance, and fatty liver; however, the mechanism by which these phenotypes are improved is not fully understood. The current study investigated the influence of FXR activity on the gut microbiota community structure and function and its impact on hepatic lipid metabolism. Predictions about the metabolic contribution of the gut microbiota to the host were made using 16S rRNA-based PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), then validated using 1H nuclear magnetic resonance-based metabolomics, and results were summarized by using genome-scale metabolic models. Oral Gly-MCA administration altered the gut microbial community structure, notably reducing the ratio of Firmicutes to Bacteroidetes and its PICRUSt-predicted metabolic function, including reduced production of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipogenesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR dependent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr-null (FxrΔIE) mice treated with Gly-MCA. Integrative analyses based on genome-scale metabolic models demonstrated an important link between Lactobacillus and Clostridia bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclusion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters host liver lipid metabolism and improves obesity-related metabolic dysfunction. IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating the dialog between the host and gut microbiota, particularly through modulation of enterohepatic circulation of bile acids. Mounting evidence suggests that genetic ablation of Fxr in the gut or gut-restricted chemical antagonism of the FXR promotes beneficial health effects, including the prevention of nonalcoholic fatty liver disease in rodent models. However, questions remain unanswered, including whether modulation of FXR activity plays a role in shaping the gut microbiota community structure and function and what metabolic pathways of the gut microbiota contribute in an FXR-dependent manner to the host phenotype. In this report, new insights are gained into the metabolic contribution of the gut microbiota to the metabolic phenotypes, including establishing a link between FXR antagonism, bacterial bile salt hydrolase activity, and fermentation. Multiple approaches, including unique mouse models as well as metabolomics and genome-scale metabolic models, were employed to confirm these results. PMID:27822554

  11. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    PubMed

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  12. Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease.

    PubMed

    Xiong, Jinbo; Zhu, Jinyong; Dai, Wenfang; Dong, Chunming; Qiu, Qiongfen; Li, Chenghua

    2017-04-01

    Increasing evidence has emerged a tight link among the gut microbiota, host age and health status. This osculating interplay impedes the definition of gut microbiome features associated with host health from that in developmental stages. Consequently, gut microbiota-based prediction of health status is promising yet not well established. Here we firstly tracked shrimp gut microbiota (N = 118) over an entire cycle of culture; shrimp either stayed healthy or progressively transitioned into severe disease. The results showed that the gut microbiota were significantly distinct over shrimp developmental stages and disease progression. Null model and phylogenetic-based mean nearest taxon distance (MNTD) analyses indicated that deterministic processes that governed gut community became less important as the shrimp aged and disease progressed. The predicted gut microbiota age (using the profiles of age-discriminatory bacterial species as independent variables) fitted well (r = 0.996; P < 0.001) with the age of healthy subjects, while this defined trend was disrupted by disease. Microbiota-for-age Z-scores (MAZ, here defined as immaturity) were relative stable among healthy shrimp, but sharply decreased when disease emerged. By distinguishing between age- and disease- discriminatory taxa, we developed a model, bacterial indicators of shrimp health status, to diagnose disease from healthy subjects with 91.5% accuracy. Notably, the relative abundances of the bacterial indicators were indicative for shrimp disease severity. These findings, in aggregate, add our understanding on the gut community assembly patterns over shrimp developmental stages and disease progression. In addition, shrimp disease initiation and severity can be accurately diagnosed using gut microbiota immaturity and bacterial indicators. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Predictions from a flavour GUT model combined with a SUSY breaking sector

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Hohl, Christian

    2017-10-01

    We discuss how flavour GUT models in the context of supergravity can be completed with a simple SUSY breaking sector, such that the flavour-dependent (non-universal) soft breaking terms can be calculated. As an example, we discuss a model based on an SU(5) GUT symmetry and A 4 family symmetry, plus additional discrete "shaping symmetries" and a ℤ 4 R symmetry. We calculate the soft terms and identify the relevant high scale input parameters, and investigate the resulting predictions for the low scale observables, such as flavour violating processes, the sparticle spectrum and the dark matter relic density.

  14. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour.

    PubMed

    Fetissov, Sergueï O

    2017-01-01

    The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.

  15. Human gut microbiota and healthy aging: Recent developments and future prospective.

    PubMed

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  16. Human gut microbiota and healthy aging: Recent developments and future prospective

    PubMed Central

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-01-01

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics. PMID:28035338

  17. Gut feelings as a third track in general practitioners' diagnostic reasoning.

    PubMed

    Stolper, Erik; Van de Wiel, Margje; Van Royen, Paul; Van Bokhoven, Marloes; Van der Weijden, Trudy; Dinant, Geert Jan

    2011-02-01

    General practitioners (GPs) are often faced with complicated, vague problems in situations of uncertainty that they have to solve at short notice. In such situations, gut feelings seem to play a substantial role in their diagnostic process. Qualitative research distinguished a sense of alarm and a sense of reassurance. However, not every GP trusted their gut feelings, since a scientific explanation is lacking. This paper explains how gut feelings arise and function in GPs' diagnostic reasoning. The paper reviews literature from medical, psychological and neuroscientific perspectives. Gut feelings in general practice are based on the interaction between patient information and a GP's knowledge and experience. This is visualized in a knowledge-based model of GPs' diagnostic reasoning emphasizing that this complex task combines analytical and non-analytical cognitive processes. The model integrates the two well-known diagnostic reasoning tracks of medical decision-making and medical problem-solving, and adds gut feelings as a third track. Analytical and non-analytical diagnostic reasoning interacts continuously, and GPs use elements of all three tracks, depending on the task and the situation. In this dual process theory, gut feelings emerge as a consequence of non-analytical processing of the available information and knowledge, either reassuring GPs or alerting them that something is wrong and action is required. The role of affect as a heuristic within the physician's knowledge network explains how gut feelings may help GPs to navigate in a mostly efficient way in the often complex and uncertain diagnostic situations of general practice. Emotion research and neuroscientific data support the unmistakable role of affect in the process of making decisions and explain the bodily sensation of gut feelings.The implications for health care practice and medical education are discussed.

  18. Gut Feelings as a Third Track in General Practitioners’ Diagnostic Reasoning

    PubMed Central

    Van de Wiel, Margje; Van Royen, Paul; Van Bokhoven, Marloes; Van der Weijden, Trudy; Dinant, Geert Jan

    2010-01-01

    Background General practitioners (GPs) are often faced with complicated, vague problems in situations of uncertainty that they have to solve at short notice. In such situations, gut feelings seem to play a substantial role in their diagnostic process. Qualitative research distinguished a sense of alarm and a sense of reassurance. However, not every GP trusted their gut feelings, since a scientific explanation is lacking. Objective This paper explains how gut feelings arise and function in GPs’ diagnostic reasoning. Approach The paper reviews literature from medical, psychological and neuroscientific perspectives. Conclusions Gut feelings in general practice are based on the interaction between patient information and a GP’s knowledge and experience. This is visualized in a knowledge-based model of GPs’ diagnostic reasoning emphasizing that this complex task combines analytical and non-analytical cognitive processes. The model integrates the two well-known diagnostic reasoning tracks of medical decision-making and medical problem-solving, and adds gut feelings as a third track. Analytical and non-analytical diagnostic reasoning interacts continuously, and GPs use elements of all three tracks, depending on the task and the situation. In this dual process theory, gut feelings emerge as a consequence of non-analytical processing of the available information and knowledge, either reassuring GPs or alerting them that something is wrong and action is required. The role of affect as a heuristic within the physician’s knowledge network explains how gut feelings may help GPs to navigate in a mostly efficient way in the often complex and uncertain diagnostic situations of general practice. Emotion research and neuroscientific data support the unmistakable role of affect in the process of making decisions and explain the bodily sensation of gut feelings.The implications for health care practice and medical education are discussed. PMID:20967509

  19. String-inspired special grand unification

    NASA Astrophysics Data System (ADS)

    Yamatsu, Naoki

    2017-10-01

    We discuss a grand unified theory (GUT) based on an SO(32) GUT gauge group broken to its subgroups including a special subgroup. In the SO(32) GUT on the six-dimensional (6D) orbifold space M^4× T^2/\\mathbb{Z}_2, one generation of the standard model fermions can be embedded into a 6D bulk Weyl fermion in the SO(32) vector representation. We show that for a three-generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies.

  20. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics.

    PubMed

    Yu, Meng; Jia, Hongmei; Zhou, Chao; Yang, Yong; Zhao, Yang; Yang, Maohua; Zou, Zhongmei

    2017-05-10

    As a prevalent, life-threatening and highly recurrent psychiatric illness, depression is characterized by a wide range of pathological changes; however, its etiology remains incompletely understood. Accumulating evidence supports that gut microbiota affects not only gastrointestinal physiology but also central nervous system (CNS) function and behavior through the microbiota-gut-brain axis. To assess the impact of gut microbiota on fecal metabolic phenotype in depressive conditions, an integrated approach of 16S rRNA gene sequencing combined with ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) based metabolomics was performed in chronic variable stress (CVS)-induced depression rat model. Interestingly, depression led to significant gut microbiota changes, at the phylum and genus levels in rats treated with CVS compared to controls. The relative abundances of the bacterial genera Marvinbryantia, Corynebacterium, Psychrobacter, Christensenella, Lactobacillus, Peptostreptococcaceae incertae sedis, Anaerovorax, Clostridiales incertae sedis and Coprococcus were significantly decreased, whereas Candidatus Arthromitus and Oscillibacter were markedly increased in model rats compared with normal controls. Meanwhile, distinct changes in fecal metabolic phenotype of depressive rats were also found, including lower levels of amino acids, and fatty acids, and higher amounts of bile acids, hypoxanthine and stercobilins. Moreover, there were substantial associations of perturbed gut microbiota genera with the altered fecal metabolites, especially compounds involved in the metabolism of tryptophan and bile acids. These results showed that the gut microbiota was altered in association with fecal metabolism in depressive conditions. These findings suggest that the 16S rRNA gene sequencing and LC-MS based metabolomics approach can be further applied to assess pathogenesis of depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota.

    PubMed

    Xu, Jun; Chen, Hu-Biao; Li, Song-Lin

    2017-09-01

    Herbal medicines (HMs) are much appreciated for their significant contribution to human survival and reproduction by remedial and prophylactic management of diseases. Defining the scientific basis of HMs will substantiate their value and promote their modernization. Ever-increasing evidence suggests that gut microbiota plays a crucial role in HM therapy by complicated interplay with HM components. This interplay includes such activities as: gut microbiota biotransforming HM chemicals into metabolites that harbor different bioavailability and bioactivity/toxicity from their precursors; HM chemicals improving the composition of gut microbiota, consequently ameliorating its dysfunction as well as associated pathological conditions; and gut microbiota mediating the interactions (synergistic and antagonistic) between the multiple chemicals in HMs. More advanced experimental designs are recommended for future study, such as overall chemical characterization of gut microbiota-metabolized HMs, direct microbial analysis of HM-targeted gut microbiota, and precise gut microbiota research model development. The outcomes of such research can further elucidate the interactions between HMs and gut microbiota, thereby opening a new window for defining the scientific basis of HMs and for guiding HM-based drug discovery. © 2016 Wiley Periodicals, Inc.

  2. Advances and perspectives in in vitro human gut fermentation modeling.

    PubMed

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Evidence for a core gut microbiota in the zebrafish

    PubMed Central

    Roeselers, Guus; Mittge, Erika K; Stephens, W Zac; Parichy, David M; Cavanaugh, Colleen M; Guillemin, Karen; Rawls, John F

    2011-01-01

    Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status. PMID:21472014

  4. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production

    PubMed Central

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2015-01-01

    Objective The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a ‘Westernised’ lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Design and results Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Conclusions Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. PMID:25431456

  5. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    PubMed Central

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens

    2015-01-01

    The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342

  6. Bayesian naturalness, simplicity, and testability applied to the B ‑ L MSSM GUT

    NASA Astrophysics Data System (ADS)

    Fundira, Panashe; Purves, Austin

    2018-04-01

    Recent years have seen increased use of Bayesian model comparison to quantify notions such as naturalness, simplicity, and testability, especially in the area of supersymmetric model building. After demonstrating that Bayesian model comparison can resolve a paradox that has been raised in the literature concerning the naturalness of the proton mass, we apply Bayesian model comparison to GUTs, an area to which it has not been applied before. We find that the GUTs are substantially favored over the nonunifying puzzle model. Of the GUTs we consider, the B ‑ L MSSM GUT is the most favored, but the MSSM GUT is almost equally favored.

  7. Emulating Host-Microbiome Ecosystem of Human Gastrointestinal Tract in Vitro.

    PubMed

    Park, Gun-Seok; Park, Min Hee; Shin, Woojung; Zhao, Connie; Sheikh, Sameer; Oh, So Jung; Kim, Hyun Jung

    2017-06-01

    The human gut microbiome performs prodigious physiological functions such as production of microbial metabolites, modulation of nutrient digestion and drug metabolism, control of immune system, and prevention of infection. Paradoxically, gut microbiome can also negatively orchestrate the host responses in diseases or chronic disorders, suggesting that the regulated and balanced host-gut microbiome crosstalk is a salient prerequisite in gastrointestinal physiology. To understand the pathophysiological role of host-microbiome crosstalk, it is critical to recreate in vivo relevant models of the host-gut microbiome ecosystem in human. However, controlling the multi-species microbial communities and their uncontrolled growth has remained a notable technical challenge. Furthermore, conventional two-dimensional (2D) or 3D culture systems do not recapitulate multicellular microarchitectures, mechanical dynamics, and tissue-specific functions. Here, we review recent advances and current pitfalls of in vitro and ex vivo models that display human GI functions. We also discuss how the disruptive technologies such as 3D organoids or a human organ-on-a-chip microphysiological system can contribute to better emulate host-gut microbiome crosstalks in health and disease. Finally, the medical and pharmaceutical significance of the gut microbiome-based personalized interventions is underlined as a future perspective.

  8. Effects of Wen Dan Tang on insomnia-related anxiety and levels of the brain-gut peptide Ghrelin.

    PubMed

    Wang, Liye; Song, Yuehan; Li, Feng; Liu, Yan; Ma, Jie; Mao, Meng; Wu, Fengzhi; Wu, Ying; Li, Sinai; Guan, Binghe; Liu, Xiaolan

    2014-01-15

    Ghrelin, a brain-gut peptide that induces anxiety and other abnormal emotions, contributes to the effects of insomnia on emotional behavior. In contrast, the traditional Chinese Medicine remedy Wen Dan Tang reduces insomnia-related anxiety, which may perhaps correspond to changes in the brain-gut axis. This suggests a possible relationship between Wen Dan Tang's pharmacological mechanism and the brain-gut axis. Based on this hypothesis, a sleep-deprived rat model was induced and Wen Dan Tang was administered using oral gavage during model establishment. Wen Dan Tang significantly reduced insomnia-related anxiety and prevented Ghrelin level decreases following sleep deprivation, especially in the hypothalamus. Increased expression of Ghrelin receptor mRNA in the hypothalamus was also observed, suggesting that reduced anxiety may be a result of Wen Dan Tang's regulation of Ghrelin-Ghrelin receptors.

  9. A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption.

    PubMed

    Bortolin, R C; Vargas, A R; Gasparotto, J; Chaves, P R; Schnorr, C E; Martinello, Kd B; Silveira, A K; Rabelo, T K; Gelain, D P; Moreira, J C F

    2018-03-01

    Obesity is a metabolic disorder that predisposes patients to numerous diseases and has become a major global public-health concern. Animal models of diet-induced obesity (DIO) are frequently used to study obesity, but which DIO model most accurately reflects the pathology of human obesity remains unclear. In this study, we designed a diet based on the human Western diet (WD) and compared it with the cafeteria diet (CAF) and high-fat diet (HFD) in order to evaluate which diet most closely mirrors human obesity. Wistar rats were fed four different diets (WD, CAF, HFD and a low-fat diet) for 18 weeks. Metabolic parameters and gut microbiota changes were then characterized. Rats fed the four different diets exhibited completely different phenotypes, highlighting the importance of diet selection. This study also revealed that WD most effectively induced obesity and obesity-related disorders, and thus proved to be a robust model of human obesity. Moreover, WD-fed rats developed obesity and obesity-related comorbidities independent of major alterations in gut microbiota composition (dysbiosis), whereas CAF-fed rats developed the greatest dysbiosis independent of obesity. We also characterized gut microbiota after feeding on these four different diets and identified five genera that might be involved in the pathogenesis of obesity. These data suggest that diet, and not the obese state, was the major driving force behind gut microbiota changes. Moreover, the marked dysbiosis observed in CAF-fed rats might have resulted from the presence of several additives present in the CAF diet, or even a lack of essential vitamins and minerals. Based on our findings, we recommend the use of the prototypic WD (designed here) in DIO models. Conversely, CAF could be used to investigate the effects of excessive consumption of industrially produced and highly processed foods, which are characteristic of Western society.

  10. Polymers in the gut compress the colonic mucus hydrogel

    PubMed Central

    Datta, Sujit S.; Preska Steinberg, Asher

    2016-01-01

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host–microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer–mucus interactions can be described using a thermodynamic model based on Flory–Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice—whose microbiota degrade gut polymers—did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes. PMID:27303035

  11. Polymers in the gut compress the colonic mucus hydrogel.

    PubMed

    Datta, Sujit S; Preska Steinberg, Asher; Ismagilov, Rustem F

    2016-06-28

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host-microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer-mucus interactions can be described using a thermodynamic model based on Flory-Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice-whose microbiota degrade gut polymers-did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.

  12. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production.

    PubMed

    Wu, Gary D; Compher, Charlene; Chen, Eric Z; Smith, Sarah A; Shah, Rachana D; Bittinger, Kyle; Chehoud, Christel; Albenberg, Lindsey G; Nessel, Lisa; Gilroy, Erin; Star, Julie; Weljie, Aalim M; Flint, Harry J; Metz, David C; Bennett, Michael J; Li, Hongzhe; Bushman, Frederic D; Lewis, James D

    2016-01-01

    The consumption of an agrarian diet is associated with a reduced risk for many diseases associated with a 'Westernised' lifestyle. Studies suggest that diet affects the gut microbiota, which subsequently influences the metabolome, thereby connecting diet, microbiota and health. However, the degree to which diet influences the composition of the gut microbiota is controversial. Murine models and studies comparing the gut microbiota in humans residing in agrarian versus Western societies suggest that the influence is large. To separate global environmental influences from dietary influences, we characterised the gut microbiota and the host metabolome of individuals consuming an agrarian diet in Western society. Using 16S rRNA-tagged sequencing as well as plasma and urinary metabolomic platforms, we compared measures of dietary intake, gut microbiota composition and the plasma metabolome between healthy human vegans and omnivores, sampled in an urban USA environment. Plasma metabolome of vegans differed markedly from omnivores but the gut microbiota was surprisingly similar. Unlike prior studies of individuals living in agrarian societies, higher consumption of fermentable substrate in vegans was not associated with higher levels of faecal short chain fatty acids, a finding confirmed in a 10-day controlled feeding experiment. Similarly, the proportion of vegans capable of producing equol, a soy-based gut microbiota metabolite, was less than that was reported in Asian societies despite the high consumption of soy-based products. Evidently, residence in globally distinct societies helps determine the composition of the gut microbiota that, in turn, influences the production of diet-dependent gut microbial metabolites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Rational F-theory GUTs without exotics

    NASA Astrophysics Data System (ADS)

    Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian

    2014-07-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  14. Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice.

    PubMed

    Huang, Rong; Li, Ting; Ni, Jiajia; Bai, Xiaochun; Gao, Yi; Li, Yang; Zhang, Peng; Gong, Yan

    2018-01-01

    Gut microbial dysbiosis is correlated with the development of hepatocellular carcinoma (HCC). Therefore, analyzing the changing patterns in gut microbiota during HCC development, especially before HCC occurrence, is essential for the diagnosis and prevention of HCC based on gut microbial composition. However, these changing patterns in HCC are poorly understood, especially considering the sex differences in HCC incidence and mortality. Here, with an aim to determine the relationship between gut microbiota and HCC development in both sexes, and to screen potential microbial biomarkers for HCC diagnosis, we studied the changing patterns in the gut microbiota from mice of both sexes with liver-specific knockout of Tsc1 ( LTsc1KO ) that spontaneously developed HCC by 9-10 months of age and compared them to the patterns observed in their wide-type Tsc1 fl/fl cohorts using high-throughput sequencing. Using the LTsc1KO model, we were able to successfully exclude the continuing influence of diet on the gut microbiota. Based on gut microbial composition, the female LTsc1KO mice exhibited gut microbial disorder earlier than male LTsc1KO mice during the development of HCC. Our findings also indicated that the decrease in the relative abundance of anaerobic bacteria and the increase in the relative abundance of facultative anaerobic bacteria can be used as risk indexes of female HCC, but would be invalid for male HCC. Most of the changes in the gut bacteria were different between female and male LTsc1KO mice. In particular, the increased abundances of Allobaculum , Erysipelotrichaceae, Neisseriaceae, Sutterella , Burkholderiales, and Prevotella species have potential for use as risk indicators of female HCC, and the increased abundances of Paraprevotella, Paraprevotellaceae, and Prevotella can probably be applied as risk indicators of male HCC. These relationships between the gut microbiota and HCC discovered in the present study may serve as a platform for the identification of potential targets for the diagnosis and prevention of HCC in the future.

  15. A Physiologically Based Model for Methylmercury in Female American Kestrels

    EPA Science Inventory

    A physiologically based toxicokinetic (PBTK) model was developed to describe the uptake, distribution, and elimination of methylmercury (CH3Hg) in female American kestrels. The model consists of six tissue compartments corresponding to the brain, liver, kidney, gut, red blood cel...

  16. Extracorporeal Membrane Oxygenation Causes Loss of Intestinal Epithelial Barrier in the Newborn Piglet

    PubMed Central

    Kurundkar, Ashish R.; Killingsworth, Cheryl R.; McILwain, R. Britt; Timpa, Joseph G.; Hartman, Yolanda E.; He, Dongning; Karnatak, Rajendra K.; Neel, Mary Lauren; Clancy, John P.; Anantharamaiah, G. M.; Maheshwari, Akhil

    2010-01-01

    Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-week-old previously-healthy piglets to venoarterial ECMO for up to 8 hours and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 hours of treatment, leading to a 6–10 fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. Based on these data, we conclude that ECMO is an independent cause of gut barrier dysfunction, and that bacterial translocation may be an important contributor to ECMO-related inflammation. PMID:20442689

  17. Towards a complete Δ(27) × SO(10) GUT of flavour

    NASA Astrophysics Data System (ADS)

    Björkeroth, Fredrik

    2017-09-01

    We propose a renormalisable model based on Δ(27) family symmetry with an SO(10) grand unified theory (GUT) leading to a novel form of spontaneous geometrical CP violation. The symmetries are broken close to the GUT breaking scale to yield the minimal supersymmetric standard model with standard R-parity. Low-scale Yukawa structure is dictated by the coupling of matter to Δ(27) antitriplets \\bar φ whose vacuum expectation values are aligned in the CSD3 directions by the superpotential. Light physical Majorana neutrinos masses emerge from the seesaw mechanism within SO(10). The model predicts a normal neutrino mass hierarchy with the best-fit lightest neutrino mass m 1 ∼ 0.3 meV, CP-violating oscillation phase δl ≈ 280° and the remaining neutrino parameters all within 1σ of their best-fit experimental values.

  18. A comparative evaluation of models to predict human intestinal metabolism from nonclinical data

    PubMed Central

    Yau, Estelle; Petersson, Carl; Dolgos, Hugues

    2017-01-01

    Abstract Extensive gut metabolism is often associated with the risk of low and variable bioavailability. The prediction of the fraction of drug escaping gut wall metabolism as well as transporter‐mediated secretion (F g) has been challenged by the lack of appropriate preclinical models. The purpose of this study is to compare the performance of models that are widely employed in the pharmaceutical industry today to estimate F g and, based on the outcome, to provide recommendations for the prediction of human F g during drug discovery and early drug development. The use of in vitro intrinsic clearance from human liver microsomes (HLM) in three mechanistic models – the ADAM, Q gut and Competing Rates – was evaluated for drugs whose metabolism is dominated by CYP450s, assuming that the effect of transporters is negligible. The utility of rat as a model for human F g was also explored. The ADAM, Q gut and Competing Rates models had comparable prediction success (70%, 74%, 69%, respectively) and bias (AFE = 1.26, 0.74 and 0.81, respectively). However, the ADAM model showed better accuracy compared with the Q gut and Competing Rates models (RMSE =0.20 vs 0.30 and 0.25, respectively). Rat is not a good model (prediction success =32%, RMSE =0.48 and AFE = 0.44) as it seems systematically to under‐predict human F g. Hence, we would recommend the use of rat to identify the need for F g assessment, followed by the use of HLM in simple models to predict human F g. © 2017 Merck KGaA. Biopharmaceutics & Drug Disposition Published by John Wiley & Sons, Ltd. PMID:28152562

  19. A comparative evaluation of models to predict human intestinal metabolism from nonclinical data.

    PubMed

    Yau, Estelle; Petersson, Carl; Dolgos, Hugues; Peters, Sheila Annie

    2017-04-01

    Extensive gut metabolism is often associated with the risk of low and variable bioavailability. The prediction of the fraction of drug escaping gut wall metabolism as well as transporter-mediated secretion (F g ) has been challenged by the lack of appropriate preclinical models. The purpose of this study is to compare the performance of models that are widely employed in the pharmaceutical industry today to estimate F g and, based on the outcome, to provide recommendations for the prediction of human F g during drug discovery and early drug development. The use of in vitro intrinsic clearance from human liver microsomes (HLM) in three mechanistic models - the ADAM, Q gut and Competing Rates - was evaluated for drugs whose metabolism is dominated by CYP450s, assuming that the effect of transporters is negligible. The utility of rat as a model for human F g was also explored. The ADAM, Q gut and Competing Rates models had comparable prediction success (70%, 74%, 69%, respectively) and bias (AFE = 1.26, 0.74 and 0.81, respectively). However, the ADAM model showed better accuracy compared with the Q gut and Competing Rates models (RMSE =0.20 vs 0.30 and 0.25, respectively). Rat is not a good model (prediction success =32%, RMSE =0.48 and AFE = 0.44) as it seems systematically to under-predict human F g . Hence, we would recommend the use of rat to identify the need for F g assessment, followed by the use of HLM in simple models to predict human F g . © 2017 Merck KGaA. Biopharmaceutics & Drug Disposition Published by John Wiley & Sons, Ltd. © 2017 Merck KGaA. Biopharmaceutics & Drug Disposition Published by John Wiley & Sons, Ltd.

  20. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis

    PubMed Central

    Garrett, Wendy S.; Gallini, Carey A.; Yatsunenko, Tanya; Michaud, Monia; DuBois, Andrea; Delaney, Mary L.; Punit, Shivesh; Karlsson, Maria; Bry, Lynn; Glickman, Jonathan N.; Gordon, Jeffrey I.; Onderdonk, Andrew B.; Glimcher, Laurie H.

    2010-01-01

    SUMMARY In inflammatory bowel disease, the relationship between a host and gut microbial community goes awry. We have characterized the fecal microbial communities in a mouse IBD model driven by T-bet deficiency in the innate immune system. 16S rRNA-based analysis of T-bet−/− × Rag2−/− and Rag2−/− mice revealed distinctive communities that correlate with host genotype. Culture-based surveys, invasion assays, antibiotic treatment, and TNF-α blockade disclosed that the presence of Klebsiella pneumoniae and Proteus mirabilis correlates with colitis in T-bet−/− × Rag2−/− animals, and that T-bet−/− × Rag2−/− derived strains can elicit colitis in Rag2−/− and wild-type adults. Cross-fostering experiments provided evidence for the role of these organisms in maternal transmission of disease. This model provides a foundation for defining how gut microbial communities work in concert with specific culturable colitogenic agents to cause IBD, and a foundation for conducting proof-of-concept tests of new preventative or therapeutic measures directed at components of the gut microbiota and/or host. PMID:20833380

  1. A 3-dimensional mathematical model of microbial proliferation that generates the characteristic cumulative relative abundance distributions in gut microbiomes

    PubMed Central

    Takayasu, Lena; Suda, Wataru; Watanabe, Eiichiro; Fukuda, Shinji; Takanashi, Kageyasu; Ohno, Hiroshi; Takayasu, Misako; Takayasu, Hideki; Hattori, Masahira

    2017-01-01

    The gut microbiome is highly variable among individuals, largely due to differences in host lifestyle and physiology. However, little is known about the underlying processes or rules that shape the complex microbial community. In this paper, we show that the cumulative relative abundance distribution (CRAD) of microbial species can be approximated by a power law function, and found that the power exponent of CRADs generated from 16S rRNA gene and metagenomic data for normal gut microbiomes of humans and mice was similar consistently with ∼0.9. A similarly robust power exponent was observed in CRADs of gut microbiomes during dietary interventions and several diseases. However, the power exponent was found to be ∼0.6 in CRADs from gut microbiomes characterized by lower species richness, such as those of human infants and the small intestine of mice. In addition, the CRAD of gut microbiomes of mice treated with antibiotics differed slightly from those of infants and the small intestines of mice. Based on these observations, in addition to data on the spatial distribution of microbes in the digestive tract, we developed a 3-dimensional mathematical model of microbial proliferation that reproduced the experimentally observed CRAD patterns. Our model indicated that the CRAD may be determined by the ratio of emerging to pre-existing species during non-uniform spatially competitive proliferation, independent of species composition. PMID:28792501

  2. Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon

    PubMed Central

    Fehlbaum, Sophie; Chassard, Christophe; Haug, Martina C.; Fourmestraux, Candice; Derrien, Muriel; Lacroix, Christophe

    2015-01-01

    In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor’s fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source. PMID:26559530

  3. Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon.

    PubMed

    Fehlbaum, Sophie; Chassard, Christophe; Haug, Martina C; Fourmestraux, Candice; Derrien, Muriel; Lacroix, Christophe

    2015-01-01

    In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor's fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source.

  4. Genes, emotions and gut microbiota: The next frontier for the gastroenterologist

    PubMed Central

    Panduro, Arturo; Rivera-Iñiguez, Ingrid; Sepulveda-Villegas, Maricruz; Roman, Sonia

    2017-01-01

    Most medical specialties including the field of gastroenterology are mainly aimed at treating diseases rather than preventing them. Genomic medicine studies the health/disease process based on the interaction of the human genes with the environment. The gastrointestinal (GI) system is an ideal model to analyze the interaction between our genes, emotions and the gut microbiota. Based on the current knowledge, this mini-review aims to provide an integrated synopsis of this interaction to achieve a better understanding of the GI disorders related to bad eating habits and stress-related disease. Since human beings are the result of an evolutionary process, many biological processes such as instincts, emotions and behavior are interconnected to guarantee survival. Nourishment is a physiological need triggered by the instinct of survival to satisfy the body’s energy demands. The brain-gut axis comprises a tightly connected neural-neuroendocrine circuitry between the hunger-satiety center, the dopaminergic reward system involved in the pleasure of eating and the gut microbiota that regulates which food we eat and emotions. However, genetic variations and the consumption of high-sugar and high-fat diets have overridden this energy/pleasure neurocircuitry to the point of addiction of several foodstuffs. Consequently, a gut dysbiosis generates inflammation and a negative emotional state may lead to chronic diseases. Balancing this altered processes to regain health may involve personalized-medicine and genome-based strategies. Thus, an integrated approach based on the understanding of the gene-emotions-gut microbiota interaction is the next frontier that awaits the gastroenterologist to prevent and treat GI disorders associated with obesity and negative emotions. PMID:28533660

  5. Genes, emotions and gut microbiota: The next frontier for the gastroenterologist.

    PubMed

    Panduro, Arturo; Rivera-Iñiguez, Ingrid; Sepulveda-Villegas, Maricruz; Roman, Sonia

    2017-05-07

    Most medical specialties including the field of gastroenterology are mainly aimed at treating diseases rather than preventing them. Genomic medicine studies the health/disease process based on the interaction of the human genes with the environment. The gastrointestinal (GI) system is an ideal model to analyze the interaction between our genes, emotions and the gut microbiota. Based on the current knowledge, this mini-review aims to provide an integrated synopsis of this interaction to achieve a better understanding of the GI disorders related to bad eating habits and stress-related disease. Since human beings are the result of an evolutionary process, many biological processes such as instincts, emotions and behavior are interconnected to guarantee survival. Nourishment is a physiological need triggered by the instinct of survival to satisfy the body's energy demands. The brain-gut axis comprises a tightly connected neural-neuroendocrine circuitry between the hunger-satiety center, the dopaminergic reward system involved in the pleasure of eating and the gut microbiota that regulates which food we eat and emotions. However, genetic variations and the consumption of high-sugar and high-fat diets have overridden this energy/pleasure neurocircuitry to the point of addiction of several foodstuffs. Consequently, a gut dysbiosis generates inflammation and a negative emotional state may lead to chronic diseases. Balancing this altered processes to regain health may involve personalized-medicine and genome-based strategies. Thus, an integrated approach based on the understanding of the gene-emotions-gut microbiota interaction is the next frontier that awaits the gastroenterologist to prevent and treat GI disorders associated with obesity and negative emotions.

  6. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    PubMed

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model.

    PubMed

    Ji, Yosep; Park, Soyoung; Park, Haryung; Hwang, Eunchong; Shin, Hyeunkil; Pot, Bruno; Holzapfel, Wilhelm H

    2018-01-01

    Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  8. Profile of Gut Microbiota Associated With the Presence of Hepatocellular Cancer in Patients With Liver Cirrhosis.

    PubMed

    Grąt, M; Wronka, K M; Krasnodębski, M; Masior, Ł; Lewandowski, Z; Kosińska, I; Grąt, K; Stypułkowski, J; Rejowski, S; Wasilewicz, M; Gałęcka, M; Szachta, P; Krawczyk, M

    2016-06-01

    Changes within the gut microbiota contribute to the progression of chronic liver diseases. According to the results of several studies performed in animal models, gut dysbiosis plays an important role in hepatocarcinogenesis. The aim of this study was to explore the characteristics of gut microbiota associated with the presence of hepatocellular cancer (HCC) in patients with cirrhosis of the liver undergoing liver transplantation. A total of 15 patients with HCC and 15 non-HCC patients matched according to etiology of cirrhosis and Model for End-Stage Liver Disease (MELD) scores who underwent liver transplantations between 2012 and 2014 were included. Analysis of their gut microbial profile was based on prospectively collected stool samples from the pretransplant period. Patients with and without HCC were similar with respect to age (P = .506), sex (P = .700), hepatitis C virus (P > .999) and hepatitis B virus (P = .715) infection status, alcoholic liver disease (P > .999), and MELD score (P = .337). Notably, the presence of HCC was associated with significantly increased fecal counts of Escherichia coli (P = .025). Prediction of HCC presence based on E coli counts was associated with the area under the receiver-operating curve of 0.742 (95% confidence interval, 0.564-0.920), with the optimal cutoff on the level of 17.728 (natural logarithm of colony-forming units per 1 g of feces). Sensitivity and specificity rates for the established cutoff were 66.7% and 73.3%, respectively. The profile of gut microbiota associated with the presence of HCC in cirrhotic patients is characterized by increased fecal counts of E coli. Therefore, intestinal overgrowth of E coli may contribute to the process of hepatocarcinogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    PubMed

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder.

    PubMed

    Coretti, Lorena; Cristiano, Claudia; Florio, Ermanno; Scala, Giovanni; Lama, Adriano; Keller, Simona; Cuomo, Mariella; Russo, Roberto; Pero, Raffaela; Paciello, Orlando; Mattace Raso, Giuseppina; Meli, Rosaria; Cocozza, Sergio; Calignano, Antonio; Chiariotti, Lorenzo; Lembo, Francesca

    2017-03-28

    Alterations of microbiota-gut-brain axis have been invoked in the pathogenesis of autism spectrum disorders (ASD). Mouse models could represent an excellent tool to understand how gut dysbiosis and related alterations may contribute to autistic phenotype. In this study we paralleled gut microbiota (GM) profiles, behavioral characteristics, intestinal integrity and immunological features of colon tissues in BTBR T + tf/J (BTBR) inbred mice, a well established animal model of ASD. Sex differences, up to date poorly investigated in animal models, were specifically addressed. Results showed that BTBR mice of both sexes presented a marked intestinal dysbiosis, alterations of behavior, gut permeability and immunological state with respect to prosocial C57BL/6j (C57) strain. Noticeably, sex-related differences were clearly detected. We identified Bacteroides, Parabacteroides, Sutterella, Dehalobacterium and Oscillospira genera as key drivers of sex-specific gut microbiota profiles associated with selected pathological traits. Taken together, our findings indicate that alteration of GM in BTBR mice shows relevant sex-associated differences and supports the use of BTBR mouse model to dissect autism associated microbiota-gut-brain axis alteration.

  11. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    PubMed

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  12. Functional Characteristics of the Flying Squirrel's Cecal Microbiota under a Leaf-Based Diet, Based on Multiple Meta-Omic Profiling

    PubMed Central

    Lu, Hsiao-Pei; Liu, Po-Yu; Wang, Yu-bin; Hsieh, Ji-Fan; Ho, Han-Chen; Huang, Shiao-Wei; Lin, Chung-Yen; Hsieh, Chih-hao; Yu, Hon-Tsen

    2018-01-01

    Mammalian herbivores rely on microbial activities in an expanded gut chamber to convert plant biomass into absorbable nutrients. Distinct from ruminants, small herbivores typically have a simple stomach but an enlarged cecum to harbor symbiotic microbes; however, knowledge of this specialized gut structure and characteristics of its microbial contents is limited. Here, we used leaf-eating flying squirrels as a model to explore functional characteristics of the cecal microbiota adapted to a high-fiber, toxin-rich diet. Specifically, environmental conditions across gut regions were evaluated by measuring mass, pH, feed particle size, and metabolomes. Then, parallel metagenomes and metatranscriptomes were used to detect microbial functions corresponding to the cecal environment. Based on metabolomic profiles, >600 phytochemical compounds were detected, although many were present only in the foregut and probably degraded or transformed by gut microbes in the hindgut. Based on metagenomic (DNA) and metatranscriptomic (RNA) profiles, taxonomic compositions of the cecal microbiota were dominated by bacteria of the Firmicutes taxa; they contained major gene functions related to degradation and fermentation of leaf-derived compounds. Based on functional compositions, genes related to multidrug exporters were rich in microbial genomes, whereas genes involved in nutrient importers were rich in microbial transcriptomes. In addition, genes encoding chemotaxis-associated components and glycoside hydrolases specific for plant beta-glycosidic linkages were abundant in both DNA and RNA. This exploratory study provides findings which may help to form molecular-based hypotheses regarding functional contributions of symbiotic gut microbiota in small herbivores with folivorous dietary habits. PMID:29354108

  13. Characterization and Detection of a Widely Distributed Gene Cluster That Predicts Anaerobic Choline Utilization by Human Gut Bacteria

    PubMed Central

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A.; Marks, Jonathan A.; Haiser, Henry J.; Turnbaugh, Peter J.

    2015-01-01

    ABSTRACT Elucidation of the molecular mechanisms underlying the human gut microbiota’s effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. PMID:25873372

  14. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation.

    PubMed

    An, Gary

    2008-05-27

    One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure. ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems. A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.

  15. Supersymmetry searches in GUT models with non-universal scalar masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannoni, M.; Gómez, M.E.; Ellis, J.

    2016-03-01

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of ∼t{sub 1}−χ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in differentmore » models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E{sub T}, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CTA γ-ray searches.« less

  16. Microbiome Disturbances and Autism Spectrum Disorders.

    PubMed

    Rosenfeld, Cheryl S

    2015-10-01

    Autism spectrum disorders (ASDs) are considered a heterogenous set of neurobehavioral diseases, with the rates of diagnosis dramatically increasing in the past few decades. As genetics alone does not explain the underlying cause in many cases, attention has turned to environmental factors as potential etiological agents. Gastrointestinal disorders are a common comorbidity in ASD patients. It was thus hypothesized that a gut-brain link may account for some autistic cases. With the characterization of the human microbiome, this concept has been expanded to include the microbiota-gut-brain axis. There are mounting reports in animal models and human epidemiologic studies linking disruptive alterations in the gut microbiota or dysbiosis and ASD symptomology. In this review, we will explore the current evidence that gut dysbiosis in animal models and ASD patients correlates with disease risk and severity. The studies to date have surveyed how gut microbiome changes may affect these neurobehavioral disorders. However, we harbor other microbiomes in the body that might impact brain function. We will consider microbial colonies residing in the oral cavity, vagina, and the most recently discovered one in the placenta. Based on the premise that gut microbiota alterations may be causative agents in ASD, several therapeutic options have been tested, such as diet modulations, prebiotics, probiotics, synbiotics, postbiotics, antibiotics, fecal transplantation, and activated charcoal. The potential benefits of these therapies will be considered. Finally, the possible mechanisms by which changes in the gut bacterial communities may result in ASD and related neurobehavioral disorders will be examined. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    NASA Astrophysics Data System (ADS)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  18. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    PubMed

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for choline fermentation (the cut gene cluster) have been recently identified, there has been no characterization of these genes in human gut isolates and microbial communities. In this work, we use multiple approaches to demonstrate that the pathway encoded by the cut genes is present and functional in a diverse range of human gut bacteria and is also widespread in stool metagenomes. We also developed a PCR-based strategy to detect a key functional gene (cutC) involved in this pathway and applied it to characterize newly isolated choline-utilizing strains. Both our analyses of the cut gene cluster and this molecular tool will aid efforts to further understand the role of choline metabolism in the human gut microbiota and its link to disease. Copyright © 2015 Martínez-del Campo et al.

  19. Hilltop supernatural inflation and SUSY unified models

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro

    2014-01-01

    In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.

  20. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder

    PubMed Central

    Coretti, Lorena; Cristiano, Claudia; Florio, Ermanno; Scala, Giovanni; Lama, Adriano; Keller, Simona; Cuomo, Mariella; Russo, Roberto; Pero, Raffaela; Paciello, Orlando; Mattace Raso, Giuseppina; Meli, Rosaria; Cocozza, Sergio; Calignano, Antonio; Chiariotti, Lorenzo; Lembo, Francesca

    2017-01-01

    Alterations of microbiota-gut-brain axis have been invoked in the pathogenesis of autism spectrum disorders (ASD). Mouse models could represent an excellent tool to understand how gut dysbiosis and related alterations may contribute to autistic phenotype. In this study we paralleled gut microbiota (GM) profiles, behavioral characteristics, intestinal integrity and immunological features of colon tissues in BTBR T + tf/J (BTBR) inbred mice, a well established animal model of ASD. Sex differences, up to date poorly investigated in animal models, were specifically addressed. Results showed that BTBR mice of both sexes presented a marked intestinal dysbiosis, alterations of behavior, gut permeability and immunological state with respect to prosocial C57BL/6j (C57) strain. Noticeably, sex-related differences were clearly detected. We identified Bacteroides, Parabacteroides, Sutterella, Dehalobacterium and Oscillospira genera as key drivers of sex-specific gut microbiota profiles associated with selected pathological traits. Taken together, our findings indicate that alteration of GM in BTBR mice shows relevant sex-associated differences and supports the use of BTBR mouse model to dissect autism associated microbiota-gut-brain axis alteration. PMID:28349974

  1. Why do larval helminths avoid the gut of intermediate hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2009-10-07

    In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be exploited.

  2. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    PubMed

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of Proteobacteria. The subsequent study on the influence of HMOs on two infant GM communities, revealed the strongest bifidogenic effect for 3'SL for both infants. Inter-individual differences of infant GM, especially with regards to the occurrence of Bacteroidetes and differences in bifidobacterial species composition, correlated with varying degrees of HMO utilization foremost of 6'SL and 3'FL, indicating species and strain related differences in HMO utilization which was also reflected in SCFAs concentrations, with 3'SL and 6'SL resulting in significantly higher butyrate production compared to 3'FL. In conclusion, the increased throughput of CoMiniGut strengthens experimental conclusions through elimination of statistical interferences originating from low number of repetitions. Its small working volume moreover allows the investigation of rare and expensive bioactives.

  3. Acclimation and Institutionalization of the Mouse Microbiota Following Transportation

    PubMed Central

    Montonye, Dan R.; Ericsson, Aaron C.; Busi, Susheel B.; Lutz, Cathleen; Wardwell, Keegan; Franklin, Craig L.

    2018-01-01

    Using animal models, the gut microbiota has been shown to play a critical role in the health and disease of many organ systems. Unfortunately, animal model studies often lack reproducibility when performed at different institutions. Previous studies in our laboratory have shown that the gut microbiota of mice can vary with a number of husbandry factors leading us to speculate that differing environments may alter gut microbiota, which in turn may influence animal model phenotypes. As an extension of these studies, we hypothesized that the shipping of mice from a mouse producer to an institution will result in changes in the type, relative abundance, and functional composition of the gut microbiota. Furthermore, we hypothesized that mice will develop a microbiota unique to the institution and facility in which they are housed. To test these hypotheses, mice of two strains (C57BL/6J and BALB/cJ), two age groups (4 week and 8 week old), and originating from two types of housing (research animal facility under conventional housing and production facilities under maximum barrier housing) were obtained from The Jackson Laboratory. Fecal samples were collected the day prior to shipping, immediately upon arrival, and then on days 2, 5, 7, and weeks 2, 4, and 9 post-arrival. Following the first post-arrival fecal collection, mice were separated into 2 groups and housed at different facilities at our institution while keeping their caging, diet, and husbandry practices the same. DNA was extracted from the collected fecal pellets and 16S rRNA amplicons were sequenced in order to characterize the type and relative abundance of gut bacteria. Principal component analysis (PCA) and permutational multivariate analysis of variance (PERMANOVA) demonstrated that both the shipping and the institution and facility in which mice were housed altered the gut microbiota. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) predicted differences in functional composition in the gut microbiota of mice based on time of acclimation. PMID:29892276

  4. Acclimation and Institutionalization of the Mouse Microbiota Following Transportation.

    PubMed

    Montonye, Dan R; Ericsson, Aaron C; Busi, Susheel B; Lutz, Cathleen; Wardwell, Keegan; Franklin, Craig L

    2018-01-01

    Using animal models, the gut microbiota has been shown to play a critical role in the health and disease of many organ systems. Unfortunately, animal model studies often lack reproducibility when performed at different institutions. Previous studies in our laboratory have shown that the gut microbiota of mice can vary with a number of husbandry factors leading us to speculate that differing environments may alter gut microbiota, which in turn may influence animal model phenotypes. As an extension of these studies, we hypothesized that the shipping of mice from a mouse producer to an institution will result in changes in the type, relative abundance, and functional composition of the gut microbiota. Furthermore, we hypothesized that mice will develop a microbiota unique to the institution and facility in which they are housed. To test these hypotheses, mice of two strains (C57BL/6J and BALB/cJ), two age groups (4 week and 8 week old), and originating from two types of housing (research animal facility under conventional housing and production facilities under maximum barrier housing) were obtained from The Jackson Laboratory. Fecal samples were collected the day prior to shipping, immediately upon arrival, and then on days 2, 5, 7, and weeks 2, 4, and 9 post-arrival. Following the first post-arrival fecal collection, mice were separated into 2 groups and housed at different facilities at our institution while keeping their caging, diet, and husbandry practices the same. DNA was extracted from the collected fecal pellets and 16S rRNA amplicons were sequenced in order to characterize the type and relative abundance of gut bacteria. Principal component analysis (PCA) and permutational multivariate analysis of variance (PERMANOVA) demonstrated that both the shipping and the institution and facility in which mice were housed altered the gut microbiota. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) predicted differences in functional composition in the gut microbiota of mice based on time of acclimation.

  5. Physics of the gut: How polymers dynamically structure the gut environment

    NASA Astrophysics Data System (ADS)

    Preska Steinberg, Asher; Datta, Sujit; Bogatyrev, Said; Ismagilov, Rustem

    While the gut microbiome and biological regulation of the gut environment is being exhaustively studied by the microbiology community, little is known about the rich physics that governs the macro- and microstructure of the gut environment. The mammalian gut abounds in soft materials; ranging from soluble polymers (e.g. dietary fibers, therapeutic polymers and mucins) to colloidal matter (e.g. bacteria, viruses and nanoparticles carrying drugs). We have found experimentally that soluble polymers can dynamically re-structure the colonic mucus hydrogel by modulating its degree of swelling. We implemented a mean-field Flory-Huggins model to reveal that these polymer-mucus interactions can be captured using a simple, first principles thermodynamics model. In this model, the amount of deswelling increases with polymer concentration and size. We then used these physical principles to make predictions about how different polymer solutions affect the structure of mucus. Lastly, we explore applying this framework and similar physical principles to a variety of biological problems in the gut.

  6. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    PubMed

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  7. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection

    PubMed Central

    Ross, Caná L.; Spinler, Jennifer K.; Savidge, Tor C.

    2016-01-01

    Alteration of the gut microbial community structure and function through antibiotic use increases susceptibility to colonization by Clostridium difficile and other enteric pathogens. However, the mechanisms that mediate colonization resistance remain elusive. As the leading definable cause of infectious diarrhea, toxigenic C. difficile represents a burden for patients and health care systems, underscoring the need for better diagnostics and treatment strategies. Next-generation sequence data has increased our understanding of how the gut microbiota is influenced by many factors including diet, disease, aging and drugs. However, a microbial-based biomarker differentiating C. difficile infection from antibiotic-associated diarrhea remains elusive. Metabolomics profiling, which is highly responsive to changes in physiological conditions, have shown promise in differentiating subtle disease phenotypes that exhibit a nearly identical microbiome community structure, suggesting metabolite-based biomarkers may be an ideal diagnostic for identifying patients with CDI. This review focuses on the current understanding of structural and functional changes to the gut microbiota during C. difficile infection obtained from studies assessing the microbiome and metabolome of samples from patients and murine models. PMID:27180006

  8. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome.

    PubMed

    Dickson, Robert P; Singer, Benjamin H; Newstead, Michael W; Falkowski, Nicole R; Erb-Downward, John R; Standiford, Theodore J; Huffnagle, Gary B

    2016-07-18

    Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here, we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecological analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria (Bacteroides spp.) were common and abundant, undetected by culture and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases.

  9. Review of the systems biology of the immune system using agent-based models.

    PubMed

    Shinde, Snehal B; Kurhekar, Manish P

    2018-06-01

    The immune system is an inherent protection system in vertebrate animals including human beings that exhibit properties such as self-organisation, self-adaptation, learning, and recognition. It interacts with the other allied systems such as the gut and lymph nodes. There is a need for immune system modelling to know about its complex internal mechanism, to understand how it maintains the homoeostasis, and how it interacts with the other systems. There are two types of modelling techniques used for the simulation of features of the immune system: equation-based modelling (EBM) and agent-based modelling. Owing to certain shortcomings of the EBM, agent-based modelling techniques are being widely used. This technique provides various predictions for disease causes and treatments; it also helps in hypothesis verification. This study presents a review of agent-based modelling of the immune system and its interactions with the gut and lymph nodes. The authors also review the modelling of immune system interactions during tuberculosis and cancer. In addition, they also outline the future research directions for the immune system simulation through agent-based techniques such as the effects of stress on the immune system, evolution of the immune system, and identification of the parameters for a healthy immune system.

  10. A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis.

    PubMed

    Colpitts, Sara L; Kasper, Eli J; Keever, Abigail; Liljenberg, Caleb; Kirby, Trevor; Magori, Krisztian; Kasper, Lloyd H; Ochoa-Repáraz, Javier

    2017-11-02

    The gut microbiome plays an important role in the development of inflammatory disease as shown using experimental models of central nervous system (CNS) demyelination. Gut microbes influence the response of regulatory immune cell populations in the gut-associated lymphoid tissue (GALT), which drive protection in acute and chronic experimental autoimmune encephalomyelitis (EAE). Recent observations suggest that communication between the host and the gut microbiome is bidirectional. We hypothesized that the gut microbiota differs between the acute inflammatory and chronic progressive stages of a murine model of secondary-progressive multiple sclerosis (SP-MS). This non-obese diabetic (NOD) model of EAE develops a biphasic pattern of disease that more closely resembles the human condition when transitioning from relapsing-remitting (RR)-MS to SP-MS. We compared the gut microbiome of NOD mice with either mild or severe disease to that of non-immunized control mice. We found that the mice which developed a severe secondary form of EAE harbored a dysbiotic gut microbiome when compared with the healthy control mice. Furthermore, we evaluated whether treatment with a cocktail of broad-spectrum antibiotics would modify the outcome of the progressive stage of EAE in the NOD model. Our results indicated reduced mortality and clinical disease severity in mice treated with antibiotics compared with untreated mice. Our findings support the hypothesis that there are reciprocal effects between experimental CNS inflammatory demyelination and modification of the microbiome providing a foundation for the establishment of early therapeutic interventions targeting the gut microbiome that could potentially limit disease progression.

  11. Toward Personalized Control of Human Gut Bacterial Communities.

    PubMed

    David, Lawrence A

    2018-01-01

    A key challenge in microbiology will be developing tools for manipulating human gut bacterial communities. Our ability to predict and control the dynamics of these communities is now in its infancy. To manage human gut microbiota, I am developing methods in three research domains. First, I am refining in vitro tools to experimentally study gut microbes at high throughput and in controlled settings. Second, I am adapting "big data" techniques to overcome statistical challenges confronting microbiota modeling. Third, I am testing study designs that can streamline human testing of microbiota manipulations. Assembling these methods creates new challenges, including training scientists who can work across disciplines such as engineering, ecology, and medicine. Nevertheless, I envision that overcoming these obstacles will enable my group to construct platforms that can personalize microbiota treatments, particularly ones based on diet. More broadly, I anticipate that such platforms will have applications across fields such as agriculture, biotechnology, and environmental management.

  12. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome

    PubMed Central

    Kelley, Scott T.; Skarra, Danalea V.; Rivera, Alissa J.; Thackray, Varykina G.

    2016-01-01

    Women with polycystic ovary syndrome (PCOS) have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome) that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet. PMID:26731268

  13. Computational determination of the effects of virulent Escherichia coli and salmonella bacteriophages on human gut.

    PubMed

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2016-10-01

    Salmonella and Escherichia coli are different types of bacteria that cause food poisoning in humans. In the elderly, infants and people with chronic conditions, it is very dangerous if Salmonella or E. coli gets into the bloodstream and then they must be treated by phage therapy. Treating Salmonella and E. coli by phage therapy affects the gut flora. This research paper presents a system for detecting the effects of virulent E. coli and Salmonella bacteriophages on human gut. A method based on Domain-Domain Interactions (DDIs) model is implemented in the proposed system to determine the interactions between the proteins of human gut bacteria and the proteins of bacteriophages that infect virulent E. coli and Salmonella. The system helps gastroenterologists to realize the effect of injecting bacteriophages that infect virulent E. coli and Salmonella on the human gut. By testing the system over Enterobacteria phage 933W, Enterobacteria phage VT2-Sa and Enterobacteria phage P22, it resulted in four interactions between the proteins of the bacteriophages that infect E. coli O157:H7, E. coli O104:H4 and Salmonella typhimurium and the proteins of human gut bacterium strains. Several effects were detected such as: antibacterial activity against a number of bacterial species in human gut, regulation of cellular differentiation and organogenesis during gut, lung, and heart development, ammonia assimilation in bacteria, yeasts, and plants, energizing defense system and its function in the detoxification of lipopolysaccharide, and in the prevention of bacterial translocation in human gut. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Modelling survival: exposure pattern, species sensitivity and uncertainty.

    PubMed

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B; Van den Brink, Paul J; Veltman, Karin; Vogel, Sören; Zimmer, Elke I; Preuss, Thomas G

    2016-07-06

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.

  15. Modelling survival: exposure pattern, species sensitivity and uncertainty

    NASA Astrophysics Data System (ADS)

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I.; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B.; van den Brink, Paul J.; Veltman, Karin; Vogel, Sören; Zimmer, Elke I.; Preuss, Thomas G.

    2016-07-01

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.

  16. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model.

    PubMed

    Villalona, Gustavo; Price, Amber; Blomenkamp, Keith; Manithody, Chandrashekhara; Saxena, Saurabh; Ratchford, Thomas; Westrich, Matthew; Kakarla, Vindhya; Pochampally, Shruthika; Phillips, William; Heafner, Nicole; Korremla, Niraja; Greenspon, Jose; Guzman, Miguel A; Kumar Jain, Ajay

    2018-04-27

    Parenteral nutrition (PN) provides nutrition intravenously; however, this life-saving therapy is associated with significant liver disease. Recent evidence indicates improvement in PN-associated injury in animals with intact gut treated with enteral bile acid (BA), chenodeoxycholic acid (CDCA), and a gut farnesoid X receptor (FXR) agonist, which drives the gut-liver cross talk (GLCT). We hypothesized that similar improvement could be translated in animals with short bowel syndrome (SBS). Using piglets, we developed a novel 90% gut-resected SBS model. Fifteen SBS piglets receiving PN were given CDCA or control (vehicle control) for 2 weeks. Tissue and serum were analyzed posteuthanasia. CDCA increased gut FXR (quantitative polymerase chain reaction; P = .008), but not downstream FXR targets. No difference in gut fibroblast growth factor 19 (FGF19; P = .28) or hepatic FXR (P = .75), FGF19 (P = .86), FGFR4 (P = .53), or Cholesterol 7 α-hydroxylase (P = .61) was noted. PN resulted in cholestasis; however, no improvement was noted with CDCA. Hepatic fibrosis or immunostaining for Ki67, CD3, or Cytokeratin 7 was not different with CDCA. PN resulted in gut atrophy. CDCA preserved (P = .04 vs control) gut mass and villous/crypt ratio. The median (interquartile range) for gut mass for control was 0.28 (0.17-0.34) and for CDCA was 0.33 (0.26-0.46). We note that, unlike in animals with intact gut, in an SBS animal model there is inadequate CDCA-induced activation of gut-derived signaling to cause liver improvement. Thus, it appears that activation of GLCT is critically dependent on the presence of adequate gut. This is clinically relevant because it suggests that BA therapy may not be as effective for patients with SBS. © 2018 American Society for Parenteral and Enteral Nutrition.

  17. Hilltop supernatural inflation and SUSY unified models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min

    2014-01-01

    In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) themore » role of inflaton.« less

  18. Pseudosmooth tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David; Rehman, Mansoor Ur

    2012-08-01

    We explore a new class of supersymmetric models of inflation where the inflaton is realised as a combination of a Higgs field and (gauge non-singlet) matter fields, using a ``tribrid'' structure of the superpotential. Inflation is associated with a phase transition around GUT scale energies. The inflationary trajectory already preselects the later vacuum after inflation, which has the advantage of automatically avoiding the production of dangerous topological defects at the end of inflation. While at first sight the models look similar to smooth inflation, they feature a waterfall and are therefore only pseudosmooth. The new class of models offers novel possibilities for realising inflation in close contact with particle physics, for instance with supersymmetric GUTs or with supersymmetric flavour models based on family symmetries.

  19. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    PubMed

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research. © 2016 Wiley Periodicals, Inc.

  20. Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa.

    PubMed

    Herpertz-Dahlmann, Beate; Seitz, Jochen; Baines, John

    2017-09-01

    Anorexia nervosa (AN) is one of the most common chronic illnesses in female adolescents and exhibits the highest mortality risk of all psychiatric disorders. Evidence for the effectiveness of psychotherapeutic or psychopharmacological interventions is weak. Mounting data indicate that the gut microbiome interacts with the central nervous system and the immune system by neuroendocrine, neurotransmitter, neurotrophic and neuroinflammatory afferent and efferent pathways. There is growing evidence that the gut microbiota influences weight regulation and psychopathology, such as anxiety and depression. This article reviews how the gut-brain interaction may impact the development and course of AN. A "leaky gut", characterized by antigens traversing the intestinal wall, was demonstrated in an animal model of AN, and could underlie the low-grade inflammation and increased risk of autoimmune diseases found in AN. Moreover, starvation has a substantial impact on the gut microbiome, and diets used for re-nutrition based on animal products may support the growth of bacteria capable of triggering inflammation. As there is currently no empirically derived agreement on therapeutic re-nourishment in AN, this review discusses how consideration of gut-brain interactions may be important for treatment regarding the determination of target weight, rapidity of weight gain, refeeding methods and composition of the diet which might all be of importance to improve long-term outcome of one of the most chronic psychiatric disorders of adolescence.

  1. GUT MICROBIOTA DYSBIOSIS IS LINKED TO HYPERTENSION

    PubMed Central

    Yang, Tao; Santisteban, Monica M.; Rodriguez, Vermali; Li, Eric; Ahmari, Niousha; Carvajal, Jessica Marulanda; Zadeh, Mojgan; Gong, Minghao; Qi, Yanfei; Zubcevic, Jasenka; Sahay, Bikash; Pepine, Carl J.; Raizada, Mohan K.; Mohamadzadeh, Mansour

    2015-01-01

    Emerging evidence suggests that gut microbiota is critical in the maintenance of physiological homeostasis. The present study was designed to test the hypothesis that dysbiosis in gut microbiota is associated with hypertension since genetic, environmental, and dietary factors profoundly influence both gut microbiota and blood pressure. Bacterial DNA from fecal samples of two rat models of hypertension and a small cohort of patients was used for bacterial genomic analysis. We observed a significant decrease in microbial richness, diversity, and evenness in the spontaneously hypertensive rat, in addition to an increased Firmicutes to Bacteroidetes ratio. These changes were accompanied with decreases in acetate- and butyrate-producing bacteria. Additionally, the microbiota of a small cohort of human hypertension patients was found to follow a similar dysbiotic pattern, as it was less rich and diverse than that of control subjects. Similar changes in gut microbiota were observed in the chronic angiotensin II infusion rat model, most notably decreased microbial richness and an increased Firmicutes to Bacteroidetes ratio. In this model, we evaluated the efficacy of oral minocycline in restoring gut microbiota. In addition to attenuating high blood pressure, minocycline was able to rebalance the dysbiotic hypertension gut microbiota by reducing the Firmicutes to Bacteroidetes ratio. These observations demonstrate that high BP is associated with gut microbiota dysbiosis, both in animal and human hypertension. They suggest that dietary intervention to correct gut microbiota could be an innovative nutritional therapeutic strategy for hypertension. PMID:25870193

  2. A Survey of Modulation of Gut Microbiota by Dietary Polyphenols

    PubMed Central

    Dueñas, Montserrat; Muñoz-González, Irene; Cueva, Carolina; Jiménez-Girón, Ana; Sánchez-Patán, Fernando; Santos-Buelga, Celestino; Moreno-Arribas, M. Victoria; Bartolomé, Begoña

    2015-01-01

    Dietary polyphenols present in a broad range of plant foods have been related to beneficial health effects. This review aims to update the current information about the modulation of the gut microbiota by dietary phenolic compounds, from a perspective based on the experimental approaches used. After referring to general aspects of gut microbiota and dietary polyphenols, studies related to this topic are presented according to their experimental design: batch culture fermentations, gastrointestinal simulators, animal model studies, and human intervention studies. In general, studies evidence that dietary polyphenols may contribute to the maintenance of intestinal health by preserving the gut microbial balance through the stimulation of the growth of beneficial bacteria (i.e., lactobacilli and bifidobacteria) and the inhibition of pathogenic bacteria, exerting prebiotic-like effects. Combination of in vitro and in vivo models could help to understand the underlying mechanisms in the polyphenols-microbiota-host triangle and elucidate the implications of polyphenols on human health. From a technological point of view, supplementation with rich-polyphenolic stuffs (phenolic extracts, phenolic-enriched fractions, etc.) could be an effective option to improve health benefits of functional foods such as the case of dairy fermented foods. PMID:25793210

  3. GUT models at current and future hadron colliders and implications to dark matter searches

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Lindner, Manfred; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.

    2017-08-01

    Grand Unified Theories (GUT) offer an elegant and unified description of electromagnetic, weak and strong interactions at high energy scales. A phenomenological and exciting possibility to grasp GUT is to search for TeV scale observables arising from Abelian groups embedded in GUT constructions. That said, we use dilepton data (ee and μμ) that has been proven to be a golden channel for a wide variety of new phenomena expected in theories beyond the Standard Model to probe GUT-inspired models. Since heavy dilepton resonances feature high signal selection efficiencies and relatively well-understood backgrounds, stringent and reliable bounds can be placed on the mass of the Z‧ gauge boson arising in such theories. In this work, we obtain 95% C.L. limits on the Z‧ mass for several GUT-models using current and future proton-proton colliders with √{ s} = 13 TeV , 33 TeV ,and 100 TeV, and put them into perspective with dark matter searches in light of the next generation of direct detection experiments.

  4. Modelling survival: exposure pattern, species sensitivity and uncertainty

    PubMed Central

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I.; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B.; Van den Brink, Paul J.; Veltman, Karin; Vogel, Sören; Zimmer, Elke I.; Preuss, Thomas G.

    2016-01-01

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans. PMID:27381500

  5. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    PubMed

    Alhasson, Firas; Das, Suvarthi; Seth, Ratanesh; Dattaroy, Diptadip; Chandrashekaran, Varun; Ryan, Caitlin N; Chan, Luisa S; Testerman, Traci; Burch, James; Hofseth, Lorne J; Horner, Ronnie; Nagarkatti, Mitzi; Nagarkatti, Prakash; Lasley, Stephen M; Chatterjee, Saurabh

    2017-01-01

    Many of the symptoms of Gulf War Illness (GWI) that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4) activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  6. Increased cadmium excretion in metal-adapted populations of the midge Chironomus riparius (Diptera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Postma, J.F.; Nugteren, P. van; Buckert-De Jong, M.B.

    1996-03-01

    Cadmium kinetics were studied in cadmium-adapted and nonadapted field populations of the midge Chironomus riparius. Accumulation and elimination experiments were carried out using first-generation laboratory-reared animals. Differences between populations were, therefore, assumed to have a genetic basis. Larvae were dissected to analyze the guts and the remainder of the larvae separately. First-order one-compartment models were not always successful in describing accumulation processes, probably due to acclimation. No interpopulation differences were observed in larval development based on dry weights, whereas some differences existed based on pupation rate. In most cases more than 80% of the total amount of cadmium was foundmore » in the guts of all populations. Larvae from cadmium-adapted populations showed a decreased net accumulation rate as well as higher equilibrium values (15--20%) compared to nonadapted populations. In addition, cadmium excretion efficiency was increased for cadmium-adapted larvae, which was due to an increased elimination rate from the guts. It was concluded that exposure to high cadmium concentrations in the field resulted in populations of C. riparius with an increased storage capability and an increased excretion efficiency, especially regarding the guts.« less

  7. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota.

    PubMed

    Xiong, Jinbo; Yu, Weina; Dai, Wenfang; Zhang, Jinjie; Qiu, Qiongfen; Ou, Changrong

    2018-04-01

    One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.

  8. Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth.

    PubMed

    Grier, Alex; Qiu, Xing; Bandyopadhyay, Sanjukta; Holden-Wiltse, Jeanne; Kessler, Haeja A; Gill, Ann L; Hamilton, Brooke; Huyck, Heidie; Misra, Sara; Mariani, Thomas J; Ryan, Rita M; Scholer, Lori; Scheible, Kristin M; Lee, Yi-Horng; Caserta, Mary T; Pryhuber, Gloria S; Gill, Steven R

    2017-12-11

    Identification of factors that influence the neonatal gut microbiome is urgently needed to guide clinical practices that support growth of healthy preterm infants. Here, we examined the influence of nutrition and common practices on the gut microbiota and growth in a cohort of preterm infants. With weekly gut microbiota samples spanning postmenstrual age (PMA) 24 to 46 weeks, we developed two models to test associations between the microbiota, nutrition and growth: a categorical model with three successive microbiota phases (P1, P2, and P3) and a model with two periods (early and late PMA) defined by microbiota composition and PMA, respectively. The more significant associations with phase led us to use a phase-based framework for the majority of our analyses. Phase transitions were characterized by rapid shifts in the microbiota, with transition out of P1 occurring nearly simultaneously with the change from meconium to normal stool. The rate of phase progression was positively associated with gestational age at birth, and delayed transition to a P3 microbiota was associated with growth failure. We found distinct bacterial metabolic functions in P1-3 and significant associations between nutrition, microbiota phase, and infant growth. The phase-dependent impact of nutrition on infant growth along with phase-specific metabolic functions suggests a pioneering potential for improving growth outcomes by tailoring nutrient intake to microbiota phase.

  9. Dark Matter from SUGRA GUTs: mSUGRA, NUSUGRA and Yukawa-unified SUGRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Howard

    2009-09-08

    Gravity-mediated SUSY breaking models with R-parity conservation give rise to dark matter in the universe. I review neutralino dark matter in the minimal supergravity model (mSUGRA), models with non-universal soft SUSY breaking terms (NUSUGRA) which yield a well-tempered neutralino, and models with unified Yukawa couplings at the GUT scale (as may occur in an SO(10) SUSY GUT theory). These latter models have difficulty accomodating neutralino dark matter, but work very well if the dark matter particles are axions and axinos.

  10. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    PubMed

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  11. Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?

    USGS Publications Warehouse

    Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew

    2011-01-01

    Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.

  12. Fit reduced GUTS models online: From theory to practice.

    PubMed

    Baudrot, Virgile; Veber, Philippe; Gence, Guillaume; Charles, Sandrine

    2018-05-20

    Mechanistic modeling approaches, such as the toxicokinetic-toxicodynamic (TKTD) framework, are promoted by international institutions such as the European Food Safety Authority and the Organization for Economic Cooperation and Development to assess the environmental risk of chemical products generated by human activities. TKTD models can encompass a large set of mechanisms describing the kinetics of compounds inside organisms (e.g., uptake and elimination) and their effect at the level of individuals (e.g., damage accrual, recovery, and death mechanism). Compared to classical dose-response models, TKTD approaches have many advantages, including accounting for temporal aspects of exposure and toxicity, considering data points all along the experiment and not only at the end, and making predictions for untested situations as realistic exposure scenarios. Among TKTD models, the general unified threshold model of survival (GUTS) is within the most recent and innovative framework but is still underused in practice, especially by risk assessors, because specialist programming and statistical skills are necessary to run it. Making GUTS models easier to use through a new module freely available from the web platform MOSAIC (standing for MOdeling and StAtistical tools for ecotoxIClogy) should promote GUTS operability in support of the daily work of environmental risk assessors. This paper presents the main features of MOSAIC_GUTS: uploading of the experimental data, GUTS fitting analysis, and LCx estimates with their uncertainty. These features will be exemplified from literature data. Integr Environ Assess Manag 2018;00:000-000. © 2018 SETAC. © 2018 SETAC.

  13. CoMiniGut—a small volume in vitro colon model for the screening of gut microbial fermentation processes

    PubMed Central

    Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of Proteobacteria. The subsequent study on the influence of HMOs on two infant GM communities, revealed the strongest bifidogenic effect for 3′SL for both infants. Inter-individual differences of infant GM, especially with regards to the occurrence of Bacteroidetes and differences in bifidobacterial species composition, correlated with varying degrees of HMO utilization foremost of 6′SL and 3′FL, indicating species and strain related differences in HMO utilization which was also reflected in SCFAs concentrations, with 3′SL and 6′SL resulting in significantly higher butyrate production compared to 3′FL. In conclusion, the increased throughput of CoMiniGut strengthens experimental conclusions through elimination of statistical interferences originating from low number of repetitions. Its small working volume moreover allows the investigation of rare and expensive bioactives. PMID:29372119

  14. Colonization and Gut Flora Modulation of Lactobacillus kefiranofaciens ZW3 in the Intestinal Tract of Mice.

    PubMed

    Xing, Zhuqing; Tang, Wei; Yang, Ying; Geng, Weitao; Rehman, Rizwan Ur; Wang, Yanping

    2018-06-01

    This study evaluated the distribution and colonization of Lactobacillus kefiranofaciens ZW3 and determined its capacity to modulate the gut microbiota in an animal model. Based on (1) fluorescence imaging, (2) flow cytometry, and (3) qPCR, we found that ZW3 successfully adhered to mouse mucous tissue and colonized the mouse ileum. Gut microbiota profiling was performed using high-throughput sequencing. After continuous intubation with ZW3 for 1 week, the proportion of Lachnospiraceae, a family of butyric acid-producing bacteria, increased at day 7 (11.9% at day 0 versus 18.4% at day 7). In addition, Lactobacillaceae showed an increasing trend (4% at day 0 versus 13% at day 7) that was accompanied by an observable decline in the Rikenellaceae family (1.58% at day 7, 0.14% at day 14, and 0.75% at day 21) in the tested mouse. The results demonstrate that ZW3 could successfully adhere to and colonize the mouse gut throughout the course of the experiment. The profiling analysis of the gut microbiota also provided evidence supporting the function of ZW3 in improving the intestinal flora of mice.

  15. Challenges in simulating the human gut for understanding the role of the microbiota in obesity.

    PubMed

    Aguirre, M; Venema, K

    2017-02-07

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.

  16. Suppression of inflammation by helminths: a role for the gut microbiota?

    PubMed

    Giacomin, Paul; Croese, John; Krause, Lutz; Loukas, Alex; Cantacessi, Cinzia

    2015-08-19

    Multiple recent investigations have highlighted the promise of helminth-based therapies for the treatment of inflammatory disorders of the intestinal tract of humans, including inflammatory bowel disease and coeliac disease. However, the mechanisms by which helminths regulate immune responses, leading to the amelioration of symptoms of chronic inflammation are unknown. Given the pivotal roles of the intestinal microbiota in the pathogenesis of these disorders, it has been hypothesized that helminth-induced modifications of the gut commensal flora may be responsible for the therapeutic properties of gastrointestinal parasites. In this article, we review recent progress in the elucidation of host-parasite-microbiota interactions in both animal models of chronic inflammation and humans, and provide a working hypothesis of the role of the gut microbiota in helminth-induced suppression of inflammation.

  17. Suppression of inflammation by helminths: a role for the gut microbiota?

    PubMed Central

    Giacomin, Paul; Croese, John; Krause, Lutz; Loukas, Alex; Cantacessi, Cinzia

    2015-01-01

    Multiple recent investigations have highlighted the promise of helminth-based therapies for the treatment of inflammatory disorders of the intestinal tract of humans, including inflammatory bowel disease and coeliac disease. However, the mechanisms by which helminths regulate immune responses, leading to the amelioration of symptoms of chronic inflammation are unknown. Given the pivotal roles of the intestinal microbiota in the pathogenesis of these disorders, it has been hypothesized that helminth-induced modifications of the gut commensal flora may be responsible for the therapeutic properties of gastrointestinal parasites. In this article, we review recent progress in the elucidation of host–parasite–microbiota interactions in both animal models of chronic inflammation and humans, and provide a working hypothesis of the role of the gut microbiota in helminth-induced suppression of inflammation. PMID:26150662

  18. Calculational Schemes in GUTs

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas

    The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References

  19. Structural changes of gut microbiota in a rat non-alcoholic fatty liver disease model treated with a Chinese herbal formula.

    PubMed

    Yin, Xiaochen; Peng, Jinghua; Zhao, Liping; Yu, Yunpeng; Zhang, Xu; Liu, Ping; Feng, Qin; Hu, Yiyang; Pang, Xiaoyan

    2013-05-01

    Accumulating evidence indicates that disruption of the gut microbiota by a high-fat diet (HFD) may play a pivotal role in the progression of metabolic disorders such as non-alcoholic fatty liver disease (NAFLD). In this study, the structural changes of gut microbiota were analyzed in an HFD-induced NAFLD rat model during treatment with an ancient Chinese herbal formula (CHF) used in clinical practice -Qushi Huayu Fang. CHF treatment significantly reduced body weight, alleviated hepatic steatosis, and decreased the content of triglycerides and free fatty acids in the livers of the rats. Gut microbiota of treated and control rats were profiled with polymerase chain reaction-denaturing gradient gel electrophoresis and bar-coded pyrosequencing of the V3 region of 16S rRNA genes. Both analyses indicated that the CHF-treated group harbored significantly different gut microbiota from that of model rats. Partial least squares discriminant analysis and taxonomy-based analysis were further employed to identify key phylotypes responding to HFD and CHF treatment. Most notably, the genera Escherichia/Shigella, containing opportunistic pathogens, were significantly enriched in HFD-fed rats compared to controls fed normal chow (P<0.05) but they decreased to control levels after CHF treatment. Collinsella, a genus with short chain fatty acid producers, was significantly elevated in CHF-treated rats compared to HFD-fed rats (P<0.05). The results revealed that the bacterial profiles of HFD-induced rats could be modulated by the CHF. Elucidation of these differences in microbiota composition provided a basis for further understanding the pharmacological mechanism of the CHF. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure

    PubMed Central

    Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M.; Richards, Elaine M.; Pepine, Carl J.; Raizada, Mohan K.

    2018-01-01

    Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut–epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R2 = 0.5301, P<0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R2 = 0.4608, P<0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. PMID:29507058

  1. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD

    PubMed Central

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N.; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi

    2015-01-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis–mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. PMID:25525179

  2. Innate immunity and gut-microbe mutualism in Drosophila.

    PubMed

    Ryu, Ji-Hwan; Ha, Eun-Mi; Lee, Won-Jae

    2010-04-01

    Metazoan guts face a wide variety of microorganisms upon exposure to the environment, including beneficial symbionts, non-symbionts, food-borne microbes and life-threatening pathogens. Recent evidence has shown that the innate immunity of gut epithelia, such as anti-microbial peptide- and reactive oxygen species-based immune systems, actively participate in gut-microbe homeostasis by shaping the commensal community while efficiently eliminating unwanted bacteria. Therefore, elucidation of the regulatory mechanism by which gut innate immunity occurs at the molecular level will provide a novel perspective of gut-microbe mutualisms as well as of gut diseases caused by alterations in the innate immunity.

  3. Diet and the anti-inflammatory effect of heat shock proteins.

    PubMed

    van Eden, Willem

    2015-01-01

    Stress proteins or heat shock proteins (HSPs) have a critical role in gut health and immune regulation. They have a functional significance as molecular chaperones for cell skeleton proteins and intercellular tight junction proteins. Herewith HSPs ensure gut epithelium integrity and effective intestinal barrier function. In addition, stress protein molecules such as HSP70 are a target for anti-inflammatory regulatory T cells (Tregs). Inflamed sites in the body feature inflammatory-stress induced enhanced levels of HSPs, which enable the immune system to target Tregs selectively to sites of inflammation. We have shown in experimental models of inflammatory diseases that both microbial HSP and endogenous (self) HSP molecules are capable of inducing the expansion of disease suppressive Tregs. Since the gut associated lymphoid tissue (GALT) is well poised towards the induction of regulation and tolerance, we set out to promote HSP expression and induction of Tregs in the gut lymphoid tissues by the oral administration of HSP co-inducing compounds. For the identification, selection and characterization of such compounds we have developed assay systems, such as reporter cell-lines, HSP specific T cell hybridomas and a transgenic mouse model (expression a HSP specific T cell receptor). The introduction of HSP coinducers into the diet constitutes a novel food based preventive or possibly even therapeutic approach in inflammatory diseases.

  4. Gut microbiomes and their metabolites shape human and animal health.

    PubMed

    Park, Woojun

    2018-03-01

    The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.

  5. Maternal group B Streptococcus and the infant gut microbiota.

    PubMed

    Cassidy-Bushrow, A E; Sitarik, A; Levin, A M; Lynch, S V; Havstad, S; Ownby, D R; Johnson, C C; Wegienka, G

    2016-02-01

    Early patterns of gut colonization may predispose children to adult disease. Exposures in utero and during delivery are associated with the infant gut microbiome. Although ~35% of women carry group B strep (GBS; Streptococcus agalactiae) during pregnancy, it is unknown if GBS presence influences the infant gut microbiome. As part of a population-based, general risk birth cohort, stool specimens were collected from infant's diapers at research visits conducted at ~1 and 6 months of age. Using the Illumina MiSeq (San Diego, CA) platform, the V4 region of the bacterial 16S rRNA gene was sequenced. Infant gut bacterial community compositional differences by maternal GBS status were evaluated using permutational multivariate analysis of variance. Individual operational taxonomic units (OTUs) were tested using a zero-inflated negative binomial model. Data on maternal GBS and infant gut microbiota from either 1 (n=112) or 6-month-old stool (n=150) specimens was available on 262 maternal-child pairs. Eighty women (30.5%) were GBS+, of who 58 (72.5%) were given intrapartum antibiotics. After adjusting for maternal race, prenatal antifungal use and intrapartum antibiotics, maternal GBS status was statistically significantly associated with gut bacterial composition in the 6 month visit specimen (Canberra R 2=0.008, P=0.008; Unweighted UniFrac R 2=0.010, P=0.011). Individual OTU tests revealed that infants of GBS+ mothers were significantly enriched for specific members of the Clostridiaceae, Ruminococcoceae, and Enterococcaceae in the 6 month specimens compared with infants of GBS- mothers. Whether these taxonomic differences in infant gut microbiota at 6 months lead to differential predisposition for adult disease requires additional study.

  6. Fecal Microbiota-based Therapeutics for Recurrent Clostridium difficile Infection, Ulcerative Colitis and Obesity.

    PubMed

    Carlucci, Christian; Petrof, Elaine O; Allen-Vercoe, Emma

    2016-11-01

    The human gut microbiome is a complex ecosystem of fundamental importance to human health. Our increased understanding of gut microbial composition and functional interactions in health and disease states has spurred research efforts examining the gut microbiome as a valuable target for therapeutic intervention. This review provides updated insight into the state of the gut microbiome in recurrent Clostridium difficile infection (CDI), ulcerative colitis (UC), and obesity while addressing the rationale for the modulation of the gut microbiome using fecal microbiota transplant (FMT)-based therapies. Current microbiome-based therapeutics in pre-clinical or clinical development are discussed. We end by putting this within the context of the current regulatory framework surrounding FMT and related therapies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Variable responses of human and non-human primate gut microbiomes to a Western diet.

    PubMed

    Amato, Katherine R; Yeoman, Carl J; Cerda, Gabriela; Schmitt, Christopher A; Cramer, Jennifer Danzy; Miller, Margret E Berg; Gomez, Andres; Turner, Trudy R; Wilson, Brenda A; Stumpf, Rebecca M; Nelson, Karen E; White, Bryan A; Knight, Rob; Leigh, Steven R

    2015-11-16

    The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.

  8. Estimation of the bioaccessibility and bioavailability of Fe, Mn, Cu, and Zn in Chinese vegetables using the in vitro digestion/Caco-2 cell model: the influence of gut microbiota.

    PubMed

    Cai, Xiaolin; Chen, Xiaochen; Yin, Naiyi; Du, Huili; Sun, Guoxin; Wang, Lihong; Xu, Yudong; Chen, Yuqing; Cui, Yanshan

    2017-12-13

    The influence of the human gut microbiota on the bioaccessibility and bioavailability of trace elements in vegetables has barely been studied. An in vitro digestion model combining the physiologically based extraction test (PBET) and the Simulator of Human Intestinal Microbial Ecosystem (SHIME) was applied. Results showed that the gut microbiota increased the bioaccessibility of iron (Fe) in ten test vegetables by 1.3-1.8 times, but reduced the bioaccessibility of manganese (Mn), copper (Cu), and zinc (Zn) in vegetables in the colon phase by 3.7% to 89.6%, 24.8% to 100.0%, and 59.9% to 100.0%, respectively. Using the Caco-2 cell model to simulate the human absorption process, the bioavailable contents and the bioavailability of the trace elements were further determined. Swamp cabbage was the best source of Fe and Cu; spinach and lettuce provided the highest amounts of bioavailable Mn and Zn, respectively. Referring to the daily reference intakes of trace elements, the obtained data provide a scientific basis for both reasonable ingestion of vegetables in diets and diversification of diets.

  9. Indigo Naturalis Ameliorates Oxazolone-Induced Dermatitis but Aggravates Colitis by Changing the Composition of Gut Microflora.

    PubMed

    Adachi, Soichiro; Hoshi, Namiko; Inoue, Jun; Yasutomi, Eiichiro; Otsuka, Takafumi; Dhakhwa, Ramesh; Wang, Zi; Koo, Yuna; Takamatsu, Toshihiro; Matsumura, Yuriko; Yamairi, Haruka; Watanabe, Daisuke; Ooi, Makoto; Tanahashi, Toshihito; Nishiumi, Shin; Yoshida, Masaru; Azuma, Takeshi

    2017-01-01

    Indigo naturalis (IND) is an herbal medicine that has been used as an anti-inflammatory agent to treat diseases including dermatitis and inflammatory bowel disease in China. However, the mechanism by which IND exerts its immunomodulatory effect is not well understood. A murine model of dermatitis and inflammatory bowel disease, both induced by oxazolone (OXA), was treated with IND. The severity of dermatitis was evaluated based on ear thickness measurements and histological scoring. The severity of colitis was evaluated by measuring body weight, histological scoring, and endoscopic scoring. The expression of inflammatory cytokines in ear and colon tissue was evaluated using real-time PCR. 16S rRNA DNA sequencing of feces from OXA-induced colitis mice was performed before and after IND treatment. The effects of IND on OXA-induced colitis were also evaluated after depleting the gut flora with antibiotics to test whether alteration of the gut flora by IND influenced the course of intestinal inflammation in this model. IND treatment ameliorated OXA dermatitis with a reduction in IL-4 and eosinophil recruitment. However, OXA colitis was significantly aggravated in spite of a reduction in intestinal IL-13, a pivotal cytokine in the induction of the colitis. It was found that IND dramatically altered the gut flora and IND no longer exacerbated colitis when colitis was induced after gut flora depletion. Our data suggest that IND could modify the inflammatory immune response in multiple ways, either directly (i.e., modification of the allergic immune cell activity) or indirectly (i.e., alteration of commensal compositions). © 2017 S. Karger AG, Basel.

  10. Longer guts and higher food quality increase energy intake in migratory swans.

    PubMed

    van Gils, Jan A; Beekman, Jan H; Coehoorn, Pieter; Corporaal, Els; Dekkers, Ten; Klaassen, Marcel; van Kraaij, Rik; de Leeuw, Rinze; de Vries, Peter P

    2008-11-01

    1. Within the broad field of optimal foraging, it is increasingly acknowledged that animals often face digestive constraints rather than constraints on rates of food collection. This therefore calls for a formalization of how animals could optimize food absorption rates. 2. Here we generate predictions from a simple graphical optimal digestion model for foragers that aim to maximize their (true) metabolizable food intake over total time (i.e. including nonforaging bouts) under a digestive constraint. 3. The model predicts that such foragers should maintain a constant food retention time, even if gut length or food quality changes. For phenotypically flexible foragers, which are able to change the size of their digestive machinery, this means that an increase in gut length should go hand in hand with an increase in gross intake rate. It also means that better quality food should be digested more efficiently. 4. These latter two predictions are tested in a large avian long-distance migrant, the Bewick's swan (Cygnus columbianus bewickii), feeding on grasslands in its Dutch wintering quarters. 5. Throughout winter, free-ranging Bewick's swans, growing a longer gut and experiencing improved food quality, increased their gross intake rate (i.e. bite rate) and showed a higher digestive efficiency. These responses were in accordance with the model and suggest maintenance of a constant food retention time. 6. These changes doubled the birds' absorption rate. Had only food quality changed (and not gut length), then absorption rate would have increased by only 67%; absorption rate would have increased by only 17% had only gut length changed (and not food quality). 7. The prediction that gross intake rate should go up with gut length parallels the mechanism included in some proximate models of foraging that feeding motivation scales inversely to gut fullness. We plea for a tighter integration between ultimate and proximate foraging models.

  11. Studies on Modulation of Gut Microbiota by Wine Polyphenols: From Isolated Cultures to Omic Approaches

    PubMed Central

    Dueñas, Montserrat; Cueva, Carolina; Muñoz-González, Irene; Jiménez-Girón, Ana; Sánchez-Patán, Fernando; Santos-Buelga, Celestino; Moreno-Arribas, M. Victoria; Bartolomé, Begoña

    2015-01-01

    Moderate consumption of wine seems to produce positive health effects derived from the occurrence of bioactive polyphenols. The gut microbiota is involved in the metabolism of phenolic compounds, and these compounds and/or their metabolites may modulate gut microbiota through the stimulation of the growth of beneficial bacteria and the inhibition of pathogenic bacteria. The characterization of bacterial metabolites derived from polyphenols is essential in order to understand their effects, including microbial modulation, and therefore to associate dietary intake with particular health effects. This review aims to summarize the current information about the two-way “wine polyphenols–gut microbiota” interaction, from a perspective based on the experimental and analytical designs used. The availability of advanced methods for monitoring bacterial communities, along with the combination of in vitro and in vivo models, could help to assess the metabolism of polyphenols in the human body and to monitor total bacterial communities, and, therefore, to elucidate the implications of diet on the modulation of microbiota for delivering health benefits. PMID:26785335

  12. Role of the normal gut microbiota.

    PubMed

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  13. Maximal sfermion flavour violation in super-GUTs

    DOE PAGES

    Ellis, John; Olive, Keith A.; Velasco-Sevilla, Liliana

    2016-10-20

    We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses m 0 specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses m 1/2, as is expected in no-scale models, the dominant effects of renormalisation between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to m 1/2 and generation independent. In this case, the input scalar masses m 0 may violate flavour maximally, amore » scenario we call MaxSFV, and there is no supersymmetric flavour problem. As a result, we illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity« less

  14. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut

    PubMed Central

    Reese, Aspen T; Cho, Eugenia H; Klitzman, Bruce; Nichols, Scott P; Wisniewski, Natalie A; Villa, Max M; Durand, Heather K; Jiang, Sharon; Midani, Firas S; Nimmagadda, Sai N; O'Connell, Thomas M; Wright, Justin P; Deshusses, Marc A

    2018-01-01

    How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration. PMID:29916366

  15. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages

    Treesearch

    Archana Vasanthakumar; Jo Handelsman; Patrick D. Schloss; Leah S. Bauer; Kenneth F. Raffa

    2008-01-01

    We characterized gut microbial communities in the emerald ash borer, Agrilus planipennis Fairmaire, an invasive phloem-feeding and wood-boring beetle that has caused extensive mortality to urban and forest ash trees. Analyses included both 16S rRNA gene-based and culture-based approaches. We estimated that the emerald ash borer gut harbors 44, 71,...

  16. In vitro organogenesis of gut-like structures from mouse embryonic stem cells.

    PubMed

    Kuwahara, M; Ogaeri, T; Matsuura, R; Kogo, H; Fujimoto, T; Torihashi, S

    2004-04-01

    Embryonic stem (ES) cells have pluripotency and give rise to many cell types and tissues, including representatives of all three germ layers in the embryo. We have reported previously that mouse ES cells formed contracting gut-like organs from embryoid bodies (EBs). These gut-like structures contracted spontaneously, and had large lumens surrounded by three layers, i.e. epithelium, lamina propria and muscularis. Ganglia were scattered along the periphery, and interstitial cells of Cajal (ICC) were distributed among the smooth muscle cells. In the present study, to determine whether they can be a model of gut organogenesis, we investigated the formation process of the gut-like structures in comparison with embryonic gut development. As a result, we found that the fundamental process of formation in vitro was similar to embryonic gut development in vivo. The result indicates that the gut-like structure is a useful tool not only for developmental study to determine the factors that induce gut organogenesis, but also for studies of enteric neurone and ICC development.

  17. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD.

    PubMed

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi; Abe, Takaaki

    2015-08-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. Copyright © 2015 by the American Society of Nephrology.

  18. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling

    PubMed Central

    Powell, J. Elijah; Steele, Margaret I.; Dietrich, Carsten; Moran, Nancy A.

    2017-01-01

    Social bees harbor a simple and specialized microbiota that is spatially organized into different gut compartments. Recent results on the potential involvement of bee gut communities in pathogen protection and nutritional function have drawn attention to the impact of the microbiota on bee health. However, the contributions of gut microbiota to host physiology have yet to be investigated. Here we show that the gut microbiota promotes weight gain of both whole body and the gut in individual honey bees. This effect is likely mediated by changes in host vitellogenin, insulin signaling, and gustatory response. We found that microbial metabolism markedly reduces gut pH and redox potential through the production of short-chain fatty acids and that the bacteria adjacent to the gut wall form an oxygen gradient within the intestine. The short-chain fatty acid profile contributed by dominant gut species was confirmed in vitro. Furthermore, metabolomic analyses revealed that the gut community has striking impacts on the metabolic profiles of the gut compartments and the hemolymph, suggesting that gut bacteria degrade plant polymers from pollen and that the resulting metabolites contribute to host nutrition. Our results demonstrate how microbial metabolism affects bee growth, hormonal signaling, behavior, and gut physicochemical conditions. These findings indicate that the bee gut microbiota has basic roles similar to those found in some other animals and thus provides a model in studies of host–microbe interactions. PMID:28420790

  19. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease.

    PubMed

    Loomba, Rohit; Seguritan, Victor; Li, Weizhong; Long, Tao; Klitgord, Niels; Bhatt, Archana; Dulai, Parambir Singh; Caussy, Cyrielle; Bettencourt, Richele; Highlander, Sarah K; Jones, Marcus B; Sirlin, Claude B; Schnabl, Bernd; Brinkac, Lauren; Schork, Nicholas; Chen, Chi-Hua; Brenner, David A; Biggs, William; Yooseph, Shibu; Venter, J Craig; Nelson, Karen E

    2017-05-02

    The presence of advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) is the most important predictor of liver mortality. There are limited data on the diagnostic accuracy of gut microbiota-derived signature for predicting the presence of advanced fibrosis. In this prospective study, we characterized the gut microbiome compositions using whole-genome shotgun sequencing of DNA extracted from stool samples. This study included 86 uniquely well-characterized patients with biopsy-proven NAFLD, of which 72 had mild/moderate (stage 0-2 fibrosis) NAFLD, and 14 had advanced fibrosis (stage 3 or 4 fibrosis). We identified a set of 40 features (p < 0.006), which included 37 bacterial species that were used to construct a Random Forest classifier model to distinguish mild/moderate NAFLD from advanced fibrosis. The model had a robust diagnostic accuracy (AUC 0.936) for detecting advanced fibrosis. This study provides preliminary evidence for a fecal-microbiome-derived metagenomic signature to detect advanced fibrosis in NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sneutrino driven GUT inflation in supergravity

    NASA Astrophysics Data System (ADS)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-06-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  1. Superheavy magnetic monopoles and the standard cosmology

    NASA Astrophysics Data System (ADS)

    Turner, M. S.

    1984-10-01

    The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are for particle physics, astrophysics and cosmology. Astrophysical and cosmological considerations are invaluable in the study of the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs. The simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies and about the earliest movements of the Universe. The cosmological consequences of GUT monopoles within the context of the standard hot big bang model are reviewed.

  2. Gut microbiota signatures of longevity.

    PubMed

    Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao

    2016-09-26

    An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Gut Microbiota Contributes to Resistance Against Pneumococcal Pneumonia in Immunodeficient Rag-/- Mice.

    PubMed

    Felix, Krysta M; Jaimez, Ivan A; Nguyen, Thuy-Vi V; Ma, Heqing; Raslan, Walid A; Klinger, Christina N; Doyle, Kristian P; Wu, Hsin-Jung J

    2018-01-01

    Streptococcus pneumoniae causes infection-related mortality worldwide. Immunocompromised individuals, including young children, the elderly, and those with immunodeficiency, are especially vulnerable, yet little is known regarding S. pneumoniae- related pathogenesis and protection in immunocompromised hosts. Recently, strong interest has emerged in the gut microbiota's impact on lung diseases, or the "gut-lung axis." However, the mechanisms of gut microbiota protection against gut-distal lung diseases like pneumonia remain unclear. We investigated the role of the gut commensal, segmented filamentous bacteria (SFB), against pneumococcal pneumonia in immunocompetent and immunocompromised mouse models. For the latter, we chose the Rag -/- model, with adaptive immune deficiency. Immunocompetent adaptive protection against S. pneumoniae infection is based on antibodies against pneumococcal capsular polysaccharides, prototypical T cell independent-II (TI-II) antigens. Although SFB colonization enhanced TI-II antibodies in C57BL/6 mice, our data suggest that SFB did not further protect these immunocompetent animals. Indeed, basal B cell activity in hosts without SFB is sufficient for essential protection against S. pneumoniae . However, in immunocompromised Rag -/- mice, we demonstrate a gut-lung axis of communication, as SFB influenced lung protection by regulating innate immunity. Neutrophil resolution is crucial to recovery, since an unchecked neutrophil response causes severe tissue damage. We found no early neutrophil recruitment differences between hosts with or without SFB; however, we observed a significant drop in lung neutrophils in the resolution phase of S. pneumoniae infection, which corresponded with lower CD47 expression, a molecule that inhibits phagocytosis of apoptotic cells, in SFB-colonized Rag -/- mice. SFB promoted a shift in lung neutrophil phenotype from inflammatory neutrophils expressing high levels of CD18 and low levels of CD62L, to pro-resolution neutrophils with low CD18 and high CD62L. Blocking CD47 in SFB(-) mice increased pro-resolution neutrophils, suggesting CD47 down-regulation may be one neutrophil-modulating mechanism SFB utilizes. The SFB-induced lung neutrophil phenotype remained similar with heat-inactivated S. pneumoniae treatment, indicating these SFB-induced changes in neutrophil phenotype during the resolution phase are not simply secondary to better bacterial clearance in SFB(+) than SFB(-) mice. Together, these data demonstrate that the gut commensal SFB may provide much-needed protection in immunocompromised hosts in part by promoting neutrophil resolution post lung infection.

  4. In vitro fermentation behaviors of fucosylated chondroitin sulfate from Pearsonothuria graeffei by human gut microflora.

    PubMed

    Wei, Chao-Yang; Liao, Ning-Bo; Zhang, Yu; Ye, Xing-Qian; Li, Shan; Hu, Ya-Qin; Liu, Dong-Hong; Linhardt, Robert J; Wang, Xin; Chen, Shi-Guo

    2017-09-01

    A fucosylated chondroitin sulfate (FCS-pg) with highly repeated structure from Pearsonothuria graeffei was subjected to a in vitro fermentation model to investigate its fermentability and effects on human gut microflora. High performance liquid chromatography (HPLC) measurement found FCS-pg can be fermented to short chain fatty acids (SCFAs) by gut microflora from partial human fecal samples. 16S rRNA gene-based polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) profiling and real-time quantitative PCR analysis showed that FCS-pg mainly increased the proportions of Clostridium cluster XI, Bacteriodes prevotella group, Bifidobacterium genus, Clostridium cluster I and Clostridium cluster XIVab, whereas the numbers of the Enterobacteriaceae and Lactobacillus decreased. These results indicated that FCS-pg was mainly fermented by Bacteroides, Bifidobacterium and Clostridium. It increased the content of probiotics bacteria in achieving health-enhancing effect, was slightly different than most sulfated polysaccharides from marine animals. The current study provides useful new information on the mechanism of absorption and functional activity on FCS-pg within the gastrointestinal tract of the human body. Copyright © 2017. Published by Elsevier B.V.

  5. Spatiotemporal microbiota dynamics from quantitative in vitro and in silico models of the gut

    NASA Astrophysics Data System (ADS)

    Hwa, Terence

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth behaviors, which ultimately dictate the gut microbiota composition. Combining measurements of bacterial growth physiology with analysis of published data on human physiology into a quantitative modeling framework, we show how hydrodynamic forces in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla in the gut. Our model quantitatively explains the observed variation of microbiota composition among healthy adults, and predicts colonic water absorption (manifested as stool consistency) and nutrient intake to be two key factors determining this composition. The model further reveals that both factors, which have been identified in recent correlative studies, exert their effects through the same mechanism: changes in colonic pH that differentially affect the growth of different bacteria. Our findings show that a predictive and mechanistic understanding of microbial ecology in the human gut is possible, and offer the hope for the rational design of intervention strategies to actively control the microbiota. This work is supported by the Bill and Melinda Gates Foundation.

  6. In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota

    PubMed Central

    Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947

  7. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota.

    PubMed

    Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.

  8. Application of NMR-based metabolomics to the study of gut microbiota in obesity.

    PubMed

    Calvani, Riccardo; Brasili, Elisa; Praticò, Giulia; Sciubba, Fabio; Roselli, Marianna; Finamore, Alberto; Marini, Federico; Marzetti, Emanuele; Miccheli, Alfredo

    2014-01-01

    Lifestyle habits, host gene repertoire, and alterations in the intestinal microbiota concur to the development of obesity. A great deal of research has recently been focused on investigating the role gut microbiota plays in the pathogenesis of metabolic dysfunctions and increased adiposity. Altered microbiota can affect host physiology through several pathways, including enhanced energy harvest, and perturbations in immunity, metabolic signaling, and inflammatory pathways. A broad range of "omics" technologies is now available to help decipher the interactions between the host and the gut microbiota at detailed genetic and functional levels. In particular, metabolomics--the comprehensive analysis of metabolite composition of biological fluids and tissues--could provide breakthrough insights into the links among the gut microbiota, host genetic repertoire, and diet during the development and progression of obesity. Here, we briefly review the most insightful findings on the involvement of gut microbiota in the pathogenesis of obesity. We also discuss how metabolomic approaches based on nuclear magnetic resonance spectroscopy could help understand the activity of gut microbiota in relation to obesity, and assess the effects of gut microbiota modulation in the treatment of this condition.

  9. Impact of the gut microbiota on rodent models of human disease.

    PubMed

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  10. Role of Gut Microbiota in Liver Disease.

    PubMed

    Brenner, David A; Paik, Yong-Han; Schnabl, Bernd

    2015-01-01

    Many lines of research have established a relationship between the gut microbiome and patients with liver disease. For example, patients with cirrhosis have increased bacteremia, increased blood levels of lipopolysaccharide, and increased intestinal permeability. Patients with cirrhosis have bacterial overgrowth in the small intestine. Selective intestinal decontamination with antibiotics is beneficial for patients with decompensated cirrhosis. In experimental models of chronic liver injury with fibrosis, several toll-like receptors (TLR) are required to make mice sensitive to liver fibrosis. The presumed ligand for the TLRs are bacterial products derived from the gut microbiome, and TLR knockout mice are resistant to liver inflammation and fibrosis. We and others have characterized the association between preclinical models of liver disease in mice with the microbial diversity in their gut microbiome. In each model, including intragastric alcohol, bile duct ligation, chronic carbon tetrachloride (CCl4), administration, and genetic obesity, there is a significant change in the gut microbiome from normal control mice. However, there is not a single clear bacterial strain or pattern that distinguish mice with liver injury from controlled mice. So how can the gut microbiota affect liver disease? We can identify at least 6 changes that would result in liver injury, inflammation, and/or fibrosis. These include: (1) changes in caloric yield of diet; (2) regulation of gut permeability to release bacterial products; (3) modulation of choline metabolism; (4) production of endogenous ethanol; (5) regulation of bile acid metabolism; and (6) regulation in lipid metabolism.

  11. Marked alterations in the distal gut microbiome linked to diet-induced obesity

    PubMed Central

    Turnbaugh, Peter J.; Backhed, Fredrik; Fulton, Lucinda; Gordon, Jeffrey I.

    2013-01-01

    SUMMARY We have investigated the inter-relationship between diet, gut microbial ecology and energy balance using a mouse model of obesity produced by consumption of a prototypic Western diet. Diet-induced obesity (DIO) produced a bloom in a single uncultured clade within the Mollicutes class of the Firmicutes, which became the dominant lineage within the distal gut microbiota. This bloom was diminished by subsequent dietary manipulations that limit weight gain and reduce adiposity. Transplantation of the microbiota from mice with DIO to lean germ-free recipients produced a significantly greater increase in adiposity than transplants from lean donors. Metagenomic sequencing of the gut microbiome, biochemical assays, plus sequencing and in silico metabolic reconstructions of a related human gut-associated Mollicute (E.dolichum), revealed features that may provide a competitive advantage for members of the bloom in the Western diet nutrient milieu, including genes involved in import and metabolism of simple sugars. Our study illustrates how combining comparative metagenomics with gnotobiotic mouse models and specific dietary manipulations can disclose the niches of previously uncharacterized members of the gut microbiota. PMID:18407065

  12. In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko; Kuwahara, Masaki; Kurahashi, Masaaki

    2007-10-01

    Mouse embryonic stem (ES) cells are pluripotent and retain their potential to form cells, tissues and organs originated from three embryonic germ layers. Recently, we developed in vitro organ--gut-like structures--from mouse ES cells. They had basically similar morphological features to a mouse gastrointestinal tract in vivo composed of three distinct layers (i.e., epithelium, connective tissue and musculature). Gut-like structures showed spontaneous contractions derived from pacemaker cells (interstitial cells of Cajal) in the musculature. We also examined their formation process and expression pattern of transcription factors crucial for gut organogenesis such as Id2, Sox17, HNF3beta/Foxa2 and GATA4. We found that they mimic the development of embryonic gut in vivo and showed a similar expression pattern of common transcription factors. They also maintain their developmental potential after transplantation to a renal capsule. Therefore, gut-like structures are suitable for in vitro models of gastrointestinal tracts and their development. In addition, we pointed out several unique features different from gut in vivo that provide useful and advantageous tools to investigate the developmental mechanism of the gastrointestinal tract.

  13. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas.

    PubMed

    Li, Huan; Qu, Jiapeng; Li, Tongtong; Wirth, Stephan; Zhang, Yanming; Zhao, Xinquan; Li, Xiangzhen

    2018-06-03

    The gut microbiota in mammals plays a key role in host metabolism and adaptation. However, relatively little is known regarding to how the animals adapts to extreme environments through regulating gut microbial diversity and function. Here, we investigated the diet, gut microbiota, short-chain fatty acid (SCFA) profiles, and cellulolytic activity from two common pika (Ochotona spp.) species in China, including Plateau pika (Ochotona curzoniae) from the Qinghai-Tibet Plateau and Daurian pika (Ochotona daurica) from the Inner Mongolia Grassland. Despite a partial diet overlap, Plateau pikas harbored lower diet diversity than Daurian pikas. Some bacteria (e.g., Prevotella and Ruminococcus) associated with fiber degradation were enriched in Plateau pikas. They harbored higher gut microbial diversity, total SCFA concentration, and cellulolytic activity than Daurian pikas. Interestingly, cellulolytic activity was positively correlated with the gut microbial diversity and SCFAs. Gut microbial communities and SCFA profiles were segregated structurally between host species. PICRUSt metagenome predictions demonstrated that microbial genes involved in carbohydrate metabolism and energy metabolism were overrepresented in the gut microbiota of Plateau pikas. Our results demonstrate that Plateau pikas harbor a stronger fermenting ability for the plant-based diet than Daurian pikas via gut microbial fermentation. The enhanced ability for utilization of plant-based diets in Plateau pikas may be partly a kind of microbiota adaptation for more energy requirements in cold and hypoxic high-altitude environments.

  14. Molecular Characterization and Meta-Analysis of Gut Microbial Communities Illustrate Enrichment of Prevotella and Megasphaera in Indian Subjects.

    PubMed

    Bhute, Shrikant; Pande, Pranav; Shetty, Sudarshan A; Shelar, Rahul; Mane, Sachin; Kumbhare, Shreyas V; Gawali, Ashwini; Makhani, Hemal; Navandar, Mohit; Dhotre, Dhiraj; Lubree, Himangi; Agarwal, Dhiraj; Patil, Rutuja; Ozarkar, Shantanu; Ghaskadbi, Saroj; Yajnik, Chittaranjan; Juvekar, Sanjay; Makharia, Govind K; Shouche, Yogesh S

    2016-01-01

    The gut microbiome has varied impact on the wellbeing of humans. It is influenced by different factors such as age, dietary habits, socio-economic status, geographic location, and genetic makeup of individuals. For devising microbiome-based therapies, it is crucial to identify population specific features of the gut microbiome. Indian population is one of the most ethnically, culturally, and geographically diverse, but the gut microbiome features remain largely unknown. The present study describes gut microbial communities of healthy Indian subjects and compares it with the microbiota from other populations. Based on large differences in alpha diversity indices, abundance of 11 bacterial phyla and individual specific OTUs, we report inter-individual variations in gut microbial communities of these subjects. While the gut microbiome of Indians is different from that of Americans, it shared high similarity to individuals from the Indian subcontinent i.e., Bangladeshi. Distinctive feature of Indian gut microbiota is the predominance of genus Prevotella and Megasphaera. Further, when compared with other non-human primates, it appears that Indians share more OTUs with omnivorous mammals. Our metagenomic imputation indicates higher potential for glycan biosynthesis and xenobiotic metabolism in these subjects. Our study indicates urgent need of identification of population specific microbiome biomarkers of Indian subpopulations to have more holistic view of the Indian gut microbiome and its health implications.

  15. Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat,Thermobia domestica (Zygentoma, Lepismatidae).

    PubMed

    Treves, D S; Martin, M M

    1994-08-01

    Antibiotic feeding studies were conducted on the firebrat,Thermobia domestica (Zygentoma, Lepismatidae) to determine if the insect's gut cellulases were of insect or microbial origin. Firebrats were fed diets containing either nystatin, metronidazole, streptomycin, tetracycline, or an antibiotic cocktail consisting of all four antibiotics, and then their gut microbial populations and gut cellulase levels were monitored and compared with the gut microbial populations and gut cellulase levels in firebrats feeding on antibiotic-free diets. Each antibiotic significantly reduced the firebrat's gut micro-flora. Nystatin reduced the firebrat's viable gut fungi by 89%. Tetracycline and the antibiotic cocktail reduced the firebrat's viable gut bacteria by 81% and 67%, respectively, and metronidazole, streptomycin, tetracycline, and the antibiotic cocktail reduced the firebrat's total gut flora by 35%, 32%, 55%, and 64%, respectively. Although antibiotics significantly reduced the firebrat's viable and total gut flora, gut cellulase levels in firebrats fed antibiotics were not significantly different from those in firebrats on an antibiotic-free diet. Furthermore, microbial populations in the firebrat's gut decreased significantly over time, even in firebrats feeding on the antibiotic-free diet, without corresponding decreases in gut cellulase levels. Based on this evidence, we conclude that the gut cellulases of firebrats are of insect origin. This conclusion implies that symbiont-independent cellulose digestion is a primitive trait in insects and that symbiont-mediated cellulose digestion is a derived condition.

  16. Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer's Mouse Model.

    PubMed

    Brandscheid, Carolin; Schuck, Florian; Reinhardt, Sven; Schäfer, Karl-Herbert; Pietrzik, Claus U; Grimm, Marcus; Hartmann, Tobias; Schwiertz, Andreas; Endres, Kristina

    2017-01-01

    The regulation of physiological gut functions such as peristalsis or secretion of digestive enzymes by the central nervous system via the Nervus vagus is well known. Recent investigations highlight that pathological conditions of neurological or psychiatric disorders might directly interfere with the autonomous neuronal network of the gut - the enteric nervous system, or even derive from there. By using a murine Alzheimer's disease model, we investigated a potential influence of disease-associated changes on gastrointestinal properties. 5xFAD mice at three different ages were compared to wild type littermates in regard to metabolic parameters and enzymes of the gut by fluorimetric enzyme assay and western blotting. Overexpression of human amyloid-β protein precursor (AβPP) within the gut was assessed by qPCR and IHC; fecal microbiome analysis was conducted by 16SrRNA quantitation of selected phyla and species. While general composition of fecal samples, locomotion, and food consumption of male 5xFAD animals were not changed, we observed a reduced body weight occurring at early pathological stages. Human AβPP was not only expressed within the brain of these mice but also in gut tissue. Analysis of fecal proteins revealed a reduced trypsin amount in the 5xFAD model mice as compared to the wild type. In addition, we observed changes in fecal microbiota composition along with age. We therefore suggest that the presence of the mutated transgenes (AβPP and PS1), which are per se the basis for the genetic form of Alzheimer's disease in humans, directly interferes with gut function as shown here for the disease model mice.

  17. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes.

    PubMed

    Clark, Allison; Mach, Núria

    2016-01-01

    Fatigue, mood disturbances, under performance and gastrointestinal distress are common among athletes during training and competition. The psychosocial and physical demands during intense exercise can initiate a stress response activating the sympathetic-adrenomedullary and hypothalamus-pituitary-adrenal (HPA) axes, resulting in the release of stress and catabolic hormones, inflammatory cytokines and microbial molecules. The gut is home to trillions of microorganisms that have fundamental roles in many aspects of human biology, including metabolism, endocrine, neuronal and immune function. The gut microbiome and its influence on host behavior, intestinal barrier and immune function are believed to be a critical aspect of the brain-gut axis. Recent evidence in murine models shows that there is a high correlation between physical and emotional stress during exercise and changes in gastrointestinal microbiota composition. For instance, induced exercise-stress decreased cecal levels of Turicibacter spp and increased Ruminococcus gnavus, which have well defined roles in intestinal mucus degradation and immune function. Diet is known to dramatically modulate the composition of the gut microbiota. Due to the considerable complexity of stress responses in elite athletes (from leaky gut to increased catabolism and depression), defining standard diet regimes is difficult. However, some preliminary experimental data obtained from studies using probiotics and prebiotics studies show some interesting results, indicating that the microbiota acts like an endocrine organ (e.g. secreting serotonin, dopamine or other neurotransmitters) and may control the HPA axis in athletes. What is troubling is that dietary recommendations for elite athletes are primarily based on a low consumption of plant polysaccharides, which is associated with reduced microbiota diversity and functionality (e.g. less synthesis of byproducts such as short chain fatty acids and neurotransmitters). As more elite athletes suffer from psychological and gastrointestinal conditions that can be linked to the gut, targeting the microbiota therapeutically may need to be incorporated in athletes' diets that take into consideration dietary fiber as well as microbial taxa not currently present in athlete's gut.

  18. Persistent Gut Microbiota Immaturity in Malnourished Bangladeshi Children

    PubMed Central

    Subramanian, Sathish; Huq, Sayeeda; Yatsunenko, Tanya; Haque, Rashidul; Mahfuz, Mustafa; Alam, Mohammed A.; Benezra, Amber; DeStefano, Joseph; Meier, Martin F.; Muegge, Brian D.; Barratt, Michael J.; VanArendonk, Laura G.; Zhang, Qunyuan; Province, Michael A.; Petri, William A.; Ahmed, Tahmeed; Gordon, Jeffrey I.

    2014-01-01

    Therapeutic food interventions have reduced mortality in children with severe acute malnutrition (SAM) but incomplete restoration of healthy growth remains a major problem1,2. The relationships between the type of nutritional intervention, the gut microbiota, and therapeutic responses are unclear. In the current study, bacterial species whose proportional representation define a healthy gut microbiota as it assembles during the first two postnatal years were identified by applying a machine-learning-based approach to 16S rRNA datasets generated from monthly fecal samples obtained from a birth-cohort of children, living in an urban slum of Dhaka, Bangladesh, who exhibited consistently healthy growth. These age-discriminatory bacterial species were incorporated into a model that computes a ‘relative microbiota maturity index’ and ‘microbiota-for-age Z-score’ that compare development (defined here as maturation) of a child’s fecal microbiota relative to healthy children of similar chronologic age. The model was applied to twins and triplets (to test for associations of these indices with genetic and environmental factors including diarrhea), children with SAM enrolled in a randomized trial of two food interventions, and children with moderate acute malnutrition. Our results indicate that SAM is associated with significant relative microbiota immaturity that is only partially ameliorated following two widely used nutritional interventions. Immaturity is also evident in less severe forms of malnutrition and correlates with anthropometric measurements. Microbiota maturity indices provide a microbial measure of human postnatal development, a way of classifying malnourished states, and a parameter for judging therapeutic efficacy. More prolonged interventions with existing or new therapeutic foods and/or addition of gut microbes may be needed to achieve enduring repair of gut microbiota immaturity in childhood malnutrition and improve clinical outcomes. PMID:24896187

  19. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection.

    PubMed

    Crowther, Grace S; Baines, Simon D; Todhunter, Sharie L; Freeman, Jane; Chilton, Caroline H; Wilcox, Mark H

    2013-01-01

    First-line treatment options for Clostridium difficile infection (CDI) are limited. NVB302 is a novel type B lantibiotic under evaluation for the treatment of CDI. We compared the responses to NVB302 and vancomycin when used to treat simulated CDI in an in vitro gut model. We used ceftriaxone to elicit simulated CDI in an in vitro gut model primed with human faeces. Vancomycin and NVB302 were instilled into separate gut models and the indigenous gut microbiota and C. difficile total viable counts, spores and toxin levels were monitored throughout. Ceftriaxone instillation promoted C. difficile germination and high-level toxin production. Commencement of NVB302 and vancomycin instillation reduced C. difficile total viable counts rapidly with only C. difficile spores remaining within 3 and 4 days, respectively. Cytotoxin was reduced to undetectable levels 5 and 7 days after vancomycin and NVB302 instillation commenced in vessel 2 and 3, respectively, and remained undetectable for the remainder of the experiments. C. difficile spores were unaffected by the presence of vancomycin or NVB302. NVB302 treatment was associated with faster resolution of Bacteroides fragilis group. Both NVB302 and vancomycin were effective in treating simulated CDI in an in vitro gut model. C. difficile spore recrudescence was not observed following successful treatment with either NVB302 or vancomycin. NVB302 displayed non-inferiority to vancomycin in the treatment of simulated CDI, and had less deleterious effects against B. fragilis group. NVB302 warrants further clinical investigation as a potentially novel antimicrobial agent for the treatment of CDI.

  20. Dietary Factors Modulate Colonic Tumorigenesis Through the Interaction of Gut Microbiota and Host Chloride Channels.

    PubMed

    Zhang, Yong; Kang, Chao; Wang, Xiao-Lan; Zhou, Min; Chen, Meng-Ting; Zhu, Xiao-Hui; Liu, Kai; Wang, Bin; Zhang, Qian-Yong; Zhu, Jun-Dong; Mi, Man-Tian

    2018-03-01

    In recent decades, the association among diet, gut microbiota, and the risk of colorectal cancer (CRC) has been established. Gut microbiota and associated metabolites, such as bile acids and butyrate, are now known to play a key role in CRC development. The aim of this study is to identify that the progression to CRC is influenced by cholic acid, sodium butyrate, a high-fat diet, or different dose of dihydromyricetin (DMY) interacted with gut microbiota. An AOM/DSS (azoxymethan/dextran sodium sulfate) model is established to study the gut microbiota compsition before and after tumor formation during colitis-induced tumorigenesis. All above dietary factors profoundly influence the composition of gut microbiota and host colonic tumorigenesis. In addition, mice with DMY-modified initial microbiota display different degrees of chemically induced tumorigenesis. Mechanism analysis reveals that gut microbiota-associated chloride channels participated in colon tumorigenesis. Gut microbiota changes occur in the hyperproliferative stage before tumor formation. Gut microbiota and host chloride channels, both of which are regulated by dietary factors, are associated with CRC development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism.

    PubMed

    Hoek, Milan J A van; Merks, Roeland M H

    2017-05-16

    The human gut contains approximately 10 14 bacteria, belonging to hundreds of different species. Together, these microbial species form a complex food web that can break down nutrient sources that our own digestive enzymes cannot handle, including complex polysaccharides, producing short chain fatty acids and additional metabolites, e.g., vitamin K. Microbial diversity is important for colonic health: Changes in the composition of the microbiota have been associated with inflammatory bowel disease, diabetes, obesity and Crohn's disease, and make the microbiota more vulnerable to infestation by harmful species, e.g., Clostridium difficile. To get a grip on the controlling factors of microbial diversity in the gut, we here propose a multi-scale, spatiotemporal dynamic flux-balance analysis model to study the emergence of metabolic diversity in a spatial gut-like, tubular environment. The model features genome-scale metabolic models (GEM) of microbial populations, resource sharing via extracellular metabolites, and spatial population dynamics and evolution. In this model, cross-feeding interactions emerge readily, despite the species' ability to metabolize sugars autonomously. Interestingly, the community requires cross-feeding for producing a realistic set of short-chain fatty acids from an input of glucose, If we let the composition of the microbial subpopulations change during invasion of adjacent space, a complex and stratified microbiota evolves, with subspecies specializing on cross-feeding interactions via a mechanism of compensated trait loss. The microbial diversity and stratification collapse if the flux through the gut is enhanced to mimic diarrhea. In conclusion, this in silico model is a helpful tool in systems biology to predict and explain the controlling factors of microbial diversity in the gut. It can be extended to include, e.g., complex nutrient sources, and host-microbiota interactions via the intestinal wall.

  2. Gut microbiota and metabolic syndrome.

    PubMed

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  3. Gut microbiota and metabolic syndrome

    PubMed Central

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-01-01

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use. PMID:25473159

  4. Superbumps

    DOE PAGES

    Bai, Yang; Berger, Joshua

    2016-06-27

    For a wide range of supersymmetric models, there is a chiral superfield whose scalar and pseudo-scalar have approximately degenerate masses and couplings to Standard Model particles. At colliders, they may show up as “superbumps”: a pair of resonances with similar masses and production cross-sections. Observing the superbumps may provide evidence of supersymmetry even without seeing superpartners with a different spin. We present two models which realize the superbump scenario. The first one contains an elementary superfield, 24, under SU(5) GUT, while the second one is based on the supersymmetric QCD model with N f = N c + 1 andmore » identifying SU(N f = 5) as SU(5) GUT. Both models have rich phenomenology including nearly mass-degenerate scalar and pseudo-scalar color octets that appear as resonances of two gluons or one gluon plus one photon. As a result, we also show that the recent 750 GeV diphoton excess at the LHC could be the first hint of a superbump signature.« less

  5. Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide.

    PubMed

    Hwang, Nakwon; Eom, Taekil; Gupta, Sachin K; Jeong, Seong-Yeop; Jeong, Do-Youn; Kim, Yong Sung; Lee, Ji-Hoon; Sadowsky, Michael J; Unno, Tatsuya

    2017-11-28

    Unbalanced dietary habits and gut dysmotility are causative factors in metabolic and functional gut disorders, including obesity, diabetes, and constipation. Reduction in luminal butyrate synthesis is known to be associated with gut dysbioses, and studies have suggested that restoring butyrate formation in the colon may improve gut health. In contrast, shifts in different types of gut microbiota may inhibit luminal butyrate synthesis, requiring different treatments to restore colonic bacterial butyrate synthesis. We investigated the influence of high-fat diets (HFD) and low-fiber diets (LFD), and loperamide (LPM) administration, on key bacteria and genes involved in reduction of butyrate synthesis in mice. MiSeq-based microbiota analysis and HiSeq-based differential gene analysis indicated that different types of bacteria and genes were involved in butyrate metabolism in each treatment. Dietary modulation depleted butyrate kinase and phosphate butyryl transferase by decreasing members of the Bacteroidales and Parabacteroides . The HFD also depleted genes involved in succinate synthesis by decreasing Lactobacillus . The LFD and LPM treatments depleted genes involved in crotonoyl-CoA synthesis by decreasing Roseburia and Oscilllibacter . Taken together, our results suggest that different types of bacteria and genes were involved in gut dysbiosis, and that selected treatments may be needed depending on the cause of gut dysfunction.

  6. Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder.

    PubMed

    Needham, Brittany D; Tang, Weiyi; Wu, Wei-Li

    2018-05-01

    Social impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior. In a top-down approach, researchers have attempted to correlate behavioral abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet (MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social behavior. The combination of both approaches will hopefully pinpoint specific bacterial communities that control host social behavior. Further discussion of how brain development and circuitry is impacted by depletion of gut microbiota is also included. The converging evidence strongly suggests that gut microbes affect host social behavior through the alteration of brain neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any bidirectional communication between the gut and brain and provide alternative therapeutic targets for ASD. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 474-499, 2018. © 2018 Wiley Periodicals, Inc.

  7. Berberine Regulates Treg/Th17 Balance to Treat Ulcerative Colitis Through Modulating the Gut Microbiota in the Colon.

    PubMed

    Cui, Huantian; Cai, Yuzi; Wang, Li; Jia, Beitian; Li, Junchen; Zhao, Shuwu; Chu, Xiaoqian; Lin, Jin; Zhang, Xiaoyu; Bian, Yuhong; Zhuang, Pengwei

    2018-01-01

    Berberine (BBR), an alkaloid isolated from Rhizoma Coptidis, Cortex Phellode , and Berberis , has been widely used in the treatment of ulcerative colitis (UC). However, the mechanism of BBR on UC is unknown. In this study, we investigated the activities of T regulatory cell (Treg) and T helper 17 cell (Th17) in a dextran sulfate sodium (DSS)-induced UC mouse model after BBR administration. We also investigated the changes of gut microbiota composition using 16S rRNA analysis. We also examined whether BBR could regulate the Treg/Th17 balance by modifying gut microbiota. The mechanism was further confirmed by depleting gut microbiota through a combination of antibiotic treatment and fecal transplantations. Results showed that BBR treatment could improve the Treg/Th17 balance in the DSS-induced UC model. BBR also reduced diversity of the gut microbiota and interfered with the relative abundance of Desulfovibrio, Eubacterium , and Bacteroides. Moreover, BBR treatment did not influence the Treg/Th17 balance after the depletion of gut microbiota. Our results also revealed that fecal transplantation from BBR-treated mice could relieve UC and regulate the Treg/Th17 balance. In conclusion, our study provides evidence that BBR prevents UC by modifying gut microbiota and regulating the balance of Treg/Th17.

  8. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota

    PubMed Central

    van den Hoogen, Ward J.; Laman, Jon D.; ’t Hart, Bert A.

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally activated immune cells into the CNS has a key pathogenic role. Accumulating evidence supports an important role of diet and gut microbiota in immune-mediated diseases. Preclinical as well as clinical studies suggest a role for gut microbiota and dietary components in MS. Here, we review these recent studies on gut microbiota and dietary interventions in MS and its animal model experimental autoimmune encephalomyelitis. We also propose directions for future research. PMID:28928747

  9. Villification of the gut

    NASA Astrophysics Data System (ADS)

    Tallinen, Tuomas; Shyer, Amy E.; Tabin, Clifford J.; Mahadevan, L.

    2014-03-01

    The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We combine biological manipulations and quantitative modeling to show that these steps of villification depend on the sequential differentiation of the distinct smooth muscle layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. Our computational model incorporates measured elastic properties and growth rates in the developing gut, recapitulating the morphological patterns seen during villification in a variety of species. Our study provides a mechanical basis for the genesis of these epithelial protrusions that are essential for providing sufficient surface area for nutrient absorption.

  10. Gut microbiota modify risk for dietary glycemia-induced age-related macular degeneration.

    PubMed

    Rowan, Sheldon; Taylor, Allen

    2018-03-21

    Age-related macular degeneration (AMD) is a leading cause of blindness world-wide. Although the etiology of AMD is multifactorial, diet and nutrition have strong epidemiologic associations with disease onset and progression. Recent studies indicate a role for gut microbiota in development of AMD in mouse models and in some forms of human AMD. We previously found that consuming lower glycemia diets is associated with protection against AMD in humans and switching from higher to lower glycemia diets arrests AMD phenotypes in mice. Gut microbiota populations and circulating microbial cometabolites were altered in response to dietary carbohydrates, indicating a gut-retina axis. Here we explore additional gut microbiota-AMD interactions that point toward pathogenic roles for some gut microbiota families, including Ruminococcaceae and Lachnospiraceae, and individual members of Turicibacteraceae, Clostridiaceae, and Mogibacteriaceae. We also speculate on potential mechanisms by which gut microbiota influence AMD, with the objective of devising new AMD diagnoses and treatments.

  11. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives

    PubMed Central

    Lang, Yue

    2018-01-01

    The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS. PMID:29805314

  12. Low calorie sweeteners: Evidence remains lacking for effects on human gut function.

    PubMed

    Bryant, Charlotte; Mclaughlin, John

    2016-10-01

    The importance of nutrient induced gut-brain signalling in the regulation of human food intake has become an increasing focus of research. Much of the caloric excess consumed comes from dietary sugars, but our knowledge about the mechanisms mediating the physiological and appetitive effects of sweet tastants in the human gut and gut-brain axis is far from complete. The comparative effects of natural sugars vs low calorie sweeteners are also poorly understood. Research in animal and cellular models has suggested a key functional role in gut endocrine cells for the sweet taste receptors previously well described in oral taste. However human studies to date have very consistently failed to show that activation of the sweet taste receptor by low calorie sweeteners placed in the human gut fails to replicate any of the effects on gastric motility, gut hormones or appetitive responses evoked by caloric sugars. Copyright © 2016. Published by Elsevier Inc.

  13. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus.

    PubMed

    Luo, Xin M; Edwards, Michael R; Mu, Qinghui; Yu, Yang; Vieson, Miranda D; Reilly, Christopher M; Ahmed, S Ansar; Bankole, Adegbenga A

    2018-02-15

    Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae ) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes / Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort. IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a group of SLE patients with active disease. Copyright © 2018 American Society for Microbiology.

  14. Global F-theory GUTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.

    2010-08-26

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also providemore » a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.« less

  15. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis

    PubMed Central

    Midura-Kiela, Monica T.; Ramalingam, Rajalakshmy; Larmonier, Claire B.; Chase, John H.; Caporaso, J. Gregory; Besselsen, David G.; Ghishan, Fayez K.; Kiela, Pawel R.

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community. PMID:27050757

  16. Evaluation of Gastrointestinal Leakage in Multiple Enteric Inflammation Models in Chickens.

    PubMed

    Kuttappan, Vivek A; Vicuña, Eduardo A; Latorre, Juan D; Wolfenden, Amanda D; Téllez, Guillermo I; Hargis, Billy M; Bielke, Lisa R

    2015-01-01

    Enteric inflammation models can help researchers' study methods to improve health and performance and evaluate various growth promoters and dietary formulations targeted to improve performance in poultry. Oral administration of fluorescein isothiocyanate-dextran (FITC-d; 3-5 kDa) and its pericellular mucosal epithelial leakage are an established marker to evaluate enteric inflammation in multiple species. The present study evaluated different methods to induce gut inflammation in poultry based on FITC-d leakage. Four independent experiments were completed with different inflammation treatment groups, and serum FITC-d and/or retention of FITC-d in GI tract were determined. In experiment 1 (n = 10 birds/treatment, broilers, processed at 14 days), groups included control (CON), dextran sodium sulfate (DSS; drinking water at 0.75%) and feed restriction (FRS; 24 h before processing). Experiment 2 (n = 14 birds/treatment, leghorns, processed at 7 days) included CON, DSS, FRS, and rye-based diet (RBD). In experiments 3 and 4 (n = 15 birds/treatment, broilers, processed at 7 days), groups were CON, DSS, high fat diet (HFD), FRS, and RBD. In all experiments, FRS and RBD treatments showed significantly higher serum FITC-d levels compared to the respective CON. This indicates that FRS and RBD results in disruption of the intact barrier of the gastrointestinal tract (GIT), resulting in increased gut permeability. DSS and HFD groups showed elevation of serum FITC-d levels although the magnitude of difference from respective CON was inconsistent between experiments. FRS was the only treatment which consistently showed elevated retention of FITC-d in GIT in all experiments. The results from present studies showed that FRS and RBD, based on serum FITC-d levels, can be robust models to induce gut leakage in birds in different age and species/strains.

  17. Likelihood analysis of supersymmetric SU(5) GUTs

    DOE PAGES

    Bagnaschi, Emanuele; Costa, J. C.; Sakurai, K.; ...

    2017-02-16

    Here, we perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino massmore » $$m_{1/2}$$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $$m_5$$ and $$m_{10}$$, and for the $$\\mathbf{5}$$ and $$\\mathbf{\\bar 5}$$ Higgs representations $$m_{H_u}$$ and $$m_{H_d}$$, a universal trilinear soft SUSY-breaking parameter $$A_0$$, and the ratio of Higgs vevs $$\\tan \\beta$$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel $${\\tilde u_R}/{\\tilde c_R} - \\tilde{\\chi}^0_1$$ coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of $${\\tilde \

  18. Chemometric strategy for modeling metabolic biological space along the gastrointestinal tract and assessing microbial influences.

    PubMed

    Martin, François-Pierre J; Montoliu, Ivan; Kochhar, Sunil; Rezzi, Serge

    2010-12-01

    Over the past decade, the analysis of metabolic data with advanced chemometric techniques has offered the potential to explore functional relationships among biological compartments in relation to the structure and function of the intestine. However, the employed methodologies, generally based on regression modeling techniques, have given emphasis to region-specific metabolic patterns, while providing only limited insights into the spatiotemporal metabolic features of the complex gastrointestinal system. Hence, novel approaches are needed to analyze metabolic data to reconstruct the metabolic biological space associated with the evolving structures and functions of an organ such as the gastrointestinal tract. Here, we report the application of multivariate curve resolution (MCR) methodology to model metabolic relationships along the gastrointestinal compartments in relation to its structure and function using data from our previous metabonomic analysis. The method simultaneously summarizes metabolite occurrence and contribution to continuous metabolic signatures of the different biological compartments of the gut tract. This methodology sheds new light onto the complex web of metabolic interactions with gut symbionts that modulate host cell metabolism in surrounding gut tissues. In the future, such an approach will be key to provide new insights into the dynamic onset of metabolic deregulations involved in region-specific gastrointestinal disorders, such as Crohn's disease or ulcerative colitis.

  19. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition

    PubMed Central

    Reyes, Alejandro; Blanton, Laura V.; Cao, Song; Zhao, Guoyan; Manary, Mark; Trehan, Indi; Smith, Michelle I.; Wang, David; Virgin, Herbert W.; Rohwer, Forest; Gordon, Jeffrey I.

    2015-01-01

    The bacterial component of the human gut microbiota undergoes a definable program of postnatal development. Evidence is accumulating that this program is disrupted in children with severe acute malnutrition (SAM) and that their persistent gut microbiota immaturity, which is not durably repaired with current ready-to-use therapeutic food (RUTF) interventions, is causally related to disease pathogenesis. To further characterize gut microbial community development in healthy versus malnourished infants/children, we performed a time-series metagenomic study of DNA isolated from virus-like particles (VLPs) recovered from fecal samples collected during the first 30 mo of postnatal life from eight pairs of mono- and dizygotic Malawian twins concordant for healthy growth and 12 twin pairs discordant for SAM. Both members of discordant pairs were sampled just before, during, and after treatment with a peanut-based RUTF. Using Random Forests and a dataset of 17,676 viral contigs assembled from shotgun sequencing reads of VLP DNAs, we identified viruses that distinguish different stages in the assembly of the gut microbiota in the concordant healthy twin pairs. This developmental program is impaired in both members of SAM discordant pairs and not repaired with RUTF. Phage plus members of the Anelloviridae and Circoviridae families of eukaryotic viruses discriminate discordant from concordant healthy pairs. These results disclose that apparently healthy cotwins in discordant pairs have viromes associated with, although not necessarily mediators, of SAM; as such, they provide a human model for delineating normal versus perturbed postnatal acquisition and retention of the gut microbiota’s viral component in populations at risk for malnutrition. PMID:26351661

  20. The HOG pathway is critical for the colonization of the mouse gastrointestinal tract by Candida albicans.

    PubMed

    Prieto, Daniel; Román, Elvira; Correia, Inês; Pla, Jesus

    2014-01-01

    The opportunistic pathogen Candida albicans is a frequent inhabitant of the human gastrointestinal tract where it usually behaves as a harmless commensal. In this particular niche, it needs to adapt to the different micro environments that challenge its survival within the host. In order to determine those factors involved in gut adaptation, we have used a gastrointestinal model of colonization in mouse to trace the behaviour of fungal cells. We have developed a genetic labelling system based on the complementary spectral properties of the fluorescent proteins GFP and a new C. albicans codon-adapted RFP (dTOM2) that allow a precise quantification of the fungal population in the gut via standard in vitro cultures or flow cytometry. This methodology has allowed us to determine the role of the three MAP kinase pathways of C. albicans (mediated by the MAPK Mkc1, Cek1 or Hog1) in mouse gut colonization via competitive assays with MAPK pathway mutants and their isogenic wild type strain. This approach reveals the signalling through HOG pathway as a critical factor influencing the establishment of C. albicans in the mouse gut. Less pronounced effects for mkc1 or cek1 mutants were found, only evident after 2-3 weeks of colonization. We have also seen that hog1 mutants is defective in adhesion to the gut mucosa and sensitive to bile salts. Finally, we have developed a genetic strategy for the in vivo excision (tetracycline-dependent) of any specific gene during the course of colonization in this particular niche, allowing the analysis of its role during gut colonization.

  1. The gut microenvironment of sediment-dwelling Chironomus plumosus larvae as characterised with O2, pH, and redox microsensors.

    PubMed

    Stief, Peter; Eller, Gundula

    2006-09-01

    We devised a set-up in which microsensors can be used for characterising the gut microenvironment of aquatic macrofauna. In a small flow cell, we measured microscale gradients through dissected guts (O(2), pH, redox potential [E ( h )]), in the haemolymph (O(2)), and towards the body surface (O(2)) of Chironomus plumosus larvae. The gut microenvironment was compared with the chemical conditions in the lake sediment in which the animals reside and feed. When the dissected guts were incubated at the same nominal O(2) concentration as in haemolymph, the gut content was completely anoxic and had pH and E ( h ) values slightly lower than in the ambient sediment. When the dissected guts were artificially oxygenated, the volumetric O(2)-consumption rates of the gut content were at least 10x higher than in the sediment. Using these potential O(2)-consumption rates in a cylindrical diffusion-reaction model, it was predicted that diffusion of O(2) from the haemolymph to the gut could not oxygenate the gut content under in vivo conditions. Additionally, the potential O(2)-consumption rates were so high that the intake of dissolved O(2) along with feeding could be ruled out to oxygenate the gut content. We conclude that microorganisms present in the gut of C. plumosus cannot exhibit an aerobic metabolism. The presented microsensor technique and the data analysis are applicable to guts of other macrofauna species with cutaneous respiration.

  2. Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe.

    PubMed

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M; Orešič, Matej; Bertram, Hanne Christine

    2018-04-30

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding of the microbial functions. Finally, the emerging approaches of genome-scale metabolic modelling to study microbial co-metabolism and host-microbe interactions are highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. GUT Model Hierarchies from Intersecting Branes

    NASA Astrophysics Data System (ADS)

    Kokorelis, Christos

    2002-08-01

    By employing D6-branes intersecting at angles in D = 4 type I strings, we construct the first examples of three generation string GUT models (PS-A class), that contain at low energy exactly the standard model spectrum with no extra matter and/or extra gauge group factors. They are based on the group SU(4)C × SU(2)L × SU(2)R. The models are non-supersymmetric, even though SUSY is unbroken in the bulk. Baryon number is gauged and its anomalies are cancelled through a generalized Green-Schwarz mechanism. We also discuss models (PS-B class) which at low energy have the standard model augmented by an anomaly free U(1) symmetry and show that multibrane wrappings correspond to a trivial redefinition of the surviving global U(1) at low energies. There are no colour triplet couplings to mediate proton decay and proton is stable. The models are compatible with a low string scale of energy less that 650 GeV and are directly testable at present or future accelerators as they predict the existence of light left handed weak fermion doublets at energies between 90 and 246 GeV. The neutrinos get a mass through an unconventional see-saw mechanism. The mass relation me = md at the GUT scale is recovered. Imposing supersymmetry at particular intersections generates non-zero Majorana masses for right handed neutrinos as well providing the necessary singlets needed to break the surviving anomaly free U(1), thus suggesting a gauge symmetry breaking method that can be applied in general left-right symmetric models.

  4. Zinc in Gut-Brain Interaction in Autism and Neurological Disorders

    PubMed Central

    Vela, Guillermo; Stark, Peter; Socha, Michael; Sauer, Ann Katrin; Hagmeyer, Simone; Grabrucker, Andreas M.

    2015-01-01

    A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life. PMID:25878905

  5. Zinc in gut-brain interaction in autism and neurological disorders.

    PubMed

    Vela, Guillermo; Stark, Peter; Socha, Michael; Sauer, Ann Katrin; Hagmeyer, Simone; Grabrucker, Andreas M

    2015-01-01

    A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life.

  6. Potential Role of the Gut Microbiome in ALS: A Systematic Review.

    PubMed

    Wright, Michelle L; Fournier, Christina; Houser, Madelyn C; Tansey, Malú; Glass, Jonathan; Hertzberg, Vicki Stover

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) etiology and pathophysiology are not well understood. Recent data suggest that dysbiosis of gut microbiota may contribute to ALS etiology and progression. This review aims to explore evidence of associations between gut microbiota and ALS etiology and pathophysiology. Databases were searched for publications relevant to the gut microbiome in ALS. Three publications provided primary evidence of changes in microbiome profiles in ALS. An ALS mouse model revealed damaged tight junction structure and increased permeability in the intestine versus controls along with a shifted microbiome profile, including decreased levels of butyrate-producing bacteria. In a subsequent publication, again using an ALS mouse model, researchers showed that dietary supplementation with butyrate relieved symptoms and lengthened both time to onset of weight loss and survival time. In a small study of ALS patients and healthy controls, investigators also found decreased levels of butyrate-producing bacteria. Essential for maintaining gut barrier integrity, butyrate is the preferred energy source of intestinal epithelial cells. Ten other articles were reviews and commentaries providing indirect support for a role of gut microbiota in ALS pathophysiology. Thus, these studies provide a modicum of evidence implicating gut microbiota in ALS disease, although more research is needed to confirm the connection and determine pathophysiologic mechanisms. Nurses caring for these patients need to understand the gut microbiome and its potential role in ALS in order to effectively counsel patients and their families about emerging therapies (e.g., prebiotics, probiotics, and fecal microbial transplant) and their off-label uses.

  7. Food: a new form of personalised (gut microbiome) medicine for chronic diseases?

    PubMed

    Pallister, Tess; Spector, Tim D

    2016-09-01

    Filling in the knowledge gaps between what we eat and the diseases we develop may lie in our guts, literally. The human large intestine houses the largest reservoir of microorganisms in or on the human body. With a 100-fold greater gene count than humans, the gut microbiome has huge potential to place a large metabolic burden (or advantage) on its host. The number of diverse gut microbial species is diminished in nearly all modern chronic conditions studied. The 'Western diet', rich in animal protein, fats and artificial additives, and lacking in fibre, beneficial microbes, plant phytochemicals, vitamins and minerals, is thought to drive these conditions by encouraging gut dysbiosis. Evidence from recent dietary intervention studies suggest adopting a plant-based, minimally processed high-fibre diet may rapidly reverse the effects of meat-based diets on the gut microbiome. However, recent work has shown that individual diet responses may be complicated by host genetics and the wide variation in the gut microbiome. Now that we measure genes and microbes more accurately, we are embarking on an exciting era of using both food and microbes as potential therapies. © The Royal Society of Medicine.

  8. Baryon Asymmetry of the Universe (1/2)

    ScienceCinema

    None

    2017-12-09

    In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments

  9. Baryon Asymmetry of the Universe (2/2)

    ScienceCinema

    None

    2017-12-09

    In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments

  10. Nonalcoholic fatty liver disease: for better or worse, blame the gut microbiota?

    PubMed

    Li, Ding-You; Yang, Min; Edwards, Sarah; Ye, Shui-Qing

    2013-11-01

    Nonalcoholic fatty liver disease (NAFLD) is a major clinical consequence for people with obesity and metabolic syndrome and is also associated with enteral and parenteral nutrition. Early studies suggested that altered gut microbiota might contribute to obesity by affecting energy harvest from the diet and energy storage in the host. Recent evidence in humans as well as in animal models has linked gut microbiota to the development of NAFLD through the gut-liver axis. With bacterial overgrowth and increased intestinal permeability observed in patients with NAFLD and in animal models, gut-derived bacterial products such as endotoxin (lipopolysaccharide) and bacterial DNA are being delivered to the liver through the portal vein and then activate Toll-like receptors (TLRs), mainly TLR4 and TLR9, and their downstream cytokines and chemokines, leading to the development and progression of NAFLD. Given the limited data in humans, the role of gut microbiota in the pathogenesis of NAFLD is still open to discussion. Prebiotics and probiotics have been attempted to modify the microbiota as preventive or therapeutic strategies on this pathological condition. Their beneficial effects on NALFD have been demonstrated in animal models and limited human studies. However, prospective, appropriately powered, randomized, controlled clinical trials are needed to determine whether prebiotics and probiotics and other integrated strategies to modify intestinal microbiota are efficacious therapeutic modalities to treat NALFD.

  11. Mast cells and histamine alter intestinal permeability during malaria parasite infection.

    PubMed

    Potts, Rashaun A; Tiffany, Caitlin M; Pakpour, Nazzy; Lokken, Kristen L; Tiffany, Connor R; Cheung, Kong; Tsolis, Renée M; Luckhart, Shirley

    2016-03-01

    Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    PubMed

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gut microbiota and liver diseases

    PubMed Central

    Minemura, Masami; Shimizu, Yukihiro

    2015-01-01

    Several studies revealed that gut microbiota are associated with various human diseases, e.g., metabolic diseases, allergies, gastroenterological diseases, and liver diseases. The liver can be greatly affected by changes in gut microbiota due to the entry of gut bacteria or their metabolites into the liver through the portal vein, and the liver-gut axis is important to understand the pathophysiology of several liver diseases, especially non-alcoholic fatty liver disease and hepatic encephalopathy. Moreover, gut microbiota play a significant role in the development of alcoholic liver disease and hepatocarcinogenesis. Based on these previous findings, trials using probiotics have been performed for the prevention or treatment of liver diseases. In this review, we summarize the current understanding of the changes in gut microbiota associated with various liver diseases, and we describe the therapeutic trials of probiotics for those diseases. PMID:25684933

  14. Gut microbiota and obesity.

    PubMed

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  15. Validating hyperbilirubinemia and gut mucosal atrophy with a novel ultramobile ambulatory total parenteral nutrition piglet model

    USDA-ARS?s Scientific Manuscript database

    Total parenteral nutrition (TPN) provides all nutrition intravenously. Although TPN therapy has grown enormously, it causes significant complications, including gut and hepatic dysfunction. Current models use animal tethering which is unlike ambulatory human TPN delivery and is cost prohibitive. We ...

  16. Associations among the cecal microbiome and bacterially-derived cecal xeno-metabolites during diabetes progression in the UC Davis-Type 2 diabetes rat model

    USDA-ARS?s Scientific Manuscript database

    The gut microbiome is altered in obesity and diabetes, but the molecular signals linking gut microbes and host metabolic regulation have not been established. Our aim was to identify gut microbe-derived xeno-metabolites that associate with alterations in the microbiome during the progression of a t...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, John; Olive, Keith A.; Velasco-Sevilla, Liliana

    We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses m 0 specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses m 1/2, as is expected in no-scale models, the dominant effects of renormalisation between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to m 1/2 and generation independent. In this case, the input scalar masses m 0 may violate flavour maximally, amore » scenario we call MaxSFV, and there is no supersymmetric flavour problem. As a result, we illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity« less

  18. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota.

    PubMed

    Serino, Matteo; Luche, Elodie; Gres, Sandra; Baylac, Audrey; Bergé, Mathieu; Cenac, Claire; Waget, Aurelie; Klopp, Pascale; Iacovoni, Jason; Klopp, Christophe; Mariette, Jerome; Bouchez, Olivier; Lluch, Jerome; Ouarné, Francoise; Monsan, Pierre; Valet, Philippe; Roques, Christine; Amar, Jacques; Bouloumié, Anne; Théodorou, Vassilia; Burcelin, Remy

    2012-04-01

    The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.

  19. GOCE User Toolbox and Tutorial

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Benveniste, J.

    2011-07-01

    The GOCE User Toolbox GUT is a compilation of tools for the utilisation and analysis of GOCE Level 2 products. GUT support applications in Geodesy, Oceanography and Solid Earth Physics. The GUT Tutorial provides information and guidance in how to use the toolbox for a variety of applications. GUT consists of a series of advanced computer routines that carry out the required computations. It may be used on Windows PCs, UNIX/Linux Workstations, and Mac. The toolbox is supported by The GUT Algorithm Description and User Guide and The GUT Install Guide. A set of a-priori data and models are made available as well. GUT has been developed in a collaboration within the GUT Core Group. The GUT Core Group: S. Dinardo, D. Serpe, B.M. Lucas, R. Floberghagen, A. Horvath (ESA), O. Andersen, M. Herceg (DTU), M.-H. Rio, S. Mulet, G. Larnicol (CLS), J. Johannessen, L.Bertino (NERSC), H. Snaith, P. Challenor (NOC), K. Haines, D. Bretherton (NCEO), C. Hughes (POL), R.J. Bingham (NU), G. Balmino, S. Niemeijer, I. Price, L. Cornejo (S&T), M. Diament, I Panet (IPGP), C.C. Tscherning (KU), D. Stammer, F. Siegismund (UH), T. Gruber (TUM),

  20. Gut-Brain Axis and Behavior.

    PubMed

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  1. Gut microbiota composition modifies fecal metabolic profiles in mice.

    PubMed

    Zhao, Ying; Wu, Junfang; Li, Jia V; Zhou, Ning-Yi; Tang, Huiru; Wang, Yulan

    2013-06-07

    The gut microbiome is known to be extensively involved in human health and disease. In order to reveal the metabolic relationship between host and microbiome, we monitored recovery of the gut microbiota composition and fecal profiles of mice after gentamicin and/or ceftriaxone treatments. This was performed by employing (1)H nuclear magnetic resonance (NMR)-based metabonomics and denaturing gradient gel electrophoresis (DGGE) fingerprint of gut microbiota. The common features of fecal metabolites postantibiotic treatment include decreased levels of short chain fatty acids (SCFAs), amino acids and primary bile acids and increased oligosaccharides, d-pinitol, choline and secondary bile acids (deoxycholic acid). This suggests suppressed bacterial fermentation, protein degradation and enhanced gut microbial modification of bile acids. Barnesiella, Prevotella, and Alistipes levels were shown to decrease as a result of the antibiotic treatment, whereas levels of Bacteroides, Enterococcus and Erysipelotrichaceae incertae sedis, and Mycoplasma increased after gentamicin and ceftriaxone treatment. In addition, there was a strong correlation between fecal profiles and levels of Bacteroides, Barnesiella, Alistipes and Prevotella. The integration of metabonomics and gut microbiota profiling provides important information on the changes of gut microbiota and their impact on fecal profiles during the recovery after antibiotic treatment. The correlation between gut microbiota and fecal metabolites provides important information on the function of bacteria, which in turn could be important in optimizing therapeutic strategies, and developing potential microbiota-based disease preventions and therapeutic interventions.

  2. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    PubMed

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Development of Inflammatory Bowel Disease Is Linked to a Longitudinal Restructuring of the Gut Metagenome in Mice.

    PubMed

    Sharpton, Thomas; Lyalina, Svetlana; Luong, Julie; Pham, Joey; Deal, Emily M; Armour, Courtney; Gaulke, Christopher; Sanjabi, Shomyseh; Pollard, Katherine S

    2017-01-01

    The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late-stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regard to function. To investigate microbiome-mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where damped transforming growth factor β (TGF-β) signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including damped acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, levels of lipooligosaccharide transporter abundance diverge prior to immune activation, indicating that it could be a predisease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundances of particular taxa, including several species of Bacteroides , correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed-effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering the potential mechanisms through which the gut microbiome becomes altered in IBD. IMPORTANCE IBD patients harbor distinct microbial communities with functional capabilities different from those seen with healthy people. But is this cause or effect? Answering this question requires data on changes in gut microbial communities leading to disease onset. By performing weekly metagenomic sequencing and mixed-effects modeling on an established mouse model of IBD, we identified several functional pathways encoded by the gut microbiome that covary with host immune status. These pathways are novel early biomarkers that may either enable microbes to live inside an inflamed gut or contribute to immune activation in IBD mice. Future work will validate the potential roles of these microbial pathways in host-microbe interactions and human disease. This study was novel in its longitudinal design and focus on microbial pathways, which provided new mechanistic insights into the role of gut microbes in IBD development.

  4. Development of Inflammatory Bowel Disease Is Linked to a Longitudinal Restructuring of the Gut Metagenome in Mice

    PubMed Central

    Sharpton, Thomas; Lyalina, Svetlana; Luong, Julie; Pham, Joey; Deal, Emily M.; Armour, Courtney; Gaulke, Christopher; Sanjabi, Shomyseh

    2017-01-01

    ABSTRACT The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late-stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regard to function. To investigate microbiome-mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where damped transforming growth factor β (TGF-β) signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including damped acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, levels of lipooligosaccharide transporter abundance diverge prior to immune activation, indicating that it could be a predisease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundances of particular taxa, including several species of Bacteroides, correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed-effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering the potential mechanisms through which the gut microbiome becomes altered in IBD. IMPORTANCE IBD patients harbor distinct microbial communities with functional capabilities different from those seen with healthy people. But is this cause or effect? Answering this question requires data on changes in gut microbial communities leading to disease onset. By performing weekly metagenomic sequencing and mixed-effects modeling on an established mouse model of IBD, we identified several functional pathways encoded by the gut microbiome that covary with host immune status. These pathways are novel early biomarkers that may either enable microbes to live inside an inflamed gut or contribute to immune activation in IBD mice. Future work will validate the potential roles of these microbial pathways in host-microbe interactions and human disease. This study was novel in its longitudinal design and focus on microbial pathways, which provided new mechanistic insights into the role of gut microbes in IBD development. PMID:28904997

  5. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders.

    PubMed

    Lam, Yan Y; Maguire, Sarah; Palacios, Talia; Caterson, Ian D

    2017-06-14

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut-brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders.

  6. New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches.

    PubMed

    Alard, J; Peucelle, V; Boutillier, D; Breton, J; Kuylle, S; Pot, B; Holowacz, S; Grangette, C

    2018-02-27

    Alterations in the gut microbiota composition play a key role in the development of chronic diseases such as inflammatory bowel disease (IBD). The potential use of probiotics therefore gained attention, although outcomes were sometimes conflicting and results largely strain-dependent. The present study aimed to identify new probiotic strains that have a high potential for the management of this type of pathologies. Strains were selected from a large collection by combining different in vitro and in vivo approaches, addressing both anti-inflammatory potential and ability to improve the gut barrier function. We identified six strains with an interesting anti-inflammatory profile on peripheral blood mononuclear cells and with the ability to restore the gut barrier using a gut permeability model based on Caco-2 cells sensitized with hydrogen peroxide. The in vivo evaluation in two 2,4,6-trinitrobenzene sulfonic acid-induced murine models of colitis highlighted that some of the strains exhibited beneficial activities against acute colitis while others improved chronic colitis. Bifidobacterium bifidum PI22, the strain that exhibited the most protective capacities against acute colitis was only slightly efficacious against chronic colitis, while Bifidobacterium lactis LA804 which was less efficacious in the acute model was the most protective against chronic colitis. Lactobacillus helveticus PI5 was not anti-inflammatory in vitro but the best in strengthening the epithelial barrier and as such able to significantly dampen murine acute colitis. Interestingly, Lactobacillus salivarius LA307 protected mice significantly against both types of colitis. This work provides crucial clues for selecting the best strains for more efficacious therapeutic approaches in the management of chronic inflammatory diseases. The strategy employed allowed us to identify four strains with different characteristics and a high potential for the management of inflammatory diseases, such as IBD.

  7. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis.

    PubMed

    Freedman, Samantha N; Shahi, Shailesh K; Mangalam, Ashutosh K

    2018-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.

  8. Electrical stimulation of gut motility guided by an in silico model

    NASA Astrophysics Data System (ADS)

    Barth, Bradley B.; Henriquez, Craig S.; Grill, Warren M.; Shen, Xiling

    2017-12-01

    Objective. Neuromodulation of the central and peripheral nervous systems is becoming increasingly important for treating a diverse set of diseases—ranging from Parkinson’s Disease and epilepsy to chronic pain. However, neuromodulation of the gastrointestinal (GI) tract has achieved relatively limited success in treating functional GI disorders, which affect a significant population, because the effects of stimulation on the enteric nervous system (ENS) and gut motility are not well understood. Here we develop an integrated neuromechanical model of the ENS and assess neurostimulation strategies for enhancing gut motility, validated by in vivo experiments. Approach. The computational model included a network of enteric neurons, smooth muscle fibers, and interstitial cells of Cajal, which regulated propulsion of a virtual pellet in a model of gut motility. Main results. Simulated extracellular stimulation of ENS-mediated motility revealed that sinusoidal current at 0.5 Hz was more effective at increasing intrinsic peristalsis and reducing colon transit time than conventional higher frequency rectangular current pulses, as commonly used for neuromodulation therapy. Further analysis of the model revealed that the 0.5 Hz sinusoidal currents were more effective at modulating the pacemaker frequency of interstitial cells of Cajal. To test the predictions of the model, we conducted in vivo electrical stimulation of the distal colon while measuring bead propulsion in awake rats. Experimental results confirmed that 0.5 Hz sinusoidal currents were more effective than higher frequency pulses at enhancing gut motility. Significance. This work demonstrates an in silico GI neuromuscular model to enable GI neuromodulation parameter optimization and suggests that low frequency sinusoidal currents may improve the efficacy of GI pacing.

  9. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

    PubMed

    Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.

  10. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    PubMed Central

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity. PMID:29311977

  11. Gut Microbiome-based Therapeutics in Liver Cirrhosis: Basic Consideration for the Next Step.

    PubMed

    Fukui, Hiroshi

    2017-09-28

    Infections account for significant morbidity and mortality in liver cirrhosis and most are related to the gut microbiome. Fecal dysbiosis, characterized by an overgrowth of potentially pathogenic bacteria and a decrease in autochthonous non-pathogenic bacteria, becomes prominent with the progression of liver cirrhosis. In cirrhotic patients, disruption of the intestinal barrier causes intestinal hyperpermeability (i.e. leaky gut), which is closely related to gut dysmotility, dysbiosis and small intestinal bacterial overgrowth and may induce pathological bacterial translocation. Although the involved microbial taxa are somewhat different between the cirrhotic patients from the East and the West, the common manifestation of a shortage of bacteria that contribute to the production of short-chain fatty acids and secondary bile acids may facilitate intestinal inflammation, leaky gut and gut dysbiosis. Translocated endotoxin and bacterial DNA are capable of provoking potent inflammation and affecting the metabolic and hemodynamic systems, which may ultimately enhance the progression of liver cirrhosis and its various complications, such as hepatic encephalopathy (HE), variceal bleeding, infection and renal disturbances. Among studies on the microbiome-based therapeutics, findings of probiotic effects on HE have been contradictory in spite of several supportive results. However, the effects of synbiotics and prebiotics are substantially documented. The background of their effectiveness should be evaluated again in relation to the cirrhosis-related changes in gut microbiome and their metabolic effects. Strict indications for the antibiotic rifaximin remain unestablished, although its effect is promising, improving HE and other complications with little influence on microbial populations. The final goal of microbiome-based therapeutics is to adjust the gut-liver axis to the maximal benefit of cirrhotic patients, with the aid of evolving metagenomic and metabolomic analyses.

  12. Gut Microbiome-based Therapeutics in Liver Cirrhosis: Basic Consideration for the Next Step

    PubMed Central

    Fukui, Hiroshi

    2017-01-01

    Abstract Infections account for significant morbidity and mortality in liver cirrhosis and most are related to the gut microbiome. Fecal dysbiosis, characterized by an overgrowth of potentially pathogenic bacteria and a decrease in autochthonous non-pathogenic bacteria, becomes prominent with the progression of liver cirrhosis. In cirrhotic patients, disruption of the intestinal barrier causes intestinal hyperpermeability (i.e. leaky gut), which is closely related to gut dysmotility, dysbiosis and small intestinal bacterial overgrowth and may induce pathological bacterial translocation. Although the involved microbial taxa are somewhat different between the cirrhotic patients from the East and the West, the common manifestation of a shortage of bacteria that contribute to the production of short-chain fatty acids and secondary bile acids may facilitate intestinal inflammation, leaky gut and gut dysbiosis. Translocated endotoxin and bacterial DNA are capable of provoking potent inflammation and affecting the metabolic and hemodynamic systems, which may ultimately enhance the progression of liver cirrhosis and its various complications, such as hepatic encephalopathy (HE), variceal bleeding, infection and renal disturbances. Among studies on the microbiome-based therapeutics, findings of probiotic effects on HE have been contradictory in spite of several supportive results. However, the effects of synbiotics and prebiotics are substantially documented. The background of their effectiveness should be evaluated again in relation to the cirrhosis-related changes in gut microbiome and their metabolic effects. Strict indications for the antibiotic rifaximin remain unestablished, although its effect is promising, improving HE and other complications with little influence on microbial populations. The final goal of microbiome-based therapeutics is to adjust the gut-liver axis to the maximal benefit of cirrhotic patients, with the aid of evolving metagenomic and metabolomic analyses. PMID:28936406

  13. Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats.

    PubMed

    Li, Hao; Qi, Tao; Huang, Zhan-Sen; Ying, Ying; Zhang, Yu; Wang, Bo; Ye, Lei; Zhang, Bin; Chen, Di-Ling; Chen, Jun

    2017-08-01

    In order to investigate the relationship between gut microbiota and type 2 diabetic erectile dysfunction (T2DED), we analyzed the characteristics of gut microbiota in the Sprague-Dawley (SD) rats with T2DED. Thirty-five SD rats were randomly divided into two groups: control group (n=15) with normal diet, and experimental group (n=20) with construction of T2D model. Faecal and serum samples were collected at 2nd and 8th week after establishment of T2D model, respectively. Faecal samples were used for analysis of gut microbiota, and serum samples for detection of trimethylamine N-oxide (TMAO), lipopolysaccharide (LPS), and inflammatory factors like interleukin-1 (IL-1), IL-2, IL-10, and monocyte chemoattractantprotein-1 (MCP-1). The main compositions of gut microbiota were Bacteroidetes, Proteobacteria and Firmicutes at the phylum level, and Oscillospira, Allobaculum, Bacteroides, Ruminococcus, SMB53, Prevotella, Coprococcus, Sutterella and Blautia at the genus level with relatively higher abundance in all SD rats. The relative abundance of Enterococcus, Corynebacterium, Aerococcus, Facklamia (opportunistic pathogens in most case) increased, and that of Allobaculum, Bifidobacterium, Eubacterium, Anaerotruncus (beneficial bacteria) decreased in T2DED group as compared with that at 2nd week after establishment of T2D model (T2D2 group). The serum contents of TMAO, LPS, IL-1, IL-2, IL-10 and MCP-1 in T2DED group were significantly higher than those in control group. The gut microbiota of T2DED rats was inhibited. The gut microbiota of T2DED rats had changed, as the relative abundance of beneficial bacterium was decreased while that of opportunistic pathogens was increased. The variations of gut microbiota might lead to inflammation and prompt the emergence of erectile dysfunction in the rats with T2D. TMAO might play an important role in the formation of T2DED.

  14. Hydrogen and Oxygen Isotope Ratios in Body Water and Hair: Modeling Isotope Dynamics in Nonhuman Primates

    PubMed Central

    O’Grady, Shannon P.; Valenzuela, Luciano O.; Remien, Christopher H.; Enright, Lindsey E.; Jorgensen, Matthew J.; Kaplan, Jay R.; Wagner, Janice D.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water (2H/1H, 18O/16O expressed as δ2H and δ18O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ2H and δ18O values of body water and a second model to predict the δ2H and δ18O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ2H and δ18O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ2H and δ18O values of gut water and the 18O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (αow). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of αow was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. PMID:22553163

  15. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates.

    PubMed

    O'Grady, Shannon P; Valenzuela, Luciano O; Remien, Christopher H; Enright, Lindsey E; Jorgensen, Matthew J; Kaplan, Jay R; Wagner, Janice D; Cerling, Thure E; Ehleringer, James R

    2012-07-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water ((2)H/(1)H, (18)O/(16)O expressed as δ(2) H and δ(18)O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ(2)H and δ(18)O values of body water and a second model to predict the δ(2)H and δ(18)O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ(2)H and δ(18)O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ(2)H and δ(18)O values of gut water and the (18)O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (α(ow)). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of α(ow) was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. © 2012 Wiley Periodicals, Inc.

  16. Gut Microbiome Associates With Lifetime Cardiovascular Disease Risk Profile Among Bogalusa Heart Study Participants

    PubMed Central

    Kelly, Tanika N.; Bazzano, Lydia A.; Ajami, Nadim J.; He, Hua; Zhao, Jinying; Petrosino, Joseph F.; Correa, Adolfo; He, Jiang

    2016-01-01

    Rationale Few studies have systematically assessed the influence of gut microbiota on cardiovascular disease (CVD) risk. Objective To examine the association between gut microbiota and lifetime CVD risk profile among 55 Bogalusa Heart Study (BHS) participants with the highest and 57 with the lowest lifetime burdens of CVD risk factors. Methods and Results 16S rRNA sequencing was conducted on microbial DNA extracted from stool samples of the BHS participants. Alpha diversity, including measures of richness and evenness, and individual genera were tested for associations with lifetime CVD risk profile. Multivariable regression techniques were employed to adjust for age, gender, and race (Model 1), along with body mass index (BMI) (Model 2) and both BMI and diet (Model 3). In Model 1, odds ratios (95% confidence intervals) for each standard deviation increase in richness, measured by the number of observed operational taxonomic units, Chao 1 index, and abundance-based coverage estimator, were 0.62 (0.39, 0.99), 0.61 (0.38, 0.98), and 0.63 (0.39, 0.99), respectively. Associations were consistent in Models 2 and 3. Four genera were enriched among those with high versus low CVD risk profile in all models. Model 1 p-values were: 2.12×10−3, 7.95×10−5, 4.39×10−4, and 1.51×10−4 for Prevotella 2, Prevotella 7, Tyzzerella and Tyzzerella 4, respectively. Two genera were depleted among those with high versus low CVD risk profile in all models. Model 1 P-values were: 2.96×10−6 and 1.82×10−4 for Alloprevotella and Catenibacterium, respectively. Conclusions The current study identified associations of overall microbial richness and six microbial genera with lifetime CVD risk. PMID:27507222

  17. Gut Microbiome Associates With Lifetime Cardiovascular Disease Risk Profile Among Bogalusa Heart Study Participants.

    PubMed

    Kelly, Tanika N; Bazzano, Lydia A; Ajami, Nadim J; He, Hua; Zhao, Jinying; Petrosino, Joseph F; Correa, Adolfo; He, Jiang

    2016-09-30

    Few studies have systematically assessed the influence of gut microbiota on cardiovascular disease (CVD) risk. To examine the association between gut microbiota and lifetime CVD risk profile among 55 Bogalusa Heart Study participants with the highest and 57 with the lowest lifetime burdens of CVD risk factors. 16S ribosomal RNA sequencing was conducted on microbial DNA extracted from stool samples of the Bogalusa Heart Study participants. α Diversity, including measures of richness and evenness, and individual genera were tested for associations with lifetime CVD risk profile. Multivariable regression techniques were used to adjust for age, sex, and race (model 1), along with body mass index (model 2) and both body mass index and diet (model 3). In model 1, odds ratios (95% confidence intervals) for each SD increase in richness, measured by the number of observed operational taxonomic units, Chao 1 index, and abundance-based coverage estimator, were 0.62 (0.39-0.99), 0.61 (0.38-0.98), and 0.63 (0.39-0.99), respectively. Associations were consistent in models 2 and 3. Four genera were enriched among those with high versus low CVD risk profile in all models. Model 1 P values were 2.12×10(-3), 7.95×10(-5), 4.39×10(-4), and 1.51×10(-4) for Prevotella 2, Prevotella 7, Tyzzerella, and Tyzzerella 4, respectively. Two genera were depleted among those with high versus low CVD risk profile in all models. Model 1 P values were 2.96×10(-6) and 1.82×10(-4) for Alloprevotella and Catenibacterium, respectively. The current study identified associations of overall microbial richness and 6 microbial genera with lifetime CVD risk. © 2016 American Heart Association, Inc.

  18. Fatty liver accompanies an increase of Lactobacillus acidophilus in the hind gut of C57/BL mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    High-fat diets can produce obesity and have been linked to the development of nonalcoholic fatty liver disease (NAFLD), which also induces changes in the gut microbiome. This study tested the hypothesis that high-fat feeding increases certain predominate hind gut bacteria in a C57BL/6 mouse model o...

  19. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis.

    PubMed

    Kumar, Himanshu; Lund, Riikka; Laiho, Asta; Lundelin, Krista; Ley, Ruth E; Isolauri, Erika; Salminen, Seppo

    2014-12-16

    The core human gut microbiota contributes to the developmental origin of diseases by modifying metabolic pathways. To evaluate the predominant microbiota as an epigenetic modifier, we classified 8 pregnant women into two groups based on their dominant microbiota, i.e., Bacteroidetes, Firmicutes, and Proteobacteria. Deep sequencing of DNA methylomes revealed a clear association between bacterial predominance and epigenetic profiles. The genes with differentially methylated promoters in the group in which Firmicutes was dominant were linked to risk of disease, predominantly to cardiovascular disease and specifically to lipid metabolism, obesity, and the inflammatory response. This is one of the first studies that highlights the association of the predominant bacterial phyla in the gut with methylation patterns. Further longitudinal and in-depth studies targeting individual microbial species or metabolites are recommended to give us a deeper insight into the molecular mechanism of such epigenetic modifications. Epigenetics encompasses genomic modifications that are due to environmental factors and do not affect the nucleotide sequence. The gut microbiota has an important role in human metabolism and could be a significant environmental factor affecting our epigenome. To investigate the association of gut microbiota with epigenetic changes, we assessed pregnant women and selected the participants based on their predominant gut microbiota for a study on their postpartum methylation profile. Intriguingly, we found that blood DNA methylation patterns were associated with gut microbiota profiles. The gut microbiota profiles, with either Firmicutes or Bacteroidetes as a dominant group, correlated with differential methylation status of gene promoters functionally associated with cardiovascular diseases. Furthermore, differential methylation of gene promoters linked to lipid metabolism and obesity was observed. For the first time, we report here a position of the predominant gut microbiota in epigenetic profiling, suggesting one potential mechanism in obesity with comorbidities, if proven in further in-depth studies. Copyright © 2014 Kumar et al.

  20. Gut hormones: the future of obesity treatment?

    PubMed Central

    McGavigan, Anne K; Murphy, Kevin G

    2012-01-01

    Obesity is a major worldwide health problem. The treatment options are severely limited. The development of novel anti-obesity drugs is fraught with efficacy and safety issues. Consequently, several investigational anti-obesity drugs have failed to gain marketing approval in recent years. Anorectic gut hormones offer a potentially safe and viable option for the treatment of obesity. The prospective utility of gut hormones has improved drastically in recent years with the development of longer acting analogues. Additionally, specific combinations of gut hormones have been demonstrated to have additive anorectic effects. This article reviews the current stage of anti-obesity drugs in development, focusing on gut hormone-based therapies. PMID:22452339

  1. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    PubMed

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  2. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    PubMed

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  3. The HOG Pathway Is Critical for the Colonization of the Mouse Gastrointestinal Tract by Candida albicans

    PubMed Central

    Prieto, Daniel; Román, Elvira; Correia, Inês; Pla, Jesus

    2014-01-01

    The opportunistic pathogen Candida albicans is a frequent inhabitant of the human gastrointestinal tract where it usually behaves as a harmless commensal. In this particular niche, it needs to adapt to the different micro environments that challenge its survival within the host. In order to determine those factors involved in gut adaptation, we have used a gastrointestinal model of colonization in mouse to trace the behaviour of fungal cells. We have developed a genetic labelling system based on the complementary spectral properties of the fluorescent proteins GFP and a new C. albicans codon-adapted RFP (dTOM2) that allow a precise quantification of the fungal population in the gut via standard in vitro cultures or flow cytometry. This methodology has allowed us to determine the role of the three MAP kinase pathways of C. albicans (mediated by the MAPK Mkc1, Cek1 or Hog1) in mouse gut colonization via competitive assays with MAPK pathway mutants and their isogenic wild type strain. This approach reveals the signalling through HOG pathway as a critical factor influencing the establishment of C. albicans in the mouse gut. Less pronounced effects for mkc1 or cek1 mutants were found, only evident after 2–3 weeks of colonization. We have also seen that hog1 mutants is defective in adhesion to the gut mucosa and sensitive to bile salts. Finally, we have developed a genetic strategy for the in vivo excision (tetracycline-dependent) of any specific gene during the course of colonization in this particular niche, allowing the analysis of its role during gut colonization. PMID:24475243

  4. Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats.

    PubMed

    Masarwi, Majdi; Solnik, Hadas Isaac; Phillip, Moshe; Yaron, Sima; Shamir, Raanan; Pasmanic-Chor, Metsada; Gat-Yablonski, Galia

    2018-01-01

    Researchers are gaining an increasing understanding of host-gut microbiota interactions, but studies of the role of gut microbiota in linear growth are scarce. The aim of this study was to investigate the effect of food restriction and refeeding with different diets on gut microbiota composition in fast-growing rats. Young male Sprague-Dawley rats were fed regular rat chow ad libitum (control group) or subjected to 40% food restriction for 36 days followed by continued restriction or ad libitum refeeding for 24 days. Three different diets were used for refeeding: regular vegetarian protein chow or chow in which the sole source of protein was casein or whey. In the control group, the composition of the microbiota remained stable. Food restriction for 60 days led to a significant change in the gut microbiota at the phylum level, with a reduction in the abundance of Firmicutes and an increase in Bacteroidetes and Proteobacteria. Rats refed with the vegetarian protein diet had a different microbiota composition than rats refed the casein- or whey-based diet. Similarities in the bacterial population were found between rats refed vegetarian protein or a whey-based diet and control rats, and between rats refed a casein-based diet and rats on continued restriction. There was a significant strong correlation between the gut microbiota and growth parameters: humerus length, epiphyseal growth plate height, and levels of insulin-like growth factor 1 and leptin. In conclusion, the type of protein in the diet significantly affects the gut microbiota and, thereby, may affect animal's health. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Gut Microbiota Dysbiosis as Risk and Premorbid Factors of IBD and IBS Along the Childhood-Adulthood Transition.

    PubMed

    Putignani, Lorenza; Del Chierico, Federica; Vernocchi, Pamela; Cicala, Michele; Cucchiara, Salvatore; Dallapiccola, Bruno

    2016-02-01

    Gastrointestinal disorders, although clinically heterogeneous, share pathogenic mechanisms, including genetic susceptibility, impaired gut barrier function, altered microbiota, and environmental triggers (infections, social and behavioral factors, epigenetic control, and diet). Gut microbiota has been studied for inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) in either children or adults, while modifiable gut microbiota features, acting as risk and premorbid factors along the childhood-adulthood transition, have not been thoroughly investigated so far. Indeed, the relationship between variations of the entire host/microbiota/environmental scenario and clinical phenotypes is still not fully understood. In this respect, tracking gut dysbiosis grading may help deciphering host phenotype-genotype associations and microbiota shifts in an integrated top-down omics-based approach within large-scale pediatric and adult case-control cohorts. Large-scale gut microbiota signatures and host inflammation patterns may be integrated with dietary habits, under genetic and epigenetic constraints, providing gut dysbiosis profiles acting as risk predictors of IBD or IBS in preclinical cases. Tracking dysbiosis supports new personalized/stratified IBD and IBS prevention programmes, generating Decision Support System tools. They include (1) high risk or flare-up recurrence -omics-based dysbiosis profiles; (2) microbial and molecular biomarkers of health and disease; (3) -omics-based pipelines for laboratory medicine diagnostics; (4) health apps for self-management of score-based dietary profiles, which can be shared with clinicians for nutritional habit and lifestyle amendment; (5) -omics profiling data warehousing and public repositories for IBD and IBS profile consultation. Dysbiosis-related indexes can represent novel laboratory and clinical medicine tools preventing or postponing the disease, finally interfering with its natural history.

  6. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes.

    PubMed

    Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K

    2012-11-30

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  7. A framework for the modeling of gut blood flow regulation and postprandial hyperaemia

    PubMed Central

    Jeays, Adam David; Lawford, Patricia Veronica; Gillott, Richard; Spencer, Paul A; Bardhan, Karna Dev; Hose, David Rodney

    2007-01-01

    After a meal the activity of the gut increases markedly as digestion takes place. Associated with this increase in activity is an increase in blood flow, which has been shown to be dependent on factors such as caloric content and constitution of the meal. Much qualitative work has been carried out regarding mechanisms for the presence of food in a section of gut producing increased blood flow to that section, but there are still many aspects of this process that are not fully understood. In this paper we briefly review current knowledge on several relevant areas relating to gut blood flow, focusing on quantitative data where available and highlighting areas where further research is needed. We then present new data on the effect of feeding on flow in the superior mesenteric artery. Finally, we describe a framework for combining this data to produce a single model describing the mechanisms involved in postprandial hyperaemia. For a section of the model, where appropriate data are available, preliminary results are presented. PMID:17457971

  8. Noncommutative GUTs, Standard Model and C, P, T

    NASA Astrophysics Data System (ADS)

    Aschieri, P.; Jurčo, B.; Schupp, P.; Wess, J.

    2003-02-01

    Noncommutative Yang-Mills theories are sensitive to the choice of the representation that enters in the gauge kinetic term. We constrain this ambiguity by considering grand unified theories. We find that at first order in the noncommutativity parameter θ, SU(5) is not truly a unified theory, while SO(10) has a unique noncommutative generalization. In view of these results we discuss the noncommutative SM theory that is compatible with SO(10) GUT and find that there are no modifications to the SM gauge kinetic term at lowest order in θ. We study in detail the reality, Hermiticity and C, P, T properties of the Seiberg-Witten map and of the resulting effective actions expanded in ordinary fields. We find that in models of GUTs (or compatible with GUTs) right-handed fermions and left-handed ones appear with opposite Seiberg-Witten map.

  9. Protein- and RNA-Enhanced Fermentation by Gut Microbiota of the Earthworm Lumbricus terrestris.

    PubMed

    Zeibich, Lydia; Schmidt, Oliver; Drake, Harold L

    2018-06-01

    Earthworms are a dominant macrofauna in soil ecosystems and have determinative effects on soil fertility and plant growth. These invertebrates feed on ingested material, and gizzard-linked disruption of ingested fungal and bacterial cells is conceived to provide diverse biopolymers in the anoxic alimentary canals of earthworms. Fermentation in the gut is likely important to the utilization of ingested biopolymer-derived compounds by the earthworm. This study therefore examined the fermentative responses of gut content-associated microbes of the model earthworm Lumbricus terrestris to (i) microbial cell lysate (to simulate gizzard-disrupted cells) and (ii) dominant biopolymers of such biomass, protein, and RNA. The microbial cell lysate augmented the production of H 2 , CO 2 , and diverse fatty acids (e.g., formate, acetate, propionate, succinate, and butyrate) in anoxic gut content microcosms, indicating that the cell lysate triggered diverse fermentations. Protein and RNA also augmented diverse fermentations in anoxic microcosms of gut contents, each yielding a distinct product profile (e.g., RNA yielded H 2 and succinate, whereas protein did not). The combined product profile of protein and RNA treatments was similar to that of cell lysate treatments, and 16S rRNA-based analyses indicated that many taxa that responded to cell lysate were similar to taxa that responded to protein or RNA. In particular, protein stimulated Peptostreptococcaceae , Clostridiaceae , and Fusobacteriaceae , whereas RNA stimulated Aeromonadaceae These findings demonstrate the capacity of gut-associated obligate anaerobes and facultative aerobes to catalyze biopolymer-driven fermentations and highlight the potential importance of protein and RNA as substrates linked to the overall turnover dynamics of organic carbon in the alimentary canal of the earthworm. IMPORTANCE The subsurface lifestyle of earthworms makes them an unnoticed component of the terrestrial biosphere. However, the propensity of these invertebrates to consume their home, i.e., soil and litter, has long-term impacts on soil fertility, plant growth, and the cycling of elements. The alimentary canals of earthworms can contain up to 500 ml anoxic gut content per square meter of soil, and ingested soil may contain 10 9 or more microbial cells per gram dry weight, considerations that illustrate that enormous numbers of soil microbes are subject to anoxia during gut passage. Feeding introduces diverse sources of biopolymers to the gut, and the gut fermentation of biopolymers could be important to the transformation of matter by the earthworm and its capacity to utilize fermentation-derived fatty acids. Thus, this study examined the capacity of microbes in earthworm gut contents to ferment protein and RNA, dominant biopolymers of cells that become disrupted during gut passage. Copyright © 2018 Zeibich et al.

  10. Gut microbiota and obesity: role in aetiology and potential therapeutic target.

    PubMed

    Moran, Carthage P; Shanahan, Fergus

    2014-08-01

    Obesity is epidemic; chronic energy surplus is clearly important in obesity development but other factors are at play. Indigenous gut microbiota are implicated in the aetiopathogenesis of obesity and obesity-related disorders. Evidence from murine models initially suggested a role for the gut microbiota in weight regulation and the microbiota has been shown to contribute to the low grade inflammation that characterises obesity. The microbiota and its metabolites mediate some of the alterations of the microbiota-gut-brain axis, the endocannabinoid system, and bile acid metabolism, found in obesity-related disorders. Modulation of the gut microbiota is an attractive proposition for prevention or treatment of obesity, particularly as traditional measures have been sub-optimal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity.

    PubMed

    Tai, Ningwen; Wong, F Susan; Wen, Li

    2015-03-01

    Diabetes is a group of metabolic disorders characterized by persistent hyperglycemia and has become a major public health concern. Autoimmune type 1 diabetes (T1D) and insulin resistant type 2 diabetes (T2D) are the two main types. A combination of genetic and environmental factors contributes to the development of these diseases. Gut microbiota have emerged recently as an essential player in the development of T1D, T2D and obesity. Altered gut microbiota have been strongly linked to disease in both rodent models and humans. Both classic 16S rRNA sequencing and shot-gun metagenomic pyrosequencing analysis have been successfully applied to explore the gut microbiota composition and functionality. This review focuses on the association between gut microbiota and diabetes and discusses the potential mechanisms by which gut microbiota regulate disease development in T1D, T2D and obesity.

  12. Formation of gut-like structures in vitro from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko

    2006-01-01

    Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.

  13. ESA BRAT (Broadview Radar Altimetry Toolbox) and GUT (GOCE User Toolbox) toolboxes

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Ambrozio, A.; Restano, M.

    2016-12-01

    The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from previous and current altimetry missions, including the upcoming Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases. BRAT's future release (4.0.0) is planned for September 2016. Based on the community feedback, the frontend has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images. The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions. In the current 3.0 version, GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's VCM (Variance-Covariance Matrix) tool for analysing GOCE's variance-covariance matrices. BRAT and GUT toolboxes can be freely downloaded, along with ancillary material, at https://earth.esa.int/brat and https://earth.esa.int/gut.

  14. The BRAT and GUT Couple: Broadview Radar Altimetry and GOCE User Toolboxes

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Restano, M.; Ambrózio, A.

    2017-12-01

    The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from previous and current altimetry missions, including Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases. BRAT's next release (4.2.0) is planned for October 2017. Based on the community feedback, the front-end has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images. The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions. In the current 3.1 version, GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's Variance-Covariance Matrix tool (VCM). BRAT and GUT toolboxes can be freely downloaded, along with ancillary material, at https://earth.esa.int/brat and https://earth.esa.int/gut.

  15. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers

    PubMed Central

    Al-Ghoul, Walid M.; Kim, Margarita S.; Fazal, Nadeem; Azim, Anser C.; Ali, Ashraf

    2014-01-01

    Simvastatin (SMV) has been shown to exhibit promising anti-inflammatory properties alongside its classic cholesterol lowering action. We tested these emerging effects in a major thermal injury mouse model (3rd degree scald, ~20% TBSA) with previously documented, inflammation-mediated intestinal defects. Neutrophil extracellular traps (NETs) inflammation measurement methods were used alongside classic gut mucosa inflammation and leakiness measurements with exogenous melatonin treatment as a positive control. Our hypothesis is that simvastatin has protective therapeutic effects against early postburn gut mucosa inflammation and leakiness. To test this hypothesis, we compared untreated thermal injury (TI) adult male mice with TI littermates treated with simvastatin (0.2 mg/kg i.p., TI + SMV) immediately following burn injury and two hours before being sacrificed the day after; melatonin-treated (Mel) (1.86 mg/kg i.p., TI + Mel) mice were compared as a positive control. Mice were assessed for the following: (1) tissue oxidation and neutrophil infiltration in terminal ileum mucosa using classic carbonyl, Gr-1, and myeloperoxidase immunohistochemical or biochemical assays, (2) NETosis in terminal ileum and colon mucosa homogenates and peritoneal and fluid blood samples utilizing flow cytometric analyses of the surrogate NETosis biomarkers, picogreen and Gr-1, and (3) transepithelial gut leakiness as measured in terminal ileum and colon with FITC-dextran and transepithelial electrical resistance (TEER). Our results reveal that simvastatin and melatonin exhibit consistently comparable therapeutic protective effects against the following: (1) gut mucosa oxidative stress as revealed in the terminal ileum by markers of protein carbonylation as well as myeloperoxidase (MPO) and Gr-1 infiltration, (2) NETosis as revealed in the gut milieu, peritoneal lavage and plasma utilizing picogreen and Gr-1 flow cytometry and microscopy, and (3) transepithelial gut leakiness as assessed in the ileum and colon by FITC-dextran leakiness and TEER. Thus, simvastatin exhibits strong acute anti-inflammatory actions associated with marked decreases in gut tissue and systemic NETosis and decreased gut mucosa leakiness. PMID:24809006

  16. Insights into the gut microbiota of freshwater shrimp and its associations with the surrounding microbiota and environmental factors.

    PubMed

    Zhao, Yanting; Duan, Cuilan; Zhang, Xuxiang; Chen, Huangen; Ren, Hongqiang; Yin, Ying; Ye, Lin

    2018-04-23

    The gut microbiota of aquatic animals plays a crucial role in host health through nutrient acquisition and outcompetition of pathogens. In this study, based on the high-throughput sequencing of 16S rRNA gene amplicons, we examined the bacterial communities in the gut of freshwater shrimp ( Macrobrachium nipponense ) and in their living environments (sediment and pond water) and analyzed the effects of abiotic and biotic factors on the shrimp gut bacterial communities. High bacterial heterogeneity was observed in the freshwater shrimp gut samples, and the result indicated that both the surrounding bacterial community and water quality factors (particularly dissolved oxygen and temperature) could affect the shrimp gut bacterial community. Despite the observed heterogeneity, 57 genera, constituting 38~99% of the total genera in each of the 40 shrimp gut samples, were identified as the main bacterial population in the gut of M. nipponense . In addition, a high diversity and abundance of lactic acid bacteria (26 genera), which could play significant roles in the digestion process in shrimp, were observed in the shrimp gut samples. Overall, this study provides insights into the gut bacterial communities of freshwater shrimp and basic information for shrimp farming regarding the application of probiotics and disease prevention.

  17. Exploitation of Nontraditional Corp, Yacon, in Breast Cancer Prevention Using Preclinical Rat Model

    DTIC Science & Technology

    2011-07-01

    liver glucose disposal evident along sorbitol, PPP, and hexosamine pathways. • Gut microbiome : A significant impact of diet on levels of...biochemicals reflecting metabolism of the gut microbiome was evident in plasma and liver and observed for several classes of metabolites. Biochemicals...acid metabolites reflecting activity of the gut microbiome contribute to host metabolic pathways and/or must be metabolized further by the liver

  18. Altered Gastrointestinal Function in the Neuroligin-3 Mouse Model of Autism

    DTIC Science & Technology

    2013-10-01

    GABA neurotransmission in the brain. This work aims to examine the spatiotemporal distribution patterns of NL3 and related proteins and mRNA in gut ...implicated in ASD are upregulated during gut development presynaptic localization of the neuroligin-3 protein 16. SECURITY CLASSIFICATION OF: U...related proteins and mRNA in gut tissue from these mice. This project aims to determine biological mechanisms contributing to gastrointestinal dysfunction

  19. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet.

    PubMed

    Kurundkar, Ashish R; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Hartman, Yolanda E; He, Dongning; Karnatak, Rajendra K; Neel, Mary L; Clancy, John P; Anantharamaiah, G M; Maheshwari, Akhil

    2010-08-01

    Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-wk-old previously healthy piglets to venoarterial ECMO for up to 8 h and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 h of treatment, leading to a 6- to 10-fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. On the basis of these data, we conclude that ECMO is an independent cause of gut barrier dysfunction and bacterial translocation may be an important contributor to ECMO-related inflammation.

  20. The impact of Rhodiola rosea on the gut microbial community of Drosophila melanogaster.

    PubMed

    Labachyan, Khachik E; Kiani, Dara; Sevrioukov, Evgueni A; Schriner, Samuel E; Jafari, Mahtab

    2018-01-01

    The root extract of Rhodiola rosea has historically been used in Europe and Asia as an adaptogen, and similar to ginseng and Shisandra , shown to display numerous health benefits in humans, such as decreasing fatigue and anxiety while improving mood, memory, and stamina. A similar extract in the Rhodiola family, Rhodiola crenulata , has previously been shown to confer positive effects on the gut homeostasis of the fruit fly, Drosophila melanogaster. Although, R. rosea has been shown to extend lifespan of many organisms such as fruit flies, worms and yeast, its anti-aging mechanism remains uncertain. Using D. melanogaster as our model system, the purpose of this work was to examine whether the anti-aging properties of R. rosea are due to its impact on the microbial composition of the fly gut. Rhodiola rosea treatment significantly increased the abundance of Acetobacter , while subsequently decreasing the abundance of Lactobacillales of the fly gut at 10 and 40 days of age. Additionally, supplementation of the extract decreased the total culturable bacterial load of the fly gut, while increasing the overall quantifiable bacterial load. The extract did not display any antimicrobial activity when disk diffusion tests were performed on bacteria belonging to Microbacterium , Bacillus , and Lactococcus . Under standard and conventional rearing conditions, supplementation of R. rosea significantly alters the microbial community of the fly gut, but without any general antibacterial activity. Further studies should investigate whether R. rosea impacts the gut immunity across multiple animal models and ages.

  1. [Management of mesenteric ischemia in the era of intestinal stroke centers: The gut and lifesaving strategy].

    PubMed

    Nuzzo, A; Corcos, O

    2017-09-01

    Mesenteric ischemia is a gut and life-threatening, medical and surgical, digestive and vascular emergency. Mesenteric ischemia is the result of an arterial or venous occlusion, a vasospasm secondary to low-flow states in intensive care patients, aortic clamping during vascular surgery or intestinal transplantation. Progression towards mesenteric infarction and its complications is unpredictable and correlates with high rates of mortality or a high risk of short bowel syndrome in case of survival. Thus, mesenteric ischemia should be diagnosed and treated at an early stage, when gut injury is still reversible. Diagnostic workup lacks sensitive and specific clinical and biological marker. Consequently, diagnosis and effective therapy can be achieved by a high clinical suspicion and a specific multimodal management: the gut and lifesaving strategy. Based on the model of ischemic stroke centers, the need for a multidisciplinary and expert 24/24 emergency care has led, in 2016, to the inauguration of the first Intestinal Stroke Center (Structure d'urgences vasculaires intestinales [SURVI]) in France. This review highlights the pathophysiological features of chronic and acute mesenteric ischemia, as well as the diagnosis workup and the therapeutic management developed in this Intestinal Stroke Center. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  2. Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the Etiology, Disease Progression and Treatment of Eating Disorders

    PubMed Central

    Lam, Yan Y.; Maguire, Sarah; Palacios, Talia; Caterson, Ian D.

    2017-01-01

    Traditionally recognized as mental illnesses, eating disorders are increasingly appreciated to be biologically-driven. There is a growing body of literature that implicates a role of the gut microbiota in the etiology and progression of these conditions. Gut bacteria may act on the gut–brain axis to alter appetite control and brain function as part of the genesis of eating disorders. As the illnesses progress, extreme feeding patterns and psychological stress potentially feed back to the gut ecosystem that can further compromise physiological, cognitive, and social functioning. Given the established causality between dysbiosis and metabolic diseases, an altered gut microbial profile is likely to play a role in the co-morbidities of eating disorders with altered immune function, short-chain fatty acid production, and the gut barrier being the key mechanistic links. Understanding the role of the gut ecosystem in the pathophysiology of eating disorders will provide critical insights into improving current treatments and developing novel microbiome-based interventions that will benefit patients with eating disorders. PMID:28613252

  3. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system.

    PubMed

    Gao, Bei; Chi, Liang; Tu, Pengcheng; Bian, Xiaoming; Thomas, Jesse; Ru, Hongyu; Lu, Kun

    2018-02-01

    The gut microbiome has tremendous potential to impact health and disease. Various environmental toxicants, including insecticides, have been shown to alter gut microbiome community structures. However, the mechanism that compositionally and functionally regulates gut microbiota remains unclear. Quorum sensing is known to modulate intra- and interspecies gene expression and coordinate population responses. It is unknown whether quorum sensing is disrupted when environmental toxicants cause perturbations in the gut microbiome community structure. To reveal the response of the quorum-sensing system to environmental exposure, we use a combination of Illumina-based 16S rRNA gene amplicon and shotgun metagenome sequencing to examine the impacts of a widely used organophosphate insecticide, malathion, on the gut microbiome trajectory, quorum sensing system and behaviors related to quorum sensing, such as motility and pathogenicity. Our results demonstrated that malathion perturbed the gut microbiome development, quorum sensing and quorum sensing related behaviors. These findings may provide a novel mechanistic understanding of the role of quorum-sensing in the gut microbiome toxicity of malathion. Copyright © 2017. Published by Elsevier B.V.

  4. Spatial Analysis of Slowly Oscillating Electric Activity in the Gut of Mice Using Low Impedance Arrayed Microelectrodes

    PubMed Central

    Taniguchi, Mizuki; Kajioka, Shunichi; Shozib, Habibul B.; Sawamura, Kenta; Nakayama, Shinsuke

    2013-01-01

    Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm2. The size of each recording electrode was 50×50 µm2, however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/Wv mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/Wv mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity. PMID:24124480

  5. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet.

    PubMed

    Liu, Xiaofei; Cao, Shangqing; Zhang, Xuewu

    2015-09-16

    There exists a bidirectional communication system between the gastrointestinal tract and the brain. Increasing evidence shows that gut microbiota can play a critical role in this communication; thus, the concept of a gut microbiota and brain axis is emerging. Here, we review recent findings in the relationship between intestinal microbes and brain function, such as anxiety, depression, stress, autism, learning, and memory. We highlight the advances in modulating brain development and behavior by probiotics, prebiotics, and diet through the gut microbiota-brain axis. A variety of mechanisms including immune, neural, and metabolic pathways may be involved in modulation of the gut microbiota-brain axis. We also discuss some future challenges. A deeper understanding of the relationship between the gut bacteria and their hosts is implicated in developing microbial-based therapeutic strategies for brain disorders.

  6. The need for an intermediate mass scale in GUTs

    NASA Technical Reports Server (NTRS)

    Shafi, Q.

    1983-01-01

    The minimal SU(5) grand unified field theory (GUT) model fails to resolve the strong charge parity (CP) problem, suffers from the cosmological monopole problem, sheds no light on the nature of the 'dark' mass in the universe, and predicts an unacceptably low value for the baryon asymmetry. All these problems can be overcome in suitable grand unified axion models with an intermediate mass scale of about 10 to the 11th power to 10 to the 12th power GeV. An example based on the gauge group SO(10) is presented. Among other things, it predicts that the axions comprise the 'dark' mass in the universe, and that there exists a galactic monopole flux of 10 to the -8th power to 10 to the -7th power/sq cm/yr. Other topics that are briefly discussed include proton decay, family symmetry, neutrino masses and the gauge hierarchy problem.

  7. Metagenomic and metabolomic analysis of the toxic effects of trichloroacetamide-induced gut microbiome and urine metabolome perturbations in mice.

    PubMed

    Zhang, Yan; Zhao, Fuzheng; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2015-04-03

    Disinfection byproducts (DBPs) in drinking water have been linked to various diseases, including colon, colorectal, rectal, and bladder cancer. Trichloroacetamide (TCAcAm) is an emerging nitrogenous DBP, and our previous study found that TCAcAm could induce some changes associated with host-gut microbiota co-metabolism. In this study, we used an integrated approach combining metagenomics, based on high-throughput sequencing, and metabolomics, based on nuclear magnetic resonance (NMR), to evaluate the toxic effects of TCAcAm exposure on the gut microbiome and urine metabolome. High-throughput sequencing revealed that the gut microbiome's composition and function were significantly altered after TCAcAm exposure for 90 days in Mus musculus mice. In addition, metabolomic analysis showed that a number of gut microbiota-related metabolites were dramatically perturbed in the urine of the mice. These results may provide novel insight into evaluating the health risk of environmental pollutants as well as revealing the potential mechanism of TCAcAm's toxic effects.

  8. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses.

    PubMed

    Mohd Shaufi, Mohd Asrore; Sieo, Chin Chin; Chong, Chun Wie; Gan, Han Ming; Ho, Yin Wan

    2015-01-01

    Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation. Ileal and caecal contents of broiler chicken were extracted from 7, 14, 21 and 42-day old chicken. Genomic DNA was then extracted and amplified based on V3 hyper-variable region of 16S rRNA. Bioinformatics, ecological and statistical analyses such as Principal Coordinate Analysis (PCoA) was performed in mothur software and plotted using PRIMER 6. Additional analyses for predicted metagenomes were performed through PICRUSt and STAMP software package based on Greengenes databases. A distinctive difference in bacterial communities was observed between ilea and caeca as the chicken aged (P < 0.001). The microbial communities in the caeca were more diverse in comparison to the ilea communities. The potentially pathogenic bacteria such as Clostridium were elevated as the chicken aged and the population of beneficial microbe such as Lactobacillus was low at all intervals. On the other hand, based on predicted metagenomes analysed, clear distinction in functions and roles of gut microbiota such as gene pathways related to nutrient absorption (e.g. sugar and amino acid metabolism), and bacterial proliferation and colonization (e.g. bacterial motility proteins, two-component system and bacterial secretion system) were observed between ilea and caeca, respectively (P < 0.05). The caeca microbial communities were more diverse in comparison to ilea. The main functional differences between the two sites were found to be related to nutrient absorption and bacterial colonization. Based on the composition of the microbial community, future gut modulation with beneficial bacteria such as probiotics may benefit the host.

  9. Threshold corrections to dimension-six proton decay operators in SUSY SU(5)

    NASA Astrophysics Data System (ADS)

    Kuwahara, Takumi

    2017-11-01

    Proton decay is a significant phenomenon to verify supersymmetric grand unified theories (SUSY GUTs). To predict the proton lifetime precisely, it is important to include the next-leading order (NLO) corrections to the proton decay operators. In this talk, we have shown threshold corrections to the dimension-six proton decay operators in the minimal SUSY SU(5) GUT, its extended models with extra matters, and the missing partner SUSY SU(5) GUT. As a result, we have found that the threshold effects give rise to corrections a few percent in the minimal setup and below 5% in its extension with extra matters in spite of a large unified coupling at the GUT scale. On the other hand, in the missing partner model the correction to the proton decay rate is suppression about 60% due to a number of component fields of 75 and their mass splitting.

  10. Towards an integrated understanding of gut microbiota using insects as model systems.

    PubMed

    Pernice, Mathieu; Simpson, Stephen J; Ponton, Fleur

    2014-10-01

    Metazoans form symbioses with microorganisms that synthesize essential nutritional compounds and increase their efficiency to digest and absorb nutrients. Despite the growing awareness that microbes within the gut play key roles in metabolism, health and development of metazoans, symbiotic relationships within the gut are far from fully understood. Insects, which generally harbor a lower microbial diversity than vertebrates, have recently emerged as potential model systems to study these interactions. In this review, we give a brief overview of the characteristics of the gut microbiota in insects in terms of low diversity but high variability at intra- and interspecific levels and we investigate some of the ecological and methodological factors that might explain such variability. We then emphasize how studies integrating an array of techniques and disciplines have the potential to provide new understanding of the biology of this micro eco-system. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  11. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles.

    PubMed

    Peters, Sheila Annie

    2008-01-01

    Despite recent advances in understanding of the role of the gut as a metabolizing organ, recognition of gut wall metabolism and/or other factors contributing to intestinal loss of a compound has been a challenging task due to the lack of well characterized methods to distinguish it from first-pass hepatic extraction. The implications of identifying intestinal loss of a compound in drug discovery and development can be enormous. Physiologically based pharmacokinetic (PBPK) simulations of pharmacokinetic profiles provide a simple, reliable and cost-effective way to understand the mechanisms underlying pharmacokinetic processes. The purpose of this article is to demonstrate the application of PBPK simulations in bringing to light intestinal loss of orally administered drugs, using two example compounds: verapamil and an in-house compound that is no longer in development (referred to as compound A in this article). A generic PBPK model, built in-house using MATLAB software and incorporating absorption, metabolism, distribution, biliary and renal elimination models, was employed for simulation of concentration-time profiles. Modulation of intrinsic hepatic clearance and tissue distribution parameters in the generic PBPK model was done to achieve a good fit to the observed intravenous pharmacokinetic profiles of the compounds studied. These optimized clearance and distribution parameters are expected to be invariant across different routes of administration, as long as the kinetics are linear, and were therefore employed to simulate the oral profiles of the compounds. For compounds with reasonably good solubility and permeability, an area under the concentration-time curve for the simulated oral profile that far exceeded the observed would indicate some kind of loss in the intestine. PBPK simulations applied to compound A showed substantial loss of the compound in the gastrointestinal tract in humans but not in rats. This accounted for the lower bioavailability of the compound in humans than in rats. PBPK simulations of verapamil identified gut wall metabolism, well established in the literature, and showed large interspecies differences with respect to both gut wall metabolism and drug-induced delays in gastric emptying. Mechanistic insights provided by PBPK simulations can be very valuable in answering vital questions in drug discovery and development. However, such applications of PBPK models are limited by the lack of accurate inputs for clearance and distribution. This article demonstrates a successful application of PBPK simulations to identify and quantify intestinal loss of two model compounds in rats and humans. The limitation of inaccurate inputs for the clearance and distribution parameters was overcome by optimizing these parameters through fitting intravenous profiles. The study also demonstrated that the large interspecies differences associated with gut wall metabolism and gastric emptying, evident for the compounds studied, make animal model extrapolations to humans unreliable. It is therefore important to do PBPK simulations of human pharmacokinetic profiles to understand the relevance of intestinal loss of a compound in humans.

  12. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp.

    PubMed

    Dai, Wenfang; Yu, Weina; Zhang, Jinjie; Zhu, Jinyong; Tao, Zhen; Xiong, Jinbo

    2017-08-01

    Increasing evidence has revealed a close interplay between the gut bacterial communities and host growth performance. However, until recently, studies generally ignored the contribution of eukaryotes, endobiotic organisms. To fill this gap, we used Illumina sequencing technology on eukaryotic 18S rRNA gene to compare the structures of gut eukaryotic communities among cohabitating retarded, overgrown, and normal shrimp obtained from identically managed ponds. Results showed that a significant difference between gut eukaryotic communities differed significantly between water and intestine and among three shrimp categories. Structural equation modeling revealed that changes in the gut eukaryotic community were positively related to digestive enzyme activities, which in turn influenced shrimp growth performance (λ = 0.97, P < 0.001). Overgrown shrimp exhibited a more complex and cooperative gut eukaryotic interspecies interaction than retarded and normal shrimp, which may facilitate their nutrient acquisition efficiency. Notably, the distribution of dominant eukaryotic genera and shifts in keystone species were closely concordant with shrimp growth performance. In summary, this study provides an integrated overview on direct roles of gut eukaryotic communities in shrimp growth performance instead of well-studied bacterial assembly.

  13. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    PubMed

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  14. Gut microbiota functions: metabolism of nutrients and other food components.

    PubMed

    Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran

    2018-02-01

    The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.

  15. Cardiovascular and Antiobesity Effects of Resveratrol Mediated through the Gut Microbiota.

    PubMed

    Bird, Julia K; Raederstorff, Daniel; Weber, Peter; Steinert, Robert E

    2017-11-01

    Encouraging scientific research into the health effects of dietary bioactive resveratrol has been confounded by its rapid first-pass metabolism, which leads to low in vivo bioavailability. Preliminary studies have shown that resveratrol can modulate gut microbiota composition, undergo biotransformation to active metabolites via the intestinal microbiota, or affect gut barrier function. In rodents, resveratrol can modify the relative Bacteroidetes:Firmicutes ratio and reverse the gut microbial dysbiosis caused by a high-fat diet. By upregulating the expression of genes involved in maintaining tight junctions between intestinal cells, resveratrol contributes to gut barrier integrity. The composition of the gut microbiome and rapid metabolism of resveratrol determines the production of resveratrol metabolites, which are found at greater concentrations in humans after ingestion than their parent molecule and can have similar biological effects. Resveratrol may affect cardiovascular risk factors such as elevated blood cholesterol or trimethylamine N -oxide concentrations. Modulating the composition of the gut microbiota by resveratrol may affect central energy metabolism and modify concentrations of satiety hormones to produce antiobesity effects. Encouraging research from animal models could be tested in humans. © 2017 American Society for Nutrition.

  16. Gut Microbes and the Brain: Paradigm Shift in Neuroscience

    PubMed Central

    Knight, Rob; Mazmanian, Sarkis K.; Cryan, John F.; Tillisch, Kirsten

    2014-01-01

    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. PMID:25392516

  17. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome.

    PubMed

    Kosnicki, Kassi L; Penprase, Jerrold C; Cintora, Patricia; Torres, Pedro J; Harris, Greg L; Brasser, Susan M; Kelley, Scott T

    2018-05-11

    Many alcohol-induced health complications are directly attributable to the toxicity of alcohol or its metabolites, but another potential health impact of alcohol may be on the microbial communities of the human gut. Clear distinctions between healthy and diseased-state gut microbiota have been observed in subjects with metabolic diseases, and recent studies suggest that chronic alcoholism is linked to gut microbiome dysbiosis. Here, we investigated the effects of moderate levels of alcohol consumption on the gut microbiome in both rats and humans. The gut microbiota of rats voluntarily consuming a 20 percent ethanol solution, on alternate days, were compared with a non-exposed control group to identify differential taxonomic and functional profiles. Gut microbial diversity profiles were determined using culture-independent amplification, next-generation sequencing and bioinformatic analysis of bacterial 16S ribosomal RNA gene sequence libraries. Our results showed that, compared with controls, ethanol-consuming rats experienced a significant decline in the biodiversity of their gut microbiomes, a state generally associated with dysbiosis. We also observed significant shifts in the overall diversity of the gut microbial communities and a dramatic change in the relative abundance of particular microbes, such as the Lactobacilli. We also compared our results to human fecal microbiome data collected as part of the citizen science American Gut Project. In contrast to the rat data, human drinkers had significantly higher gut microbial biodiversity than non-drinkers. However, we also observed that microbes that differed among the human subjects displayed similar trends in the rat model, including bacteria implicated in metabolic disease. © 2018 Society for the Study of Addiction.

  18. Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components.

    PubMed

    Wong, Julia M W

    2014-07-01

    Many dietary patterns have been associated with cardiometabolic risk reduction. A commonality between these dietary patterns is the emphasis on plant-based foods. Studies in individuals who consume vegetarian and vegan diets have shown a reduced risk of cardiovascular events and incidence of diabetes. Plant-based dietary patterns may promote a more favorable gut microbial profile. Such diets are high in dietary fiber and fermentable substrate (ie, nondigestible or undigested carbohydrates), which are sources of metabolic fuel for gut microbial fermentation and, in turn, result in end products that may be used by the host (eg, short-chain fatty acids). These end products may have direct or indirect effects on modulating the health of their host. Modulation of the gut microbiota is an area of growing interest, and it has been suggested to have the potential to reduce risk factors associated with chronic diseases. Examples of dietary components that alter the gut microbial composition include prebiotics and resistant starches. Emerging evidence also suggests a potential link between interindividual differences in the gut microbiota and variations in physiology or predisposition to certain chronic disease risk factors. Alterations in the gut microbiota may also stimulate certain populations and may assist in biotransformation of bioactive components found in plant foods. Strategies to modify microbial communities may therefore provide a novel approach in the treatment and management of chronic diseases. © 2014 American Society for Nutrition.

  19. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    PubMed Central

    2012-01-01

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine. PMID:23194438

  20. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis

    PubMed Central

    Tsang, S.W.; Auyeung, K.K.W.; Bian, Z.X.; Ko, J.K.S.

    2016-01-01

    Background Although the precise pathophysiology of irritable bowel syndrome (IBS) remains unknown, it is generally considered to be a disorder of the brain-gut axis, representing the disruption of communication between the brain and the digestive system. The present review describes advances in understanding the pathophysiology and experimental approaches in studying IBS, as well as providing an update of the therapies targeting brain-gut axis in the treatment of the disease. Methods Causal factors of IBS are reviewed. Following this, the preclinical experimental models of IBS will be introduced. Besides, both current and future therapeutic approaches of IBS will be discussed. Results When signal of the brain-gut axis becomes misinterpreted, it may lead to dysregulation of both central and enteric nervous systems, altered intestinal motility, increased visceral sensitivity and consequently contributing to the development of IBS. Interference of the brain-gut axis can be modulated by various psychological and environmental factors. Although there is no existing animal experiment that can represent this complex multifactorial disease, these in vivo models are clinically relevant readouts of gastrointestinal functions being essential to the identification of effective treatments of IBS symptoms as well as their molecular targets. Understanding the brain-gut axis is essential in developing the effective therapy for IBS. Therapies include improvement of GI motor functions, relief of visceral hypersensitivity and pain, attenuation of autonomic dysfunctions and suppression of mucosal immune activation. Conclusion Target-oriented therapies that provide symptomatic, psychological and physiological benefits could surely help to improve the quality of life of IBS patients. PMID:27009115

  1. Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Ketrija; Ringus, Daina L.; Hubert, Nathaniel

    Chronic diseases arise when there is mutual reinforcement of pathophysiological processes that cause an aberrant steady state. Such a sequence of events may underlie chronic constipation, which has been associated with dysbiosis of the gut. In this study we hypothesized that assemblage of microbial communities, directed by slow gastrointestinal transit, affects host function in a way that reinforces constipation and further maintains selection on microbial communities. In our study, we used two models – an opioid-induced consti- pation model in mice, and a humanized mouse model where germ-free mice were colonized with stool from a patient with constipation-predominant irritable bowelmore » syndrome (IBS-C) in humans. We examined the impact of pharmacologically (loperamide)-induced constipation (PIC) and IBS-C on the structural and functional profile of the gut microbiota. Germ-free (GF) mice were colonized with microbiota from PIC donor mice and IBS-C patients to determine how the microbiota affects the host. PIC and IBS-C promoted changes in the gut microbiota, characterized by increased relative abundance of Bacteroides ovatus and Parabacteroides distasonis in both models. PIC mice exhibited decreased luminal concentrations of butyrate in the cecum and altered metabolic profiles of the gut microbiota. Colonization of GF mice with PIC-associated mice cecal or human IBS-C fecal microbiota significantly increased GI transit time when compared to control microbiota recipients. IBS-C-associated gut microbiota also impacted colonic contractile properties. Lastly, our findings support the concept that constipation is characterized by dis- ease-associated steady states caused by reinforcement of pathophysiological factors in host-microbe interactions.« less

  2. Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models

    DOE PAGES

    Touw, Ketrija; Ringus, Daina L.; Hubert, Nathaniel; ...

    2017-03-20

    Chronic diseases arise when there is mutual reinforcement of pathophysiological processes that cause an aberrant steady state. Such a sequence of events may underlie chronic constipation, which has been associated with dysbiosis of the gut. In this study we hypothesized that assemblage of microbial communities, directed by slow gastrointestinal transit, affects host function in a way that reinforces constipation and further maintains selection on microbial communities. In our study, we used two models – an opioid-induced consti- pation model in mice, and a humanized mouse model where germ-free mice were colonized with stool from a patient with constipation-predominant irritable bowelmore » syndrome (IBS-C) in humans. We examined the impact of pharmacologically (loperamide)-induced constipation (PIC) and IBS-C on the structural and functional profile of the gut microbiota. Germ-free (GF) mice were colonized with microbiota from PIC donor mice and IBS-C patients to determine how the microbiota affects the host. PIC and IBS-C promoted changes in the gut microbiota, characterized by increased relative abundance of Bacteroides ovatus and Parabacteroides distasonis in both models. PIC mice exhibited decreased luminal concentrations of butyrate in the cecum and altered metabolic profiles of the gut microbiota. Colonization of GF mice with PIC-associated mice cecal or human IBS-C fecal microbiota significantly increased GI transit time when compared to control microbiota recipients. IBS-C-associated gut microbiota also impacted colonic contractile properties. Lastly, our findings support the concept that constipation is characterized by dis- ease-associated steady states caused by reinforcement of pathophysiological factors in host-microbe interactions.« less

  3. Cell Migration in Tissues: Explant Culture and Live Imaging.

    PubMed

    Staneva, Ralitza; Barbazan, Jorge; Simon, Anthony; Vignjevic, Danijela Matic; Krndija, Denis

    2018-01-01

    Cell migration is a process that ensures correct cell localization and function in development and homeostasis. In disease such as cancer, cells acquire an upregulated migratory capacity that leads to their dissemination throughout the body. Live imaging of cell migration allows for better understanding of cell behaviors in development, adult tissue homeostasis and disease. We have optimized live imaging procedures to track cell migration in adult murine tissue explants derived from: (1) healthy gut; (2) primary intestinal carcinoma; and (3) the liver, a common metastatic site. To track epithelial cell migration in the gut, we generated an inducible fluorescent reporter mouse, enabling us to visualize and track individual cells in unperturbed gut epithelium. To image intratumoral cancer cells, we use a spontaneous intestinal cancer model based on the activation of Notch1 and deletion of p53 in the mouse intestinal epithelium, which gives rise to aggressive carcinoma. Interaction of cancer cells with a metastatic niche, the mouse liver, is addressed using a liver colonization model. In summary, we describe a method for long-term 3D imaging of tissue explants by two-photon excitation microscopy. Explant culturing and imaging can help understand dynamic behavior of cells in homeostasis and disease, and would be applicable to various tissues.

  4. [The role of gut instinct is an important subject].

    PubMed

    Snoek, Jos W

    2010-01-01

    The role of gut instinct in general practice is an important topic. The reliance on gut instinct by experienced doctors is thought to be a form of intuitive decision-making which fits in with System 1 processes in the dual process model in higher cognition. Special mention is made of the theories on intuitive decision-making by the famous Dutch psychologist De Groot, who, when investigating thought processes of chess masters more than half a century ago, developed a fundamental theory on intuitive heuristics. Further studies on the determinants and conditions under which heuristics, such as the reliance on gut instinct, are applied in clinical practice are very welcome.

  5. Factors influencing the grass carp gut microbiome and its effect on metabolism.

    PubMed

    Ni, Jiajia; Yan, Qingyun; Yu, Yuhe; Zhang, Tanglin

    2014-03-01

    Gut microbiota have attracted extensive attention recently because of their important role in host metabolism, immunity and health maintenance. The present study focused on factors affecting the gut microbiome of grass carp (Ctenopharyngodon idella) and further explored the potential effect of the gut microbiome on metabolism. Totally, 43.39 Gb of screened metagenomic sequences obtained from 24 gut samples were fully analysed. We detected 1228 phylotypes (116 Archaea and 1112 Bacteria), most of which belonged to the phyla Firmicutes, Proteobacteria and Fusobacteria. Totally, 41335 of the detected open reading frames (ORFs) were matched to Kyoto Encyclopedia of Genes and Genomes pathways, and carbohydrate and amino acid metabolism was the main matched pathway deduced from the annotated ORFs. Redundancy analysis based on the phylogenetic composition and gene composition of the gut microbiome indicated that gut fullness and feeding (i.e. ryegrass vs. commercial feed, and pond-cultured vs. wild) were significantly related to the gut microbiome. Moreover, many biosynthesis and metabolism pathways of carbohydrates, amino acids and lipids were significantly enhanced by the gut microbiome in ryegrass-fed grass carp. These findings suggest that the metabolic role played by the gut microbiome in grass carp can be affected by feeding. These findings contribute to the field of fish gut microbial ecology and also provide a basis for follow-up functional studies. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Human symbionts inject and neutralize antibacterial toxins to persist in the gut.

    PubMed

    Wexler, Aaron G; Bao, Yiqiao; Whitney, John C; Bobay, Louis-Marie; Xavier, Joao B; Schofield, Whitman B; Barry, Natasha A; Russell, Alistair B; Tran, Bao Q; Goo, Young Ah; Goodlett, David R; Ochman, Howard; Mougous, Joseph D; Goodman, Andrew L

    2016-03-29

    The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.

  7. Gut immune deficits in LEW.1AR1-iddm rats partially overcome by feeding a diabetes-protective diet.

    PubMed

    Crookshank, Jennifer A; Patrick, Christopher; Wang, Gen-Sheng; Noel, J Ariana; Scott, Fraser W

    2015-07-01

    The gut immune system and its modification by diet have been implicated in the pathogenesis of type 1 diabetes (T1D). Therefore, we investigated gut immune status in non-diabetes-prone LEW.1AR1 and diabetes-prone LEW.1AR1-iddm rats and evaluated the effect of a low antigen, hydrolysed casein (HC)-based diet on gut immunity and T1D. Rats were weaned onto a cereal-based or HC-based diet and monitored for T1D. Strain and dietary effects on immune homeostasis were assessed in non-diabetic rats (50-60 days old) and rats with recent-onset diabetes using flow cytometry and immunohistochemistry. Immune gene expression was analysed in mesenteric lymph nodes (MLN) and jejunum using quantitative RT-PCR and PCR arrays. T1D was prevented in LEW.1AR1-iddm rats by feeding an HC diet. Diabetic LEW.1AR1-iddm rats had fewer lymphoid tissue T cells compared with LEW.1AR1 rats. The percentage of CD4(+)  Foxp3(+) regulatory T (Treg) cells was decreased in pancreatic lymph nodes (PLN) of diabetic rats. The jejunum of 50-day LEW.1AR1-iddm rats contained fewer CD3(+) T cells, CD163(+) M2 macrophages and Foxp3(+) Treg cells. Ifng expression was increased in MLN and Foxp3 expression was decreased in the jejunum of LEW.1AR1-iddm rats; Ifng/Il4 was decreased in jejunum of LEW.1AR1-iddm rats fed HC. PCR arrays revealed decreased expression of M2-associated macrophage factors in 50-day LEW.1AR1-iddm rats. Wheat peptides stimulated T-cell proliferation and activation in MLN and PLN cells from diabetic LEW.1AR1-iddm rats. LEW.1AR1-iddm rats displayed gut immune cell deficits and decreased immunoregulatory capacity, which were partially corrected in animals fed a low antigen, protective HC diet consistent with other models of T1D. © 2015 John Wiley & Sons Ltd.

  8. [Sensitization and oral challenge with ovoalbumin in an animal model of food allergy].

    PubMed

    Vinuesa, Miguel Ngel; Bassan, Norberto David; Chaparro, Soledad; Martìnez, Adriel; Batle, Rocìo; Giacomozzi, Florencia; Torres, Valentìn

    2012-01-01

    Gut-associated lymphoid tissue (GALT) is mainly formed by the gut mucosa and associated lymphatic structures that under normal conditions induces hyporesponsiveness, a phenomenon termed oral tolerance. However, the potential brakeup of oral tolerance could otherwise lead to disorders such as food allergy. The aim of the study is to characterise the histopathological and immunohistochemical modifications in intestinal gut mucosa in an animal model of food allergy. New Zealand rabbits were subcutaneously sensitized twice with ovalbumin (OVA), on day 30 after first sensitization, animals were oral challenged with the same antigen. Lymphatic cell population and accessory cells from gut mucosa were studied by conventional histology, histochemistry and immunohistochemistry. An important increase in number of eosinophils were observed in sensitized and challenged group as well as CD25+cells increase in sensitized animals without challenge. Data obtained demonstrated that subcutaneous sensitization and challenge with OVA induced generation of specific IgE antibodies and an anaphylactic inflammatory response. This pattern induced quantitative modifications in studied cells and structural changes in mucosa like oedema at intestinal villi in sensitized and challenged rabbits in this animal model of food allergy.

  9. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): A basis for comparative gut microbial research.

    PubMed

    Gajardo, Karina; Rodiles, Ana; Kortner, Trond M; Krogdahl, Åshild; Bakke, Anne Marie; Merrifield, Daniel L; Sørum, Henning

    2016-08-03

    Gut health challenges, possibly related to alterations in gut microbiota, caused by plant ingredients in the diets, cause losses in Atlantic salmon production. To investigate the role of the microbiota for gut function and health, detailed characterization of the gut microbiota is needed. We present the first in-depth characterization of salmon gut microbiota based on high-throughput sequencing of the 16S rRNA gene's V1-V2 region. Samples were taken from five intestinal compartments: digesta from proximal, mid and distal intestine and of mucosa from mid and distal intestine of 67.3 g salmon kept in seawater (12-14 °C) and fed a commercial diet for 4 weeks. Microbial richness and diversity differed significantly and were higher in the digesta than the mucosa. In mucosa, Proteobacteria dominated the microbiota (90%), whereas in digesta both Proteobacteria (47%) and Firmicutes (38%) showed high abundance. Future studies of diet and environmental impacts on gut microbiota should therefore differentiate between effects on mucosa and digesta in the proximal, mid and the distal intestine. A core microbiota, represented by 22 OTUs, was found in 80% of the samples. The gut microbiota of Atlantic salmon showed similarities with that of mammals.

  10. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer.

    PubMed

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tsubo, Takahisa; Suga, Shogo; Inai, Makoto; Aoki, Yuichi; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Morita, Hidetoshi; Kinoshita, Kenji; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-06-13

    Chronic consumption of excess ethanol increases the risk of colorectal cancer. The pathogenesis of ethanol-related colorectal cancer (ER-CRC) is thought to be partly mediated by gut microbes. Specifically, bacteria in the colon and rectum convert ethanol to acetaldehyde (AcH), which is carcinogenic. However, the effects of chronic ethanol consumption on the human gut microbiome are poorly understood, and the role of gut microbes in the proposed AcH-mediated pathogenesis of ER-CRC remains to be elaborated. Here we analyse and compare the gut microbiota structures of non-alcoholics and alcoholics. The gut microbiotas of alcoholics were diminished in dominant obligate anaerobes (e.g., Bacteroides and Ruminococcus) and enriched in Streptococcus and other minor species. This alteration might be exacerbated by habitual smoking. These observations could at least partly be explained by the susceptibility of obligate anaerobes to reactive oxygen species, which are increased by chronic exposure of the gut mucosa to ethanol. The AcH productivity from ethanol was much lower in the faeces of alcoholic patients than in faeces of non-alcoholic subjects. The faecal phenotype of the alcoholics could be rationalised based on their gut microbiota structures and the ability of gut bacteria to accumulate AcH from ethanol.

  11. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota.

    PubMed

    Cignarella, Francesca; Cantoni, Claudia; Ghezzi, Laura; Salter, Amber; Dorsett, Yair; Chen, Lei; Phillips, Daniel; Weinstock, George M; Fontana, Luigi; Cross, Anne H; Zhou, Yanjiao; Piccio, Laura

    2018-06-05

    Multiple sclerosis (MS) is more common in western countries with diet being a potential contributing factor. Here we show that intermittent fasting (IF) ameliorated clinical course and pathology of the MS model, experimental autoimmune encephalomyelitis (EAE). IF led to increased gut bacteria richness, enrichment of the Lactobacillaceae, Bacteroidaceae, and Prevotellaceae families and enhanced antioxidative microbial metabolic pathways. IF altered T cells in the gut with a reduction of IL-17 producing T cells and an increase in regulatory T cells. Fecal microbiome transplantation from mice on IF ameliorated EAE in immunized recipient mice on a normal diet, suggesting that IF effects are at least partially mediated by the gut flora. In a pilot clinical trial in MS patients, intermittent energy restriction altered blood adipokines and the gut flora resembling protective changes observed in mice. In conclusion, IF has potent immunomodulatory effects that are at least partially mediated by the gut microbiome. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. No-scale SU( 5) super-GUTs

    DOE PAGES

    Ellis, John; Evans, Jason L.; Nagata, Natsumi; ...

    2017-04-12

    We reconsider the minimal SU( 5) grand unified theory (GUT) in the context of no-scale supergravity inspired by string compactification scenarios, assuming that the soft supersymmetry-breaking parameters satisfy universality conditions at some input scale M in above the GUT scale M GUT. When setting up such a no-scale super-GUT model, special attention must be paid to avoiding the Scylla of rapid proton decay and the Charybdis of an excessive density of cold dark matter, while also having an acceptable mass for the Higgs boson. Furthermore, we do not find consistent solutions if none of the matter and Higgs fields aremore » assigned to twisted chiral supermultiplets, even in the presence of Giudice–Masiero terms. But, consistent solutions may be found if at least one fiveplet of GUT Higgs fields is assigned to a twisted chiral supermultiplet, with a suitable choice of modular weights. Spin-independent dark matter scattering may be detectable in some of these consistent solutions.« less

  13. Engineering the gut microbiota to treat hyperammonemia.

    PubMed

    Shen, Ting-Chin David; Albenberg, Lindsey; Bittinger, Kyle; Chehoud, Christel; Chen, Ying-Yu; Judge, Colleen A; Chau, Lillian; Ni, Josephine; Sheng, Michael; Lin, Andrew; Wilkins, Benjamin J; Buza, Elizabeth L; Lewis, James D; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Bushman, Frederic D; Wu, Gary D

    2015-07-01

    Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.

  14. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility.

    PubMed

    Desai, Mahesh S; Seekatz, Anna M; Koropatkin, Nicole M; Kamada, Nobuhiko; Hickey, Christina A; Wolter, Mathis; Pudlo, Nicholas A; Kitamoto, Sho; Terrapon, Nicolas; Muller, Arnaud; Young, Vincent B; Henrissat, Bernard; Wilmes, Paul; Stappenbeck, Thaddeus S; Núñez, Gabriel; Martens, Eric C

    2016-11-17

    Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Gut of Geographically Disparate Ciona intestinalis Harbors a Core Microbiota

    DOE PAGES

    Dishaw, Larry J.; Flores-Torres, Jaime; Lax, Simon; ...

    2014-04-02

    It is now widely understood that all animals engage in complex interactions with bacteria (or microbes) throughout their various life stages. This ancient exchange can involve cooperation and has resulted in a wide range of evolved host-microbial interdependencies, including those observed in the gut. Ciona intestinalis, a filter-feeding basal chordate and classic developmental model that can be experimentally manipulated, is being employed to help define these relationships. Ciona larvae are first exposed internally to microbes upon the initiation of feeding in metamorphosed individuals; however, whether or not these microbes subsequently colonize the gut and whether or not Ciona forms relationshipsmore » with specific bacteria in the gut remains unknown. Here in this report, we show that the Ciona gut not only is colonized by a complex community of bacteria, but also that samples from three geographically isolated populations reveal striking similarity in abundant operational taxonomic units (OTUs) consistent with the selection of a core community by the gut ecosystem.« less

  16. GUTs on Compact Type IIB Orientifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Braun, Volker

    We systematically analyze globally consistent SU(5) GUT models on intersecting D7-branes in genuine Calabi-Yau orientifolds with O3- and O7-planes. Beyond the well-known tadpole and K-theory cancellation conditions there exist a number of additional subtle but quite restrictive constraints. For the realization of SU(5) GUTs with gauge symmetry breaking via U(1)Y flux we present two classes of suitable Calabi-Yau manifolds defined via del Pezzo transitions of the elliptically fibred hypersurface P{sub 1,1,1,6,9}[18] and of the Quintic P{sub 1,1,1,1,1}[5], respectively. To define an orientifold projection we classify all involutions on del Pezzo surfaces. We work out the model building prospects of thesemore » geometries and present five globally consistent string GUT models in detail, including a 3-generation SU(5) model with no exotics whatsoever. We also realize other phenomenological features such as the 10 10 5{sub H} Yukawa coupling and comment on the possibility of moduli stabilization, where we find an entire new set of so-called swiss-cheese type Calabi-Yau manifolds. It is expected that both the general constrained structure and the concrete models lift to F-theory vacua on compact Calabi-Yau fourfolds.« less

  17. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia.

    PubMed

    Khailova, Ludmila; Baird, Christine H; Rush, Aubri A; Barnes, Christopher; Wischmeyer, Paul E

    2017-12-01

    Recent clinical trials and in vivo models demonstrate probiotic administration can reduce occurrence and improve outcome of pneumonia and sepsis, both major clinical challenges worldwide. Potential probiotic benefits include maintenance of gut epithelial barrier homeostasis and prevention of downstream organ dysfunction due to systemic inflammation. However, mechanism(s) of probiotic-mediated protection against pneumonia remain poorly understood. This study evaluated potential mechanistic targets in the maintenance of gut barrier homeostasis following Lactobacillus rhamnosus GG (LGG) treatment in a mouse model of pneumonia. Studies were performed in 6-8 week old FVB/N mice treated (o.g.) with or without LGG (10 9  CFU/ml) and intratracheally injected with Pseudomonas aeruginosa or saline. At 4, 12, and 24 h post-bacterial treatment spleen and colonic tissue were collected for analysis. Pneumonia significantly increased intestinal permeability and gut claudin-2. LGG significantly attenuated increased gut permeability and claudin-2 following pneumonia back to sham control levels. As mucin expression is key to gut barrier homeostasis we demonstrate that LGG can enhance goblet cell expression and mucin barrier formation versus control pneumonia animals. Further as Muc2 is a key gut mucin, we show LGG corrected deficient Muc2 expression post-pneumonia. Apoptosis increased in both colon and spleen post-pneumonia, and this increase was significantly attenuated by LGG. Concomitantly, LGG corrected pneumonia-mediated loss of cell proliferation in colon and significantly enhanced cell proliferation in spleen. Finally, LGG significantly reduced pro-inflammatory cytokine gene expression in colon and spleen post-pneumonia. These data demonstrate LGG can maintain intestinal barrier homeostasis by enhancing gut mucin expression/barrier formation, reducing apoptosis, and improving cell proliferation. This was accompanied by reduced pro-inflammatory cytokine expression in the gut and in a downstream organ (spleen). These may serve as potential mechanistic targets to explain LGG's protection against pneumonia in the clinical and in vivo setting. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla

    PubMed Central

    Mahowald, Michael A.; Rey, Federico E.; Seedorf, Henning; Turnbaugh, Peter J.; Fulton, Robert S.; Wollam, Aye; Shah, Neha; Wang, Chunyan; Magrini, Vincent; Wilson, Richard K.; Cantarel, Brandi L.; Coutinho, Pedro M.; Henrissat, Bernard; Crock, Lara W.; Russell, Alison; Verberkmoes, Nathan C.; Hettich, Robert L.; Gordon, Jeffrey I.

    2009-01-01

    The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial–microbial and microbial–host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability. PMID:19321416

  19. Evaluation of Gastrointestinal Leakage in Multiple Enteric Inflammation Models in Chickens

    PubMed Central

    Kuttappan, Vivek A.; Vicuña, Eduardo A.; Latorre, Juan D.; Wolfenden, Amanda D.; Téllez, Guillermo I.; Hargis, Billy M.; Bielke, Lisa R.

    2015-01-01

    Enteric inflammation models can help researchers’ study methods to improve health and performance and evaluate various growth promoters and dietary formulations targeted to improve performance in poultry. Oral administration of fluorescein isothiocyanate-dextran (FITC-d; 3–5 kDa) and its pericellular mucosal epithelial leakage are an established marker to evaluate enteric inflammation in multiple species. The present study evaluated different methods to induce gut inflammation in poultry based on FITC-d leakage. Four independent experiments were completed with different inflammation treatment groups, and serum FITC-d and/or retention of FITC-d in GI tract were determined. In experiment 1 (n = 10 birds/treatment, broilers, processed at 14 days), groups included control (CON), dextran sodium sulfate (DSS; drinking water at 0.75%) and feed restriction (FRS; 24 h before processing). Experiment 2 (n = 14 birds/treatment, leghorns, processed at 7 days) included CON, DSS, FRS, and rye-based diet (RBD). In experiments 3 and 4 (n = 15 birds/treatment, broilers, processed at 7 days), groups were CON, DSS, high fat diet (HFD), FRS, and RBD. In all experiments, FRS and RBD treatments showed significantly higher serum FITC-d levels compared to the respective CON. This indicates that FRS and RBD results in disruption of the intact barrier of the gastrointestinal tract (GIT), resulting in increased gut permeability. DSS and HFD groups showed elevation of serum FITC-d levels although the magnitude of difference from respective CON was inconsistent between experiments. FRS was the only treatment which consistently showed elevated retention of FITC-d in GIT in all experiments. The results from present studies showed that FRS and RBD, based on serum FITC-d levels, can be robust models to induce gut leakage in birds in different age and species/strains. PMID:26697435

  20. Influence of the Enteric Nervous System on Gut Motility Patterns in Zebrafish

    NASA Astrophysics Data System (ADS)

    Baker, Ryan; Ganz, Julia; Melancon, Ellie; Eisen, Judith; Parthasarathy, Raghuveer

    The enteric nervous system (ENS), composed of diverse neuronal subtypes and glia, regulates essential gut functions including motility, secretion, and homeostasis. In humans and animals, decreased numbers of enteric neurons lead to a variety of types of gut dysfunction. However, surprisingly little is known about how the number, position, or subtype of enteric neurons affect the regulation of gut peristalsis, due to the lack of good model systems and the lack of tools for the quantitative characterization of gut motion. We have therefore developed a method of quantitative spatiotemporal mapping using differential interference contrast microscopy and particle image velocimetry, and have applied this to investigate intestinal dynamics in normal and mutant larval zebrafish. From movies of gut motility, we obtain a velocity vector field representative of gut motion, from which we can quantify parameters relating to gut peristalsis such as frequency, wave speed, deformation amplitudes, wave duration, and non-linearity of waves. We show that mutants with reduced neuron number have contractions that are more regular in time and reduced in amplitude compared to wild-type (normal) fish. We also show that feeding fish before their yolk is consumed leads to stronger motility patterns. We acknowledge support from NIH awards P50 GM098911 and P01 HD022486.

  1. Two dynamic regimes in the human gut microbiome

    PubMed Central

    Smillie, Chris S.; Alm, Eric J.

    2017-01-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)—a multivariate method developed for econometrics—to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes. PMID:28222117

  2. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and hyperserotonemia.

    PubMed

    Lim, Joon Seo; Lim, Mi Young; Choi, Yongbin; Ko, GwangPyo

    2017-04-20

    Autism spectrum disorder (ASD) is a range of neurodevelopmental conditions that are sharply increasing in prevalence worldwide. Intriguingly, ASD is often accompanied by an array of systemic aberrations including (1) increased serotonin, (2) various modes of gastrointestinal disorders, and (3) inflammatory bowel disease (IBD), albeit the underlying cause for such comorbidities remains uncertain. Also, accumulating number of studies report that the gut microbial composition is significantly altered in children with ASD or patients with IBD. Surprisingly, when we analyzed the gut microbiota of poly I:C and VPA-induced mouse models of ASD, we found a distinct pattern of microbial dysbiosis that highly recapitulated those reported in clinical cases of ASD and IBD. Moreover, we report that such microbial dysbiosis led to notable perturbations in microbial metabolic pathways that are known to negatively affect the host, especially with regards to the pathogenesis of ASD and IBD. Lastly, we found that serum level of serotonin is significantly increased in both poly I:C and VPA mice, and that it correlates with increases of a bacterial genus and a metabolic pathway that are implicated in stimulation of host serotonin production. Our results using animal model identify prenatal environmental risk factors of autism as possible causative agents of IBD-related gut microbial dysbiosis in ASD, and suggest a multifaceted role of gut microbiota in the systemic pathogenesis of ASD and hyperserotonemia.

  3. Two dynamic regimes in the human gut microbiome.

    PubMed

    Gibbons, Sean M; Kearney, Sean M; Smillie, Chris S; Alm, Eric J

    2017-02-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)-a multivariate method developed for econometrics-to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes.

  4. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke.

    PubMed

    Winek, Katarzyna; Dirnagl, Ulrich; Meisel, Andreas

    2016-10-01

    Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.

  5. Neutrino assisted GUT baryogenesis revisited

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  6. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome

    PubMed Central

    Lee, Heetae; Ko, GwangPyo

    2016-01-01

    The effect and underlying mechanism of vitamin A on norovirus infection are largely unknown. This study aimed to investigate how vitamin A administration affects the gut microbiome after norovirus infection. Here, we demonstrate that treatment with either retinol or retinoic acid (RA) inhibits murine norovirus (MNV) replication using both in vitro and in vivo models. Compositional changes in the gut microbiome associated with RA administration and/or norovirus infection were also investigated. Oral administration of RA and/or MNV significantly altered intestinal microbiome profiles. Particularly, bacterial species belonging to the Lactobacillaceae families were remarkably increased by MNV inoculation and RA administration, suggesting that the antiviral effects of RA occur via the modulation of specific microbiota. The antiviral causal effect of Lactobacillus was identified and demonstrated using in vitro models in RAW264.7 cells. The antiviral immune response to MNV was mediated by IFN-β upregulation. This study represents the first comprehensive profiling of gut microbiota in response to RA treatment against norovirus infection. Moreover, we conclude that the abundance of Lactobacillus through gut microbiota modulation by RA is at least partially responsible for norovirus inhibition. PMID:27180604

  7. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models

    PubMed Central

    Hwang, In Young; Koh, Elvin; Wong, Adison; March, John C.; Bentley, William E.; Lee, Yung Seng; Chang, Matthew Wook

    2017-01-01

    Bacteria can be genetically engineered to kill specific pathogens or inhibit their virulence. We previously developed a synthetic genetic system that allows a laboratory strain of Escherichia coli to sense and kill Pseudomonas aeruginosa in vitro. Here, we generate a modified version of the system, including a gene encoding an anti-biofilm enzyme, and use the probiotic strain Escherichia coli Nissle 1917 as host. The engineered probiotic shows in vivo prophylactic and therapeutic activity against P. aeruginosa during gut infection in two animal models (Caenorhabditis elegans and mice). These findings support the further development of engineered microorganisms with potential prophylactic and therapeutic activities against gut infections. PMID:28398304

  8. Wilsonian dark matter in string derived Z' model

    NASA Astrophysics Data System (ADS)

    Delle Rose, L.; Faraggi, A. E.; Marzo, C.; Rizos, J.

    2017-09-01

    The dark matter issue is among the most perplexing in contemporary physics. The problem is more enigmatic due to the wide range of possible solutions, ranging from the ultralight to the supermassive. String theory gives rise to plausible dark matter candidates due to the breaking of the non-Abelian grand unified theory (GUT) symmetries by Wilson lines. The physical spectrum then contains states that do not satisfy the quantization conditions of the unbroken GUT symmetry. Given that the Standard Model states are identified with broken GUT representations, and provided that any ensuing symmetry breakings are induced by components of GUT states, a remnant discrete symmetry remains that forbids the decay of the Wilsonian states. A class of such states are obtained in a heterotic-string-derived Z' model. The model exploits the spinor-vector duality symmetry, observed in the fermionic Z2×Z2 heterotic-string orbifolds, to generate a Z'∈E6 symmetry that may remain unbroken down to low energies. The E6 symmetry is broken at the string level with discrete Wilson lines. The Wilsonian dark matter candidates in the string-derived model are S O (10 ), and hence Standard Model, singlets and possess non-E6 U(1)Z' charges. Depending on the U(1)Z' breaking scale and the reheating temperature they give rise to different scenarios for the relic abundance, and are in accordance with the cosmological constraints.

  9. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    PubMed

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  10. GOCE User Toolbox and Tutorial

    NASA Astrophysics Data System (ADS)

    Benveniste, Jérôme; Knudsen, Per

    2016-07-01

    The GOCE User Toolbox GUT is a compilation of tools for the utilisation and analysis of GOCE Level 2 products. GUT support applications in Geodesy, Oceanography and Solid Earth Physics. The GUT Tutorial provides information and guidance in how to use the toolbox for a variety of applications. GUT consists of a series of advanced computer routines that carry out the required computations. It may be used on Windows PCs, UNIX/Linux Workstations, and Mac. The toolbox is supported by The GUT Algorithm Description and User Guide and The GUT Install Guide. A set of a-priori data and models are made available as well. Without any doubt the development of the GOCE user toolbox have played a major role in paving the way to successful use of the GOCE data for oceanography. The GUT version 2.2 was released in April 2014 and beside some bug-fixes it adds the capability for the computation of Simple Bouguer Anomaly (Solid-Earth). During this fall a new GUT version 3 has been released. GUTv3 was further developed through a collaborative effort where the scientific communities participate aiming on an implementation of remaining functionalities facilitating a wider span of research in the fields of Geodesy, Oceanography and Solid earth studies. Accordingly, the GUT version 3 has: - An attractive and easy to use Graphic User Interface (GUI) for the toolbox, - Enhance the toolbox with some further software functionalities such as to facilitate the use of gradients, anisotropic diffusive filtering and computation of Bouguer and isostatic gravity anomalies. - An associated GUT VCM tool for analyzing the GOCE variance covariance matrices.

  11. The Underlying Ecological Processes of Gut Microbiota Among Cohabitating Retarded, Overgrown and Normal Shrimp.

    PubMed

    Xiong, Jinbo; Dai, Wenfang; Zhu, Jinyong; Liu, Keshao; Dong, Chunming; Qiu, Qiongfen

    2017-05-01

    Increasing evidence of tight links among the gut microbiota, obesity, and host health has emerged, but knowledge of the ecological processes that shape the variation in microbial assemblages across growth rates remains elusive. Moreover, inadequately control for differences in factors that profoundly affect the gut microbial community, hampers evaluation of the gut microbiota roles in regulating growth rates. To address this gap, we evaluated the composition and ecological processes of the gut bacterial community in cohabitating retarded, overgrown, and normal shrimps from identically managed ponds. Gut bacterial community structures were distinct (P = 0.0006) among the shrimp categories. Using a structural equation modeling (SEM), we found that changes in the gut bacterial community were positively related to digestive activities, which subsequently affected shrimp growth rate. This association was further supported by intensified interspecies interaction and enriched lineages with high nutrient intake efficiencies in overgrown shrimps. However, the less phylogenetic clustering of gut microbiota in overgrown and retarded subjects may offer empty niches for pathogens invasion, as evidenced by higher abundances of predicted functional pathways involved in disease infection. Given no differences in biotic and abiotic factors among the cohabitating shrimps, we speculated that the distinct gut community assembly could be attributed to random colonization in larval shrimp (e.g., priority effects) and that an altered microbiota could be a causative factor in overgrowth or retardation in shrimp. To our knowledge, this is the first study to provide an integrated overview of the direct roles of gut microbiota in shaping shrimp growth rate and the underlying ecological mechanisms.

  12. The role of the microbiome for human health: from basic science to clinical applications.

    PubMed

    Mohajeri, M Hasan; Brummer, Robert J M; Rastall, Robert A; Weersma, Rinse K; Harmsen, Hermie J M; Faas, Marijke; Eggersdorfer, Manfred

    2018-05-10

    The 2017 annual symposium organized by the University Medical Center Groningen in The Netherlands focused on the role of the gut microbiome in human health and disease. Experts from academia and industry examined interactions of prebiotics, probiotics, or vitamins with the gut microbiome in health and disease, the development of the microbiome in early-life and the role of the microbiome on the gut-brain axis. The gut microbiota changes dramatically during pregnancy and intrinsic factors (such as stress), in addition to extrinsic factors (such as diet, and drugs) influence the composition and activity of the gut microbiome throughout life. Microbial metabolites, e.g. short-chain fatty acids affect gut-brain signaling and the immune response. The gut microbiota has a regulatory role on anxiety, mood, cognition and pain which is exerted via the gut-brain axis. Ingestion of prebiotics or probiotics has been used to treat a range of conditions including constipation, allergic reactions and infections in infancy, and IBS. Fecal microbiota transplantation (FMT) highly effective for treating recurrent Clostridium difficile infections. The gut microbiome affects virtually all aspects of human health, but the degree of scientific evidence, the models and technologies and the understanding of mechanisms of action vary considerably from one benefit area to the other. For a clinical practice to be broadly accepted, the mode of action, the therapeutic window, and potential side effects need to thoroughly be investigated. This calls for further coordinated state-of-the art research to better understand and document the human gut microbiome's effects on human health.

  13. Importance of interactions between food quality, quantity, and gut transit time on consumer feeding, growth, and trophic dynamics.

    PubMed

    Mitra, Aditee; Flynn, Kevin J

    2007-05-01

    Ingestion kinetics of animals are controlled by both external food availability and feedback from the quantity of material already within the gut. The latter varies with gut transit time (GTT) and digestion of the food. Ingestion, assimilation efficiency, and thus, growth dynamics are not related in a simple fashion. For the first time, the important linkage between these processes and GTT is demonstrated; this is achieved using a biomass-based, mechanistic multinutrient model fitted to experimental data for zooplankton growth dynamics when presented with food items of varying quality (stoichiometric composition) or quantity. The results show that trophic transfer dynamics will vary greatly between the extremes of feeding on low-quantity/high-quality versus high-quantity/low-quality food; these conditions are likely to occur in nature. Descriptions of consumer behavior that assume a constant relationship between the kinetics of grazing and growth irrespective of food quality and/or quantity, with little or no recognition of the combined importance of these factors on consumer behavior, may seriously misrepresent consumer activity in dynamic situations.

  14. Primordial monopoles, proton decay, gravity waves and GUT inflation

    DOE PAGES

    Şenoğuz, Vedat Nefer; Shafi, Qaisar

    2015-11-18

    Here, we consider non-supersymmetric GUT inflation models in which intermediate mass monopoles may survive inflation because of the restricted number of e-foldings experienced by the accompanying symmetry breaking. Thus, an observable flux of primordial magnetic monopoles, comparable to or a few orders below the Parker limitmay be present in the galaxy. The mass scale associated with the intermediate symmetry breaking is 10 13 GeVfor an observable flux level, with the corresponding monopoles an order of magnitude or so heavier. Examples based on SO(10)and E 6 yield such intermediate mass monopoles carrying respectively two and three units of Dirac magnetic charge.more » For GUT inflation driven by a gauge singlet scalar field with a Coleman–Weinberg or Higgs potential, compatibility with the Planck measurement of the scalar spectral index yields a Hubble constant (during horizon exit of cosmological scales) H~7–9 ×10 13 GeV, with the tensor to scalar ratio rpredicted to be ≳0.02. Proton lifetime estimates for decays mediated by the superheavy gauge bosons are also provided.« less

  15. Marked seasonal variation in the wild mouse gut microbiota.

    PubMed

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  16. A snapshot of gut microbiota of an adult urban population from Western region of India.

    PubMed

    Tandon, Disha; Haque, Mohammed Monzoorul; R, Saravanan; Shaikh, Shafiq; P, Sriram; Dubey, Ashok Kumar; Mande, Sharmila S

    2018-01-01

    The human gut microbiome contributes to a broad range of biochemical and metabolic functions that directly or indirectly affect human physiology. Several recent studies have indicated that factors like age, geographical location, genetic makeup, and individual health status significantly influence the diversity, stability, and resilience of the gut microbiome. Of the mentioned factors, geographical location (and related dietary/socio-economic context) appears to explain a significant portion of microbiome variation observed in various previously conducted base-line studies on human gut microbiome. Given this context, we have undertaken a microbiome study with the objective of cataloguing the taxonomic diversity of gut microbiomes sampled from an urban cohort from Ahmedabad city in Western India. Computational analysis of microbiome sequence data corresponding to 160 stool samples (collected from 80 healthy individuals at two time-points, 60 days apart) has indicated a Prevotella-dominated microbial community. Given that the typical diet of participants included carbohydrate and fibre-rich components (predominantly whole grains and legume-based preparations), results appear to validate the proposed correlation between diet/geography and microbiome composition. Comparative analysis of obtained gut microbiome profiles with previously published microbiome profiles from US, China, Finland, and Japan additionally reveals a distinct taxonomic and (inferred) functional niche for the sampled microbiomes.

  17. Edible Plants and Their Influence on the Gut Microbiome and Acne

    PubMed Central

    Clark, Ashley K.; Haas, Kelly N.; Sivamani, Raja K.

    2017-01-01

    Acne vulgaris affects most people at some point in their lives. Due to unclear etiology, likely with multiple factors, targeted and low-risk treatments have yet to be developed. In this review, we explore the multiple causes of acne and how plant-based foods and supplements can control these. The proposed causative factors include insulin resistance, sex hormone imbalances, inflammation and microbial dysbiosis. There is an emerging body of work on the human gut microbiome and how it mediates feedback between the foods we eat and our bodies. The gut microbiome is also an important mediator of inflammation in the gut and systemically. A low-glycemic load diet, one rich in plant fibers and low in processed foods, has been linked to an improvement in acne, possibly through gut changes or attenuation of insulin levels. Though there is much interest in the human microbiome, there is much more unknown, especially along the gut-skin axis. Collectively, the evidence suggests that approaches such as plant-based foods and supplements may be a viable alternative to the current first line standard of care for moderate acne, which typically includes antibiotics. Though patient compliance with major dietary changes is likely much lower than with medications, it is a treatment avenue that warrants further study and development. PMID:28513546

  18. Correlation between gut microbiota and personality in adults: A cross-sectional study.

    PubMed

    Kim, Han-Na; Yun, Yeojun; Ryu, Seungho; Chang, Yoosoo; Kwon, Min-Jung; Cho, Juhee; Shin, Hocheol; Kim, Hyung-Lae

    2018-03-01

    Personality affects fundamental behavior patterns and has been related with health outcomes and mental disorders. Recent evidence has emerged supporting a relationship between the microbiota and behavior, referred to as brain-gut relationships. Here, we first report correlations between personality traits and gut microbiota. This research was performed using the Revised NEO Personality Inventory and the sequencing data of the 16S rRNA gene in 672 adults. The diversity and the composition of the human gut microbiota exhibited significant difference when stratified by personality traits. We found that personality traits were significantly correlated with diversity of gut microbiota, while their differences were extremely subtle. High neuroticism and low conscientiousness groups were correlated with high abundance of Gammaproteobacteria and Proteobacteria, respectively when covariates, including age, sex, BMI and nutrient intake, were controlled. Additionally, high conscientiousness group also showed increased abundance of some universal butyrate-producing bacteria including Lachnospiraceae. This study was of observational and cross-sectional design and our findings must be further validated through metagenomic or metatranscriptomic methodologies, or metabolomics-based analyses. Our findings will contribute to elucidating potential links between the gut microbiota and personality, and provide useful insights toward developing and testing personality- and microbiota-based interventions for promoting health. Copyright © 2017. Published by Elsevier Inc.

  19. Gut microbiota in experimental murine model of Graves' orbitopathy established in different environments may modulate clinical presentation of disease.

    PubMed

    Masetti, Giulia; Moshkelgosha, Sajad; Köhling, Hedda-Luise; Covelli, Danila; Banga, Jasvinder Paul; Berchner-Pfannschmidt, Utta; Horstmann, Mareike; Diaz-Cano, Salvador; Goertz, Gina-Eva; Plummer, Sue; Eckstein, Anja; Ludgate, Marian; Biscarini, Filippo; Marchesi, Julian Roberto

    2018-05-25

    Variation in induced models of autoimmunity has been attributed to the housing environment and its effect on the gut microbiota. In Graves' disease (GD), autoantibodies to the thyrotropin receptor (TSHR) cause autoimmune hyperthyroidism. Many GD patients develop Graves' orbitopathy or ophthalmopathy (GO) characterized by orbital tissue remodeling including adipogenesis. Murine models of GD/GO would help delineate pathogenetic mechanisms, and although several have been reported, most lack reproducibility. A model comprising immunization of female BALBc mice with a TSHR expression plasmid using in vivo electroporation was reproduced in two independent laboratories. Similar orbital disease was induced in both centers, but differences were apparent (e.g., hyperthyroidism in Center 1 but not Center 2). We hypothesized a role for the gut microbiota influencing the outcome and reproducibility of induced GO. We combined metataxonomics (16S rRNA gene sequencing) and traditional microbial culture of the intestinal contents from the GO murine model, to analyze the gut microbiota in the two centers. We observed significant differences in alpha and beta diversity and in the taxonomic profiles, e.g., operational taxonomic units (OTUs) from the genus Lactobacillus were more abundant in Center 2, and Bacteroides and Bifidobacterium counts were more abundant in Center 1 where we also observed a negative correlation between the OTUs of the genus Intestinimonas and TSHR autoantibodies. Traditional microbiology largely confirmed the metataxonomics data and indicated significantly higher yeast counts in Center 1 TSHR-immunized mice. We also compared the gut microbiota between immunization groups within Center 2, comprising the TSHR- or βgal control-immunized mice and naïve untreated mice. We observed a shift of the TSHR-immunized mice bacterial communities described by the beta diversity weighted Unifrac. Furthermore, we observed a significant positive correlation between the presence of Firmicutes and orbital-adipogenesis specifically in TSHR-immunized mice. The significant differences observed in microbiota composition from BALBc mice undergoing the same immunization protocol in comparable specific-pathogen-free (SPF) units in different centers support a role for the gut microbiota in modulating the induced response. The gut microbiota might also contribute to the heterogeneity of induced response since we report potential disease-associated microbial taxonomies and correlation with ocular disease.

  20. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes.

    PubMed

    Tasse, Lena; Bercovici, Juliette; Pizzut-Serin, Sandra; Robe, Patrick; Tap, Julien; Klopp, Christophe; Cantarel, Brandi L; Coutinho, Pedro M; Henrissat, Bernard; Leclerc, Marion; Doré, Joël; Monsan, Pierre; Remaud-Simeon, Magali; Potocki-Veronese, Gabrielle

    2010-11-01

    The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain.

  1. The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS).

    PubMed

    Quigley, Eamonn M M

    2018-01-03

    Irritable bowel syndrome (IBS) is one of the most common of all medical disorders worldwide and, while for some it represents no more than a nuisance, for others it imposes significant negative impacts on daily life and activities. IBS is a heterogeneous disorder and may well have a number of causes which may lie anywhere from the external environment to the contents of the gut lumen and from the enteric neuromuscular apparatus and the gut immune system to the central nervous system. Consequently, the paradigm of the gut-brain axis, which includes the participation of these various factors, has proven a useful model to assist clinicians and patients alike in understanding the genesis of symptoms in IBS. Now, given the widespread interest in the gut microbiome in health and disease, in general, reports of disordered enteric bacterial communities in IBS, and experimental data to indicate that components of the gut microbiota can influence brain morphology and function, as well as behavior and cognition, this concept has been extended to encompass the microbiota-gut-brain axis. The implications of this novel concept to the assessment and management of IBS will be explored in this review.

  2. Gut microbes and the brain: paradigm shift in neuroscience.

    PubMed

    Mayer, Emeran A; Knight, Rob; Mazmanian, Sarkis K; Cryan, John F; Tillisch, Kirsten

    2014-11-12

    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. Copyright © 2014 the authors 0270-6474/14/3415490-07$15.00/0.

  3. Gut microbiota may predict host divergence time during Glires evolution.

    PubMed

    Li, Huan; Qu, Jiapeng; Li, Tongtong; Yao, Minjie; Li, Jiaying; Li, Xiangzhen

    2017-03-01

    The gut microbial communities of animals play key roles in host evolution. However, the possible relationship between gut microbiota and host divergence time remains unknown. Here, we investigated the gut microbiota of eight Glires species (four lagomorph species and four rodent species) distributed throughout the Qinghai-Tibet plateau and Inner Mongolia grassland. Lagomorphs and rodents had distinct gut microbial compositions. Three out of four lagomorph species were dominated by Firmicutes, while rodents were dominated by Bacteroidetes in general. The alpha diversity values (Shannon diversity and evenness) exhibited significant differences between any two species within the lagomorphs, whereas there were no significant differences among rodents. The structure of the gut microbiota showed significant differences between lagomorphs and rodents. In addition, we calculated host phylogeny and divergence times, and used a phylogenetic approach to reconstruct how the animal gut microbiota has diverged from their ancestral species. Some core bacterial genera (e.g. Prevotella and Clostridium) shared by more than nine-tenths of all the Glires individuals associated with plant polysaccharide degradation showed marked changes within lagomorphs. Differences in Glires gut microbiota (based on weighted UniFrac and Bray-Curtis dissimilarity metrics) were positively correlated with host divergence time. Our results thus suggest the gut microbial composition is associated with host phylogeny, and further suggest that dissimilarity of animal gut microbiota may predict host divergence time. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation

    DTIC Science & Technology

    2017-11-01

    acute ) models of chemically-induced colitis. Based upon our studies, we believe the the rationale for the use of MSCs to treat patients with...rodent models of IBD, virtually all of these studies have used clinically-questionable doses of MSCs in 10 erosive, self-limiting (i.e. acute ...been demonstrated that ILC3-derived IL-22 attenuates acute and chronic intestinal inflam- mation induced in lymphopenic mice (Rag−/− mice) by Citrobacter

  5. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study

    PubMed Central

    Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416

  6. Identifying Keystone Species in the Human Gut Microbiome from Metagenomic Timeseries Using Sparse Linear Regression

    PubMed Central

    Fisher, Charles K.; Mehta, Pankaj

    2014-01-01

    Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called “errors-in-variables”. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct “keystone species”, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut microbiome. PMID:25054627

  7. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms.

    PubMed

    Ren, Jiao; Wang, Xiaoping; Wang, Chuanfei; Gong, Ping; Wang, Xiruo; Yao, Tandong

    2017-01-01

    Biomagnification of some persistent organic pollutants (POPs) has been found in marine and freshwater food chains; however, due to the relatively short food chains in high-altitude alpine lakes, whether trophic transfer would result in the biomagnification of POPs is not clear. The transfer of various POPs, including organochlorine pesticides and polychlorinated biphenyls (PCBs), along the aquatic food chain in Nam Co Lake (4700 m), in the central Tibetan Plateau, was studied. The POPs levels in the water, sediment and biota [plankton, invertebrates and fish (Gymnocypris namensis)] of Nam Co were generally low, with concentrations comparable to those reported for the remote Arctic. The composition profiles of POPs in the fish were different from that in the water, but similar to their food. DDEs, DDDs, PCB 138, 153 and 180 displayed significant positive correlations with trophic levels, with trophic magnification factors (TMFs) ranged between 1.5 and 4.2, implying these chemicals can undergo final biomagnification along food chain. A fugacity-based dynamic bioaccumulation model was applied to the fish with localized parameters, by which the simulated concentrations were comparable to the measured data. Modeling results showed that most compounds underwent net gill loss and net gut uptake; only when the net result of the combined gut and gill fluxes would be positive, bioaccumulation could eventually occur. The net accumulation flux increased with fish age, which was caused by the continuous increase of gut uptake by aged fish. Due to the oligotrophic condition, efficient food absorption is likely the key factor that influences the gut POPs uptake. Long residence times with half-lives up to two decades were found for the higher chlorinated PCBs in Gymnocypris namensis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pathophysiology of the Gut and the Microbiome in the Host Response.

    PubMed

    Lyons, John D; Coopersmith, Craig M

    2017-03-01

    To describe and summarize the data supporting the gut as the motor driving critical illness and multiple organ dysfunction syndrome presented at the National Institute of Child Health and Human Development MODS Workshop (March 26-27, 2015). Summary of workshop keynote presentation. Not applicable. Presented by an expert in the field, the data assessing the role of gastrointestinal dysfunction driving critical illness were described with a focus on identifying knowledge gaps and research priorities. Summary of presentation and discussion supported and supplemented by relevant literature. The understanding of gut dysfunction in critical illness has evolved greatly over time, and the gut is now often considered as the "motor" of critical illness. The association of the gut with critical illness is supported by both animal models and clinical studies. Initially, the association between gut dysfunction and critical illness focused primarily on bacterial translocation into the bloodstream. However, that work has evolved to include other gut-derived products causing distant injury via other routes (e.g., lymphatics). Additionally, alterations in the gut epithelium may be associated with critical illness and influence outcomes. Gut epithelial apoptosis, intestinal hyperpermeability, and perturbations in the intestinal mucus layer have all been associated with critical illness. Finally, there is growing evidence that the intestinal microbiome plays a crucial role in mediating pathology in critical illness. Further research is needed to better understand the role of each of these mechanisms and their contribution to multiple organ dysfunction syndrome in children.

  9. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review.

    PubMed

    Dahiya, Dinesh K; Renuka; Puniya, Monica; Shandilya, Umesh K; Dhewa, Tejpal; Kumar, Nikhil; Kumar, Sanjeev; Puniya, Anil K; Shukla, Pratyoosh

    2017-01-01

    In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics) that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed.

  10. Challenges of metabolomics in human gut microbiota research.

    PubMed

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review

    PubMed Central

    Dahiya, Dinesh K.; Renuka; Puniya, Monica; Shandilya, Umesh K.; Dhewa, Tejpal; Kumar, Nikhil; Kumar, Sanjeev; Puniya, Anil K.; Shukla, Pratyoosh

    2017-01-01

    In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics) that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed. PMID:28421057

  12. Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease.

    PubMed

    Mohan, Mahesh; Chow, Cheryl-Emiliane T; Ryan, Caitlin N; Chan, Luisa S; Dufour, Jason; Aye, Pyone P; Blanchard, James; Moehs, Charles P; Sestak, Karol

    2016-10-28

    The composition of the gut microbiome reflects the overall health status of the host. In this study, stool samples representing the gut microbiomes from 6 gluten-sensitive (GS) captive juvenile rhesus macaques were compared with those from 6 healthy, age- and diet-matched peers. A total of 48 samples representing both groups were studied using V4 16S rRNA gene DNA analysis. Samples from GS macaques were further characterized based on type of diet administered: conventional monkey chow, i.e., wheat gluten-containing diet (GD), gluten-free diet (GFD), barley gluten-derived diet (BOMI) and reduced gluten barley-derived diet (RGB). It was hypothesized that the GD diet would lower the gut microbial diversity in GS macaques. This is the first report illustrating the reduction of gut microbial alpha-diversity ( p < 0.05) following the consumption of dietary gluten in GS macaques. Selected bacterial families (e.g., Streptococcaceae and Lactobacillaceae ) were enriched in GS macaques while Coriobacteriaceae was enriched in healthy animals. Within several weeks after the replacement of the GD by the GFD diet, the composition (beta-diversity) of gut microbiome in GS macaques started to change ( p = 0.011) towards that of a normal macaque. Significance for alpha-diversity however, was not reached by the day 70 when the feeding experiment ended. Several inflammation-associated microRNAs (miR-203, -204, -23a, -23b and -29b) were upregulated ( p < 0.05) in jejunum of 4 biopsied GS macaques fed GD with predicted binding sites on 16S ribosomal RNA of Lactobacillus reuteri (accession number: NR_025911), Prevotella stercorea (NR_041364) and Streptococcus luteciae (AJ297218) that were overrepresented in feces. Additionally, claudin-1, a validated tight junction protein target of miR-29b was significantly downregulated in jejunal epithelium of GS macaques. Taken together, we predict that with the introduction of effective treatments in future studies the diversity of gut microbiomes in GS macaques will approach those of healthy individuals. Further studies are needed to elucidate the regulatory pathways of inflammatory miRNAs in intestinal mucosa of GS macaques and to correlate their expression with gut dysbiosis.

  13. Comparative Gut Microbiota of 59 Neotropical Bird Species

    PubMed Central

    Hird, Sarah M.; Sánchez, César; Carstens, Bryan C.; Brumfield, Robb T.

    2015-01-01

    The gut microbiota of vertebrates are essential to host health. Most non-model vertebrates, however, lack even a basic description of natural gut microbiota biodiversity. Here, we sampled 116 intestines from 59 Neotropical bird species and used the V6 region of the 16S rRNA molecule as a microbial fingerprint (average coverage per bird ~80,000 reads). A core microbiota of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria was identified, as well as several gut-associated genera. We tested 18 categorical variables associated with each bird for significant correlation to the gut microbiota; host taxonomic categories were most frequently significant and explained the most variation. Ecological variables (e.g., diet, foraging stratum) were also frequently significant but explained less variation. Little evidence was found for a significant influence of geographic space. Finally, we suggest that microbial sampling during field collection of organisms would propel biological understanding of evolutionary history and ecological significance of host-associated microbiota. PMID:26733954

  14. The obese gut microbiome across the epidemiologic transition.

    PubMed

    Dugas, Lara R; Fuller, Miles; Gilbert, Jack; Layden, Brian T

    2016-01-01

    The obesity epidemic has emerged over the past few decades and is thought to be a result of both genetic and environmental factors. A newly identified factor, the gut microbiota, which is a bacterial ecosystem residing within the gastrointestinal tract of humans, has now been implicated in the obesity epidemic. Importantly, this bacterial community is impacted by external environmental factors through a variety of undefined mechanisms. We focus this review on how the external environment may impact the gut microbiota by considering, the host's geographic location 'human geography', and behavioral factors (diet and physical activity). Moreover, we explore the relationship between the gut microbiota and obesity with these external factors. And finally, we highlight here how an epidemiologic model can be utilized to elucidate causal relationships between the gut microbiota and external environment independently and collectively, and how this will help further define this important new factor in the obesity epidemic.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, John; Evans, Jason L.; Nagata, Natsumi

    We reconsider the minimal SU( 5) grand unified theory (GUT) in the context of no-scale supergravity inspired by string compactification scenarios, assuming that the soft supersymmetry-breaking parameters satisfy universality conditions at some input scale M in above the GUT scale M GUT. When setting up such a no-scale super-GUT model, special attention must be paid to avoiding the Scylla of rapid proton decay and the Charybdis of an excessive density of cold dark matter, while also having an acceptable mass for the Higgs boson. Furthermore, we do not find consistent solutions if none of the matter and Higgs fields aremore » assigned to twisted chiral supermultiplets, even in the presence of Giudice–Masiero terms. But, consistent solutions may be found if at least one fiveplet of GUT Higgs fields is assigned to a twisted chiral supermultiplet, with a suitable choice of modular weights. Spin-independent dark matter scattering may be detectable in some of these consistent solutions.« less

  16. Novel players in coeliac disease pathogenesis: role of the gut microbiota

    PubMed Central

    Verdu, Elena F.; Galipeau, Heather J.; Jabri, Bana

    2016-01-01

    Several studies point towards alteration in gut microbiota composition and function in coeliac disease, some of which can precede the onset of disease and/or persist when patients are on a gluten-free diet. Evidence also exists that the gut microbiota might promote or reduce coeliac-disease-associated immunopathology. However, additional studies are required in humans and in mice (using gnotobiotic technology) to determine cause–effect relationships and to identify agents for modulating the gut microbiota as a therapeutic or preventative approach for coeliac disease. In this Review, we summarize the current evidence for altered gut microbiota composition in coeliac disease and discuss how the interplay between host genetics, environmental factors and the intestinal microbiota might contribute to its pathogenesis. Moreover, we highlight the importance of utilizing animal models and long-term clinical studies to gain insight into the mechanisms through which host–microbial interactions can influence host responses to gluten. PMID:26055247

  17. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.

    PubMed

    Desbonnet, Lieve; Clarke, Gerard; Traplin, Alexander; O'Sullivan, Orla; Crispie, Fiona; Moloney, Rachel D; Cotter, Paul D; Dinan, Timothy G; Cryan, John F

    2015-08-01

    There is growing appreciation for the importance of bacteria in shaping brain development and behaviour. Adolescence and early adulthood are crucial developmental periods during which exposure to harmful environmental factors can have a permanent impact on brain function. Such environmental factors include perturbations of the gut bacteria that may affect gut-brain communication, altering the trajectory of brain development, and increasing vulnerability to psychiatric disorders. Here we assess the effects of gut bacterial depletion from weaning onwards on adult cognitive, social and emotional behaviours and markers of gut-brain axis dysfunction in mice. Mice were treated with a combination of antibiotics from weaning onwards and effects on behaviours and potential gut-brain axis neuromodulators (tryptophan, monoamines, and neuropeptides) and BDNF expression were assessed in adulthood. Antibiotic-treatment depleted and restructured gut microbiota composition of caecal contents and decreased spleen weights in adulthood. Depletion of the gut microbiota from weaning onwards reduced anxiety, induced cognitive deficits, altered dynamics of the tryptophan metabolic pathway, and significantly reduced BDNF, oxytocin and vasopressin expression in the adult brain. Microbiota depletion from weaning onwards by means of chronic treatment with antibiotics in mice impacts on anxiety and cognitive behaviours as well as key neuromodulators of gut-brain communication in a manner that is similar to that reported in germ-free mice. This model may represent a more amenable alternative for germ-free mice in the assessment of microbiota modulation of behaviour. Finally, these data suggest that despite the presence of a normal gut microbiome in early postnatal life, reduced abundance and diversity of the gut microbiota from weaning influences adult behaviours and key neuromodulators of the microbiota-gut-brain axis suggesting that dysregulation of this axis in the post-weaning period may contribute to the pathogenesis of disorders associated with altered anxiety and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils

    EPA Science Inventory

    Speciation analysis is essential when evaluating risks from, arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. Howeve...

  19. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    PubMed Central

    Mikkelsen, Kristian H.; Frost, Morten; Bahl, Martin I.; Licht, Tine R.; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    Objective The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Methods Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Results Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. Conclusion As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. Trial Registration clinicaltrials.gov NCT01633762 PMID:26562532

  20. Microbiota transplantation reveals beneficial impact of berberine on hepatotoxicity by improving gut homeostasis.

    PubMed

    Qin, Chenjie; Zhang, Huilu; Zhao, Linghao; Zeng, Min; Huang, Weijian; Fu, Gongbo; Zhou, Weiping; Wang, Hongyang; Yan, Hexin

    2017-11-29

    Berberine has been shown to reduce acute liver injury although the underlying mechanism is not fully understood. Because of the anatomic connection, the liver is constantly exposed to gut-derived bacterial products and metabolites. In this study, we showed that berberine has beneficial effects on both hepatotoxicity and intestinal damage in a rat model of chronic or acute liver injury. Microbiota transplantation from the rats with chronic hepatotoxicity could aggravate acute hepatotoxicity in mice treated with diethylnitrosamine (DEN). In rat models with gut homeostasis disruption induced by penicillin or dextran sulfate sodium (DSS), their fecal microbiota could also cause an enhanced hepatotoxicity of recipient mice. When treated with berberine, the DSS-induced enteric dysbacteriosis could be mitigated and their fecal bacteria were able to reduce acute hepatotoxicity in recipient mice. This study indicates that berberine could improve intestinal dysbacteriosis, which reduces the hepatotoxicity caused by pathological or pharmacological intervention. Fecal microbiota transplantation might be a useful method to directly explore homeostatic alteration in gut microbiota.

  1. Altered brain-gut axis in autism: comorbidity or causative mechanisms?

    PubMed

    Mayer, Emeran A; Padua, David; Tillisch, Kirsten

    2014-10-01

    The concept that alterated communications between the gut microbiome and the brain may play an important role in human brain disorders has recently received considerable attention. This is the result of provocative preclinical and some clinical evidence supporting early hypotheses about such communication in health and disease. Gastrointestinal symptoms are a common comorbidity in patients with autism spectrum disorders (ASD), even though the underlying mechanisms are largely unknown. In addition, alteration in the composition and metabolic products of the gut microbiome has long been implicated as a possible causative mechanism contributing to ASD pathophysiology, and this hypothesis has been supported by several recently published evidence from rodent models of autism induced by prenatal insults to the mother. Recent evidence in one such model involving maternal infection, that is characterized by alterations in behavior, gut physiology, microbial composition, and related metabolite profile, suggests a possible benefit of probiotic treatment on several of the observed abnormal behaviors. © 2014 WILEY Periodicals, Inc.

  2. Calcium glycerophosphate preserves transepithelial integrity in the Caco-2 model of intestinal transport.

    PubMed

    Datta, Palika; Weis, Margaret T

    2015-08-14

    To assess the direct effects of ischemia on intestinal epithelial integrity. Furthermore, clinical efforts at mitigating the effect of hypoperfusion on gut permeability have focused on restoring gut vascular function. We report that, in the Caco-2 cell model of transepithelial transport, calcium glycerophosphate (CGP), an inhibitor of intestinal alkaline phosphatase F3, has a significant effect to preserve transepithelial electrical resistance (TEER) and to attenuate increases in mannitol flux rates during hypoxia or cytokine stimulation. The effect was observable even at concentrations as low as 1 μmol/L. As celiac disease is also marked by a loss of gut epithelial integrity, the effect of CGP to attenuate the effect of the α-gliadin peptide 31-55 was also examined. In this instance, CGP exerted little effect of preservation of TEER, but significantly attenuated peptide induced increase in mannitol flux. It appears that CGP treatment might synergize with other therapies to preserve gut epithelial integrity.

  3. Calcium glycerophosphate preserves transepithelial integrity in the Caco-2 model of intestinal transport

    PubMed Central

    Datta, Palika; Weis, Margaret T

    2015-01-01

    AIM: To assess the direct effects of ischemia on intestinal epithelial integrity. Furthermore, clinical efforts at mitigating the effect of hypoperfusion on gut permeability have focused on restoring gut vascular function. METHODS: We report that, in the Caco-2 cell model of transepithelial transport, calcium glycerophosphate (CGP), an inhibitor of intestinal alkaline phosphatase F3, has a significant effect to preserve transepithelial electrical resistance (TEER) and to attenuate increases in mannitol flux rates during hypoxia or cytokine stimulation. RESULTS: The effect was observable even at concentrations as low as 1 μmol/L. As celiac disease is also marked by a loss of gut epithelial integrity, the effect of CGP to attenuate the effect of the α-gliadin peptide 31-55 was also examined. In this instance, CGP exerted little effect of preservation of TEER, but significantly attenuated peptide induced increase in mannitol flux. CONCLUSION: It appears that CGP treatment might synergize with other therapies to preserve gut epithelial integrity. PMID:26290632

  4. Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis.

    PubMed

    Singh, Vishal; Yeoh, Beng San; Chassaing, Benoit; Zhang, Benyue; Saha, Piu; Xiao, Xia; Awasthi, Deepika; Shashidharamurthy, Rangaiah; Dikshit, Madhu; Gewirtz, Andrew; Vijay-Kumar, Matam

    2016-07-01

    Lipocalin 2 (Lcn2) is a multifunctional innate immune protein whose expression closely correlates with extent of intestinal inflammation. However, whether Lcn2 plays a role in the pathogenesis of gut inflammation is unknown. Herein, we investigated the extent to which Lcn2 regulates inflammation and gut bacterial dysbiosis in mouse models of IBD. Lcn2 expression was monitored in murine colitis models and upon microbiota ablation/restoration. WT and Lcn2 knockout ( Lcn2 KO) mice were analyzed for gut bacterial load, composition by 16S rRNA gene pyrosequencing and, their colitogenic potential by co-housing with Il-10 KO mice. Acute (dextran sodium sulfate) and chronic (IL-10R neutralization and T-cell adoptive transfer) colitis was induced in WT and Lcn2 KO mice with or without antibiotics. Lcn2 expression was dramatically induced upon inflammation and was dependent upon presence of a gut microbiota and MyD88 signaling. Use of bone-marrow chimeric mice revealed non-immune cells are the major contributors of circulating Lcn2. Lcn2 KO mice exhibited elevated levels of entA -expressing gut bacteria burden and, moreover, a broadly distinct bacterial community relative to WT littermates. Lcn2 KO mice developed highly colitogenic T-cells and exhibited exacerbated colitis upon exposure to DSS or neutralization of IL-10. Such exacerbated colitis could be prevented by antibiotic treatment. Moreover, exposure to the microbiota of Lcn2 KO mice, via cohousing, resulted in severe colitis in Il-10 KO mice. Lcn2 is a bacterially-induced, MyD88-dependent, protein that play an important role in gut homeostasis and a pivotal role upon challenge. Hence, therapeutic manipulation of Lcn2 levels may provide a strategy to help manage diseases driven by alteration of the gut microbiota.

  5. The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions

    PubMed Central

    Mastrogiannaki, Maria; Matak, Pavle

    2013-01-01

    Although earlier, seminal studies demonstrated that the gut per se has the intrinsic ability to regulate the rates of iron absorption, the spotlight in the past decade has been placed on the systemic regulation of iron homeostasis by the hepatic hormone hepcidin and the molecular mechanisms that regulate its expression. Recently, however, attention has returned to the gut based on the finding that hypoxia inducible factor-2 (HIF-2α) regulates the expression of key genes that contribute to iron absorption. Here we review the current understanding of the molecular mechanisms that regulate iron homeostasis in the gut by focusing on the role of HIF-2 under physiological steady-state conditions and in the pathogenesis of iron-related diseases. We also discuss implications for adapting HIF-2–based therapeutic strategies in iron-related pathological conditions. PMID:23678007

  6. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats.

    PubMed

    Feng, Wenhuan; Wang, Hongdong; Zhang, Pengzi; Gao, Caixia; Tao, Junxian; Ge, Zhijuan; Zhu, Dalong; Bi, Yan

    2017-07-01

    Structural disruption of gut microbiota contributes to the development of non-alcoholic fatty liver disease (NAFLD) and modulating the gut microbiota represents a novel strategy for NAFLD prevention. Although previous studies have demonstrated that curcumin alleviates hepatic steatosis, its effect on the gut microbiota modulation has not been investigated. Next generation sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota in a NAFLD rat model induced by high fat-diet (HFD) feeding. We found that curcumin attenuated hepatic ectopic fat deposition, improved intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD-fed rats. More importantly, curcumin dramatically shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean rats fed a normal diet and altered the gut microbial composition. The abundances of 110 operational taxonomic units (OTUs) were altered by curcumin. Seventy-six altered OTUs were significantly correlated with one or more hepatic steatosis associated parameters and designated 'functionally relevant phylotypes'. Thirty-six of the 47 functionally relevant OTUs that were positively correlated with hepatic steatosis associated parameters were reduced by curcumin. These results indicate that curcumin alleviates hepatic steatosis in part through stain-specific impacts on hepatic steatosis associated phylotypes of gut microbiota in rats. Compounds with antimicrobial activities should be further investigated as novel adjunctive therapies for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity?

    PubMed

    Ly, Ngoc P; Litonjua, Augusto; Gold, Diane R; Celedón, Juan C

    2011-05-01

    Current evidence supports a role for gut colonization in promoting and maintaining a balanced immune response in early life. An altered or less diverse gut microbiota composition has been associated with atopic diseases, obesity, or both. Moreover, certain gut microbial strains have been shown to inhibit or attenuate immune responses associated with chronic inflammation in experimental models. However, there has been no fully adequate longitudinal study of the relation between the neonatal gut microbiota and the development of allergic diseases (eg, atopic asthma) and obesity. The emergence of promising experimental studies has led to several clinical trials of probiotics (live bacteria given orally that allow for intestinal colonization) in human subjects. Probiotic trials thus far have failed to show a consistent preventive or therapeutic effect on asthma or obesity. Previous trials of probiotics have been limited by small sample size, short duration of follow-up, or lack of state-of-the art analyses of the gut microbiota. Finally, there is emerging evidence that the vitamin D pathway might be important in gut homeostasis and in signaling between the microbiota and the host. Given the complexity of the gut micriobiota, additional research is needed before we can confidently establish whether its manipulation in early life can prevent or treat asthma, obesity, or both. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. The pioneer factor Smed-gata456-1 is required for gut cell differentiation and maintenance in planarians.

    PubMed

    González-Sastre, Alejandro; De Sousa, Nídia; Adell, Teresa; Saló, Emili

    2017-01-01

    How adult stem cells differentiate into different cell types remains one of the most intriguing questions in regenerative medicine. Pioneer factors are transcription factors that can bind to and open chromatin, and are among the first elements involved in cell differentiation. We used the freshwater planarian Schmidtea mediterranea as a model system to study the role of the gata456 family of pioneer factors in gut cell differentiation during both regeneration and maintenance of the digestive system. Our findings reveal the presence of two members of the gata456 family in the Schmidtea mediterranea genome; Smed-gata456-1 and Smed-gata456-2. Our results show that Smed-gata456-1 is the only ortholog with a gut cell-related function. Smed-gata456-1 is essential for the differentiation of precursors into intestinal cells and for the survival of these differentiated cells, indicating a key role in gut regeneration and maintenance. Furthermore, tissues other than the gut appear normal following Smed-gata456-1 RNA interference (RNAi), indicating a gut-specific function. Importantly, different neoblast subtypes are unaffected by Smed-gata456-1(RNAi), suggesting that 1) Smed-gata456-1 is involved in the differentiation and maintenance, but not in the early determination, of gut cells; and 2) that the stem cell compartment is not dependent on a functional gut.

  9. Inheritance and Establishment of Gut Microbiota in Chickens

    PubMed Central

    Ding, Jinmei; Dai, Ronghua; Yang, Lingyu; He, Chuan; Xu, Ke; Liu, Shuyun; Zhao, Wenjing; Xiao, Lu; Luo, Lingxiao; Zhang, Yan; Meng, He

    2017-01-01

    In mammals, the microbiota can be transmitted from the placenta, uterus, and vagina of the mother to the infant. Unlike mammals, development of the avian embryo is a process isolated from the mother and thus in the avian embryo the gut microbial developmental process remains elusive. To explore the establishment and inheritance of the gut microbiome in the avian embryo, we used the chicken as the model organism to investigate the gut microbial composition in embryos, chicks, and maternal hens. We observed: (1) 28 phyla and 162 genera of microbes in embryos where the dominated genus was Halomonas (79%). (2) 65 genera were core microbiota in all stages with 42% and 62% gut microbial genera of embryo were found in maternal hen and chick, respectively. There was a moderate correlation (0.40) between the embryo and maternal, and 0.52 between the embryo and chick at the family level. (3) Gut microbes that are involved in substance metabolism, infectious disease, and environmental adaptation are enriched in embryos, chicks, and maternal hens, respectively. (4) 94% genera of gut microbial composition were similar among three different chicken breeds which were maintained under similar conditions. Our findings provide evidence to support the hypothesis that part of the microbial colonizers harbored in early embryos were inherited from maternal hens, and the gut microbial abundance and diversity were influenced by environmental factors and host genetic variation during development. PMID:29067020

  10. Rapid Change of Microbiota Diversity in the Gut but Not the Hepatopancreas During Gonadal Development of the New Shrimp Model Neocaridina denticulata.

    PubMed

    Cheung, Man Kit; Yip, Ho Yin; Nong, Wenyan; Law, Patrick Tik Wan; Chu, Ka Hou; Kwan, Hoi Shan; Hui, Jerome Ho Lam

    2015-12-01

    During evolution of animals, their co-evolution with bacteria has generally been ignored. Recent studies have provided evidences that the symbiotic bacteria in the animal gut can either be essential or contributing to the plasticity of the host. The Crustacea includes crab, crayfish, lobster, and shrimp and represents the second largest subphylum on the planet. Although there are already studies investigating the intestinal bacterial communities in crustaceans, none of them has examined the microbiota in different parts of the digestive system during the gonad development of the host. Here, we utilized a new shrimp model Neocaridina denticulata and sequenced the 16S rRNA using the Ion Torrent platform to survey the bacterial populations colonizing the hepatopancreas, foregut, and intestine, including midgut and hindgut, of the early, mid, and late ovarian maturation stages of the shrimp. The predominant bacteria phylum was found to be Proteobacteria, with more than 80 % reads from the gut flora at the early gonad development belonged to a Coxiella-type bacterium. Distinct bacterial communities can be detected between the hepatopancreas and gut, although no significant difference could be revealed between the different regions of the gut investigated. Surprisingly, during the gonad development, bacterial diversity changed rapidly in the gut but not the hepatopancreas. This study provides the first evidence that microbiota modified differentially in specific regions of the digestive tract during gonadal development of crustaceans.

  11. Why can't young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish.

    PubMed

    Day, Ryan D; German, Donovan P; Tibbetts, Ian R

    2011-01-01

    Most young fishes lack the ability to function as herbivores, which has been attributed to two aspects of the digestive system: elevated nitrogen demand and a critical gut capacity. We compared the digestive morphology and biochemistry of two size classes of the marine herbivore Hyporhamphus regularis ardelio, pre-ontogenetic trophic shift (pre-OTS, <100mm) and post-ontogenetic trophic shift (post-OTS, >100mm), to determine what limits the onset of herbivory and how their digestive processes fit with current models of digestion. Two gut-somatic indices comparing gut length to body length (relative gut length) and body mass (Zihler's Index) demonstrated a significant decrease (RGL 0.59→0.49, P<0.01; ZI 3.24→2.44, P<0.01) in gut length relative to body size. There was little difference in enzyme activity between the two classes, with juveniles showing similar levels of carbohydrase and lipase and less protease compared with adults, indicating that juveniles did not preferentially target nitrogen and were as capable of digesting an herbivorous diet. These findings suggest that herbivory in this fish is not limited by the function of the post-oesophageal digestive tract, but rather the ability of the pharyngeal mill to mechanically process plants. Our findings offer partial support for the current model of stomachless digestion, indicating that further refinement may be necessary. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis

    PubMed Central

    Sung, Jaeyun; Kim, Seunghyeon; Cabatbat, Josephine Jill T.; Jang, Sungho; Jin, Yong-Su; Jung, Gyoo Yeol; Chia, Nicholas; Kim, Pan-Jun

    2017-01-01

    A system-level framework of complex microbe–microbe and host–microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut. PMID:28585563

  13. The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin.

    PubMed

    Ponziani, Francesca Romana; Scaldaferri, Franco; Petito, Valentina; Paroni Sterbini, Francesco; Pecere, Silvia; Lopetuso, Loris R; Palladini, Alessandra; Gerardi, Viviana; Masucci, Luca; Pompili, Maurizio; Cammarota, Giovanni; Sanguinetti, Maurizio; Gasbarrini, Antonio

    2016-01-01

    Antibiotics are mainly used in clinical practice for their activity against pathogens, but they also alter the composition of commensal gut microbial community. Rifaximin is a non-absorbable antibiotic with additional effects on the gut microbiota about which very little is known. It is still not clear to what extent rifaximin can be able to modulate gut microbiota composition and diversity in different clinical settings. Studies based on culture-dependent techniques revealed that rifaximin treatment promotes the growth of beneficial bacteria, such as Bifidobacteria and Lactobacilli. Accordingly, our metagenomic analysis carried out on patients with different gastrointestinal and liver diseases highlighted a significant increase in Lactobacilli after rifaximin treatment, persisting in the short time period. This result was independent of the disease background and was not accompanied by a significant alteration of the overall gut microbial ecology. This suggests that rifaximin can exert important eubiotic effects independently of the original disease, producing a favorable gut microbiota perturbation without changing its overall composition and diversity. © 2016 S. Karger AG, Basel.

  14. The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state.

    PubMed

    Lopez-Legarrea, Patricia; Fuller, Nicholas Robert; Zulet, María Angeles; Martinez, Jose Alfredo; Caterson, Ian Douglas

    2014-01-01

    The role of the gut microbiota in understanding the onset and development of obesity is gaining importance. Dietary strategies are the main tool employed to counteract obesity, and nowadays they are focused on a wide range of different aspects of diet and not only on calorie restriction. Additionally, diet is known to be a major factor influencing modification of the gut microbiota. Therefore the influence of both macronutrient and micronutrient content of any dietary strategy to treat obesity on gut bacterial composition should now be taken into consideration, in addition to energy restriction. This review aims to collect the available data regarding the influence of different dietary components on gut microbiota in relation to obesity and inflammatory states in humans. Although more work is needed, specific dietary factors (carbohydrate, protein and Mediterranean foods) have been shown to have an influence on the gut microbiome composition, meaning that there is an opportunity to prevent and treat obesity based on microbiota outcomes.

  15. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    PubMed

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  16. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis.

    PubMed

    Sung, Jaeyun; Kim, Seunghyeon; Cabatbat, Josephine Jill T; Jang, Sungho; Jin, Yong-Su; Jung, Gyoo Yeol; Chia, Nicholas; Kim, Pan-Jun

    2017-06-06

    A system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut.

  17. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery.

    PubMed

    Guo, Yan; Huang, Zhi-Ping; Liu, Chao-Qian; Qi, Lin; Sheng, Yuan; Zou, Da-Jin

    2018-01-01

    Bariatric surgery is recommended for patients with obesity and type 2 diabetes. Recent evidence suggested a strong connection between gut microbiota and bariatric surgery. Systematic review. The PubMed and OVID EMBASE were used, and articles concerning bariatric surgery and gut microbiota were screened. The main outcome measures were alterations of gut microbiota after bariatric surgery and correlations between gut microbiota and host metabolism. We applied the system of evidence level to evaluate the alteration of microbiota. Modulation of short-chain fatty acid and gut genetic content was also investigated. Totally 12 animal experiments and 9 clinical studies were included. Based on strong evidence, 4 phyla (Bacteroidetes, Fusobacteria, Verrucomicrobia and Proteobacteria) increased after surgery; within the phylum Firmicutes, Lactobacillales and Enterococcus increased; and within the phylum Proteobacteria, Gammaproteobacteria, Enterobacteriales Enterobacteriaceae and several genera and species increased. Decreased microbial groups were Firmicutes, Clostridiales, Clostridiaceae, Blautia and Dorea. However, the change in microbial diversity is still under debate. Faecalibacterium prausnitzii, Lactobacillus and Coprococcus comes are implicated in many of the outcomes, including body composition and glucose homeostasis. There is strong evidence to support a considerable alteration of the gut microbiome after bariatric surgery. Deeper investigations are required to confirm the mechanisms that link the gut microbiome and metabolic alterations in human metabolism. © 2018 European Society of Endocrinology.

  18. Arsenic Metabolism by Human Gut Microbiota upon In Vitro Digestion of Contaminated Soils

    EPA Science Inventory

    Background: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with ...

  19. [Diet and gut microbiota: two sides of the same coin?

    PubMed

    Schiumerini, Ramona; Pasqui, Francesca; Festi, Davide

    2018-01-01

    Gut microbiota is a complex ecosystem, resident in the digestive tract, exerting multiple functions that can have a significant impact on the pathophysiology of the host organism. The composition and functions of this "superorganism" are influenced by many factors, and among them, the host's dietary habits seem to have a significant effect. Dietary changes in the evolution of human history and in the different stages of life of the human subjects are responsible for qualitative and functional modification of gut microbiota. At the same time, the different dietary models adopted in worldwide geographic areas take into account the inter-individual differences concerning composition and microbial function. This close relationship between diet, gut microbiota and host seems, in fact, to be responsible for the protection or predisposition to develop several metabolic, immunological, neoplastic and functional diseases. Thus, several studies have evaluated the impact of diet and lifestyle modification strategies on gut microbiota composition and functions which, in turn, seems to affect the effectiveness of such therapeutic measures. Gut microbiota manipulation strategies, as complementary to dietary modifications, represent a fascinating field of research, even if consolidated data are still lacking.

  20. Antibiotics-induced gut microbiota dysbiosis promotes tumor initiation via affecting APC-Th1 development in mice.

    PubMed

    Xu, Chengming; Ruan, Banjun; Jiang, Yinghao; Xue, Ting; Wang, Zhenyu; Lu, Huanyu; Wei, Ming; Wang, Shan; Ye, Zicheng; Zhai, Dongsheng; Wang, Li; Lu, Zifan

    2017-06-24

    Gut microbiota is critical for maintaining body immune homeostasis and thus affects tumor growth and therapeutic efficiency. Here, we investigated the link between microbiota and tumorgenesis in a mice model of subcutaneous melanoma cell transplantation, and explored the underlying mechanism. We found disruption of gut microbiota by pretreating mice with antibiotics promote tumor growth and remodeling the immune compartment within the primary tumor. Indeed, gut microbial dysbiosis reduced the infiltrated mature antigen-presenting cells of tumor, together with lower levels of co-stimulators, such as CD80, CD86 and MHCII, as well as defective Th1 cytokines, including IFNγ, TNFα, IL12p40, and IL12p35. Meantime, splenic APCs displayed blunted ability in triggering T cell proliferation and IFNγ secretion. However, oral administration of LPS restored the immune surveillance effects and thus inhibited tumor growth in the antibiotics induced gut microbiota dysbiosis group. Taken together, these data highly supported that antibiotics induced gut microbiota dysbiosis promotes tumor initiation, while LPS supplementation would restore the effective immune surveillance and repress tumor initiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Gut microbiome in type 1 diabetes: A comprehensive review.

    PubMed

    Zheng, Peilin; Li, Zhixia; Zhou, Zhiguang

    2018-06-21

    Type 1 diabetes (T1D) is an autoimmune disease, which is characterized by the destruction of islet β cells in the pancreas triggered by genetic and environmental factors. In past decades, extensive familial and genome-wide association studies have revealed more than 50 risk loci in the genome. However, genetic susceptibility cannot explain the increased incidence of T1D worldwide, which is very likely attributed by the growing impact of environmental factors, especially gut microbiome. Recently, the role of gut microbiome in the pathogenesis of T1D have been uncovered by the increasing evidence from both human subjects and animal models, strongly indicating that gut microbiome might be a pivotal hub of T1D-triggering factors, especially environmental factors. In this review, we summarize the current etiological and mechanism studies of gut microbiome in T1D. A better understanding of the role of gut microbiome in T1D may provide us with powerful prognostic and therapeutic tools in the near future. This article is protected by copyright. All rights reserved.

  2. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease.

    PubMed

    Mangalam, Ashutosh; Shahi, Shailesh K; Luckey, David; Karau, Melissa; Marietta, Eric; Luo, Ningling; Choung, Rok Seon; Ju, Josephine; Sompallae, Ramakrishna; Gibson-Corley, Katherine; Patel, Robin; Rodriguez, Moses; David, Chella; Taneja, Veena; Murray, Joseph

    2017-08-08

    The human gut is colonized by a large number of microorganisms (∼10 13 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4 + FoxP3 + regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Combination of Metagenomics and Culture-Based Methods to Study the Interaction Between Ochratoxin A and Gut Microbiota

    PubMed Central

    Guo, Mingzhang; Huang, Kunlun; Chen, Siyuan; Qi, Xiaozhe; He, Xiaoyun; Cheng, Wen-Hsing; Luo, Yunbo; Xia, Kai; Xu, Wentao

    2014-01-01

    Gut microbiota represent an important bridge between environmental substances and host metabolism. Here we reported a comprehensive study of gut microbiota interaction with ochratoxin A (OTA), a major food-contaminating mycotoxin, using the combination of metagenomics and culture-based methods. Rats were given OTA (0, 70, or 210 μg/kg body weight) by gavage and fecal samples were collected at day 0 and day 28. Bacterial genomic DNA was extracted from the fecal samples and both 16S rRNA and shotgun sequencing (two main methods of metagenomics) were performed. The results indicated OTA treatment decreased the within-subject diversity of the gut microbiota, and the relative abundance of Lactobacillus increased considerably. Changes in functional genes of gut microbiota including signal transduction, carbohydrate transport, transposase, amino acid transport system, and mismatch repair were observed. To further understand the biological sense of increased Lactobacillus, Lactobacillus selective medium was used to isolate Lactobacillus species from fecal samples, and a strain with 99.8% 16S rRNA similarity with Lactobacillus plantarum strain PFK2 was obtained. Thin-layer chromatography showed that this strain could absorb but not degrade OTA, which was in agreement with the result in metagenomics that no genes related to OTA degradation increased. In conclusion, combination of metagenomics and culture-based methods can be a new strategy to study intestinal toxicity of toxins and find applicable bacterial strains for detoxification. When it comes to OTA, this kind of mycotoxin can cause compositional and functional changes of gut microbiota, and Lactobacillus are key genus to detoxify OTA in vivo. PMID:24973096

  4. The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation.

    PubMed

    Schrumpf, Elisabeth; Kummen, Martin; Valestrand, Laura; Greiner, Thomas U; Holm, Kristian; Arulampalam, Velmurugesan; Reims, Henrik M; Baines, John; Bäckhed, Fredrik; Karlsen, Tom H; Blumberg, Richard S; Hov, Johannes R; Melum, Espen

    2017-02-01

    A strong association between human inflammatory biliary diseases and gut inflammation has led to the hypothesis that gut microbes and lymphocytes activated in the intestine play a role in biliary inflammation. The NOD.c3c4 mouse model develops spontaneous biliary inflammation in extra- and intrahepatic bile ducts. We aimed to clarify the role of the gut microbiota in the biliary disease of NOD.c3c4 mice. We sampled cecal content and mucosa from conventionally raised (CONV-R) NOD.c3c4 and NOD control mice, extracted DNA and performed 16S rRNA sequencing. NOD.c3c4 mice were rederived into a germ free (GF) facility and compared with CONV-R NOD.c3c4 mice. NOD.c3c4 mice were also co-housed with NOD mice and received antibiotics from weaning. The gut microbial profiles of mice with and without biliary disease were different both before and after rederivation (unweighted UniFrac-distance). GF NOD.c3c4 mice had less distended extra-hepatic bile ducts than CONV-R NOD.c3c4 mice, while antibiotic treated mice showed reduction of biliary infarcts. GF animals also showed a reduction in liver weight compared with CONV-R NOD.c3c4 mice, and this was also observed in antibiotic treated NOD.c3c4 mice. Co-housing of NOD and NOD.c3c4 mice indicated that the biliary phenotype was neither transmissible nor treatable by co-housing with healthy mice. NOD.c3c4 and NOD control mice show marked differences in the gut microbiota. GF NOD.c3c4 mice develop a milder biliary affection compared with conventionally raised NOD.c3c4 mice. Our findings suggest that the intestinal microbiota contributes to disease in this murine model of biliary inflammation. Mice with liver disease have a gut microflora (microbiota) that differs substantially from normal mice. In a normal environment, these mice spontaneously develop disease in their bile ducts. However, when these mice, are raised in an environment devoid of bacteria, the disease in the bile ducts diminishes. Overall this clearly indicates that the bacteria in the gut (the gut microbiota) influences the liver disease in these mice. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil

    PubMed Central

    Schulz, Kristin; Hunger, Sindy; Brown, George G; Tsai, Siu M; Cerri, Carlos C; Conrad, Ralf; Drake, Harold L

    2015-01-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [13C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and 13C-labeling of CH4 verified that supplemental [13C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae. PMID:25615437

  6. Effect of Lactobacillus plantarum LP-Onlly on gut flora and colitis in interleukin-10 knockout mice.

    PubMed

    Xia, Yang; Chen, Hong-Qi; Zhang, Min; Jiang, Yan-Qun; Hang, Xiao-Min; Qin, Huan-Long

    2011-02-01

    Probiotics are used in the therapy of inflammatory bowel disease. This study aimed to determine the effects of probiotic Lactobacillus plantarum LP-Onlly (LP) on gut flora and colitis in interleukin-10 knockout (IL-10(-/-) ) mice, a model of spontaneous colitis. IL-10(-/-) and wild-type mice were used at 8 weeks of age and LP by gavage was administered at a dose of 10(9) cells/day per mice for 4 weeks. Mice were maintained for another one week without LP treatment. The colonic tissues were collected for histological and ultrastructural analysis at death after 4 weeks treatment of LP, and the feces were collected at 1-week intervals throughout the experiment for the analysis of gut flora and LP using selective culture-based techniques. Compared with control mice, IL-10(-/-) mice developed a severe intestinal inflammation and tissue damage, and had an abnormal composition of gut microflora. LP administration attenuated colitis with the decreased inflammatory scoring and histological injury in the colon of IL-10(-/-) mice. In addition, LP administration increased the numbers of beneficial total bifidobacteria and lactobacilli, and decreased the numbers of potential pathogenic enterococci and Clostridium perfringens, although the decrease of coliforms was not significant after LP treatment in IL-10(-/-) mice. Oral administration of LP was effective in the treatment of colitis, with the direct modification of gut microflora in IL-10(-/-) mice. This probiotic strain could be used as a potential adjuvant in the therapy of inflammatory bowel disease, although further studies are required in human. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  7. Dietary Mannan Oligosaccharides: Counteracting the Side Effects of Soybean Meal Oil Inclusion on European Sea Bass (Dicentrarchus labrax) Gut Health and Skin Mucosa Mucus Production?

    PubMed Central

    Torrecillas, Silvia; Montero, Daniel; Caballero, Maria José; Pittman, Karin A.; Custódio, Marco; Campo, Aurora; Sweetman, John; Izquierdo, Marisol

    2015-01-01

    The main objective of this study was to assess the effects of 4 g kg−1 dietary mannan oligosaccharides (MOS) inclusion in soybean oil (SBO)- and fish oil (FO)-based diets on the gut health and skin mucosa mucus production of European sea bass juveniles after 8 weeks of feeding. Dietary MOS, regardless of the oil source, promoted growth. The intestinal somatic index was not affected, however dietary SBO reduced the intestinal fold length, while dietary MOS increased it. The dietary oil source fed produced changes on the posterior intestine fatty acid profiles irrespective of MOS dietary supplementation. SBO down-regulated the gene expression of TCRβ, COX2, IL-1β, TNFα, IL-8, IL-6, IL-10, TGFβ, and Ig and up-regulated MHCII. MOS supplementation up-regulated the expression of MHCI, CD4, COX2, TNFα, and Ig when included in FO-based diets. However, there was a minor up-regulating effect on these genes when MOS was supplemented in the SBO-based diet. Both dietary oil sources and MOS affected mean mucous cell areas within the posterior gut, however the addition of MOS to a SBO diet increased the mucous cell size over the values shown in FO fed fish. Dietary SBO also trends to reduce mucous cell density in the anterior gut relative to FO, suggesting a lower overall mucosal secretion. There are no effects of dietary oil or MOS in the skin mucosal patterns. Complete replacement of FO by SBO, modified the gut fatty acid profile, altered posterior gut-associated immune system (GALT)-related gene expression and gut mucous cells patterns, induced shorter intestinal folds and tended to reduce European sea bass growth. However, when combined with MOS, the harmful effects of SBO appear to be partially balanced by moderating the down-regulation of certain GALT-related genes involved in the functioning of gut mucous barrier and increasing posterior gut mucous cell diffusion rates, thus helping to preserve immune homeostasis. This denotes the importance of a balanced dietary n–3/n–6 ratio for an appropriate GALT-immune response against MOS in European sea bass juveniles. PMID:26300883

  8. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness

    PubMed Central

    Klingensmith, Nathan J.; Coopersmith, Craig M.

    2015-01-01

    Synopsis All elements of the gut – the epithelium, the immune system, and the microbiome – are impacted by critical illness and can, in turn, propagate a pathologic host response leading to multiple organ dysfunction syndrome. Preclinical studies have demonstrated that this can occur by release of toxic gut-derived substances into the mesenteric lymph where they can cause distant damage. Further, intestinal integrity is compromised in critical illness with increases in apoptosis and permeability. There is also increasing recognition that microbes alter their behavior and can become virulent based upon host environmental cues. Gut failure is common in critically ill patients; however, therapeutics targeting the gut have proven to be challenging to implement at the bedside. Numerous strategies to manipulate the microbiome have recently been used with varying success in the ICU. PMID:27016162

  9. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness.

    PubMed

    Klingensmith, Nathan J; Coopersmith, Craig M

    2016-04-01

    All elements of the gut - the epithelium, the immune system, and the microbiome - are impacted by critical illness and can, in turn, propagate a pathologic host response leading to multiple organ dysfunction syndrome. Preclinical studies have demonstrated that this can occur by release of toxic gut-derived substances into the mesenteric lymph where they can cause distant damage. Further, intestinal integrity is compromised in critical illness with increases in apoptosis and permeability. There is also increasing recognition that microbes alter their behavior and can become virulent based upon host environmental cues. Gut failure is common in critically ill patients; however, therapeutics targeting the gut have proven to be challenging to implement at the bedside. Numerous strategies to manipulate the microbiome have recently been used with varying success in the ICU. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comprehensive analysis of polyamine transport and biosynthesis in the dominant human gut bacteria: Potential presence of novel polyamine metabolism and transport genes.

    PubMed

    Sugiyama, Yuta; Nara, Misaki; Sakanaka, Mikiyasu; Gotoh, Aina; Kitakata, Aya; Okuda, Shujiro; Kurihara, Shin

    2017-12-01

    Recent studies have reported that polyamines in the colonic lumen might affect animal health and these polyamines are thought to be produced by gut bacteria. In the present study, we measured the concentrations of three polyamines (putrescine, spermidine, and spermine) in cells and culture supernatants of 32 dominant human gut bacterial species in their growing and stationary phases. Combining polyamine concentration analysis in culture supernatant and cells with available genomic information showed that novel polyamine biosynthetic proteins and transporters were present in dominant human gut bacteria. Based on these findings, we suggested strategies for optimizing polyamine concentrations in the human colonic lumen via regulation of genes responsible for polyamine biosynthesis and transport in the dominant human gut bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Complex pectin metabolism by gut bacteria reveals novel catalytic functions

    PubMed Central

    Baslé, Arnaud; Gray, Joseph; Venditto, Immacolata; Briggs, Jonathon; Zhang, Xiaoyang; Labourel, Aurore; Terrapon, Nicolas; Buffetto, Fanny; Nepogodiev, Sergey; Xiao, Yao; Field, Robert A.; Zhu, Yanping; O’Neil, Malcolm A.; Urbanowicz, Breeana R.; York, William S.; Davies, Gideon J.; Abbott, D. Wade; Ralet, Marie-Christine; Martens, Eric C.; Henrissat, Bernard; Gilbert, Harry J.

    2017-01-01

    Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron utilizes the most structurally complex glycan known; the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but one of its 21 distinct glycosidic linkages. We show that rhamnogalacturonan-II side-chain and backbone deconstruction are coordinated, to overcome steric constraints, and that degradation reveals previously undiscovered enzyme families and novel catalytic activities. The degradome informs revision of the current structural model of RG-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycans in the human diet. PMID:28329766

  12. Towards an Integrative Understanding of tRNA Aminoacylation–Diet–Host–Gut Microbiome Interactions in Neurodegeneration

    PubMed Central

    Paley, Elena L.

    2018-01-01

    Transgenic mice used for Alzheimer’s disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNAtrp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood–brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS) and mitochondrial (WARS2) forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept. PMID:29587458

  13. Fraction of a dose absorbed estimation for structurally diverse low solubility compounds.

    PubMed

    Sugano, Kiyohiko

    2011-02-28

    The purpose of the present study was to investigate the prediction accuracy of the fully mechanistic gastrointestinal unified theoretical (GUT) framework for in vivo oral absorption of low solubility drugs. Solubility in biorelevant media, molecular weight, logP(oct), pK(a), Caco-2 permeability, dose and particle size were used as the input parameters. To neglect the effect of the low stomach pH on dissolution of a drug, the fraction of a dose absorbed (Fa%) of undissociable and free acids were used. In addition, Fa% of free base drugs with the high pH stomach was also included to increase the number of model drugs. In total twenty nine structurally diverse compounds were used as the model drugs. Fa% data at several doses and particle sizes in humans and dogs were collated from the literature (total 110 Fa% data). In approximately 80% cases, the prediction error was within 2 fold, suggesting that the GUT framework has practical predictability for drug discovery, but not for drug development. The GUT framework appropriately captured the dose and particle size dependency of Fa% as the particle drifting effect was taken into account. It should be noted that the present validation results cannot be applied for salt form cases and other special formulations such as solid dispersions and emulsion formulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Mechanisms of transepithelial ammonia excretion and luminal alkalinization in the gut of an intestinal air-breathing fish, Misgurnus anguilliacaudatus.

    PubMed

    Wilson, Jonathan M; Moreira-Silva, Joana; Delgado, Inês L S; Ebanks, Sue C; Vijayan, Mathilakath M; Coimbra, João; Grosell, Martin

    2013-02-15

    The weatherloach, Misgurnus angulliacaudatus, is an intestinal air-breathing, freshwater fish that has the unique ability to excrete ammonia through gut volatilization when branchial and cutaneous routes are compromised during high environmental ammonia or air exposure. We hypothesized that transepithelial gut NH(4)(+) transport is facilitated by an apical Na(+)/H(+) (NH(4)(+)) exchanger (NHE) and a basolateral Na(+)/K(+)(NH(4)(+))-ATPase, and that gut boundary layer alkalinization (NH(4)(+) → NH(3) + H(+)) is facilitated by apical HCO(3)(-) secretion through a Cl(-)/HCO(3)(-) anion exchanger. This was tested using a pharmacological approach with anterior (digestive) and posterior (respiratory) intestine preparations mounted in pH-stat-equipped Ussing chambers. The anterior intestine had a markedly higher conductance, increased short-circuit current, and greater net base (J(base)) and ammonia excretion rates (J(amm)) than the posterior intestine. In the anterior intestine, HCO(3)(-) accounted for 70% of J(base). In the presence of an imposed serosal-mucosal ammonia gradient, inhibitors of both NHE (EIPA, 0.1 mmol l(-1)) and Na(+)/K(+)-ATPase (ouabain, 0.1 mmol l(-1)) significantly inhibited J(amm) in the anterior intestine, although only EIPA had an effect in the posterior intestine. In addition, the anion exchange inhibitor DIDS significantly reduced J(base) in the anterior intestine although only at a high dose (1 mmol l(-1)). Carbonic anhydrase does not appear to be associated with gut alkalinization under these conditions as ethoxzolamide was without effect on J(base). Membrane fluidity of the posterior intestine was low, suggesting low permeability, which was also reflected in a lower mucosal-serosal J(amm) in the presence of an imposed gradient, in contrast to that in the anterior intestine. To conclude, although the posterior intestine is highly modified for gas exchange, it is the anterior intestine that is the likely site of ammonia excretion and alkalinization leading to ammonia volatilization in the gut.

  15. Plant secondary metabolites and gut health: the case for phenolic acids.

    PubMed

    Russell, Wendy; Duthie, Garry

    2011-08-01

    Plant-based diets contain a plethora of secondary metabolites that may impact on health and disease prevention. Much attention has been focused on the potential bioactivity and nutritional relevance of several classes of phytochemicals such as flavonoids, carotenoids, phyto-oestrogens and glucosinolates. Less attention has been paid to simple phenolic acids that are widely found in fruit, vegetables, herbs, spices and beverages. Daily intakes may exceed 100 mg. In addition, bacteria in the gut can perform reactions that transform more complex plant phenolics such as anthocyanins, procyanidins, flavanones, flavonols, tannins and isoflavones into simple phenolic metabolites. The colon is thus a rich source of potentially active phenolic acids that may impact both locally and systemically on gut health. Both the small and large intestine (colon) contain absorption sites for phenolic acids but low post-prandial concentrations in plasma indicate minimal absorption early in the gastrointestinal tract and/or rapid hepatic metabolism and excretion. Therefore, any bioactivity that contributes to gut health may predominantly occur in the colon. Several phenolic acids affect the expression and activity of enzymes involved in the production of inflammatory mediators of pathways thought to be important in the development of gut disorders including colon cancer. However, at present, we remain largely ignorant as to which of these compounds are beneficial to gut health. Until we can elucidate which pro-inflammatory and potentially carcinogenetic changes in gene expression can be moderated by simple phenolic acids, it is not possible to recommend specific plant-based foods rich in particular phenolics to optimise gut health.

  16. Beyond the CMSSM without an accelerator: Proton decay and direct dark matter detection

    DOE PAGES

    Ellis, John; Evans, Jason L.; Luo, Feng; ...

    2016-01-05

    Here, we consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale M inbelow the grand unification (GUT) scale M GUT, a scenario referred to as ‘sub-GUT’. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale.more » Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if M in is close to M GUT, but it may lie within its reach if M in≲10 11 GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.« less

  17. The super-GUT CMSSM revisited

    DOE PAGES

    Ellis, John; Evans, Jason L.; Mustafayev, Azar; ...

    2016-10-28

    Here, we revisit minimal supersymmetric SU(5) grand unification (GUT) models in which the soft supersymmetry-breaking parameters of the minimal supersymmetric Standard Model (MSSM) are universal at some input scale, M in, above the supersymmetric gauge-coupling unification scale, M GUT. As in the constrained MSSM (CMSSM), we assume that the scalar masses and gaugino masses have common values, m 0 and m 1/2, respectively, at M in, as do the trilinear soft supersymmetry-breaking parameters A 0. Going beyond previous studies of such a super-GUT CMSSM scenario, we explore the constraints imposed by the lower limit on the proton lifetime and themore » LHC measurement of the Higgs mass, m h. We find regions of m 0, m 1/2 A 0 and the parameters of the SU(5) superpotential that are compatible with these and other phenomenological constraints such as the density of cold dark matter, which we assume to be provided by the lightest neutralino. Typically, these allowed regions appear for m 0 and m 1/2 in the multi-TeV region, for suitable values of the unknown SU(5) GUT-scale phases and superpotential couplings, and with the ratio of supersymmetric Higgs vacuum expectation values tan β≲6.« less

  18. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.

    PubMed

    Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D

    2016-02-05

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.

  19. Gut Microbiota Confers Resistance of Albino Oxford Rats to the Induction of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Stanisavljević, Suzana; Dinić, Miroslav; Jevtić, Bojan; Đedović, Neda; Momčilović, Miljana; Đokić, Jelena; Golić, Nataša; Mostarica Stojković, Marija; Miljković, Đorđe

    2018-01-01

    Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.

  20. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis.

    PubMed

    Jiao, Na; Baker, Susan S; Nugent, Colleen A; Tsompana, Maria; Cai, Liting; Wang, Yong; Buck, Michael J; Genco, Robert J; Baker, Robert D; Zhu, Ruixin; Zhu, Lixin

    2018-04-01

    A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we used a meta-analysis to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents. The raw sequencing data of nine studies generated from high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways with PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes-to-Firmicutes ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli, and Erysipelotrichi were dominant classes, but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome data sets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis, and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFA metabolism, and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.

  1. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota

    PubMed Central

    Ellegaard, Kirsten M.; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities. PMID:27708630

  2. Cognitive Impairment by Antibiotic-Induced Gut Dysbiosis: Analysis of Gut Microbiota-Brain Communication

    PubMed Central

    Fröhlich, Esther E.; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-01-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-D-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  3. Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome

    PubMed Central

    Dominianni, Christine; Sinha, Rashmi; Goedert, James J.; Pei, Zhiheng; Yang, Liying; Hayes, Richard B.; Ahn, Jiyoung

    2015-01-01

    Increasing evidence suggests that the composition of the human gut microbiome is important in the etiology of human diseases; however, the personal factors that influence the gut microbiome composition are poorly characterized. Animal models point to sex hormone-related differentials in microbiome composition. In this study, we investigated the relationship of sex, body mass index (BMI) and dietary fiber intake with the gut microbiome in 82 humans. We sequenced fecal 16S rRNA genes by 454 FLX technology, then clustered and classified the reads to microbial genomes using the QIIME pipeline. Relationships of sex, BMI, and fiber intake with overall gut microbiome composition and specific taxon abundances were assessed by permutational MANOVA and multivariate logistic regression, respectively. We found that sex was associated with the gut microbiome composition overall (p=0.001). The gut microbiome in women was characterized by a lower abundance of Bacteroidetes (p=0.03). BMI (>25 kg/m2 vs. <25 kg/m2) was associated with the gut microbiome composition overall (p=0.05), and this relationship was strong in women (p=0.03) but not in men (p=0.29). Fiber from beans and from fruits and vegetables were associated, respectively, with greater abundance of Actinobacteria (p=0.006 and false discovery rate adjusted q=0.05) and Clostridia (p=0.009 and false discovery rate adjusted q=0.09). Our findings suggest that sex, BMI, and dietary fiber contribute to shaping the gut microbiome in humans. Better understanding of these relationships may have significant implications for gastrointestinal health and disease prevention. PMID:25874569

  4. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota.

    PubMed

    Ellegaard, Kirsten M; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities.

  5. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation. PMID:26329787

  6. Multiscale modeling of mucosal immune responses.

    PubMed

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.

  7. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance.

    PubMed

    Bindels, Laure B; Neyrinck, Audrey M; Loumaye, Audrey; Catry, Emilie; Walgrave, Hannah; Cherbuy, Claire; Leclercq, Sophie; Van Hul, Matthias; Plovier, Hubert; Pachikian, Barbara; Bermúdez-Humarán, Luis G; Langella, Philippe; Cani, Patrice D; Thissen, Jean-Paul; Delzenne, Nathalie M

    2018-04-06

    Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium ( Faecalibacterium prausnitzii ) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.

  8. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments

    PubMed Central

    Berg, Maureen; Stenuit, Ben; Ho, Joshua; Wang, Andrew; Parke, Caitlin; Knight, Matthew; Alvarez-Cohen, Lisa; Shapira, Michael

    2016-01-01

    It is now well accepted that the gut microbiota contributes to our health. However, what determines the microbiota composition is still unclear. Whereas it might be expected that the intestinal niche would be dominant in shaping the microbiota, studies in vertebrates have repeatedly demonstrated dominant effects of external factors such as host diet and environmental microbial diversity. Hypothesizing that genetic variation may interfere with discerning contributions of host factors, we turned to Caenorhabditis elegans as a new model, offering the ability to work with genetically homogenous populations. Deep sequencing of 16S rDNA was used to characterize the (previously unknown) worm gut microbiota as assembled from diverse produce-enriched soil environments under laboratory conditions. Comparisons of worm microbiotas with those in their soil environment revealed that worm microbiotas resembled each other even when assembled from different microbial environments, and enabled defining a shared core gut microbiota. Community analyses indicated that species assortment in the worm gut was non-random and that assembly rules differed from those in their soil habitat, pointing at the importance of competitive interactions between gut-residing taxa. The data presented fills a gap in C. elegans biology. Furthermore, our results demonstrate a dominant contribution of the host niche in shaping the gut microbiota. PMID:26800234

  9. Role of gut microbiota in obesity, type 2 diabetes and Alzheimer's disease.

    PubMed

    Naseer, Muhammad I; Bibi, Fehmida; Alqahtani, Mohammed H; Chaudhary, Adeel G; Azhar, Esam I; Kamal, Mohammad A; Yasir, Muhammad

    2014-03-01

    In recent years, there is a growing interest in research to investigate the importance of gut microbiome in health and diseases. This opens a new area of research for the role of microbial flora of the human gut in inflammation, energy homeostasis, pathogenesis of obesity and other associated disorders. Recent studies propose association of the gut microbiome with development of obesity and metabolic syndromes, such as type 2 diabetes mellitus (T2DM). The T2DM is a metabolic disease that is mainly caused by obesity-linked insulin resistance. The vascular effects of obesity appears to play a role in the development of Alzheimer's disease (AD) that is one of the rapidly growing diseases of a late stage of life all over the world. Studies from both humans and mice models have been demonstrated the engagement of gut microbial flora in the pathogenesis of obesity and host metabolism. The aim of this review is to discuss the current findings that may explain the cascade of gut microbial flora participation in the development of obesity, T2DM and further initiation of AD. In addition, the available data regarding the mechanisms that have been proposed to elucidate the role of gut microbiota in weight gain and possible cause of T2DM and AD have been examined.

  10. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance

    PubMed Central

    Bindels, Laure B.; Neyrinck, Audrey M.; Loumaye, Audrey; Catry, Emilie; Walgrave, Hannah; Cherbuy, Claire; Leclercq, Sophie; Van Hul, Matthias; Plovier, Hubert; Pachikian, Barbara; Bermúdez-Humarán, Luis G.; Langella, Philippe; Cani, Patrice D.; Thissen, Jean-Paul; Delzenne, Nathalie M.

    2018-01-01

    Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium (Faecalibacterium prausnitzii) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis. PMID:29719601

  11. Nonuniversal gaugino masses and muon g - 2

    DOE PAGES

    Gogoladze, Ilia; Nasir, Fariha; Shafi, Qaisar; ...

    2014-08-11

    We consider two classes of supersymmetric models with nonuniversal gaugino masses at the grand unification scale M GUT in an attempt to resolve the apparent muon g-2 anomaly encountered in the Standard Model. We explore two distinct scenarios, one in which all gaugino masses have the same sign at M GUT, and a second case with opposite sign gaugino masses. The sfermion masses in both cases are assumed to be universal at M GUT. We exploit the nonuniversality among gaugino masses to realize large mass splitting between the colored and noncolored sfermions. Thus, the sleptons can have masses in themore » few hundred GeV range, whereas the colored sparticles turn out to be an order of magnitude or so heavier. In both models the resolution of the muon g-2 anomaly is compatible, among other things, with a 125–126 GeV Higgs boson mass and the WMAP dark matter bounds.« less

  12. Dissecting the role of milk components on gut microbiota composition

    PubMed Central

    Maga, Elizabeth A.; Weimer, Bart C.; Murray, James D.

    2013-01-01

    The composition of human milk is tailored to contribute to the development of the gastrointestinal (GI) tract of newborns and infants. Importantly, human milk contains the antimicrobial compounds lysozyme and lactoferrin that are thought to contribute to the formation of a health-promoting microbiota. As these protective factors are lacking in the milk of dairy animals, we genetically engineered goats expressing human lysozyme in their milk and have recently reported a new animal model to dissect out the role of milk components on gut microbiota formation. Using the pig as a more human-relevant animal model, we demonstrated that consumption of lysozyme-rich milk enriched the abundance of bacteria associated with GI health and decreased those associated with disease, much like human milk. This work demonstrated that the pig is a valid animal model for gut microbiome studies on the effects of dietary components on microbiota composition, host-microbe interactions and state of the intestine. PMID:23235404

  13. Pathogenesis of Escherichia coli O157:H7 Strain 86-24 Following Oral Infection of BALB/c Mice with an Intact Commensal Flora

    DTIC Science & Technology

    2010-01-01

    microbiome for resources. On the other hand, in a mouse model in which the normal gut flora is suppressed, the infecting E. coli 0157:H7 strain may...producing E. coli (STEC) [ 10- 121. This toxin is produced by the infecting bacteria in the gut , as evidenced by the presence of Stx in the feces...intestinal barrier to target small vessel endothelial cells in the lamina propria of the gut {thought to be a primary event in the manifestation of

  14. The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice

    PubMed Central

    Pasinetti, Giulio Maria; Singh, Risham; Westfall, Susan; Herman, Francis; Faith, Jeremiah; Ho, Lap

    2018-01-01

    A growing body of experimental data suggests that microbes in the gut influence behavior and can alter brain physiology and neurochemistry. Although promising, researchers are only starting to understand the potential of the gut microbiota for use in neurological disease. Recent evidence demonstrated that gastrointestinal activities are linked to mood disorders such as anxiety, depression, and most recently, cognitive functions in age-related neurodegenerative disorders. Studies from our group and others are uncovering new evidence suggesting that the gut microbiota plays a crucial role in the metabolism and bioavailability of certain dietary compounds and synthetic drugs. Based on this evidence, this review article will discuss the implications of the gut microbiota in mechanisms of bioavailability and biotransformation with an emphasis on dietary polyphenol compounds. This will be followed by a survey of ongoing innovative research identifying the ability of individual gut bacteria to enhance the bioavailability of gut-derived, brain-penetrating, bioactive polyphenol metabolites that ultimately influence mechanisms associated with the promotion of resilience against psychological and cognitive impairment in response to stress. Lastly, current research initiatives aimed at promoting the generation of brain bioactive polyphenol metabolites by specialized gut microbes will be discussed, specifically the use of gnotobiotic mice to develop bioengineered second generation probiotics. We propose that leveraging the gut microbial ecosystem to generate brain targeted bioactive metabolites from dietary polyphenols can attenuate lifestyle risk factors and promote resilience against age-related cognitive decline. PMID:29660942

  15. Changes in human gut flora with age: an Indian familial study.

    PubMed

    Marathe, Nachiket; Shetty, Sudarshan; Lanjekar, Vikram; Ranade, Dilip; Shouche, Yogesh

    2012-09-26

    The gut micro flora plays vital role in health status of the host. The majority of microbes residing in the gut have a profound influence on human physiology and nutrition. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence it is necessary to understand the composition of gut flora of different ethnic groups. Indian population is different in physiology from western population (YY paradox) and thus the gut flora in Indian population is likely to differ from the extensively studied gut flora in western population. In this study we have investigated the gut flora of two Indian families, each with three individuals belonging to successive generations and living under the same roof. Denaturation gradient gel electrophoresis analysis showed age-dependant variation in gut microflora amongst the individuals within a family. Different bacterial genera were dominant in the individual of varying age in clone library analysis. Obligate anaerobes isolated from individuals within a family showed age related differences in isolation pattern, with 27% (6 out of 22) of the isolates being potential novel species based on 16S rRNA gene sequence. In qPCR a consistent decrease in Firmicutes number and increase in Bacteroidetes number with increasing age was observed in our subjects, this pattern of change in Firmicutes / Bacteroidetes ratio with age is different than previously reported in European population. There is change in gut flora with age amongst the individuals within a family. The isolation of high percent of novel bacterial species and the pattern of change in Firmicutes /Bacteroidetes ratio with age suggests that the composition of gut flora in Indian individuals may be different than the western population. Thus, further extensive study is needed to define the gut flora in Indian population.

  16. A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults.

    PubMed

    Cronin, Owen; Barton, Wiley; Skuse, Peter; Penney, Nicholas C; Garcia-Perez, Isabel; Murphy, Eileen F; Woods, Trevor; Nugent, Helena; Fanning, Aine; Melgar, Silvia; Falvey, Eanna C; Holmes, Elaine; Cotter, Paul D; O'Sullivan, Orla; Molloy, Michael G; Shanahan, Fergus

    2018-01-01

    Many components of modern living exert influence on the resident intestinal microbiota of humans with resultant impact on host health. For example, exercise-associated changes in the diversity, composition, and functional profiles of microbial populations in the gut have been described in cross-sectional studies of habitual athletes. However, this relationship is also affected by changes in diet, such as changes in dietary and supplementary protein consumption, that coincide with exercise. To determine whether increasing physical activity and/or increased protein intake modulates gut microbial composition and function, we prospectively challenged healthy but sedentary adults with a short-term exercise regime, with and without concurrent daily whey protein consumption. Metagenomics- and metabolomics-based assessments demonstrated modest changes in gut microbial composition and function following increases in physical activity. Significant changes in the diversity of the gut virome were evident in participants receiving daily whey protein supplementation. Results indicate that improved body composition with exercise is not dependent on major changes in the diversity of microbial populations in the gut. The diverse microbial characteristics previously observed in long-term habitual athletes may be a later response to exercise and fitness improvement. IMPORTANCE The gut microbiota of humans is a critical component of functional development and subsequent health. It is important to understand the lifestyle and dietary factors that affect the gut microbiome and what impact these factors may have. Animal studies suggest that exercise can directly affect the gut microbiota, and elite athletes demonstrate unique beneficial and diverse gut microbiome characteristics. These characteristics are associated with levels of protein consumption and levels of physical activity. The results of this study show that increasing the fitness levels of physically inactive humans leads to modest but detectable changes in gut microbiota characteristics. For the first time, we show that regular whey protein intake leads to significant alterations to the composition of the gut virome.

  17. Possible role of the microbiome in the development of acute malnutrition and implications for food-based strategies to prevent and treat acute malnutrition

    USDA-ARS?s Scientific Manuscript database

    A pattern of changes in the microbiome composition have been observed in the normal maturation of the human gut. Perturbations from this pattern have been described in malnourished humans and reproduced in animal models of severe malnutrition. Treatment and prevention of malnutrition in the future m...

  18. Alterations in the gut (Gallus gallus) microbiota following the consumption of zinc biofortified wheat (Triticum aestivum) -based diet

    USDA-ARS?s Scientific Manuscript database

    The structure and function of the cecal microbiota following the consumption of a zinc (Zn) biofortified wheat diet was evaluated in a novel animal model of human nutrition (Gallus gallus) during a six-week efficacy trial. Using 16S rRNA gene sequencing, a significant increase in B- but not a- micro...

  19. Successful treatment of simulated Clostridium difficile infection in a human gut model by fidaxomicin first line and after vancomycin or metronidazole failure.

    PubMed

    Chilton, C H; Crowther, G S; Freeman, J; Todhunter, S L; Nicholson, S; Longshaw, C M; Wilcox, M H

    2014-02-01

    Fidaxomicin reduces the risk of recurrent Clostridium difficile infection (CDI) compared with vancomycin. We investigated fidaxomicin primary or secondary treatment efficacy using a gut model. Four triple-stage chemostat gut models were inoculated with faeces. After clindamycin induction of CDI, fidaxomicin (200 mg/L twice daily), vancomycin (125 mg/L four times daily) or metronidazole (9.3 mg/L three times daily) was administered for 7 days. Following failure/CDI recurrence, fidaxomicin (200 mg/L twice daily, 7 days) was instilled. C. difficile (CD) total viable counts (TVC), spore counts (SP), toxin titres (CYT), gut bacteria counts and antimicrobial concentrations were measured throughout. Fidaxomicin instillation reduced CD TVC/SP and CYT below the limit of detection (LOD) after 2 and 4 days, respectively, with no CDI recurrence. Metronidazole instillation failed to decrease CD TVC or CYT. Vancomycin instillation reduced CD TVC and CYT to LOD by day 4, but SP persisted. Recurrence occurred 13 days after vancomycin instillation; subsequent fidaxomicin instillation reduced CD TVC/SP/CYT below the LOD from day 2. CD was isolated sporadically, with no evidence of spore recrudescence or toxin production. Fidaxomicin had a minimal effect on the microflora, except for bifidobacteria. Fidaxomicin was detected for at least 21 days post-instillation, whereas other antimicrobials were undetectable beyond ∼4 days. Fidaxomicin successfully treated simulated primary and recurrent CDI. Fidaxomicin was superior to metronidazole in reducing CD TVC and SP, and superior to vancomycin in reducing SP without recurrence of vegetative cell growth. Fidaxomicin, but not vancomycin or metronidazole, persisted in the gut model for >20 days after instillation.

  20. The effect of sun-dried raisins (Vitis vinifera L.) on the in vitro composition of the gut microbiota.

    PubMed

    Mandalari, Giuseppina; Chessa, Simona; Bisignano, Carlo; Chan, Luisa; Carughi, Arianna

    2016-09-14

    Modulation of the human gut microbiota has proven to have beneficial effects on host health. The aim of this work was to evaluate the effect of sun-dried raisins (SR) on the composition of the human gut microbiota. A full model of the gastrointestinal tract, which includes simulated mastication, a dynamic gastric model, a duodenal model and a colonic model of the human large intestine, was used. An increase in the numbers of bifidobacteria and lactobacilli was observed by plate-counting in response to the addition of either SR or FOS after 8 and 24 h fermentation. A significant decrease in Firmicutes and Bacteroidetes was observed in SR samples after 8 and 24 h fermentation. FOS resulted in the greatest production of short chain fatty acids. Sun-dried raisins demonstrated considerable potential to promote the colonization and proliferation of beneficial bacteria in the human large intestine and to stimulate the production of organic acids.

  1. Characterization of the gut microbiota in the red panda (Ailurus fulgens).

    PubMed

    Kong, Fanli; Zhao, Jiangchao; Han, Shushu; Zeng, Bo; Yang, Jiandong; Si, Xiaohui; Yang, Benqing; Yang, Mingyao; Xu, Huailiang; Li, Ying

    2014-01-01

    The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16) and captive (n = 6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo.

  2. Characterization of the Gut Microbiota in the Red Panda (Ailurus fulgens)

    PubMed Central

    Han, Shushu; Zeng, Bo; Yang, Jiandong; Si, Xiaohui; Yang, Benqing; Yang, Mingyao; Xu, Huailiang; Li, Ying

    2014-01-01

    The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16) and captive (n = 6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo. PMID:24498390

  3. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota.

    PubMed

    Grégory, Dubourg; Chaudet, Hervé; Lagier, Jean-Christophe; Raoult, Didier

    2018-03-01

    Describing the human hut gut microbiota is one the most exciting challenges of the 21 st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.

  4. Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome.

    PubMed

    El Kaoutari, Abdessamad; Armougom, Fabrice; Leroy, Quentin; Vialettes, Bernard; Million, Matthieu; Raoult, Didier; Henrissat, Bernard

    2013-01-01

    Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.

  5. Diet rapidly and reproducibly alters the human gut microbiome

    PubMed Central

    David, Lawrence A.; Maurice, Corinne F.; Carmody, Rachel N.; Gootenberg, David B.; Button, Julie E.; Wolfe, Benjamin E.; Ling, Alisha V.; Devlin, A. Sloan; Varma, Yug; Fischbach, Michael A.; Biddinger, Sudha B.; Dutton, Rachel J.; Turnbaugh, Peter J.

    2013-01-01

    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. PMID:24336217

  6. Engraftment of enteric neural progenitor cells into the injured adult brain.

    PubMed

    Belkind-Gerson, Jaime; Hotta, Ryo; Whalen, Michael; Nayyar, Naema; Nagy, Nandor; Cheng, Lily; Zuckerman, Aaron; Goldstein, Allan M; Dietrich, Jorg

    2016-01-25

    A major area of unmet need is the development of strategies to restore neuronal network systems and to recover brain function in patients with neurological disease. The use of cell-based therapies remains an attractive approach, but its application has been challenging due to the lack of suitable cell sources, ethical concerns, and immune-mediated tissue rejection. We propose an innovative approach that utilizes gut-derived neural tissue for cell-based therapies following focal or diffuse central nervous system injury. Enteric neuronal stem and progenitor cells, able to differentiate into neuronal and glial lineages, were isolated from the postnatal enteric nervous system and propagated in vitro. Gut-derived neural progenitors, genetically engineered to express fluorescent proteins, were transplanted into the injured brain of adult mice. Using different models of brain injury in combination with either local or systemic cell delivery, we show that transplanted enteric neuronal progenitor cells survive, proliferate, and differentiate into neuronal and glial lineages in vivo. Moreover, transplanted cells migrate extensively along neuronal pathways and appear to modulate the local microenvironment to stimulate endogenous neurogenesis. Our findings suggest that enteric nervous system derived cells represent a potential source for tissue regeneration in the central nervous system. Further studies are needed to validate these findings and to explore whether autologous gut-derived cell transplantation into the injured brain can result in functional neurologic recovery.

  7. Food combination based on a pre-hispanic Mexican diet decreases metabolic and cognitive abnormalities and gut microbiota dysbiosis caused by a sucrose-enriched high-fat diet in rats.

    PubMed

    Avila-Nava, Azalia; Noriega, Lilia G; Tovar, Armando R; Granados, Omar; Perez-Cruz, Claudia; Pedraza-Chaverri, José; Torres, Nimbe

    2017-01-01

    There is few information about the possible health effects of a food combination based on a pre-hispanic Mexican diet (PMD). This diet rich in fiber, polyphenols, a healthy ratio of omega 6/omega 3 fatty acids, and vegetable protein could improve carbohydrate and lipid metabolism, gut microbiota and cognitive function. We examined the effect of a PMD in a sucrose enriched high-fat model. The PMD contains corn, beans, tomato, nopal, chia and pumpkin seeds in dehydrated form. Following induction of obesity, rats were fed PMD. PMD consumption decreased glucose intolerance, body weight gain, serum and liver triglycerides and leptin. In addition, PMD decreased the size of the adipocytes, and increased the protein abundance of UCP-1, PPAR-α, PGC1-α and Tbx-1 in white adipose tissue. Finally, the PMD significant decreased hepatic levels of ROS, oxidized proteins and GSSG/GSH ratio and an increase in the relative abundance of Bifidobacteria and the improvement of cognitive function. Consumption of a PMD decreased the glucose intolerance and the biochemical abnormalities caused by the obesity by increasing the abundance of proteins involved in fatty acid oxidation, decreasing the oxidative stress and modifying the gut microbiota. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Exploitation of the Medfly Gut Microbiota for the Enhancement of Sterile Insect Technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications

    PubMed Central

    Papadopoulos, Nikos T.; Abd-Alla, Adly M. M.; Cáceres, Carlos; Bourtzis, Kostas

    2015-01-01

    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a pest of worldwide substantial economic importance, as well as a Tephritidae model for sterile insect technique (SIT) applications. The latter is partially due to the development and utilization of genetic sexing strains (GSS) for this species, such as the Vienna 8 strain, which is currently used in mass rearing facilities worldwide. Improving the performance of such a strain both in mass rearing facilities and in the field could significantly enhance the efficacy of SIT and reduce operational costs. Recent studies have suggested that the manipulation of gut symbionts can have a significant positive effect on the overall fitness of insect strains. We used culture-based approaches to isolate and characterize gut-associated bacterial species of the Vienna 8 strain under mass rearing conditions. We also exploited one of the isolated bacterial species, Enterobacter sp., as dietary supplement (probiotic) to the larval diet, and we assessed its effects on fitness parameters under the standard operating procedures used in SIT operational programs. Probiotic application of Enterobacter sp. resulted in improvement of both pupal and adult productivity, as well as reduced rearing duration, particularly for males, without affecting pupal weight, sex ratio, male mating competitiveness, flight ability and longevity under starvation. PMID:26325068

  9. Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities.

    PubMed

    Dai, Wen-Fang; Zhang, Jin-Jie; Qiu, Qiong-Fen; Chen, Jiong; Yang, Wen; Ni, Sui; Xiong, Jin-Bo

    2018-05-24

    Aquatic animals are frequently suffered from starvation due to restricted food availability or deprivation. It is currently known that gut microbiota assists host in nutrient acquisition. Thus, exploring the gut microbiota responses would improve our understanding on physiological adaptation to starvation. To achieve this, we investigated how the gut microbiota and shrimp digestion and immune activities were affected under starvation stress. The results showed that the measured digestion activities in starved shrimp were significantly lower than in normal cohorts; while the measured immune activities exhibited an opposite trend. A structural equation modeling (SEM) revealed that changes in the gut bacterial community were directly related to digestive and immune enzyme activities, which in turn markedly affected shrimp growth traits. Notably, several gut bacterial indicators that characterized the shrimp nutrient status were identified, with more abundant opportunistic pathogens in starved shrimp, although there were no statistical differences in the overall diversity and the structures of gut bacterial communities between starved and normal shrimp. Starved shrimp exhibited less connected and cooperative interspecies interaction as compared with normal cohorts. Additionally, the functional pathways involved in carbohydrate and protein digestion, glycan biosynthesis, lipid and enzyme metabolism remarkably decreased in starved shrimp. These attenuations could increase the susceptibility of starved shrimp to pathogens infection. In summary, this study provides novel insights into the interplay among shrimp digestion, immune activities and gut microbiota in response to starvation stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Interindividual variability of soil arsenic metabolism by human gut microbiota using SHIME model.

    PubMed

    Yin, Naiyi; Du, Huili; Wang, Pengfei; Cai, Xiaolin; Chen, Peng; Sun, Guoxin; Cui, Yanshan

    2017-10-01

    Arsenic (As) metabolism by human gut microbiota has been evidenced with in vitro experiments from contaminated soils. In this study, the variability in the metabolic potency toward As-contaminated soils and gut microbial diversity were investigated between healthy individuals (Adult versus Child). Arsenic bioaccessibility in the colon phase increased by 1.4-6.8 and 1.2-8.7 folds for adult and child, respectively. We found a high degree of As methylation for the colon digests of the adult (mean 2 μg methylarsenicals/hr/g biomass), 3-folds higher than that of the child. Besides, arsenite [As(III)] concentration (1.5-391.3 μg/L) for the child was 2-18 times for the adult. 16S rRNA gene sequencing revealed that human gut microbiota from 20 various genera potentially had resistance genes to reduce and methylate As under conservative statistics. Our results indicated that As metabolism by gut microbiota from adult and child was significantly different. The adult gut microbiota had a great ability of As methylation; the child gut microbiota exhibited high As(III) level, which could encounter high health risk. The identity and activity of arsenic-metabolizing bacteria isolated from human gut and its homologous role in As metabolism need be further explored. This study provides a better understanding of health risk assessment to adults and children upon soil As exposures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees

    PubMed Central

    Shaffer, Zack; Moran, Nancy A.

    2017-01-01

    Gut microbiomes play crucial roles in animal health, and shifts in the gut microbial community structure can have detrimental impacts on hosts. Studies with vertebrate models and human subjects suggest that antibiotic treatments greatly perturb the native gut community, thereby facilitating proliferation of pathogens. In fact, persistent infections following antibiotic treatment are a major medical issue. In apiculture, antibiotics are frequently used to prevent bacterial infections of larval bees, but the impact of antibiotic-induced dysbiosis (microbial imbalance) on bee health and susceptibility to disease has not been fully elucidated. Here, we evaluated the effects of antibiotic exposure on the size and composition of honeybee gut communities. We monitored the survivorship of bees following antibiotic treatment in order to determine if dysbiosis of the gut microbiome impacts honeybee health, and we performed experiments to determine whether antibiotic exposure increases susceptibility to infection by opportunistic pathogens. Our results show that antibiotic treatment can have persistent effects on both the size and composition of the honeybee gut microbiome. Antibiotic exposure resulted in decreased survivorship, both in the hive and in laboratory experiments in which bees were exposed to opportunistic bacterial pathogens. Together, these results suggest that dysbiosis resulting from antibiotic exposure affects bee health, in part due to increased susceptibility to ubiquitous opportunistic pathogens. Not only do our results highlight the importance of the gut microbiome in honeybee health, but they also provide insights into how antibiotic treatment affects microbial communities and host health. PMID:28291793

  12. May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry.

    PubMed

    Sherwin, Eoin; Sandhu, Kiran V; Dinan, Timothy G; Cryan, John F

    2016-11-01

    The role of the gut microbiota in health and disease is becoming increasingly recognized. The microbiota-gut-brain axis is a bi-directional pathway between the brain and the gastrointestinal system. The bacterial commensals in our gut can signal to the brain through a variety of mechanisms, which are slowly being resolved. These include the vagus nerve, immune mediators and microbial metabolites, which influence central processes such as neurotransmission and behaviour. Dysregulation in the composition of the gut microbiota has been identified in several neuropsychiatric disorders, such as autism, schizophrenia and depression. Moreover, preclinical studies suggest that they may be the driving force behind the behavioural abnormalities observed in these conditions. Understanding how bacterial commensals are involved in regulating brain function may lead to novel strategies for development of microbiota-based therapies for these neuropsychiatric disorders.

  13. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation.

    PubMed

    Daeffler, Kristina N-M; Galley, Jeffrey D; Sheth, Ravi U; Ortiz-Velez, Laura C; Bibb, Christopher O; Shroyer, Noah F; Britton, Robert A; Tabor, Jeffrey J

    2017-04-03

    There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two-component systems from marine Shewanella species, and validate them in laboratory Escherichia coli Then, we port these sensors into a gut-adapted probiotic E. coli strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Gut microbiota in patients with Parkinson's disease in southern China.

    PubMed

    Lin, Aiqun; Zheng, Wenxia; He, Yan; Tang, Wenli; Wei, Xiaobo; He, Rongni; Huang, Wei; Su, Yuying; Huang, Yaowei; Zhou, Hongwei; Xie, Huifang

    2018-05-16

    Accumulating evidence has revealed alterations in the communication between the gut and brain in patients with Parkinson's disease (PD), and previous studies have confirmed that alterations in the gut microbiome play an important role in the pathogenesis of numerous diseases, including PD. The aim of this study was to determine whether the faecal microbiome of PD patients in southern China differs from that of control subjects and whether the gut microbiome composition alters among different PD motor phenotypes. We compared the gut microbiota composition of 75 patients with PD and 45 age-matched controls using 16S rRNA next-generation-sequencing. We observed significant increases in the abundance of four bacterial families and significant decreases in the abundance of seventeen bacterial families in patients with PD compared to those of the controls. In particular, the abundance of Lachnospiraceae was reduced by 42.9% in patients with PD, whereas Bifidobacteriaceae was enriched in patients with PD. We did not identify a significant difference in the overall microbial composition among different PD motor phenotypes, but we identified the association between specific taxas and different PD motor phenotypes. PD is accompanied by alterations in the abundance of specific gut microbes. The abundance of certain gut microbes was altered depending on clinical motor phenotypes. Based on our findings, the gut microbiome may be a potential PD biomarker. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The transculturality of 'gut feelings'. Results from a French Delphi consensus survey.

    PubMed

    Le Reste, Jean-Yves; Coppens, Magali; Barais, Marie; Nabbe, Patrice; Le Floch, Bernard; Chiron, Benoît; Dinant, Geert Jan; Berkhout, Christophe; Stolper, Erik; Barraine, Pierre

    2013-12-01

    General Practitioners (GPs) sometimes base their clinical decisions on 'gut feelings.' Research into the significance of this phenomenon with focus groups and a Delphi consensus procedure in the Netherlands provided a concept of 'gut feelings:' a sense of alarm, a sense of reassurance and several determinants. The transculturality of 'gut feelings' has been examined briefly until now as the issue is complex. To determine whether a consensus on 'gut feelings' in general practice in France could be obtained. Using a similar Delphi consensus procedure and the same six initial statements as in the Netherlands, and compare the French results with the seven final Dutch consensual statements. Qualitative research, including a Delphi consensus procedure after a forward-backward translation (FBT) of the initial Dutch statements of 'gut feelings.' A heterogeneous sample of 34 French expert GPs participated. FBT of the final French statements was undertaken for a content comparison with the Dutch. After three Delphi rounds, French GPs reached agreement on nine statements. Many similarities have been found between the Dutch and the French defining statements, with reservations concerning the 'sense of reassurance,' which French GPs seemed to feel more cautious about. 'Gut feelings' are a well-defined concept in France too. The Dutch and the French consensual statements seem very close. The transculturality of the concept is confirmed, which is a new indicator that 'gut feelings' are a self-contained concept.

  16. Electro-acupuncture decreases 5-HT, CGRP and increases NPY in the brain-gut axis in two rat models of Diarrhea-predominant irritable bowel syndrome(D-IBS).

    PubMed

    Sun, Jianhua; Wu, Xiaoliang; Meng, Yunfang; Cheng, Jie; Ning, Houxu; Peng, Yongjun; Pei, Lixia; Zhang, Wei

    2015-09-29

    To examine whether electro-acupuncture (EA) could decrease 5-hydroxytryptamine (5-HT) and calcitonin gene-related peptide (CGRP), and increase neuro-peptide Y (NPY) in the brain-gut axis (BGA) in D-IBS using rat models. Rats were randomly exposed to unpredictable chronic stress for 3 weeks followed by 1-hour acute restraint stress (CAS) after 7 days of rest, or daily gavage of Senna decoction (6 g/kg) plus chronic restraint stress (for a duration of 2 h, starting from 1 h prior to the gavage) for 2 weeks (ISC). The content of 5-HT, CGRP and NPY in the distal colon, spinal cord, hypothalamus was examined at the end of the treatment. 1. The two rat models exhibited similar characteristics, e.g., increased number of fecal pellets expelled in 1 h, decreased sacchar-intake, decreased CRD, elevated 5-HT, CGRP content and decreased NPY in the distal colon, spinal cord, hypothalamus (P < 0.05 vs. that in healthy control rats). 2. A series of equations was developed based on correlation regression analysis. The analysis results demonstrated that 5-HT mediates the changes in hypothalamus, spinal cord and colon. 5-HT and CGRP in spinal cord was closely correlated with general behavior evaluation and other transmitters in BGA. 1. In comparison to 5-HT, CGRP and NPY (particularly in the spinal cord) had closer relationship with the D-IBS symptoms induced by either stress factors or Senna decotion. 2. EA treatment could restore the brain-gut axis to balanced levels.

  17. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations.

    PubMed

    Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim

    2016-01-01

    Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.

  18. Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model.

    PubMed

    Kim, Moses; Christley, Scott; Alverdy, John C; Liu, Donald; An, Gary

    2012-02-01

    Necrotizing enterocolitis (NEC) is a complex disease involving prematurity, enteral feeding, and bacterial effects. We propose that the underlying initial condition in its pathogenesis is reduced ability of the neonatal gut epithelial cells (NGECs) to clear oxidative stress (OS), and that when such a NGEC population is exposed to enteral feeding, the increased metabolic OS tips the population toward apoptosis, inflammation, bacterial activation, and eventual necrosis. The multi-factorial complexity of NEC requires characterization with computational modeling, and herein, we used an agent-based model (ABM) to instantiate and examine our unifying hypothesis of the pathogenesis of NEC. An ABM of the neonatal gut was created with NGEC computational agents incorporating rules for pathways for OS, p53, tight junctions, Toll-like receptor (TLR)-4, nitric oxide, and nuclear factor-kappa beta (NF-κB). The modeled bacteria activated TLR-4 on contact with NGECs. Simulations included parameter sweeps of OS response, response to feeding, addition of bacteria, and alterations in gut mucus production. The ABM reproduced baseline cellular respiration and clearance of OS. Reduction in OS clearance consistent with clinical NEC led to senescence, apoptosis, or inflammation, with disruption of tight junctions, but rarely to NGEC necrosis. An additional "hit" of bacteria activating TLR-4 potentiated a shift to NGEC necrosis across the entire population. The mucus layer was modeled to limit bacterial-NGEC interactions and reduce this effect, but concomitant apoptosis in the goblet cell population reduced the efficacy of the mucus layer and limited its protective effect in simulated experiments. This finding suggests a means by which increased apoptosis at the cellular population level can lead to a transition to the necrosis outcome. Our ABM incorporates known components of NEC and demonstrates that impaired OS management can lead to apoptosis and inflammation of NGECs, rendering the system susceptible to an additional insult involving regionalized mucus barrier failure and TLR-4 activation, which potentiates the necrosis outcome. This type of integrative dynamic knowledge representation can be a useful adjunct to help guide and contextualize research.

  19. Gut-derived lipopolysaccharide promotes T-cell-mediated hepatitis in mice through Toll-like receptor 4.

    PubMed

    Lin, Yan; Yu, Le-Xing; Yan, He-Xin; Yang, Wen; Tang, Liang; Zhang, Hui-Lu; Liu, Qiong; Zou, Shan-Shan; He, Ya-Qin; Wang, Chao; Wu, Meng-Chao; Wang, Hong-Yang

    2012-09-01

    Robust clinical and epidemiologic data support the role of inflammation as a key player in hepatocellular carcinoma (HCC) development. Our previous data showed that gut-derived lipopolysaccharide (LPS) promote HCC development by activating Toll-like receptor 4 (TLR4) expressed on myeloid-derived cells. However, the effects of gut-derived LPS on other types of liver injury models are yet to be studied. The purpose of this study was to determine the importance of gut-derived LPS and TLR4 signaling in a T-cell-mediated hepatitis-Con A-induced hepatitis model, which mimic the viral hepatitis. Reduction of endotoxin using antibiotics regimen or genetic ablation of TLR4 in mice significantly alleviate Con A-induced liver injury by inhibiting the infiltration of T lymphocytes into the liver and the activation of CD4(+) T lymphocytes as well as the production of T helper 1 cytokines; in contrast, exogenous LPS can promote Con A-induced hepatitis and CD4(+) T cells activation in vivo and in vitro. Reconstitution of TLR4-expressing myeloid cells in TLR4-deficient mice restored Con A-induced liver injury and inflammation, indicating the major cell target of LPS. In addition, TLR4 may positively regulate the target hepatocellular apoptosis via the perforin/granzyme B pathway. These data suggest that gut-derived LPS and TLR4 play important positive roles in Con A-induced hepatitis and modulation of the gut microbiotia may represent a new avenue for therapeutic intervention to treat acute hepatitis induced by hepatitis virus infection, thus to prevent hepatocellular carcinoma.

  20. The use of BLT humanized mice to investigate the immune reconstitution of the gastrointestinal tract.

    PubMed

    Wahl, Angela; Victor Garcia, J

    2014-08-01

    The gastrointestinal (GI) track represents an important battlefield where pathogens first try to gain entry into a host. It is also a universe where highly diverse and ever changing inhabitants co-exist in an exceptional equilibrium without parallel in any other organ system of the body. The gut as an organ has its own well-developed and fully functional immune organization that is similar and yet different in many important ways to the rest of the immune system. Both a compromised and an overactive immune system in the gut can have dire and severe consequences to human health. It has therefore been of great interest to develop animal models that recapitulate key aspects of the human condition to better understand the interplay of the host immune system with its friends and its foes. However, reconstitution of the GI tract in humanized mice has been difficult and highly variable in different systems. A better molecular understanding of the development of the gut immune system in mice has provided critical cues that have been recently used to develop novel humanized mouse models that fully recapitulate the genesis and key functions of the gut immune system of humans. Of particular interest is the presence of human gut-associated lymphoid tissue (GALT) aggregates in the gut of NOD/SCID BLT humanized mice that demonstrate the faithful development of bona fide human plasma cells capable of migrating to the lamina propria and producing human IgA1 and IgA2. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Gut Microbiota and a Selectively Bred Taste Phenotype: A Novel Model of Microbiome-Behavior Relationships.

    PubMed

    Lyte, Mark; Fodor, Anthony A; Chapman, Clinton D; Martin, Gary G; Perez-Chanona, Ernesto; Jobin, Christian; Dess, Nancy K

    2016-06-01

    The microbiota-gut-brain axis is increasingly implicated in obesity, anxiety, stress, and other health-related processes. Researchers have proposed that gut microbiota may influence dietary habits, and pathways through the microbiota-gut-brain axis make such a relationship feasible; however, few data bear on the hypothesis. As a first step in the development of a model system, the gut microbiome was examined in rat lines selectively outbred on a taste phenotype with biobehavioral profiles that have diverged with respect to energy regulation, anxiety, and stress. Occidental low and high-saccharin-consuming rats were assessed for body mass and chow, water, and saccharin intake; littermate controls had shared cages with rats in the experimental group but were not assessed. Cecum and colon microbial communities were profiled using Illumina 16S rRNA sequencing and multivariate analysis of microbial diversity and composition. The saccharin phenotype was confirmed (low-saccharin-consuming rats, 0.7Δ% [0.9Δ%]; high-saccharin-consuming rats, 28.1Δ% [3.6Δ%]). Regardless of saccharin exposure, gut microbiota differed between lines in terms of overall community similarity and taxa at lower phylogenetic levels. Specifically, 16 genera in three phyla distinguished the lines at a 10% false discovery rate. The study demonstrates for the first time that rodent lines created through selective pressure on taste and differing on functionally related correlates host different microbial communities. Whether the microbiota are causally related to the taste phenotype or its correlates remains to be determined. These findings encourage further inquiry on the relationship of the microbiome to taste, dietary habits, emotion, and health.

  2. Effects of predation stress and food ration on perch gut microbiota.

    PubMed

    Zha, Yinghua; Eiler, Alexander; Johansson, Frank; Svanbäck, Richard

    2018-02-06

    Gut microbiota provide functions of importance to influence hosts' food digestion, metabolism, and protection against pathogens. Factors that affect the composition and functions of gut microbial communities are well studied in humans and other animals; however, we have limited knowledge of how natural food web factors such as stress from predators and food resource rations could affect hosts' gut microbiota and how it interacts with host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike, Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex dependent. We showed that overall gut microbiota composition among individual perch significantly responded to food ration and predator presence. We found that species richness decreased with predator presence, and we identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and sex emphasizes sex-specific responses to diet quantity in gut microbiota. Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes in natural food webs depending on host sex. The obtained knowledge from this study provided us with an important perspective on gut microbiota in a food web context.

  3. Tuna Oil Alleviates d-Galactose Induced Aging in Mice Accompanied by Modulating Gut Microbiota and Brain Protein Expression.

    PubMed

    Zhang, Dijun; Han, Jiaojiao; Li, Yanyan; Yuan, Bei; Zhou, Jun; Cheong, Lingzhi; Li, Ye; Lu, Chenyang; Su, Xiurong

    2018-06-06

    To discern whether tuna oil modulates the expression of brain proteins and the gut microbiota structure during aging induced by d-galactose, we generated an aging mouse model with d-galactose treatment, and the mice showed aging and memory deterioration symptoms according to physiological and biochemical indices. Treatment with different doses of tuna oil alleviated the symptoms; the high dose showed a better effect. Subsequently, brain proteomic analysis showed the differentially expressed proteins were involved in damaged synaptic system repairment and signal transduction system enhancement. In addition, tuna oil treatment restored the diversity of gut microbiota, 27 key operational taxonomic units, which were identified using a redundancy analysis and were significantly correlated with at least one physiological index and three proteins or genes. These findings suggest that the combination of proteomics and gut microbiota is an effective strategy to gain novel insights regarding the effect of tuna oil treatment on the microbiota-gut-brain axis.

  4. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children.

    PubMed

    Grimaldi, Roberta; Cela, Drinalda; Swann, Jonathan R; Vulevic, Jelena; Gibson, Glenn R; Tzortzis, George; Costabile, Adele

    2017-02-01

    Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1 H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. © FEMS 2016.

  5. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children

    PubMed Central

    Cela, Drinalda; Swann, Jonathan R.; Vulevic, Jelena; Gibson, Glenn R.; Tzortzis, George; Costabile, Adele

    2016-01-01

    Abstract Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. PMID:27856622

  6. Calcium Carbonate Dissolution Above the Lysocline: Implications of Copepod Grazing on Coccolithophores

    NASA Astrophysics Data System (ADS)

    White, M. M.; Waller, J. D.; Lubelczyk, L.; Drapeau, D.; Bowler, B.; Wyeth, A.; Fields, D.; Balch, W. M.

    2016-02-01

    Copepod-coccolithophore predator-prey interactions are of great importance because they facilitate the export of particulate inorganic and organic carbon (PIC and POC) from the surface ocean. Coccolith dissolution in acidic copepod guts has been proposed as a possible explanation for the paradox of PIC dissolution above the lysocline, but warrants further investigation. Using a new application of the 14C-microdiffusion technique, we investigated the dissolution of coccoliths in copepod guts. We considered both an estuarine predator-prey model (Acartia tonsa and Pleurochrysis carterae) and an open ocean predator-prey model (Calanus finmarchicus and Emiliania huxleyi). Additionally, we considered the impacts of pCO2 on this process to advance our understanding of the effects of ocean acidification on trophic interactions. In the estuarine predator-prey model, fecal pellets produced immediately after previously-starved copepods grazed on P. carterae had PIC/POC ratios 27-40 % lower than that of the algae, indicating PIC dissolution within the copepod gut, with no impact of pCO2 on this dissolution. Subsequent fecal pellets showed increasing PIC/POC, suggesting that calcite dissolution decreases as the gut fills. The open ocean predator-prey model showed equivocal results, indicating high variability among individual grazing behavior, and therefore no consistent impact of copepod grazing on coccolith dissolution above the lysocline in the open ocean. We will further discuss the effects of fecal pellet PIC/POC ratios on sinking rate.

  7. Prevalence of purging at age 16 and associations with negative outcomes among girls in three community-based cohorts

    PubMed Central

    Solmi, Francesca; Sonneville, Kendrin R; Easter, Abigail; Horton, Nicholas J; Crosby, Ross D; Treasure, Janet; Rodriguez, Alina; Jarvelin, Marjo-Riitta; Field, Alison E; Micali, Nadia

    2015-01-01

    Background The comorbidity of purging behaviours, such as vomiting, inappropriate use of laxatives, diuretics or slimming medications, has been examined in literature. However, most studies do not include adolescents, individuals who purge in the absence of binge eating, or those purging at subclinical frequency. This study examines the prevalence of purging among 16-year-old girls across three countries and their association with substance use and psychological comorbidity. Methods Data were obtained by questionnaire in 3 population-based cohorts (Avon Longitudinal Study of Parents and Children (ALSPAC), United Kingdom, n = 1,608; Growing Up Today Study (GUTS), USA, n = 3,504; North Finland Birth Cohort (NFBC85/86), Finland, n = 2,306). Multivariate logistic regressions were employed to estimate associations between purging and outcomes. Four models were fit adjusting for binge eating and potential confounders of these associations. Results In ALSPAC, 9.7% of girls reported purging in the 12-months prior to assessment, 7.3% in GUTS, and 3.5% in NFBC. In all 3 cohorts, purging was associated with adverse outcomes such as binge drinking (ALSPAC: odds ratio (OR) = 2.0, 95% confidence interval (CI) = 1.4–2.9; GUTS: OR = 2.5, 95% CI = 1.5–4.0; NFBC: OR = 1.7, 95% CI = 1.0–2.8), drug use (ALSPAC: OR = 2.9, 95% CI = 1.8–4.7; GUTS: OR = 4.5, 95% CI = 2.8–7.3; NFBC: OR = 4.1, 95% CI = 2.6–6.6), depressive symptoms in ALSPAC (OR = 2.2, 95% CI = 1.5–3.1) and GUTS(OR = 3.7, 95% CI = 2.2–6.3), and several psychopathology measures including clinical anxiety/depression in NFBC (OR = 11.2, 95% CI = 3.9, 31.7). Conclusions Results show a higher prevalence of purging behaviours among girls in the United Kingdom compared to those in the United States and Finland. Our findings support evidence highlighting that purging in adolescence is associated with negative outcomes, independent of its frequency and binge eating. PMID:24975817

  8. Transcriptome analysis reveals persistent effects of neonatal diet on small intestine gene expression profile in a porcine model

    USDA-ARS?s Scientific Manuscript database

    Breastfeeding is associated with several benefits affecting gut development and immune function. Compared to breast feeding, infant formula feeding is linked to a greater risk for gut dysfunction, ear and respiratory tract infections, and allergies. The beneficial effects appear to last at least thr...

  9. Intestinal microbiota in primary sclerosing cholangitis.

    PubMed

    Hov, Johannes R; Kummen, Martin

    2017-03-01

    Alterations of the gut-liver axis have been linked to the pathogenesis of primary sclerosing cholangitis (PSC) since the disease was first described. The purpose of this review is to discuss multiple recent studies on the intestinal microbiota in human PSC and experimental models of this disease. Data are available from eight cross-sectional studies of human PSC, which include a variable number of patients (n = 11-85), material (mucosal or fecal), and microbiota profiling methodology. Despite the heterogeneity of the studies, a pattern of differences is observed that could represent a theme or signature of the PSC gut microbiota, characterized by low diversity and with alterations in multiple bacterial taxa. In experimental models of PSC, re-derivation of animals into germ-free facilities may either aggravate or attenuate the disease, depending on host genetics and putative disease mechanisms (e.g., fibrotic or immune-driven processes, respectively). The present data provide a strong rationale to explore the functional consequences of the observed gut microbial alterations and their influence on the pathogenesis in PSC. Studies of gut microbiota as biomarker and treatment target may potentially also lead to early translation into clinical practice.

  10. Chronic kidney disease, uremic milieu, and its effects on gut bacterial microbiota dysbiosis.

    PubMed

    Chaves, Lee D; McSkimming, Daniel I; Bryniarski, Mark A; Honan, Amanda M; Abyad, Sham; Thomas, Shruthi A; Wells, Steven; Buck, Michael J; Sun, Yijun; Genco, Robert J; Quigg, Richard J; Yacoub, Rabi

    2018-04-25

    Several lines of evidence suggest that gut bacterial microbiota is altered in patients with chronic kidney disease (CKD), though the mechanism of which this dysbiosis takes place is not well understood. Recent studies delineated changes in gut microbiota in both CKD patients and experimental animal models using microarray chips. We present 16S ribosomal RNA gene sequencing of both stool pellets and small bowel contents of C57Bl/6J mice that underwent a remnant kidney model, and establish that changes in microbiota take place in the early gastrointestinal track. Increased intestinal urea concertation has been hypothesized as a leading contributor for dysbiotic changes in CKD. We show that urea transporters UT-A and UT-B mRNA are both expressed throughout the whole gastrointestinal track. The noted increase in intestinal urea concentration appears to be independent of urea transporters' expression. Urea supplementation in drinking water resulted in alteration in bacterial gut microbiota that is quite different than that seen in CKD. This indicates that increased intestinal urea concentration might not fully explain the CKD associated dysbiosis.

  11. Digestion of starch in a dynamic small intestinal model.

    PubMed

    Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S

    2016-12-01

    The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.

  12. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities.

    PubMed

    Brunkwall, Louise; Orho-Melander, Marju

    2017-06-01

    The totality of microbial genomes in the gut exceeds the size of the human genome, having around 500-fold more genes that importantly complement our coding potential. Microbial genes are essential for key metabolic processes, such as the breakdown of indigestible dietary fibres to short-chain fatty acids, biosynthesis of amino acids and vitamins, and production of neurotransmitters and hormones. During the last decade, evidence has accumulated to support a role for gut microbiota (analysed from faecal samples) in glycaemic control and type 2 diabetes. Mechanistic studies in mice support a causal role for gut microbiota in metabolic diseases, although human data favouring causality is insufficient. As it may be challenging to sort the human evidence from the large number of animal studies in the field, there is a need to provide a review of human studies. Thus, the aim of this review is to cover the current and future possibilities and challenges of using the gut microbiota, with its capacity to be modified, in the development of preventive and treatment strategies for hyperglycaemia and type 2 diabetes in humans. We discuss what is known about the composition and functionality of human gut microbiota in type 2 diabetes and summarise recent evidence of current treatment strategies that involve, or are based on, modification of gut microbiota (diet, probiotics, metformin and bariatric surgery). We go on to review some potential future gut-based glucose-lowering approaches involving microbiota, including the development of personalised nutrition and probiotic approaches, identification of therapeutic components of probiotics, targeted delivery of propionate in the proximal colon, targeted delivery of metformin in the lower gut, faecal microbiota transplantation, and the incorporation of genetically modified bacteria that express therapeutic factors into microbiota. Finally, future avenues and challenges for understanding the interplay between human nutrition, genetics and microbial genetics, and the need for integration of human multi-omic data (such as genetics, transcriptomics, epigenetics, proteomics and metabolomics) with microbiome data (such as strain-level variation, transcriptomics, proteomics and metabolomics) to make personalised treatments a successful future reality are discussed.

  13. Gut microbiota modulation of chemotherapy efficacy and toxicity.

    PubMed

    Alexander, James L; Wilson, Ian D; Teare, Julian; Marchesi, Julian R; Nicholson, Jeremy K; Kinross, James M

    2017-06-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

  14. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature

    PubMed Central

    Gerasimidis, Konstantinos; Edwards, Christine Ann; Shaikh, M. Guftar

    2016-01-01

    The aetiology of obesity has been attributed to several factors (environmental, dietary, lifestyle, host, and genetic factors); however none of these fully explain the increase in the prevalence of obesity worldwide. Gut microbiota located at the interface of host and environment in the gut are a new area of research being explored to explain the excess accumulation of energy in obese individuals and may be a potential target for therapeutic manipulation to reduce host energy storage. Several mechanisms have been suggested to explain the role of gut microbiota in the aetiology of obesity such as short chain fatty acid production, stimulation of hormones, chronic low-grade inflammation, lipoprotein and bile acid metabolism, and increased endocannabinoid receptor system tone. However, evidence from animal and human studies clearly indicates controversies in determining the cause or effect relationship between the gut microbiota and obesity. Metagenomics based studies indicate that functionality rather than the composition of gut microbiota may be important. Further mechanistic studies controlling for environmental and epigenetic factors are therefore required to help unravel obesity pathogenesis. PMID:27703805

  15. Gut Melatonin in Vertebrates: Chronobiology and Physiology.

    PubMed

    Mukherjee, Sourav; Maitra, Saumen Kumar

    2015-01-01

    Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT) is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23 kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s) as its synchronizer. Based on mammalian findings, physiological significance of gut-derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini review is to summarize the existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  16. Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb).

    PubMed

    Mikaelyan, Aram; Köhler, Tim; Lampert, Niclas; Rohland, Jeffrey; Boga, Hamadi; Meuser, Katja; Brune, Andreas

    2015-10-01

    Recent developments in sequencing technology have given rise to a large number of studies that assess bacterial diversity and community structure in termite and cockroach guts based on large amplicon libraries of 16S rRNA genes. Although these studies have revealed important ecological and evolutionary patterns in the gut microbiota, classification of the short sequence reads is limited by the taxonomic depth and resolution of the reference databases used in the respective studies. Here, we present a curated reference database for accurate taxonomic analysis of the bacterial gut microbiota of dictyopteran insects. The Dictyopteran gut microbiota reference Database (DictDb) is based on the Silva database but was significantly expanded by the addition of clones from 11 mostly unexplored termite and cockroach groups, which increased the inventory of bacterial sequences from dictyopteran guts by 26%. The taxonomic depth and resolution of DictDb was significantly improved by a general revision of the taxonomic guide tree for all important lineages, including a detailed phylogenetic analysis of the Treponema and Alistipes complexes, the Fibrobacteres, and the TG3 phylum. The performance of this first documented version of DictDb (v. 3.0) using the revised taxonomic guide tree in the classification of short-read libraries obtained from termites and cockroaches was highly superior to that of the current Silva and RDP databases. DictDb uses an informative nomenclature that is consistent with the literature also for clades of uncultured bacteria and provides an invaluable tool for anyone exploring the gut community structure of termites and cockroaches. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    NASA Astrophysics Data System (ADS)

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-04-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.

  18. GOCE User Toolbox and Tutorial

    NASA Astrophysics Data System (ADS)

    Knudsen, Per; Benveniste, Jerome

    2017-04-01

    The GOCE User Toolbox GUT is a compilation of tools for the utilisation and analysis of GOCE Level 2 products.
GUT support applications in Geodesy, Oceanography and Solid Earth Physics. The GUT Tutorial provides information
and guidance in how to use the toolbox for a variety of applications. GUT consists of a series of advanced
computer routines that carry out the required computations. It may be used on Windows PCs, UNIX/Linux Workstations,
and Mac. The toolbox is supported by The GUT Algorithm Description and User Guide and The GUT
Install Guide. A set of a-priori data and models are made available as well. Without any doubt the development
of the GOCE user toolbox have played a major role in paving the way to successful use of the GOCE data for
oceanography. The GUT version 2.2 was released in April 2014 and beside some bug-fixes it adds the capability for the computation of Simple Bouguer Anomaly (Solid-Earth). During this fall a new GUT version 3 has been released. GUTv3 was further developed through a collaborative effort where the scientific communities participate aiming
on an implementation of remaining functionalities facilitating a wider span of research in the fields of Geodesy,
Oceanography and Solid earth studies.
Accordingly, the GUT version 3 has:
 - An attractive and easy to use Graphic User Interface (GUI) for the toolbox,
 - Enhance the toolbox with some further software functionalities such as to facilitate the use of gradients,
anisotropic diffusive filtering and computation of Bouguer and isostatic gravity anomalies.
 - An associated GUT VCM tool for analyzing the GOCE variance covariance matrices.

  19. GOCE User Toolbox and Tutorial

    NASA Astrophysics Data System (ADS)

    Knudsen, Per; Benveniste, Jerome; Team Gut

    2016-04-01

    The GOCE User Toolbox GUT is a compilation of tools for the utilisation and analysis of GOCE Level 2 products.
GUT support applications in Geodesy, Oceanography and Solid Earth Physics. The GUT Tutorial provides information
and guidance in how to use the toolbox for a variety of applications. GUT consists of a series of advanced
computer routines that carry out the required computations. It may be used on Windows PCs, UNIX/Linux Workstations,
and Mac. The toolbox is supported by The GUT Algorithm Description and User Guide and The GUT
Install Guide. A set of a-priori data and models are made available as well. Without any doubt the development
of the GOCE user toolbox have played a major role in paving the way to successful use of the GOCE data for
oceanography. The GUT version 2.2 was released in April 2014 and beside some bug-fixes it adds the capability for the computation of Simple Bouguer Anomaly (Solid-Earth). During this fall a new GUT version 3 has been released. GUTv3 was further developed through a collaborative effort where the scientific communities participate aiming
on an implementation of remaining functionalities facilitating a wider span of research in the fields of Geodesy,
Oceanography and Solid earth studies.
Accordingly, the GUT version 3 has:
 - An attractive and easy to use Graphic User Interface (GUI) for the toolbox,
 - Enhance the toolbox with some further software functionalities such as to facilitate the use of gradients,
anisotropic diffusive filtering and computation of Bouguer and isostatic gravity anomalies.
 - An associated GUT VCM tool for analyzing the GOCE variance covariance matrices.

  20. Diversification of Type VI Secretion System Toxins Reveals Ancient Antagonism among Bee Gut Microbes

    PubMed Central

    Whiteley, Marvin

    2017-01-01

    ABSTRACT Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs) to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota. PMID:29233893

  1. Microfluidic Gut-liver chip for reproducing the first pass metabolism.

    PubMed

    Choe, Aerim; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Sung, Jong Hwan

    2017-03-01

    After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs' efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.

  2. Control of lupus nephritis by changes of gut microbiota.

    PubMed

    Mu, Qinghui; Zhang, Husen; Liao, Xiaofeng; Lin, Kaisen; Liu, Hualan; Edwards, Michael R; Ahmed, S Ansar; Yuan, Ruoxi; Li, Liwu; Cecere, Thomas E; Branson, David B; Kirby, Jay L; Goswami, Poorna; Leeth, Caroline M; Read, Kaitlin A; Oestreich, Kenneth J; Vieson, Miranda D; Reilly, Christopher M; Luo, Xin M

    2017-07-11

    Systemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a "leaky" gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner. This work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.

  3. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles.

    PubMed

    Gotoh, Aina; Nara, Misaki; Sugiyama, Yuta; Sakanaka, Mikiyasu; Yachi, Hiroyuki; Kitakata, Aya; Nakagawa, Akira; Minami, Hiromichi; Okuda, Shujiro; Katoh, Toshihiko; Katayama, Takane; Kurihara, Shin

    2017-10-01

    Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.

  4. Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota

    PubMed Central

    Cordonnier, Charlotte; Thévenot, Jonathan; Etienne-Mesmin, Lucie; Denis, Sylvain; Alric, Monique; Livrelli, Valérie; Blanquet-Diot, Stéphanie

    2015-01-01

    The beneficial effects of probiotics are conditioned by their survival during passage through the human gastrointestinal tract and their ability to favorably influence gut microbiota. The main objective of this study was to use dynamic in vitro models of the human digestive tract to investigate the effect of fasted or fed state on the survival kinetics of the new probiotic Saccharomyces cerevisiae strain CNCM I-3856 and to assess its influence on intestinal microbiota composition and activity. The probiotic yeast showed a high survival rate in the upper gastrointestinal tract whatever the route of admistration, i.e., within a glass of water or a Western-type meal. S. cerevisiae CNCM I-3856 was more sensitive to colonic conditions, as the strain was not able to colonize within the bioreactor despite a twice daily administration. The main bacterial populations of the gut microbiota, as well as the production of short chain fatty acids were not influenced by the probiotic treatment. However, the effect of the probiotic on the gut microbiota was found to be individual dependent. This study shows that dynamic in vitro models can be advantageously used to provide useful insight into the behavior of probiotic strains in the human digestive environment. PMID:27682114

  5. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies⋆

    PubMed Central

    Burns, Alan J.; Goldstein, Allan M.; Newgreen, Donald F.; Stamp, Lincon; Schäfer, Karl-Herbert; Metzger, Marco; Hotta, Ryo; Young, Heather M.; Andrews, Peter W.; Thapar, Nikhil; Belkind-Gerson, Jaime; Bondurand, Nadege; Bornstein, Joel C.; Chan, Wood Yee; Cheah, Kathryn; Gershon, Michael D.; Heuckeroth, Robert O.; Hofstra, Robert M.W.; Just, Lothar; Kapur, Raj P.; King, Sebastian K.; McCann, Conor J.; Nagy, Nandor; Ngan, Elly; Obermayr, Florian; Pachnis, Vassilis; Pasricha, Pankaj J.; Sham, Mai Har; Tam, Paul; Berghe, Pieter Vanden

    2016-01-01

    Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts’ views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic. PMID:27059883

  6. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats

    PubMed Central

    Xin, Fengjiao; Yu, Xiaobing

    2018-01-01

    Background & Aims Accumulating research has addressed the linkage between the changes to gut microbiota structure and type 2 diabetes (T2D). Inulin is one type of soluble dietary fiber that can alleviate T2D. As a prebiotic, inulin cannot be digested by humans, but rather is digested by probiotics. However, whether inulin treatment can benefit the entire gut bacteria community remains unknown. In this study, we evaluated the differences in gut microbiota composition among diabetic, inulin-treated diabetic, normal control, and inulin-treated normal control rats. Methods A diabetic rat model was generated by a high-fat diet and streptozotocin injections (HF/STZ). Inulin was orally administered to normal and diabetic rats. To determine the composition of the gut microbiota, fecal DNA extraction and 16S rRNA gene 454 pyrosequencing were performed. Results We found that inulin treatment reduced fasting blood glucose levels and alleviated glucose intolerance and blood lipid panels in diabetic rats. Additionally, inulin treatment increased the serum glucagon-like peptide-1 (GLP-1) level, reduced serum IL-6 level, Il6 expression in epididymal adipose tissue, and Pepck, G6pc expression in liver of diabetic rats. Pyrophosphate sequencing of the 16s V3–V4 region demonstrated an elevated proportion of Firmicutes and a reduced abundance of Bacteroidetes at the phylogenetic level in diabetic rats compared to normal control rats. The characteristics of the gut microbiota in control and inulin-treated rats were similar. Inulin treatment can normalize the composition of the gut microbiota in diabetic rats. At the family and genus levels, probiotic bacteria Lactobacillus and short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Phascolarctobacterium, and Bacteroides were found to be significantly more abundant in the inulin-treated diabetic group than in the non-treated diabetic group. In addition, inulin-treated rats had a lower abundance of Desulfovibrio, which produce lipopolysaccharide (LPS). The abundance of Lachnospiraceae was negatively correlated with the blood glucose response after a glucose load. Conclusion In summary, diabetic rats have different gut microbiota from control rats. Inulin treatment can alleviate gut microbiota dysbiosis in T2D model rats. Moreover, inulin treatment enhanced serum GLP-1 level to suppress IL-6 secretion and production and hepatic gluconeogenesis, resulted in moderation of insulin tolerance. PMID:29507837

  7. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats.

    PubMed

    Zhang, Qian; Yu, Hongyue; Xiao, Xinhua; Hu, Ling; Xin, Fengjiao; Yu, Xiaobing

    2018-01-01

    Accumulating research has addressed the linkage between the changes to gut microbiota structure and type 2 diabetes (T2D). Inulin is one type of soluble dietary fiber that can alleviate T2D. As a prebiotic, inulin cannot be digested by humans, but rather is digested by probiotics. However, whether inulin treatment can benefit the entire gut bacteria community remains unknown. In this study, we evaluated the differences in gut microbiota composition among diabetic, inulin-treated diabetic, normal control, and inulin-treated normal control rats. A diabetic rat model was generated by a high-fat diet and streptozotocin injections (HF/STZ). Inulin was orally administered to normal and diabetic rats. To determine the composition of the gut microbiota, fecal DNA extraction and 16S rRNA gene 454 pyrosequencing were performed. We found that inulin treatment reduced fasting blood glucose levels and alleviated glucose intolerance and blood lipid panels in diabetic rats. Additionally, inulin treatment increased the serum glucagon-like peptide-1 (GLP-1) level, reduced serum IL-6 level, Il6 expression in epididymal adipose tissue, and Pepck , G6pc expression in liver of diabetic rats. Pyrophosphate sequencing of the 16s V3-V4 region demonstrated an elevated proportion of Firmicutes and a reduced abundance of Bacteroidetes at the phylogenetic level in diabetic rats compared to normal control rats. The characteristics of the gut microbiota in control and inulin-treated rats were similar. Inulin treatment can normalize the composition of the gut microbiota in diabetic rats. At the family and genus levels, probiotic bacteria Lactobacillus and short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae , Phascolarctobacterium , and Bacteroides were found to be significantly more abundant in the inulin-treated diabetic group than in the non-treated diabetic group. In addition, inulin-treated rats had a lower abundance of Desulfovibrio , which produce lipopolysaccharide (LPS). The abundance of Lachnospiraceae was negatively correlated with the blood glucose response after a glucose load. In summary, diabetic rats have different gut microbiota from control rats. Inulin treatment can alleviate gut microbiota dysbiosis in T2D model rats. Moreover, inulin treatment enhanced serum GLP-1 level to suppress IL-6 secretion and production and hepatic gluconeogenesis, resulted in moderation of insulin tolerance.

  8. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.

    PubMed

    Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno

    2014-05-27

    To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model. Copyright © 2014 Broderick et al.

  9. Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome

    PubMed Central

    Olm, Matthew R.; Morowitz, Michael J.

    2018-01-01

    ABSTRACT Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to flourish in the gut under various conditions. Our analysis reveals that strain-level selection in formula-fed infants drives enrichment of beta-lactamase genes in the gut resistome. Using genomes from metagenomes, we built a machine learning model to predict how organisms in the gut microbial community respond to perturbation by antibiotics. This may eventually have clinical applications. PMID:29359195

  10. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation.

    PubMed

    Ponziani, Francesca Romana; Zocco, Maria Assunta; D'Aversa, Francesca; Pompili, Maurizio; Gasbarrini, Antonio

    2017-07-07

    Antibiotics are usually prescribed to cure infections but they also have significant modulatory effects on the gut microbiota. Several alterations of the intestinal bacterial community have been reported during antibiotic treatment, including the reduction of beneficial bacteria as well as of microbial alpha-diversity. Although after the discontinuation of antibiotic therapies it has been observed a trend towards the restoration of the original condition, the new steady state is different from the previous one, as if antibiotics induced some kind of irreversible perturbation of the gut microbial community. The poorly absorbed antibiotic rifaximin seem to be different from the other antibiotics, because it exerts non-traditional effects additional to the bactericidal/bacteriostatic activity on the gut microbiota. Rifaximin is able to reduce bacterial virulence and translocation, has anti-inflammatory properties and has been demonstrated to positively modulate the gut microbial composition. Animal models, culture studies and metagenomic analyses have demonstrated an increase in Bifidobacterium , Faecalibacterium prausnitzii and Lactobacillus abundance after rifaximin treatment, probably consequent to the induction of bacterial resistance, with no major change in the overall gut microbiota composition. Antibiotics are therefore modulators of the symbiotic relationship between the host and the gut microbiota. Specific antibiotics, such as rifaximin, can also induce eubiotic changes in the intestinal ecosystem; this additional property may represent a therapeutic advantage in specific clinical settings.

  11. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation

    PubMed Central

    Ponziani, Francesca Romana; Zocco, Maria Assunta; D’Aversa, Francesca; Pompili, Maurizio; Gasbarrini, Antonio

    2017-01-01

    Antibiotics are usually prescribed to cure infections but they also have significant modulatory effects on the gut microbiota. Several alterations of the intestinal bacterial community have been reported during antibiotic treatment, including the reduction of beneficial bacteria as well as of microbial alpha-diversity. Although after the discontinuation of antibiotic therapies it has been observed a trend towards the restoration of the original condition, the new steady state is different from the previous one, as if antibiotics induced some kind of irreversible perturbation of the gut microbial community. The poorly absorbed antibiotic rifaximin seem to be different from the other antibiotics, because it exerts non-traditional effects additional to the bactericidal/bacteriostatic activity on the gut microbiota. Rifaximin is able to reduce bacterial virulence and translocation, has anti-inflammatory properties and has been demonstrated to positively modulate the gut microbial composition. Animal models, culture studies and metagenomic analyses have demonstrated an increase in Bifidobacterium, Faecalibacterium prausnitzii and Lactobacillus abundance after rifaximin treatment, probably consequent to the induction of bacterial resistance, with no major change in the overall gut microbiota composition. Antibiotics are therefore modulators of the symbiotic relationship between the host and the gut microbiota. Specific antibiotics, such as rifaximin, can also induce eubiotic changes in the intestinal ecosystem; this additional property may represent a therapeutic advantage in specific clinical settings. PMID:28740337

  12. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

    PubMed

    Xiao, Hui-Wen; Ge, Chang; Feng, Guo-Xing; Li, Yuan; Luo, Dan; Dong, Jia-Li; Li, Hang; Wang, Haichao; Cui, Ming; Fan, Sai-Jun

    2018-05-01

    Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies.

    PubMed

    West, Christina E; Renz, Harald; Jenmalm, Maria C; Kozyrskyj, Anita L; Allen, Katrina J; Vuillermin, Peter; Prescott, Susan L

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  15. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    PubMed Central

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  16. A systems biology approach to predict and characterize human gut microbial metabolites in colorectal cancer.

    PubMed

    Wang, QuanQiu; Li, Li; Xu, Rong

    2018-04-18

    Colorectal cancer (CRC) is the second leading cause of cancer-related deaths. It is estimated that about half the cases of CRC occurring today are preventable. Recent studies showed that human gut microbiota and their collective metabolic outputs play important roles in CRC. However, the mechanisms by which human gut microbial metabolites interact with host genetics in contributing CRC remain largely unknown. We hypothesize that computational approaches that integrate and analyze vast amounts of publicly available biomedical data have great potential in better understanding how human gut microbial metabolites are mechanistically involved in CRC. Leveraging vast amount of publicly available data, we developed a computational algorithm to predict human gut microbial metabolites for CRC. We validated the prediction algorithm by showing that previously known CRC-associated gut microbial metabolites ranked highly (mean ranking: top 10.52%; median ranking: 6.29%; p-value: 3.85E-16). Moreover, we identified new gut microbial metabolites likely associated with CRC. Through computational analysis, we propose potential roles for tartaric acid, the top one ranked metabolite, in CRC etiology. In summary, our data-driven computation-based study generated a large amount of associations that could serve as a starting point for further experiments to refute or validate these microbial metabolite associations in CRC cancer.

  17. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis.

    PubMed

    Wen, Chengping; Zheng, Zhijun; Shao, Tiejuan; Liu, Lin; Xie, Zhijun; Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan; Ehrlich, Stanislav Dusko

    2017-07-27

    The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri, and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were established using a subset of these gut microbial biomarkers. Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our data suggest biomarkers identified in this study might participate in the pathogenesis or development process of ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.

  18. Community assembly of the worm gut microbiome

    NASA Astrophysics Data System (ADS)

    Gore, Jeff

    It has become increasingly clear that human health is strongly influenced by the bacteria that live within the gut, known collectively as the gut microbiome. This complex community varies tremendously between individuals, but understanding the sources that lead to this heterogeneity is challenging. To address this challenge, we are using a bottom-up approach to develop a predictive understanding of how the microbiome assembles and functions within a simple and experimentally tractable gut, the gut of the worm C. elegans. We have found that stochastic community assembly in the C. elegansintestine is sufficient to produce strong inter-worm heterogeneity in community composition. When worms are fed with two neutrally-competing fluorescently labeled bacterial strains, we observe stochastically-driven bimodality in community composition, where approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions the bimodality disappears. We have also characterized all pairwise interspecies competitions among a set of eleven bacterial species, illuminating the rules governing interspecies community assembly. These results demonstrate the potential importance of stochastic processes in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities.

  19. Mango Supplementation Modulates Gut Microbial Dysbiosis and Short-Chain Fatty Acid Production Independent of Body Weight Reduction in C57BL/6 Mice Fed a High-Fat Diet.

    PubMed

    Ojo, Babajide; El-Rassi, Guadalupe Davila; Payton, Mark E; Perkins-Veazie, Penelope; Clarke, Stephen; Smith, Brenda J; Lucas, Edralin A

    2016-08-01

    High-fat (HF) diet-induced obesity is associated with changes in the gut microbiota. Fiber and other bioactive compounds in plant-based foods are suggested to prevent gut dysbiosis brought on by HF feeding. Mango is high in fiber and has been reported to have anti-obesogenic, hypoglycemic, and immunomodulatory properties. We investigated the effects of freeze-dried mango pulp combined with an HF diet on the cecal microbial population and its relation to body composition, lipids, glucose parameters, short-chain fatty acid (SCFA) production, and gut inflammatory markers in a mouse model of diet-induced obesity. Six-wk-old male C57BL/6 mice were randomly assigned to 1 of 4 dietary treatment groups: control (AIN-93M, 10% fat kcal), HF (60% fat kcal), and HF + 1% or 10% mango (HF+1%M or HF+10%M, wt:wt) for 12 wk. The cecal microbial population was assessed by use of 16S rDNA sequencing. Body composition, plasma glucose and lipids, cecal and fecal SCFAs, and mRNA abundance of inflammatory markers in the ileum and colonic lamina propria were assessed. Compared with the control group, HF feeding significantly reduced (P < 0.05) 1 operational taxonomic unit (OTU) of the genus Bifidobacteria (64-fold) and 5 OTUs of the genus Akkermansia (≥16-fold). This reduction was prevented in the HF+10%M group, members of which had 10% higher final body weight compared with the HF group (P = 0.01) and similar fasting blood glucose concentrations (P = 0.24). The HF+10%M group had 135% (P = 0.004) and 133% (P < 0.0001) greater fecal acetic and n-butyric acids concentrations than the HF group, suggesting greater microbial fermentation. Furthermore, a 59% greater colonic interleukin 10 (Il10) gene expression was observed in the HF+10%M group than in the HF group (P = 0.048), indicating modulation of gut inflammation. The HF+1%M group generally did not differ from the HF group. The addition of mango to an HF diet modulated the gut microbiota and production of SCFAs in C57BL/6 mice; these changes may improve gut tolerance to the insult of an HF diet. © 2016 American Society for Nutrition.

  20. Evaluating the predatory potential of carnivorous nematodes against Rotylenchulus reniformis and Meloidogyne incognita

    USDA-ARS?s Scientific Manuscript database

    Predatory behavior of a nematode is usually determined through gut content observation or prey delimitation counts. In this experiment, Mononchus and Neoactinolaimus predation of Rotylenchulus reniformis or Meloidogyne incognita was determined using a PCR-based nematode gut content analysis. Soil sa...

  1. High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut.

    PubMed

    Heisel, Timothy; Montassier, Emmanuel; Johnson, Abigail; Al-Ghalith, Gabriel; Lin, Yi-Wei; Wei, Li-Na; Knights, Dan; Gale, Cheryl A

    2017-01-01

    Dietary fat intake and shifts in gut bacterial community composition are associated with the development of obesity. To date, characterization of microbiota in lean versus obese subjects has been dominated by studies of gut bacteria. Fungi, recently shown to affect gut inflammation, have received little study for their role in obesity. We sought to determine the effects of high-fat diet on fungal and bacterial community structures in a mouse model using the internal transcribed spacer region 2 (ITS2) of fungal ribosomal DNA (rDNA) and the 16S rRNA genes of bacteria. Mice fed a high-fat diet had significantly different abundances of 19 bacterial and 6 fungal taxa than did mice fed standard chow, with high-fat diet causing similar magnitudes of change in overall fungal and bacterial microbiome structures. We observed strong and complex diet-specific coabundance relationships between intra- and interkingdom microbial pairs and dramatic reductions in the number of coabundance correlations in mice fed a high-fat diet compared to those fed standard chow. Furthermore, predicted microbiome functional modules related to metabolism were significantly less abundant in high-fat-diet-fed than in standard-chow-fed mice. These results suggest a role for fungi and interkingdom interactions in the association between gut microbiomes and obesity. IMPORTANCE Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria within the gut and that these are perturbed by high-fat diet.

  2. Subclinical cytomegalovirus infection associates with altered host immunity, gut microbiota and vaccine responses.

    PubMed

    Santos Rocha, Clarissa; Hirao, Lauren A; Weber, Mariana G; Méndez-Lagares, Gema; Chang, W L William; Jiang, Guochun; Deere, Jesse D; Sparger, Ellen E; Roberts, Jeffrey; Barry, Peter A; Hartigan-O'Connor, Dennis J; Dandekar, Satya

    2018-04-18

    Subclinical viral infections (SVI) including cytomegalovirus (CMV) are highly prevalent in humans, resulting in life-long persistence. However, the impact of SVI on the interplay between the host immunity and gut microbiota in the context of environmental exposures is not well defined. We utilized the preclinical nonhuman primate (NHP) model consisting of SVI-free (SPF) rhesus macaques and compared them to the animals with SVI (non-SPF) acquired through natural exposure and investigated the impact of SVI on immune cell distribution and function as well as on gut microbiota. These changes were examined in animals housed in the outdoor environment as compared to the controlled indoor environment. We report that SVI are associated with altered immune cell subsets and gut microbiota composition in animals housed in the outdoor environment. Non-SPF animals harbored a higher proportion of potential butyrate-producing Firmicutes and higher numbers of lymphocytes, effector T cells and cytokine-producing T cells. Surprisingly, these differences diminished following their transfer to the controlled indoor environment, suggesting that non-SPFs had increased responsiveness to environmental exposures. An experimental infection of indoor SPF animals with CMV resulted in an increased abundance of butyrate-producing bacteria, validating that CMV enhanced colonization of butyrate-producing commensals. Finally, non-SPF animals displayed lower antibody responses to influenza vaccination as compared to SPF animals. Our data show that subclinical CMV infection heightens host immunity and gut microbiota changes in response to environmental exposures. This may contribute to the heterogeneity in host immune response to vaccines and environmental stimuli at the population level. IMPORTANCE Humans harbor several latent viruses that modulate host immunity and commensal microbiota, thus introducing heterogeneity in their responses to pathogens, vaccines and environmental exposures. Most of our understanding of the effect of CMV on the immune system is based on studies of children acquiring CMV or of immune-compromised humans with acute or reactivated CMV infection or in ageing individuals. The experimental mouse models are genetically inbred and are completely adapted to the indoor laboratory environment. In contrast, nonhuman primates are genetically outbred and are raised in the outdoor environment. Our study is the first to report the impact of long-term subclinical CMV infection on host immunity and gut microbiota, which is evident only in the outdoor environment but not in the indoor environment. The significance of this study is in highlighting the impact of SVI on enhancing host immune susceptibility to environmental exposures and immune heterogeneity. Copyright © 2018 American Society for Microbiology.

  3. Using corticosteroids to reshape the gut microbiome: implications for inflammatory bowel diseases.

    PubMed

    Huang, Edmond Y; Inoue, Takuya; Leone, Vanessa A; Dalal, Sushila; Touw, Ketrija; Wang, Yunwei; Musch, Mark W; Theriault, Betty; Higuchi, Kazuhide; Donovan, Sharon; Gilbert, Jack; Chang, Eugene B

    2015-05-01

    Commensal gut microbiota play an important role in regulating metabolic and inflammatory conditions. Reshaping intestinal microbiota through pharmacologic means may be a viable treatment option. We sought to delineate the functional characteristics of glucocorticoid-mediated alterations on gut microbiota and their subsequent repercussions on host mucin regulation and colonic inflammation. Adult male C57Bl/6 mice, germ-free, Muc2-heterozygote (±), or Muc2-knockout (-/-) were injected with dexamethasone, a synthetic glucocorticoid, for 4 weeks. Fecal samples were collected for gut microbiota analysis through 16S rRNA terminal restriction fragment length polymorphism and amplicon sequencing. Intestinal mucosa was collected for mucin gene expression studies. Germ-free mice were conventionalized with gut microbes from treated and nontreated groups to determine their functional capacities in recipient hosts. Exposure to dexamethasone in wild-type mice led to substantial shifts in gut microbiota over a 4-week period. Furthermore, a significant downregulation of colonic Muc2 gene expression was observed after treatment. Muc2-knockout mice harbored a proinflammatory environment of gut microbes, characterized by the increase or decrease in prevalence of specific microbiota populations such as Clostridiales and Lactobacillaceae, respectively. This colitogenic phenotype was transmissible to IL10-knockout mice, a genetically susceptible model of colonic inflammatory disorders. Microbiota from donors pretreated with dexamethasone, however, ameliorated symptoms of inflammation. Commensal gut bacteria may be a key mediator of the anti-inflammatory effects observed in the large intestine after glucocorticoid exposure. These findings underscore the notion that intestinal microbes comprise a "microbial organ" essential for host physiology that can be targeted by therapeutic approaches to restore intestinal homeostasis.

  4. Pathophysiology of the gut and the microbiome in the host response

    PubMed Central

    Lyons, John D.; Coopersmith, Craig M.

    2016-01-01

    Objective To describe and summarize the data supporting the “gut” as the motor driving critical illness and multiple organ dysfunction syndrome (MODS) presented at the Eunice Kennedy Shriver National Institute of Child Health and Human Development MODS Workshop (March 26–27, 2015). Data Sources Summary of workshop keynote presentation. Study Selection Not applicable. Data Extraction Presented by an expert in the field, the data assessing the role of gastrointestinal dysfunction driving critical illness were described with a focus on identifying knowledge gaps and research priorities. Data Synthesis Summary of presentation and discussion supported and supplemented by relevant literature. Conclusions The understanding of gut dysfunction in critical illness has evolved greatly over time, and the gut is now often considered as the “motor” of critical illness. The association of the gut with critical illness is supported by both animal models and clinical studies. Initially, the association between gut dysfunction and critical illness focused primarily on bacterial translocation into the bloodstream. However, that work has evolved to include other gut-derived products causing distant injury via other routes (e.g. lymphatics). Additionally, alterations in the gut epithelium may be associated with critical illness and influence outcomes. Gut epithelial apoptosis, intestinal hyperpermeability and perturbations in the intestinal mucus layer have all been associated with critical illness. Finally, there is growing evidence that the intestinal microbiome plays a crucial role in mediating pathology in critical illness. Further research is needed to better understand the role of each of these mechanisms and their contribution to MODS in children. PMID:28248833

  5. The Bacterium Frischella perrara Causes Scab Formation in the Gut of its Honeybee Host

    PubMed Central

    Bartlett, Kelsey D.; Moran, Nancy A.

    2015-01-01

    ABSTRACT Honeybees harbor well-defined bacterial communities in their guts. The major members of these communities appear to benefit the host, but little is known about how they interact with the host and specifically how they interface with the host immune system. In the pylorus, a short region between the midgut and hindgut, honeybees frequently exhibit scab-like structures on the epithelial gut surface. These structures are reminiscent of a melanization response of the insect immune system. Despite the wide distribution of this phenotype in honeybee populations, its cause has remained elusive. Here, we show that the presence of a common member of the bee gut microbiota, the gammaproteobacterium Frischella perrara, correlates with the appearance of the scab phenotype. Bacterial colonization precedes scab formation, and F. perrara specifically localizes to the melanized regions of the host epithelium. Under controlled laboratory conditions, we demonstrate that exposure of microbiota-free bees to F. perrara but not to other bacteria results in scab formation. This shows that F. perrara can become established in a spatially restricted niche in the gut and triggers a morphological change of the epithelial surface, potentially due to a host immune response. As an intermittent colonizer, this bacterium holds promise for addressing questions of community invasion in a simple yet relevant model system. Moreover, our results show that gut symbionts of bees engage in differential host interactions that are likely to affect gut homeostasis. Future studies should focus on how these different gut bacteria impact honeybee health. PMID:25991680

  6. Allometry and Ecology of the Bilaterian Gut Microbiome

    PubMed Central

    Sherrill-Mix, Scott; McCormick, Kevin; Lauder, Abigail; Bailey, Aubrey; Zimmerman, Laurie; Li, Yingying; Django, Jean-Bosco N.; Bertolani, Paco; Colin, Christelle; Hart, John A.; Hart, Terese B.; Georgiev, Alexander V.; Sanz, Crickette M.; Morgan, David B.; Atencia, Rebeca; Cox, Debby; Muller, Martin N.; Sommer, Volker; Piel, Alexander K.; Stewart, Fiona A.; Speede, Sheri; Roman, Joe; Wu, Gary; Taylor, Josh; Bohm, Rudolf; Rose, Heather M.; Carlson, John; Mjungu, Deus; Schmidt, Paul; Gaughan, Celeste; Bushman, Joyslin I.; Schmidt, Ella; Bittinger, Kyle; Collman, Ronald G.; Hahn, Beatrice H.

    2018-01-01

    ABSTRACT Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals (Bilateria) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction. PMID:29588401

  7. Development of a chicken ileal explant culture model for measurement of gut inflammation induced by lipopolysaccharide

    USDA-ARS?s Scientific Manuscript database

    Gut mucosa holds a single layer of epithelial cells and the largest mass of lymphoid tissue in the body. While epithelial cell culture is widely used to assess intestinal barrier functions, it has limitations for studying cellular interactions with other cells, in particular those of the immune syst...

  8. First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans.

    PubMed

    Prot, Jean Matthieu; Maciel, Luis; Bricks, Thibault; Merlier, Franck; Cotton, Jérôme; Paullier, Patrick; Bois, Fréderic Yves; Leclerc, Eric

    2014-10-01

    We developed a microfluidic platform to investigate paracetamol intestinal and liver first pass metabolism. This approach was coupled with a mathematical model to estimate intrinsic in vitro parameters and to predict in vivo processes. The kinetic modeling estimated the paracetamol and paracetamol sulfate permeabilities, the sulfate and glucuronide effluxes in the intestine compartment. Based on a gut model, we estimated intrinsic intestinal clearance of between 26 and 77 L/h for paracetamol in humans, a permeability of 10 L/h, and a gut availability between 0.17 and 0.53 (compared to 0.95-1 in vivo). The role played by the liver in paracetamol metabolism was estimated via in vitro intrinsic clearances of 7.6, 13.6, and 11.5 µL/min/10(6) cells for HepG2/C3a, rat primary hepatocytes, and human primary hepatocytes, respectively. Based on a parallel tube model to describe the liver, the paracetamol hepatic clearance, and the paracetamol hepatic availability in humans were estimated at 6.5 mL/min/kg of bodyweight (BDW) and 0.7, respectively (when compared to 5 mL/min/kg of BDW and 0.77 to 0.88 for in vivo values, respectively). The drug availability was predicted ranging between 0.24 and 0.41 (0.88 in vivo). The overall approach provided a first step in an integrated strategy combining in silico/in vitro methods based on microfluidic for evaluating drug absorption, distribution and metabolism processes. © 2014 Wiley Periodicals, Inc.

  9. Microbiota-based treatments in alcoholic liver disease.

    PubMed

    Sung, Hotaik; Kim, Seung Woo; Hong, Meegun; Suk, Ki Tae

    2016-08-07

    Gut microbiota plays a key role in the pathogenesis of alcoholic liver disease (ALD). Consumption of alcohol leads to increased gut permeability, small intestinal bacterial overgrowth, and enteric dysbiosis. These factors contribute to the increased translocation of microbial products to the liver via the portal tract. Subsequently, bacterial endotoxins such as lipopolysaccharide, in association with the Toll-like receptor 4 signaling pathway, induce a gamut of damaging immune responses in the hepatic milieu. Because of the close association between deleterious inflammation and ALD-induced microbiota imbalance, therapeutic approaches that seek to reestablish gut homeostasis should be considered in the treatment of alcoholic patients. To this end, a number of preliminary studies on probiotics have confirmed their effectiveness in suppressing proinflammatory cytokines and improving liver function in the context of ALD. In addition, there have been few studies linking the administration of prebiotics and antibiotics with reduction of alcohol-induced liver damage. Because these preliminary results are promising, large-scale randomized studies are warranted to elucidate the impact of these microbiota-based treatments on the gut flora and associated immune responses, in addition to exploring questions about optimal delivery. Finally, fecal microbiota transplant has been shown to be an effective method of modulating gut microbiota and deserve further investigation as a potential therapeutic option for ALD.

  10. Microbiota-based treatments in alcoholic liver disease

    PubMed Central

    Sung, Hotaik; Kim, Seung Woo; Hong, Meegun; Suk, Ki Tae

    2016-01-01

    Gut microbiota plays a key role in the pathogenesis of alcoholic liver disease (ALD). Consumption of alcohol leads to increased gut permeability, small intestinal bacterial overgrowth, and enteric dysbiosis. These factors contribute to the increased translocation of microbial products to the liver via the portal tract. Subsequently, bacterial endotoxins such as lipopolysaccharide, in association with the Toll-like receptor 4 signaling pathway, induce a gamut of damaging immune responses in the hepatic milieu. Because of the close association between deleterious inflammation and ALD-induced microbiota imbalance, therapeutic approaches that seek to reestablish gut homeostasis should be considered in the treatment of alcoholic patients. To this end, a number of preliminary studies on probiotics have confirmed their effectiveness in suppressing proinflammatory cytokines and improving liver function in the context of ALD. In addition, there have been few studies linking the administration of prebiotics and antibiotics with reduction of alcohol-induced liver damage. Because these preliminary results are promising, large-scale randomized studies are warranted to elucidate the impact of these microbiota-based treatments on the gut flora and associated immune responses, in addition to exploring questions about optimal delivery. Finally, fecal microbiota transplant has been shown to be an effective method of modulating gut microbiota and deserve further investigation as a potential therapeutic option for ALD. PMID:27547010

  11. Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections.

    PubMed

    Serino, Matteo

    2018-03-02

    Alterations of both ecology and functions of gut microbiota are conspicuous traits of several inflammatory pathologies, notably metabolic diseases such as obesity and type 2 diabetes. Moreover, the proliferation of enterobacteria, subdominant members of the intestinal microbial ecosystem, has been shown to be favored by Western diet, the strongest inducer of both metabolic diseases and gut microbiota dysbiosis. The inner interdependence between the host and the gut microbiota is based on a plethora of molecular mechanisms by which host and intestinal microbes modify each other. Among these mechanisms are as follows: (i) the well-known metabolic impact of short chain fatty acids, produced by microbial fermentation of complex carbohydrates from plants; (ii) a mutual modulation of miRNAs expression, both on the eukaryotic (host) and prokaryotic (gut microbes) side; (iii) the production by enterobacteria of virulence factors such as the genotoxin colibactin, shown to alter the integrity of host genome and induce a senescence-like phenotype in vitro; (iv) the microbial excretion of outer-membrane vesicles, which, in addition to other functions, may act as a carrier for multiple molecules such as toxins to be delivered to target cells. In this review, I describe the major molecular mechanisms by which gut microbes exert their metabolic impact at a multi-organ level (the gut barrier being in the front line) and support the emerging triad of metabolic diseases, gut microbiota dysbiosis and enterobacteria infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Functional variation in the gut microbiome of wild Drosophila populations.

    PubMed

    Bost, Alyssa; Martinson, Vincent G; Franzenburg, Soeren; Adair, Karen L; Albasi, Alice; Wells, Martin T; Douglas, Angela E

    2018-05-26

    Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species. Variation in microbiome function and composition was driven principally by the period of sample collection, while host function varied mostly with Drosophila species, indicating that variation in microbiome traits is determined largely by environmental factors, and not host taxonomy. Despite this, significant correlations between microbiome and host functional traits were obtained. In particular, microbiome functions dominated by metabolism were positively associated with host functions relating to gut epithelial turnover. Much of the functional variation in the microbiome could be attributed to variation in abundance of Bacteroidetes, rather than the two other abundant groups, the γ-Proteobacteria or Lactobacillales. We conclude that functional variation in the interactions between animals and their gut microbiome can be detectable in natural populations and, in mycophagous Drosophila, this variation relates primarily to metabolism and homeostasis of the gut epithelium. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Strategy for an Association Study of the Intestinal Microbiome and Brain Metabolome Across the Lifespan of Rats.

    PubMed

    Chen, Tianlu; You, Yijun; Xie, Guoxiang; Zheng, Xiaojiao; Zhao, Aihua; Liu, Jiajian; Zhao, Qing; Wang, Shouli; Huang, Fengjie; Rajani, Cynthia; Wang, Congcong; Chen, Shaoqiu; Ni, Yan; Yu, Herbert; Deng, Youping; Wang, Xiaoyan; Jia, Wei

    2018-02-20

    There is increased appreciation for the diverse roles of the microbiome-gut-brain axis on mammalian growth and health throughout the lifespan. Numerous studies have demonstrated that the gut microbiome and their metabolites are extensively involved in the communication between brain and gut. Association study of brain metabolome and gut microbiome is an active field offering large amounts of information on the interaction of microbiome, brain and gut but data size and complicated hierarchical relationships were found to be major obstacles to the formation of significant, reproducible conclusions. This study addressed a two-level strategy of brain metabolome and gut microbiome association analysis of male Wistar rats in the process of growth, employing several analytical platforms and various bioinformatics methods. Trajectory analysis showed that the age-related brain metabolome and gut microbiome had similarity in overall alteration patterns. Four high taxonomical level correlated pairs of "metabolite type-bacterial phylum", including "lipids-Spirochaetes", "free fatty acids (FFAs)-Firmicutes", "bile acids (BAs)-Firmicutes", and "Neurotransmitters-Bacteroidetes", were screened out based on unit- and multivariant correlation analysis and function analysis. Four groups of specific "metabolite-bacterium" association pairs from within the above high level key pairs were further identified. The key correlation pairs were validated by an independent animal study. This two-level strategy is effective in identifying principal correlations in big data sets obtained from the systematic multiomics study, furthering our understanding on the lifelong connection between brain and gut.

  14. Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence

    PubMed Central

    Morton, Elise R.; Lynch, Joshua; Froment, Alain; Lafosse, Sophie; Heyer, Evelyne; Przeworski, Molly; Blekhman, Ran; Ségurel, Laure

    2015-01-01

    The human gut microbiota is impacted by host nutrition and health status and therefore represents a potentially adaptive phenotype influenced by metabolic and immune constraints. Previous studies contrasting rural populations in developing countries to urban industrialized ones have shown that industrialization is strongly correlated with patterns in human gut microbiota; however, we know little about the relative contribution of factors such as climate, diet, medicine, hygiene practices, host genetics, and parasitism. Here, we focus on fine-scale comparisons of African rural populations in order to (i) contrast the gut microbiota of populations inhabiting similar environments but having different traditional subsistence modes and either shared or distinct genetic ancestry, and (ii) examine the relationship between gut parasites and bacterial communities. Characterizing the fecal microbiota of Pygmy hunter-gatherers as well as Bantu individuals from both farming and fishing populations in Southwest Cameroon, we found that the gut parasite Entamoeba is significantly correlated with microbiome composition and diversity. We show that across populations, colonization by this protozoa can be predicted with 79% accuracy based on the composition of an individual's gut microbiota, and that several of the taxa most important for distinguishing Entamoeba absence or presence are signature taxa for autoimmune disorders. We also found gut communities to vary significantly with subsistence mode, notably with some taxa previously shown to be enriched in other hunter-gatherers groups (in Tanzania and Peru) also discriminating hunter-gatherers from neighboring farming or fishing populations in Cameroon. PMID:26619199

  15. Gut Microbiota Contributes to the Growth of Fast-Growing Transgenic Common Carp (Cyprinus carpio L.)

    PubMed Central

    Xie, Shouqi; Hu, Wei; Yu, Yuhe; Hu, Zihua

    2013-01-01

    Gut microbiota has shown tight and coordinated connection with various functions of its host such as metabolism, immunity, energy utilization, and health maintenance. To gain insight into whether gut microbes affect the metabolism of fish, we employed fast-growing transgenic common carp (Cyprinus carpio L.) to study the connections between its large body feature and gut microbes. Metagenome-based fingerprinting and high-throughput sequencing on bacterial 16S rRNA genes indicated that fish gut was dominated by Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes, which displayed significant differences between transgenic fish and wild-type controls. Analyses to study the association of gut microbes with the fish metabolism discovered three major phyla having significant relationships with the host metabolic factors. Biochemical and histological analyses indicated transgenic fish had increased carbohydrate but decreased lipid metabolisms. Additionally, transgenic fish has a significantly lower Bacteroidetes:Firmicutes ratio than that of wild-type controls, which is similar to mammals between obese and lean individuals. These findings suggest that gut microbiotas are associated with the growth of fast growing transgenic fish, and the relative abundance of Firmicutes over Bacteroidetes could be one of the factors contributing to its fast growth. Since the large body size of transgenic fish displays a proportional body growth, which is unlike obesity in human, the results together with the findings from others also suggest that the link between obesity and gut microbiota is likely more complex than a simple Bacteroidetes:Firmicutes ratio change. PMID:23741344

  16. Assessing the Intestinal Microbiota in the SHINE Trial

    PubMed Central

    Gough, Ethan K.; Prendergast, Andrew J.; Mutasa, Kuda E.; Stoltzfus, Rebecca J.; Manges, Amee R.

    2015-01-01

    Advances in DNA sequencing technology now allow us to explore the dynamics and functions of the microbes that inhabit the human body, the microbiota. Recent studies involving experimental animal models suggest a role of the gut microbiota in growth. However, the specific changes in the human gut microbiota that contribute to growth remain unclear, and studies investigating the gut microbiota as a determinant of environmental enteric dysfunction (EED) and child stunting are lacking. In this article, we review the evidence for a link between the developing infant gut microbiota, infant feeding, EED, and stunting, and discuss the potential causal pathways relating these variables. We outline the analytic approaches we will use to investigate these relationships, by capitalizing on the longitudinal design and randomized interventions of the Sanitation Hygiene Infant Nutrition Efficacy trial in Zimbabwe. PMID:26602302

  17. Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling.

    PubMed

    d'Hennezel, Eva; Abubucker, Sahar; Murphy, Leon O; Cullen, Thomas W

    2017-01-01

    Cohabitation of microbial communities with the host enables the formation of a symbiotic relationship that maintains homeostasis in the gut and beyond. One prevailing model suggests that this relationship relies on the capacity of host cells and tissues to remain tolerant to the strong immune stimulation generated by the microbiota such as the activation of Toll-like receptor 4 (TLR4) pathways by lipopolysaccharide (LPS). Indeed, gut microbial LPS is thought to be one of the most potent activators of innate immune signaling and an important mediator of the microbiome's influence on host physiology. In this study, we performed computational and experimental analyses of healthy human fecal samples to examine the TLR4 signaling capacity of the gut microbiota. These analyses revealed that an immunoinhibitory activity of LPS, conserved across the members of the order Bacteroidales and derived from an underacylated structural feature, silences TLR4 signaling for the entire consortium of organisms inhabiting the human gut. Comparative analysis of metagenomic data from the Human Microbiome Project and healthy-donor samples indicates that immune silencing via LPS is a microbe-intrinsic feature in all healthy adults. These findings challenge the current belief that robust TLR4 signaling is a feature of the microbiome and demonstrate that microbiome-derived LPS has the ability to facilitate host tolerance of gut microbes. These findings have broad implications for how we model host-microbe interactions and for our understanding of microbiome-linked disease. IMPORTANCE While the ability for humans to host a complex microbial ecosystem is an essential property of life, the mechanisms allowing for immune tolerance of such a large microbial load are not completely understood and are currently the focus of intense research. This study shows that an important proinflammatory pathway that is commonly triggered by pathogenic bacteria upon interaction with the host is, in fact, actively repressed by the bacteria of the gut microbiome, supporting the idea that beneficial microbes themselves contribute to the immune tolerance in support of homeostasis. These findings are important for two reasons. First, many currently assume that proinflammatory signaling by lipopolysaccharide is a fundamental feature of the gut flora. This assumption influences greatly how host-microbiome interactions are theoretically modeled but also how they are experimentally studied, by using robust TLR signaling conditions to simulate commensals. Second, elucidation of the mechanisms that support host-microbe tolerance is key to the development of therapeutics for both intestinal and systemic inflammatory disorders.

  18. Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose.

    PubMed

    Shao, Yongqi; Arias-Cordero, Erika M; Boland, Wilhelm

    2013-11-13

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction(1), boosting the immune response(2), pheromone production(3), as well as nutrition, including the synthesis of essential amino acids(4,) among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing (13)C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA(5). The incorporation of (13)C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled ((12)C) one. In the end, the (13)C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the (12)C-unlabeled similar one(6). Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, (13)C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.

  19. Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction

    PubMed Central

    Somsouk, Ma; Hunt, Peter W.

    2017-01-01

    Although invasive cytomegalovirus (CMV) disease is uncommon in the era of antiretroviral therapy (ART), asymptomatic CMV coinfection is nearly ubiquitous in HIV infected individuals. While microbial translocation and gut epithelial barrier dysfunction may promote persistent immune activation in treated HIV infection, potentially contributing to morbidity and mortality, it has been unclear whether CMV replication in individuals with no symptoms of CMV disease might play a role in this process. We hypothesized that persistent CMV replication in the intestinal epithelium of HIV/CMV-coinfected individuals impairs gut epithelial barrier function. Using a combination of state-of-the-art in situ hybridization technology (RNAscope) and immunohistochemistry, we detected CMV DNA and proteins and evidence of intestinal damage in rectosigmoid samples from CMV-positive individuals with both untreated and ART-suppressed HIV infection. Two different model systems, primary human intestinal cells differentiated in vitro to form polarized monolayers and a humanized mouse model of human gut, together demonstrated that intestinal epithelial cells are fully permissive to CMV replication. Independent of HIV, CMV disrupted tight junctions of polarized intestinal cells, significantly reducing transepithelial electrical resistance, a measure of monolayer integrity, and enhancing transepithelial permeability. The effect of CMV infection on the intestinal epithelium is mediated, at least in part, by the CMV-induced proinflammatory cytokine IL-6. Furthermore, letermovir, a novel anti-CMV drug, dampened the effects of CMV on the epithelium. Together, our data strongly suggest that CMV can disrupt epithelial junctions, leading to bacterial translocation and chronic inflammation in the gut and that CMV could serve as a target for therapeutic intervention to prevent or treat gut epithelial barrier dysfunction during HIV infection. PMID:28241080

  20. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice

    PubMed Central

    Johnson, B M; Gaudreau, M-C; Al-Gadban, M M; Gudi, R; Vasu, C

    2015-01-01

    Environmental factors, including microbes and diet, play a key role in initiating autoimmunity in genetically predisposed individuals. However, the influence of gut microflora in the initiation and progression of systemic lupus erythematosus (SLE) is not well understood. In this study, we have examined the impact of drinking water pH on immune response, disease incidence and gut microbiome in a spontaneous mouse model of SLE. Our results show that (SWR × NZB) F1 (SNF1) mice that were given acidic pH water (AW) developed nephritis at a slower pace compared to those on neutral pH water (NW). Immunological analyses revealed that the NW-recipient mice carry relatively higher levels of circulating autoantibodies against nuclear antigen (nAg) as well as plasma cells. Importantly, 16S rRNA gene-targeted sequencing revealed that the composition of gut microbiome is significantly different between NW and AW groups of mice. In addition, analysis of cytokine and transcription factor expression revealed that immune response in the gut mucosa of NW recipient mice is dominated by T helper type 17 (Th17) and Th9-associated factors. Segmented filamentous bacteria (SFB) promote a Th17 response and autoimmunity in mouse models of arthritis and multiple sclerosis. Interestingly, however, not only was SFB colonization unaffected by the pH of drinking water, but also SFB failed to cause a profound increase in Th17 response and had no significant effect on lupus incidence. Overall, these observations show that simple dietary deviations such as the pH of drinking water can influence lupus incidence and affect the composition of gut microbiome. PMID:25703185

  1. Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT_HPC).

    PubMed

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.

  2. Yukawa unification in an SO(10) SUSY GUT: SUSY on the edge

    NASA Astrophysics Data System (ADS)

    Poh, Zijie; Raby, Stuart

    2015-07-01

    In this paper we analyze Yukawa unification in a three family SO(10) SUSY GUT. We perform a global χ2 analysis and show that supersymmetry (SUSY) effects do not decouple even though the universal scalar mass parameter at the grand unified theory (GUT) scale, m16, is found to lie between 15 and 30 TeV with the best fit given for m16≈25 TeV . Note, SUSY effects do not decouple since stops and bottoms have mass of order 5 TeV, due to renormalization group running from MGUT. The model has many testable predictions. Gauginos are the lightest sparticles and the light Higgs boson is very much standard model-like. The model is consistent with flavor and C P observables with the BR (μ →e γ ) close to the experimental upper bound. With such a large value of m16 we clearly cannot be considered "natural" SUSY nor are we "split" SUSY. We are thus in the region in between or "SUSY on the edge."

  3. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives - A Review.

    PubMed

    Adewole, D I; Kim, I H; Nyachoti, C M

    2016-07-01

    The gut is the largest organ that helps with the immune function. Gut health, especially in young pigs has a significant benefit to health and performance. In an attempt to maintain and enhance intestinal health in pigs and improve productivity in the absence of in-feed antibiotics, researchers have evaluated a wide range of feed additives. Some of these additives such as zinc oxide, copper sulphate, egg yolk antibodies, mannan-oligosaccharides and spray dried porcine plasma and their effectiveness are discussed in this review. One approach to evaluate the effectiveness of these additives in vivo is to use an appropriate disease challenge model. Over the years, researchers have used a number of challenge models which include the use of specific strains of enterotoxigenic Escherichia coli, bacteria lipopolysaccharide challenge, oral challenge with Salmonella enteric serotype Typhimurium, sanitation challenge, and Lawsonia intercellularis challenge. These challenge models together with the criteria used to evaluate the responses of the animals to them are also discussed in this review.

  4. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives — A Review

    PubMed Central

    Adewole, D. I.; Kim, I. H.; Nyachoti, C. M.

    2016-01-01

    The gut is the largest organ that helps with the immune function. Gut health, especially in young pigs has a significant benefit to health and performance. In an attempt to maintain and enhance intestinal health in pigs and improve productivity in the absence of in-feed antibiotics, researchers have evaluated a wide range of feed additives. Some of these additives such as zinc oxide, copper sulphate, egg yolk antibodies, mannan-oligosaccharides and spray dried porcine plasma and their effectiveness are discussed in this review. One approach to evaluate the effectiveness of these additives in vivo is to use an appropriate disease challenge model. Over the years, researchers have used a number of challenge models which include the use of specific strains of enterotoxigenic Escherichia coli, bacteria lipopolysaccharide challenge, oral challenge with Salmonella enteric serotype Typhimurium, sanitation challenge, and Lawsonia intercellularis challenge. These challenge models together with the criteria used to evaluate the responses of the animals to them are also discussed in this review. PMID:26954144

  5. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli

    PubMed Central

    Ju, Tingting; Shoblak, Yasmeen; Gao, Yanhua; Yang, Kaiyuan; Fouhse, Janelle; Finlay, B. Brett; So, Yee Wing; Stothard, Paul

    2017-01-01

    ABSTRACT Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies. IMPORTANCE This work provides an understanding of variability in studies where antibiotics are used to alter the gut microbiota to generate a host response. Furthermore, although providing evidence only for the one antibiotic, the study demonstrated that initial gut microbial composition is a key factor driving host response to antibiotic administration, creating a compelling argument for considering personalized medication based on individual variations in gut microbiota. PMID:28667114

  6. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.

    PubMed

    Ju, Tingting; Shoblak, Yasmeen; Gao, Yanhua; Yang, Kaiyuan; Fouhse, Janelle; Finlay, B Brett; So, Yee Wing; Stothard, Paul; Willing, Benjamin P

    2017-09-01

    Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies. IMPORTANCE This work provides an understanding of variability in studies where antibiotics are used to alter the gut microbiota to generate a host response. Furthermore, although providing evidence only for the one antibiotic, the study demonstrated that initial gut microbial composition is a key factor driving host response to antibiotic administration, creating a compelling argument for considering personalized medication based on individual variations in gut microbiota. Copyright © 2017 American Society for Microbiology.

  7. "They told me all mothers have worries", stillborn mother's experiences of having a 'gut instinct' that something is wrong in pregnancy: Findings from an international case-control study.

    PubMed

    Warland, Jane; Heazell, Alexander E P; Stacey, Tomasina; Coomarasamy, Christin; Budd, Jayne; Mitchell, Edwin A; O'Brien, Louise M

    2018-07-01

    To describe and explore 'gut instinct' that something was wrong in women who identified that they experienced gut instinct during pregnancy. A case-control study utilising an international web-based questionnaire. Stillborn cases (n = 146) and liveborn controls (n = 234) answered the gut instinct question within 30 days of the pregnancy ending. Of those, 84 cases and 27 controls also provided qualitative comment data. Descriptive statistics were used for the question, with a fixed option and summative content analysis was used to analyse the comment data. In all, 110 (75%) of the stillborn cases answered "yes" to the gut instinct question vs only 28 (12%) of the controls who had a livebirth meaning the risk of stillbirth was 22.5 fold higher in those who experience "gut instinct" than in those who do not experience this feeling. Four themes were identified from the comment data namely: When the gut instinct occurred; How the gut instinct made the woman feel; Dreams and other related phenomena; Reassured by someone or something. Women who had a stillborn baby reported a "gut instinct" that something was wrong more frequently than mothers of a live born baby. Our findings may be influenced by recall negativity bias, and a prospective study is needed to confirm or refute our findings. The possibility that "maternal intuition" exists during pregnancy and responds to changes in fetal or placental health merits further exploration. Maternity care providers should be alert to the woman when she expresses intuitive feelings, as well as asking her to report her concerns and act appropriately to assess and manage fetal wellbeing. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. The severity of NAFLD is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota

    PubMed Central

    Boursier, Jérôme; Mueller, Olaf; Barret, Matthieu; Machado, Mariana; Fizanne, Lionel; Araujo-Perez, Felix; Guy, Cynthia D.; Seed, Patrick C.; Rawls, John F.; David, Lawrence A.; Hunault, Gilles; Oberti, Frédéric; Calès, Paul; Diehl, Anna Mae

    2016-01-01

    Background & aims Several animal studies have emphasized the role of gut microbiota in non-alcoholic fatty liver disease (NAFLD). However, data about gut dysbiosis in human NAFLD remains scarce in the literature, especially studies including the whole spectrum of NAFLD lesions. We aimed to evaluate the association between gut dysbiosis and severe NAFLD lesions, i.e. non-alcoholic steatohepatitis (NASH) and fibrosis, in a well-characterized population of adult NAFLD. Methods 57 patients with biopsy-proven NAFLD were enrolled. The taxonomic composition of gut microbiota was determined using 16S ribosomal RNA gene sequencing of stool samples. Results 30 patients had F0/1 fibrosis stage at liver biopsy (10 with NASH), and 27 patients had significant F≥2 fibrosis (25 with NASH). Bacteroides abundance was significantly increased in NASH and F≥2 patients, whereas Prevotella abundance was decreased. Ruminococcus abundance was significantly higher in F≥2 patients. By multivariate analysis, Bacteroides abundance was independently associated with NASH and Ruminococcus with F≥2 fibrosis. Stratification according to the abundance of these 2 bacteria generated 3 patient subgroups with increasing severity of NAFLD lesions. Based on imputed metagenomic profiles, KEGG pathways significantly related to NASH and fibrosis F≥2 were mostly related to carbohydrate, lipid, and amino acid metabolism. Conclusion NAFLD severity associates with gut dysbiosis and a shift in metabolic function of the gut microbiota. We identified Bacteroides as independently associated with NASH and Ruminococcus with significant fibrosis. Thus, gut microbiota analysis adds information to classical predictors of NAFLD severity and suggests novel metabolic targets for pre/probiotics therapies. PMID:26600078

  9. Gut microbiome response to short-term dietary interventions in reactive hypoglycemia subjects.

    PubMed

    Quercia, Sara; Turroni, Silvia; Fiori, Jessica; Soverini, Matteo; Rampelli, Simone; Biagi, Elena; Castagnetti, Andrea; Consolandi, Clarissa; Severgnini, Marco; Pianesi, Mario; Fallucca, Francesco; Pozzilli, Paolo; Brigidi, Patrizia; Candela, Marco

    2017-11-01

    Reactive hypoglycemia is a metabolic disorder that provokes severe hypoglycemic episodes after meals. Over recent years, the gut microbiota has been recognized as potential target for the control of metabolic diseases, and the possibility to correct gut microbiota dysbioses through diet, favouring the recovery of metabolic homeostasis, has been considered. We investigate the impact of 2 short-term (3-day) nutritional interventions, based on the macrobiotic Ma-Pi 2 diet and a control Mediterranean diet, on the structure and functionality of the gut microbiota in 12 patients affected by reactive hypoglycemia. The gut microbiota composition was characterized by next-generation sequencing of the V3 to V4 region of the 16S rRNA gene, and the ecosystem functionality was addressed by measuring the faecal concentration of short-chain fatty acids (SCFAs). In order to measure the short-term physiological gut microbiota fluctuation, the microbiomes of 7 healthy people were characterized before and after 3 days of constant diet. While no convergence of the gut microbiota compositional profiles was observed, a significant increase in SCFA faecal levels was induced only in the Ma-Pi 2 diet group, suggesting the potential of this diet to support a short-term functional convergence of the gut microbiota, regardless of the individual compositional layout. The Ma-Pi 2 diet, with its high fibre load, was effective in increasing the production of SCFAs by the gut microbiota. Because these metabolites are known for their ability to counterbalance the metabolic deregulation in persons with glucose impairment disorders, their increased bioavailability could be of some relevance in reactive hypoglycemia. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Characterization and identification of enzyme-producing microflora isolated from the gut of sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Li, Fenghui; Gao, Fei; Tan, Jie; Fan, Chaojing; Sun, Huiling; Yan, Jingping; Chen, Siqing; Wang, Xiaojun

    2016-01-01

    Gut microorganisms play an important role in the digestion of their host animals. The purpose of this research was to isolate and assess the enzyme-producing microbes from the Apostichopus japonicus gut. Thirty-nine strains that can produce at least one of the three digestive enzymes (protease, amylase, and cellulase) were qualitatively screened based on their extracellular enzyme-producing abilities. The enzyme-producing strains clustered into eight groups at the genetic similarity level of 100% by analyzing the restriction patterns of 16S rDNA amplified with Mbo I. Phylogenetic analysis revealed that 37 strains belonged to the genus Bacillus and two were members of the genus Virgibacillus. Enzyme-producing capability results indicate that the main enzyme-producing microflora in the A. japonicus gut was Bacillus, which can produce protease, amylase, and cellulase. Virgibacillus, however, can only produce protease. The high enzyme-producing capability of the isolates suggests that the gut microbiota play an important role in the sea cucumber digestive process.

  11. Interactions between parasites and microbial communities in the human gut.

    PubMed

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites.

  12. Interactions between parasites and microbial communities in the human gut

    PubMed Central

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites. PMID:23162802

  13. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    PubMed Central

    Buckley, Katherine M.; Rast, Jonathan P.

    2017-01-01

    The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN) approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17), are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism. PMID:29109720

  14. Handling stress may confound murine gut microbiota studies.

    PubMed

    Allen-Blevins, Cary R; You, Xiaomeng; Hinde, Katie; Sela, David A

    2017-01-01

    Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO), the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis) , a species sensitive to host stress (Bailey & Coe, 2004). Exposure to gut bacteria like B. infantis during critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis , we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut. This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS) solution or deionized, distilled water. Gastrointestinal (GI) tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR) was used to quantify and compare the amount of Bifidobacterium , Bacteroides , Bacteroidetes, and Firmicutes. Our results demonstrate a significant difference between the amount of Firmicutes in pups receiving water passively and those receiving FOS actively ( p -value = 0.009). Additionally, we found significant differences between the fecal microbiota from handled and non-handled mouse pups. From our results, we conclude even handling pups for experimental purposes, without gavage, may induce enough stress to alter the murine gut microbiota profile. We suggest further studies to examine potential stress effects on gut microbiota caused by experimental techniques. Stress from experimental techniques may need to be accounted for in future gut microbiota studies.

  15. In vitro activity of cadazolid against clinically relevant Clostridium difficile isolates and in an in vitro gut model of C. difficile infection.

    PubMed

    Chilton, C H; Crowther, G S; Baines, S D; Todhunter, S L; Freeman, J; Locher, H H; Athanasiou, A; Wilcox, M H

    2014-03-01

    We investigated the in vitro activity of cadazolid against 100 Clostridium difficile isolates and its efficacy in a simulated human gut model of C. difficile infection (CDI). MICs of cadazolid, metronidazole, vancomycin, moxifloxacin and linezolid were determined using agar incorporation for 100 C. difficile isolates, including 30 epidemic strains (ribotypes 027, 106 and 001) with reduced metronidazole susceptibility, 2 linezolid-resistant isolates and 2 moxifloxacin-resistant isolates. We evaluated the efficacy of two cadazolid dosing regimens (250 versus 750 mg/L twice daily for 7 days) to treat simulated CDI. Microflora populations, C. difficile total viable counts and spores, cytotoxin titres, possible emergence of cadazolid, linezolid or quinolone resistance, and antimicrobial concentrations were monitored throughout. Cadazolid was active against all (including linezolid- and moxifloxacin-resistant) C. difficile strains (MIC90 0.125, range 0.03-0.25 mg/L). The cadazolid geometric mean MIC was 152-fold, 16-fold, 9-fold and 7-fold lower than those of moxifloxacin, linezolid, metronidazole and vancomycin, respectively. Both cadazolid dosing regimens rapidly reduced C. difficile viable counts and cytotoxin with no evidence of recurrence. Cadazolid levels persisted at 50-100-fold supra-MIC for 14 days post-dosing. Cadazolid inhibition of enumerated gut microflora was limited, with the exception of bifidobacteria; Bacteroides fragilis group and Lactobacillus spp. counts were unaffected. There was no evidence for selection of strains resistant to cadazolid, quinolones or linezolid. Cadazolid activity was greater than other tested antimicrobials against 100 C. difficile strains. Cadazolid effectively treated simulated CDI in a gut model, with limited impact on the enumerated gut microflora and no signs of recurrence or emergence of resistance within the experimental timeframe.

  16. Interactions Between Stress and Sex in Microbial Responses Within the Microbiota-Gut-Brain Axis in a Mouse Model.

    PubMed

    Tsilimigras, Matthew C B; Gharaibeh, Raad Z; Sioda, Michael; Gray, Laura; Fodor, Anthony A; Lyte, Mark

    2018-05-01

    Animal models are frequently used to examine stress response, but experiments seldom include females. The connection between the microbiota-gut-brain axis and behavioral stress response is investigated here using a mixed-sex mouse cohort. CF-1 mice underwent alternating days of restraint and forced swim for 19 days (male n = 8, female n = 8) with matching numbers of control animals at which point the 16S rRNA genes of gut microbiota were sequenced. Mixed linear models accounting for stress status and sex with individuals nested in cage to control for cage effects evaluated these data. Murine behaviors in elevated plus-maze, open-field, and light/dark box were investigated. Community-level associations with sex, stress, and their interaction were significant. Males had higher microbial diversity than females (p = .025). Of the 638 operational taxonomic units detected in at least 25% of samples, 94 operational taxonomic units were significant: 31 (stress), 61 (sex), and 34 (sex-stress interaction). Twenty of the 39 behavioral measures were significant for stress, 3 for sex, and 6 for sex-stress. However, no significant associations between behavioral measures and specific microbes were detected. These data suggest sex influences stress response and the microbiota-gut-brain axis and that studies of behavior and the microbiome therefore benefit from consideration of how sex differences drive behavior and microbial community structure. Host stress resilience and absence of associations between stress-induced behaviors with specific microbes suggests that hypothalamic-pituitary-adrenal axis activation represents a threshold for microbial influence on host behavior. Future studies are needed in examining the intersection of sex, stress response, and the microbiota-gut-brain axis.

  17. Bidirectional interactions between dietary curcumin and gut microbiota.

    PubMed

    Shen, Liang; Ji, Hong-Fang

    2018-05-21

    Curcumin is a polyphenolic compound with a long history of use as an herbal remedy, dietary spice and food-coloring agent. Despite curcumin possesses a wide range of biological and pharmacological activities, it exhibits extremely poor bioavailability, which makes its pharmacology intriguing and also hinders its clinical application. In recent years, there is ample evidence supporting the associations between the alteration of gut microbiota and many diseases. Interestingly, after oral administration, curcumin shows its preferential distribution and accumulation in the intestine. In view of the above aspects, we reviewed the updated knowledge regarding the bidirectional interactions between curcumin and gut microbiota from two perspectives: i) gut microbiota regulation by curcumin and ii) curcumin biotransformation by digestive microbiota. Besides the study deals with 3 potential pharmacological implications: i) identification of metabolites being more active and bioavaliable than parent curcumin; ii) assessment of contribution of gut microbiota regulation of curcumin to its pharmacological effects and iii) development of gut microbiota regulation-based disease prevention/treatment strategy for curcumin in view of its clinical safety. This review is important to deepen our understanding of the mechanisms of action of curcumin and to provide future directions about how to use this natural compound to combat human diseases.

  18. A gut (microbiome) feeling about the brain.

    PubMed

    Sherwin, Eoin; Rea, Kieran; Dinan, Timothy G; Cryan, John F

    2016-03-01

    There is an increasing realization that the microorganisms which reside within our gut form part of a complex multidirectional communication network with the brain known as the microbiome-gut-brain axis. In this review, we focus on recent findings which support a role for this axis in modulating neurodevelopment and behavior. A growing body of research is uncovering that under homeostatic conditions and in response to internal and external stressors, the bacterial commensals of our gut can signal to the brain through a variety of mechanisms to influence processes such neurotransmission, neurogenesis, microglia activation, and modulate behavior. Moreover, the mechanisms underlying the ability of stress to modulate the microbiota and also for microbiota to change the set point for stress sensitivity are being unraveled. Dysregulation of the gut microbiota composition has been identified in a number of psychiatric disorders, including depression. This has led to the concept of bacteria that have a beneficial effect upon behavior and mood (psychobiotics) being proposed for potential therapeutic interventions. Understanding the mechanisms by which the bacterial commensals of our gut are involved in brain function may lead to the development of novel microbiome-based therapies for these mood and behavioral disorders.

  19. Image velocimetry and spectral analysis enable quantitative characterization of larval zebrafish gut motility.

    PubMed

    Ganz, J; Baker, R P; Hamilton, M K; Melancon, E; Diba, P; Eisen, J S; Parthasarathy, R

    2018-05-02

    Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain. We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion. We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types. Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements. © 2018 John Wiley & Sons Ltd.

  20. "Omic" investigations of protozoa and worms for a deeper understanding of the human gut "parasitome".

    PubMed

    Marzano, Valeria; Mancinelli, Livia; Bracaglia, Giorgia; Del Chierico, Federica; Vernocchi, Pamela; Di Girolamo, Francesco; Garrone, Stefano; Tchidjou Kuekou, Hyppolite; D'Argenio, Patrizia; Dallapiccola, Bruno; Urbani, Andrea; Putignani, Lorenza

    2017-11-01

    The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic "citizens." In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut "parasitome" through "omic" technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology-based profiles of the gut "parasitome" under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine.

  1. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome”

    PubMed Central

    Marzano, Valeria; Mancinelli, Livia; Bracaglia, Giorgia; Del Chierico, Federica; Vernocchi, Pamela; Di Girolamo, Francesco; Garrone, Stefano; Tchidjou Kuekou, Hyppolite; D’Argenio, Patrizia; Dallapiccola, Bruno; Urbani, Andrea

    2017-01-01

    The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology–based profiles of the gut “parasitome” under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine. PMID:29095820

  2. Beneficial Effect of Bidens pilosa on Body Weight Gain, Food Conversion Ratio, Gut Bacteria and Coccidiosis in Chickens

    PubMed Central

    Chang, Cicero L. T.; Chung, Chih-Yao; Kuo, Chih-Horng; Kuo, Tien-Fen; Yang, Chu-Wen; Yang, Wen-Chin

    2016-01-01

    In the interests of food safety and public health, plants and their compounds are now re-emerging as an alternative approach to treat gastrointestinal diseases in chickens. Here, we studied the impact of the edible medicinal plant, B. pilosa, on growth performance, gut bacteria and coccidiosis in chickens. First, we found that B. pilosa significantly elevated body weight gain and lowered feed conversion ratio in chickens. Next, we showed that B. pilosa reduced cecal damage as evidenced by increased hemorrhage, villus destruction and decreased villus-to-crypt ratio in chicken ceca. We also performed pyrosequencing of the PCR ampilcons based on the 16S rRNA genes of gut bacteria in chickens. Metagenomic analysis indicated that the chicken gut bacteria belonged to 6 phyla, 6 classes, 6 orders, 9 families, and 8 genera. More importantly, we found that B. pilosa affected the composition of bacteria. This change in bacteria composition was correlated with body weight gain, feed conversion ratio and gut pathology in chickens. Collectively, this work suggests that B. pilosa has beneficial effects on growth performance and protozoan infection in chickens probably via modulation of gut bacteria. PMID:26765226

  3. Impact of Omega-3 Fatty Acids on the Gut Microbiota

    PubMed Central

    Farinon, Barbara

    2017-01-01

    Long-term dietary habits play a crucial role in creating a host-specific gut microbiota community in humans. Despite the many publications about the effects of carbohydrates (prebiotic fibers), the impact of dietary fats, such as omega-3 polyunsaturated fatty acids (PUFAs), on the gut microbiota is less well defined. The few studies completed in adults showed some common changes in the gut microbiota after omega-3 PUFA supplementation. In particular, a decrease in Faecalibacterium, often associated with an increase in the Bacteroidetes and butyrate-producing bacteria belonging to the Lachnospiraceae family, has been observed. Coincidentally, a dysbiosis of these taxa is found in patients with inflammatory bowel disease. Omega-3 PUFAs can exert a positive action by reverting the microbiota composition in these diseases, and increase the production of anti-inflammatory compounds, like short-chain fatty acids. In addition, accumulating evidence in animal model studies indicates that the interplay between gut microbiota, omega-3 fatty acids, and immunity helps to maintain the intestinal wall integrity and interacts with host immune cells. Finally, human and animal studies have highlighted the ability of omega-3 PUFAs to influence the gut–brain axis, acting through gut microbiota composition. From these findings, the importance of the omega-3 connection to the microbiota emerges, encouraging further studies. PMID:29215589

  4. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia

    PubMed Central

    Bindels, Laure B; Neyrinck, Audrey M; Claus, Sandrine P; Le Roy, Caroline I; Grangette, Corinne; Pot, Bruno; Martinez, Inés; Walter, Jens; Cani, Patrice D; Delzenne, Nathalie M

    2016-01-01

    Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia. PMID:26613342

  5. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia.

    PubMed

    Bindels, Laure B; Neyrinck, Audrey M; Claus, Sandrine P; Le Roy, Caroline I; Grangette, Corinne; Pot, Bruno; Martinez, Inés; Walter, Jens; Cani, Patrice D; Delzenne, Nathalie M

    2016-06-01

    Cancer cachexia is a multifactorial syndrome that includes muscle wasting and inflammation. As gut microbes influence host immunity and metabolism, we investigated the role of the gut microbiota in the therapeutic management of cancer and associated cachexia. A community-wide analysis of the caecal microbiome in two mouse models of cancer cachexia (acute leukaemia or subcutaneous transplantation of colon cancer cells) identified common microbial signatures, including decreased Lactobacillus spp. and increased Enterobacteriaceae and Parabacteroides goldsteinii/ASF 519. Building on this information, we administered a synbiotic containing inulin-type fructans and live Lactobacillus reuteri 100-23 to leukaemic mice. This treatment restored the Lactobacillus population and reduced the Enterobacteriaceae levels. It also reduced hepatic cancer cell proliferation, muscle wasting and morbidity, and prolonged survival. Administration of the synbiotic was associated with restoration of the expression of antimicrobial proteins controlling intestinal barrier function and gut immunity markers, but did not impact the portal metabolomics imprinting of energy demand. In summary, this study provided evidence that the development of cancer outside the gut can impact intestinal homeostasis and the gut microbial ecosystem and that a synbiotic intervention, by targeting some alterations of the gut microbiota, confers benefits to the host, prolonging survival and reducing cancer proliferation and cachexia.

  6. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2014-02-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb (14)C-DDT, (14)C-phenanthrene (Phe), (14)C-perfluorooctanoic acid (PFOA) and (14)C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. On Growth and Form of the Zebrafish Gut Microbiome

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-03-01

    The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.

  8. Unexpected role of the IMD pathway in Drosophila gut defense against Staphylococcus aureus.

    PubMed

    Hori, Aki; Kurata, Shoichiro; Kuraishi, Takayuki

    2018-01-01

    In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Burns, Adam R; Hampton, Jennifer S; Rolig, Annah S; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-12-16

    The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy, to visualize for the first time the colonization of a live, vertebrate gut by specific bacteria with sufficient resolution to quantify the population over a range from a few individuals to tens of thousands of bacterial cells. Our results provide unprecedented measures of bacterial growth kinetics and also show the influence of spatial structure on bacterial populations, which can be revealed only by direct imaging. Copyright © 2014 Jemielita et al.

  10. The chemical interactome space between the human host and the genetically defined gut metabotypes.

    PubMed

    Jacobsen, Ulrik Plesner; Nielsen, Henrik Bjørn; Hildebrand, Falk; Raes, Jeroen; Sicheritz-Ponten, Thomas; Kouskoumvekaki, Irene; Panagiotou, Gianni

    2013-04-01

    The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host's metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.

  11. Effects of antibiotic growth promoter and characterization of ecological succession in Swine gut microbiota.

    PubMed

    Unno, Tatsuya; Kim, Jung-Man; Guevarra, Robin B; Nguyen, Son G

    2015-04-01

    Ever since the ban on antibiotic growth promoters (AGPs), the livestock death rate has increased owing to pathogenic bacterial infections. There is a need of developing AGP alternatives; however, the mechanisms by which AGP enhances livestock growth performance are not clearly understood. In this study, we fed 3-week-old swine for 9 weeks with and without AGPs containing chlortetracycline, sulfathiazole, and penicillin to investigate the effects of AGPs on swine gut microbiota. Microbial community analysis was done based on bacterial 16S rRNA genes using MiSeq. The use of AGP showed no growth promoting effect, but inhibited the growth of potential pathogens during the early growth stage. Our results showed the significant increase in species richness after the stabilization of gut microbiota during the post-weaning period (4-week-old). Moreover, the swine gut microbiota was divided into four clusters based on the distribution of operational taxonomic units, which was significantly correlated to the swine weight regardless of AGP treatments. Taxonomic abundance analysis indicated a negative correlation between host weight and the abundance of the family Prevotellaceae species, but showed positive correlation to the abundance of the family Spirochaetaceae, Clostridiaceae_1, and Peptostreptococcaeae species. Although no growth performance enhancement was observed, the use of AGP inhibited the potential pathogens in the early growth stage of swine. In addition, our results indicated the ecological succession of swine gut microbiota according to swine weight. Here, we present a characterization of swine gut microbiota with respect to the effects of AGPs on growth performance.

  12. Gut emotions - mechanisms of action of probiotics as novel therapeutic targets for depression and anxiety disorders.

    PubMed

    Slyepchenko, Anastasiya; Carvalho, Andre F; Cha, Danielle S; Kasper, Siegfried; McIntyre, Roger S

    2014-01-01

    A priority clinical and research agenda in mood and anxiety disorders is to identify determinants that influence illness trajectory and outcome. Over the past decade, studies have demonstrated a bidirectional relationship between the gut microbiome and brain function (i.e., the microbiota-gut-brain axis). Probiotic treatments and developmental analysis of the microbiome may provide potential treatments and preventative measures for depressive and anxiety disorders. This systematic literature review aims to identify original studies linking the gut microbiota to major depressive disorder and anxiety disorders. Furthermore, this review searched for original reports focusing on possible therapeutic and preventative effects of probiotics for these debilitating conditions. Accumulating data indicate that the gut microbiota communicates with the CNS through neural, endocrine and immune pathways. Studies in germ-free animals indicate that the microbiota is involved in the regulation of the stress response (e.g., hypothalamic-pituitary-adrenal axis) and in CNS development at critical stages. Probiotics attenuate anxiety and depressive-like behaviors in experimental animal models. Notwithstanding some inconsistencies and methodological limitations across trials, clinical studies suggest that probiotics may mitigate anxiety symptoms. However, future studies should investigate the anxiolytic and antidepressant effects of probiotics in more phenotypically homogeneous populations. In conclusion, the emerging concept of a gut microbiota-brain axis suggests that the modulation of the gut microbiota may provide a novel therapeutic target for the treatment and/or prevention of mood and anxiety disorders.

  13. A psychology of the human brain-gut-microbiome axis.

    PubMed

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  14. Secular trends in family dinner frequency among adolescents.

    PubMed

    Walton, Kathryn; Kleinman, Ken P; Rifas-Shiman, Sheryl L; Horton, Nicholas J; Gillman, Matthew W; Field, Alison E; Austin, S Bryn; Neumark-Sztainer, Dianne; Haines, Jess

    2016-01-22

    Eating meals, particularly dinner, with family members has been found to be associated with improved dietary intake, lower prevalence of disordered eating behaviors, lower levels of substance abuse, and improved academic outcomes among adolescents. Limited research has examined how the frequency of family meals has changed over time. The objective of this study was to examine secular trends in family dinner frequency over a 12-year period using a large, nation-wide sample of adolescents. Using data from two cohorts of the Growing up Today study (GUTS; n = 18,075 observations for 14,79,714 and 15 year olds), we compared family dinner frequency among 14-15-year-olds in 1996 (GUTS1) through 2008 (GUTS2) and rate of change in family dinner frequency from 1996 to 1998 (GUTS1) and 2004-2008 (GUTS2). We fit logistic models using generalized estimating equations with independence working correlation and empirical variance to account for correlation within individual and between siblings. From 1996 to 2008, the number of family dinners per week among males decreased from 5.3 to 4.6 (p = 0.04) and among females from 5.0 to 4.4 (p = 0.03). We found that the rate of decline in frequency of family meals was consistent in GUTS1 (1996-1998) and GUTS2 (2004-2008) among both males and females. From 1996 to 2008, frequency of family dinners decreased among adolescents. Future research should explore reasons for this decline as well as strategies to increase family meals among adolescents.

  15. Is there a role for gut microbiota in type 1 diabetes pathogenesis?

    PubMed

    Bibbò, Stefano; Dore, Maria Pina; Pes, Giovanni Mario; Delitala, Giuseppe; Delitala, Alessandro P

    2017-02-01

    Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized by insufficient insulin production due to the destruction of insulin secreting β-cells in the Langerhans islets. A variety of factors, including chemicals, viruses, commensal bacteria and diet have been proposed to contribute to the risk of developing the disorder. In the last years, gut microbiota has been proposed as a main factor in T1D pathogenesis. Several alterations of gut microbiota composition were described both in animal model and in humans. The decrease of Firmicutes/Bacteroides ratio was the most frequent pattern described, in particular, in human studies. Furthermore, Bacteroides, Clostridium cluster XIVa, Lactobacillus, Bifidobacterium, and Prevotella relative abundances were different in healthy and affected subjects. Dysbiosis would seem to increase intestinal permeability and thus promote the development of a pro-inflammatory niche that stimulates β-cell autoimmunity in predisposed subjects. Preliminary studies on animal models were realized to investigate the role of gut microbiota modulation as therapy or prevention approach in predisposed animals: promising and stimulating results have been reported. Key message Dietary antigens and microbiota-derived products might act as triggers of T1D by causing a pro-inflammatory and metabolic dysfunctional environment.

  16. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    PubMed

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease. Copyright © 2017 American Society for Microbiology.

  17. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism

    PubMed Central

    Gao, Jing; Xu, Kang; Liu, Hongnan; Liu, Gang; Bai, Miaomiao; Peng, Can; Li, Tiejun; Yin, Yulong

    2018-01-01

    The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system–intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp–microbiome–immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation. Moreover, this review provides new insight regarding the influence of the gut microbiota on Trp metabolism. Additional comprehensive analyses of targeted Trp metabolites (including endogenous and bacterial metabolites) are essential for experimental preciseness, as the influence of the gut microbiota cannot be neglected, and may explain contradictory results in the literature. PMID:29468141

  18. Characterizing the avian gut microbiota: membership, driving influences, and potential function.

    PubMed

    Waite, David W; Taylor, Michael W

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.

  19. Analysis of Stomach and Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) from Coastal Louisiana, USA

    PubMed Central

    King, Gary M.; Judd, Craig; Kuske, Cheryl R.; Smith, Conor

    2012-01-01

    We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish. PMID:23251548

  20. Analysis of Stomach and Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) from Coastal Louisiana, USA

    DOE PAGES

    King, Gary M.; Judd, Craig; Kuske, Cheryl R.; ...

    2012-12-12

    In this paper, we used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strainmore » dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. Finally, a comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish.« less

  1. Characterizing the avian gut microbiota: membership, driving influences, and potential function

    PubMed Central

    Waite, David W.; Taylor, Michael W.

    2014-01-01

    Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area. PMID:24904538

  2. Gut Microbiota Profiling and Gut-Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections.

    PubMed

    Quagliariello, Andrea; Del Chierico, Federica; Russo, Alessandra; Reddel, Sofia; Conte, Giulia; Lopetuso, Loris R; Ianiro, Gianluca; Dallapiccola, Bruno; Cardona, Francesco; Gasbarrini, Antonio; Putignani, Lorenza

    2018-01-01

    Pediatric acute-onset neuropsychiatric syndrome (PANS) and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections syndrome (PANDAS) are conditions that impair brain normal neurologic function, resulting in the sudden onset of tics, obsessive-compulsive disorder, and other behavioral symptoms. Recent studies have emphasized the crosstalk between gut and brain, highlighting how gut composition can influence behavior and brain functions. Thus, the present study investigates the relationship between PANS/PANDAS and gut microbiota ecology. The gut composition of a cohort of 30 patients with PANS/PANDAS was analyzed and compared to control subjects using 16S rRNA-based metagenomics. Data were analyzed for their α- and β-diversity; differences in bacterial distribution were detected by Wilcoxon and LEfSe tests, while metabolic profile was predicted via PICRUSt software. These analyses demonstrate the presence of an altered bacterial community structure in PANS/PANDAS patients with respect to controls. In particular, ecological analysis revealed the presence of two main clusters of subjects based on age range. Thus, to avoid age bias, data from patients and controls were split into two groups: 4-8 years old and >9 years old. The younger PANS/PANDAS group was characterized by a strong increase in Bacteroidetes; in particular, Bacteroides , Odoribacter , and Oscillospira were identified as potential microbial biomarkers of this composition type. Moreover, this group exhibited an increase of several pathways concerning the modulation of the antibody response to inflammation within the gut as well as a decrease in pathways involved in brain function (i.e., SCFA, D-alanine and tyrosine metabolism, and the dopamine pathway). The older group of patients displayed a less uniform bacterial profile, thus impairing the identification of distinct biomarkers. Finally, Pearson's analysis between bacteria and anti-streptolysin O titer reveled a negative correlation between genera belonging to Firmicutes phylum and anti-streptolysin O while a positive correlation was observed with Odoribacter . In conclusion, this study suggests that streptococcal infections alter gut bacterial communities leading to a pro-inflammatory status through the selection of specific bacterial strains associated with gut inflammation and immune response activation. These findings highlight the possibility of studying bacterial biomarkers associated with this disorder and might led to novel potential therapeutic strategies.

  3. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options.

    PubMed

    Konturek, Peter C; Brzozowski, T; Konturek, S J

    2011-12-01

    Stress, which is defined as an acute threat to homeostasis, shows both short- and long-term effects on the functions of the gastrointestinal tract. Exposure to stress results in alterations of the brain-gut interactions ("brain-gut axis") ultimately leading to the development of a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases, food antigen-related adverse responses, peptic ulcer and gastroesophageal reflux disease (GERD). The major effects of stress on gut physiology include: 1) alterations in gastrointestinal motility; 2) increase in visceral perception; 3) changes in gastrointestinal secretion; 4) increase in intestinal permeability; 5) negative effects on regenerative capacity of gastrointestinal mucosa and mucosal blood flow; and 6) negative effects on intestinal microbiota. Mast cells (MC) are important effectors of brain-gut axis that translate the stress signals into the release of a wide range of neurotransmitters and proinflammatory cytokines, which may profoundly affect the gastrointestinal physiology. IBS represents the most important gastrointestinal disorder in humans, and is characterized by chronic or recurrent pain associated with altered bowel motility. The diagnostic testing for IBS patients include routine blood tests, stool tests, celiac disease serology, abdominal sonography, breath testing to rule out carbohydrate (lactose, fructose, etc.) intolerance and small intestinal bacterial overgrowth. Colonoscopy is recommended if alarming symptoms are present or to obtain colonic biopsies especially in patients with diarrhoea predominant IBS. The management of IBS is based on a multifactorial approach and includes pharmacotherapy targeted against the predominant symptom, behavioural and psychological treatment, dietary alterations, education, reassurance and effective patient-physician relationship. When evaluating for the stress-induced condition in the upper GI tract, the diagnostic testing includes mainly blood tests and gastroscopy to rule out GERD and peptic ulcer disease. The therapy for these conditions is mainly based on the inhibition of gastric acid by proton pump inhibitors and eradication of Helicobacter pylori-infection. Additionally, melatonin an important mediator of brain gut axis has been shown to exhibit important protective effects against stress-induced lesions in the gastrointestinal tract. Finally, probiotics may profoundly affect the brain-gut interactions ("microbiome-gut-brain axis") and attenuate the development of stress-induced disorders in both the upper and lower gastrointestinal tract. Further studies on the brain-gut axis are needed to open new therapeutic avenues in the future.

  4. Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model

    NASA Astrophysics Data System (ADS)

    Ou, Jian Zhen; Cottrell, Jeremy J.; Ha, Nam; Pillai, Naresh; Yao, Chu K.; Berean, Kyle J.; Ward, Stephanie A.; Grando, Danilla; Muir, Jane G.; Harrison, Christopher J.; Wijesiriwardana, Udani; Dunshea, Frank R.; Gibson, Peter R.; Kalantar-Zadeh, Kourosh

    2016-09-01

    Gastroenterologists are still unable to differentiate between some of the most ordinary disorders of the gut and consequently patients are misdiagnosed. We have developed a swallowable gas sensor capsule for addressing this. The gases of the gut are the by-product of the fermentation processes during digestion, affected by the gut state and can consequently provide the needed information regarding the health of the gut. Here we present the first study on gas sensor capsules for revealing the effect of a medical supplement in an animal (pig) model. We characterise the real-time alterations of gastric-gas in response to environmental heat-stress and dietary cinnamon and use the gas profiles for understanding the bio-physiological changes. Under no heat-stress, feeding increases gastric CO2 concentration, while dietary cinnamon reduces it due to decrease in gastric acid and pepsin secretion. Alternatively, heat-stress leads to hyperventilation in pigs, which reduces CO2 concentration and with the cinnamon treatment, CO2 diminishes even more, resulting in health improvement outcomes. Overall, a good repeatability in gas profiles is also observed. The model demonstrates the strong potential of real-time gas profiler in providing new physiological information that will impact understanding of therapeutics, presenting a highly reliable device for monitoring/diagnostics of gastrointestinal disorders.

  5. Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model.

    PubMed

    Ou, Jian Zhen; Cottrell, Jeremy J; Ha, Nam; Pillai, Naresh; Yao, Chu K; Berean, Kyle J; Ward, Stephanie A; Grando, Danilla; Muir, Jane G; Harrison, Christopher J; Wijesiriwardana, Udani; Dunshea, Frank R; Gibson, Peter R; Kalantar-Zadeh, Kourosh

    2016-09-16

    Gastroenterologists are still unable to differentiate between some of the most ordinary disorders of the gut and consequently patients are misdiagnosed. We have developed a swallowable gas sensor capsule for addressing this. The gases of the gut are the by-product of the fermentation processes during digestion, affected by the gut state and can consequently provide the needed information regarding the health of the gut. Here we present the first study on gas sensor capsules for revealing the effect of a medical supplement in an animal (pig) model. We characterise the real-time alterations of gastric-gas in response to environmental heat-stress and dietary cinnamon and use the gas profiles for understanding the bio-physiological changes. Under no heat-stress, feeding increases gastric CO2 concentration, while dietary cinnamon reduces it due to decrease in gastric acid and pepsin secretion. Alternatively, heat-stress leads to hyperventilation in pigs, which reduces CO2 concentration and with the cinnamon treatment, CO2 diminishes even more, resulting in health improvement outcomes. Overall, a good repeatability in gas profiles is also observed. The model demonstrates the strong potential of real-time gas profiler in providing new physiological information that will impact understanding of therapeutics, presenting a highly reliable device for monitoring/diagnostics of gastrointestinal disorders.

  6. Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model

    PubMed Central

    Ou, Jian Zhen; Cottrell, Jeremy J.; Ha, Nam; Pillai, Naresh; Yao, Chu K.; Berean, Kyle J.; Ward, Stephanie A.; Grando, Danilla; Muir, Jane G.; Harrison, Christopher J.; Wijesiriwardana, Udani; Dunshea, Frank R.; Gibson, Peter R.; Kalantar-zadeh, Kourosh

    2016-01-01

    Gastroenterologists are still unable to differentiate between some of the most ordinary disorders of the gut and consequently patients are misdiagnosed. We have developed a swallowable gas sensor capsule for addressing this. The gases of the gut are the by-product of the fermentation processes during digestion, affected by the gut state and can consequently provide the needed information regarding the health of the gut. Here we present the first study on gas sensor capsules for revealing the effect of a medical supplement in an animal (pig) model. We characterise the real-time alterations of gastric-gas in response to environmental heat-stress and dietary cinnamon and use the gas profiles for understanding the bio-physiological changes. Under no heat-stress, feeding increases gastric CO2 concentration, while dietary cinnamon reduces it due to decrease in gastric acid and pepsin secretion. Alternatively, heat-stress leads to hyperventilation in pigs, which reduces CO2 concentration and with the cinnamon treatment, CO2 diminishes even more, resulting in health improvement outcomes. Overall, a good repeatability in gas profiles is also observed. The model demonstrates the strong potential of real-time gas profiler in providing new physiological information that will impact understanding of therapeutics, presenting a highly reliable device for monitoring/diagnostics of gastrointestinal disorders. PMID:27633400

  7. Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts

    PubMed Central

    Karunatilaka, Krishanthi S.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. PMID:25389179

  8. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva.

    PubMed

    Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-10-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.

  9. Predominant effect of host genetics on levels of Lactobacillus johnsonii bacteria in the mouse gut.

    PubMed

    Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Kashi, Yechezkel

    2011-09-01

    The gut microbiota is strongly associated with the well-being of the host. Its composition is affected by environmental factors, such as food and maternal inoculation, while the relative impact of the host's genetics have been recently uncovered. Here, we studied the effect of the host genetic background on the composition of intestinal bacteria in a murine model, focusing on lactic acid bacteria (LAB) as an important group that includes many probiotic strains. Based on 16S rRNA gene genotyping, variation was observed in fecal LAB populations of BALB/c and C57BL/6J mouse lines. Lactobacillus johnsonii, a potentially probiotic bacterium, appeared at significantly higher levels in C57BL/6J versus BALB/c mouse feces. In the BALB/c gut, the L. johnsonii level decreased rapidly after oral administration, suggesting that some selective force does not allow its persistence at higher levels. The genetic inheritance of L. johnsonii levels was further tested in reciprocal crosses between the two mouse lines. The resultant F1 offspring presented similar L. johnsonii levels, confirming that mouse genetics plays a major role in determining these levels compared to the smaller maternal effect. Our findings suggest that mouse genetics has a major effect on the composition of the LAB population in general and on the persistence of L. johnsonii in the gut in particular. Concentrating on a narrow spectrum of culturable LAB enables the isolation and characterization of such potentially probiotic bacterial strains, which might be specifically oriented to the genetic background of the host as part of a personalized-medicine approach.

  10. Using Corticosteroids to Reshape the Gut Microbiome: Implications for Inflammatory Bowel Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Edmond Y.; Inoue, Takuya; Leone, Vanessa A.

    Introduction—Commensal gut microbiota play an important role in regulating metabolic and inflammatory conditions. Reshaping intestinal microbiota through pharmacologic means may be a viable treatment option. Here we sought to delineate the functional characteristics of glucocorticoid-mediated alterations on gut microbiota and their subsequent repercussions on host mucin regulation and colonic inflammation. Methods—Adult male C57Bl/6 mice, germ-free (GF), Muc2-heterozygote (±), or Muc2-knockout (-/-) were injected with dexamethasone, a synthetic glucocorticoid, for four weeks. Fecal samples were collected for gut microbiota analysis via 16S rRNA T-RFLP and amplicon sequencing. Intestinal mucosa was collected for mucin gene expression studies. GF mice were conventionalized withmore » gut microbes from treated- and non-treated groups to determine their functional capacities in recipient hosts. Results—Exposure to DEX in WT mice led to substantial shifts in gut microbiota over a four-week period. Furthermore, a significant down-regulation of colonic Muc2 gene expression was observed after treatment. Muc2-knockout mice harbored a pro-inflammatory environment of gut microbes, characterized by the increase or decrease in prevalence of specific microbiota populations such as Clostridiales and Lactobacillaceae, respectively. This colitogenic phenotype was transmissible to IL10-knockout (IL10-KO) mice, a genetically susceptible model of colonic inflammatory disorders. Microbiota from donors pre-treated with DEX, however, ameliorated symptoms of inflammation. We conclude that commensal gut bacteria may be a key mediator of the anti-inflammatory effects observed in the large intestine after GC exposure. These findings underscore the notion that intestinal microbes comprise a “microbial organ” essential for host physiology that can be targeted by therapeutic approaches to restore intestinal homeostasis.« less

  11. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease.

    PubMed

    Emoto, Takuo; Yamashita, Tomoya; Kobayashi, Toshio; Sasaki, Naoto; Hirota, Yushi; Hayashi, Tomohiro; So, Anna; Kasahara, Kazuyuki; Yodoi, Keiko; Matsumoto, Takuya; Mizoguchi, Taiji; Ogawa, Wataru; Hirata, Ken-Ichi

    2017-01-01

    The association between atherosclerosis and gut microbiota has been attracting increased attention. We previously demonstrated a possible link between gut microbiota and coronary artery disease. Our aim of this study was to clarify the gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism (T-RFLP). This study included 39 coronary artery disease (CAD) patients and 30 age- and sex- matched no-CAD controls (Ctrls) with coronary risk factors. Bacterial DNA was extracted from their fecal samples and analyzed by T-RFLP and data mining analysis using the classification and regression algorithm. Five additional CAD patients were newly recruited to confirm the reliability of this analysis. Data mining analysis could divide the composition of gut microbiota into 2 characteristic nodes. The CAD group was classified into 4 CAD pattern nodes (35/39 = 90 %), while the Ctrl group was classified into 3 Ctrl pattern nodes (28/30 = 93 %). Five additional CAD samples were applied to the same dividing model, which could validate the accuracy to predict the risk of CAD by data mining analysis. We could demonstrate that operational taxonomic unit 853 (OTU853), OTU657, and OTU990 were determined important both by the data mining method and by the usual statistical comparison. We classified the gut microbiota profiles in coronary artery disease patients using data mining analysis of T-RFLP data and demonstrated the possibility that gut microbiota is a diagnostic marker of suffering from CAD.

  12. Gut microbiota and the development of obesity.

    PubMed

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  13. Using Corticosteroids to Reshape the Gut Microbiome: Implications for Inflammatory Bowel Diseases

    DOE PAGES

    Huang, Edmond Y.; Inoue, Takuya; Leone, Vanessa A.; ...

    2015-05-01

    Introduction—Commensal gut microbiota play an important role in regulating metabolic and inflammatory conditions. Reshaping intestinal microbiota through pharmacologic means may be a viable treatment option. Here we sought to delineate the functional characteristics of glucocorticoid-mediated alterations on gut microbiota and their subsequent repercussions on host mucin regulation and colonic inflammation. Methods—Adult male C57Bl/6 mice, germ-free (GF), Muc2-heterozygote (±), or Muc2-knockout (-/-) were injected with dexamethasone, a synthetic glucocorticoid, for four weeks. Fecal samples were collected for gut microbiota analysis via 16S rRNA T-RFLP and amplicon sequencing. Intestinal mucosa was collected for mucin gene expression studies. GF mice were conventionalized withmore » gut microbes from treated- and non-treated groups to determine their functional capacities in recipient hosts. Results—Exposure to DEX in WT mice led to substantial shifts in gut microbiota over a four-week period. Furthermore, a significant down-regulation of colonic Muc2 gene expression was observed after treatment. Muc2-knockout mice harbored a pro-inflammatory environment of gut microbes, characterized by the increase or decrease in prevalence of specific microbiota populations such as Clostridiales and Lactobacillaceae, respectively. This colitogenic phenotype was transmissible to IL10-knockout (IL10-KO) mice, a genetically susceptible model of colonic inflammatory disorders. Microbiota from donors pre-treated with DEX, however, ameliorated symptoms of inflammation. We conclude that commensal gut bacteria may be a key mediator of the anti-inflammatory effects observed in the large intestine after GC exposure. These findings underscore the notion that intestinal microbes comprise a “microbial organ” essential for host physiology that can be targeted by therapeutic approaches to restore intestinal homeostasis.« less

  14. Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction.

    PubMed

    Catry, Emilie; Bindels, Laure B; Tailleux, Anne; Lestavel, Sophie; Neyrinck, Audrey M; Goossens, Jean-François; Lobysheva, Irina; Plovier, Hubert; Essaghir, Ahmed; Demoulin, Jean-Baptiste; Bouzin, Caroline; Pachikian, Barbara D; Cani, Patrice D; Staels, Bart; Dessy, Chantal; Delzenne, Nathalie M

    2018-02-01

    To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction. We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe -/- ) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo. Caecal microbiota composition (Illumina Sequencing of the 16S rRNA gene) and key pathways/mediators involved in the control of vascular function, including bile acid (BA) profiling, gut and liver key gene expression, nitric oxide and gut hormones production were also assessed. ITF supplementation totally reverses endothelial dysfunction in mesenteric and carotid arteries of n-3 PUFA-depleted Apoe -/- mice via activation of the nitric oxide (NO) synthase/NO pathway. Gut microbiota changes induced by prebiotic treatment consist in increased NO-producing bacteria, replenishment of abundance in Akkermansia and decreased abundance in bacterial taxa involved in secondary BA synthesis. Changes in gut and liver gene expression also occur upon ITFs suggesting increased glucagon-like peptide 1 production and BA turnover as drivers of endothelium function preservation. We demonstrate for the first time that ITF improve endothelial dysfunction, implicating a short-term adaptation of both gut microbiota and key gut peptides. If confirmed in humans, prebiotics could be proposed as a novel approach in the prevention of metabolic disorders-related cardiovascular diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Microbiome-Gut-Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS-A Novel Hypothesis.

    PubMed

    Praveen, Vijayakumar; Praveen, Shama

    2016-01-01

    Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the "Back to Sleep" campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant's gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome-gut-brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis.

  16. Antihypertensive Effects of Probiotics.

    PubMed

    Robles-Vera, Iñaki; Toral, Marta; Romero, Miguel; Jiménez, Rosario; Sánchez, Manuel; Pérez-Vizcaíno, Francisco; Duarte, Juan

    2017-04-01

    The present review focuses in the hypertension-associated changes in the microbiota and the current insights regarding the impact of probiotics on blood pressure in animal models and in human hypertensive patients. Gut dysbiosis in hypertension is characterized by (i) the gut microbioma that is less diverse and less rich with an increased Firmicutes/Bacteroidetes ratio and (ii) a decrease in acetate- and butyrate-producing bacteria and an increase in lactate-producing bacterial populations. The meta-analysis of the human studies supports that supplementation with probiotics reduces blood pressure. The mechanism of this antihypertensive effect of probiotics and its protective effect on endothelial function has not been fully elucidated. Further investigations are needed to clarify if the effects of probiotic bacteria result from the changes in the gut microbiota and its metabolic by-products; the restoration of the gut barrier function; and the effects on endotoxemia, inflammation, and renal sympathetic nerve activity.

  17. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    PubMed

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  18. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk

    PubMed Central

    Zhu, Weifei; Gregory, Jill C.; Org, Elin; Buffa, Jennifer A.; Gupta, Nilaksh; Wang, Zeneng; Li, Lin; Fu, Xiaoming; Wu, Yuping; Mehrabian, Margarete; Sartor, R. Balfour; McIntyre, Thomas M.; Silverstein, Roy L.; Tang, W.H. Wilson; DiDonato, Joseph A.; Brown, J. Mark; Lusis, Aldons J.; Hazen, Stanley L.

    2016-01-01

    SUMMARY Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (N>4000) independently predicted incident (3 yr) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced submaximal stimulus-dependent platelet activation from multiple agonists through augmented Ca2+ release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation, collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential, and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk. PMID:26972052

  19. Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters.

    PubMed

    Martínez, Inés; Perdicaro, Diahann J; Brown, Andrew W; Hammons, Susan; Carden, Trevor J; Carr, Timothy P; Eskridge, Kent M; Walter, Jens

    2013-01-01

    The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, especially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate, but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Coriobacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by a metabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota.

  20. How Do Gut Feelings Feature in Tutorial Dialogues on Diagnostic Reasoning in GP Traineeship?

    ERIC Educational Resources Information Center

    Stolper, C. F.; Van de Wiel, M. W. J.; Hendriks, R. H. M.; Van Royen, P.; Van Bokhoven, M. A.; Van der Weijden, T.; Dinant, G. J.

    2015-01-01

    Diagnostic reasoning is considered to be based on the interaction between analytical and non-analytical cognitive processes. Gut feelings, a specific form of non-analytical reasoning, play a substantial role in diagnostic reasoning by general practitioners (GPs) and may activate analytical reasoning. In GP traineeships in the Netherlands, trainees…

Top