Forest, Félix; Moat, Justin; Baloch, Elisabeth; Brummitt, Neil A; Bachman, Steve P; Ickert-Bond, Steffi; Hollingsworth, Peter M; Liston, Aaron; Little, Damon P; Mathews, Sarah; Rai, Hardeep; Rydin, Catarina; Stevenson, Dennis W; Thomas, Philip; Buerki, Sven
2018-04-16
Driven by limited resources and a sense of urgency, the prioritization of species for conservation has been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The effect of different extinction probability transformations and the handling of IUCN data deficient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g. Araucaria araucana). These results highlight the necessity of using approaches that integrate evolutionary information in conservation science.
Evolutionary Analysis of MIKCc-Type MADS-Box Genes in Gymnosperms and Angiosperms
Chen, Fei; Zhang, Xingtan; Liu, Xing; Zhang, Liangsheng
2017-01-01
MIKCc-type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKCc originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKCc-type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP, AP1, GMADS, SOC1, AGL32, AP3/PI, SVP, AGL15, ANR1, and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP, SOC1, and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKCc gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKCc genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKCc genes in the ancestor of angiosperms triggered the first flower. PMID:28611810
Evolutionary Analysis of MIKCc-Type MADS-Box Genes in Gymnosperms and Angiosperms.
Chen, Fei; Zhang, Xingtan; Liu, Xing; Zhang, Liangsheng
2017-01-01
MIKC c -type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKC c originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKC c -type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP , AP1 , GMADS , SOC1 , AGL32 , AP3 / PI , SVP , AGL15 , ANR1 , and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP , SOC1 , and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKC c gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKC c genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKC c genes in the ancestor of angiosperms triggered the first flower.
Thrips pollination of Mesozoic gymnosperms.
Peñalver, Enrique; Labandeira, Conrad C; Barrón, Eduardo; Delclòs, Xavier; Nel, Patricia; Nel, André; Tafforeau, Paul; Soriano, Carmen
2012-05-29
Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110-105 million years ago, possibly considerably earlier.
Thrips pollination of Mesozoic gymnosperms
Peñalver, Enrique; Labandeira, Conrad C.; Barrón, Eduardo; Delclòs, Xavier; Nel, Patricia; Nel, André; Tafforeau, Paul; Soriano, Carmen
2012-01-01
Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110–105 million years ago, possibly considerably earlier. PMID:22615414
Phylogenetic and functional signals in gymnosperm ovular secretions.
Nepi, Massimo; Little, Stefan; Guarnieri, Massimo; Nocentini, Daniele; Prior, Natalie; Gill, Julia; Barry Tomlinson, P; Ickert-Bond, Stefanie M; Pirone, Cary; Pacini, Ettore; von Aderkas, Patrick
2017-11-28
Gymnosperms are either wind-pollinated (anemophilous) or both wind- and insect-pollinated (ambophilous). Regardless of pollination mode, ovular secretions play a key role in pollen capture, germination and growth; they are likely also involved in pollinator reward. Little is known about the broad-scale diversity of ovular secretions across gymnosperms, and how these may relate to various reproductive functions. This study analyses the sugar and amino acid profiles of ovular secretions across a range of ambophilous (cycads and Gnetales) and anemophilous gymnosperms (conifers) to place them in an evolutionary context of their possible functions during reproduction. Ovular secretions from 13 species representing all five main lineages of extant gymnosperms were sampled. High-performance liquid chromatography techniques were used to measure sugar and amino acid content. Multivariate statistics were applied to assess whether there are significant differences in the chemical profiles of anemophilous and ambophilous species. Data were compared with published chemical profiles of angiosperm nectar. Chemical profiles were placed in the context of phylogenetic relationships. Total sugar concentrations were significantly higher in ovular secretions of ambophilous species than wind-pollinated taxa such as Pinaceae and Cupressophyta. Ambophilous species had lower amounts of total amino acids, and a higher proportion of non-protein amino acids compared with anemophilous lineages, and were also comparable to angiosperm nectar. Results suggest that early gymnosperms likely had ovular secretion profiles that were a mosaic of those associated with modern anemophilous and ambophilous species. Ginkgo, thought to be anemophilous, had a profile typical of ambophilous taxa, suggesting that insect pollination either exists in Gingko, but is undocumented, or that its ancestral populations were insect-pollinated. Chemical profiles of ovular secretions of ambophilous gymnosperms show a clear
Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.
Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A
2015-07-20
The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phylogeny and Divergence Times of Gymnosperms Inferred from Single-Copy Nuclear Genes
Guo, Dong-Mei; Yang, Zu-Yu; Wang, Xiao-Quan
2014-01-01
Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms. PMID:25222863
Flammability across the gymnosperm phylogeny: the importance of litter particle size.
Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C
2015-04-01
Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Symplasmic transport and phloem loading in gymnosperm leaves
Liesche, Johannes; Martens, Helle Juel
2010-01-01
Despite more than 130 years of research, phloem loading is far from being understood in gymnosperms. In part this is due to the special architecture of their leaves. They differ from angiosperm leaves among others by having a transfusion tissue between bundle sheath and the axial vascular elements. This article reviews the somewhat inaccessible and/or neglected literature and identifies the key points for pre-phloem transport and loading of photoassimilates. The pre-phloem pathway of assimilates is structurally characterized by a high number of plasmodesmata between all cell types starting in the mesophyll and continuing via bundle sheath, transfusion parenchyma, Strasburger cells up to the sieve elements. Occurrence of median cavities and branching indicates that primary plasmodesmata get secondarily modified and multiplied during expansion growth. Only functional tests can elucidate whether this symplasmic pathway is indeed continuous for assimilates, and if phloem loading in gymnosperms is comparable with the symplasmic loading mode in many angiosperm trees. In contrast to angiosperms, the bundle sheath has properties of an endodermis and is equipped with Casparian strips or other wall modifications that form a domain border for any apoplasmic transport. It constitutes a key point of control for nutrient transport, where the opposing flow of mineral nutrients and photoassimilates has to be accommodated in each single cell, bringing to mind the principle of a revolving door. The review lists a number of experiments needed to elucidate the mode of phloem loading in gymnosperms. PMID:21107620
Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance.
Liesche, Johannes; Windt, Carel; Bohr, Tomas; Schulz, Alexander; Jensen, Kaare H
2015-04-01
In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h(-1) for angiosperm trees and 22 cm h(-1) for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Khan, Raees; Ul Abidin, Sheikh Zain; Ahmad, Mushtaq; Zafar, Muhammad; Liu, Jie; Amina, Hafiza
2018-01-01
The present study is intended to assess gymnosperms pollen flora of Pakistan using Light Microscope (LM) and Scanning Electron Microscopy (SEM) for its taxonomic significance in identification of gymnosperms. Pollens of 35 gymnosperm species (12 genera and five families) were collected from its various distributional sites of gymnosperms in Pakistan. LM and SEM were used to investigate different palyno-morphological characteristics. Five pollen types (i.e., Inaperturate, Monolete, Monoporate, Vesiculate-bisaccate and Polyplicate) were observed. Six In equatorial view seven types of pollens were observed, in which ten species were sub-angular, nine species were Traingular, six species were Perprolate, three species were Rhomboidal, three species were semi-angular, two species were rectangular and two species were prolate. While five types of pollen were observed in polar view, in which ten species were Spheroidal, nine species were Angular, eight were Interlobate, six species were Circular, two species were Elliptic. Eighteen species has rugulate and 17 species has faveolate ornamentation. Eighteen species has verrucate and 17 have gemmate type sculpturing. The data was analysed through cluster analysis. The study showed that these palyno-morphological features have significance value in classification and identification of gymnosperms. Based on these different palyno-morphological features, a taxonomic key was proposed for the accurate and fast identifications of gymnosperms from Pakistan. © 2017 Wiley Periodicals, Inc.
Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values
NASA Astrophysics Data System (ADS)
Bush, R. T.; McInerney, F. A.
2009-12-01
Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms
Ginkgotides: Proline-Rich Hevein-Like Peptides from Gymnosperm Ginkgo biloba.
Wong, Ka H; Tan, Wei Liang; Serra, Aida; Xiao, Tianshu; Sze, Siu Kwan; Yang, Daiwen; Tam, James P
2016-01-01
Hevein and hevein-like peptides belong to the family of chitin-binding cysteine-rich peptides. They are classified into three subfamilies, the prototypic 8C- and the 6C- and 10C-hevein-like peptides. Thus far, only five 8C-hevein-like peptides have been characterized from three angiosperms and none from gymnosperm. To determine their occurrence and distribution in the gymnosperm, Ginkgo biloba leaves were examined. Here, we report the discovery and characterization of 11 novel 8C-hevein-like peptides, namely ginkgotides gB1-gB11. Proteomic analysis showed that the ginkgotides contain 41-44 amino acids (aa), a chitin-binding domain and are Pro-rich, a distinguishing feature that differs from other hevein-like peptides. Solution NMR structure determination revealed that gB5 contains a three β-stranded structure shaped by a cystine knot with an additional disulfide bond at the C-terminus. Transcriptomic analysis showed that the ginkgotide precursors contain a three-domain architecture, comprised of a C-terminal tail (20 aa) that is significantly shorter than those of other 8C- and 10C-hevein-like peptides, which generally contain a protein cargo such as a Barwin-like protein (126 aa) or class I chitinase (254 aa). Transcriptomic data mining found an additional 48 ginkgotide homologs in 39 different gymnosperms. Phylogenetic analysis revealed that ginkgotides and their homologs belong to a new class of 8C-hevein-like peptides. Stability studies showed that ginkgotides are highly resistant to thermal, acidic and endopeptidase degradation. Ginkgotides flanked at both the N- and C-terminal ends by Pro were resistant to exopeptidase degradation by carboxypeptidase A and aminopeptidase. Antifungal assays showed that ginkgotides inhibit the hyphal growth of phyto-pathogenic fungi. Taken together, ginkgotides represent the first suite of hevein-like peptides isolated and characterized from gymnosperms. As a group, they represent a novel class of 8C-hevein-like peptides that
Phloem transport in gymnosperms: a question of pressure and resistance.
Liesche, Johannes; Schulz, Alexander
2018-01-04
Even in the highest trees, carbon is efficiently distributed from leaves to heterotrophic tissues like fruit, flowers and roots. This long-distance transport happens in the highly specialized sieve elements of the phloem. In gymnosperms, sieve element anatomy appears to be less suited for mass flow of phloem sap than that of angiosperms. This review covers available data on gymnosperm phloem to evaluate if it functions differently from that of angiosperms. Although current evidence suggests that, despite a higher pathway resistance, a single source-to-sink turgor pressure gradient can drive mass flow, several questions remain unanswered. These include how endoplasmic reticulum-complexes in sieve elements influence flow, as well as what the effect of symplasmic coupling along the whole phloem pathway could be. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tavares, Raquel; Cagnon, Mathilde; Negrutiu, Ioan; Mouchiroud, Dominque
2010-08-03
Different theories for the origin of the angiosperm hermaphrodite flower make different predictions concerning the overlap between the genes expressed in the male and female cones of gymnosperms and the genes expressed in the hermaphrodite flower of angiosperms. The Mostly Male (MM) theory predicts that, of genes expressed primarily in male versus female gymnosperm cones, an excess of male orthologs will be expressed in flowers, excluding ovules, while Out Of Male (OOM) and Out Of Female (OOF) theories predict no such excess. In this paper, we tested these predictions by comparing the transcriptomes of three gymnosperms (Ginkgo biloba, Welwitschia mirabilis and Zamia fisheri) and two angiosperms (Arabidopsis thaliana and Oryza sativa), using EST data. We found that the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms flower is significantly higher than the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms vegetative tissues, which shows that the approach is correct. However, we detected no significant differences between the proportion of gymnosperm orthologous genes expressed in the male cone and in the angiosperms flower and the proportion of gymnosperm orthologous genes expressed in the female cone and in the angiosperms flower. These results do not support the MM theory prediction of an excess of male gymnosperm genes expressed in the hermaphrodite flower of the angiosperms and seem to support the OOM/OOF theories. However, other explanations can be given for the 1:1 ratio that we found. More abundant and more specific (namely carpel and ovule) expression data should be produced in order to further test these theories.
2010-01-01
Background Different theories for the origin of the angiosperm hermaphrodite flower make different predictions concerning the overlap between the genes expressed in the male and female cones of gymnosperms and the genes expressed in the hermaphrodite flower of angiosperms. The Mostly Male (MM) theory predicts that, of genes expressed primarily in male versus female gymnosperm cones, an excess of male orthologs will be expressed in flowers, excluding ovules, while Out Of Male (OOM) and Out Of Female (OOF) theories predict no such excess. Results In this paper, we tested these predictions by comparing the transcriptomes of three gymnosperms (Ginkgo biloba, Welwitschia mirabilis and Zamia fisheri) and two angiosperms (Arabidopsis thaliana and Oryza sativa), using EST data. We found that the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms flower is significantly higher than the proportion of orthologous genes expressed in the reproductive organs of the gymnosperms and in the angiosperms vegetative tissues, which shows that the approach is correct. However, we detected no significant differences between the proportion of gymnosperm orthologous genes expressed in the male cone and in the angiosperms flower and the proportion of gymnosperm orthologous genes expressed in the female cone and in the angiosperms flower. Conclusions These results do not support the MM theory prediction of an excess of male gymnosperm genes expressed in the hermaphrodite flower of the angiosperms and seem to support the OOM/OOF theories. However, other explanations can be given for the 1:1 ratio that we found. More abundant and more specific (namely carpel and ovule) expression data should be produced in order to further test these theories. PMID:20682074
Moonlight pollination in the gymnosperm Ephedra (Gnetales).
Rydin, Catarina; Bolinder, Kristina
2015-04-01
Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Ginkgotides: Proline-Rich Hevein-Like Peptides from Gymnosperm Ginkgo biloba
Wong, Ka H.; Tan, Wei Liang; Serra, Aida; Xiao, Tianshu; Sze, Siu Kwan; Yang, Daiwen; Tam, James P.
2016-01-01
Hevein and hevein-like peptides belong to the family of chitin-binding cysteine-rich peptides. They are classified into three subfamilies, the prototypic 8C- and the 6C- and 10C-hevein-like peptides. Thus far, only five 8C-hevein-like peptides have been characterized from three angiosperms and none from gymnosperm. To determine their occurrence and distribution in the gymnosperm, Ginkgo biloba leaves were examined. Here, we report the discovery and characterization of 11 novel 8C-hevein-like peptides, namely ginkgotides gB1–gB11. Proteomic analysis showed that the ginkgotides contain 41–44 amino acids (aa), a chitin-binding domain and are Pro-rich, a distinguishing feature that differs from other hevein-like peptides. Solution NMR structure determination revealed that gB5 contains a three β-stranded structure shaped by a cystine knot with an additional disulfide bond at the C-terminus. Transcriptomic analysis showed that the ginkgotide precursors contain a three-domain architecture, comprised of a C-terminal tail (20 aa) that is significantly shorter than those of other 8C- and 10C-hevein-like peptides, which generally contain a protein cargo such as a Barwin-like protein (126 aa) or class I chitinase (254 aa). Transcriptomic data mining found an additional 48 ginkgotide homologs in 39 different gymnosperms. Phylogenetic analysis revealed that ginkgotides and their homologs belong to a new class of 8C-hevein-like peptides. Stability studies showed that ginkgotides are highly resistant to thermal, acidic and endopeptidase degradation. Ginkgotides flanked at both the N- and C-terminal ends by Pro were resistant to exopeptidase degradation by carboxypeptidase A and aminopeptidase. Antifungal assays showed that ginkgotides inhibit the hyphal growth of phyto-pathogenic fungi. Taken together, ginkgotides represent the first suite of hevein-like peptides isolated and characterized from gymnosperms. As a group, they represent a novel class of 8C-hevein-like peptides
Liu, Yan-Yan; Yang, Ke-Zhen; Wei, Xiao-Xin; Wang, Xiao-Quan
2016-11-01
Angiosperms and gymnosperms are two major groups of extant seed plants. It has been suggested that gymnosperms lack FLOWERING LOCUS T (FT), a key integrator at the core of flowering pathways in angiosperms. Taking advantage of newly released gymnosperm genomes, we revisited the evolutionary history of the plant phosphatidylethanolamine-binding protein (PEBP) gene family through phylogenetic reconstruction. Expression patterns in three gymnosperm taxa and heterologous expression in Arabidopsis were studied to investigate the functions of gymnosperm FT-like and TERMINAL FLOWER 1 (TFL1)-like genes. Phylogenetic reconstruction suggests that an ancient gene duplication predating the divergence of seed plants gave rise to the FT and TFL1 genes. Expression patterns indicate that gymnosperm TFL1-like genes play a role in the reproductive development process, while GymFT1 and GymFT2, the FT-like genes resulting from a duplication event in the common ancestor of gymnosperms, function in both growth rhythm and sexual development pathways. When expressed in Arabidopsis, both spruce FT-like and TFL1-like genes repressed flowering. Our study demonstrates that gymnosperms do have FT-like and TFL1-like genes. Frequent gene and genome duplications contributed significantly to the expansion of the plant PEBP gene family. The expression patterns of gymnosperm PEBP genes provide novel insight into the functional evolution of this gene family. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Brenner, Eric D; Katari, Manpreet S; Stevenson, Dennis W; Rudd, Stephen A; Douglas, Andrew W; Moss, Walter N; Twigg, Richard W; Runko, Suzan J; Stellari, Giulia M; McCombie, WR; Coruzzi, Gloria M
2005-01-01
Background Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate), female (megasporangiate), and vegetative organs (leaves) of Ginkgo biloba. Results RNA from newly emerged male and female reproductive organs and immature leaves was used to create three distinct cDNA libraries from which 6,434 ESTs were generated. These 6,434 ESTs from Ginkgo biloba were clustered into 3,830 unigenes. A comparison of our Ginkgo unigene set against the fully annotated genomes of rice and Arabidopsis, and all available ESTs in Genbank revealed that 256 Ginkgo unigenes match only genes among the gymnosperms and non-seed plants – many with multiple matches to genes in non-angiosperm plants. Conversely, another group of unigenes in Gingko had highly significant homology to transcription factors in angiosperms involved in development, including MADS box genes as well as post-transcriptional regulators. Several of the conserved developmental genes found in Ginkgo had top BLAST homology to cycad genes. We also note here the presence of ESTs in G. biloba similar to genes that to date have only been found in gymnosperms and an additional 22 Ginkgo genes common only to genes from cycads. Conclusion Our analysis of an EST dataset from G. biloba revealed genes potentially unique to gymnosperms. Many of these genes showed homology to fully sequenced clones from our cycad EST dataset found in common only with gymnosperms. Other Ginkgo ESTs are similar to developmental regulators in higher plants. This work sets the stage for future studies on Ginkgo to better understand seed and pollen evolution, and to
Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
P. Acevedo-Rodr¡guez; M. T. Strong
2005-01-01
The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised....
Hatcher, P.G.; Lerch, H. E.; Verheyen, Vincent T.
1989-01-01
Organic geochemical investigations of peatified and coalified xylem from gymnosperms have provided useful information on the organic transformational processes collectively known as coalification. The combined use of solid-state 13C nuclear magnetic resonance (NMR) and pyrolysis/gas chromatography/mass spectrometry (py/gc/ms) has allowed us to examine the organic composition of peatified and coalified xylem on both a bulk (average) compositional basis and on a detailed molecular basis. We conclude from our studies that coalification of gymnospermous xylem involves the following processes: 1. (1) early selective removal of cellulosic materials so that lignin, a primary constituent of xylem, is transformed to macromolecular aromatic components in coal; 2. (2) modification of gymnospermous lignin by demethylation to form catechol-like structures, and by condensation reactions to induce a high level of cross-linking at an early stage of coalification; and 3. (3) dehydroxylation during increasing coalification to subbituminous coal, the resultant xylem becomes more phenolic in character as the catechol-like structures decrease. ?? 1989.
Molecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits.
Lovisetto, Alessandro; Guzzo, Flavia; Tadiello, Alice; Toffali, Ketti; Favretto, Alessandro; Casadoro, Giorgio
2012-01-01
Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Such structures are functionally fruits and can derive from different anatomical parts. Ginkgo biloba and Taxus baccata fruit-like structures differ in their anatomical origin since the outer seed integument becomes fleshy in Ginkgo, whereas in Taxus, the fleshy aril is formed de novo. The ripening characteristics are different, with Ginkgo more rudimentary and Taxus more similar to angiosperm fruits. MADS-box genes are known to be necessary for the formation of flowers and fruits in Angiosperms but also for making both male and female reproductive structures in Gymnosperms. Here, a series of different MADS-box genes have been shown for the first time to be involved also in the formation of gymnosperm fruit-like structures. Apparently, the same gene types have been recruited in phylogenetically distant species to make fleshy structures that also have different anatomical origins. This finding indicates that the main molecular networks operating in the development of fleshy fruits have independently appeared in distantly related Gymnosperm taxa. Hence, the appearance of the seed habit and the accompanying necessity of seed dispersal has led to the invention of the fruit habit that thus seems to have appeared independently of the presence of flowers.
The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower.
Melzer, Rainer; Wang, Yong-Qiang; Theissen, Günter
2010-02-01
20 years after establishment of the ABC model many of the molecular mechanisms underlying development of the angiosperm flower are relatively well understood. Central players in the gene regulatory network controlling flower development are SQUA-like, DEF/GLO-like, AG-like and AGL6/SEP1-like MIKC-type MADS-domain transcription factors. These provide class A, class B, class C and the more recently defined class E floral homeotic functions, respectively. There is evidence that the floral homeotic proteins recognize the DNA of target genes in an organ-specific way as multimeric protein complexes, thus constituting 'floral quartets'. In contrast to the detailed insights into flower development, how the flower originated during evolution has remained enigmatic. However, while orthologues of all classes of floral homeotic genes appear to be absent from all non-seed plants, DEF/GLO-like, AG-like, and AGL6-like genes have been found in diverse extant gymnosperms, the closest relatives of the angiosperms. While SQUA-like and SEP1-like MADS-box genes appear to be absent from extant gymnosperms, reconstruction of MADS-box gene phylogeny surprisingly suggests that the most recent common ancestor of gymnosperms and angiosperms possessed representatives of both genes, but that these have been lost in the lineage that led to extant gymnosperms. Expression studies and genetic complementation experiments indicate that both angiosperm and gymnosperm AG-like and DEF/GLO-like genes have conserved functions in the specification of reproductive organs and in distinguishing male from female organs, respectively. Based on these findings novel models about the molecular basis of flower origin, involving changes in the expression patterns of DEF/GLO-like or AGL6/SEP1/SQUA-like genes in reproductive structures, were developed. While in angiosperms SEP1-like proteins play an important role in floral quartet formation, preliminary evidence suggests that gymnosperm DEF/GLO-like and AG
Ginkgo and Welwitschia Mitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution.
Guo, Wenhu; Grewe, Felix; Fan, Weishu; Young, Gregory J; Knoop, Volker; Palmer, Jeffrey D; Mower, Jeffrey P
2016-06-01
Mitochondrial genomes (mitogenomes) of flowering plants are well known for their extreme diversity in size, structure, gene content, and rates of sequence evolution and recombination. In contrast, little is known about mitogenomic diversity and evolution within gymnosperms. Only a single complete genome sequence is available, from the cycad Cycas taitungensis, while limited information is available for the one draft sequence, from Norway spruce (Picea abies). To examine mitogenomic evolution in gymnosperms, we generated complete genome sequences for the ginkgo tree (Ginkgo biloba) and a gnetophyte (Welwitschia mirabilis). There is great disparity in size, sequence conservation, levels of shared DNA, and functional content among gymnosperm mitogenomes. The Cycas and Ginkgo mitogenomes are relatively small, have low substitution rates, and possess numerous genes, introns, and edit sites; we infer that these properties were present in the ancestral seed plant. By contrast, the Welwitschia mitogenome has an expanded size coupled with accelerated substitution rates and extensive loss of these functional features. The Picea genome has expanded further, to more than 4 Mb. With regard to structural evolution, the Cycas and Ginkgo mitogenomes share a remarkable amount of intergenic DNA, which may be related to the limited recombinational activity detected at repeats in Ginkgo Conversely, the Welwitschia mitogenome shares almost no intergenic DNA with any other seed plant. By conducting the first measurements of rates of DNA turnover in seed plant mitogenomes, we discovered that turnover rates vary by orders of magnitude among species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian
2016-05-01
How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.
2012-01-01
Background Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. Results To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. Conclusions Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants. PMID:23102090
Pavy, Nathalie; Pelgas, Betty; Laroche, Jérôme; Rigault, Philippe; Isabel, Nathalie; Bousquet, Jean
2012-10-26
Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants.
Zhang, Pingyu; Tan, Hugh T W; Pwee, Keng-Hock; Kumar, Prakash P
2004-02-01
Flower development in angiosperms is regulated by the family of MADS-box transcription factors. MADS-box genes have also been reported from gymnosperms, another major group of seed plants. AGAMOUS (AG) is the class C MADS-box floral organ identity gene controlling the stamen and carpel development in Arabidopsis. We report the characterization of an ortholog of the AG gene, named Cycas AGAMOUS (CyAG), from the primitive gymnosperm Cycas edentata. The expression pattern of CyAG in Cycas parallels that of AG in Arabidopsis. Additionally, the gene structure, including the number and location of the introns, is conserved in CyAG and other AG orthologs known. Most importantly, functional analysis shows that CyAG driven by the AG promoter can rescue the loss-of-function ag mutant of Arabidopsis. However, the ectopic expression of CyAG in ag mutant Arabidopsis cannot produce the carpeloid and stamenoid organs in the first and second whorls, although the stamen and carpel are rescued in the third and fourth whorls of the transformants. These observations show that the molecular mechanism of class C function controlling reproductive organ identity (stamen and carpel of angiosperms or microsporophyll and megasporophyll of gymnosperms) arose before the divergence of angiosperms and gymnosperms, and has been conserved during 300 million years of evolution thereafter.
Li, An; Gomes, Thiago C.F.
2016-01-01
The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls. PMID:27325663
Sakai, Satoki
2013-02-01
To examine the factors favoring large megagametophytes of gymnosperms and tiny ones of angiosperms, a game model for seed production was developed in which megagametophytes growing in the same female parent compete for resources provided by the parent. In the model, megagametophytes may continue to grow until seed completion or may cease to grow at a certain time and regrow at pollination or fertilization. Autonomous abortion of unpollinated or unfertilized megagametophytes may occur either at pollination or fertilization. Those megagametophytes absorb a certain amount of resources before abortion, due to constraints in the signal process, in addition to the resources absorbed before pollination or fertilization. It was found that both growth habits can be the ESS: megagametophytes continue to grow without cessation and monopolize resources, such as gymnosperms, or cease to grow until fertilization to reduce the loss of resources due to autonomous abortion, such as angiosperms. The former and the latter are the ESS if the time interval between pollination and fertilization is long and short, respectively. Thus, the fertilization interval may be a critical factor selecting for large megagametophytes of gymnosperms or tiny ones of angiosperms. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Lovisetto, Alessandro; Guzzo, Flavia; Busatto, Nicola; Casadoro, Giorgio
2013-08-01
The evolution of seeds together with the mechanisms related to their dispersal into the environment represented a turning point in the evolution of plants. Seeds are produced by gymnosperms and angiosperms but only the latter have an ovary to be transformed into a fruit. Yet some gymnosperms produce fleshy structures attractive to animals, thus behaving like fruits from a functional point of view. The aim of this work is to increase our knowledge of possible mechanisms common to the development of both gymnosperm and angiosperm fruits. B-sister genes from two gymnosperms (Ginkgo biloba and Taxus baccata) were isolated and studied. The Ginkgo gene was also functionally characterized by ectopically expressing it in tobacco. In Ginkgo the fleshy structure derives from the outer seed integument and the B-sister gene is involved in its growth. In Taxus the fleshy structure is formed de novo as an outgrowth of the ovule peduncle, and the B-sister gene is not involved in this growth. In transgenic tobacco the Ginkgo gene has a positive role in tissue growth and confirms its importance in ovule/seed development. This study suggests that B-sister genes have a main function in ovule/seed development and a subsidiary role in the formation of fleshy fruit-like structures when the latter have an ovular origin, as occurs in Ginkgo. Thus, the 'fruit function' of B-sister genes is quite old, already being present in Gymnosperms as ancient as Ginkgoales, and is also present in Angiosperms where a B-sister gene has been shown to be involved in the formation of the Arabidopsis fruit.
Duan, Honglang; O'Grady, Anthony P; Duursma, Remko A; Choat, Brendan; Huang, Guomin; Smith, Renee A; Jiang, Yanan; Tissue, David T
2015-07-01
Future climate regimes characterized by rising [CO2], rising temperatures and associated droughts may differentially affect tree growth and physiology. However, the interactive effects of these three factors are complex because elevated [CO2] and elevated temperature may generate differential physiological responses during drought. To date, the interactive effects of elevated [CO2] and elevated temperature on drought-induced tree mortality remain poorly understood in gymnosperm species that differ in stomatal regulation strategies. Water relations and carbon dynamics were examined in two species with contrasting stomatal regulation strategies: Pinus radiata D. Don (relatively isohydric gymnosperm; regulating stomata to maintain leaf water potential above critical thresholds) and Callitris rhomboidea R. Br (relatively anisohydric gymnosperm; allowing leaf water potential to decline as the soil dries), to assess response to drought as a function of [CO2] and temperature. Both species were grown in two [CO2] (C(a) (ambient, 400 μl l(-1)) and C(e) (elevated, 640 μl l(-1))) and two temperature (T(a) (ambient) and T(e) (ambient +4 °C)) treatments in a sun-lit glasshouse under well-watered conditions. Drought plants were then exposed to a progressive drought until mortality. Prior to mortality, extensive xylem cavitation occurred in both species, but significant depletion of non-structural carbohydrates was not observed in either species. Te resulted in faster mortality in P. radiata, but it did not modify the time-to-mortality in C. rhomboidea. C(e) did not delay the time-to-mortality in either species under drought or T(e) treatments. In summary, elevated temperature (+4 °C) had greater influence than elevated [CO2] (+240 μl l(-1)) on drought responses of the two studied gymnosperm species, while stomatal regulation strategies did not generally affect the relative contributions of hydraulic failure and carbohydrate depletion to mortality under severe drought.
Fuchs, Jörg; Jovtchev, Gabriele; Schubert, Ingo
2008-01-01
The chromosomal distribution of seven histone methylation marks (H3K4me2, H3K9me1,2,3 and H3K27me1,2,3) was analysed in the gymnosperm species Pinus sylvestris and Picea abies. Similarly to the situation in other investigated eukaryotes, dimethylation of lysine 4 of histone H3 is restricted to euchromatin in gymnosperms. Surprisingly, also H3K9me1-a mark classified as heterochromatin-specific in angiosperms-labels the euchromatin in P. sylvestris and P. abies. The other investigated methylation marks are either equally distributed along the chromosomes, as H3K9me2 and H3K27me1 (in both species) and H3K9me3 (in P. abies), or enriched at specific types of heterochromatin, as H3K9me3 (in P. sylvestris) and H3K27me2 and H3K27me3 in both species. Although the methylation marks themselves are apparently conserved, their functional specificity within the frame of the 'epigenetic code' might have diverged during evolution.
Chaw, S M; Parkinson, C L; Cheng, Y; Vincent, T M; Palmer, J D
2000-04-11
Phylogenetic relationships among the five groups of extant seed plants are presently quite unclear. For example, morphological studies consistently identify the Gnetales as the extant sister group to angiosperms (the so-called "anthophyte" hypothesis), whereas a number of molecular studies recover gymnosperm monophyly, and few agree with the morphology-based placement of Gnetales. To better resolve these and other unsettled issues, we have generated a new molecular data set of mitochondrial small subunit rRNA sequences, and have analyzed these data together with comparable data sets for the nuclear small subunit rRNA gene and the chloroplast rbcL gene. All nuclear analyses strongly ally Gnetales with a monophyletic conifers, whereas all mitochondrial analyses and those chloroplast analyses that take into account saturation of third-codon position transitions actually place Gnetales within conifers, as the sister group to the Pinaceae. Combined analyses of all three genes strongly support this latter relationship, which to our knowledge has never been suggested before. The combined analyses also strongly support monophyly of extant gymnosperms, with cycads identified as the basal-most group of gymnosperms, Ginkgo as the next basal, and all conifers except for Pinaceae as sister to the Gnetales + Pinaceae clade. According to these findings, the Gnetales may be viewed as extremely divergent conifers, and the many morphological similarities between angiosperms and Gnetales (e.g., double fertilization and flower-like reproductive structures) arose independently.
Chaw, Shu-Miaw; Parkinson, Christopher L.; Cheng, Yuchang; Vincent, Thomas M.; Palmer, Jeffrey D.
2000-01-01
Phylogenetic relationships among the five groups of extant seed plants are presently quite unclear. For example, morphological studies consistently identify the Gnetales as the extant sister group to angiosperms (the so-called “anthophyte” hypothesis), whereas a number of molecular studies recover gymnosperm monophyly, and few agree with the morphology-based placement of Gnetales. To better resolve these and other unsettled issues, we have generated a new molecular data set of mitochondrial small subunit rRNA sequences, and have analyzed these data together with comparable data sets for the nuclear small subunit rRNA gene and the chloroplast rbcL gene. All nuclear analyses strongly ally Gnetales with a monophyletic conifers, whereas all mitochondrial analyses and those chloroplast analyses that take into account saturation of third-codon position transitions actually place Gnetales within conifers, as the sister group to the Pinaceae. Combined analyses of all three genes strongly support this latter relationship, which to our knowledge has never been suggested before. The combined analyses also strongly support monophyly of extant gymnosperms, with cycads identified as the basal-most group of gymnosperms, Ginkgo as the next basal, and all conifers except for Pinaceae as sister to the Gnetales + Pinaceae clade. According to these findings, the Gnetales may be viewed as extremely divergent conifers, and the many morphological similarities between angiosperms and Gnetales (e.g., double fertilization and flower-like reproductive structures) arose independently. PMID:10760277
Wu, Chung-Shien; Wang, Ya-Nan; Hsu, Chi-Yao; Chaw, Shu-Miaw
2011-01-01
The relationships among the extant five gymnosperm groups—gnetophytes, Pinaceae, non-Pinaceae conifers (cupressophytes), Ginkgo, and cycads—remain equivocal. To clarify this issue, we sequenced the chloroplast genomes (cpDNAs) from two cupressophytes, Cephalotaxus wilsoniana and Taiwania cryptomerioides, and 53 common chloroplast protein-coding genes from another three cupressophytes, Agathis dammara, Nageia nagi, and Sciadopitys verticillata, and a non-Cycadaceae cycad, Bowenia serrulata. Comparative analyses of 11 conifer cpDNAs revealed that Pinaceae and cupressophytes each lost a different copy of inverted repeats (IRs), which contrasts with the view that the same IR has been lost in all conifers. Based on our structural finding, the character of an IR loss no longer conflicts with the “gnepines” hypothesis (gnetophytes sister to Pinaceae). Chloroplast phylogenomic analyses of amino acid sequences recovered incongruent topologies using different tree-building methods; however, we demonstrated that high heterotachous genes (genes that have highly different rates in different lineages) contributed to the long-branch attraction (LBA) artifact, resulting in incongruence of phylogenomic estimates. Additionally, amino acid compositions appear more heterogeneous in high than low heterotachous genes among the five gymnosperm groups. Removal of high heterotachous genes alleviated the LBA artifact and yielded congruent and robust tree topologies in which gnetophytes and Pinaceae formed a sister clade to cupressophytes (the gnepines hypothesis) and Ginkgo clustered with cycads. Adding more cupressophyte taxa could not improve the accuracy of chloroplast phylogenomics for the five gymnosperm groups. In contrast, removal of high heterotachous genes from data sets is simple and can increase confidence in evaluating the phylogeny of gymnosperms. PMID:21933779
Wu, Chung-Shien; Wang, Ya-Nan; Hsu, Chi-Yao; Lin, Ching-Ping; Chaw, Shu-Miaw
2011-01-01
The relationships among the extant five gymnosperm groups--gnetophytes, Pinaceae, non-Pinaceae conifers (cupressophytes), Ginkgo, and cycads--remain equivocal. To clarify this issue, we sequenced the chloroplast genomes (cpDNAs) from two cupressophytes, Cephalotaxus wilsoniana and Taiwania cryptomerioides, and 53 common chloroplast protein-coding genes from another three cupressophytes, Agathis dammara, Nageia nagi, and Sciadopitys verticillata, and a non-Cycadaceae cycad, Bowenia serrulata. Comparative analyses of 11 conifer cpDNAs revealed that Pinaceae and cupressophytes each lost a different copy of inverted repeats (IRs), which contrasts with the view that the same IR has been lost in all conifers. Based on our structural finding, the character of an IR loss no longer conflicts with the "gnepines" hypothesis (gnetophytes sister to Pinaceae). Chloroplast phylogenomic analyses of amino acid sequences recovered incongruent topologies using different tree-building methods; however, we demonstrated that high heterotachous genes (genes that have highly different rates in different lineages) contributed to the long-branch attraction (LBA) artifact, resulting in incongruence of phylogenomic estimates. Additionally, amino acid compositions appear more heterogeneous in high than low heterotachous genes among the five gymnosperm groups. Removal of high heterotachous genes alleviated the LBA artifact and yielded congruent and robust tree topologies in which gnetophytes and Pinaceae formed a sister clade to cupressophytes (the gnepines hypothesis) and Ginkgo clustered with cycads. Adding more cupressophyte taxa could not improve the accuracy of chloroplast phylogenomics for the five gymnosperm groups. In contrast, removal of high heterotachous genes from data sets is simple and can increase confidence in evaluating the phylogeny of gymnosperms.
Park, Sangkyu; Byeon, Yeong; Lee, Hyoung Yool; Kim, Young-Soon; Ahn, Taeho; Back, Kyoungwhan
2014-10-01
Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis in both animals and plants. SNAT catalyzes serotonin into N-acetylserotonin, an immediate precursor for melatonin biosynthesis by N-acetylserotonin methyltransferase (ASMT). We cloned the SNAT gene from a gymnosperm loblolly pine (Pinus teada). The loblolly pine SNAT (PtSNAT) gene encodes 255 amino acids harboring a transit sequence with 67 amino acids and shows 67% amino acid identity with rice SNAT when comparing the mature polypeptide regions. Purified recombinant PtSNAT showed peak activity at 55°C with the K(m) (428 μM) and Vmax (3.9 nmol/min/mg protein) values. As predicted, PtSNAT localized to chloroplasts. The SNAT mRNA was constitutively expressed in all tissues, including leaf, bud, flower, and pinecone, whereas the corresponding protein was detected only in leaf. In accordance with the exclusive SNAT protein expression in leaf, melatonin was detected only in leaf at 0.45 ng per gram fresh weight. Sequence and phylogenetic analysis indicated that the gymnosperm PtSNAT had high homology with SNATs from all plant phyla (even with cyanobacteria), and formed a clade separated from the angiosperm SNATs, suggestive of direct gene transfer from cyanobacteria via endosymbiosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Miguel, Célia; Simões, Marta; Oliveira, Maria Margarida; Rocheta, Margarida
2008-11-01
Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.
Bowe, L M; Coat, G; dePamphilis, C W
2000-04-11
Efforts to resolve Darwin's "abominable mystery"-the origin of angiosperms-have led to the conclusion that Gnetales and various fossil groups are sister to angiosperms, forming the "anthophytes." Morphological homologies, however, are difficult to interpret, and molecular data have not provided clear resolution of relationships among major groups of seed plants. We introduce two sequence data sets from slowly evolving mitochondrial genes, cox1 and atpA, which unambiguously reject the anthophyte hypothesis, favoring instead a close relationship between Gnetales and conifers. Parsimony- and likelihood-based analyses of plastid rbcL and nuclear 18S rDNA alone and with cox1 and atpA also strongly support a gnetophyte-conifer grouping. Surprisingly, three of four genes (all but nuclear rDNA) and combined three-genome analyses also suggest or strongly support Gnetales as derived conifers, sister to Pinaceae. Analyses with outgroups screened to avoid long branches consistently identify all gymnosperms as a monophyletic sister group to angiosperms. Combined three- and four-gene rooted analyses resolve the branching order for the remaining major groups-cycads separate from other gymnosperms first, followed by Ginkgo and then (Gnetales + Pinaceae) sister to a monophyletic group with all other conifer families. The molecular phylogeny strongly conflicts with current interpretations of seed plant morphology, and implies that many similarities between gnetophytes and angiosperms, such as "flower-like" reproductive structures and double fertilization, were independently derived, whereas other characters could emerge as synapomorphies for an expanded conifer group including Gnetales. An initial angiosperm-gymnosperm split implies a long stem lineage preceding the explosive Mesozoic radiation of flowering plants and suggests that angiosperm origins and homologies should be sought among extinct seed plant groups.
Bates, A.L.; Spiker, E. C.
1992-01-01
The cross-sectional radius of a 3-m (diam.) brown coal gymnospermous log of Miocene age, previously analyzed for carbohydrate and lignin methoxyl content by solid-state 13C nuclear magnetic resonance spectroscopy, was examined using stable carbon isotopic ratios in order to determine if the isotopic composition could be related to chemical changes or to radial position. This study found a possible relationship between ??13C-values and radial position; however, these changes cannot be linked to carbohydrate content and are probably attributable to changing growth conditions during the lifetime of the tree. An apparent linear relationship between the changes in carbohydrate content after sodium para-periodate treatment and corresponding changes in the ??13C-values indicates constant isotopic fractionation between lignin and carbohydrates along the cross-sectional radius. This result indicates that diagenesis has not produced any significant change in the lignin-carbohydrate carbon isotopic fractionation or, alternatively, that diagenesis has erased any fractionation pattern that once existed. A sample of fresh wood from another gymnospermous species was analyzed by the same methods and found to have lignin-carbohydrate carbon isotopic fractionation significantly different from that of the Miocene log section samples, suggesting that differences may be species-related or that the complex mixture of carbohydrates in the fresh wood was isotopically different from that of the degraded wood, and the whole Miocene log was uniformly altered. ?? 1992.
Guo, Yanan; Sim, Andre D.; Kabir, M. Shahjahan; Chettri, Pranav; Ozturk, Ibrahim K.; Hunziker, Lukas; Ganley, Rebecca J.; Cox, Murray P.
2015-01-01
Summary We present genome‐wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal‐specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up‐regulation of genes encoding fungal cell wall‐modifying enzymes and signalling proteins. Later necrotrophic stages show the up‐regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in‐depth through‐time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host. PMID:25919703
Keeling, Christopher I.; Dullat, Harpreet K.; Yuen, Mack; Ralph, Steven G.; Jancsik, Sharon; Bohlmann, Jörg
2010-01-01
The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms. PMID:20044448
Vázquez-Lobo, Alejandra; Carlsbecker, Annelie; Vergara-Silva, Francisco; Alvarez-Buylla, Elena R; Piñero, Daniel; Engström, Peter
2007-01-01
The identity of genes causally implicated in the development and evolutionary origin of reproductive characters in gymnosperms is largely unknown. Working within the framework of plant evolutionary developmental biology, here we have cloned, sequenced, performed phylogenetic analyses upon and tested the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in reproductive structures from selected species of the conifer genera Picea, Podocarpus, and Taxus. Contrary to expectations based on previous assessments, expression of LFY/FLO and NLY in cones of these taxa was found to occur simultaneously in a single reproductive axis, initially overlapping but later in mutually exclusive primordia and/or groups of developing cells in both female and male structures. These observations directly affect the status of the "mostly male theory" for the origin of the angiosperm flower. On the other hand, comparative spatiotemporal patterns of the expression of these genes suggest a complex genetic regulatory network of cone development, as well as a scheme of functional divergence for LFY/FLO with respect to NLY homologs in gymnosperms, both with clear heterochronic aspects. Results presented in this study contribute to the understanding of the molecular-genetic basis of morphological evolution in conifer cones, and may aid in establishing a foundation for gymnosperm-specific, testable evo-devo hypotheses.
Pieruzzi, Fernanda P.; Dias, Leonardo L. C.; Balbuena, Tiago S.; Santa-Catarina, Claudete; dos Santos, André L. W.; Floh, Eny I. S.
2011-01-01
Background and Aims Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination. Methods Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC. Key Results During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied. Conclusions The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators. PMID:21685432
NASA Astrophysics Data System (ADS)
Barale, Georges; Philippe, Marc; Tayech-Mannai, Beya; Zarbout, Mohamed
1997-08-01
This is the first discovery of imprint flora in the Early Cretaceous of the Tataouine area (South Tunisia). The global composition shows a richness in Pteridophytes and Gymnosperms. The floristic assemblage is composed of Gondwanan elements closely related to those of a Madagascan flora.
NASA Astrophysics Data System (ADS)
Andrews, M. Y.; Ague, J. J.; Berner, R. A.
2006-12-01
Knowledge of the long-term carbon cycle and its control on atmospheric carbon dioxide levels over the Phanerozoic is crucial to understanding the impending dynamics of contemporary anthropogenic carbon contributions to the atmosphere. One aspect of the long-term carbon cycle that is poorly understood is the role of large vascular plants (trees) in contributing to the chemical weathering of silicate minerals. In particular, little is known about the differences in weathering rates between gymnosperms and angiosperms and how these dissimilarities may have impacted the carbon cycle subsequent to the evolution of angiosperm trees in the Mesozoic. One approach to evaluating these potential differences in weathering is to examine and quantitatively compare the chemistry and petrology of the soil mineral constituents from beneath modern groves of each broad tree type, where the groves have been subject to nearly identical environmental and geological conditions. This particular study focuses on field samples collected along transects through adjacent groves of angiosperms and gymnosperms in the Cascade Mountains of Washington State. Preliminary data demonstrate a significant difference in the soil texture and composition beneath the two types of trees. While soil at each field site has been generated from a homogeneous parent material, and subjected to similar inorganic environmental phenomena, soil density, particle size, and organic content vary across the transects. Soils beneath the angiosperms are denser and have a more clay-like texture, while soils beneath the gymnosperms are more organic-rich and have a sandy texture. Additional macroscopic and microscopic differences in the chemistry and petrology of these soils will illuminate the varied impacts these trees have on the silicate minerals in their immediate environment, and therefore lend insight into the potential impact these groups of organisms have had on the long-term carbon cycle over the past five hundred
Yamada, Toshihiro; Hirayama, Yumiko; Imaichi, Ryoko; Kato, Masahiro
2008-01-01
The expression of GpANTL1, a homolog of AINTEGUMENTA (ANT) found in the gymnosperm Gnetum parvifolium, was analyzed by RT-PCR and in situ hybridization. GpANTL1 was expressed in the leaf primordia, root tips, and young ovules. In the ovulate axis, expression was detected as four distinct rings around the outer, middle, and inner envelope primordia as well as around the nucellar tip. This pattern of expression is similar to that of ANT in Arabidopsis thaliana. A comparison of the expression of GpANTL1 with that of PtANTL1 in the conifer Pinus thunbergii suggests that the integrated expression of PtANTL1 may have been caused by congenital fusion of the integument, ovuliferous scale, and bract.
Zodrow, E.L.; Mastalerz, Maria; Simunek, Z.
2003-01-01
Cordaites principalis and Cordaites borassifolius, gymnosperm trees of the Carboniferous, are distinguished based on compression and cuticular morphology. A new distinction between them is suggested on the basis of differences in functional groups. Cuticular and compression spectra of C. borassifolius have lower CH2/CH3 ratios, suggesting more branched aliphatic chains in comparison with cuticles and compressions of C. principalis. Other differences are observed with Fourier transform infrared spectroscopy (FTIR) technique, but they vary from sample to sample of the two species to suggest other than chemotaxonomic-based sources of variations. ?? 2003 Elsevier B.V. All rights reserved.
Garcia, S; Kovařík, A
2013-01-01
In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008
Garcia, S; Kovařík, A
2013-07-01
In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.
Lodha, Deepika; Rathore, Nisha; Kataria, Vinod; Shekhawat, N S
2014-07-01
Ephedra foliata Boiss. & Kotschy ex Boiss., (family - Ephedraceae), is an ecologically and economically important threatened Gymnosperm of the Indian Thar Desert. A method for micropropagation of E. foliata using nodal explant of mature female plant has been developed. Maximum bud-break (90 %) of the explant was obtained on MS medium supplemented with 1.5 mg l(-1) of benzyl adenine (BA) + additives. Explant produces 5.3 ± 0.40 shoots from single node with 3.25 ± 0.29 cm length. The multiplication of shoots in culture was affected by salt composition of media, types and concentrations of plant growth regulators (PGR's) and their interactions, time of transfer of the cultures. Maximum number of shoots (26.3 ± 0.82 per culture vessel) were regenerated on MS medium modified by reducing the concentration of nitrates to half supplemented with 200 mg l(-1) ammonium sulphate {(NH4) 2SO4} (MMS3) + BA (0.25 mg l(-1)), Kinetin (Kin; 0.25 mg l(-1)), Indole-3-acetic acid (IAA; 0.1 mg l(-1)) and additives. The in vitro produced shoots rooted under ex vitro on soilrite moistened with one-fourth strength of MS macro salts in screw cap bottles by treating the shoot base (s) with 500 mg l(-1) of Indole-3-butyric acid (IBA) for 5 min. The micropropagated plants were hardened in the green house. The described protocol can be applicable for (i) large scale plant production (ii) establishment of plants in natural habitat and (iii) germplasm conservation of this endemic Gymnosperm of arid regions.
Wang, Yong-Qiang; Melzer, Rainer; Theissen, Günter
2010-10-01
Several lines of evidence suggest that the identity of floral organs in angiosperms is specified by multimeric transcription factor complexes composed of MADS-domain proteins. These bind to specific cis-regulatory elements ('CArG-boxes') of their target genes involving DNA-loop formation, thus constituting 'floral quartets'. Gymnosperms, angiosperms' closest relatives, contain orthologues of floral homeotic genes, but when and how the interactions constituting floral quartets were established during evolution has remained unknown. We have comprehensively studied the dimerization and DNA-binding of several classes of MADS-domain proteins from the gymnosperm Gnetum gnemon. Determination of protein-protein and protein-DNA interactions by yeast two-hybrid, in vitro pull-down and electrophoretic mobility shift assays revealed complex patterns of homo- and heterodimerization among orthologues of floral homeotic class B, class C and class E proteins and B(sister) proteins. Using DNase I footprint assays we demonstrate that both orthologues of class B with C proteins, and orthologues of class C proteins alone, but not orthologues of class B proteins alone can loop DNA in floral quartet-like complexes. This is in contrast to class B and class C proteins from angiosperms, which require other factors such as class E floral homeotic proteins to 'glue' them together in multimeric complexes. Our findings suggest that the evolutionary origin of floral quartet formation is based on the interaction of different DNA-bound homodimers, does not depend on class E proteins, and predates the origin of angiosperms. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Morphologic interpretation of fertile structures in glossopterid gymnosperms
Schopf, J.M.
1976-01-01
The problem of determining affinity among glossopterid gymnosperms is beset by deficiencies in preservation, natural dissociation of parts, and scarcity of features assuredly critical for morphologic comprarison. The glossopterids probably are not a very heterogeneous group of plants, but this is difficult to prove. The Gondwana glacial "hiatus" has resulted in the omission of a critical chapter glossopterid evolution. As a consequence, morphologic features and phyletic probabilities must be evaluated on a much more hypothetical basis than would otherwise be justified. Confusion has arisen from the lack of morphologic terms that permit clear discussion of a newly evolved type of reproductive structure in glossopterids. The structure, here designated a "fertiliger", consists of a leafy bract, a partially adnate stalk, and a fertile head or capitulum. Seven types of fertile structures are discussed, all of which are bilaterally symmetrical and have different features on dorsiventral surfaces. I regard all fertiligers as ovulate but this interpretation may bot be acceptable to some workers; others may not accept dorsiventral organization of the capitulum as being fundamental. Among glossopterids, however, in spite of differences in preservation that may seem to support a variant interpretation, these ovulate fertiligers are the distinctive features that show general consistency. A single fertile bract bearing several capitula, as exemplified by Lidgettonia, is called a compound fertiliger. Staminate structures (microsporophylls) of glossopterids are separately classified as Eretmonia, Glossotheca, and possibly as other taxa. Only the manner of sporangial attachment is not entirely clear. It seems likely the staminate parts have previously been confused with scale leaves and are actually coextensive in distribution with the glossopterids. A tentative phyletic model suggests the distant derivation of glossopterids from middle Carboniferous cordaiteans. Many details must
Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G
2017-09-01
Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.
Leaf traits and herbivory levels in a tropical gymnosperm, Zamia stevensonii (Zamiaceae).
Prado, Alberto; Sierra, Adriel; Windsor, Donald; Bede, Jacqueline C
2014-03-01
Slow-growing understory cycads invest heavily in defenses to protect the few leaves they produce annually. The Neotropical cycad Zamia stevensonii has chemical and mechanical barriers against insect herbivores. Mechanical barriers, such as leaf toughness, can be established only after the leaf has expanded. Therefore, chemical defenses may be important during leaf expansion. How changes in leaf traits affect the feeding activity of cycad specialist insects is unknown. We investigated leaf defenses and incidence of specialist herbivores on Z. stevensonii during the first year after leaf flush. Herbivore incidence, leaf production, and leaf traits that might affect herbivory-including leaf age, lamina thickness, resistance-to-fracture, work-to-fracture, trichome density, and chlorophyll, water, and toxic azoxyglycoside (AZG) content-were measured throughout leaf development. Principal component analysis and generalized linear models identified characteristics that may explain herbivore incidence. Synchronized leaf development in Z. stevensonii is characterized by quick leaf expansion and delayed greening. Specialist herbivores feed on leaves between 10 and 100 d after flush and damage ∼37% of all leaflets produced. Young leaves are protected by AZGs, but these defenses rapidly decrease as leaves expand. Leaves older than 100 d are protected by toughness. Because AZG concentrations drop before leaves become sufficiently tough, there is a vulnerable period during which leaves are susceptible to herbivory by specialist insects. This slow-growing gymnosperm invests heavily in constitutive defenses against highly specialized herbivores, underlining the convergence in defensive syndromes by major plant lineages.
Zheng, Ying; Chiang, Tzen-Yuh; Huang, Chao-Li; Gong, Xun
2018-05-01
As an ancient seed plant, cycads are one of the few gymnosperms that develop a root symbiosis with cyanobacteria, which has allowed cycads to cope with harsh geologic and climatic conditions during the evolutionary process. However, the endophytic microbes in cycad roots remain poorly identified. In this study, using next-generation sequencing techniques, we investigated the microbial diversity and composition of both the coralloid and regular roots of Cycas bifida (Dyer) K.D. Hill. Highly diverse endophytic communities were observed in both the coralloid and regular roots. Of the associated bacteria, the top five families were the Nostocaceae, Sinobacteraceae, Bradyrhizobiaceae, Bacillaceae, and Hyphomicrobiaceae. The Nectriaceae, Trichocomaceae, and Incertae sedis were the predominant fungal families in all root samples. A significant difference in the endophytic bacterial community was detected between coralloid roots and regular roots, but no difference was observed between the fungal communities in the two root types. Cyanobacteria were more dominant in coralloid roots than in regular roots. The divergence of cycad root structures and the modified physiological processes may have contributed to the abundance of cyanobionts in coralloid roots. Consequently, the colonization of cyanobacteria inhibits the assemblage of other endophytes. Our results contribute to an understanding of the species diversity and composition of the cycad-endophyte microbiome and provide an abbreviated list of potential ecological roles of the core microbes present.
Bates, A.L.; Hatcher, P.G.
1989-01-01
A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.
Hummel, Jürgen; Gee, Carole T; Südekum, Karl-Heinz; Sander, P Martin; Nogge, Gunther; Clauss, Marcus
2008-05-07
Sauropod dinosaurs, the dominant herbivores throughout the Jurassic, challenge general rules of large vertebrate herbivory. With body weights surpassing those of any other megaherbivore, they relied almost exclusively on pre-angiosperm plants such as gymnosperms, ferns and fern allies as food sources, plant groups that are generally believed to be of very low nutritional quality. However, the nutritive value of these taxa is virtually unknown, despite their importance in the reconstruction of the ecology of Mesozoic herbivores. Using a feed evaluation test for extant herbivores, we show that the energy content of horsetails and of certain conifers and ferns is at a level comparable to extant browse. Based on our experimental results, plants such as Equisetum, Araucaria, Ginkgo and Angiopteris would have formed a major part of sauropod diets, while cycads, tree ferns and podocarp conifers would have been poor sources of energy. Energy-rich but slow-fermenting Araucaria, which was globally distributed in the Jurassic, was probably targeted by giant, high-browsing sauropods with their presumably very long ingesta retention times. Our data make possible a more realistic calculation of the daily food intake of an individual sauropod and improve our understanding of how large herbivorous dinosaurs could have flourished in pre-angiosperm ecosystems.
Hummel, Jürgen; Gee, Carole T; Südekum, Karl-Heinz; Sander, P. Martin; Nogge, Gunther; Clauss, Marcus
2008-01-01
Sauropod dinosaurs, the dominant herbivores throughout the Jurassic, challenge general rules of large vertebrate herbivory. With body weights surpassing those of any other megaherbivore, they relied almost exclusively on pre-angiosperm plants such as gymnosperms, ferns and fern allies as food sources, plant groups that are generally believed to be of very low nutritional quality. However, the nutritive value of these taxa is virtually unknown, despite their importance in the reconstruction of the ecology of Mesozoic herbivores. Using a feed evaluation test for extant herbivores, we show that the energy content of horsetails and of certain conifers and ferns is at a level comparable to extant browse. Based on our experimental results, plants such as Equisetum, Araucaria, Ginkgo and Angiopteris would have formed a major part of sauropod diets, while cycads, tree ferns and podocarp conifers would have been poor sources of energy. Energy-rich but slow-fermenting Araucaria, which was globally distributed in the Jurassic, was probably targeted by giant, high-browsing sauropods with their presumably very long ingesta retention times. Our data make possible a more realistic calculation of the daily food intake of an individual sauropod and improve our understanding of how large herbivorous dinosaurs could have flourished in pre-angiosperm ecosystems. PMID:18252667
Silva, Luís; Elias, Rui B; Moura, Mónica; Meimberg, Harald; Dias, Eduardo
2011-12-01
The Azorean endemic gymnosperm Juniperus brevifolia (Seub.) Antoine is a top priority species for conservation in Macaronesia, based on its ecological significance in natural plant communities. To evaluate genetic variability and differentiation among J. brevifolia populations from the Azorean archipelago, we studied 15 ISSR and 15 RAPD markers in 178 individuals from 18 populations. The average number of polymorphic bands per population was 65 for both ISSR and RAPD. The majority of genetic variability was found within populations and among populations within islands, and this partitioning of variability was confirmed by AMOVA. The large majority of population pairwise F(ST) values were above 0.3 and below 0.6. The degree of population genetic differentiation in J. brevifolia was relatively high compared with other species, including Juniperus spp. The genetic differentiation among populations suggests that provenance should be considered when formulating augmentation or reintroduction strategies.
Hatcher, P.G.; Lerch, H. E.; Verheyen, T.V.
1990-01-01
It is generally recognized that xylem from trees that are buried in peat swamps is transformed first to huminite macerals in brown coal and then to vitrinite macerals in bituminous coal by processes collectively known as coalification. In order to understand the chemical nature of coalification of xylem and the chemical structures that eventually evolve in coal, we examined a series of gymnospermous xylem samples coalified to varying degrees. The samples included modern fresh xylem, modern degraded xylem in peat, and xylem coalified to ranks of brown coal (lignite B), lignite A, and subbituminous coal. The organic geochemical methods used in this study included solid-state 13C nuclear magnetic resonance (NMR) and pyrolysis/gas chromatography/mass spectrometry. The NMR method provided average compositional information, and the pyrolysis provided detailed molecular information. Although the samples examined include different plants of different geologic ages, they all share a common feature in that they are gymnospermous and presumably have or had a similar kind of lignin. The data obtained in this study provide enough details to allow delineation of specific coalification pathway for the xylem is microbial degradation in peat (peatification), leading to selective removal of cellulosic components. These components constitute a large fraction of the total mass of xylem, usually greater than 50%. Although cellulosic components can survive degradation under certain conditions, their loss during microbial degradation is the rule rather than exception during peatification. As these components of xylem are degraded and lost, lignin, another major component of xylem, is selectively enriched because it is more resistant to microbial degradation than the cellulosic components. Thus, lignin survives peatification in a practically unaltered state and becomes the major precursor of coalified xylem. During its transformation to brown coal and lignite A, lignin in xylem is altered
Suppression of 4-Coumarate-CoA Ligase in the Coniferous Gymnosperm Pinus radiata1[W
Wagner, Armin; Donaldson, Lloyd; Kim, Hoon; Phillips, Lorelle; Flint, Heather; Steward, Diane; Torr, Kirk; Koch, Gerald; Schmitt, Uwe; Ralph, John
2009-01-01
Severe suppression of 4-coumarate-coenzyme A ligase (4CL) in the coniferous gymnosperm Pinus radiata substantially affected plant phenotype and resulted in dwarfed plants with a “bonsai tree-like” appearance. Microscopic analyses of stem sections from 2-year-old plants revealed substantial morphological changes in both wood and bark tissues. This included the formation of weakly lignified tracheids that displayed signs of collapse and the development of circumferential bands of axial parenchyma. Acetyl bromide-soluble lignin assays and proton nuclear magnetic resonance studies revealed lignin reductions of 36% to 50% in the most severely affected transgenic plants. Two-dimensional nuclear magnetic resonance and pyrolysis-gas chromatography-mass spectrometry studies indicated that lignin reductions were mainly due to depletion of guaiacyl but not p-hydroxyphenyl lignin. 4CL silencing also caused modifications in the lignin interunit linkage distribution, including elevated β-aryl ether (β-O-4 unit) and spirodienone (β-1) levels, accompanied by lower phenylcoumaran (β-5), resinol (β-β), and dibenzodioxocin (5-5/β-O-4) levels. A sharp depletion in the level of saturated (dihydroconiferyl alcohol) end groups was also observed. Severe suppression of 4CL also affected carbohydrate metabolism. Most obvious was an up to approximately 2-fold increase in galactose content in wood from transgenic plants due to increased compression wood formation. The molecular, anatomical, and analytical data verified that the isolated 4CL clone is associated with lignin biosynthesis and illustrated that 4CL silencing leads to complex, often surprising, physiological and morphological changes in P. radiata. PMID:18971431
Lin, Xiaofei; Li, Ningning; Kudo, Hiromi; Zhang, Zhe; Li, Jinyu; Wang, Li; Zhang, Wenbo; Takechi, Katsuaki; Takano, Hiroyoshi
2017-03-01
The endosymbiotic theory states that plastids are derived from a single cyanobacterial ancestor that possessed a cell wall. Peptidoglycan (PG), the main component of the bacteria cell wall, gradually degraded during plastid evolution. PG-synthesizing Mur genes have been found to be retained in the genomes of basal streptophyte plants, although many of them have been lost from the genomes of angiosperms. The enzyme encoded by bacterial MurE genes catalyzes the formation of the UDP-N-acetylmuramic acid (UDP-MurNAc) tripeptide in bacterial PG biosynthesis. Knockout of the MurE gene in the moss Physcomitrella patens resulted in defects of chloroplast division, whereas T-DNA-tagged mutants of Arabidopsis thaliana for MurE revealed inhibition of chloroplast development but not of plastid division, suggesting that AtMurE is functionally divergent from the bacterial and moss MurE proteins. Here, we could identify 10 homologs of bacterial Mur genes, including MurE, in the recently sequenced genomes of Picea abies and Pinus taeda, suggesting the retention of the plastid PG system in gymnosperms. To investigate the function of gymnosperm MurE, we isolated an ortholog of MurE from the larch, Larix gmelinii (LgMurE) and confirmed its presence as a single copy per genome, as well as its abundant expression in the leaves of larch seedlings. Analysis with a fusion protein combining green fluorescent protein and LgMurE suggested that it localizes in chloroplasts. Cross-species complementation assay with MurE mutants of A. thaliana and P. patens showed that the expression of LgMurE cDNA completely rescued the albefaction defects in A. thaliana but did not rescue the macrochloroplast phenotype in P. patens. The evolution of plastid PG and the mechanism behind the functional divergence of MurE genes are discussed in the context of information about plant genomes at different evolutionary stages. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of
Palovaara, Joakim; Hallberg, Henrik; Stasolla, Claudio; Luit, Bert; Hakman, Inger
2010-04-01
In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies [L.] Karst.), a gene widely expressed in conifer tissues and organs, was characterized and its expression and localization patterns were determined with reverse transcription polymerase chain reaction and in situ hybridization during somatic embryo development and in seedlings. PaPIN1 shares the predicted structure of other PIN proteins, but its central hydrophilic loop is longer than most PINs. In phylogenetic analyses, PaPIN1 clusters with Arabidopsis thaliana (L.) Heynh. PIN3, PIN4 and PIN7, but its expression pattern also suggests similarity to PIN1. The PaPIN1 expression signal was high in the protoderm of pre-cotyledonary embryos, but not if embryos were pre-treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). This, together with a high auxin immunolocalization signal in this cell layer, suggests a role of PaPIN1 during cotyledon formation. At later stages, high PaPIN1 expression was observed in differentiating procambium, running from the tip of incipient cotyledons down through the embryo axis and to the root apical meristem (RAM), although the mode of RAM specification in conifer embryos differs from that of most angiosperms. Also, the PaPIN1 in situ signal was high in seedling root tips including root cap columella cells. The results thus suggest that PaPIN1 provides an ancient function associated with auxin transport and embryo pattern formation prior to the separation of angiosperms and gymnosperms, in spite of some morphological differences.
Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg
2004-08-01
Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.
Blaukopf, Markus; Yuen, Macaire M.S.; Withers, Stephen G.; Mattsson, Jim; Russell, John H.; Bohlmann, Jörg
2015-01-01
Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and β-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation. PMID:25829465
Flores-Rentería, Lluvia; Vázquez-Lobo, Alejandra; Whipple, Amy V; Piñero, Daniel; Márquez-Guzmán, Judith; Domínguez, C A
2011-01-01
Bisexuality (male and female function in one structure) has been reported as a key innovation of angiosperms. Although there are several reports of "teratological" bisporangiate (bisexual) cones in gymnosperms, there have been none on the viability of their ovules and pollen. Analyses of the development and arrangement of female and male structures on bisporangiate cones of Pinus johannis enables us to gain insight on the origin of bisexuality in seed plants, for both angiosperms and gymnosperms. Viability of bisporangiate cones was assayed by performing manual crosses and using anatomical and histological methods. We determined that bisporangiate cones of P. johannis produce functional pollen and ovules. Male and female organs occupy basal and apical positions, respectively, the same positions found in almost all bisporangiate strobili in gymnosperms and bisexual flowers in angiosperms. The viability and spatial distribution of female and male organs of bisporangiate cones and their frequent occurrence in gymnosperms suggest a common mechanism in all seed plants for the production of bisporangiate structures. This idea is further supported by the presence of homologous genes for sexual organ identity in gymnosperms and angiosperms as reported by other authors. The lack of bisporangiate structure in gymnosperms may be primarily due to selection to avoid inbreeding rather than to genetic constraint.
Accessory costs of seed production and the evolution of angiosperms.
Lord, Janice M; Westoby, Mark
2012-01-01
Accessory costs of reproduction frequently equal or exceed direct investment in offspring, and can limit the evolution of small offspring sizes. Early angiosperms had minimum seed sizes, an order of magnitude smaller than their contemporaries. It has been proposed that changes to reproductive features at the base of the angiosperm clade reduced accessory costs thus removing the fitness disadvantage of small seeds. We measured accessory costs of reproduction in 25 extant gymnosperms and angiosperms, to test whether angiosperms can produce small seeds more economically than gymnosperms. Total accessory costs scaled isometrically to seed mass for angiosperms but less than isometrically for gymnosperms, so that smaller seeds were proportionally more expensive for gymnosperms to produce. In particular, costs of abortions and packaging structures were significantly higher in gymnosperms. Also, the relationship between seed:ovule ratio and seed size was negative in angiosperms but positive in gymnosperms. We argue that the carpel was a key evolutionary innovation reducing accessory costs in angiosperms by allowing sporophytic control of pre- and postzygotic mate selection and timing of resource allocation. The resulting reduction in costs of aborting unfertilized ovules or genetically inferior embryos would have lowered total reproductive costs enabling early angiosperms to evolve small seed sizes and short generation times. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
Liu, Jian; Zhang, Shouzhou; Nagalingum, Nathalie S; Chiang, Yu-Chung; Lindstrom, Anders J; Gong, Xun
2018-05-18
The gymnosperm genus Cycas is the sole member of Cycadaceae, and is the largest genus of extant cycads. There are about 115 accepted Cycas species mainly distributed in the paleotropics. Based on morphology, the genus has been divided into six sections and eight subsections, but this taxonomy has not yet been tested in a molecular phylogenetic framework. Although the monophyly of Cycas is broadly accepted, the intrageneric relationships inferred from previous molecular phylogenetic analyses are unclear due to insufficient sampling or uninformative DNA sequence data. In this study, we reconstructed a phylogeny of Cycas using four chloroplast intergenic spacers and seven low-copy nuclear genes and sampling 90% of extant Cycas species. The maximum likelihood and Bayesian inference phylogenies suggest: (1) matrices of either concatenated cpDNA markers or of concatenated nDNA lack sufficient informative sites to resolve the phylogeny alone, however, the phylogeny from the combined cpDNA-nDNA dataset suggests the genus can be roughly divided into 13 clades and six sections that are in agreement with the current classification of the genus; (2) although with partial support, a clade combining sections Panzhihuaenses + Asiorientales is resolved as the earliest diverging branch; (3) section Stangerioides is not monophyletic because the species resolve as a grade; (4) section Indosinenses is not monophyletic as it includes Cycas macrocarpa and C. pranburiensis from section Cycas; (5) section Cycas is the most derived group and its subgroups correspond with geography. Copyright © 2018 Elsevier Inc. All rights reserved.
Production of n-alkyl lipids in living plants and implications for the geologic past
NASA Astrophysics Data System (ADS)
Diefendorf, Aaron F.; Freeman, Katherine H.; Wing, Scott L.; Graham, Heather V.
2011-12-01
Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ 13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes ( ɛlipid) varies by as much as 10‰ among different chain lengths. Overall, ɛlipid values are slightly lower (-4.5‰) for angiosperm than for gymnosperm (-2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented
The cellular and molecular biology of conifer embryogenesis.
Cairney, John; Pullman, Gerald S
2007-01-01
Gymnosperms and angiosperms are thought to have evolved from a common ancestor c. 300 million yr ago. The manner in which gymnosperms and angiosperms form seeds has diverged and, although broad similarities are evident, the anatomy and cell and molecular biology of embryogenesis in gymnosperms, such as the coniferous trees pine, spruce and fir, differ significantly from those in the most widely studied model angiosperm Arabidopsis thaliana. Molecular analysis of signaling pathways and processes such as programmed cell death and embryo maturation indicates that many developmental pathways are conserved between angiosperms and gymnosperms. Recent genomics research reveals that almost 30% of mRNAs found in developing pine embryos are absent from other conifer expressed sequence tag (EST) collections. These data show that the conifer embryo differs markedly from other gymnosperm tissues studied to date in terms of the range of genes transcribed. Approximately 72% of conifer embryo-expressed genes are found in the Arabidopsis proteome and conifer embryos contain mRNAs of very similar sequence to key genes that regulate seed development in Arabidopsis. However, 1388 loblolly pine (Pinus taeda) embryo ESTs (11.4% of the collection) are novel and, to date, have been found in no other plant. The data imply that, in gymnosperm embryogenesis, differences in structure and development are achieved by subtle molecular interactions, control of spatial and temporal gene expression and the regulating agency of a few unique proteins.
Carlsbecker, Annelie; Sundström, Jens; Tandre, Karolina; Englund, Marie; Kvarnheden, Anders; Johanson, Urban; Engström, Peter
2003-01-01
Transcription factors encoded by different members of the MADS-box gene family have evolved central roles in the regulation of reproductive organ development in the flowering plants, the angiosperms. Development of the stamens and carpels, the pollen- and seed-bearing organs, involves the B- and C-organ-identity MADS-box genes. B- and C-type gene orthologs with activities specifically in developing pollen- and seed-bearing organs are also present in the distantly related gymnosperms: the conifers and the gnetophytes. We now report on the characterization of DAL10, a novel MADS-box gene from the conifer Norway spruce, which unlike the B- and C-type conifer genes shows no distinct orthology relationship to any angiosperm gene or clade in phylogenetic analyses. Like the B- and C-type genes, it is active specifically in developing pollen cones and seed cones. In situ RNA localization experiments show DAL10 to be expressed in the cone axis, which carry the microsporophylls of the young pollen cone. In contrast, in the seed cone it is expressed both in the cone axis and in the bracts, which subtend the ovuliferous scales. Expression data and the phenotype of transgenic Arabidopsis plants expressing DAL10 suggest that the gene may act upstream to or in concert with the B- and C-type genes in the establishment of reproductive identity of developing cones.
Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants
De La Torre, Amanda R.; Sterck, Lieven; Cánovas, Francisco M.; Avila, Concepción; Merino, Irene; Cabezas, José Antonio; Cervera, María Teresa; Ingvarsson, Pär K.
2017-01-01
Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny. PMID:28460034
The Contribution of Short Repeats of Low Sequence Complexity to Large Conifer Genomes
A. Schmidt; R.L. Doudrick; J.S. Heslop-Harrison; T. Schmidt
2000-01-01
Abstract: The abundance and genomic organization of six simple sequence repeats, consisting of di-, tri-, and tetranucleotide sequence motifs, and a minisatellite repeat have been analyzed in different gymnosperms by Southern hybridization. Within the gymnosperm genomes investigated, the abundance and genomic organization of micro- and...
Korn, Robert W
2013-05-01
Eversporting eudicots were sought to see if they behave like gymnosperms. Behaviour of eversporting gymnosperm chimeras indicates a single apical cell is present in SAM and it would be of interest to see if eudicot chimeras have the same behaviour. Four eversporting spireas, the pineapple mint and the Silver King euonymus were inspected for the fate of the yellow (mutant)-green (wild type) chimeras. As with gymnosperms, unstable eudicot chimeras in the four spireas, the pineapple mint and the Silver King euonymus became stable yellow about 80 % or more of the time and 20 % or less became stable green. The statistically significant preponderance of chimeric fates becoming all yellow suggests that a single apical cell resides in the yellow tunica. As with gymnosperms, descendent cells of the yellow replacement corpus cell eventually take over the corpus. Here is the first chimeric set of data to support the hypothesis of a one-celled meristem in eudicots rather than the traditional view of a muticellular meristem.
Augusto, Laurent; De Schrijver, An; Vesterdal, Lars; Smolander, Aino; Prescott, Cindy; Ranger, Jacques
2015-05-01
It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production is usually similar or lower in DA stands than in stands of EGs. Aboveground production of dead organic matter appears to be of the same order of magnitude between tree species groups growing on the same site. Some DAs induce more rapid decomposition of litter than EGs because of the chemical properties of their tissues, higher soil moisture and favourable conditions for earthworms. Forest floors consequently tend to be thicker in EG forests compared to DA forests. Many factors, such as litter lignin content, influence litter decomposition and it is difficult to identify specific litter-quality parameters that distinguish litter decomposition rates of EGs from DAs. Although it has been suggested that DAs can result in higher accumulation of soil carbon stocks, evidence from
Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter
2014-11-01
MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is
Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter
2014-01-01
Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS
Moyroud, Edwige; Monniaux, Marie; Thévenon, Emmanuel; Dumas, Renaud; Scutt, Charles P; Frohlich, Michael W; Parcy, François
2017-10-01
Flowering plants evolved from an unidentified gymnosperm ancestor. Comparison of the mechanisms controlling development in angiosperm flowers and gymnosperm cones may help to elucidate the mysterious origin of the flower. We combined gene expression studies with protein behaviour characterization in Welwitschia mirabilis to test whether the known regulatory links between LEAFY and its MADS-box gene targets, central to flower development, might also contribute to gymnosperm reproductive development. We found that WelLFY, one of two LEAFY-like genes in Welwitschia, could be an upstream regulator of the MADS-box genes APETALA3/PISTILLATA-like (B-genes). We demonstrated that, even though their DNA-binding domains are extremely similar, WelLFY and its paralogue WelNDLY exhibit distinct DNA-binding specificities, and that, unlike WelNDLY, WelLFY shares with its angiosperm orthologue the capacity to bind promoters of Welwitschia B-genes. Finally, we identified several cis-elements mediating these interactions in Welwitschia and obtained evidence that the link between LFY homologues and B-genes is also conserved in two other gymnosperms, Pinus and Picea. Although functional approaches to investigate cone development in gymnosperms are limited, our state-of-the-art biophysical techniques, coupled with expression studies, provide evidence that crucial links, central to the control of floral development, may already have existed before the appearance of flowers. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Alvarez, José M; Bueno, Natalia; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M; Ordás, Ricardo J
2018-02-01
WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Korn, Robert W.
2013-01-01
Background and Aims Eversporting eudicots were sought to see if they behave like gymnosperms. Behaviour of eversporting gymnosperm chimeras indicates a single apical cell is present in SAM and it would be of interest to see if eudicot chimeras have the same behaviour. Methods Four eversporting spireas, the pineapple mint and the Silver King euonymus were inspected for the fate of the yellow (mutant)–green (wild type) chimeras. Key Results As with gymnosperms, unstable eudicot chimeras in the four spireas, the pineapple mint and the Silver King euonymus became stable yellow about 80 % or more of the time and 20 % or less became stable green. Conclusions The statistically significant preponderance of chimeric fates becoming all yellow suggests that a single apical cell resides in the yellow tunica. As with gymnosperms, descendent cells of the yellow replacement corpus cell eventually take over the corpus. Here is the first chimeric set of data to support the hypothesis of a one-celled meristem in eudicots rather than the traditional view of a muticellular meristem. PMID:23482330
Chanderbali, André S.; Yoo, Mi-Jeong; Zahn, Laura M.; Brockington, Samuel F.; Wall, P. Kerr; Gitzendanner, Matthew A.; Albert, Victor A.; Leebens-Mack, James; Altman, Naomi S.; Ma, Hong; dePamphilis, Claude W.; Soltis, Douglas E.; Soltis, Pamela S.
2010-01-01
The origin and rapid diversification of the angiosperms (Darwin's “Abominable Mystery”) has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants. PMID:21149731
Chanderbali, André S; Yoo, Mi-Jeong; Zahn, Laura M; Brockington, Samuel F; Wall, P Kerr; Gitzendanner, Matthew A; Albert, Victor A; Leebens-Mack, James; Altman, Naomi S; Ma, Hong; dePamphilis, Claude W; Soltis, Douglas E; Soltis, Pamela S
2010-12-28
The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.
MADS-Box gene diversity in seed plants 300 million years ago.
Becker, A; Winter, K U; Meyer, B; Saedler, H; Theissen, G
2000-10-01
MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants ranging from root development to flower and fruit development. Through phylogeny reconstructions, most of these genes can be subdivided into defined monophyletic gene clades whose members share similar expression patterns and functions. Therefore, the establishment of the diversity of gene clades was probably an important event in land plant evolution. In order to determine when these clades originated, we isolated cDNAs of 19 different MADS-box genes from Gnetum gnemon, a gymnosperm model species and thus a representative of the sister group of the angiosperms. Phylogeny reconstructions involving all published MADS-box genes were then used to identify gene clades containing putative orthologs from both angiosperm and gymnosperm lineages. Thus, the minimal number of MADS-box genes that were already present in the last common ancestor of extant gymnosperms and angiosperms was determined. Comparative expression studies involving pairs of putatively orthologous genes revealed a diversity of patterns that has been largely conserved since the time when the angiosperm and gymnosperm lineages separated. Taken together, our data suggest that there were already at least seven different MADS-box genes present at the base of extant seed plants about 300 MYA. These genes were probably already quite diverse in terms of both sequence and function. In addition, our data demonstrate that the MADS-box gene families of extant gymnosperms and angiosperms are of similar complexities.
[Morphological and molecular data on the origin of angiosperms: on a way to a synthesis].
Sokolov, D D; Timonin, A K
2007-01-01
Molecular phylogenetic data have drastically changed the views on the phylogeny of higher plants. All the extant gymnosperms were asserted as a monophyletic group opposed to the highly isolated angiosperms. The 'Anthophyte Theory' was thus rejected. The identification and analysis of gymnosperm orthologues of genes regulating flower development in angiosperms resulted in the formulation of the 'Mostly Male Theory' of the evolutionary origin of flower; this theory does not contradict the concept of monophyly of all the extant gymnosperms. The Mostly Male Theory assumes that the origin of angiosperms was caused by a loss of the Needle family gene that effected ovuliferous (female) organs and the translocation of the ovules onto the adaxial side of some of the (male) leafy microsporangiophores. Having acquired ovules, the former microsporangiophores started evolving into the carpels. The prerequisite bisexual design of the ancestral fructification thus becomes unnecessary. Indeed, this assumption suggests the deriving of Angiosperms from any gymnosperm plant with leafy microsporangiophores. The problem of carpel origin has subsequently changed to some degree into the problem of the origin of the bitegmic anatropous ovule presumably inherent in ancestral Angiosperms. The Mostly Male Theory consideredeither Corystospermataceae (= Umkomasiaceae) or Caytoniaceae to be the forerunners of such an ovule. Yet the capsules of Corystospermataceae distinctly differ from angiosperm ovules in the locations of their adaxial/abaxial sides, while Caytoniaceae had no leafy microsporangiophores. This inconsistency suggests that functions of the Needle family regulatory genes in Gymnosperms should be much better understood to appraise properly both the possibilities and the consequences of their hypothetical loss by the emerging angiosperms. Moreover, the extant gymnosperm groups are actually held as monophyletic and contrasted to Angiosperms on the basis of analysing the
Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko
2008-06-23
The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. The observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the
Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering
Quirk, Joe; Beerling, David J.; Banwart, Steve A.; Kakonyi, Gabriella; Romero-Gonzalez, Maria E.; Leake, Jonathan R.
2012-01-01
Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO2 and climate history. PMID:22859556
Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.
Quirk, Joe; Beerling, David J; Banwart, Steve A; Kakonyi, Gabriella; Romero-Gonzalez, Maria E; Leake, Jonathan R
2012-12-23
Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history.
Insights into Conifer Giga-Genomes1
De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg
2014-01-01
Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325
Forest resilience to drought varies across biomes.
Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego
2018-05-01
Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.
Bateman, Richard M; Hilton, Jason; Rudall, Paula J
2006-01-01
Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of
Distribution of living Cupressaceae reflects the breakup of Pangea.
Mao, Kangshan; Milne, Richard I; Zhang, Libing; Peng, Yanling; Liu, Jianquan; Thomas, Philip; Mill, Robert R; Renner, Susanne S
2012-05-15
Most extant genus-level radiations in gymnosperms are of Oligocene age or younger, reflecting widespread extinction during climate cooling at the Oligocene/Miocene boundary [∼23 million years ago (Ma)]. Recent biogeographic studies have revealed many instances of long-distance dispersal in gymnosperms as well as in angiosperms. Acting together, extinction and long-distance dispersal are likely to erase historical biogeographic signals. Notwithstanding this problem, we show that phylogenetic relationships in the gymnosperm family Cupressaceae (162 species, 32 genera) exhibit patterns expected from the Jurassic/Cretaceous breakup of Pangea. A phylogeny was generated for 122 representatives covering all genera, using up to 10,000 nucleotides of plastid, mitochondrial, and nuclear sequence per species. Relying on 16 fossil calibration points and three molecular dating methods, we show that Cupressaceae originated during the Triassic, when Pangea was intact. Vicariance between the two subfamilies, the Laurasian Cupressoideae and the Gondwanan Callitroideae, occurred around 153 Ma (124-183 Ma), when Gondwana and Laurasia were separating. Three further intercontinental disjunctions involving the Northern and Southern Hemisphere are coincidental with or immediately followed the breakup of Pangea.
Insights into conifer giga-genomes.
De La Torre, Amanda R; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K; Jansson, Stefan; Jones, Steven J M; Keeling, Christopher I; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg
2014-12-01
Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.
Lovisetto, Alessandro; Baldan, Barbara; Pavanello, Anna; Casadoro, Giorgio
2015-07-16
The involvement of MADS-box genes of the AGAMOUS lineage in the formation of both flowers and fruits has been studied in detail in Angiosperms. AGAMOUS genes are expressed also in the reproductive structures of Gymnosperms, yet the demonstration of their role has been problematic because Gymnosperms are woody plants difficult to manipulate for physiological and genetic studies. Recently, it was shown that in the gymnosperm Ginkgo biloba an AGAMOUS gene was expressed throughout development and ripening of the fleshy fruit-like structures produced by this species around its seeds. Such fleshy structures are evolutionarily very important because they favor the dispersal of seeds through endozoochory. In this work a characterization of the Ginkgo gene was carried out by over-expressing it in tomato. In tomato plants ectopically expressing the Ginkgo AGAMOUS gene a macroscopic anomaly was observed only in the flower sepals. While the wild type sepals had a leaf-like appearance, the transgenic ones appeared connately adjoined at their proximal extremity and, concomitant with the development and ripening of the fruit, they became thicker and acquired a yellowish-orange color, thus indicating that they had undergone a homeotic transformation into carpel-like structures. Molecular analyses of several genes associated with either the control of ripening or the ripening syndrome in tomato fruits confirmed that the transgenic sepals behaved like ectopic fruits that could undergo some ripening, although the red color typical of the ripe tomato fruit was never achieved. The ectopic expression of the Ginkgo AGAMOUS gene in tomato caused the homeotic transformation of the transgenic sepals into carpel-like structures, and this showed that the gymnosperm gene has a genuine C function. In parallel with the ripening of fruits the related transgenic sepals became fleshy fruit-like structures that also underwent some ripening and such a result indicates that this C function gene might
Distribution of living Cupressaceae reflects the breakup of Pangea
Mao, Kangshan; Milne, Richard I.; Zhang, Libing; Peng, Yanling; Liu, Jianquan; Thomas, Philip; Mill, Robert R.; S. Renner, Susanne
2012-01-01
Most extant genus-level radiations in gymnosperms are of Oligocene age or younger, reflecting widespread extinction during climate cooling at the Oligocene/Miocene boundary [∼23 million years ago (Ma)]. Recent biogeographic studies have revealed many instances of long-distance dispersal in gymnosperms as well as in angiosperms. Acting together, extinction and long-distance dispersal are likely to erase historical biogeographic signals. Notwithstanding this problem, we show that phylogenetic relationships in the gymnosperm family Cupressaceae (162 species, 32 genera) exhibit patterns expected from the Jurassic/Cretaceous breakup of Pangea. A phylogeny was generated for 122 representatives covering all genera, using up to 10,000 nucleotides of plastid, mitochondrial, and nuclear sequence per species. Relying on 16 fossil calibration points and three molecular dating methods, we show that Cupressaceae originated during the Triassic, when Pangea was intact. Vicariance between the two subfamilies, the Laurasian Cupressoideae and the Gondwanan Callitroideae, occurred around 153 Ma (124–183 Ma), when Gondwana and Laurasia were separating. Three further intercontinental disjunctions involving the Northern and Southern Hemisphere are coincidental with or immediately followed the breakup of Pangea. PMID:22550176
Bedon, Frank; Grima-Pettenati, Jacqueline; Mackay, John
2007-01-01
Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences), and loblolly pine, Pinus taeda L. (five sequences). Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco. PMID:17397551
Scott, Alison Dawn; Stenz, Noah W M; Ingvarsson, Pär K; Baum, David A
2016-07-01
Polyploidy is common and an important evolutionary factor in most land plant lineages, but it is rare in gymnosperms. Coast redwood (Sequoia sempervirens) is one of just two polyploid conifer species and the only hexaploid. Evidence from fossil guard cell size suggests that polyploidy in Sequoia dates to the Eocene. Numerous hypotheses about the mechanism of polyploidy and parental genome donors have been proposed, based primarily on morphological and cytological data, but it remains unclear how Sequoia became polyploid and why this lineage overcame an apparent gymnosperm barrier to whole-genome duplication (WGD). We sequenced transcriptomes and used phylogenetic inference, Bayesian concordance analysis and paralog age distributions to resolve relationships among gene copies in hexaploid coast redwood and close relatives. Our data show that hexaploidy in coast redwood is best explained by autopolyploidy or, if there was allopolyploidy, it happened within the Californian redwood clade. We found that duplicate genes have more similar sequences than expected, given the age of the inferred polyploidization. Conflict between molecular and fossil estimates of WGD can be explained if diploidization occurred very slowly following polyploidization. We extrapolate from this to suggest that the rarity of polyploidy in gymnosperms may be due to slow diploidization in this clade. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!
Tosens, Tiina; Laanisto, Lauri; Niinemets, Ülo
2017-01-01
Abstract Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three methods previously used for across-species comparisons), and the underlying ultra-anatomical, morphological and chemical traits in 11 gymnosperm species varying in evolutionary history was performed to gain insight into the evolution of structural and physiological controls on photosynthesis at the lower return end of the leaf economics spectrum. Two primitive herbaceous species were included in order to provide greater evolutionary context. Low mesophyll conductance was the main limiting factor of photosynthesis in the majority of species. The strongest sources of limitation were extremely thick mesophyll cell walls, high chloroplast thickness and variation in chloroplast shape and size, and the low exposed surface area of chloroplasts per unit leaf area. In gymnosperms, the negative relationship between net assimilation per mass and leaf mass per area reflected an increased mesophyll cell wall thickness, whereas the easy-to-measure integrative trait of leaf mass per area failed to predict the underlying ultrastructural traits limiting mesophyll conductance. PMID:28419340
Code of Federal Regulations, 2014 CFR
2014-01-01
... form of any member of the plant kingdom 3 including, but not limited to, eukaryotic algae, mosses, club mosses, ferns, angiosperms, gymnosperms, and lichens (which contain algae) including any parts (e.g...
Code of Federal Regulations, 2013 CFR
2013-01-01
... form of any member of the plant kingdom 3 including, but not limited to, eukaryotic algae, mosses, club mosses, ferns, angiosperms, gymnosperms, and lichens (which contain algae) including any parts (e.g...
Code of Federal Regulations, 2012 CFR
2012-01-01
... form of any member of the plant kingdom 3 including, but not limited to, eukaryotic algae, mosses, club mosses, ferns, angiosperms, gymnosperms, and lichens (which contain algae) including any parts (e.g...
Triebwasser, Daniella J; Tharayil, Nishanth; Preston, Caroline M; Gerard, Patrick D
2012-12-01
By inhibiting soil enzymes, tannins play an important role in soil carbon (C) and nitrogen (N) mineralization. The role of tannin chemistry in this inhibitory process, in conjunction with enzyme classes and isoforms, is less well understood. Here, we compared the inhibition efficiencies of mixed tannins (MTs, mostly limited to angiosperms) and condensed tannins (CTs, produced mostly by gymnosperms) against the potential activity of β-glucosidase (BG), N-acetyl-glucosaminidase (NAG), and peroxidase in two soils that differed in their vegetation histories. Compared with CTs, MTs exhibited 50% more inhibition of almond (Prunus dulcis) BG activity and greater inhibition of the potential NAG activity in the gymnosperm-acclimatized soils. CTs exhibited lower BG inhibition in the angiosperm-acclimated soils, whereas both types of tannins exhibited higher peroxidase inhibition in the angiosperm soils than in gymnosperm soils. At all of the tested tannin concentrations, irrespective of the tannin type and site history, the potential peroxidase activity was inhibited two-fold more than the hydrolase activity and was positively associated with the redox-buffering efficiency of tannins. Our finding that the inhibitory activities and mechanisms of MTs and CTs are dependent on the vegetative history and enzyme class is novel and furthers our understanding of the role of tannins and soil isoenzymes in decomposition. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Klintenäs, Maria; Pin, Pierre A; Benlloch, Reyes; Ingvarsson, Pär K; Nilsson, Ove
2012-12-01
In flowering plants, homologs of the Arabidopsis phosphatidylethanolamine-binding protein (PEBP) FLOWERING LOCUS T (FT) are key components in controlling flowering time. We show here that, although FT homologs are found in all angiosperms with completed genome sequences, there is no evidence to date that FT-like genes exist in other groups of plants. Through phylogeny reconstructions and heterologous expression, we examined the biochemical function of the Picea (spruces) and Pinus (pines) PEBP families - two gymnosperm taxa phylogenetically distant from the angiosperms. We have defined a lineage of gymnosperm PEBP genes, termed the FT/TERMINAL FLOWER1 (TFL1)-like genes, that share sequence characteristics with both the angiosperm FT- and TFL1-like clades. When expressed in Arabidopsis, FT/TFL1-like genes repressed flowering, indicating that the proteins are biochemically more similar to the angiosperm TFL1-like proteins than to the FT-like proteins. This suggests that the regulation of the vegetative-to-reproductive switch might differ in gymnosperms compared with angiosperms. Molecular evolution studies suggest that plasticity at exon 4 contributes to the divergence of FT-like function in floral promotion. In addition, the presence of FT-like genes in basal angiosperms indicates that the FT-like function emerged at an early stage during the evolution of flowering plants as a means to regulate flowering time. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Flexas, Jaume; Carriquí, Marc; Coopman, Rafael E; Gago, Jorge; Galmés, Jeroni; Martorell, Sebastià; Morales, Fermín; Diaz-Espejo, Antonio
2014-09-01
The climate change conditions predicted for the end of the current century are expected to have an impact on the performance of plants under natural conditions. The variables which are foreseen to have a larger effect are increased CO2 concentration and temperature. Although it is generally considered CO2 assimilation rate could be increased by the increasing levels of CO2, it has been reported in previous studies that acclimation to high CO2 results in reductions of physiological parameters involved in photosynthesis, like the maximum carboxylation rate (Vc,max), stomatal conductance (gs) and mesophyll conductance to CO2 (gm). On the one hand, most of the previous modeling efforts have neglected the potential role played by the acclimation of gm to high CO2 and temperature. On the other hand, the effect of climate change on plant clades other than angiosperms, like ferns, has received little attention, and there are no studies evaluating the potential impact of increasing CO2 and temperature on these species. In this study we predicted responses of several representative species among angiosperms, gymnosperms and ferns to increasing CO2 and temperature. Our results show that species with lower photosynthetic capacity - such as some ferns and gymnosperms - would be proportionally more favored under these foreseen environmental conditions. The main reason for this difference is the lower diffusion limitation imposed by gs and gm in plants having high capacity for photosynthesis among the angiosperms, which reduces the positive effect of increasing CO2. However, this apparent advantage of low-diffusion species would be canceled if the two conductances - gs and gm - acclimate and are down regulated to high CO2, which is basically unknown, especially for gymnosperms and ferns. Hence, for a better understanding of different plant responses to future climate, studies are urged in which the actual photosynthetic response/acclimation to increased CO2 and temperature of
Pleiotropy, redundancy and the evolution of flowers.
Albert, Victor A; Oppenheimer, David G; Lindqvist, Charlotte
2002-07-01
Most angiosperm flowers are tightly integrated, functionally bisexual shoots that have carpels with enclosed ovules. Flowering plants evolved from within the gymnosperms, which lack this combination of innovations. Paradoxically, phylogenetic reconstructions suggest that the flowering plant lineage substantially pre-dates the evolution of flowers themselves. We provide a model based on known gene regulatory networks whereby positive selection on a single, partially redundant gene duplicate 'trapped' the ancestors of flower-bearing plants into the condensed, bisexual state approximately 130 million years ago. The LEAFY (LFY) gene of Arabidopsis encodes a master regulator that functions as the main conduit of environmental signals to the reproductive developmental program. We directly link the elimination of one LFY paralog, pleiotropically maintained in gymnosperms, to the sudden appearance of flowers in the fossil record.
Rothwell, Gar W; Stockey, Ruth A
2016-05-01
Discovery of cupulate ovules of Doylea tetrahedrasperma within a compact, compound seed cone highlights the rich diversity of fructification morphologies, pollination biologies, postpollination enclosure of seeds, and systematic diversity of Early Cretaceous gymnosperms. Specimens were studied using the cellulose acetate peel technique, three-dimensional reconstructions (in AVIZO), and morphological phylogenetic analyses (in TNT). Doylea tetrahedrasperma has bract/fertile short shoot complexes helically arranged within a compact, compound seed cone. Complexes diverge from the axis as a single unit and separate distally into a free bract tip and two sporophylls. Each sporophyll bears a single, abaxial seed, recurved toward the cone axis, that is enveloped after pollinaton by sporophyll tissue, forming a closed cupule. Ovules are pollinated by bisaccate grains captured by micropylar pollination horns. The unique combination of characters shown by D. tetrahedrasperma includes the presence of cupulate seeds borne in conifer-like compound seed cones, an ovuliferous scale analogue structurally equivalent to the ovulate stalk of Ginkgo biloba, gymnospermous pollination, and nearly complete enclosure of mature seeds. These features characterize the Doyleales ord. nov., clearly distinguish it from the seed fern order Corystospermales, and allow for recognition of another recently described Early Cretaceous seed plant as a second species in genus Doylea. A morphological phylogenetic analysis highlights systematic relationships of the Doyleales ord. nov. and emphasizes the explosive phylogenetic diversification of gymnosperms that was underway at the time when flowering plants may have originated and/or first began to radiate. © 2016 Botanical Society of America.
Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook
Shi, Jisen; Zhen, Yan; Zheng, Ren-Hua
2010-01-01
Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir. PMID:20363864
Tree height–diameter allometry across the United States
Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D
2015-01-01
The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325
Tree height-diameter allometry across the United States.
Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D
2015-03-01
The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales.
The late Cretaceous Arman flora of Magadan oblast, Northeastern Russia
NASA Astrophysics Data System (ADS)
Herman, A. B.; Golovneva, L. B.; Shczepetov, S. V.; Grabovsky, A. A.
2016-12-01
The Arman flora from the volcanogenic-sedimentary beds of the Arman Formation is systematically studied using materials from the Arman River basin and the Nelkandya-Khasyn interfluve (Magadan oblast, Northeastern Russia). Seventy-three species of fossil plants belonging to 49 genera are described. They consist of liverworts, horsetails, ferns, seed ferns, cycadaleans, bennettitaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms of uncertain systematic affinity, and angiosperms. The Arman flora shows a unique combination, with relatively ancient Early Cretaceous ferns and gymnosperms occurring alongside younger Late Cretaceous plants, primarily angiosperms. The similarity of the Arman flora to the Penzhina and Kaivayam floras of northwestern Kamchatka and the Tylpegyrgynai flora of the Pekul'nei Ridge allows the Arman flora to be dated as Turonian and Coniacian (Late Cretaceous), which is corroborated by isotopic (U-Pb and 40Ar/39Ar) age determination for the plant-bearing layers.
Ujino-Ihara, Tokuko; Kanamori, Hiroyuki; Yamane, Hiroko; Taguchi, Yuriko; Namiki, Nobukazu; Mukai, Yuzuru; Yoshimura, Kensuke; Tsumura, Yoshihiko
2005-12-01
To identify and characterize lineage-specific genes of conifers, two sets of ESTs (with 12791 and 5902 ESTs, representing 5373 and 3018 gene transcripts, respectively) were generated from the Cupressaceae species Cryptomeria japonica and Chamaecyparis obtusa. These transcripts were compared with non-redundant sets of genes generated from Pinaceae species, other gymnosperms and angiosperms. About 6% of tentative unique genes (Unigenes) of C. japonica and C. obtusa had homologs in other conifers but not angiosperms, and about 70% had apparent homologs in angiosperms. The calculated GC contents of orthologous genes showed that GC contents of coniferous genes are likely to be lower than those of angiosperms. Comparisons of the numbers of homologous genes in each species suggest that copy numbers of genes may be correlated between diverse seed plants. This correlation suggests that the multiplicity of such genes may have arisen before the divergence of gymnosperms and angiosperms.
Ontogenetic shifts in plant-plant interactions in a rare cycad within angiosperm communities.
Álvarez-Yépiz, Juan C; Búrquez, Alberto; Dovčiak, Martin
2014-06-01
Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant-plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.
Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion
Wu, Chung-Shien; Chaw, Shu-Miaw
2015-01-01
In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes. PMID:26116919
Code of Federal Regulations, 2010 CFR
2010-01-01
... written permit issued by the Administrator, for the introduction of a regulated article under conditions... mosses, ferns, angiosperms, gymnosperms, and lichens (which contain algae) including any parts (e.g... that all conditions contained in the permit and requirements in this part are complied with. A...
Code of Federal Regulations, 2011 CFR
2011-01-01
... written permit issued by the Administrator, for the introduction of a regulated article under conditions... mosses, ferns, angiosperms, gymnosperms, and lichens (which contain algae) including any parts (e.g... that all conditions contained in the permit and requirements in this part are complied with. A...
Pit membranes of Ephedra resemble gymnosperms more than angiosperms
Roland Dute; Lauren Bowen; Sarah Schier; Alexa Vevon; Troy Best; Maria Auad; Thomas Elder; Pauline Bouche; Steven Jansen
2014-01-01
Bordered pit pairs of Ephedra species were characterized using different types of microscopy. Pit membranes contained tori that did not stain for lignin. SEM and AFM views of the torus surface showed no plasmodesmatal openings, but branched, secondary plasmodesmata were occasionally noted using TEM in conjunction with ultrathin sections. The margo consisted of radial...
Increasing the quality and germination gymnosperms by photonics methods
NASA Astrophysics Data System (ADS)
Iakovlev, Alexey; Durova, Anastasia; Kascheev, Sergey; Grishkanich, Aleksandr; Mak, Andrey; Ruzankina, Julia
2017-02-01
The research of seed sowing qualities demonstrates the considerable influence of laser irradiation on seeds of different species that are essential for the forestry of Russian Federation. For experiment, we used seeds of Spruce fir (Pícea ábies) and Siberian larch (Lárix sibírica). The seeds were exposed to radiation of the following wavelengths: 405 nm 500 mW, 450 nm 3000 mW, 532 nm 550 mW, 640 nm 1000 mW. The results show that laser exposure of seeds has positive impact on growth rate, technical germination ability, root formation, and more over on establishment and root formation while grafting. In experiments is obtained increasing germination by 15% and the germination time to 10%.
Urban activities influence on Phytophthora species diversity in British Columbia, Canada
Angela Dale; Nicolas Feau; Julien Ponchart; Guillaume Bilodeau; Jean Berube; R.C. Hamelin
2017-01-01
Phytophthora de Bary, a genus of Oomycetes, is known as a plant pathogenic genus. The best-known species infect a wide range of hosts, including economically valuable angiosperm and gymnosperm tree species and important agricultural crops. Many Phytophthora are invasive and have been disseminated through nursery and...
The pine Pschi4 promoter directs wound-induced transcription
Haiguo Wu; Charles H. Michler; Liborio LaRussa; John M. Davis
1999-01-01
Mechanical wounding stimulates the accumulation of Pschi4 transcripts (encoding a putative extracellular chitinase) in pine trees. To gain insight into the transcriptional regulatory region(s) in this gymnosperm defense gene, the 5'-flanking region of Pschi4 was fused to the uidA reporter gene encoding -...
Ancient pinnate leaf mimesis among lacewings.
Wang, Yongjie; Liu, Zhiqi; Wang, Xin; Shih, Chungkun; Zhao, Yunyun; Engel, Michael S; Ren, Dong
2010-09-14
Insects have evolved diverse methods of predator avoidance, many of which implicate complex adaptations of their wings (e.g., Phylliidae, Nymphalidae, Notodontidae). Among these, angiosperm leaf mimicry is one of the most dramatic, although the historical origins of such modifications are unclear owing to a dearth of paleontological records. Here, we report evidence of pinnate leaf mimesis in two lacewings (Neuroptera): Bellinympha filicifolia Y. Wang, Ren, Liu & Engel gen. et sp. nov. and Bellinympha dancei Y. Wang, Ren, Shih & Engel, sp. nov., from the Middle Jurassic, representing a 165-million-year-old specialization between insects and contemporaneous gymnosperms of the Cycadales or Bennettitales. Furthermore, such lacewings demonstrate a preangiosperm origin for leaf mimesis, revealing a lost evolutionary scenario of interactions between insects and gymnosperms. The current fossil record suggests that this enigmatic lineage became extinct during the Early Cretaceous, apparently closely correlated with the decline of Cycadales and Bennettitales at that time, and perhaps owing to the changing floral environment resulted from the rise of flowering plants.
TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders
Tarr, D Ellen K; Alexander, Helen M
2009-01-01
Background Plant resistance (R) gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. Findings Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp.), a gymnosperm (C. revoluta) and a eudicot (C. canephora). We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. Conclusion We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales). Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids. PMID:19785756
Fan, Ruirui; Sun, Jun; Yang, Fuchun; Li, Man; Zheng, Yuan; Zhong, Quanlin; Cheng, Dongliang
2017-11-01
Empirical studies indicate that the exponents governing the scaling of plant respiration rates ( R ) with respect to biomass ( M ) numerically vary between three-fourth for adult plants and 1.0 for seedlings and saplings and are affected by nitrogen (N) and phosphorus (P) content. However, whether the scaling of R with respect to M (or N and P) varies among different phylogenetic groups (e.g., gymnosperms vs. angiosperms) or during the growing and dormant seasons remains unclear. We measured the whole-plant R and M , and N and P content of the seedlings of four woody species during the growing season (early October) and the dormant season (January). The data show that (i) the scaling exponents of R versus M , R versus N, and R versus P differed significantly among the four species, but (ii), not between the growing and dormant seasons for each of the four species, although (iii) the normalization constants governing the scaling relationships were numerically greater for the growing season compared to the dormant season. In addition, (iv) the scaling exponents of R versus M , R versus N, and R versus P were numerically larger for the two angiosperm species compared to those of the two gymnosperm species, (v) the interspecific scaling exponents for the four species were greater during the growing season than in the dormant season, and (vi), interspecifically, P scaled nearly isometric with N content. Those findings indicate that the metabolic scaling relationships among R , M , N, and P manifest seasonal variation and differ between angiosperm and gymnosperm species, that is, there is no single, canonical scaling exponent for the seedlings of woody species.
The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants.
Bewick, Adam J; Niederhuth, Chad E; Ji, Lexiang; Rohr, Nicholas A; Griffin, Patrick T; Leebens-Mack, Jim; Schmitz, Robert J
2017-05-01
The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.
Englund, Marie; Carlsbecker, Annelie; Engström, Peter; Vergara-Silva, Francisco
2011-01-01
The morphological variation among reproductive organs of extant gymnosperms is remarkable, especially among conifers. Several hypotheses concerning morphological homology between various conifer reproductive organs have been put forward, in particular in relation to the pine ovuliferous scale. Here, we use the expression patterns of orthologs of the ABC-model MADS-box gene AGAMOUS (AG) for testing morphological homology hypotheses related to organs of the conifer female cone. To this end, we first developed a tailored 3'RACE procedure that allows reliable amplification of partial sequences highly similar to gymnosperm-derived members of the AG-subfamily of MADS-box genes. Expression patterns of two novel conifer AG orthologs cloned with this procedure-namely PodAG and TgAG, obtained from the podocarp Podocarpus reichei and the yew Taxus globosa, respectively-are then further characterized in the morphologically divergent female cones of these species. The expression patterns of PodAG and TgAG are compared with those of DAL2, a previously discovered Picea abies (Pinaceae) AG ortholog. By treating the expression patterns of DAL2, PodAG, and TgAG as character states mapped onto currently accepted cladogram topologies, we suggest that the epimatium-that is, the podocarp female cone organ previously postulated as a "modified" ovuliferous scale-and the canonical Pinaceae ovuliferous scale can be legitimally conceptualized as "primary homologs." Character state mapping for TgAG suggests in turn that the aril of Taxaceae should be considered as a different type of organ. This work demonstrates how the interaction between developmental-genetic data and formal cladistic theory could fruitfully contribute to gymnosperm systematics. © 2011 Wiley Periodicals, Inc.
Application of conductive polymer analysis for wood and woody plant identifications
A. Dan Wilson; D.G. Lester; Charisse S. Oberle
2005-01-01
An electronic aroma detection (EAD) technology known as conductive polymer analysis (CPA) was evaluated as a means of identifying and discriminating woody samples of angiosperms and gymnosperms using an analytical instrument (electronic nose) that characterizes the aroma profiles of volatiles released from excised wood into sampled headspace. The instrument measures...
Plant ID. Agricultural Lesson Plans.
ERIC Educational Resources Information Center
Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.
This lesson plan is intended for use in conducting classes on plant identification. Presented first are a series of questions and answers designed to convey general information about the scientific classification of plants. The following topics are among those discussed: main types of plants; categories of vascular plants; gymnosperms and…
Gravitropisms and reaction woods of forest trees - evolution, functions and mechanisms
Andrew Groover
2016-01-01
The woody stems of trees perceive gravity to determine their orientation, and can produce reaction woods to reinforce or change their position. Together, graviperception and reaction woods play fundamental roles in tree architecture, posture control, and reorientation of stems displaced by wind or other environmental forces. Angiosperms and gymnosperms have...
Ran, Jin-Hua; Shen, Ting-Ting; Liu, Wen-Juan; Wang, Xiao-Quan
2013-01-01
Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH) subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1) All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2) the gymnosperm ‘SPCH’ genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm “SPCH” genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants. PMID:24244399
Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion.
Wu, Chung-Shien; Chaw, Shu-Miaw
2015-06-27
In angiosperms, gene conversion has been known to reduce the mutational load of plastid genomes (the plastomes). Particularly, more frequent gene conversions in inverted repeat (IR) than in single copy (SC) regions result in contrasting substitution rates between these two regions. However, little has been known about the effect of gene conversion in the evolution of gymnosperm plastomes. Cycads (Cycadophyta) are the second largest gymnosperm group. Evolutionary study of their plastomes is limited to the basal cycad genus, Cycas. In this study, we addressed three questions. 1) Do the plastomes of other cycad genera evolve slowly as previously observed in the plastome of Cycas taitungensis? 2) Do substitution rates differ between their SC and IR regions? And 3) Does gene conversion occur in the cycad plastomes? If yes, is it AT-biased or GC-biased? Plastomes of eight species from other eight genera of cycads were sequenced. These plastomes are highly conserved in genome organization. Excluding ginkgo, cycad plastomes have significantly lower synonymous and nonsynonymous substitution rates than other gymnosperms, reflecting their evolutionary stasis in nucleotide mutations. In the IRs of cycad plastomes, the reduced substitution rates and GC-biased mutations are associated with a GC-biased gene conversion (gBGC) mechanism. Further investigations suggest that in cycads, gBGC is able to rectify plastome-wide mutations. Therefore, this study is the first to uncover the plastomic gBGC in seed plants. We also propose a gBGC model to interpret the dissimilar evolutionary patterns as well as the compositionally biased mutations in the SC and IR regions of cycad plastomes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Current trends and future directions in flower development research
Scutt, Charlie P.; Vandenbussche, Michiel
2014-01-01
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the
Patterns of Gondwana plant colonisation anddiversification
NASA Astrophysics Data System (ADS)
Anderson, J. M.; Anderson, H. M.; Archangelsky, S.; Bamford, M.; Chandra, S.; Dettmann, M.; Hill, R.; McLoughlin, S.; Rösler, O.
Charting the broad patterns of vascular plant evolution for Gondwana againstthe major global environmental shifts and events is attempted here for the first time. This is based on the analysis of the major vascular plant-bearing formations of the southern continents (plus India) correlated against the standard geological time-scale. Australia, followed closely by South America, are shown to yield by far the most complete sequences of productive strata. Ten seminal turnover pulses in the unfolding evolutionary picture are identified and seen to be linked to continental drift, climate change and mass global extinctions. The rise of vascular plants along the tropical belt, for instance, followed closely after the end-Ordovician warming and extinction. Equally remarkable is that the Late Devonian extinction may have caused both the terrestrialisation of the vertebrates and the origin of the true gymnosperms. The end-Permian extinction, closure of Iapetus, together with warming, appears to have set in motion an unparalleled, explosive, gymnosperm radiation; whilst the Late Triassic extinction dramatically curtailed it. It is suggested that the latitudinal diversity gradient clearly recognised today, where species richness increases towards the tropics, may have been partly reversed during phases of Hot House climate. Evidence hints at this being particularly so at the heyday of the gymnosperms in the Late Triassic super-Hot House world. As for the origin of terrestrial, vascular, plant life, the angiosperms seem closely linked to a phase of marked shift from Ice House to Hot House. Insect and tetrapod evolutionary patterns are discussed in the context of the plants providing the base of the ever-changing ecosystems. Intimate co-evolution is often evident. This isn't always the case, for example the non-linkage between the dominant, giant, long-necked, herbivorous sauropod dinosaurs and the dramatic radiation of the flowering plants in the Mid Cretaceous.
Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L
2008-09-01
Seedlings of several species of gymnosperm trees, angiosperm trees, and angiosperm lianas were grown under tropical field conditions in the Republic of Panama; physiological processes controlling plant C and water fluxes were assessed across this functionally diverse range of species. Relative growth rate, r, was primarily controlled by the ratio of leaf area to plant mass, of which specific leaf area was a key component. Instantaneous photosynthesis, when expressed on a leaf-mass basis, explained 69% of variation in r (P < 0.0001, n = 94). Mean r of angiosperms was significantly higher than that of the gymnosperms; within angiosperms, mean r of lianas was higher than that of trees. Whole-plant nitrogen use efficiency was also significantly higher in angiosperm than in gymnosperm species, and was primarily controlled by the rate of photosynthesis for a given amount of leaf nitrogen. Whole-plant water use efficiency, TE(c), varied significantly among species, and was primarily controlled by c(i)/c(a), the ratio of intercellular to ambient CO(2) partial pressures during photosynthesis. Instantaneous measurements of c(i)/c(a) explained 51% of variation in TE(c) (P < 0.0001, n = 94). Whole-plant (13)C discrimination also varied significantly as a function of c(i)/c(a) (R(2) = 0.57, P < 0.0001, n = 94), and was, accordingly, a good predictor of TE(c). The (18)O enrichment of stem dry matter was primarily controlled by the predicted (18)O enrichment of evaporative sites within leaves (R(2) = 0.61, P < 0.0001, n = 94), with some residual variation explained by mean transpiration rate. Measurements of carbon and oxygen stable isotope ratios could provide a useful means of parameterizing physiological models of tropical forest trees.
Transcript profiling of a novel plant meristem, the monocot cambium
Matthew Zinkgraf; Suzanne Gerttula; Andrew Groover
2017-01-01
While monocots lack the ability to produce a vascular cambium or woody growth, some monocot lineages evolved a novel lateral meristem, the monocot cambium, which supports secondary radial growth of stems. In contrast to the vascular cambium found in woody angiosperm and gymnosperm species, the monocot cambium produces secondary vascular bundles, which have an...
Ephedra L.: ephedra or Mormon-tea
Susan E. Meyer
2008-01-01
The genus Ephedra - known in much of North America as Mormontea - comprises about 40 shrubby species that are found throughout the arid and semiarid regions of the Northern Hemisphere. Ephedras are gymnosperms that are characterized by their greatly reduced, bractlike leaves and their evergreen, broomlike photosynthetic stems. They are common plants in the semiarid...
Gravitropisms and reaction woods of forest trees - evolution, functions and mechanisms.
Groover, Andrew
2016-08-01
Contents 790 I. 790 II. 792 III. 795 IV. 797 V. 798 VI. 800 VII. 800 800 References 800 SUMMARY: The woody stems of trees perceive gravity to determine their orientation, and can produce reaction woods to reinforce or change their position. Together, graviperception and reaction woods play fundamental roles in tree architecture, posture control, and reorientation of stems displaced by wind or other environmental forces. Angiosperms and gymnosperms have evolved strikingly different types of reaction wood. Tension wood of angiosperms creates strong tensile force to pull stems upward, while compression wood of gymnosperms creates compressive force to push stems upward. In this review, the general features and evolution of tension wood and compression wood are presented, along with descriptions of how gravitropisms and reaction woods contribute to the survival and morphology of trees. An overview is presented of the molecular and genetic mechanisms underlying graviperception, initial graviresponse and the regulation of tension wood development in the model angiosperm, Populus. Critical research questions and new approaches are discussed. No claim to US Government works New Phytologist © 2016 New Phytologist Trust.
Evolution of the YABBY gene family in seed plants.
Finet, Cédric; Floyd, Sandra K; Conway, Stephanie J; Zhong, Bojian; Scutt, Charles P; Bowman, John L
2016-01-01
Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants. © 2016 Wiley Periodicals, Inc.
Ancient pinnate leaf mimesis among lacewings
Wang, Yongjie; Liu, Zhiqi; Wang, Xin; Shih, Chungkun; Zhao, Yunyun; Engel, Michael S.; Ren, Dong
2010-01-01
Insects have evolved diverse methods of predator avoidance, many of which implicate complex adaptations of their wings (e.g., Phylliidae, Nymphalidae, Notodontidae). Among these, angiosperm leaf mimicry is one of the most dramatic, although the historical origins of such modifications are unclear owing to a dearth of paleontological records. Here, we report evidence of pinnate leaf mimesis in two lacewings (Neuroptera): Bellinympha filicifolia Y. Wang, Ren, Liu & Engel gen. et sp. nov. and Bellinympha dancei Y. Wang, Ren, Shih & Engel, sp. nov., from the Middle Jurassic, representing a 165-million-year-old specialization between insects and contemporaneous gymnosperms of the Cycadales or Bennettitales. Furthermore, such lacewings demonstrate a preangiosperm origin for leaf mimesis, revealing a lost evolutionary scenario of interactions between insects and gymnosperms. The current fossil record suggests that this enigmatic lineage became extinct during the Early Cretaceous, apparently closely correlated with the decline of Cycadales and Bennettitales at that time, and perhaps owing to the changing floral environment resulted from the rise of flowering plants. PMID:20805491
A resource at the crossroads: a history of the central hardwoods
Ray R., Jr. Hicks
1997-01-01
The Central Hardwood Forest is an oak dominated deciduous forest that stretches from Massachusetts to Arkansas and occurs in hilly to mountainous terrain. It is the largest and most extensive temperate deciduous forest in the world. During the past 20 million years or so, angiosperms have been gradually replacing gymnosperms as the dominant plant form on earth, and...
Atomic force microscopy of torus-bearing pit membranes
Roland R. Dute; Thomas Elder
2011-01-01
Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...
Micropropagation. (Latest citations from the Life Sciences Collection database). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
The bibliography contains citations concerning micropropagation of various plants. Topics examine micropropagation culture media, automation systems, use of growth stimulants and cytokinins, industrial micropropagation, and production of disease-free plants. Micropropagation of ornamental trees, potato, blueberry, apple, algae, citrus, grape, and gymnosperms are described. (Contains a minimum of 61 citations and includes a subject term index and title list.)
C. Plomion; D. Chagne; D. Pot; S. Kumar; P.L. Wilcox; R.D. Burdon; D. Prat; D.G. Peterson; J. Paiva; P. Chaumeil; G.G. Vendramin; F. Sebastiani; C.D. Nelson; C.S. Echt; O. Savolainen; T.L. Kubisiak; M.T. Cervera; N. de Maria; M.N. Islam-Faridi
2007-01-01
Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia....
Force-displacement measurements of earlywood bordered pits using a mesomechanical tester
Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft
2015-01-01
The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present forceâdisplacement measurements for pit membranes of circular bordered pits, collected on a...
Wolff, R L; Christie, W W; Pédrono, F; Marpeau, A M; Tsevegsüren, N; Aitzetmüller, K; Gunstone, F D
1999-08-01
The fatty acid compositions of the seed lipids from four Ephedra species, E. nevadensis, E. viridis, E. przewalskii, and E. gerardiana (four gymnosperm species belonging to the Cycadophytes), have been established with an emphasis on delta5-unsaturated polymethylene-interrupted fatty acids (delta5-UPIFA). Mass spectrometry of the picolinyl ester derivatives allowed characterization of 5,9- and 5,11-18:2; 5,9,12-18:3; 5,9,12,15-18:4; 5,11-20:2; 5,11,14-20:3; and 5,11,14,17-20:4 acids. Delta5-UPIFA with a delta11-ethylenic bond (mostly C20 acids) were in higher proportions than delta5-UPIFA with a delta9 double bond (exclusively C18 acids) in all species. The total delta5-UPIFA content was 17-31% of the total fatty acids, with 5,11,14-20:3 and 5,11,14,17-20:4 acids being the principal delta5-UPIFA isomers. The relatively high level of cis-vaccenic (11-18:1) acid found in Ephedra spp. seeds, the presence of its delta5-desaturation product, 5,11-18:2 acid (proposed trivial name: ephedrenic acid), and of its elongation product, 13-20:1 acid, were previously shown to occur in a single other species, Ginkgo biloba, among the approximately 170 gymnosperm species analyzed so far. Consequently, Ephedraceae and Coniferophytes (including Ginkgoatae), which have evolved separately since the Devonian period (approximately 300 million yr ago), have kept in common the ability to synthesize C18 and C20 delta5-UPIFA. We postulate the existence of two delta5-desaturases in gymnosperm seeds, one possibly specific for unsaturated acids with a delta9-ethylenic bond, and the other possibly specific for unsaturated acids with a delta11-ethylenic bond. Alternatively, the delta5-desaturases might be specific for the chain length with C18 unsaturated acids on the one hand and C20 unsaturated acids on the other hand. The resulting hypothetical pathways for the biosynthesis of delta5-UPIFA in gymnosperm seeds are only distinguished by the position of 11-18:1 acid. Moreover, 13C nuclear
A transcriptomics investigation into pine reproductive organ development.
Niu, Shihui; Yuan, Huwei; Sun, Xinrui; Porth, Ilga; Li, Yue; El-Kassaby, Yousry A; Li, Wei
2016-02-01
The development of reproductive structures in gymnosperms is still poorly studied because of a lack of genomic information and useful genetic tools. The hermaphroditic reproductive structure derived from unisexual gymnosperms is an even less studied aspect of seed plant evolution. To extend our understanding of the molecular mechanism of hermaphroditism and the determination of sexual identity of conifer reproductive structures in general, unisexual and bisexual cones from Pinus tabuliformis were profiled for gene expression using 60K microarrays. Expression patterns of genes during progression of sexual cone development were analysed using RNA-seq. The results showed that, overall, the transcriptomes of male structures in bisexual cones were more similar to those of female cones. However, the expression of several MADS-box genes in the bisexual cones was similar to that of male cones at the more juvenile developmental stage, while despite these expression shifts, male structures of bisexual cones and normal male cones were histologically indistinguishable and cone development was continuous. This study represents a starting point for in-depth analysis of the molecular regulation of cone development and also the origin of hermaphroditism in pine. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The Origin of Floral Organ Identity Quartets
van Mourik, Hilda; Kaufmann, Kerstin
2017-01-01
The origin of flowers has puzzled plant biologists ever since Darwin referred to their sudden appearance in the fossil record as an abominable mystery. Flowers are considered to be an assembly of protective, attractive, and reproductive male and female leaf-like organs. Their origin cannot be understood by a morphological comparison to gymnosperms, their closest relatives, which develop separate male or female cones. Despite these morphological differences, gymnosperms and angiosperms possess a similar genetic toolbox consisting of phylogenetically related MADS domain proteins. Using ancestral MADS domain protein reconstruction, we trace the evolution of organ identity quartets along the stem lineage of crown angiosperms. We provide evidence that current floral quartets specifying male organ identity, which consist of four types of subunits, evolved from ancestral complexes of two types of subunits through gene duplication and integration of SEPALLATA proteins just before the origin of flowering plants. Our results suggest that protein interaction changes underlying this compositional shift were the result of a gradual and reversible evolutionary trajectory. Modeling shows that such compositional changes may have facilitated the evolution of the perfect, bisexual flower. PMID:28100708
The Origin of Floral Organ Identity Quartets.
Ruelens, Philip; Zhang, Zhicheng; van Mourik, Hilda; Maere, Steven; Kaufmann, Kerstin; Geuten, Koen
2017-02-01
The origin of flowers has puzzled plant biologists ever since Darwin referred to their sudden appearance in the fossil record as an abominable mystery. Flowers are considered to be an assembly of protective, attractive, and reproductive male and female leaf-like organs. Their origin cannot be understood by a morphological comparison to gymnosperms, their closest relatives, which develop separate male or female cones. Despite these morphological differences, gymnosperms and angiosperms possess a similar genetic toolbox consisting of phylogenetically related MADS domain proteins. Using ancestral MADS domain protein reconstruction, we trace the evolution of organ identity quartets along the stem lineage of crown angiosperms. We provide evidence that current floral quartets specifying male organ identity, which consist of four types of subunits, evolved from ancestral complexes of two types of subunits through gene duplication and integration of SEPALLATA proteins just before the origin of flowering plants. Our results suggest that protein interaction changes underlying this compositional shift were the result of a gradual and reversible evolutionary trajectory. Modeling shows that such compositional changes may have facilitated the evolution of the perfect, bisexual flower. © 2017 American Society of Plant Biologists. All rights reserved.
The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes
Li, Jia; Su, Yingjuan; Wang, Ting
2018-01-01
The plastid accD gene encodes a subunit of the acetyl-CoA carboxylase (ACCase) enzyme. The length of accD gene has been supposed to expand in Cryptomeria japonica, Taiwania cryptomerioides, Cephalotaxus, Taxus chinensis, and Podocarpus lambertii, and the main reason for this phenomenon was the existence of tandemly repeated sequences. However, it is still unknown whether the accD gene length in other cupressophytes has expanded. Here, in order to investigate how widespread this phenomenon was, 18 accD sequences and its surrounding regions of cupressophyte were sequenced and analyzed. Together with 39 GenBank sequence data, our taxon sampling covered all the extant gymnosperm orders. The repetitive elements and substitution rates of accD among 57 gymnosperm species were analyzed, the results show: (1) Reading frame length of accD gene in 18 cupressophytes species has also expanded. (2) Many repetitive elements were identified in accD gene of cupressophyte lineages. (3) The synonymous and non-synonymous substitution rates of accD were accelerated in cupressophytes. (4) accD was located in rearrangement endpoints. These results suggested that repetitive elements may mediate the chloroplast genome rearrangement and accelerated the substitution rates. PMID:29731764
NASA Astrophysics Data System (ADS)
Salard-Cheboldaeff, M.; Dejax, J.
The succession of spore-pollen assemblages during the Cretaceous and Tertiary, as defined in each of the basin from Senegal to Angola, gives the possibility to consider the intertropical African flora evolution for the past 120 M.a. During the Early Cretaceous, xeric-adapted gymnosperms and various ferns were predominant the flora which nevertheless comprises previously unknown early angiosperm pollen. During the Middle Cretaceous, gymnospers were gradually replaced by angiosperms; these became more and more abundant, along with the diversification of new genera and species. During the Paleocene, the radiation of the monocotyledons (mainly that of the palm-trees) as well as a greater diversification among the dicotyledons and ferms are noteworthy. Since gymnosperms had almost disappeared by the Eocene, the diversification of the dicotyledons went on until the neogene, when all extinct pollen types are already present. These important modifications of the vegetation reflect evolutionary trends as well as climatic changes during the Cretaceous: the climate, firstly hot, dry and perhaps arid, did probably induced salt deposition, and later became gradually more humid under oceanic influences which arose in connection with the Gondwana break-up.
Mark E. Harmon; Becky Fasth; Christopher W. Woodall; Jay Sexton
2013-01-01
The degree to which carbon concentration (CC) of woody detritus varies by tree taxa, stage of decay, tissue type (i.e., bark versus wood), and vertical orientation was examined in samples of 60 tree species from the Northern Hemisphere. The mean CC of 257 study samples was 49.3% with a range of 43.4-56.8%. Angiosperms had a significantly lower CC than gymnosperms, with...
Current trends and future directions in flower development research.
Scutt, Charlie P; Vandenbussche, Michiel
2014-11-01
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the
Ruiz-Benito, Paloma; Ratcliffe, Sophia; Zavala, Miguel A; Martínez-Vilalta, Jordi; Vilà-Cabrera, Albert; Lloret, Francisco; Madrigal-González, Jaime; Wirth, Christian; Greenwood, Sarah; Kändler, Gerald; Lehtonen, Aleksi; Kattge, Jens; Dahlgren, Jonas; Jump, Alistair S
2017-10-01
Intense droughts combined with increased temperatures are one of the major threats to forest persistence in the 21st century. Despite the direct impact of climate change on forest growth and shifts in species abundance, the effect of altered demography on changes in the composition of functional traits is not well known. We sought to (1) quantify the recent changes in functional composition of European forests; (2) identify the relative importance of climate change, mean climate and forest development for changes in functional composition; and (3) analyse the roles of tree mortality and growth underlying any functional changes in different forest types. We quantified changes in functional composition from the 1980s to the 2000s across Europe by two dimensions of functional trait variation: the first dimension was mainly related to changes in leaf mass per area and wood density (partially related to the trait differences between angiosperms and gymnosperms), and the second dimension was related to changes in maximum tree height. Our results indicate that climate change and mean climatic effects strongly interacted with forest development and it was not possible to completely disentangle their effects. Where recent climate change was not too extreme, the patterns of functional change generally followed the expected patterns under secondary succession (e.g. towards late-successional short-statured hardwoods in Mediterranean forests and taller gymnosperms in boreal forests) and latitudinal gradients (e.g. larger proportion of gymnosperm-like strategies at low water availability in forests formerly dominated by broad-leaved deciduous species). Recent climate change generally favoured the dominance of angiosperm-like related traits under increased temperature and intense droughts. Our results show functional composition changes over relatively short time scales in European forests. These changes are largely determined by tree mortality, which should be further
Lignin geochemistry of a Late Quaternary sediment core from Lake Washington
NASA Astrophysics Data System (ADS)
Hedges, John I.; Ertel, John R.; Leopold, Estella B.
1982-10-01
Long-term lignin stability and paleovegetation patterns were investigated using CuO oxidation products of sediments from an 11 m core of Late Quaternary sediment collected from the mid-basin of Lake Washington, Washington State. Relatively constant yields of lignin-derived phenols (normalized to organic carbon) from the entire core indicate minimal in situ lignin degradation over the last 13,000 years. Compositional patterns within the phenolic suite and increased corresponding yields from baseextracted sediments indicate that sedimentary lignins are present predominantly as well preserved plant tissue fragments. Abundance patterns of vanillyl, syringyl, and cinnamyl phenols record four distinct sequences within the core characterized by: (a) high concentrations of gymnosperm wood in a basal horizon of glacial flour, 11-10 m; (b) an essentially pure mixture of nonwoody angiosperm tissues in late Pleistocene sediments, 10-8 m; (c) relatively high concentrations of angiosperm woods in the bottom half of a limnic peat sequence deposited approximately 10,000-7,000 years B.P., 8-4 m; and (d) a progressive enrichment in gymnosperm woods at the expense of angiosperm woods over the last 7,000 years in the upper limnic peat, 4-0 m. Vascular plant tissues account for less than half the total sedimentary organic carbon throughout the core.
Leaf energy balance modelling as a tool to infer habitat preference in the early angiosperms.
Lee, Alexandra P; Upchurch, Garland; Murchie, Erik H; Lomax, Barry H
2015-03-22
Despite more than a century of research, some key aspects of habitat preference and ecology of the earliest angiosperms remain poorly constrained. Proposed growth ecology has varied from opportunistic weedy species growing in full sun to slow-growing species limited to the shaded understorey of gymnosperm forests. Evidence suggests that the earliest angiosperms possessed low transpiration rates: gas exchange rates for extant basal angiosperms are low, as are the reconstructed gas exchange rates for the oldest known angiosperm leaf fossils. Leaves with low transpirational capacity are vulnerable to overheating in full sun, favouring the hypothesis that early angiosperms were limited to the shaded understorey. Here, modelled leaf temperatures are used to examine the thermal tolerance of some of the earliest angiosperms. Our results indicate that small leaf size could have mitigated the low transpirational cooling capacity of many early angiosperms, enabling many species to survive in full sun. We propose that during the earliest phases of the angiosperm leaf record, angiosperms may not have been limited to the understorey, and that some species were able to compete with ferns and gymnosperms in both shaded and sunny habitats, especially in the absence of competition from more rapidly growing and transpiring advanced lineages of angiosperms.
Silva, Catarina S; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe
2015-01-01
Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These "developmental control genes" and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction - LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.
Silva, Catarina S.; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe
2016-01-01
Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These “developmental control genes” and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction – LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower. PMID:26779227
An evolutionary scenario for the origin of flowers.
Frohlich, Michael W
2003-07-01
The Mostly Male theory is the first to use evidence from gene phylogenies, genetics, modern plant morphology and fossils to explain the evolutionary origin of flowers. It proposes that flower organization derives more from the male structures of ancestral gymnosperms than from female structures. The theory arose from a hypothesis-based study. Such studies are the most likely to generate testable evolutionary scenarios, which should be the ultimate goal of evo-devo.
2014-01-01
Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade
The Relationship Between Nuclear DNA Content and Leaf Strategy in Seed Plants
MORGAN, HUW D.; WESTOBY, MARK
2005-01-01
• Background and Aims Species' 2C-values (mass of DNA in G1 phase 2n nuclei) vary by at least four orders of magnitude among seed plants. The 2C-value has been shown to be co-ordinated with a number of other species traits, and with environmental variables. A prediction that species 2C-values are negatively related to leaf life span (LL) and leaf mass per area (LMA) is tested. These leaf traits are components of a major dimension of ecological variation among plant species. • Methods Flow cytometry was used to measure the 2C-values for 41 Australian seed plant species, 40 of which were new to the literature. Where possible, LL and LMA data from the global literature were combined with 2C-values from our data set and online C-value databases. • Key Results Across all species, weak positive relationships were found between 2C-values and both LL and LMA; however, these did not reflect the relationships within either angiosperms or gymnosperms. Across 59 angiosperm species, there were weak negative relationships between 2C-values and both LL (r2 = 0·13, P = 0·005) and LMA (r2 = 0·15, P = 0·002). These relationships were the result of shifts to longer LL and greater LMA in woody compared with herbaceous growth forms, with no relationships present within growth forms. It was not possible to explain a positive relationship between 2C-values and LMA (r2 = 0·30, P = 0·024) across 17 gymnosperm species. The 2C-value was not related to LL or LMA either across species within orders (except for LMA among Pinales), or as radiation divergences in a model phylogeny. • Conclusions Gymnosperms appear to vary along a spectrum different from angiosperms. Among angiosperms, weak negative cross-species relationships were associated with growth form differences, and traced to a few divergences deep in the model phylogeny. These results suggest that among angiosperms, nuclear DNA content and leaf strategy are unrelated. PMID:16230323
Palynomorphs of Permian Gondwana coal from borehole GDH-38, Barapukuria Coal Basin, Bangladesh
Akhtar, A.; Kosanke, R.M.
2000-01-01
Thirty-two core samples of Permian Gondwana coal from three coal beds of borehole GDH-38, Barapukuria Coal Basin, Dinajpur, the north-northwestern part of Bangladesh, have been collected for palynological analysis. All samples except one yielded palynomorphs and some samples contain well-preserved and abundant palynomorphs of the gymnospermal and cryptogamic groups that are considered to be useful for future correlation studies. The lower coal bed (331.6-372.5 m) can easily be differentiated from the upper two coal beds by the presence of Alisporites, Cordaitina, Corisaccites, Hamiapollenites, Leuckisporites, Nuskoisporites, Tumoripollenites, Vestgisporites and Vittatina. It is difficult to palynologically differentiate the middle (198.1-208 m) and upper (162.3-172.9 m) coal beds as they contain a very limited number of specimens by which they can be identified. The middle bed is distinguished by the presence of Microbaculispora and Weylandites and the upper bed by the presence of a single taxon Acanthotriletes. Some of the vesiculate or saccate taxa extracted from these coal beds are typical of those occurring in Permian strata of Gondwana in India, South Africa, South America, Russia, Australia and Antarctica. They are thought to be derived from Glossopteris flora, which is characterised by an abundance of Pteridospermic plants of the gymnosperm group. ?? 2000 Elsevier Science Limited. All rights reserved.
Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms.
Belcher, Claire M; Hudspith, Victoria A
2017-02-01
Angiosperms evolved and diversified during the Cretaceous period. Early angiosperms were short-stature weedy plants thought to have increased fire frequency and mortality in gymnosperm forest, aiding their own expansion. However, no explorations have considered whether the range of novel fuel types that diversified throughout the Cretaceous also altered fire behaviour, which should link more strongly to mortality than fire frequency alone. We measured ignitability and heat of combustion in analogue Cretaceous understorey fuels (conifer litter, ferns, weedy and shrubby angiosperms) and used these data to model palaeofire behaviour. Variations in ignition, driven by weedy angiosperms alone, were found to have been a less important feedback to changes in Cretaceous fire activity than previously estimated. Our model estimates suggest that fires in shrub and fern understories had significantly greater fireline intensities than those fuelled by conifer litter or weedy angiosperms, and whilst fern understories supported the most rapid fire spread, angiosperm shrubs delivered the largest amount of heat per unit area. The higher fireline intensities predicted by the models led to estimates of enhanced scorch of the gymnosperm canopy and a greater chance of transitioning to crown fires. Therefore, changes in fire behaviour driven by the addition of new Cretaceous fuel groups may have assisted the angiosperm expansion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The petunia AGL6 gene has a SEPALLATA-like function in floral patterning.
Rijpkema, Anneke S; Zethof, Jan; Gerats, Tom; Vandenbussche, Michiel
2009-10-01
SEPALLATA (SEP) MADS-box genes are required for the regulation of floral meristem determinacy and the specification of sepals, petals, stamens, carpels and ovules, specifically in angiosperms. The SEP subfamily is closely related to the AGAMOUS LIKE6 (AGL6) and SQUAMOSA (SQUA) subfamilies. So far, of these three groups only AGL6-like genes have been found in extant gymnosperms. AGL6 genes are more similar to SEP than to SQUA genes, both in sequence and in expression pattern. Despite the ancestry and wide distribution of AGL6-like MADS-box genes, not a single loss-of-function mutant exhibiting a clear phenotype has yet been reported; consequently the function of AGL6-like genes has remained elusive. Here, we characterize the Petunia hybrida AGL6 (PhAGL6, formerly called PETUNIA MADS BOX GENE4/pMADS4) gene, and show that it functions redundantly with the SEP genes FLORAL BINDING PROTEIN2 (FBP2) and FBP5 in petal and anther development. Moreover, expression analysis suggests a function for PhAGL6 in ovary and ovule development. The PhAGL6 and FBP2 proteins interact in in vitro experiments overall with the same partners, indicating that the two proteins are biochemically quite similar. It will be interesting to determine the functions of AGL6-like genes of other species, especially those of gymnosperms.
Novelties of the flowering plant pollen tube underlie diversification of a key life history stage.
Williams, Joseph H
2008-08-12
The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary lability of angiosperm reproduction, and hence to their diversification. In gymnosperms pollen reception must be near the egg largely because sperm swim or are transported by pollen tubes that grow at very slow rates (< approximately 20 microm/h). In contrast, pollen tube growth rates of taxa in ancient angiosperm lineages (Amborella, Nuphar, and Austrobaileya) range from approximately 80 to 600 microm/h. Comparative analyses point to accelerated pollen tube growth rate as a critical innovation that preceded the origin of the true closed carpel, long styles, multiseeded ovaries, and, in monocots and eudicots, much faster pollen tube growth rates. Ancient angiosperm pollen tubes all have callosic walls and callose plugs (in contrast, no gymnosperms have these features). The early association of the callose-walled growth pattern with accelerated pollen tube growth rate underlies a striking repeated pattern of faster and longer-distance pollen tube growth often within solid pathways in phylogenetically derived angiosperms. Pollen tube innovations are a key component of the spectacular diversification of carpel (flower and fruit) form and reproductive cycles in flowering plants.
NASA Astrophysics Data System (ADS)
Ogden, John; Newnham, Rewi M.; Palmer, Jonathan G.; Serra, Richard G.; Mitchell, Neil D.
1993-01-01
Twenty-two plant species were identified from leaves, fruits, or flowers, and 41 taxa from pollen, present in a macrofossil (leaf) layer in a peat swamp formed on Pleistocene dunes on the Aupouri Peninsula in northern New Zealand. Eight genera of gymnosperms are represented. With the exception of Lagarostrobos colensoi, all tree species abundant as macrofossils are also common as pollen. Macrofossils enabled the on-site flora to be compared with the regional flora, represented by the pollen rain. Studies on leaf decomposition rates indicate bias toward sclerophyllous species in the macrofossils. Identification to species level and treering data from preserved kauri logs allow quantitative comparisons with similar extant communities. Current climatic conditions at those analogue sites are cooler (2° to 3°C), cloudier (11%), and much wetter (85%) than those currently prevailing on the Aupouri Peninsula. Dendrochronological results also suggest that the far north of New Zealand had a cooler, cloudier, and wetter climate at the time the fossil leaf assemblage was formed. Radiocarbon dates from possibly contaminated samples suggest that a diverse mixed gymnosperm/angiosperm forest, dominated by kauri ( Agathis australis), was present about (or sometime before) 41,00034,000 yr B.P., when the leaf layer was formed. Similar temperature reductions have been postulated for this period in New Zealand by other authors.
Zuccolo, Andrea; Scofield, Douglas G; De Paoli, Emanuele; Morgante, Michele
2015-08-15
Long Terminal Repeat retroelements (LTR-RTs) are a major component of many plant genomes. Although well studied and described in angiosperms, their features and dynamics are poorly understood in gymnosperms. Representative complete copies of a Ty1-copia element isolate in Picea abies and named PARTC were identified in six other conifer species (Picea glauca, Pinus sylvestris, Pinus taeda, Abies sibirica, Taxus baccata and Juniperus communis) covering more than 200 million years of evolution. Here we characterized the structure of this element, assessed its abundance across conifers, studied the modes and timing of its amplification, and evaluated the degree of conservation of its extant copies at nucleotide level over distant species. We demonstrated that the element is ancient, abundant, widespread and its paralogous copies are present in the genera Picea, Pinus and Abies as an LTR-RT family. The amplification leading to the extant copies of PARTC occurred over long evolutionary times spanning 10s of MY and mostly took place after the speciation of the conifers analyzed. The level of conservation of PARTC is striking and may be explained by low substitution rates and limited removal mechanisms for LTR-RTs. These PARTC features and dynamics are representative of a more general scenario for LTR-RTs in gymnosperms quite different from that characterizing the vast majority of LTR-RT elements in angiosperms. Copyright © 2015 Elsevier B.V. All rights reserved.
Evolution of Genome Size and Complexity in Pinus
Morse, Alison M.; Peterson, Daniel G.; Islam-Faridi, M. Nurul; Smith, Katherine E.; Magbanua, Zenaida; Garcia, Saul A.; Kubisiak, Thomas L.; Amerson, Henry V.; Carlson, John E.; Nelson, C. Dana; Davis, John M.
2009-01-01
Background Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. Methodology/Principal Findings Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. Conclusions/Significance Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes. PMID:19194510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwardson, J.R.
1975-01-01
Progress is reported on the following research projects: cytoplasmic constituents of the embryo of various gymnosperms and angiosperms; cytoplasmic male sterility in corn; modification of cytoplasmic sterility factors using gamma radiation, EMS, and ethidium bromide; selection for sterile, blight-resistant corn plants; electron microscopy study of abnormal mitochondria in cytoplasm of corn; cytoplasmic male sterility in Petunia; non-Mendelian variegation in Petunia and Nicotiana; graft transmission of cytoplasmic male sterility; cytoplasmic male sterility in Vicia faba; and studies on Blakeslee's I virus in Datura. (HLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-01-01
Progress is reported on studies of cytoplasmic factors controlling male sterility in plants. Results are reported from cytological comparisons of fertile selections from gamma -irradiated corn with male steriles, mainliners, and restored steriles, in which no consistent differences in cytoplasmic constituents were observed. Results of cytological and genetic studies on mutants of Neurospora crassa, petunia, tobacco, sorghum, sugar beets, Vicia faba, and several gymnosperms are summarized. The relationship between male, sterility of plants and their susceptibility to virus and fungus infections was also studied. (CH)
Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E.; Mathews, Sarah
2016-01-01
Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen–ovule interactions. Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of
Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah
2016-05-01
Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops
Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites
NASA Astrophysics Data System (ADS)
Auras, Stefan; Wilde, Volker; Scheffler, Kay; Hoernes, Stephan; Kerp, Hans; Püttmann, Wilhelm
2006-12-01
Previous palaeobotanical and palynological studies on coals from Euramerican Pennsylvanian (≡ Late Carboniferous) coal basins indicate a major change in coal-swamp floras, especially at the Westphalian Stephanian (≈Kasimovian Gzhelian, according to Geological Time Scale 2004) boundary. A flora dominated by arborescent lycophytes was replaced by a vegetation dominated by marattialean tree ferns in various Euramerican coal basins. Earlier combined palynological and organic geochemical studies on Westphalian/Stephanian coals and shales from the Saar-Nahe Basin (Germany) revealed that the distribution of aromatized arborane/fernane hydrocarbons in solvent extracts reflects the increasing importance of seed plants, especially cordaites (extinct group of gymnosperms), conifers and pteridosperms. However, the biological source of the precursor molecules could not be specified. To clarify if the arborane/fernane derivatives MATH, MAPH, DAPH 1, and DAPH 2 in Westphalian/Stephanian coals can be assigned to one of the three potential source plant groups, we analyzed coals, sediments and fossil plant remains from different Euramerican locations with respect to their biomarker composition and stable carbon isotopic composition. Thereby, stable carbon isotopic ratios showed only insignificant variations between Westphalian and Stephanian samples and proved to be an unsuitable tool to describe floral changes during the Westphalian/Stephanian of the Saar-Nahe Basin. In contrast, we were able to show for the first time that MATH, MAPH, DAPH 1 and DAPH 2 are prominent constituents only in extracts of cordaitean macrofossils and can therefore be regarded as biomarkers for this group of gymnosperms.
A functional phylogenomic view of the seed plants.
Lee, Ernest K; Cibrian-Jaramillo, Angelica; Kolokotronis, Sergios-Orestis; Katari, Manpreet S; Stamatakis, Alexandros; Ott, Michael; Chiu, Joanna C; Little, Damon P; Stevenson, Dennis Wm; McCombie, W Richard; Martienssen, Robert A; Coruzzi, Gloria; Desalle, Rob
2011-12-01
A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification.
Zhao, Yinhe; Wang, Guoying; Zhang, Jinpeng; Yang, Junbo; Peng, Shang; Gao, Lianming; Li, Chengyun; Hu, Jinyong; Li, Dezhu; Gao, Lizhi
2006-07-01
Asarum caudigerum (Aristolochiaceae) is an important species of paleoherb in relation to understanding the origin and evolution of angiosperm flowers, due to its basal position in the angiosperms. The aim of this study was to isolate floral-related genes from A. caudigerum, and to infer evolutionary relationships among florally expression-related genes, to further illustrate the origin and diversification of flowers in angiosperms. A subtracted floral cDNA library was constructed from floral buds using suppression subtractive hybridization (SSH). The cDNA of floral buds and leaves at the seedling stage were used as a tester and a driver, respectively. To further identify the function of putative MADS-box transcription factors, phylogenetic trees were reconstructed in order to infer evolutionary relationships within the MADS-box gene family. In the forward-subtracted floral cDNA library, 1920 clones were randomly sequenced, from which 567 unique expressed sequence tags (ESTs) were obtained. Among them, 127 genes failed to show significant similarity to any published sequences in GenBank and thus are putatively novel genes. Phylogenetic analysis indicated that a total of 29 MADS-box transcription factors were members of the APETALA3(AP3) subfamily, while nine others were putative MADS-box transcription factors that formed a cluster with MADS-box genes isolated from Amborella, the basal-most angiosperm, and those from the gymnosperms. This suggests that the origin of A. caudigerum is intermediate between the angiosperms and gymnosperms.
Novelties of the flowering plant pollen tube underlie diversification of a key life history stage
Williams, Joseph H.
2008-01-01
The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary lability of angiosperm reproduction, and hence to their diversification. In gymnosperms pollen reception must be near the egg largely because sperm swim or are transported by pollen tubes that grow at very slow rates (< ≈20 μm/h). In contrast, pollen tube growth rates of taxa in ancient angiosperm lineages (Amborella, Nuphar, and Austrobaileya) range from ≈80 to 600 μm/h. Comparative analyses point to accelerated pollen tube growth rate as a critical innovation that preceded the origin of the true closed carpel, long styles, multiseeded ovaries, and, in monocots and eudicots, much faster pollen tube growth rates. Ancient angiosperm pollen tubes all have callosic walls and callose plugs (in contrast, no gymnosperms have these features). The early association of the callose-walled growth pattern with accelerated pollen tube growth rate underlies a striking repeated pattern of faster and longer-distance pollen tube growth often within solid pathways in phylogenetically derived angiosperms. Pollen tube innovations are a key component of the spectacular diversification of carpel (flower and fruit) form and reproductive cycles in flowering plants. PMID:18678915
A Functional Phylogenomic View of the Seed Plants
Katari, Manpreet S.; Stamatakis, Alexandros; Ott, Michael; Chiu, Joanna C.; Little, Damon P.; Stevenson, Dennis Wm.; McCombie, W. Richard; Martienssen, Robert A.; Coruzzi, Gloria; DeSalle, Rob
2011-01-01
A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification. PMID:22194700
Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites.
Auras, Stefan; Wilde, Volker; Scheffler, Kay; Hoernes, Stephan; Kerp, Hans; Püttmann, Wilhelm
2006-12-01
Previous palaeobotanical and palynological studies on coals from Euramerican Pennsylvanian ( identical with Late Carboniferous) coal basins indicate a major change in coal-swamp floras, especially at the Westphalian-Stephanian ( approximately Kasimovian-Gzhelian, according to Geological Time Scale 2004) boundary. A flora dominated by arborescent lycophytes was replaced by a vegetation dominated by marattialean tree ferns in various Euramerican coal basins. Earlier combined palynological and organic geochemical studies on Westphalian/Stephanian coals and shales from the Saar-Nahe Basin (Germany) revealed that the distribution of aromatized arborane/fernane hydrocarbons in solvent extracts reflects the increasing importance of seed plants, especially cordaites (extinct group of gymnosperms), conifers and pteridosperms. However, the biological source of the precursor molecules could not be specified. To clarify if the arborane/fernane derivatives MATH, MAPH, DAPH 1, and DAPH 2 in Westphalian/Stephanian coals can be assigned to one of the three potential source plant groups, we analyzed coals, sediments and fossil plant remains from different Euramerican locations with respect to their biomarker composition and stable carbon isotopic composition. Thereby, stable carbon isotopic ratios showed only insignificant variations between Westphalian and Stephanian samples and proved to be an unsuitable tool to describe floral changes during the Westphalian/Stephanian of the Saar-Nahe Basin. In contrast, we were able to show for the first time that MATH, MAPH, DAPH 1 and DAPH 2 are prominent constituents only in extracts of cordaitean macrofossils and can therefore be regarded as biomarkers for this group of gymnosperms.
Tsuyama, Taku; Kawai, Ryo; Shitan, Nobukazu; Matoh, Toru; Sugiyama, Junji; Yoshinaga, Arata; Takabe, Keiji; Fujita, Minoru; Yazaki, Kazufumi
2013-01-01
Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms. PMID:23585651
Plants, Weathering, and the Evolution of Atmospheric Carbon Dioxide and Oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berner, Robert A
Over the past six years we have published 24 papers that can be divided into three sections: (1) Study of plants and weathering, (2) modeling the evolution of atmospheric CO2 over Phanerozoic time (past 550 million years). (3) Modeling of atmospheric O2 over Phanerozoic time. References to papers published acknowledging this grant can be found at the end of this report and almost all are supplied in pdf form. (1) In the temperate forests of the Cascade Mountains, USA, calcium and magnesium meet vastly different fates beneath angiosperms vs gymnosperms. Calcium is leached beneath both groves of trees, but leachedmore » 20-40% more beneath the angiosperms. Magnesium is retained in the forest system beneath the angiosperms and leached from beneath the gymnosperms. (2) We have shown that climate and CO2, based on both carbon cycle modeling and hundreds of independent proxies for paleo-CO2, correlate very well over the past 550 million year. In a recent paper we use this correlation to deduce the sensitivity of global mean temperature to a doubling of atmospheric CO2, and results are in excellent agreement with the results of climatologists based on the historical record and on theoretical climate models (GCM’s).(3) We have shown that concentrations of atmospheric oxygen, calculated by a combined carbon-sulfur cycle model, over the past 550 million years have varied with and influenced biological evolution.« less
NASA Astrophysics Data System (ADS)
Ivantsov, S. V.; Bystritskaya, L. I.; Krasnolutskii, S. A.; Lyalyuk, K. P.; Frolov, A. O.; Alekseev, A. S.
2016-09-01
On the basis of the lithological-facies analysis, it was established that deposits of the Upper Itat Subformation, comprising the Dubinino locality of the Middle Jurassic flora and insects (Sharypovo district, Krasnoyarsk krai), accumulated in alluvial and lacustrine and, to a lesser extent, floodplain environments (floodplain and alluvial fan facies). The occurrence of remains of insects, macroremains of flora, spores, and pollen allowed us to make a paleoreconstruction of an area with a strongly dissected relief: continental fresh-water reservoir (lake) with varying degree of overflow, surrounded by hills covered with gymnospermous and ginkgo forests.
Chaiprasongsuk, Minta; Zhang, Chi; Qian, Ping; Chen, Xinlu; Li, Guanglin; Trigiano, Robert N; Guo, Hong; Chen, Feng
2018-05-01
Indole-3-acetic acid (IAA), gibberellins (GAs), salicylic acid (SA) and jasmonic acid (JA) exist in methyl ester forms in plants in addition to their free acid forms. The enzymes that catalyze methylation of these carboxylic acid phytohormones belong to a same protein family, the SABATH methyltransferases. While the genes encoding these enzymes have been isolated from a small number of flowering plants, little is known about their occurrence and evolution in non-flowering plants. Here, we report the systematic characterization of the SABATH family from Norway spruce (Picea abies), a gymnosperm. The Norway spruce genome contains ten SABATH genes (PaSABATH1-10). Full-length cDNA for each of the ten PaSABATH genes was cloned and expressed in Escherichia coli. Recombinant PaSABATHs were tested for activity with IAA, GA, SA, and JA. Among the ten PaSABATHs, five had activity with one or more of the four substrates. PaSABATH1 and PaSABATH2 had the highest activities with IAA and SA, respectively. PaSABATH4, PaSABATH5 and PaSABATH10 all had JA as a preferred substrate but with notable differences in biochemical properties. The structural basis of PaSABATHs in discriminating various phytohormone substrates was inferred based on structural models of the enzyme-substrate complexes. The phylogeny of PaSABATHs with selected SABATHs from other plants implies that the enzymes methylating IAA are conserved in seed plants whereas the enzymes methylating JA and SA have independent evolution in gymnosperms and angiosperms. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goñi, Miguel A.; Hedges, John I.
1990-11-01
An extensive suite of C 14-C 18 hydroxylated fatty acids of cutin origin was identified among the nonlignin CuO reaction products from tissues of 67 different plant species. These mid-chain and ω-hydroxylated cutin acids together accounted for 0.5 to 4% of the organic carbon (OC) in these nonwoody vascular plant tissues and were produced in characteristically different yields by the various plant types. Nonvascular plants, including bulk phytoplankton, kelps, mosses, and liverworts, did not yield measurable amounts of cutin acids, except for trace levels of ω-hydroxytetradecanoic acid detected in kelps. Most of the "lower" vascular plants, such as clubmosses and ferns, produced simple cutin acid suites composed mainly of ω-hydroxy C 14 and C 16 acids. Gymnosperm needles yielded cutin acid suites dominated by C 16 acids, in which 9,16- and 10,16-dihydroxyhexadecanoic acids were characteristically abundant. Relatively high yields of C 18 acids were obtained from angiosperm tissues, among which dicotyledons exhibited a predominance of 9,10,18-trihydroxyoctadecanoic acid over all the other C 18 acids. The Chromatographie peak corresponding to dihydroxyhexadecanoic acid was a mixture of the positional isomers 8,16-, 9, 16-, and 10,16-dihydroxyhexadecanoic acids, whose relative abundances uniquely characterized monocotyledon tissues and distinguished among different types of gymnosperm tissues. Based on the cutin acid yields obtained from the different plant types, several geochemical parameters were developed to distinguish up to six different cutin-bearing plant groups as possible components of sedimentary mixtures.
Sexual stability in the nearly dioecious Pinus johannis (Pinaceae).
Flores-Rentería, Lluvia; Molina-Freaner, Francisco; Whipple, Amy V; Gehring, Catherine A; Domínguez, C A
2013-03-01
Even though dioecy is a dominant sexual system among gymnosperms, little is known about its evolutionary history. Pinus johannis may represent a model system because unisexual and monoecious individuals compose its populations. The presence of unisexual individuals in other Pinus species is a consequence of sexual lability. Here we determined whether P. johannis represents the first example of a dioecious or nearly dioecious reproductive system in conifers by evaluating its sexual stability. • To assess the stability of sexual expression, we quantified the proportion of male vs. female reproductive structures produced by trees over multiple years and tested for the presence of sexual dimorphism. Sexual lability hypotheses were also examined by looking at the relationship between environmental factors and sexual expression and by comparing the reproductive behavior of P. johannis with its closest labile relative, P. edulis. • Pinus johannis is nearly dioecious: ~99% of individuals are unisexual or express a low proportion of the opposite gender with few changes in sexual expression through time. We found sexual dimorphism consistent with sexual stability. Sexual expression did not vary with tree size/age, abiotic environment, or herbivore removal, providing evidence against sexual lability. Individuals of P. johannis tended to produce only male or female strobili, whereas those of P. edulis were mainly monoecious with a gradient in the female to male strobili ratio. • This study represents the first report of a nearly stable dioecious Pinus species. The variety of sexual morphs coexisting in the same population makes P. johannis a model for studying the evolution of dioecy in gymnosperms.
Root development and structure in seedlings of Ginkgo biloba.
Bonacorsi, Nikole K; Seago, James L
2016-02-01
The popular, highly recognizable, well-known gymnosperm, Ginkgo biloba, was studied to document selected developmental features, which are little known in its primary root system from root tips to cotyledonary node following seed germination. Using seedlings grown in soil, vermiculite, or a mixture, we examined sections at various distances from the root cap to capture a developmental sequence of anatomical structures by using standard brightfield, epifluorescence, and confocal microscopic techniques. The vascular cylinder is usually a diarch stele, although modified diarchy and triarchy are found. Between exarch protoxylem poles, metaxylem usually develops into a complete disc, except near the transition region, which has irregularly arranged tracheary cells. The disc of primary xylem undergoes secondary growth on its metaxylem flanks with many tracheids added radially within a few weeks. Production of fibers in secondary phloem also accompanies secondary growth. In the cortex, endodermis produces Casparian bands early in development and continues into the upper transition region. Phi cells with phi-thickenings (bands of lignified walls) of a layer of inner cortex are often evident before endodermis, and then adjoining, additional layers of cortex develop phi cells; phi cells do not occur in the upper transition region or stem. An exodermis is produced early in root development and is continuous into the transition region and cotyledonary node. Seedling root axes of Ginkgo biloba are more complex than the literature suggests, and our findings contribute to our knowledge of root structure of this ancient gymnosperm. © 2016 Botanical Society of America.
Plant rDNA database: update and new features.
Garcia, Sònia; Gálvez, Francisco; Gras, Airy; Kovařík, Aleš; Garnatje, Teresa
2014-01-01
The Plant rDNA database (www.plantrdnadatabase.com) is an open access online resource providing detailed information on numbers, structures and positions of 5S and 18S-5.8S-26S (35S) ribosomal DNA loci. The data have been obtained from >600 publications on plant molecular cytogenetics, mostly based on fluorescent in situ hybridization (FISH). This edition of the database contains information on 1609 species derived from 2839 records, which means an expansion of 55.76 and 94.45%, respectively. It holds the data for angiosperms, gymnosperms, bryophytes and pteridophytes available as of June 2013. Information from publications reporting data for a single rDNA (either 5S or 35S alone) and annotation regarding transcriptional activity of 35S loci now appears in the database. Preliminary analyses suggest greater variability in the number of rDNA loci in gymnosperms than in angiosperms. New applications provide ideograms of the species showing the positions of rDNA loci as well as a visual representation of their genome sizes. We have also introduced other features to boost the usability of the Web interface, such as an application for convenient data export and a new section with rDNA-FISH-related information (mostly detailing protocols and reagents). In addition, we upgraded and/or proofread tabs and links and modified the website for a more dynamic appearance. This manuscript provides a synopsis of these changes and developments. http://www.plantrdnadatabase.com. © The Author(s) 2014. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goni, M.A.; Hedges, J.I.
An extensive suite of C{sub 14}-C{sub 18} hydroxylated fatty acids of cutin origin was identified among the nonlignin CuO reaction products from tissues of 67 different plant species. These mid-chain and {omega}-hydroxylated cutin acids together accounted for 0.5 to 4% of the organic carbon (OC) in these nonwoody vascular plant tissues and were produced in characteristically different yields by the various plant types. Nonvascular plants, including bulk phytoplankton, kelps, mosses, and liverworts, did not yield measurable amounts of cutin acids, except for trace levels of {omega}-hydroxytetradecanoic acid detected in kelps. Most of the lower vascular plants, such as clubmosses andmore » ferns, produced simple cutin acid suites composed mainly of {omega}-hydroxy C{sub 14} and C{sub 16} acids. Gymnosperm needles yielded cutin acid suites dominated by C{sub 16} acids, in which 9,16- and 10,16-dihydroxyhexadecanoic acids were characteristically abundant. Relatively high yields of C{sub 18} acids were obtained from angiosperm tissues, among which dicotyledons exhibited a predominance of 9,10,18-trihydroxyoctadecanoic acid over all the other C{sub 18} acids. The chromatographic peak corresponding to dihydroxyhexadecanoic acid was a mixture of the positional isomers 8,16-, 9,16-, and 10,16-dihydroxyhexadecanoic acids, whose relative abundances uniquely characterized monocotyledon tissues and distinguished among different types of gymnosperm tissues. Based on the cutin acid yields obtained from the different plant types, several geochemical parameters were developed to distinguish up to six different cutin-bearing plant groups as possible components of sedimentary mixtures.« less
Gerber, S; Rodolphe, F
1994-06-01
The first step in the construction of a linkage map involves the estimation and test for linkage between all possible pairs of markers. The lod score method is used in many linkage studies for the latter purpose. In contrast with classical statistical tests, this method does not rely on the choice of a first-type error level. We thus provide a comparison between the lod score and a χ (2) test on linkage data from a gymnosperm, the maritime pine. The lod score appears to be a very conservative test with the usual thresholds. Its severity depends on the type of data used.
Soltis, Douglas E; Soltis, Pamela S; Albert, Victor A; Oppenheimer, David G; dePamphilis, Claude W; Ma, Hong; Frohlich, Michael W; Theissen, Günter
2002-01-01
To understand the genetic architecture of floral development, including the origin and subsequent diversification of the flower, data are needed not only for a few model organisms but also for gymnosperms, basal angiosperm lineages and early-diverging eudicots. We must link what is known about derived model plants such as Arabidopsis, snapdragon and maize with other angiosperms. To this end, we suggest a massive evolutionary genomics effort focused on the identification and expression patterns of floral genes and elucidation of their expression patterns in 'missing-link' taxa differing in the arrangement, number and organization of floral parts.
NASA Astrophysics Data System (ADS)
Porter, Amanda S.; Yiotis, Charilaos; Montañez, Isabel P.; McElwain, Jennifer C.
2017-09-01
The stable carbon isotopes of fossil plants are a reflection of the atmosphere and environment in which they grew. Fossil plant remains have thus stored information about the isotopic composition and concentration of atmospheric carbon dioxide (pCO2) and possibly pO2 through time. Studies to date, utilizing extant plants, have linked changes in plant stable carbon isotopes (δ13Cp) or carbon isotope discrimination (Δ13C) to changes in pCO2 and/or pO2. These studies have relied heavily on angiosperm representatives, a phylogenetic group only present in the fossil record post-Early Cretaceous (∼140 million years ago (mya)), whereas gymnosperms, monilophytes and lycophytes dominated terrestrial ecosystems prior to this time. The aim of this study was to expand our understanding of carbon isotope discrimination in all vascular plant groups of C3 plants including lycophytes, monilophytes, gymnosperms and angiosperms, under elevated CO2 and sub-ambient O2 to explore their utility as paleo-atmospheric proxies. To achieve this goal, plants were grown in controlled environment chambers under a range of O2:CO2 ratio treatments. Results reveal a strong phylogenetic dependency on Δ13C, where spore-bearing (lycophytes and monilophytes) have significantly higher 13C discrimination than seed plants (gymnosperms and angiosperms) by ∼5‰. We attribute this strong phylogenetic signal to differences in Ci/Ca likely mediated by fundamental differences in how spore and seed bearing plants control stomatal aperture. Decreasing O2:CO2 ratio in general resulted in increased carbon isotope discrimination in all plant groups. Notably, while all plant groups respond unidirectionally to elevated atmospheric CO2 (1900 ppm and ambient O2), they do not respond equally to sub-ambient O2 (16%). We conclude that (1) Δ13C has a strong phylogenetic or 'reproductive grade' bias, whereby Δ13C of spore reproducing plants is significantly different to seed reproducing taxa. (2) Δ13C increases
NASA Astrophysics Data System (ADS)
Jeong, Eun Kyoung; Kim, Hyun Joo; Uemura, Kazuhiko; Kim, Kyungsik
2016-04-01
The Tertiary sedimentary basins are distributed along the eastern coast of Korean Peninsula. The northernmost Bukpyeong Basin is located in Donghae City, Gangwon-do Province, Korea. The Bukpyeong Basin consists of Bukpyeong Formation and Dogyeongri Conglomerate in ascending order. The geologic age of Bukpyeong Formation has been suggested as from Early Miocene to Pliocene, In particular, Lee & Jacobs (2010) suggested the age of the Bukpyeong Formation as late Early Miocene to early Middle Miocene based on the fossils of rodent teeth. Sedimentary environment has been thought as mainly fresh water lake and/or swamp partly influenced by marine water. Lately, new outcrops of Bukpyeong Formation were exposed during the road construction and abundant fossil plants were yielded from the newly exposed outcrops. As a result of palaeobotanical studies 47 genera of 23 families have been found. This fossil plant assemblage is composed of gymnosperms and dicotyledons. Gymnosperms were Pinaceae (e.g., Pinus, Tsuga), Sciadopityaceae (e.g., Sciadopitys) and Cupressaceae with well-preserved Metasequoia cones. Dicotyledons were deciduous trees such as Betulaceae (e.g., Alnus, Carpinus) and Sapindaceae (e.g., Acer, Aesculus, Sapindus), and evergreen trees such as evergreen Fagaceae (e.g., Castanopsis, Cyclobalanopsis, Pasania) and Lauraceae (e.g., Cinnamomum, Machilus). In addition, fresh water plants such as Hemitrapa (Lytraceae) and Ceratophyllum (Ceratophyllaceae) were also found. The fossil plant assemblage of the Bukpyeong Formation supported the freshwater environment implied by previous studies. It can be suggested that the palaeoflora of Bukpyeong Formation was oak-laurel forest with broad-leaved evergreen and deciduous trees accompanying commonly by conifers of Pinaceae and Cupressaceae under warm-temperate climate.
Sanio's laws revisited. Size-dependent changes in the xylem architecture of trees.
Mencuccini, Maurizio; Hölttä, Teemu; Petit, Giai; Magnani, Federico
2007-11-01
Early observations led Sanio [Wissen. Bot., 8, (1872) 401] to state that xylem conduit diameters and lengths in a coniferous tree increase from the apex down to a height below which they begin to decrease towards the tree base. Sanio's law of vertical tapering has been repeatedly tested with contradictory results and the debate over the scaling of conduit diameters with distance from the apex has not been settled. The debate has recently acquired new vigour, as an accurate knowledge of the vertical changes in wood anatomy has been shown to be crucial to scaling metabolic properties to plant and ecosystem levels. Contrary to Sanio's hypothesis, a well known model (MST, metabolic scaling theory) assumes that xylem conduits monotonically increase in diameter with distance from the apex following a power law. This has been proposed to explain the three-fourth power scaling between size and metabolism seen across plants. Here, we (i) summarized available data on conduit tapering in trees and (ii) propose a new numerical model that could explain the observed patterns. Data from 101 datasets grouped into 48 independent profiles supported the notions that phylogenetic group (angiosperms versus gymnosperms) and tree size strongly affected the vertical tapering of conduit diameter. For both angiosperms and gymnosperms, within-tree tapering also varied with distance from the apex. The model (based on the concept that optimal conduit tapering occurs when the difference between photosynthetic gains and wall construction costs is maximal) successfully predicted all three major empirical patterns. Our results are consistent with Sanio's law only for large trees and reject the MST assumptions that vertical tapering in conduit diameter is universal and independent of rank number.
Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus
Mohan, Rajinikanth; Heitman, Joseph
2017-01-01
Infections due to Cryptococcus are a leading cause of fungal infections worldwide and are acquired as a result of environmental exposure to desiccated yeast or spores. The ability of Cryptococcus to grow, mate, and produce infectious propagules in association with plants is important for the maintenance of the genetic diversity and virulence factors important for infection of animals and humans. In the Western United States and Canada, Cryptococcus has been associated with conifers and tree species other than Eucalyptus; however, to date Cryptococcus has only been studied on live Arabidopsis thaliana, Eucalyptus sp., and Terminalia catappa (almond) seedlings. Previous research has demonstrated the ability of Cryptococcus to colonize live plants, leaves, and vasculature. We investigated the ability of Cryptococcus to grow on live seedlings of the angiosperms, A. thaliana, Eucalyptus camaldulensis, Colophospermum mopane, and the gymnosperms, Pseudotsuga menziesii (Douglas fir), and Tsuga heterophylla (Western hemlock). We observed a broad-range ability of Cryptococcus to colonize both traditional infection models as well as newly tested conifer species. Furthermore, C. neoformans, C. deneoformans, C. gattii (VGI), C. deuterogattii (VGII) and C. bacillisporus (VGIII) were able to colonize live plant leaves and needles but also undergo filamentation and mating on agar seeded with plant materials or in saprobic association with dead plant materials. The ability of Cryptococcus to grow and undergo filamentation and reproduction in saprobic association with both angiosperms and gymnosperms highlights an important role of plant debris in the sexual cycle and exposure to infectious propagules. This study highlights the broad importance of plants (and plant debris) as the ecological niche and reservoirs of infectious propagules of Cryptococcus in the environment. PMID:28212396
Plants promote mating and dispersal of the human pathogenic fungus Cryptococcus.
Springer, Deborah J; Mohan, Rajinikanth; Heitman, Joseph
2017-01-01
Infections due to Cryptococcus are a leading cause of fungal infections worldwide and are acquired as a result of environmental exposure to desiccated yeast or spores. The ability of Cryptococcus to grow, mate, and produce infectious propagules in association with plants is important for the maintenance of the genetic diversity and virulence factors important for infection of animals and humans. In the Western United States and Canada, Cryptococcus has been associated with conifers and tree species other than Eucalyptus; however, to date Cryptococcus has only been studied on live Arabidopsis thaliana, Eucalyptus sp., and Terminalia catappa (almond) seedlings. Previous research has demonstrated the ability of Cryptococcus to colonize live plants, leaves, and vasculature. We investigated the ability of Cryptococcus to grow on live seedlings of the angiosperms, A. thaliana, Eucalyptus camaldulensis, Colophospermum mopane, and the gymnosperms, Pseudotsuga menziesii (Douglas fir), and Tsuga heterophylla (Western hemlock). We observed a broad-range ability of Cryptococcus to colonize both traditional infection models as well as newly tested conifer species. Furthermore, C. neoformans, C. deneoformans, C. gattii (VGI), C. deuterogattii (VGII) and C. bacillisporus (VGIII) were able to colonize live plant leaves and needles but also undergo filamentation and mating on agar seeded with plant materials or in saprobic association with dead plant materials. The ability of Cryptococcus to grow and undergo filamentation and reproduction in saprobic association with both angiosperms and gymnosperms highlights an important role of plant debris in the sexual cycle and exposure to infectious propagules. This study highlights the broad importance of plants (and plant debris) as the ecological niche and reservoirs of infectious propagules of Cryptococcus in the environment.
Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.
1997-01-01
S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260
Ma, Lu; Hatlen, Andrea; Kelly, Laura J.; Becher, Hannes; Wang, Wencai; Kovarik, Ales; Leitch, Ilia J.; Leitch, Andrew R.
2015-01-01
The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales. PMID:26338185
Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L
1997-05-13
S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.
Pedroso, M C; Magalhaes, J R; Durzan, D
2000-06-01
Leaves and callus of Kalanchoë daigremontiana and Taxus brevifolia were used to investigate nitric oxide-induced apoptosis in plant cells. The effect of nitric oxide (NO) was studied by using a NO donor, sodium nitroprusside (SNP), a nitric oxide-synthase (NOS) inhibitor, N:(G)-monomethyl-L-arginine (NMMA), and centrifugation (an apoptosis-inducing treatment in these species). NO production was visualized in cells and tissues with a specific probe, diaminofluorescein diacetate (DAF-2 DA). DNA fragmentation was detected in situ by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. In both species, NO was detected diffused in the cytosol of epidermal cells and in chloroplasts of guard cells and leaf parenchyma cells. Centrifugation increased NO production, DNA fragmentation and subsequent cell death by apoptosis. SNP mimicked centrifugation results. NMMA significantly decreased NO production and apoptosis in both species. The inhibitory effect of NMMA on NO production suggests that a putative NOS is present in Kalanchoë and Taxus cells. The present results demonstrated the involvement of NO on DNA damage leading to cell death, and point to a potential role of NO as a signal molecule in these plants.
Plant and mycorrhizal weathering at the laboratory mesocosm scale
NASA Astrophysics Data System (ADS)
Andrews, M. Y.; Leake, J.; Banwart, S. A.; Beerling, D. J.
2011-12-01
The evolutionary development of large vascular land plants in the Paleozoic is hypothesized to have enhanced weathering of Ca and Mg silicate minerals. This plant-centric view overlooks the fact that plants and their associated mycorrhizal fungi co-evolved. Many weathering processes usually ascribed to plants may actually be driven by the combined activities of roots and mycorrhizal fungi. This study focuses on two key evolutionary events in plant and fungal evolution: 1) the transition from gymnosperm-only to mixed angiosperm-gymnosperm forests in the Mesozoic and 2) the similarly timed rise of ectomycorrhizal fungi (EM) in a previously arbuscular mycorrhizal (AM) only world. Here we present results from a novel mesocosm-scale laboratory experiment designed to allow investigation of plant- and mycorrhizae-driven carbon fluxes and mineral weathering at different soil depths, and under ambient (400 ppm) and elevated (1500 ppm) atmospheric CO2. To test our hypothesis that photosynthetic carbon flux from the plant to the roots and fungal partner drives biological weathering of minerals, we studied five mycorrhizal plant species: the gymnosperms Sequoia sempervirens (AM), Pinus sylvestris (EM) and Ginkgo biloba (AM), and two angiosperms, Magnolia grandiflora (AM) and Betula pendula (EM). This long term (7-9 months) experiment was grown in controlled environment chambers, with replicated systems at two atmospheric CO2 levels. Each mycorrhizal plant had access to isolated horizontal mesh cores containing crushed granite and basalt at three depths, in a compost:sand (50:50 vol:vol) bulk substrate, with appropriate plant-free and mineral-free controls. 14CO2 pulse-labeling provided a snapshot of the magnitude, timing, and allocation of carbon through the atmosphere-plant-fungi-soil system and also measured mycorrhizal fungal activity associated with the target granite and basalt. Total plant and fungal biomass were also assessed in relation to +/- mineral treatments and
Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution
Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu
2017-01-01
WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. PMID:28053005
Nectar and pollination drops: how different are they?
Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore
2009-01-01
Background Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as ‘reward’ for ants defending plants against herbivores (indirect defence). Scope Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a ‘reward’ for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Conclusions Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from
Nectar and pollination drops: how different are they?
Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore
2009-08-01
Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both
Jiang, Shu-Ye; Sevugan, Mayalagu; Ramachandran, Srinivasan
2018-05-09
Valine-glutamine (VQ) motif containing proteins play important roles in abiotic and biotic stress responses in plants. However, little is known about the origin and evolution as well as comprehensive expression regulation of the VQ gene family. In this study, we systematically surveyed this gene family in 50 plant genomes from algae, moss, gymnosperm and angiosperm and explored their presence in other species from animals, bacteria, fungi and viruses. No VQs were detected in all tested algae genomes and all genomes from moss, gymnosperm and angiosperm encode varying numbers of VQs. Interestingly, some of fungi, lower animals and bacteria also encode single to a few VQs. Thus, they are not plant-specific and should be regarded as an ancient family. Their family expansion was mainly due to segmental duplication followed by tandem duplication and mobile elements. Limited contribution of gene conversion was detected to the family evolution. Generally, VQs were very much conserved in their motif coding region and were under purifying selection. However, positive selection was also observed during species divergence. Many VQs were up- or down-regulated by various abiotic / biotic stresses and phytohormones in rice and Arabidopsis. They were also co-expressed with some of other stress-related genes. All of the expression data suggest a comprehensive expression regulation of the VQ gene family. We provide new insights into gene expansion, divergence, evolution and their expression regulation of this VQ family. VQs were detectable not only in plants but also in some of fungi, lower animals and bacteria, suggesting the evolutionary conservation and the ancient origin. Overall, VQs are non-plant-specific and play roles in abiotic / biotic responses or other biological processes through comprehensive expression regulation.
Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution.
Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu; Zhao, Huabin; Zhu, Yu-Xian
2017-03-01
WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Ginkgo biloba's footprint of dynamic Pleistocene history dates back only 390,000 years ago.
Hohmann, Nora; Wolf, Eva M; Rigault, Philippe; Zhou, Wenbin; Kiefer, Markus; Zhao, Yunpeng; Fu, Cheng-Xin; Koch, Marcus A
2018-04-27
At the end of the Pliocene and the beginning of Pleistocene glaciation and deglaciation cycles Ginkgo biloba went extinct all over the world, and only few populations remained in China in relict areas serving as sanctuary for Tertiary relict trees. Yet the status of these regions as refuge areas with naturally existing populations has been proven not earlier than one decade ago. Herein we elaborated the hypothesis that during the Pleistocene cooling periods G. biloba expanded its distribution range in China repeatedly. Whole plastid genomes were sequenced, assembled and annotated, and sequence data was analyzed in a phylogenetic framework of the entire gymnosperms to establish a robust spatio-temporal framework for gymnosperms and in particular for G. biloba Pleistocene evolutionary history. Using a phylogenetic approach, we identified that Ginkgoatae stem group age is about 325 million years, whereas crown group radiation of extant Ginkgo started not earlier than 390,000 years ago. During repeated warming phases, Gingko populations were separated and isolated by contraction of distribution range and retreated into mountainous regions serving as refuge for warm-temperate deciduous forests. Diversification and phylogenetic splits correlate with the onset of cooling phases when Ginkgo expanded its distribution range and gene pools merged. Analysis of whole plastid genome sequence data representing the entire spatio-temporal genetic variation of wild extant Ginkgo populations revealed the deepest temporal footprint dating back to approximately 390,000 years ago. Present-day directional West-East admixture of genetic diversity is shown to be the result of pronounced effects of the last cooling period. Our evolutionary framework will serve as a conceptual roadmap for forthcoming genomic sequence data, which can then provide deep insights into the demographic history of Ginkgo.
Ma, Lu; Hatlen, Andrea; Kelly, Laura J; Becher, Hannes; Wang, Wencai; Kovarik, Ales; Leitch, Ilia J; Leitch, Andrew R
2015-09-02
The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution.
Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Sundström, Jens F; Moore, David; Lascoux, Martin; Lagercrantz, Ulf
2011-08-01
The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms.
APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues.
Nilsson, Lars; Carlsbecker, Annelie; Sundås-Larsson, Annika; Vahala, Tiina
2007-02-01
In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.
Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C
2013-01-01
Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO(2)]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G(s)) to instantaneous changes in external [CO(2)] (C(a)) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO(2)] (1,500 ppm) and sub-ambient [O(2)] (13.0 %) compared to control conditions (380 ppm CO(2), 20.9 % O(2)). We found that active control of stomatal aperture to [CO(2)] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C(a) were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO(2)]. The relationship between the degree of stomatal aperture control to C(a) above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO(2)] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.
2012-01-01
Background Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis) and loblolly pine (Pinus taeda), together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa), offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. Results Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS) of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10-9 synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. Conclusions Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations. PMID:22264329
Buschiazzo, Emmanuel; Ritland, Carol; Bohlmann, Jörg; Ritland, Kermit
2012-01-20
Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis) and loblolly pine (Pinus taeda), together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa), offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS) of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10(-9) synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations.
Xia, Rui; Xu, Jing; Arikit, Siwaret; Meyers, Blake C.
2015-01-01
In eudicot plants, the miR482/miR2118 superfamily regulates and instigates the production of phased secondary small interfering RNAs (siRNAs) from NB-LRR (nucleotide binding leucine-rich repeat) genes that encode disease resistance proteins. In grasses, this miRNA family triggers siRNA production specifically in reproductive tissues from long noncoding RNAs. To understand this functional divergence, we examined the small RNA population in the ancient gymnosperm Norway spruce (Picea abies). As many as 41 miRNA families in spruce were found to trigger phasiRNA (phased, secondary siRNAs) production from diverse PHAS loci, with a remarkable 19 miRNA families capable of targeting over 750 NB-LRR genes to generate phasiRNAs. miR482/miR2118, encoded in spruce by at least 24 precursor loci, targets not only NB-LRR genes to trigger phasiRNA production (as in eudicots) but also noncoding PHAS loci, generating phasiRNAs preferentially in male or female cones, reminiscent of its role in the grasses. These data suggest a dual function of miR482/miR2118 present in gymnosperms that was selectively yet divergently retained in flowering plants. A few MIR482/MIR2118 precursors possess an extremely long stem-loop structure, one arm of which shows significant sequence similarity to spruce NB-LRR genes, suggestive of an evolutionary origin from NB-LRR genes through gene duplication. We also characterized an expanded miR390-TAS3 (TRANS-ACTING SIRNA GENE 3)-ARF (AUXIN RESPONSIVE FACTOR) pathway, comprising 18 TAS3 genes of diverse features. Finally, we annotated spruce miRNAs and their targets. Taken together, these data expand our understanding of phasiRNA network in plants and the evolution of plant miRNAs, particularly miR482/miR2118 and its functional diversification. PMID:26318183
NASA Astrophysics Data System (ADS)
Zinniker, D.; Tipple, B.; Pagani, M.
2007-12-01
Unique and abundant secondary metabolites found in waxes and resins of the Callitroid, Cupressoid, and Taxodioid clades of the Cupressaceae family can be identified and quantified in complex mixtures of sedimentary organic compounds. This unusual feature makes it possible to study relatively simple (taxon-specific) isotope systems back in time across the broad array of environments in which these conifers are found. Work on these systems can potentially provide both robust paleoenvironmental proxies (i.e. for source water δD and growing season relative humidity) and quantitative probes into the ecophysiology of these plants in modern and ancient environments. Our research focuses on three genera representing environmental end-members of Cupressaceae - Juniperus, Thuja, and Chamaecyparis - (1) across geographic and environmental gradients in the field, and (2) in specific Holocene and late Pleistocene environmental records. The latter research focuses on peat cores from New England and Oregon and fossil packrat middens from the southwestern United States. Modern transects highlight the sensitivity of Cupressaceae to climatic variables. These include both variables during growth (relative humidity, soil moisture, etc.) and variables affecting seasonal and diurnal growth rates (temperature, winter precipitation, insolation, microhabitat, etc.). Work on ancient records has demonstrated the sensitivity of these unique taxon-specific archives to both subtle and dramatic climate shifts during the Pleistocene and Holocene. This work will result in an improved understanding of climatic and physiological controls on the stable isotopic composition of modern and ancient Cupressaceae - and by extension, other arborescent gymnosperms and C3 plants - providing a framework for understanding more complexly sourced organic inputs to sediments, coals, and petroleum prior to the advent of C4 plants. This research also has direct implications for stratigraphic stable isotope studies
A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.
Becker, A; Kaufmann, K; Freialdenhoven, A; Vincent, C; Li, M-A; Saedler, H; Theissen, G
2002-02-01
Class B floral homeotic genes specify the identity of petals and stamens during the development of angiosperm flowers. Recently, putative orthologs of these genes have been identified in different gymnosperms. Together, these genes constitute a clade, termed B genes. Here we report that diverse seed plants also contain members of a hitherto unknown sister clade of the B genes, termed B(sister) (B(s)) genes. We have isolated members of the B(s) clade from the gymnosperm Gnetum gnemon, the monocotyledonous angiosperm Zea mays and the eudicots Arabidopsis thaliana and Antirrhinum majus. In addition, MADS-box genes from the basal angiosperm Asarum europaeum and the eudicot Petunia hybrida were identified as B(s) genes. Comprehensive expression studies revealed that B(s) genes are mainly transcribed in female reproductive organs (ovules and carpel walls). This is in clear contrast to the B genes, which are predominantly expressed in male reproductive organs (and in angiosperm petals). Our data suggest that the B(s) genes played an important role during the evolution of the reproductive structures in seed plants. The establishment of distinct B and B(s) gene lineages after duplication of an ancestral gene may have accompanied the evolution of male microsporophylls and female megasporophylls 400-300 million years ago. During flower evolution, expression of B(s) genes diversified, but the focus of expression remained in female reproductive organs. Our findings imply that a clade of highly conserved close relatives of class B floral homeotic genes has been completely overlooked until recently and awaits further evaluation of its developmental and evolutionary importance. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00438-001-0615-8.
Early Cretaceous Archaeamphora is not a carnivorous angiosperm
Wong, William Oki; Dilcher, David Leonard; Labandeira, Conrad C.; Sun, Ge; Fleischmann, Andreas
2015-01-01
Archaeamphora longicervia H. Q. Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1) an innermost larval chamber; (2) an intermediate zone of nutritive tissue; and (3) an outermost wall of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the previously reported gymnosperm Liaoningocladus boii G. Sun et al. from the Yixian Formation. PMID:25999978
Moyroud, Edwige; Kusters, Elske; Monniaux, Marie; Koes, Ronald; Parcy, François
2010-06-01
The LEAFY (LFY) gene of Arabidopsis and its homologs in other angiosperms encode a unique plant-specific transcription factor that assigns the floral fate of meristems and plays a key role in the patterning of flowers, probably since the origin of flowering plants. LFY-like genes are also found in gymnosperms, ferns and mosses that do not produce flowers, but their role in these plants is poorly understood. Here, we review recent findings explaining how the LFY protein works and how it could have evolved throughout land plant history. We propose that LFY homologs have an ancestral role in regulating cell division and arrangement, and acquired novel functions in seed plants, such as activating reproductive gene networks.
Ilík, Petr; Pavlovič, Andrej; Kouřil, Roman; Alboresi, Alessandro; Morosinotto, Tomas; Allahverdiyeva, Yagut; Aro, Eva-Mari; Yamamoto, Hiroshi; Shikanai, Toshiharu
2017-05-01
Photo-reduction of O 2 to water mediated by flavodiiron proteins (FDPs) represents a safety valve for the photosynthetic electron transport chain in fluctuating light. So far, the FDP-mediated O 2 photo-reduction has been evidenced only in cyanobacteria and the moss Physcomitrella; however, a recent phylogenetic analysis of transcriptomes of photosynthetic organisms has also revealed the presence of FDP genes in several nonflowering plant groups. What remains to be clarified is whether the FDP-dependent O 2 photo-reduction is actually operational in these organisms. We have established a simple method for the monitoring of FDP-mediated O 2 photo-reduction, based on the measurement of redox kinetics of P700 (the electron donor of photosystem I) upon dark-to-light transition. The O 2 photo-reduction is manifested as a fast re-oxidation of P700. The validity of the method was verified by experiments with transgenic organisms, namely FDP knock-out mutants of Synechocystis and Physcomitrella and transgenic Arabidopsis plants expressing FDPs from Physcomitrella. We observed the fast P700 re-oxidation in representatives of all green plant groups excluding angiosperms. Our results provide strong evidence that the FDP-mediated O 2 photo-reduction is functional in all nonflowering green plant groups. This finding suggests a major change in the strategy of photosynthetic regulation during the evolution of angiosperms. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Guan, Hexin; Zheng, Zhengui; Grey, Paris H; Li, Yuhua; Oppenheimer, David G
2011-05-01
Floral transition is a critical and strictly regulated developmental process in plants. Mutations in Arabidopsis LIKE HETEROCHROMATIN PROTEIN 1 (AtLHP1)/TERMINAL FLOWER 2 (TFL2) result in early and terminal flowers. Little is known about the gene expression, function and evolution of plant LHP1 homologs, except for Arabidopsis LHP1. In this study, the conservation and divergence of plant LHP1 protein sequences was analyzed by sequence alignments and phylogeny. LHP1 expression patterns were compared among taxa that occupy pivotal phylogenetic positions. Several relatively conserved new motifs/regions were identified among LHP1 homologs. Phylogeny of plant LHP1 proteins agreed with established angiosperm relationships. In situ hybridization unveiled conserved expression of plant LHP1 in the axillary bud/tiller, vascular bundles, developing stamens, and carpels. Unlike AtLHP1, cucumber CsLHP1-2, sugarcane SoLHP1 and maize ZmLHP1, rice OsLHP1 is not expressed in the shoot apical meristem (SAM) and the OsLHP1 transcript level is consistently low in shoots. "Unequal crossover" might have contributed to the divergence in the N-terminal and hinge region lengths of LHP1 homologs. We propose an "insertion-deletion" model for soybean (Glycine max L.) GmLHP1s evolution. Plant LHP1 homologs are more conserved than previously expected, and may favor vegetative meristem identity and primordia formation. OsLHP1 may not function in rice SAM during floral induction.
Re-assessing the role of plant community change and climate in the PETM n-alkane record
NASA Astrophysics Data System (ADS)
Bush, R. T.; Baczynski, A. A.; McInerney, F. A.; Chen, D.
2012-12-01
The terrestrial leaf wax n-alkane record of the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, shows large excursions in both carbon isotope (δ13C) values and n-alkane average chain length (ACL). At the onset of the PETM, ACL values increase from ~28.5 to ~30.1 while the negative carbon isotope excursion (CIE) is 4-6‰ in magnitude and larger than δ13C records from other materials. It has been hypothesized previously that both the ACL excursion and the large magnitude of the CIE were caused by a concurrent turnover in the local flora from a mixed conifer/angiosperm community before the PETM to a different suite of angiosperm species during the PETM. Here, we present the results of a meta-analysis of data (>2000 data from 89 sources, both published and unpublished) on n-alkane amounts and chain length distributions in modern plants from around the world. We applied the data in two sets of comparisons: 1) within and among plant groups such as herbs and graminoids, and 2) between plants and climate, using reported collection locations for outdoor plants and climate values generated via GIS extraction of WorldClim modeled data. We show that angiosperms, as group, produce more n-alkanes than do gymnosperms by 1-2 orders of magnitude, and this means that the gymnosperm contribution to a mixed soil n-alkane pool would be negligible, even in an ecosystem where gymnosperms dominated (i.e. the pre/post-PETM ecosystems). The modern plant data also demonstrate that turnover of the plant community during the PETM, even among only the angiosperm species, is likely not the source of the observed ACL excursion. First, we constructed "representative" groups of PETM and pre/post-PETM communities using living relative species at the Chicago Botanic Garden and find no significant difference in chain length distributions between the two groups. Second and moreover, the modern plant data reveal that n-alkane chain length distributions are tremendously variable
Secondary development in the stem: when Arabidopsis and trees are closer than it seems.
Barra-Jiménez, Azahara; Ragni, Laura
2017-02-01
Secondary growth, the increase in girth of plant organs, is primarily driven by the vascular and cork cambium. In perennial dicotyledons and gymnosperms, it represents a major source of biomass accumulation in the form of wood. However, the molecular framework underlying secondary growth is largely based on studies in the annual herbaceous plant Arabidopsis thaliana. In this review, we will focus on a selection of major regulators of stem secondary growth, which have recently been shown to play a role in woody species. In particular, we will focus on thermospermine and its bivalent role in controlling xylem differentiation and cell proliferation and we will highlight the contributions of the different LRR-Receptor-Like Kinase signaling hubs. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timko, Michael P
2013-02-01
The biosynthesis of chlorophyll is a critical biochemical step in the development of photosynthetic vascular plants and green algae. From photosynthetic bacteria (cyanobacteria) to algae, non-vascular plants, gymnosperms and vascular plants, mechanisms have evolved for protochlorophyllide reduction a key step in chlorophyll synthesis. Protochlorophyllide reduction is carried out by both a light-dependent (POR) and light-independent (LIPOR) mechanisms. NADPH: protochlorophyllide oxidoreductase (EC 1.3.1.33, abbreviated POR) catalyzes the light-dependent reduction of protochlorophyllide (PChlide) to chlorophyllide (Chlide). In contrast, a light-independent protochlorophyllide reductase (LIPOR) involves three plastid gene products (chlL, chlN, and chlB) and several nuclear factors. Our work focused on characterization ofmore » both the POR and LIPOR catalyzed processes.« less
Rafińska, Katarzyna; Bednarska, Elżbieta
2011-03-01
We have identified and characterised the temporal and spatial distribution of the homogalacturonan (HG) and arabinogalactan proteins (AGP) epitopes that are recognised by the antibodies JIM5, JIM7, LM2, JIM4, JIM8 and JIM13 during ovule differentiation in Larix decidua Mill. The results obtained clearly show differences in the pattern of localisation of specific HG epitopes between generative and somatic cells of the ovule. Immunocytochemical studies revealed that the presence of low-esterified HG is characteristic only of the wall of megasporocyte and megaspores. In maturing female gametophytes, highly esterified HG was the main form present, and the central vacuole of free nuclear gametophytes was particularly rich in this category of HG. This pool will probably be used in cell wall building during cellularisation. The selective labelling obtained with AGP antibodies indicates that some AGPs can be used as markers for gametophytic and sporophytic cells differentiation. Our results demonstrated that the AGPs recognised by JIM4 may constitute molecules determining changes in ovule cell development programs. Just after the end of meiosis, the signal detected with JIM4 labelling appeared only in functional and degenerating megaspores. This suggests that the antigens bound by JIM4 are involved in the initiation of female gametogenesis in L. decidua. Moreover, the analysis of AGPs distribution showed that differentiation of the nucellus cells occurs in the very young ovule stage before megasporogenesis. Throughout the period of ovule development, the pattern of localisation of the studied AGPs was different both in tapetum cells surrounding the gametophyte and in nucellus cells. Changes in the distribution of AGPs were also observed in the nucellus of the mature ovule, and they could represent an indicator of tissue arrangement to interact with the growing pollen tube. The possible role of AGPs in fertilisation is also discussed.
Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A
2016-04-01
Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences
Voelker, Steven L; Brooks, J Renée; Meinzer, Frederick C; Anderson, Rebecca; Bader, Martin K-F; Battipaglia, Giovanna; Becklin, Katie M; Beerling, David; Bert, Didier; Betancourt, Julio L; Dawson, Todd E; Domec, Jean-Christophe; Guyette, Richard P; Körner, Christian; Leavitt, Steven W; Linder, Sune; Marshall, John D; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina; Plumpton, Heather J; Pregitzer, Kurt S; Saurer, Matthias; Smith, Andrew R; Siegwolf, Rolf T W; Stambaugh, Michael C; Talhelm, Alan F; Tardif, Jacques C; Van de Water, Peter K; Ward, Joy K; Wingate, Lisa
2016-02-01
Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.
A synthesis of radial growth patterns preceding tree mortality
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M.R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, Juan C. Linares; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; Lopez Rodriguez, Rosana; Makinen, Harri; Mayr, Stefan; Meszaros, IIona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi
2017-01-01
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or
A synthesis of radial growth patterns preceding tree mortality.
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M R; Desoto, Lucía; Aakala, Tuomas; Antos, Joseph A; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Čada, Vojtěch; Camarero, Jesus J; Cherubini, Paolo; Cochard, Hervé; Coyea, Marie R; Čufar, Katarina; Das, Adrian J; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J; Hartmann, Henrik; Hereş, Ana-Maria; Hultine, Kevin R; Janda, Pavel; Kane, Jeffrey M; Kharuk, Vyacheslav I; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Linares Calderon, Juan C; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; López Rodríguez, Rosana; Mäkinen, Harri; Mayr, Stefan; Mészáros, Ilona; Metsaranta, Juha M; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M; Rohner, Brigitte; Sangüesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M; Stan, Amanda B; Sterck, Frank; Stojanović, Dejan B; Suarez, Maria L; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, José M; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R; Wyckoff, Peter H; Zafirov, Nikolay; Martínez-Vilalta, Jordi
2017-04-01
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or
Pollination drop in Juniperus communis: response to deposited material.
Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore
2007-12-01
The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal. These results suggest that the non-specific response
Pollination Drop in Juniperus communis: Response to Deposited Material
Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore
2007-01-01
Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal
Global-scale patterns of nutrient density and partitioning in forests in relation to climate.
Zhang, Kerong; Song, Conghe; Zhang, Yulong; Dang, Haishan; Cheng, Xiaoli; Zhang, Quanfa
2018-01-01
Knowledge of nutrient storage and partitioning in forests is imperative for ecosystem models and ecological theory. Whether the nutrients (N, P, K, Ca, and Mg) stored in forest biomass and their partitioning patterns vary systematically across climatic gradients remains unknown. Here, we explored the global-scale patterns of nutrient density and partitioning using a newly compiled dataset including 372 forest stands. We found that temperature and precipitation were key factors driving the nutrients stored in living biomass of forests at global scale. The N, K, and Mg stored in living biomass tended to be greater in increasingly warm climates. The mean biomass N density was 577.0, 530.4, 513.2, and 336.7 kg/ha for tropical, subtropical, temperate, and boreal forests, respectively. Around 76% of the variation in biomass N density could be accounted by the empirical model combining biomass density, phylogeny (i.e., angiosperm, gymnosperm), and the interaction of mean annual temperature and precipitation. Climate, stand age, and biomass density significantly affected nutrients partitioning at forest community level. The fractional distribution of nutrients to roots decreased significantly with temperature, suggesting that forests in cold climates allocate greater nutrients to roots. Gymnosperm forests tended to allocate more nutrients to leaves as compared with angiosperm forests, whereas the angiosperm forests distributed more nutrients in stems. The nutrient-based Root:Shoot ratios (R:S), averaged 0.30 for R:S N , 0.36 for R:S P , 0.32 for R:S K , 0.27 for R:S Ca , and 0.35 for R:S Mg , respectively. The scaling exponents of the relationships describing root nutrients as a function of shoot nutrients were more than 1.0, suggesting that as nutrient allocated to shoot increases, nutrient allocated to roots increases faster than linearly with nutrient in shoot. Soil type significantly affected the total N, P, K, Ca, and Mg stored in living biomass of forests, and the
The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences
2010-01-01
Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24). The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS) sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity) elsewhere in the genome, but only 23% have identical copies (99% identity). The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is a feasible goal. PMID
Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa
2016-01-01
Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.
Floral gene resources from basal angiosperms for comparative genomics research
Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H
2005-01-01
Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and
Carbohydrates and phenols as quantitative molecular vegetation proxies in peats
NASA Astrophysics Data System (ADS)
Kaiser, K.; Benner, R. H.
2012-12-01
Vegetation in peatlands is intricately linked to local environmental conditions and climate. Here we use chemical analyses of carbohydrates and phenols to reconstruct paleovegetation in peat cores collected from 56.8°N (SIB04), 58.4°N (SIB06), 63.8°N (G137) and 66.5°N (E113) in the Western Siberian Lowland. Lignin phenols (vanillyl and syringyl phenols) were sensitive biomarkers for vascular plant contributions and provided additional information on the relative contributions of angiosperm and gymnosperm plants. Specific neutral sugar compositions allowed identification of sphagnum mosses, sedges (Cyperaceae) and lichens. Hydroxyphenols released by CuO oxidation were useful tracers of sphagnum moss contributions. The three independent molecular proxies were calibrated with a diverse group of peat-forming plants to yield quantitative estimates (%C) of vascular plant, sphagnum moss and lichen contributions in peat core samples. Correlation analysis indicated the three molecular proxies produced fairly similar results for paleovegetation compositions, generally within the error interval of each approach (≤26%). The lignin-based method generally lead to higher estimates of vascular plant vegetation. Several significant deviations were also observed due to different reactivities of carbohydrate and phenolic polymers during peat decomposition. Rapid vegetation changes on timescales of 50-200 years were observed in the southern cores SIB04 and SIB06 over the last 2000 years. Vanillyl and syringyl phenol ratios indicated these vegetation changes were largely due to varying inputs of angiosperm and gymnosperm plants. The northern permafrost cores G137 and E113 showed a more stable development. Lichens briefly replaced sphagnum mosses and vascular plants in both of these cores. Shifts in vegetation did not correlate well with Northern hemisphere climate variability over the last 2000 years. This suggested that direct climate forcing of peatland dynamics was overridden
NASA Astrophysics Data System (ADS)
Miyata, Y.; Sawada, K.; Nakamura, H.; Takashima, R.; Takahashi, M.
2014-12-01
Resistant macromolecules composing living plant tissues tend to be preserved through degradation and diagenesis, hence constituate major parts of sedimentary plant-derived organic matter (kerogen), and their monomer compositions vary widely among different plant taxa, organs and growth stages. Thus, analysis of such macromolecule may serve as new technique for paleobotanical evaluation distinctive from classical paleobotnical studies depends on morphological preservation of fossils. In the present study, we analyzed plant fossils and kerogens in sediments from the Cretaceous strata in Japan to examine chemotaxonomic characteristics of fossil macromolecules and to reconstruct paleovegetation change by kerogen analysis. The kerogens were separated from the powdered sediments of Cretaceous Yezo Group, Hokkaido, Japan. All kerogens have been confirmed to be mostly originated from land plant tissues by microscopic observation. Mummified angiosperm and gymnosperm fossil leaves were separated from carbonaceous sandstone of the Cretaceous Ashizawa Formation, Futaba Group. The kerogens and plant fossils were extracted with methanol and dichloromethane, and were subsequently refluxed under 110°C to remove free compounds completely. The residues are hydrolyzed by KOH/methanol under 110°C. These released compounds are analyzed by GC-MS. As main hydrolyzed products (ester-bound molecular units) from all kerogens, C10-C28 n-alkanoic acids and C10-C30 n-alkanols were detected. Recent studies on the hydrolysis products of plant tissues suggested the long chain (>C20) n-alkanols were predominantly abundant in deciduous broadleaved angiosperms. Correspondingly, the stratigraphic variation of the ratios of long chain (>C20) n-alkanols to fatty acids was concordant with the variation of angiosperm/gymnosperm ratios recorded by land plant-derived terpenoid biomarkers. In addition, we found that the long chain n-alkanols/fatty acids ratio in the angiosperm fossil leaf was
NASA Technical Reports Server (NTRS)
Kim, Myoung K.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.
2002-01-01
The discovery of a nine-member multigene dirigent family involved in control of monolignol radical-radical coupling in the ancient gymnosperm, western red cedar, suggested that a complex multidimensional network had evolved to regulate such processes in vascular plants. Accordingly, in this study, the corresponding promoter regions for each dirigent multigene member were obtained by genome-walking, with Arabidopsis being subsequently transformed to express each promoter fused to the beta-glucuronidase (GUS) reporter gene. It was found that each component gene of the proposed network is apparently differentially expressed in individual tissues, organs and cells at all stages of plant growth and development. The data so obtained thus further support the hypothesis that a sophisticated monolignol radical-radical coupling network exists in plants which has been highly conserved throughout vascular plant evolution.
Domozych, David S.; Fujimoto, Chelsea; LaRue, Therese
2013-01-01
Polar expansion is a widespread phenomenon in plants spanning all taxonomic groups from the Charophycean Green Algae to pollen tubes in Angiosperms and Gymnosperms. Current data strongly suggests that many common features are shared amongst cells displaying polar growth mechanics including changes to the structural features of localized regions of the cell wall, mobilization of targeted secretion mechanisms, employment of the actin cytoskeleton for directing secretion and in many cases, endocytosis and coordinated interaction of multiple signal transduction mechanisms prompted by external biotic and abiotic cues. The products of polar expansion perform diverse functions including delivery of male gametes to the egg, absorption, anchorage, adhesion and photo-absorption efficacy. A comparative analysis of polar expansion dynamics is provided with special emphasis on those found in early divergent plants. PMID:27137370
Mantovani, Adelar; Morellato, L Patrícia C; Dos Reis, Maurício S
2006-01-01
The internal genetic structure and outcrossing rate of a population of Araucaria angustifolia (Bert.) O. Kuntze were investigated using 16 allozyme loci. Estimates of the mean number of alleles per loci (1.6), percentage of polymorphic loci (43.8%), and expected genetic diversity (0.170) were similar to those obtained for other gymnosperms. The analysis of spatial autocorrelation demonstrated the presence of internal structure in the first distance classes (up to 70 m), suggesting the presence of family structure. The outcrossing rate was high (0.956), as expected for a dioecious species. However, it was different from unity, indicating outcrossings between related individuals and corroborating the presence of internal genetic structure. The results of this study have implications for the methodologies used in conservation collections and for the use or analysis of this forest species.
Genetic transformation protocols using zygotic embryos as explants: an overview.
Tahir, Muhammad; Waraich, Ejaz A; Stasolla, Claudio
2011-01-01
Genetic transformation of plants is an innovative research tool which has practical significance for the development of new and improved genotypes or cultivars. However, stable introduction of genes of interest into nuclear genomes depends on several factors such as the choice of target tissue, the method of DNA delivery in the target tissue, and the appropriate method to select the transformed plants. Mature or immature zygotic embryos have been a popular choice as explant or target tissue for genetic transformation in both angiosperms and gymnosperms. As a result, considerable protocols have emerged in the literature which have been optimized for various plant species in terms of transformation methods and selection procedures for transformed plants. This article summarizes the recent advances in plant transformation using zygotic embryos as explants.
RNA extraction from decaying wood for (meta)transcriptomic analyses.
Adamo, Martino; Voyron, Samuele; Girlanda, Mariangela; Marmeisse, Roland
2017-10-01
Wood decomposition is a key step of the terrestrial carbon cycle and is of economic importance. It is essentially a microbiological process performed by fungi and to an unknown extent by bacteria. To gain access to the genes expressed by the diverse microbial communities participating in wood decay, we developed an RNA extraction protocol from this recalcitrant material rich in polysaccharides and phenolic compounds. This protocol was implemented on 22 wood samples representing as many tree species from 11 plant families in the Angiosperms and Gymnosperms. RNA was successfully extracted from all samples and converted into cDNAs from which were amplified both fungal and bacterial protein coding genes, including genes encoding hydrolytic enzymes participating in lignocellulose hydrolysis. This protocol applicable to a wide range of decomposing wood types represents a first step towards a metatranscriptomic analysis of wood degradation under natural conditions.
The Middle Eocene flora of Csordakút (N Hungary)
NASA Astrophysics Data System (ADS)
Erdei, Boglárka; Rákosi, László
2009-02-01
The Middle Eocene fossil plant assemblage from Csordakút (N Hungary) comprises plant remains preserved exclusively as impressions. Algae are represented by abundant remains of Characeae, including both vegetative fragments and gyrogonites. Remains of angiosperms comprise Lauraceae (
PlantCAZyme: a database for plant carbohydrate-active enzymes
Ekstrom, Alexander; Taujale, Rahil; McGinn, Nathan; Yin, Yanbin
2014-01-01
PlantCAZyme is a database built upon dbCAN (database for automated carbohydrate active enzyme annotation), aiming to provide pre-computed sequence and annotation data of carbohydrate active enzymes (CAZymes) to plant carbohydrate and bioenergy research communities. The current version contains data of 43 790 CAZymes of 159 protein families from 35 plants (including angiosperms, gymnosperms, lycophyte and bryophyte mosses) and chlorophyte algae with fully sequenced genomes. Useful features of the database include: (i) a BLAST server and a HMMER server that allow users to search against our pre-computed sequence data for annotation purpose, (ii) a download page to allow batch downloading data of a specific CAZyme family or species and (iii) protein browse pages to provide an easy access to the most comprehensive sequence and annotation data. Database URL: http://cys.bios.niu.edu/plantcazyme/ PMID:25125445
copia-like retrotransposons are ubiquitous among plants.
Voytas, D F; Cummings, M P; Koniczny, A; Ausubel, F M; Rodermel, S R
1992-01-01
Transposable genetic elements are assumed to be a feature of all eukaryotic genomes. Their identification, however, has largely been haphazard, limited principally to organisms subjected to molecular or genetic scrutiny. We assessed the phylogenetic distribution of copia-like retrotransposons, a class of transposable element that proliferates by reverse transcription, using a polymerase chain reaction assay designed to detect copia-like element reverse transcriptase sequences. copia-like retrotransposons were identified in 64 plant species as well as the photosynthetic protist Volvox carteri. The plant species included representatives from 9 of 10 plant divisions, including bryophytes, lycopods, ferns, gymnosperms, and angiosperms. DNA sequence analysis of 29 cloned PCR products and of a maize retrotransposon cDNA confirmed the identity of these sequences as copia-like reverse transcriptase sequences, thereby demonstrating that this class of retrotransposons is a ubiquitous component of plant genomes. Images PMID:1379734
The properties of syringyl, guaiacyl and p-hydroxyphenyl artificial lignins
Bland, D. E.; Logan, A. F.
1965-01-01
1. Artificial lignins have been produced on potato parenchyma. 2. The methoxyl-free lignin and 4-hydroxy-3-methoxy (guaiacyl) lignins could be estimated by the sulphuric acid method but the 4-hydroxy-3,5-dimethoxy (syringyl) lignins could not. 3. Permanganate oxidation of isolated p-coumaric lignin gave 4-hydroxybenzoic acid, 4-hydroxyisophthalic acid and small amounts of hydroxytrimesic acid and 4-hydroxyphthalic acid. Ferulic lignin gave vanillic acid and 5-carboxyvanillic acid and also small amounts of 4-hydroxybenzoic acid and dehydrodivanillic acid. The sinapic lignin gave traces of syringic acid and of 4-hydroxybenzoic acid. 4. The p-coumaric lignin is a highly condensed polymer. The ferulic lignin is partly uncondensed and partly condensed through the 5-position like gymnosperm lignin. The sinapic lignin shows no evidence of condensation and is probably an ether-linked polymer. PMID:14340102
Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil
NASA Astrophysics Data System (ADS)
Capretz, Robson Louiz; Rohn, Rosemarie
2013-08-01
A comprehensive biostratinomic study was carried out with abundant stems from the Lower Permian Motuca Formation of the intracratonic Parnaíba Basin, central-north Brazil. The fossils represent a rare tropical to subtropical paleofloristic record in north Gondwana. Tree ferns dominate the assemblages (mainly Tietea, secondarily Psaronius), followed by gymnosperms, sphenophytes, other ferns and rare lycophytes. They are silica-permineralized, commonly reach 4 m length (exceptionally more than 10 m), lie loosely on the ground or are embedded in the original sandstone or siltstone matrix, and attract particular attention because of their frequent parallel attitudes. Many tree fern stems present the original straight cylindrical to slightly conical forms, other are somewhat flattened, and the gymnosperm stems are usually more irregular. Measurements of stem orientations and dimensions were made in three sites approximately aligned in a W-E direction in a distance of 27.3 km at the conservation unit "Tocantins Fossil Trees Natural Monument". In the eastern site, rose diagrams for 54 stems indicate a relatively narrow azimuthal range to SE. These stems commonly present attached basal bulbous root mantles and thin cylindrical sandstone envelopes, which sometimes hold, almost adjacent to the lateral stem surface, permineralized fern pinnae and other small plant fragments. In the more central site, 82 measured stems are preferentially oriented in the SW-NE direction, the proportion of gymnosperms is higher and cross-stratification sets of sandstones indicate paleocurrents mainly to NE and secondarily to SE. In the western site, most of the 42 measured stems lie in E-W positions. The predominantly sandy succession, where the fossil stems are best represented, evidences a braided fluvial system under semiarid conditions. The low plant diversity, some xeromorphic features and the supposedly almost syndepositional silica impregnation of the plants are coherent with marked dry
Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.
Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom
2015-07-01
Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved
2011-01-01
Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen
Lignin biomarkers and pollen in the postglacial sediment of an Alaskan Lake
NASA Astrophysics Data System (ADS)
Hu, Feng Sheng; Hedges, John I.; Gordon, Elizabeth S.; Brubaker, Linda B.
1999-05-01
We analyzed a 12,000-yr sediment core from Wien Lake, central Alaska, for a suite of phenolic products from CuO oxidation of lignin polymers and compared their composition with pollen data from the same core to assess lignin phenols as sedimentary biomarkers. Inferences of the gross taxonomic origin of sediment organic matter from lignin-phenol composition agree with vegetational reconstructions based on pollen assemblages. In particular, the ratios of syringyl to vanillyl phenols are consistently higher before 6500 yr BP, when angiosperms dominated or codominated the regional vegetation, than after 6500 yr BP, when gymnosperms dominated. However, the ratios of cinnamyl ( p-coumaric and ferulic acids) to total vanillyl phenols (C/V) do not show patterns expected from the abundance of woody plants. C/V ratios are particularly high (0.7-0.85) after 6500 yr BP when pollen spectra suggest closed boreal forests dominated by Picea, and the stratigraphic patterns are strikingly similar between C/V and Picea pollen concentrations. CuO oxidation of modern pollen of P. glauca and P. mariana yields exceptionally high amounts of cinnamyl phenols (8.90 and 6.41 mg/100 mg OC for P. glauca and P. mariana, respectively). In particular, p-coumaric acid is obtained in large amounts (8.87 and 6.41 mg/100 mg OC for P. glauca and P. mariana, respectively) versus vanillyl phenols (0.25 and 0.49 mg/100 mg OC for P. glauca and P. mariana, respectively) and ferulic acid (0.03 and 0.00 mg/100 mg OC for P. glauca and P. mariana, respectively). Thus lignin phenols derived from fossil Picea pollen preserved in sediments likely drive the C/V profile of the Wien Lake core. These data imply that if Picea pollen concentrations are sufficiently high, the amount of nonwoody tissue in sediments may be grossly overestimated when the lignin composition of gymnosperm needles is used as the end member of nonwoody tissues. Given that pollen grains are among the most resistant components of sedimentary
NASA Astrophysics Data System (ADS)
Belcher, Claire; Hudpsith, Victoria
2016-04-01
Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms
NASA Astrophysics Data System (ADS)
Glasauer, S.; Smith, P.; Smith, R. W.
2016-12-01
The Winisk River begins in the Precambrian rock of the Canadian Shield in Ontario and traverses the Hudson Bay Lowlands before terminating in Hudson Bay. It drains an area of 67,300 km2that is sparsely populated, with remote communities that depend on natural resources. Accelerated decomposition of organic carbon (OC) in the area due to climate change is supported by higher inputs of particulate and dissolved OC to surface waters (Amon et al, 2012). The Winisk River is a particularly important source of OC to Hudson Bay, shown by high rates of lignin accumulation near the mouth of the river (Kuzyk et al., 2008). Webequie First Nation (WFN) is a small community located on Eastwood Island in Winisk Lake. It is the closest community to the proposed massive development of the "Ring of Fire" chromite and other mineral deposits in the James Bay Lowlands. Mine-related developments can be expected to impact water flows, water chemistry, and carbon cycling in the region. We sampled water and sediment at the major inlets to the lake and at the northern outlet within the territorial boundaries to characterize water chemistry, relate lignin compositional patterns to C and N isotopic signatures, and interpret temporal patterns in advance of development and future climate change. Organic C in the sediments ranged from around 1% to around 30%. Samples were analyzed for lignin compounds using a CuO digestion method coupled to GC-MS to identify lignin-phenol monomers, benzoic acids, and p-hydroxy acid. Ratios of 3,5-dihydroxybenzoic acid, P-hydroxy phenols and cinnamyl phenols to total vanillyl phenols indicate that gymnosperm wood and sphagnum peat dominate the OC pool, although the proportions of gymnosperm- and sphagnum-derived material vary between sites. Stable isotope analysis (δ13C, δ15N) suggests that other inputs of OC may be present that are consistent with OM derived from the erosion of older marine sediments. The results support that the proportion of sphagnum mosses
2009-01-01
Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated
Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg
2009-08-06
Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The
Spectroscopic studies of wood fossils from the Crato Formation, Cretaceous Period.
da Silva, J H; Freire, P T C; Abagaro, B T O; Silva, J A F; Saraiva, G D; de Lima, F J; Barros, O A; Bantim, R A; Saraiva, A A F; Viana, B C
2013-11-01
In this work we study two types of wood fossils (Gymnosperms, Araucariaceae) from the Crato Formation of Araripe Basin in Brazil, from the Cretaceous Period. The samples were characterized by Raman and infrared spectroscopies, X-ray diffraction and scanning electron microscopy. The results obtained by different techniques showed that although the rocks surrounding the fossils have predominantly the same constitution - calcite - however, the formation processes of these types of wood fossils are quite different. One of the fossils, denominated as light wood, is predominantly composed of gypsum, while the other fossil, the dark wood, is rich in amorphous carbon, possibly the kerogen type. Implications relative to the environment where the plants lived millions years ago are also given. Finally, the results highlight the constitution of one of the most important paleontological sites of the Cretaceous Period in the South America. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Mei; Rasnitsyn, Alexandr P; Yang, Zhongqi; Shih, Chungkun; Wang, Hongbin; Ren, Dong
2017-03-07
We describe Pamphilioidea: Mirolydidae Wang, Rasnitsyn et Ren, fam. n., containing Mirolyda hirta Wang, Rasnitsyn et Ren, gen. et sp. n., from the late Middle Jurassic Jiulongshan Formation of Daohugou, Inner Mongolia, China. The new taxon is characterized by unique forewing venation with the presence of forewing SC, 1-RS almost as long as 1-M, M + Cu straight, 2r-rs strongly reclival, and antenna with homonomous flagellum, revealing new and important details in antennal evolutionary transformations. Thus, M. hirta with a combination of primitive and more derived characters highlights its transitional state in the Pamphilioidea and complex mosaic evolution within Pamphilioidea in the late Middle Jurassic. The body of this species is densely covered with thin and long setae, suggesting its possible habit of visiting gymnosperm reproductive organs for pollen feeding and/or pollination during the late Middle Jurassic, much earlier than the appearance of angiosperm flowers.
After a dozen years of progress the origin of angiosperms is still a great mystery.
Frohlich, Michael W; Chase, Mark W
2007-12-20
Here we discuss recent advances surrounding the origin of angiosperms. Putatively primitive characters are now much better understood because of a vastly improved understanding of angiosperm phylogenetics, and recent discoveries of fossil flowers have provided an increasingly detailed picture of early diversity in the angiosperms. The 'anthophyte theory', the dominant concept of the 1980s and 1990s, has been eclipsed; Gnetales, previously thought to be closest to the angiosperms, are related instead to other extant gymnosperms, probably most closely to conifers. Finally, new theories of flower origins have been proposed based on gene function, duplication and loss, as well as on morphology. Further studies of genetic mechanisms that control reproductive development in seed plants provide a most promising avenue for further research, including tests of these recent theories. Identification of fossils with morphologies that convincingly place them close to angiosperms could still revolutionize understanding of angiosperm origins.
Estimation of mating system parameters in plant populations using marker loci with null alleles.
Ross, H A
1986-06-01
An Expectation-Maximization (EM)-algorithm procedure is presented that extends Cheliak et al. (1983) method of maximum-likelihood estimation of mating system parameters of mixed mating system models. The extension permits the estimation of the rate of self-fertilization (s) and allele frequencies (Pi) at loci in outcrossing pollen, at marker loci having recessive null alleles. The algorithm makes use of maternal and filial genotypic arrays obtained by the electrophoretic analysis of cohorts of progeny. The genotypes of maternal plants must be known. Explicit equations are given for cases when the genotype of the maternal gamete inherited by a seed can (gymnosperms) or cannot (angiosperms) be determined. The procedure can accommodate any number of codominant alleles, but only one recessive null allele at each locus. An example, using actual data from Pinus banksiana, is presented to illustrate the application of this EM algorithm to the estimation of mating system parameters using marker loci having both codominant and recessive alleles.
Aromatic biosynthesis in pine tissues
NASA Technical Reports Server (NTRS)
Cowles, J. R.
1984-01-01
Pinus elliotti is a woody plant species responsive to gravity and capable of synthesizing large quantities of lignin. Lignification begins very quickly after germination; lignin is detected in the vascular region within 4 days after germination and rapidly progresses up the hypocotyl. Young pine seedlings bend in response to geostimulation for about 10 days after germination, with the most rapid response time occurring in 4- to 5-day-old seedlings. Various chemicals were used to establish their effects on the geotropic response in this gymnosperm species. IAA completely arrests the geotropic response for 18 to 24 hr. Afterward the seedlings respond geostimulation as if they were not treated. The same pattern of response will occur with a second IAA treatment. If the synthetic auxin, 2-4,D, is used, the georesponse is permanently blocked. The method of application does not appear to be critical; addition of auxin to only one side of the seedling gave results similar to those obtained by treating the entire seedling.
Lignin-Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Fengxia; Lu, Fachuang; Regner, Matt
2017-01-26
Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β–aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here in this work, 12 guaiacyl-type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β–1-coupled units was established as resulting from β–5 units, correcting an analytical quandary. Another longstanding dilemma, that no β–β dimers were recognized in thioacidolysis products frommore » gymnosperms, was resolved with the discovery of two such authenticated compounds. Finally, individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit-linkage distributions in lignins and thereby guiding the valorization of lignocellulosics.« less
Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.
2011-01-01
The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.
Zodrow, E.L.; Mastalerz, Maria
2007-01-01
Multiple foliar specimens of the Late Pennsylvanian fossil pteridosperm [gymnosperm] Alethopteris zeilleri (Ragot) Wagner were collected from one restricted stratigraphical horizon in the Canadian Sydney Coalfield. Variability of functional-group distribution using FTIR technique was studied in compressions, adaxial versus abaxial cuticles, and in unseparated cuticles as a function of maceration time from 48 to 168??h. The results obtained document spectral variability that could be expected within specimens of one species. For example, CH2/CH3 and Al/ox ratios can differ by as much as 20% of the values. Moreover, the experiments performed confirm that by using a previously established maceration protocol, long maceration periods do not bias FTIR spectra in terms of oxygenation overprinting. The inference that this cuticle is robust, under the given diagenetic level, probably reflects a reassuring degree of chemical fidelity of the Pennsylvanian plant to support Carboniferous chemotaxonomic observations. ?? 2006 Elsevier B.V. All rights reserved.
Geography and major host evolutionary transitions shape the resource use of plant parasites
Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á.; Magalhães, Sara; Hortal, Joaquín
2016-01-01
The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore–plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites. PMID:27535932
NASA Astrophysics Data System (ADS)
Ferreira, Neila N.; Ferreira, Elizabete P.; Ramos, Renato R. C.; Carvalho, Ismar S.
2016-03-01
The siliciclastic sediments of the Itapecuru Formation occur in a large area of the Parnaíba Basin and its deposits crop out along the Itapecuru River, in Maranhão State, northern Brazil. The palynological analysis of the Igarapé Ipiranga and Querru 1 outcrops strata yields a rich and diversified data. The presence of index-palynofloras in assemblages allows the identification of the Complicatisaccus cearensis Zone, of Late Aptian-Early Albian age. Terrestrial palynomorphs are abundant in the assemblages, being represented by bryophytes and pteridophytes, especially perisporate trilete spores (Crybelosporites and Perotrilites), and gymnosperms and angiosperms (Afropollis and Elaterosporites). The composition of palynological assemblages suggests the presence of moist soils for both outcrops. Acritarchs were recovered in the Querru 1 outcrop, which suggest a marine setting supporting a tidal flat environment indicated by facies associations. Furthermore, reworked Paleozoic palynomorphs were observed in the Querru 1 outcrop. The microflora from Igarapé Ipiranga outcrop suggests terrestrial environment corroborating with floodplain environment indicated by facies association.
Sex chromosomes in land plants.
Ming, Ray; Bendahmane, Abdelhafid; Renner, Susanne S
2011-01-01
Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.
NASA Technical Reports Server (NTRS)
1998-01-01
In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.
Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding.
Little, Damon P
2014-09-01
Ginkgo biloba L. (known as ginkgo or maidenhair tree) is a phylogenetically isolated, charismatic, gymnosperm tree. Herbal dietary supplements, prepared from G. biloba leaves, are consumed to boost cognitive capacity via improved blood perfusion and mitochondrial function. A novel DNA mini-barcode assay was designed and validated for the authentication of G. biloba in herbal dietary supplements (n = 22; sensitivity = 1.00, 95% CI = 0.59-1.00; specificity = 1.00, 95% CI = 0.64-1.00). This assay was further used to estimate the frequency of mislabeled ginkgo herbal dietary supplements on the market in the United States of America: DNA amenable to PCR could not be extracted from three (7.5%) of the 40 supplements sampled, 31 of 37 (83.8%) assayable supplements contained identifiable G. biloba DNA, and six supplements (16.2%) contained fillers without any detectable G. biloba DNA. It is hoped that this assay will be used by supplement manufacturers to ensure that their supplements contain G. biloba.
Conserved versatile master regulators in signalling pathways in response to stress in plants
Balderas-Hernández, Victor E.; Alvarado-Rodríguez, Miguel; Fraire-Velázquez, Saúl
2013-01-01
From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response. PMID:24147216
Response of Late Carboniferous and Early Permian Plant Communities to Climate Change
NASA Astrophysics Data System (ADS)
Dimichele, William A.; Pfefferkorn, Hermann W.; Gastaldo, Robert A.
Late Carboniferous and Early Permian strata record the transition from a cold interval in Earth history, characterized by the repeated periods of glaciation and deglaciation of the southern pole, to a warm-climate interval. Consequently, this time period is the best available analogue to the Recent in which to study patterns of vegetational response, both to glacial-interglacial oscillation and to the appearance of warm climate. Carboniferous wetland ecosystems were dominated by spore-producing plants and early gymnospermous seed plants. Global climate changes, largely drying, forced vegetational changes, resulting in a change to a seed plant-dominated world, beginning first at high latitudes during the Carboniferous, reaching the tropics near the Permo-Carboniferous boundary. For most of this time plant assemblages were very conservative in their composition. Change in the dominant vegetation was generally a rapid process, which suggests that environmental thresholds were crossed, and involved little mixing of elements from the wet and dry floras.
NASA Astrophysics Data System (ADS)
Cheng, Ye-Ming; Yang, Xiao-Nan
2016-02-01
The Qaidam Basin with the most complete Cenozoic sedimentary preservation in northern Qinghai-Tibet Plateau is a key area for studying uplift and environmental change of the plateau. Three types of woods, Ulmus (Ulmaceae), Leguminosae (?) (angiosperm) and Cupressaceae (gymnosperm) were recognized from the large-scale preservation of fossil woods in late Miocene Shang Youshashan Formation in northern Qaidam Basin on the Qinghai-Tibet Plateau. Both investigations of their Nearest Living Relatives (NLRs) and previous grassland mammal evidences suggest that there have been temperate deciduous broad-leaved forest and needle-leaved forest with grass in northern Qaidam Basin during the late Miocene in contrast to the desert vegetation found there nowadays. The presence of the ancient forest steppe further implies that the southern part of the plateau used to be adequately low, so that the Indian and East Asian monsoons could approach the northern area and to accommodate the vegetation in late Miocene.
Lignin‐Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification
Yue, Fengxia; Regner, Matt; Sun, Runcang
2017-01-01
Abstract Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β–aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here, 12 guaiacyl‐type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β–1‐coupled units was established as resulting from β–5 units, correcting an analytical quandary. Another longstanding dilemma, that no β–β dimers were recognized in thioacidolysis products from gymnosperms, was resolved with the discovery of two such authenticated compounds. Individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit‐linkage distributions in lignins and thereby guiding the valorization of lignocellulosics. PMID:28125766
Yue, Fengxia; Lu, Fachuang; Regner, Matt; Sun, Runcang; Ralph, John
2017-03-09
Lignin structural studies play an essential role both in understanding the development of plant cell walls and for valorizing lignocellulosics as renewable biomaterials. Dimeric products released by selectively cleaving β-aryl ether linkages between lignin units reflect the distribution of recalcitrant lignin units, but have been neither absolutely defined nor quantitatively determined. Here, 12 guaiacyl-type thioacidolysis dimers were identified and quantified using newly synthesized standards. One product previously attributed to deriving from β-1-coupled units was established as resulting from β-5 units, correcting an analytical quandary. Another longstanding dilemma, that no β-β dimers were recognized in thioacidolysis products from gymnosperms, was resolved with the discovery of two such authenticated compounds. Individual GC response factors for each standard compound allowed rigorous quantification of dimeric products released from softwood lignins, affording insight into the various interunit-linkage distributions in lignins and thereby guiding the valorization of lignocellulosics. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Kitazawa, Yugo; Iwabuchi, Nozomu; Himeno, Misako; Sasano, Momoka; Koinuma, Hiroaki; Nijo, Takamichi; Tomomitsu, Tatsuya; Yoshida, Tetsuya; Okano, Yukari; Yoshikawa, Nobuyuki; Maejima, Kensaku; Oshima, Kenro; Namba, Shigetou
2017-05-17
ABCE-class MADS domain transcription factors (MTFs) are key regulators of floral organ development in angiosperms. Aberrant expression of these genes can result in abnormal floral traits such as phyllody. Phyllogen is a virulence factor conserved in phytoplasmas, plant pathogenic bacteria of the class Mollicutes. It triggers phyllody in Arabidopsis thaliana by inducing degradation of A- and E-class MTFs. However, it is still unknown whether phyllogen can induce phyllody in plants other than A. thaliana, although phytoplasma-associated phyllody symptoms are observed in a broad range of angiosperms. In this study, phyllogen was shown to cause phyllody phenotypes in several eudicot species belonging to three different families. Moreover, phyllogen can interact with MTFs of not only angiosperm species including eudicots and monocots but also gymnosperms and a fern, and induce their degradation. These results suggest that phyllogen induces phyllody in angiosperms and inhibits MTF function in diverse plant species. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
[LEAFY, a master regulator of flower development].
Vachon, Gilles; Tichtinsky, Gabrielle; Parcy, François
2012-01-01
Flowering plants or angiosperms constitute the vast majority of plant species. Their evolutionary success is largely due to the efficiency of the flower as reproductive structure. Work performed on model plant species in the last 20 years has identified the LEAFY gene as a key regulator of flower development. LEAFY is a unique plant transcription factor responsible for the formation of the earliest floral stage as well as for the induction of homeotic genes triggering floral organ determination. But LEAFY is also present in non-flowering plants such as mosses, ferns and gymnosperms. Recent studies suggest that LEAFY might play a role in cell division and meristem development in basal plants, a function that is probably more ancestral than the later acquired floral function. Analyzing the evolution of the role and the biochemical properties of this peculiar regulator starts to shade light on the mysterious origin of flowering plants. © Société de Biologie, 2012.
Critical review on the mechanisms of maturation stress generation in trees.
Alméras, Tancrède; Clair, Bruno
2016-09-01
Trees control their posture by generating asymmetric mechanical stress around the periphery of the trunk or branches. This stress is produced in wood during the maturation of the cell wall. When the need for reaction is high, it is accompanied by strong changes in cell organization and composition called reaction wood, namely compression wood in gymnosperms and tension wood in angiosperms. The process by which stress is generated in the cell wall during its formation is not yet known, and various hypothetical mechanisms have been proposed in the literature. Here we aim at discriminating between these models. First, we summarize current knowledge about reaction wood structure, state and behaviour relevant to the understanding of maturation stress generation. Then, the mechanisms proposed in the literature are listed and discussed in order to identify which can be rejected based on their inconsistency with current knowledge at the frontier between plant science and mechanical engineering. © 2016 The Author(s).
Leaf anatomy of a late Palaeozoic cycad
Lv, Yong; Guo, Yun; Wei, Hai-Bo
2017-01-01
Today, cycads are a small group of gymnospermous plants with a limited distribution in the (sub)tropics, but they were major constituents of Mesozoic floras. Fossil leaves sporadically found in latest Carboniferous and Permian floras have putatively been ascribed to cycads. However, their true affinity remains unclear due to the lack of anatomical evidence. Virtually all modern cycads have pinnate leaves, but this type of leaf morphology is by no means unique for cycads. Pinnate leaves of Plagiozamites oblongifolius Halle 1927 with well-preserved cuticles showing the epidermal anatomy are here described from the upper Permian Xuanwei Formation of Yunnan Province, Southwest China. The cuticles show a clear differentiation into costal and intercostal zones; stomata are confined to the intercostal zones on both the upper and lower leaf surfaces. The external morphology and the epidermal anatomy of these fossil leaves are closely comparable with those of extant cycads, particularly members of the family Zamiaceae. PMID:29093177
Temperature-dependence of biomass accumulation rates during secondary succession.
Anderson, Kristina J; Allen, Andrew P; Gillooly, James F; Brown, James H
2006-06-01
Rates of ecosystem recovery following disturbance affect many ecological processes, including carbon cycling in the biosphere. Here, we present a model that predicts the temperature dependence of the biomass accumulation rate following disturbances in forests. Model predictions are derived based on allometric and biochemical principles that govern plant energetics and are tested using a global database of 91 studies of secondary succession compiled from the literature. The rate of biomass accumulation during secondary succession increases with average growing season temperature as predicted based on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation is greater in angiosperm-dominated communities than in gymnosperm-dominated ones and greater in plantations than in naturally regenerating stands. By linking the temperature-dependence of photosynthesis to the rate of whole-ecosystem biomass accumulation during secondary succession, our model and results provide one example of how emergent, ecosystem-level rate processes can be predicted based on the kinetics of individual metabolic rate.
Geography and major host evolutionary transitions shape the resource use of plant parasites.
Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á; Magalhães, Sara; Hortal, Joaquín
2016-08-30
The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore-plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites.
Forest turnover rates follow global and regional patterns of productivity
Stephenson, N.L.; van Mantgem, P.J.
2005-01-01
Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.
Critical review on the mechanisms of maturation stress generation in trees
Clair, Bruno
2016-01-01
Trees control their posture by generating asymmetric mechanical stress around the periphery of the trunk or branches. This stress is produced in wood during the maturation of the cell wall. When the need for reaction is high, it is accompanied by strong changes in cell organization and composition called reaction wood, namely compression wood in gymnosperms and tension wood in angiosperms. The process by which stress is generated in the cell wall during its formation is not yet known, and various hypothetical mechanisms have been proposed in the literature. Here we aim at discriminating between these models. First, we summarize current knowledge about reaction wood structure, state and behaviour relevant to the understanding of maturation stress generation. Then, the mechanisms proposed in the literature are listed and discussed in order to identify which can be rejected based on their inconsistency with current knowledge at the frontier between plant science and mechanical engineering. PMID:27605169
Diagenesis of conifer needles in a coastal marine environment
NASA Astrophysics Data System (ADS)
Hedges, John I.; Weliky, K.
1989-10-01
Physically intact fir, hemlock and cedar needles were isolated from different horizons of a sediment core from a coastal marine bay (Dabob Bay, Washington State, U.S.A.) and from nearby trees and forest litter. Green fir, hemlock and cedar needles were all characterized by glucose-rich aldose mixtures (~30% of tissue carbon), the production of vanillyl and cinnamyl CuO-derived phenols (~8% of tissue carbon) and the presence of both pinitol and myo-inositol (1-2% of tissue carbon). Needles from forest litter were enriched in lignin phenols and non-glucose aldoses and depleted in glucose and cyclitols. The sediment core contained an average of 10 mg/1 of physically intact fir, hemlock and cedar needles, which occurred in similar relative abundances and accounted for less than 1% of the total nonwoody gymnosperm tissue. Compared to the green and litter counterparts, all sedimentary needles were greatly depleted in cyclitols, glucose and p-coumaric acid and enriched in vanillyl phenol precursors. The degree of elevation of vanillyl phenol yield from the degraded needles was used to estimate minimal carbon losses from the samples, which ranged from near 40% for needle litter to almost 70% for the deepest (~100 years old) sedimentary fir/hemlock samples. Although downcore increases in carbon loss and refractory organic components indicated in situ diagenesis, the bulk of overall degradation occurred either on land or during the first 10-20 years after deposition. Atomic C/N ratios of degraded needles were lower than for green counterparts, but nitrogen was lost overall. These relative changes indicate the following stability series: vanillyl phenols > N > ferulic acid, p-hydroxy phenols, most aldoses and bulk tissue > glucose and p-coumaric acid > cyclitols (near 100% loss). Vanillic acid to vanillin ratios, (Ad/Al)v, of the green fir and hemlock needles were unusually high (0.36-0.38) and decreased downcore. Diagenesis also decreased the cinnamyl/vanillyl phenol ratio
Hatcher, P.G.
1988-01-01
A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.
Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève
2013-05-07
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.
Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants.
Morozov, Sergey Y; Milyutina, Irina A; Bobrova, Vera K; Ryazantsev, Dmitry Y; Erokhina, Tatiana N; Zavriev, Sergey K; Agranovsky, Alexey A; Solovyev, Andrey G; Troitsky, Alexey V
2015-12-01
The 4/1 protein of unknown function is encoded by a single-copy gene in most higher plants. The 4/1 protein of Nicotiana tabacum (Nt-4/1 protein) has been shown to be alpha-helical and predominantly expressed in conductive tissues. Here, we report the analysis of 4/1 genes and the encoded proteins of lower land plants. Sequences of a number of 4/1 genes from liverworts, lycophytes, ferns and gymnosperms were determined and analyzed together with sequences available in databases. Most of the vascular plants were found to encode Magnoliophyta-like 4/1 proteins exhibiting previously described gene structure and protein properties. Identification of the 4/1-like proteins in hornworts, liverworts and charophyte algae (sister lineage to all land plants) but not in mosses suggests that 4/1 proteins are likely important for plant development but not required for a primary metabolic function of plant cell. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Flavanol binding of nuclei from tree species.
Feucht, W; Treutter, D; Polster, J
2004-01-01
Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, J.D.; Zhang, J.; Rember, W.C.
Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduousmore » species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.« less
A new fossil fern assignable to Gleicheniaceae from Late Cretaceous sediments of New Jersey.
Gandolfo, M; Nixon, K; Crepet, W; Ratcliffe, G
1997-04-01
The recent discovery of well-preserved charcoalified rhizomes, petioles. pinnules, sori, and spores from the Upper Cretaceous of New Jersey provides the basis for the description of a new gleicheniaceous fern, Boodlepteris turoniana. The fossils were collected from unconsolidated sediments of Turonian age (~90 MYBP million years before present; Raritan/ Lower Magothy Formation, Potomac Group). These deposits are rich in angiosperms, but also have a limited representation of fern and gymnosperm remains. Fossil specimens from this locality are particularly remarkable in that minute detail, including anatomical features, are often preserved. Some Boodlepteris specimens have cell by cell preservation that reveals the nature and structure of the stele in rhizomes and petioles, and others show minute details of the sori borne on fertile pinnae. Although these specimens are not in organic connection, there are sufficient structural and anatomical details preserved to confidently suggest that they belong to the same taxon. Cladistic analysis of the fossils, both separately and as a reconstruction, support assignment of Boodlepteris to the extant family Gleicheniaceae.
The Transcriptomics of Secondary Growth and Wood Formation in Conifers
Carvalho, Ana; Paiva, Jorge; Louzada, José; Lima-Brito, José
2013-01-01
In the last years, forestry scientists have adapted genomics and next-generation sequencing (NGS) technologies to the search for candidate genes related to the transcriptomics of secondary growth and wood formation in several tree species. Gymnosperms, in particular, the conifers, are ecologically and economically important, namely, for the production of wood and other forestry end products. Until very recently, no whole genome sequencing of a conifer genome was available. Due to the gradual improvement of the NGS technologies and inherent bioinformatics tools, two draft assemblies of the whole genomes sequence of Picea abies and Picea glauca arose in the current year. These draft genome assemblies will bring new insights about the structure, content, and evolution of the conifer genomes. Furthermore, new directions in the forestry, breeding and research of conifers will be discussed in the following. The identification of genes associated with the xylem transcriptome and the knowledge of their regulatory mechanisms will provide less time-consuming breeding cycles and a high accuracy for the selection of traits related to wood production and quality. PMID:24288610
Chemical Composition of Cacti Wood and Comparison with the Wood of Other Taxonomic Groups.
Maceda, Agustín; Soto-Hernández, Marcos; Peña-Valdivia, Cecilia B; Terrazas, Teresa
2018-04-01
The aims of this study were to determine the wood chemical composition of 25 species of Cactaceae and to relate the composition to their anatomical diversity. The hypothesis was that wood chemical components differ in relationship to their wood features. The results showed significant differences in wood chemical compounds across species and genera (P < 0.05). Pereskia had the highest percentage of lignin, whereas species of Coryphantha had the lowest; extractive compounds in water were highest for Echinocereus, Mammillaria, and Opuntia. Principal component analysis showed that lignin proportion separated the fibrous, dimorphic, and non-fibrous groups; additionally, the differences within each type of wood occurred because of the lignification of the vascular tissue and the type of wall thickening. Compared with other groups of species, the Cactaceae species with fibrous and dimorphic wood had a higher lignin percentage than did gymnosperms and Acer species. Lignin may confer special rigidity to tracheary elements to withstand desiccation without damage during adverse climatic conditions. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
Zhou, Junhui; Li, Xiaojuan
2015-01-01
Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to examine the role of HDAC in Picea wilsonii pollen germination and pollen tube elongation. Measurements of the tip-focused Ca2+ gradient revealed that TSA and NaB influenced this gradient. Immunofluorescence showed that actin filaments were disrupted into disorganized fragments. As a result, the vesicle trafficking was disturbed, as determined by FM4-64 labeling. Moreover, the distribution of pectins and callose in cell walls was significantly altered in response to TSA and NaB. Our results suggest that HDAC affects pollen germination and polarized pollen tube growth in Picea wilsonii by affecting the intracellular Ca2+ concentration gradient, actin organization patterns, vesicle trafficking, as well as the deposition and configuration of cell wall components. PMID:26710276
How the ovules get enclosed in magnoliaceous carpels.
Zhang, Xin; Liu, Wenzhe; Wang, Xin
2017-01-01
Angiosperms distinguish themselves from gymnosperms by their ovules that are enclosed before pollination. However, how the ovules get enclosed in angiosperms remains a mystery, especially for Magnoliaceae. The only key to this mystery is finding a series of carpels transitional from fully closed with enclosed ovules to open with naked ovules. We use routine paraffin section technology, LM, SEM to document the morphology and anatomy of carpel variation in Michelia figo (Magnoliaceae). A series of carpel variations within a single flower of Michelia figo (Magnoliaceae) are documented, in which the ovules are exposed in atypical carpels. These atypical and typical carpels for the first time demonstrate clearly how the naked ovule get enclosed. Each atypical carpel, with naked ovules, clearly comprises two parts, namely, subtending foliar part and branches bearing ovules, suggesting that a typical carpel is actually an end-product of the fusion between the ovuliferous branches and subtending foliar parts. The only difference among these carpels is the extent of fusion between these two parts. This generalization is in full agreement with the molecular genetic studies on angiosperm flowers.
The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation.
Siriwardana, Nirodhini S; Lamb, Rebecca S
2012-01-01
For successful reproduction, angiosperms must form fertile flowers at the appropriate positions and at the appropriate times. The reproductive transition is especially important for monocarpic plants that only flower once. In the model annual plant Arabidopsis thaliana, this transition is controlled through regulation of a group of genes termed floral meristem identity genes, of which LEAFY (LFY) is arguably the most important. LFY orthologs are found throughout land plants and are essential for angiosperm reproduction. These genes have also been implicated in reproductive development in gymnosperms. LFY encodes a plant-specific transcription factor that can act as either an activator or repressor depending on context, including what co-factors it is interacting with. It controls multiple aspects of floral morphogenesis, including phyllotaxis, organ number, organ identity and determinacy. Much progress has been made in elucidating the molecular mechanisms through which LFY and its orthologs contribute to a precise switch to flowering. We discuss the current state of knowledge in Arabidopsis, with an emphasis on known target genes and co-factors of LFY.
Guevara, R; Armesto, J J; Caru, M
2002-08-01
The cyanobacteria belonging to the genus Nostoc fix atmospheric nitrogen, both as free-living organisms and in symbiotic associations with a wide range of hosts, including bryophytes, gymnosperms (cycads), the small water fern Azolla (Pteridophyte), the angiosperm genus Gunnera, and fungi (lichens). The Gunnera-Nostoc symbiosis is the only one that involves a flowering plant. In Chile, 12 species of Gunnera have been described with a broad distribution in the temperate region. We examined the genetic diversity of Nostoc symbionts from three populations of Gunnera tinctoria from Abtao, Chiloé Island, southern Chile, and microsymbionts from other two species of Gunnera from southern Chile, using PCR amplification of STRR (short tandemly repeated repetitive) sequences of the Nostoc infected tissue. To our knowledge, this is the first report of PCR fingerprinting obtained directly from symbiotic tissue of Gunnera. Genetic analyses revealed that Nostoc symbionts exhibit important genetic diversity among host plants, both within and between Gunnera populations. It was also found that only one Nostoc strain, or closely related strains, established symbiosis with an individual plant host.
Tree-ring strontium-90 and cesium-137 as potential indicators of radioactive pollution.
Kagawa, Akira; Aoki, Toru; Okada, Naoki; Katayama, Yukio
2002-01-01
To examine whether tree rings can be used to detect or assess local historical 90Sr or 137Cs fallout, such as that resulting from the Hiroshima atomic bomb, radial distribution of 90Sr and 137Cs in trees was examined. We studied a gymnosperm [Japanese cedar, Cryptomeria japonica (L. f.) D. Don] and an angiosperm (Japanese persimmon, Diospyros kaki Thunb.) tree species from the vicinity of the atomic bomb hypocenter, and from other locations in Japan. A significant amount of 137Cs was detected in tree rings formed before 1945, indicating lateral migration of Cs. In contrast, the specific activity of 90Sr in the Hiroshima Japanese cedar showed the highest level in 1945, due to relatively immobile characteristics of Sr compared with Cs. Strontium-90 and Sr analyses in tree rings helped identify and distinguish between residual 90Sr activity from the Hiroshima atomic bomb and the atmospheric nuclear testing. This indicates the possibility of detecting or assessing previous local 90Sr pollution through with treering analysis.
DNA methylome of the 20-gigabase Norway spruce genome
Ausin, Israel; Feng, Suhua; Yu, Chaowei; Liu, Wanlu; Kuo, Hsuan Yu; Jacobsen, Elise L.; Zhai, Jixian; Gallego-Bartolome, Javier; Wang, Lin; Egertsdotter, Ulrika; Street, Nathaniel R.; Jacobsen, Steven E.; Wang, Haifeng
2016-01-01
DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns. PMID:27911846
Insights into the origin and evolution of the plant hormone signaling machinery.
Wang, Chunyang; Liu, Yang; Li, Si-Shen; Han, Guan-Zhu
2015-03-01
Plant hormones modulate plant growth, development, and defense. However, many aspects of the origin and evolution of plant hormone signaling pathways remain obscure. Here, we use a comparative genomic and phylogenetic approach to investigate the origin and evolution of nine major plant hormone (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonate, salicylic acid, and strigolactone) signaling pathways. Our multispecies genome-wide analysis reveals that: (1) auxin, cytokinin, and strigolactone signaling pathways originated in charophyte lineages; (2) abscisic acid, jasmonate, and salicylic acid signaling pathways arose in the last common ancestor of land plants; (3) gibberellin signaling evolved after the divergence of bryophytes from land plants; (4) the canonical brassinosteroid signaling originated before the emergence of angiosperms but likely after the split of gymnosperms and angiosperms; and (5) the origin of the canonical ethylene signaling pathway postdates shortly the emergence of angiosperms. Our findings might have important implications in understanding the molecular mechanisms underlying the emergence of land plants. © 2015 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
King, D. P.; Schubert, B.; Foelber, K.; Jahren, H.
2011-12-01
The prevalence and diagenetic resilience of palynomorphs in Proterozoic and Phanerozoic sediments has led researchers to investigate its potential as an environmental proxy based on its stable isotope composition. Towards this, Loader and Hemming (2001), noted that the carbon isotope composition (δ13C) of modern Pinus sylvestris pollen exine correlates with the developmental period temperature (°C) of the pollen (R2=0.68), implying that the δ13C of gymnosperm pollen could be quantitatively utilized as a paleotemperature proxy. However, the majority of pollen-producing organisms during the last ~120 million years have been angiosperms, which are subject to complex internal signaling for reproduction, in addition to environmental triggers. Because these internal signals control the relative proportion of lipids, long-chain fatty acids, and polysaccharides within pollen grains, we hypothesized that the δ13C variability in pollen (δ13Cpollen) from several plants subject to the same external environmental parameters is of the same magnitude as the amount attributed to the environment for gymnosperms. Within growth chambers, the test organism (Brassica rapa) was cultivated under constant light, water, pCO2, and nutrient supply, but exhibited average δ13Cpollen variability = 4.35% within any chamber (n = 6 to 8 plants per chamber). Field experiments were also conducted in which the pollen from the test organism (Hibiscus spp.) was sampled from several botanical gardens within the state of Hawaii. Pollen collected from any one botanical garden exhibited an average δ13Cpollen variability = 4.5% (up to 5 plants per garden). Upon comparing chambers operating at different temperatures (17°C to 32°C), we discovered no correlation (R2=0.01) between the developmental period temperature (°C) and the δ13C of B. rapa pollen; similarly, no correlation was found between the δ13C of Hibiscus pollen and its developmental period temperature (°C) (R2=0.12). This work
USDA-ARS?s Scientific Manuscript database
Prevalence of allergic reactions to tree nuts is increasing and can be particularly severe. Pine nuts from Pinus pinea have been consumed for over 2000 years in the Mediterranean region and today they are extensively consumed worldwide as a high nutrient ingredient. Of the reported cases of allergy ...
Morozov, Sergey Y; Milyutina, Irina A; Erokhina, Tatiana N; Ozerova, Liudmila V; Troitsky, Alexey V; Solovyev, Andrey G
2018-01-01
Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.
Interactions among Genes Regulating Ovule Development in Arabidopsis Thaliana
Baker, S. C.; Robinson-Beers, K.; Villanueva, J. M.; Gaiser, J. C.; Gasser, C. S.
1997-01-01
The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development. PMID:9093862
Diversification of land plants: insights from a family-level phylogenetic analysis
2011-01-01
Background Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. Results We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. Conclusions This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario. PMID:22103931
Novel dehydrins lacking complete K-segments in Pinaceae. The exception rather than the rule
Perdiguero, Pedro; Collada, Carmen; Soto, Álvaro
2014-01-01
Dehydrins are thought to play an essential role in the plant response, acclimation and tolerance to different abiotic stresses, such as cold and drought. These proteins contain conserved and repeated segments in their amino acid sequence, used for their classification. Thus, dehydrins from angiosperms present different repetitions of the segments Y, S, and K, while gymnosperm dehydrins show A, E, S, and K segments. The only fragment present in all the dehydrins described to date is the K-segment. Different works suggest the K-segment is involved in key protective functions during dehydration stress, mainly stabilizing membranes. In this work, we describe for the first time two Pinus pinaster proteins with truncated K-segments and a third one completely lacking K-segments, but whose sequence homology leads us to consider them still as dehydrins. qRT-PCR expression analysis show a significant induction of these dehydrins during a severe and prolonged drought stress. By in silico analysis we confirmed the presence of these dehydrins in other Pinaceae species, breaking the convention regarding the compulsory presence of K-segments in these proteins. The way of action of these unusual dehydrins remains unrevealed. PMID:25520734
A Survey of Plant Iron Content-A Semi-Systematic Review.
Ancuceanu, Robert; Dinu, Mihaela; Hovaneţ, Marilena Viorica; Anghel, Adriana Iuliana; Popescu, Carmen Violeta; Negreş, Simona
2015-12-10
Iron is an essential mineral nutrient for all living organisms, involved in a plurality of biological processes. Its deficit is the cause of the most common form of anemia in the world: iron deficiency anemia (IDA). This paper reviews iron content in various parts of 1228 plant species and its absorption from herbal products, based on data collected from the literature in a semi-systematic manner. Five hundred genera randomly selected from the Angiosperms group, 215 genera from the Pteridophytes groups and all 95 Gymnosperm genera as listed in the Plant List version 1.1 were used as keywords together with the word "iron" in computerized searches. Iron data about additional genera returned by those searches were extracted and included in the analysis. In total, iron content values for a number of 1228 species, 5 subspecies, and 5 varieties were collected. Descriptive and inferential statistics were used to compare iron contents in various plant parts (whole plant, roots, stems, shoots, leaves, aerial parts, flowers, fruits, seeds, wood, bark, other parts) and exploratory analyses by taxonomic groups and life-forms were carried out. The absorption and potential relevance of herbal iron for iron supplementation are discussed.
2014-01-01
Background Keteleeria davidiana var. formosana (Pinaceae), Taiwan cow-tail fir, is an endangered species listed on the IUCN Red List of Threatened Species and only two populations remain, both on the Taiwan Island. Sixteen polymorphic microsatellite loci were developed in an endangered and endemic gymnosperm species, Keteleeria davidiana var. formosana, and were tested in an additional 6 taxa, K. davidiana var. calcarea, K. davidiana var. chienpeii, K. evelyniana, K. fortunei, K. fortunei var. cyclolepis, and K. pubescens, to evaluate the genetic variation available for conservation management and to reconstruct the phylogeographic patterns of this ancient lineage. Findings Polymorphic primer sets were developed from K. davidiana var. formosana using the modified AFLP and magnetic bead enrichment method. The number of alleles ranged from 3 to 16, with the observed heterozygosity ranging from 0.28 to 1.00. All of the loci were found to be interspecifically amplifiable. Conclusions These polymorphic and transferable loci will be potentially useful for future studies that will focus on identifying distinct evolutionary units within species and establishing the phylogeographic patterns and the process of speciation among closely related species. PMID:24755442
Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.
Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C
2015-10-01
The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Flotation preferentially selects saccate pollen during conifer pollination.
Leslie, Andrew B
2010-10-01
• Among many species of living conifers the presence of pollen with air bladders (saccate pollen) is strongly associated with downward-facing ovules and the production of pollination drops. This combination of features enables saccate pollen grains captured in the pollination drop to float upwards into the ovule. Despite the importance of this mechanism in understanding reproduction in living conifers and in extinct seed plants with similar morphologies, experiments designed to test its effectiveness have yielded equivocal results. • In vitro and in vivo pollination experiments using saccate and nonsaccate pollen were performed using modeled ovules and two Pinus species during their natural pollination period. • Buoyant saccate pollen readily floated through aqueous droplets, separating these grains from nonbuoyant pollen and spores. Ovules that received saccate pollen, nonsaccate pollen or a mixture of both all showed larger amounts and higher proportions of saccate pollen inside ovules after drop secretion. • These results demonstrate that flotation is an effective mechanism of pollen capture and transport in gymnosperms, and suggest that the prevalence of saccate grains and downward-facing ovules in the evolutionary history of seed plants is a result of the widespread use of this mechanism.
Diversification of land plants: insights from a family-level phylogenetic analysis.
Fiz-Palacios, Omar; Schneider, Harald; Heinrichs, Jochen; Savolainen, Vincent
2011-11-21
Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario.
Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives.
Hare, Vincent J; Loftus, Emma; Jeffrey, Amy; Ramsey, Christopher Bronk
2018-01-17
The 13 C/ 12 C ratio of C 3 plant matter is thought to be controlled by the isotopic composition of atmospheric CO 2 and stomatal response to environmental conditions, particularly mean annual precipitation (MAP). The effect of CO 2 concentration on 13 C/ 12 C ratios is currently debated, yet crucial to reconstructing ancient environments and quantifying the carbon cycle. Here we compare high-resolution ice core measurements of atmospheric CO 2 with fossil plant and faunal isotope records. We show the effect of pCO 2 during the last deglaciation is stronger for gymnosperms (-1.4 ± 1.2‰) than angiosperms/fauna (-0.5 ± 1.5‰), while the contributions from changing MAP are -0.3 ± 0.6‰ and -0.4 ± 0.4‰, respectively. Previous studies have assumed that plant 13 C/ 12 C ratios are mostly determined by MAP, an assumption which is sometimes incorrect in geological time. Atmospheric effects must be taken into account when interpreting terrestrial stable carbon isotopes, with important implications for past environments and climates, and understanding plant responses to climate change.
The evolutionary diversification of seed size: using the past to understand the present.
Sims, Hallie J
2012-05-01
The Devonian origin of seed plants and subsequent morphological diversification of seeds during the late Paleozoic represents an adaptive radiation into unoccupied ecological niche space. A plant's seed size is correlated with its life-history strategy, growth form, and seed dispersal syndrome. The fossil record indicates that the oldest seed plants had relatively small seeds, but the Mississippian seed size envelope increased significantly with the diversification of larger seeded lineages. Fossil seeds equivalent to the largest extant gymnosperm seeds appeared by the Pennsylvanian, concurrent with morphological diversification of growth forms and dispersal syndromes as well as the clade's radiation into new environments. Wang's Analysis of Skewness indicates that the evolutionary trend of increasing seed size resulted from primarily passive processes in Pennsylvanian seed plants. The distributions of modern angiosperms indicate a more diverse system of active and some passive processes, unbounded by Paleozoic limits; multiple angiosperm lineages independently evolved though the upper and lower bounds. Quantitative measures of preservation suggest that, although our knowledge of Paleozoic seeds is far from complete, the evolutionary trend in seed size is unlikely to be an artifact of taphonomy. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.
Milyutina, Irina A.; Erokhina, Tatiana N.; Ozerova, Liudmila V.; Troitsky, Alexey V.; Solovyev, Andrey G.
2018-01-01
Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants. PMID:29682420
Anderegg, William R L; Klein, Tamir; Bartlett, Megan; Sack, Lawren; Pellegrini, Adam F A; Choat, Brendan; Jansen, Steven
2016-05-03
Drought-induced tree mortality has been observed globally and is expected to increase under climate change scenarios, with large potential consequences for the terrestrial carbon sink. Predicting mortality across species is crucial for assessing the effects of climate extremes on forest community biodiversity, composition, and carbon sequestration. However, the physiological traits associated with elevated risk of mortality in diverse ecosystems remain unknown, although these traits could greatly improve understanding and prediction of tree mortality in forests. We performed a meta-analysis on species' mortality rates across 475 species from 33 studies around the globe to assess which traits determine a species' mortality risk. We found that species-specific mortality anomalies from community mortality rate in a given drought were associated with plant hydraulic traits. Across all species, mortality was best predicted by a low hydraulic safety margin-the difference between typical minimum xylem water potential and that causing xylem dysfunction-and xylem vulnerability to embolism. Angiosperms and gymnosperms experienced roughly equal mortality risks. Our results provide broad support for the hypothesis that hydraulic traits capture key mechanisms determining tree death and highlight that physiological traits can improve vegetation model prediction of tree mortality during climate extremes.
A Survey of Plant Iron Content—A Semi-Systematic Review
Ancuceanu, Robert; Dinu, Mihaela; Hovaneţ, Marilena Viorica; Anghel, Adriana Iuliana; Popescu, Carmen Violeta; Negreş, Simona
2015-01-01
Iron is an essential mineral nutrient for all living organisms, involved in a plurality of biological processes. Its deficit is the cause of the most common form of anemia in the world: iron deficiency anemia (IDA). This paper reviews iron content in various parts of 1228 plant species and its absorption from herbal products, based on data collected from the literature in a semi-systematic manner. Five hundred genera randomly selected from the Angiosperms group, 215 genera from the Pteridophytes groups and all 95 Gymnosperm genera as listed in the Plant List version 1.1 were used as keywords together with the word “iron” in computerized searches. Iron data about additional genera returned by those searches were extracted and included in the analysis. In total, iron content values for a number of 1228 species, 5 subspecies, and 5 varieties were collected. Descriptive and inferential statistics were used to compare iron contents in various plant parts (whole plant, roots, stems, shoots, leaves, aerial parts, flowers, fruits, seeds, wood, bark, other parts) and exploratory analyses by taxonomic groups and life-forms were carried out. The absorption and potential relevance of herbal iron for iron supplementation are discussed. PMID:26690470
Smith, Matthew E; Pfister, Donald H
2009-09-01
Tuberculate ectomycorrhizae (TECM) are unique structures in which aggregates of ectomycorrhizal roots are encased in a covering of fungal hyphae. The function of TECM is unknown, but they probably enhance the nitrogen nutrition and disease resistance of host plants. Trees in the Pinaceae form TECM with species of Rhizopogon and Suillus (Suillineae, Boletales). Similar tubercules are found with diverse angiosperms, but their mycobionts have not been phylogenetically characterized. We collected TECM in Mexico and the USA that were similar to TECM in previous reports. We describe these TECM and identify both the plant and fungal symbionts. Plant DNA confirms that TECM hosts are Quercus species. ITS sequences from tubercules and sclerotia (hyphal aggregations that serve as survival structures) matched sporocarps of Boletus rubropunctus. Phylogenetic analyses confirm that this fungus belongs to the suborder Boletineae (Boletales). This is the first published report of TECM formation in the Boletineae and of sclerotia formation by a Boletus species. Our data suggest that the TECM morphology is an adaptive feature that has evolved separately in two suborders of Boletales (Suillineae and Boletineae) and that TECM formation is controlled by the mycobiont because TECM are found on distantly related angiosperm and gymnosperm host plants.
Zhang, Yuan-Jie; Wang, Wei; Yang, Hai-Ling; Li, Yue; Kang, Xiang-Yang; Wang, Xiao-Ru; Yang, Zhi-Ling
2015-01-01
Dehydroascorbate reductase (DHAR), which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens) and eudicots (e.g. Arabidopsis thaliana). In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA) can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.
A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants
Mathews, Sarah; Clements, Mark D.; Beilstein, Mark A.
2010-01-01
Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence. PMID:20047866
A perfect flower from the Jurassic of China
Liu, Zhong-Jian; Wang, Xin
2016-01-01
Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov., from the Middle–Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers. PMID:27134345
A perfect flower from the Jurassic of China.
Liu, Zhong-Jian; Wang, Xin
2016-07-03
Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov. , from the Middle-Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers.
Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation.
Biffin, Ed; Brodribb, Timothy J; Hill, Robert S; Thomas, Philip; Lowe, Andrew J
2012-01-22
The angiosperm radiation has been linked to sharp declines in gymnosperm diversity and the virtual elimination of conifers from the tropics. The conifer family Podocarpaceae stands as an exception with highest species diversity in wet equatorial forests. It has been hypothesized that efficient light harvesting by the highly flattened leaves of several podocarp genera facilitates persistence with canopy-forming angiosperms, and the angiosperm ecological radiation may have preferentially favoured the diversification of these lineages. To test these ideas, we develop a molecular phylogeny for Podocarpaceae using Bayesian-relaxed clock methods incorporating fossil time constraints. We find several independent origins of flattened foliage types, and that these lineages have diversified predominantly through the Cenozoic and therefore among canopy-forming angiosperms. The onset of sustained foliage flattening podocarp diversification is coincident with a declining diversification rate of scale/needle-leaved lineages and also with ecological and climatic transformations linked to angiosperm foliar evolution. We demonstrate that climatic range evolution is contingent on the underlying state for leaf morphology. Taken together, our findings imply that as angiosperms came to dominate most terrestrial ecosystems, competitive interactions at the foliar level have profoundly shaped podocarp geography and as a consequence, rates of lineage diversification.
Divergence of species responses to climate change
Fei, Songlin; Desprez, Johanna M.; Potter, Kevin M.; Jo, Insu; Knott, Jonathan A.; Oswalt, Christopher M.
2017-01-01
Climate change can have profound impacts on biodiversity and the sustainability of many ecosystems. Various studies have investigated the impacts of climate change, but large-scale, trait-specific impacts are less understood. We analyze abundance data over time for 86 tree species/groups across the eastern United States spanning the last three decades. We show that more tree species have experienced a westward shift (73%) than a poleward shift (62%) in their abundance, a trend that is stronger for saplings than adult trees. The observed shifts are primarily due to the changes of subpopulation abundances in the leading edges and are significantly associated with changes in moisture availability and successional processes. These spatial shifts are associated with species that have similar traits (drought tolerance, wood density, and seed weight) and evolutionary histories (most angiosperms shifted westward and most gymnosperms shifted poleward). Our results indicate that changes in moisture availability have stronger near-term impacts on vegetation dynamics than changes in temperature. The divergent responses to climate change by trait- and phylogenetic-specific groups could lead to changes in composition of forest ecosystems, putting the resilience and sustainability of various forest ecosystems in question. PMID:28560343
Maranho, L T; Dziedzic, M; Muñiz, G I B; Kuniyoshi, Y S; Galvão, F
2009-05-01
Podocarpus lambertii Klotzsch ex Endl. (Podocarpaceae) is native and a member of the Pinophyta (Gymnosperm) of southern Brazil, locally known as 'pinheiro-bravo'. The present work aims to investigate the effects of petroleum on the tracheids dimensions. Wood samples from twenty individuals were studied along the stem, ten being exposed to pollution and ten used as a control set. The wood samples were collected from incisions at three levels: at the ground level, and one and two metres above the ground level. From these samples, sub-samples were selected at the border of the growth layers in the vascular cambium-medulla direction. The methodology followed that traditionally recommended for plant anatomy studies, with analyses done by light microscopy (OLYMPUS - BX41) assisted by the software Image Pro-plus for measurements. Comparison of the individuals exposed to petroleum with the control set, showed that the length, diameter and cell wall width of the tracheids of the former were smaller, a trend which was statistically significant according to the Student's t-test. These traits were observed mainly on the tracheids of the last growth layer, corresponding to the year in which the individuals were exposed to petroleum.
Evolution of green plants as deduced from 5S rRNA sequences.
Hori, H; Lim, B L; Osawa, S
1985-02-01
We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other.
Evolution of green plants as deduced from 5S rRNA sequences
Hori, Hiroshi; Lim, Byung-Lak; Osawa, Syozo
1985-01-01
We have constructed a phylogenic tree for green plants by comparing 5S rRNA sequences. The tree suggests that the emergence of most of the uni- and multicellular green algae such as Chlamydomonas, Spirogyra, Ulva, and Chlorella occurred in the early stage of green plant evolution. The branching point of Nitella is a little earlier than that of land plants and much later than that of the above green algae, supporting the view that Nitella-like green algae may be the direct precursor to land plants. The Bryophyta and the Pteridophyta separated from each other after emergence of the Spermatophyta. The result is consistent with the view that the Bryophyta evolved from ferns by degeneration. In the Pteridophyta, Psilotum (whisk fern) separated first, and a little later Lycopodium (club moss) separated from the ancestor common to Equisetum (horsetail) and Dryopteris (fern). This order is in accordance with the classical view. During the Spermatophyta evolution, the gymnosperms (Cycas, Ginkgo, and Metasequoia have been studied here) and the angiosperms (flowering plants) separated, and this was followed by the separation of Metasequoia and Cycas (cycad)/Ginkgo (maidenhair tree) on one branch and various flowering plants on the other. PMID:16593540
Fossil evidence for the early ant evolution
NASA Astrophysics Data System (ADS)
Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André
2008-02-01
Ants are one of the most studied insects in the world; and the literature devoted to their origin and evolution, systematics, ecology, or interactions with plants, fungi and other organisms is prolific. However, no consensus yet exists on the age estimate of the first Formicidae or on the origin of their eusociality. We review the fossil and biogeographical record of all known Cretaceous ants. We discuss the possible origin of the Formicidae with emphasis on the most primitive subfamily Sphecomyrminae according to its distribution and the Early Cretaceous palaeogeography. And we review the evidence of true castes and eusociality of the early ants regarding their morphological features and their manner of preservation in amber. The mid-Cretaceous amber forest from south-western France where some of the oldest known ants lived, corresponded to a moist tropical forest close to the shore with a dominance of gymnosperm trees but where angiosperms (flowering plants) were already diversified. This palaeoenvironmental reconstruction supports an initial radiation of ants in forest ground litter coincident with the rise of angiosperms, as recently proposed as an ecological explanation for their origin and successful evolution.
Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness.
Xue, Xian; Wang, Qi; Qu, Yanli; Wu, Hongyang; Dong, Fengqin; Cao, Haoyan; Wang, Hou-Ling; Xiao, Jianwei; Shen, Yingbai; Wan, Yinglang
2017-01-01
Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP + oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae
Neale, David B.; McGuire, Patrick E.; Wheeler, Nicholas C.; Stevens, Kristian A.; Crepeau, Marc W.; Cardeno, Charis; Zimin, Aleksey V.; Puiu, Daniela; Pertea, Geo M.; Sezen, U. Uzay; Casola, Claudio; Koralewski, Tomasz E.; Paul, Robin; Gonzalez-Ibeas, Daniel; Zaman, Sumaira; Cronn, Richard; Yandell, Mark; Holt, Carson; Langley, Charles H.; Yorke, James A.; Salzberg, Steven L.; Wegrzyn, Jill L.
2017-01-01
A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb.) Franco (Coastal Douglas-fir) is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp). Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms. PMID:28751502
Systematic Error in Seed Plant Phylogenomics
Zhong, Bojian; Deusch, Oliver; Goremykin, Vadim V.; Penny, David; Biggs, Patrick J.; Atherton, Robin A.; Nikiforova, Svetlana V.; Lockhart, Peter James
2011-01-01
Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinaceae conifers), we report sequences from three new chloroplast (cp) genomes of Southern Hemisphere conifers. We have applied a site pattern sorting criterion to study compositional heterogeneity, heterotachy, and the fit of conifer chloroplast genome sequences to a general time reversible + G substitution model. We show that non-time reversible properties of aligned sequence positions in the chloroplast genomes of Gnetales mislead phylogenetic reconstruction of these seed plants. When 2,250 of the most varied sites in our concatenated alignment are excluded, phylogenetic analyses favor a close evolutionary relationship between the Gnetales and Pinaceae—the Gnepine hypothesis. Our analytical protocol provides a useful approach for evaluating the robustness of phylogenomic inferences. Our findings highlight the importance of goodness of fit between substitution model and data for understanding seed plant phylogeny. PMID:22016337
Chaw, Shu-Miaw; Shih, Arthur Chun-Chieh; Wang, Daryi; Wu, Yu-Wei; Liu, Shu-Mei; Chou, The-Yuan
2008-03-01
The mtDNA of Cycas taitungensis is a circular molecule of 414,903 bp, making it 2- to 6-fold larger than the known mtDNAs of charophytes and bryophytes, but similar to the average of 7 elucidated angiosperm mtDNAs. It is characterized by abundant RNA editing sites (1,084), more than twice the number found in the angiosperm mtDNAs. The A + T content of Cycas mtDNA is 53.1%, the lowest among known land plants. About 5% of the Cycas mtDNA is composed of a novel family of mobile elements, which we designated as "Bpu sequences." They share a consensus sequence of 36 bp with 2 terminal direct repeats (AAGG) and a recognition site for the Bpu 10I restriction endonuclease (CCTGAAGC). Comparison of the Cycas mtDNA with other plant mtDNAs revealed many new insights into the biology and evolution of land plant mtDNAs. For example, the noncoding sequences in mtDNAs have drastically expanded as land plants have evolved, with abrupt increases appearing in the bryophytes, and then in the seed plants. As a result, the genomic organizations of seed plant mtDNAs are much less compact than in other plants. Also, the Cycas mtDNA appears to have been exempted from the frequent gene loss observed in angiosperm mtDNAs. Similar to the angiosperms, the 3 Cycas genes nad1, nad2, and nad5 are disrupted by 5 group II intron squences, which have brought the genes into trans-splicing arrangements. The evolutionary origin and invasion/duplication mechanism of the Bpu sequences in Cycas mtDNA are hypothesized and discussed.
Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G
2017-12-01
Due to an unfortunate turn of events, the funding note for Open Access publication was not properly provided in the original publication. Hence, the original article has been corrected. The opening line of the Acknowledgement section should read.
Lignin phenols in sediments of Lake Baikal, Siberia: Application to paleoenvironmental studies
Orem, W.H.; Colman, Steven M.; Lerch, H.E.
1997-01-01
of a mix of non-woody angiosperm vegetation and minor gymnosperm forest. Shorter interstadial periods are defined by a change to dominant gymnosperm forest and were observed at about 80, 75, 63, 50 and 30 ka, ranging from about 2-6 kyr in duration. These interstadial periods of the late Pleistocene defined by lignin phenol ratios generally occur during longer periods of enhanced sedimentary biogenic silica content (about 10-15 ka in duration), providing corroborative evidence of these warm interstadial periods.Sediments obtained in Lake Baikal were analyzed for organic carbon, total nitrogen and lignin phenol composition and used to study changes in paleoenvironmental conditions during climatic cycles of the late Quaternary. The organic carbon, total nitrogen concentrations, atomic C/N ratios and organic carbon accumulation rates were higher in the Holocene showing overall warmer temperatures and increased runoff. Total lignin phenol contents were lower in the Pleistocene representing relatively warm interstadial times with increased precipitation, runoff and aquatic productivity. Lignin phenol was used to examine vegetation changes due to paleoenvironmental conditions and showed that long glacial periods were characterized by terrestrial vegetation.
NASA Astrophysics Data System (ADS)
Bush, R. T.; McInerney, F. A.
2010-12-01
Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one
2012-01-01
Background A detailed knowledge about spatial and temporal gene expression is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now simultaneously identify the transcribed part of a species genome and estimate levels of gene expression. Results mRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads, together with publicly available expressed sequence tag (EST) data from Norway spruce, was used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 83.5% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression differences between samples collected under dark and light conditions. Conclusions Our study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10−09 and 1.1 × 10−09) is an order of magnitude smaller than values reported for angiosperm herbs. However, if one takes generation time into account, most of this difference disappears. The estimates of the dN/dS ratio (non-synonymous over synonymous divergence) reported here are in general much lower than 1 and only a few genes showed a ratio larger than 1. PMID:23122049
Four hundred million years of silica biomineralization in land plants.
Trembath-Reichert, Elizabeth; Wilson, Jonathan Paul; McGlynn, Shawn E; Fischer, Woodward W
2015-04-28
Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diverging land plant clades, which show that silica biomineralization is widespread across terrestrial plant linages. Particularly high silica abundances are observed in lycophytes and early-diverging ferns. However, silica biomineralization is rare within later-evolving gymnosperms, implying a complex evolutionary history within the seed plants. Electron microscopy and X-ray spectroscopy show that the most common silica-mineralized tissues include the vascular system, epidermal cells, and stomata, which is consistent with the hypothesis that biomineralization in plants is frequently coupled to transpiration. Furthermore, sequence, phylogenetic, and structural analysis of nodulin 26-like intrinsic proteins from diverse plant genomes points to a plastic and ancient capacity for silica accumulation within terrestrial plants. The integration of these two comparative biology approaches demonstrates that silica biomineralization has been an important process for land plants over the course of their >400 My evolutionary history.
Persea americana (avocado): bringing ancient flowers to fruit in the genomics era.
Chanderbali, André S; Albert, Victor A; Ashworth, Vanessa E T M; Clegg, Michael T; Litz, Richard E; Soltis, Douglas E; Soltis, Pamela S
2008-04-01
The avocado (Persea americana) is a major crop commodity worldwide. Moreover, avocado, a paleopolyploid, is an evolutionary "outpost" among flowering plants, representing a basal lineage (the magnoliid clade) near the origin of the flowering plants themselves. Following centuries of selective breeding, avocado germplasm has been characterized at the level of microsatellite and RFLP markers. Nonetheless, little is known beyond these general diversity estimates, and much work remains to be done to develop avocado as a major subtropical-zone crop. Among the goals of avocado improvement are to develop varieties with fruit that will "store" better on the tree, show uniform ripening and have better post-harvest storage. Avocado transcriptome sequencing, genome mapping and partial genomic sequencing will represent a major step toward the goal of sequencing the entire avocado genome, which is expected to aid in improving avocado varieties and production, as well as understanding the evolution of flowers from non-flowering seed plants (gymnosperms). Additionally, continued evolutionary and other comparative studies of flower and fruit development in different avocado strains can be accomplished at the gene expression level, including in comparison with avocado relatives, and these should provide important insights into the genetic regulation of fruit development in basal angiosperms.
Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo
2016-01-01
Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian–Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian–Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ13Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian–Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises. PMID:27340926
Neimanis, Karina; Staples, James F; Hüner, Norman P A; McDonald, Allison E
2013-09-10
Alternative oxidase (AOX) is a terminal ubiquinol oxidase present in the respiratory chain of all angiosperms investigated to date, but AOX distribution in other members of the Viridiplantae is less clear. We assessed the taxonomic distribution of AOX using bioinformatics. Multiple sequence alignments compared AOX proteins and examined amino acid residues involved in AOX catalytic function and post-translational regulation. Novel AOX sequences were found in both Chlorophytes and Streptophytes and we conclude that AOX is widespread in the Viridiplantae. AOX multigene families are common in non-angiosperm plants and the appearance of AOX1 and AOX2 subtypes pre-dates the divergence of the Coniferophyta and Magnoliophyta. Residues involved in AOX catalytic function are highly conserved between Chlorophytes and Streptophytes, while AOX post-translational regulation likely differs in these two lineages. We demonstrate experimentally that an AOX gene is present in the moss Physcomitrella patens and that the gene is transcribed. Our findings suggest that AOX will likely exert an influence on plant respiration and carbon metabolism in non-angiosperms such as green algae, bryophytes, liverworts, lycopods, ferns, gnetophytes, and gymnosperms and that further research in these systems is required. Copyright © 2013 Elsevier B.V. All rights reserved.
Using SRμCT to define water transport capacity in Picea abies
NASA Astrophysics Data System (ADS)
Lautner, Silke; Lenz, Claudia; Hammel, Jörg; Moosmann, Julian; Kühn, Michael; Caselle, Michele; Vogelgesang, Matthias; Kopmann, Andreas; Beckmann, Felix
2017-10-01
Water transport from roots to shoots is a vital necessity in trees in order to sustain their photosynthetic activity and, hence, their physiological activity. The vascular tissue in charge is the woody body of root, stem and branches. In gymnosperm trees, like spruce trees (Picea abies (L.) Karst.), vascular tissue consists of tracheids: elongated, protoplast- free cells with a rigid cell wall that allow for axial water transport via their lumina. In order to analyze the over-all water transport capacity within one growth ring, time-consuming light microscopy analysis of the woody sample still is the conventional approach for calculating tracheid lumen area. In our investigations at the Imaging Beamline (IBL) operated by the Helmholtz-Zentrum Geesthacht (HZG) at PETRA III storage ring of the Deutsches Elektronen-Synchrotron DESY, Hamburg, we applied SRμCT on small wood samples of spruce trees in order to visualize and analyze size and formation of xylem elements and their respective lumina. The selected high-resolution phase-contrast technique makes full use of the novel 20 MPixel CMOS area detector developed within the cooperation of HZG and the Karlsruhe data by light microscopy analysis and, hence, prove, that μCT is a most appropriate method to gain valid information on xylem cell structure and tree water transport capacity.
Bark flammability as a fire-response trait for subalpine trees
Frejaville, Thibaut; Curt, Thomas; Carcaillet, Christopher
2013-01-01
Relationships between the flammability properties of a given plant and its chances of survival after a fire still remain unknown. We hypothesize that the bark flammability of a tree reduces the potential for tree survival following surface fires, and that if tree resistance to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on subalpine tree species, the relationship between the flammability of bark and its insulating ability, identifies the biological traits that determine bark flammability, and assesses their relative susceptibility to surface fires from their bark properties. The experimental set of burning properties was analyzed by Principal Component Analysis to assess the bark flammability. Bark insulating ability was expressed by the critical time to cambium kill computed from bark thickness. Log-linear regressions indicated that bark flammability varies with the bark thickness and the density of wood under bark and that the most flammable barks have poor insulating ability. Susceptibility to surface fires increases from gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and insulating ability of the bark that should partly explain their contrasted responses to fires in the past. PMID:24324473
Sharkey, Thomas D; Gray, Dennis W; Pell, Heather K; Breneman, Steven R; Topper, Lauren
2013-04-01
Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)-β-ocimene synthases form a monophyletic group within the Tps-b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps-b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps-b genes indicates that isoprene emission from non-rosid angiosperms likely arose independently. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Nagel, Raimund; Berasategui, Aileen; Paetz, Christian; Gershenzon, Jonathan; Schmidt, Axel
2014-01-01
Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection. PMID:24346420
Lu, Xiu-Mei; Zhang, Wei-Wei; Liu, Xing-Yue
2016-05-05
Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4-1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions.
Wildfires in the Triassic of Gondwana Paraná Basin
NASA Astrophysics Data System (ADS)
Cardoso, Daiane dos Santos; Mizusaki, Ana Maria Pimentel; Guerra-Sommer, Margot; Menegat, Rualdo; Barili, Rosalia; Jasper, André; Uhl, Dieter
2018-03-01
This first report of wildfires from an association of facies containing a Dicroidium flora is made from the Upper Triassic (Carnian age) in the southern part of the Paraná Basin (Santa Maria Supersequence, Rio Grande do Sul state). The geographical extension of the Dicroidium plant assemblage is augmented in Brazilian Gondwana. Field work followed by organic petrography (inertinite reflectance), scanning electron microscopy (SEM) and field emission gun scanning electron microscopy (FEG-SEM), revealed charcoal presence in a section located in Pinheiro Machado town. Macroscopic charcoal is represented by three-dimensional wood specimens assigned to gymnosperms, with coniferous affinities and by flattened, thin, elongated remains corresponding to rachises of Dicroidium. Average reflectance values between 2.80 and 6.61 %Ro measured in the macroscopic charcoals evidence high temperature burning processes, involving fires both in the crown and in the crown-surface interface. The occurrence of charcoal in distinct and subsequent facies of the studied section indicates wildfires, which affected hinterland, meso-xerophyllous coniferous assemblages and marginal hygro-mesophyllous Dicroidium-like assemblages. The integration of results from the charcoal analyses is consistent with an atmospheric oxygen content higher than 18.5% and fuel enough to generate wildfires during the Triassic of Gondwana.
Lora, Jorge; Hormaza, José I; Herrero, Maria
2015-10-01
While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms. © 2015 Consejo Superior de Investigaciones Cientificas. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Bugdaeva, E. V.; Markevich, V. S.; Volynets, E. B.
2014-05-01
The plant remains and palynological assemblages are studied in detail in the section of the coal-bearing upper part of the Aptian Starosuchan Formation near the village of Molchanovka (Partizansk Basin, South Primorye region). On the basis of the light and electron microscopic study of the disperse cuticles, it was established that the coals are mostly composed of remains of taxodialean Elatides asiatica (Yok.) Krassil., subordinate Miroviaceae, rare ginkgoalean Pseudotorellia sp., and bennettite Nilssoniopteris rithidorachis (Krysht.) Krassil. The spores Gleicheniidites and pollen Taxodiaceaepollenites are dominant in the palynospectrum of the coal interlayer. It was found that dominant taxodialeans and gleicheniaceous ferns with less abundant Miroviaceae, ginkgoaleans, and rare bennettites occurred in the Aptian swamp communities of the Partizansk basin. Shoots and leaves of Elatides asiatica, fronds of Birisia onychioides (Vassil. et K.-M.) Samyl., are dominant in the burials of plants from the clastic rocks. The fragments of leaves of Nilssoniopteris, scale-leaved conifers, and Ginkgo ex gr. adiantoides are rare. The disperse cuticle of these layers mostly includes Pseudotorellia sp.; however, its remains in burials were not found. The spores Laevigatosporites are dominant in the palynospectra from the clastic interlayers. Ginkgocycadophytus and taxa close to Pinaceae are plentiful among the pollen of gymnosperms.
Distribution, congruence, and hotspots of higher plants in China
Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining
2016-01-01
Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China’s Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region’s specific conditions. PMID:26750244
Hu, Wen-Jun; Chen, Juan; Liu, Ting-Wu; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Wu, Fei-Hua; Liu, Xiang; Shen, Zhi-Jun; Zheng, Hai-Lei
2014-01-01
Acid rain (AR), a serious environmental issue, severely affects plant growth and development. As the gymnosperms of conifer woody plants, Pinus massoniana (AR-sensitive) and Taxus wallichiana var. mairei (AR-resistant) are widely distributed in southern China. Under AR stress, significant necrosis and collapsed lesions were found in P. massoniana needles with remarkable yellowing and wilting tips, whereas T. wallichiana var. mairei did not exhibit chlorosis and visible damage. Due to the activation of a large number of stress-related genes and the synthesis of various functional proteins to counteract AR stress, it is important to study the differences in AR-tolerance mechanisms by comparative proteomic analysis of tolerant and sensitive species. This study revealed a total of 65 and 26 differentially expressed proteins that were identified in P. massoniana and T. wallichiana var. mairei, respectively. Among them, proteins involved in metabolism, photosynthesis, signal transduction and transcription were drastically down-regulated in P. massoniana, whereas most of the proteins participating in metabolism, cell structure, photosynthesis and transcription were increased in T. wallichiana var. mairei. These results suggest the distinct patterns of protein expression in the two woody species in response to AR, allowing a deeper understanding of diversity on AR tolerance in forest tree species. PMID:24625662
Leaf economic traits from fossils support a weedy habit for early angiosperms.
Royer, Dana L; Miller, Ian M; Peppe, Daniel J; Hickey, Leo J
2010-03-01
Many key aspects of early angiosperms are poorly known, including their ecophysiology and associated habitats. Evidence for fast-growing, weedy angiosperms comes from the Early Cretaceous Potomac Group, where angiosperm fossils, some of them putative herbs, are found in riparian depositional settings. However, inferences of growth rate from sedimentology and growth habit are somewhat indirect; also, the geographic extent of a weedy habit in early angiosperms is poorly constrained. Using a power law between petiole width and leaf mass, we estimated the leaf mass per area (LMA) of species from three Albian (110-105 Ma) fossil floras from North America (Winthrop Formation, Patapsco Formation of the Potomac Group, and the Aspen Shale). All LMAs for angiosperm species are low (<125 g/m(2); mean = 76 g/m(2)) but are high for gymnosperm species (>240 g/m(2); mean = 291 g/m(2)). On the basis of extant relationships between LMA and other leaf economic traits such as photosynthetic rate and leaf lifespan, we conclude that these Early Cretaceous landscapes were populated with weedy angiosperms with short-lived leaves (<12 mo). The unrivalled capacity for fast growth observed today in many angiosperms was in place by no later than the Albian and likely played an important role in their subsequent ecological success.
Coffee Berry Borer Joins Bark Beetles in Coffee Klatch
Jaramillo, Juliana; Torto, Baldwyn; Mwenda, Dickson; Troeger, Armin; Borgemeister, Christian; Poehling, Hans-Michael; Francke, Wittko
2013-01-01
Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms. PMID:24073204
Coffee berry borer joins bark beetles in coffee klatch.
Jaramillo, Juliana; Torto, Baldwyn; Mwenda, Dickson; Troeger, Armin; Borgemeister, Christian; Poehling, Hans-Michael; Francke, Wittko
2013-01-01
Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms.
Douétts-Peres, Jackellinne C; Cruz, Marco Antônio L; Reis, Ricardo S; Heringer, Angelo S; de Oliveira, Eduardo A G; Elbl, Paula M; Floh, Eny I S; Silveira, Vanildo; Santa-Catarina, Claudete
2016-01-01
Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants.
Douétts-Peres, Jackellinne C.; Cruz, Marco Antônio L.; Reis, Ricardo S.; Heringer, Angelo S.; de Oliveira, Eduardo A. G.; Elbl, Paula M.; Floh, Eny I. S.; Silveira, Vanildo
2016-01-01
Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants. PMID:27064899
Vea, Isabelle M.; Grimaldi, David A.
2016-01-01
The radiation of flowering plants in the mid-Cretaceous transformed landscapes and is widely believed to have fuelled the radiations of major groups of phytophagous insects. An excellent group to test this assertion is the scale insects (Coccomorpha: Hemiptera), with some 8,000 described Recent species and probably the most diverse fossil record of any phytophagous insect group preserved in amber. We used here a total-evidence approach (by tip-dating) employing 174 morphological characters of 73 Recent and 43 fossil taxa (48 families) and DNA sequences of three gene regions, to obtain divergence time estimates and compare the chronology of the most diverse lineage of scale insects, the neococcoid families, with the timing of the main angiosperm radiation. An estimated origin of the Coccomorpha occurred at the beginning of the Triassic, about 245 Ma [228–273], and of the neococcoids 60 million years later [210–165 Ma]. A total-evidence approach allows the integration of extinct scale insects into a phylogenetic framework, resulting in slightly younger median estimates than analyses using Recent taxa, calibrated with fossil ages only. From these estimates, we hypothesise that most major lineages of coccoids shifted from gymnosperms onto angiosperms when the latter became diverse and abundant in the mid- to Late Cretaceous. PMID:27000526
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.
2017-01-01
Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Ancient Food Habits Dictate that Food Can Be Medicine but Medicine Cannot Be "Food"!!
Goswami, Hit Kishore; Ram, Hitendra Kumar
2017-11-13
Background: Extensive surveys of several population settlements in different parts of India-covering plains, mountains, valleys, river banks and deeper areas of forests at different altitudes-between 1968 and 2016 demonstrated that the basic vital need of hunger is being fulfilled since antiquity by plants in the wild. Methods: Based on collections, consultations with local population personnel and literature searches, this paper presents many plants that are commonly used as food and focuses on their products, which are rich in alkaloids, polysaccharides, steroids, terpenoids, flavonoids, aminoacids, fatty acids and antibiotics etc. These complex organic compounds are suitable for the production of drugs for many ailments/diseases, including the prevention of cancers. Results: There are more than 100 families including several hundred plant taxa from various plant groups like angiosperms, bryophytes, pteridophytes, gymnosperms and even fleshy fungi, which have offered essential food items to ever-growing human populations since antiquity. Phytochemicals functioning as antioxidants are exceedingly beneficial to the human body but excess consumption of these compounds, adding higher levels of antioxidants, may even be responsible for chronic diseases including aging, cancer, cardiovascular diseases, rheumatoid arthritis, atherosclerosis, etc. These medicines can obviously be taken in small and prescribed quantities but can never be consumed as "food items."
Analysis of xylem formation in pine by cDNA sequencing
NASA Technical Reports Server (NTRS)
Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.;
1998-01-01
Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.
Pereira, Caroline S; Silveira, Rodrigo L; Dupree, Paul; Skaf, Munir S
2017-04-10
Lignocellulosic biomass is mainly constituted by cellulose, hemicellulose, and lignin and represents an important resource for the sustainable production of biofuels and green chemistry materials. Xylans, a common hemicellulose, interact with cellulose and often exhibit various side chain substitutions including acetate, (4-O-methyl) glucuronic acid, and arabinose. Recent studies have shown that the distribution of xylan substitutions is not random, but follows patterns that are dependent on the plant taxonomic family and cell wall type. Here, we use molecular dynamics simulations to investigate the role of substitutions on xylan interactions with the hydrophilic cellulose face, using the recently discovered xylan decoration pattern of the conifer gymnosperms as a model. The results show that α-1,2-linked substitutions stabilize the binding of single xylan chains independently of the nature of the substitution and that Ca 2+ ions can mediate cross-links between glucuronic acid substitutions of two neighboring xylan chains, thus stabilizing binding. At high temperature, xylans move from the hydrophilic to the hydrophobic cellulose surface and are also stabilized by Ca 2+ cross-links. Our results help to explain the role of substitutions on xylan-cellulose interactions, and improve our understanding of the plant cell wall architecture and the fundamentals of biomass pretreatments.
Li, Jia; Gao, Lei; Chen, Shanshan; Tao, Ke; Su, Yingjuan; Wang, Ting
2016-02-11
Sciadopitys verticillata is an evergreen conifer and an economically valuable tree used in construction, which is the only member of the family Sciadopityaceae. Acquisition of the S. verticillata chloroplast (cp) genome will be useful for understanding the evolutionary mechanism of conifers and phylogenetic relationships among gymnosperm. In this study, we have first reported the complete chloroplast genome of S. verticillata. The total genome is 138,284 bp in length, consisting of 118 unique genes. The S. verticillata cp genome has lost one copy of the canonical inverted repeats and shown distinctive genomic structure comparing with other cupressophytes. Fifty-three simple sequence repeat loci and 18 forward tandem repeats were identified in the S. verticillata cp genome. According to the rearrangement of cupressophyte cp genome, we proposed one mechanism for the formation of inverted repeat: tandem repeat occured first, then rearrangement divided the tandem repeat into inverted repeats located at different regions. Phylogenetic estimates inferred from 59-gene sequences and cpDNA organizations have both shown that S. verticillata was sister to the clade consisting of Cupressaceae, Taxaceae, and Cephalotaxaceae. Moreover, accD gene was found to be lost in the S. verticillata cp genome, and a nucleus copy was identified from two transcriptome data.
Anderegg, William R L
2015-02-01
Plant hydraulics mediate terrestrial woody plant productivity, influencing global water, carbon, and biogeochemical cycles, as well as ecosystem vulnerability to drought and climate change. While inter-specific differences in hydraulic traits are widely documented, intra-specific hydraulic variability is less well known and is important for predicting climate change impacts. Here, I present a conceptual framework for this intra-specific hydraulic trait variability, reviewing the mechanisms that drive variability and the consequences for vegetation response to climate change. I performed a meta-analysis on published studies (n = 33) of intra-specific variation in a prominent hydraulic trait - water potential at which 50% stem conductivity is lost (P50) - and compared this variation to inter-specific variability within genera and plant functional types used by a dynamic global vegetation model. I found that intra-specific variability is of ecologically relevant magnitudes, equivalent to c. 33% of the inter-specific variability within a genus, and is larger in angiosperms than gymnosperms, although the limited number of studies highlights that more research is greatly needed. Furthermore, plant functional types were poorly situated to capture key differences in hydraulic traits across species, indicating a need to approach prediction of drought impacts from a trait-based, rather than functional type-based perspective.
Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes.
Dreni, Ludovico; Zhang, Dabing
2016-03-01
AGL6 is an ancient subfamily of MADS-box genes found in both gymnosperms and angiosperms. Its functions remained elusive despite the fact that the MADS-box genes and the ABC model have been studied for >20 years. Nevertheless, recent discoveries in petunia, rice, and maize support its involvement in the 'E' function of floral development, very similar to the closely related AGL2 (SEPALLATA) subfamily which has been well characterized. The known functions of AGL6 span from ancient conserved roles to new functions acquired in specific plant families. The AGL6 genes are involved in floral meristem regulation, in floral organs, and ovule (integument) and seed development, and have possible roles in both male and female germline and gametophyte development. In grasses, they are also important for the development of the first whorl of the flower, whereas in Arabidopsis they may play additional roles before floral meristem formation. This review covers these recent insights and some other aspects that are not yet fully elucidated, which deserve more studies in the future. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Rudall, Paula J.; Bateman, Richard M.
2010-01-01
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression. PMID:20047867
The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice.
Li, Haifeng; Liang, Wanqi; Jia, Ruidong; Yin, Changsong; Zong, Jie; Kong, Hongzhi; Zhang, Dabing
2010-03-01
Although AGAMOUS-LIKE6 (AGL6) MADS-box genes are ancient with wide distributions in gymnosperms and angiosperms, their functions remain poorly understood. Here, we show the biological role of the AGL6-like gene, OsMADS6, in specifying floral organ and meristem identities in rice (Oryza sativa L.). OsMADS6 was strongly expressed in the floral meristem at early stages. Subsequently, OsMADS6 transcripts were mainly detectable in paleas, lodicules, carpels and the integument of ovule, as well as in the receptacle. Compared to wild type plants, osmads6 mutants displayed altered palea identity, extra glume-like or mosaic organs, abnormal carpel development and loss of floral meristem determinacy. Strikingly, mutation of a SEPALLATA (SEP)-like gene, OsMADS1 (LHS1), enhanced the defect of osmads6 flowers, and no inner floral organs or glume-like structures were observed in whorls 2 and 3 of osmads1-z osmads6-1 flowers. Furthermore, the osmads1-z osmads6-1 double mutants developed severely indeterminate floral meristems. Our finding, therefore, suggests that the ancient OsMADS6 gene is able to specify "floral state" by determining floral organ and meristem identities in monocot crop rice together with OsMADS1.
Zahn, L M; Leebens-Mack, J; DePamphilis, C W; Ma, H; Theissen, G
2005-01-01
DEFICIENS (DEF) and GLOBOSA (GLO) function in petal and stamen organ identity in Antirrhinum and are orthologs of APETALA3 and PISTILLATA in Arabidopsis. These genes are known as B-function genes for their role in the ABC genetic model of floral organ identity. Phylogenetic analyses show that DEF and GLO are closely related paralogs, having originated from a gene duplication event after the separation of the lineages leading to the extant gymnosperms and the extant angiosperms. Several additional gene duplications followed, providing multiple potential opportunities for functional divergence. In most angiosperms studied to date, genes in the DEF/GLO MADS-box subfamily are expressed in the petals and stamens during flower development. However, in some angiosperms, the expression of DEF and GLO orthologs are occasionally observed in the first and fourth whorls of flowers or in nonfloral organs, where their function is unknown. In this article we review what is known about function, phylogeny, and expression in the DEF/GLO subfamily to examine their evolution in the angiosperms. Our analyses demonstrate that although the primary role of the DEF/GLO subfamily appears to be in specifying the stamens and inner perianth, several examples of potential sub- and neofunctionalization are observed.
The evolution of floral scent and insect chemical communication.
Schiestl, Florian P
2010-05-01
Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.
Rudall, Paula J; Bateman, Richard M
2010-02-12
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean 'flower' are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.
Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G
2017-09-01
Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Duursma, Remko A; Falster, Daniel S
2016-10-01
Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Phylogenomic Data Yield New and Robust Insights into the Phylogeny and Evolution of Weevils.
Shin, Seunggwan; Clarke, Dave J; Lemmon, Alan R; Moriarty Lemmon, Emily; Aitken, Alexander L; Haddad, Stephanie; Farrell, Brian D; Marvaldi, Adriana E; Oberprieler, Rolf G; McKenna, Duane D
2018-04-01
The phylogeny and evolution of weevils (the beetle superfamily Curculionoidea) has been extensively studied, but many relationships, especially in the large family Curculionidae (true weevils; > 50,000 species), remain uncertain. We used phylogenomic methods to obtain DNA sequences from 522 protein-coding genes for representatives of all families of weevils and all subfamilies of Curculionidae. Most of our phylogenomic results had strong statistical support, and the inferred relationships were generally congruent with those reported in previous studies, but with some interesting exceptions. Notably, the backbone relationships of the weevil phylogeny were consistently strongly supported, and the former Nemonychidae (pine flower snout beetles) were polyphyletic, with the subfamily Cimberidinae (here elevated to Cimberididae) placed as sister group of all other weevils. The clade comprising the sister families Brentidae (straight-snouted weevils) and Curculionidae was maximally supported and the composition of both families was firmly established. The contributions of substitution modeling, codon usage and/or mutational bias to differences between trees reconstructed from amino acid and nucleotide sequences were explored. A reconstructed timetree for weevils is consistent with a Mesozoic radiation of gymnosperm-associated taxa to form most extant families and diversification of Curculionidae alongside flowering plants-first monocots, then other groups-beginning in the Cretaceous.
Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis
Evaristo, Jaivime; McDonnell, Jeffrey J.
2017-01-01
The role of groundwater as a resource in sustaining terrestrial vegetation is widely recognized. But the global prevalence and magnitude of groundwater use by vegetation is unknown. Here we perform a meta-analysis of plant xylem water stable isotope (δ2H and δ18O, n = 7367) information from 138 published papers – representing 251 genera, and 414 species of angiosperms (n = 376) and gymnosperms (n = 38). We show that the prevalence of groundwater use by vegetation (defined as the number of samples out of a universe of plant samples reported to have groundwater contribution to xylem water) is 37% (95% confidence interval, 28–46%). This is across 162 sites and 12 terrestrial biomes (89% of heterogeneity explained; Q-value = 1235; P < 0.0001). However, the magnitude of groundwater source contribution to the xylem water mixture (defined as the proportion of groundwater contribution in xylem water) is limited to 23% (95% CI, 20–26%; 95% prediction interval, 3–77%). Spatial analysis shows that the magnitude of groundwater source contribution increases with aridity. Our results suggest that while groundwater influence is globally prevalent, its proportional contribution to the total terrestrial transpiration is limited. PMID:28281644
The use of organic markers in the differentiation of organic inputs to aquatic systems
NASA Astrophysics Data System (ADS)
Reeves, A. D.
1995-04-01
In previous projects the estuarine distributions of a variety of molecular organic markers have been described and discussed in relation to sources, transport mechanisms and fates of anthropogenic and biogenic inputs to estuaries. Molecular markers have been used successfully to establish terrestrial inputs to marine water and to trace pollutants in water-ways. One of the components selected for study was lignin. Lignin compounds are phenolic polymers that occur as major constituents of the cell walls of vascular plants. Their source, natural abundance, wide distribution and resistance to microbial degradation render them good terrestrial markers and, via their phenolic aldehyde oxidation products, afford characterisation of their source material. In previous work, ratios of various lignin components suggest that permanently suspended material contains a significant proportion of degraded angiosperm tissues whereas, in resuspended material, a component of gymnosperm material is indicated. Comparison of the lignin concentrations in the suspended material with those in underlying sediment reveals that the permanently suspended material is preferentially enriched in lignin. This is due, at least in part, to the relative buoyancy of lignin-containing prticles which causes them to float in near-surface water. This paper considers whether such methodology can be usefully applied to the determination of terrestrial inputs to lentic environments.
Drazic; Bogdanovic
2000-05-15
Chlorophyll (Chl) accumulation was monitored during black pine (Pinus nigra L.) seed germination for 14 days in the light and in the dark in the presence of gabaculine (GAB) and cytokinin in order to elucidate the regulation of gymnosperm seedling greening in the dark, primarily at the level of aminolevulinic acid formation. In the light, GAB inhibited chlorophyll accumulation in a manner dependent on concentration and developmental stage, and in the dark it showed no effect. Cytokinin, 10(-5) M benzyl adenine (BA) partly overcame GAB-induced inhibition in the light, mainly during earlier developmental stages. In the seedlings grown in the dark, an equal quantity of Chl accumulated in the presence of cytokinin with and without GAB and it was approximately 20-40% higher than in the control seedlings or in the seedlings grown only in the presence of GAB. 5-Amino-levulinic acid (ALA) synthesis was equal in the light and in the dark in seedlings of the same age and seedlings treated with GAB grown in the dark. In the light, GAB inhibited ALA synthetic activity. The results indicate that ALA synthesis is not a rate-limiting step within Chl biosynthesis in pine seedlings grown in the dark.
Distribution, congruence, and hotspots of higher plants in China.
Zhao, Lina; Li, Jinya; Liu, Huiyuan; Qin, Haining
2016-01-11
Identifying biodiversity hotspots has become a central issue in setting up priority protection areas, especially as financial resources for biological diversity conservation are limited. Taking China's Higher Plants Red List (CHPRL), including Bryophytes, Ferns, Gymnosperms, Angiosperms, as the data source, we analyzed the geographic patterns of species richness, endemism, and endangerment via data processing at a fine grid-scale with an average edge length of 30 km based on three aspects of richness information: species richness, endemic species richness, and threatened species richness. We sought to test the accuracy of hotspots used in identifying conservation priorities with regard to higher plants. Next, we tested the congruence of the three aspects and made a comparison of the similarities and differences between the hotspots described in this paper and those in previous studies. We found that over 90% of threatened species in China are concentrated. While a high spatial congruence is observed among the three measures, there is a low congruence between two different sets of hotspots. Our results suggest that biodiversity information should be considered when identifying biological hotspots. Other factors, such as scales, should be included as well to develop biodiversity conservation plans in accordance with the region's specific conditions.
Ancient Food Habits Dictate that Food Can Be Medicine but Medicine Cannot Be “Food”!!
Goswami, Hit Kishore; Ram, Hitendra Kumar
2017-01-01
Background: Extensive surveys of several population settlements in different parts of India—covering plains, mountains, valleys, river banks and deeper areas of forests at different altitudes—between 1968 and 2016 demonstrated that the basic vital need of hunger is being fulfilled since antiquity by plants in the wild. Methods: Based on collections, consultations with local population personnel and literature searches, this paper presents many plants that are commonly used as food and focuses on their products, which are rich in alkaloids, polysaccharides, steroids, terpenoids, flavonoids, aminoacids, fatty acids and antibiotics etc. These complex organic compounds are suitable for the production of drugs for many ailments/diseases, including the prevention of cancers. Results: There are more than 100 families including several hundred plant taxa from various plant groups like angiosperms, bryophytes, pteridophytes, gymnosperms and even fleshy fungi, which have offered essential food items to ever-growing human populations since antiquity. Phytochemicals functioning as antioxidants are exceedingly beneficial to the human body but excess consumption of these compounds, adding higher levels of antioxidants, may even be responsible for chronic diseases including aging, cancer, cardiovascular diseases, rheumatoid arthritis, atherosclerosis, etc. These medicines can obviously be taken in small and prescribed quantities but can never be consumed as “food items.” PMID:29137206
Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation
Biffin, Ed; Brodribb, Timothy J.; Hill, Robert S.; Thomas, Philip; Lowe, Andrew J.
2012-01-01
The angiosperm radiation has been linked to sharp declines in gymnosperm diversity and the virtual elimination of conifers from the tropics. The conifer family Podocarpaceae stands as an exception with highest species diversity in wet equatorial forests. It has been hypothesized that efficient light harvesting by the highly flattened leaves of several podocarp genera facilitates persistence with canopy-forming angiosperms, and the angiosperm ecological radiation may have preferentially favoured the diversification of these lineages. To test these ideas, we develop a molecular phylogeny for Podocarpaceae using Bayesian-relaxed clock methods incorporating fossil time constraints. We find several independent origins of flattened foliage types, and that these lineages have diversified predominantly through the Cenozoic and therefore among canopy-forming angiosperms. The onset of sustained foliage flattening podocarp diversification is coincident with a declining diversification rate of scale/needle-leaved lineages and also with ecological and climatic transformations linked to angiosperm foliar evolution. We demonstrate that climatic range evolution is contingent on the underlying state for leaf morphology. Taken together, our findings imply that as angiosperms came to dominate most terrestrial ecosystems, competitive interactions at the foliar level have profoundly shaped podocarp geography and as a consequence, rates of lineage diversification. PMID:21653584
NASA Astrophysics Data System (ADS)
Antonioli, Luzia; de Araújo Távora, Vladimir; Dino, Rodolfo
2015-10-01
The Pirabas Formation records important transgressive/regressive marine events in northern Brazil during the Miocene. Here, we present the results of a palynological analysis of four samples from finely stratified gray limestone and associated carbonate concretions bearing decapod crustacean remains. These sampled strata are representatives of the Baunilha Grande Ecofacies, and our analysis enhances the knowledge of local biostratigraphy and paleoecology. The palynoflora is dominated by taxa typical of Neogene tropical areas, such as Zonocostites ramonae (the most common species), together with Retitricolpites and Retitricolporites genera. Commonly represented are the smooth and apiculate trilete/monolete spores (Polypodiisporites, Verrucosisporites, Magnastriatites, and Deltoidospora), in conjunction with some freshwater algae (Ovoidites and Botryococcus). Gymnosperm pollen grains were absent. Marine microplankton (dinoflagellate cysts, acritarchs and foraminiferal test linings) are scarce, although present in all samples. The presence of the index species, Malvacipolloides maristellae and Pachydermites diederixii, co-occurring with Zonocostites ramonae and Lanagiopollis crassa, suggests that these sediments and concretions belong to the "T-13 Malvacipolloides maristellae" palynozone (Jaramillo et al., 2011), considered as late-Early Miocene in age. Palynological and sedimentological evidence further points to a predominantly continental depositional environment with a weak marine influence, as indicated by the persistent presence of sparse dinoflagellate cysts, acritarchs and foraminiferal test linings, typical of a mangrove environment.
Argüello-Astorga, G R; Herrera-Estrella, L R
1996-01-01
Regulation of plant gene transcription by light is mediated by multipartite cis-regulatory units. Previous attempts to identify structural features that are common to all light-responsive elements (LREs) have been unsuccessful. To address the question of what is needed to confer photoresponsiveness to a promoter, the upstream sequences from more than 110 light-regulated plant genes were analyzed by a new, phylogenetic-structural method. As a result, 30 distinct conserved DNA module arrays (CMAs) associated with light-responsive promoter regions were identified. Several of these CMAs have remained invariant throughout the evolutionary radiation of angiosperms and are conserved between homologous genes as well as between members of different gene families. The identified CMAs share a gene superfamily-specific core that correlates with the particular phytochrome-dependent transduction pathway that controls their expression, i.e. ACCTA(A/C)C(A/C) for the cGMP-dependent phenylpropanoid metabolism-associated genes, and GATA(A/T)GR for the Ca2+/calmodulin-dependent photosynthesis-associated nuclear genes. In addition to suggesting a general model for the functional and structural organization of LREs, the data obtained in this study indicate that angiosperm LREs probably evolved from complex cis-acting elements involved in regulatory processes other than photoregulation in gymnosperms. PMID:8938415
Razzak, Abdur; Ranade, Sonali Sachin; Strand, Åsa; García-Gil, M R
2017-08-01
We investigated the response to increasing intensity of red (R) and far-R (FR) light and to a decrease in R:FR ratio in Pinus sylvestris L. (Scots pine) seedling. The results showed that FR high-irradiance response for hypocotyl elongation may be present in Scots pine and that this response is enhanced by increasing light intensity. However, both hypocotyl inhibition and pigment accumulation were more strongly affected by the R light compared with FR light. This is in contrast to previous reports in Arabidopsis thaliana (L.) Heynh. In the angiosperm, A. thaliana R light shows an overall milder effect on inhibition of hypocotyl elongation and on pigment biosynthesis compared with FR suggesting conifers and angiosperms respond very differently to the different light regimes. Scots pine shade avoidance syndrome with longer hypocotyls, shorter cotyledons and lower chlorophyll content in response to shade conditions resembles the response observed in A. thaliana. However, anthocyanin accumulation increased with shade in Scots pine, which again differs from what is known in angiosperms. Overall, the response of seedling development and physiology to R and FR light in Scots pine indicates that the regulatory mechanism for light response may differ between gymnosperms and angiosperms. © 2017 John Wiley & Sons Ltd.
Barreda, Viviana D; Cúneo, Nestor R; Wilf, Peter; Currano, Ellen D; Scasso, Roberto A; Brinkhuis, Henk
2012-01-01
Nearly all data regarding land-plant turnover across the Cretaceous/Paleogene boundary come from western North America, relatively close to the Chicxulub, Mexico impact site. Here, we present a palynological analysis of a section in Patagonia that shows a marked fall in diversity and abundance of nearly all plant groups across the K/Pg interval. Minimum diversity occurs during the earliest Danian, but only a few palynomorphs show true extinctions. The low extinction rate is similar to previous observations from New Zealand. The differing responses between the Southern and Northern hemispheres could be related to the attenuation of damage with increased distance from the impact site, to hemispheric differences in extinction severity, or to both effects. Legacy effects of the terminal Cretaceous event also provide a plausible, partial explanation for the fact that Paleocene and Eocene macrofloras from Patagonia are among the most diverse known globally. Also of great interest, earliest Danian assemblages are dominated by the gymnosperm palynomorphs Classopollis of the extinct Mesozoic conifer family Cheirolepidiaceae. The expansion of Classopollis after the boundary in Patagonia is another example of typically Mesozoic plant lineages surviving into the Cenozoic in southern Gondwanan areas, and this greatly supports previous hypotheses of high latitude southern regions as biodiversity refugia during the end-Cretaceous global crisis.
Germain, Hugo; Lachance, Denis; Pelletier, Gervais; Fossdal, Carl Gunnar; Solheim, Halvor; Séguin, Armand
2012-01-01
A 1149 bp genomic fragment corresponding to the 5' non-coding region of the PgD1 (Picea glauca Defensin 1) gene was cloned, characterized, and compared with all Arabidopsis thaliana defensin promoters. The cloned fragment was found to contain several motifs specific to defence or hormonal response, including a motif involved in the methyl jasmonate reponse, a fungal elicitor responsive element, and TC-rich repeat cis-acting element involved in defence and stress responsiveness. A functional analysis of the PgD1 promoter was performed using the uidA (GUS) reporter system in stably transformed Arabidopsis and white spruce plants. The PgD1 promoter was responsive to jasmonic acid (JA), to infection by fungus and to wounding. In transgenic spruce embryos, GUS staining was clearly restricted to the shoot apical meristem. In Arabidopsis, faint GUS coloration was observed in leaves and flowers and a strong blue colour was observed in guard cells and trichomes. Transgenic Arabidopsis plants expressing the PgD1::GUS construct were also infiltrated with the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. It caused a suppression of defensin expression probably resulting from the antagonistic relationship between the pathogen-stimulated salicylic acid pathway and the jasmonic acid pathway. It is therefore concluded that the PgD1 promoter fragment cloned appears to contain most if not all the elements for proper PgD1 expression and that these elements are also recognized in Arabidopsis despite the phylogenetic and evolutionary differences that separates them.
Galián, J A; Rosato, M; Rosselló, J A
2012-06-01
In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8 kb IGS. In this work, we report the presence of the 45S-5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0 kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8 kb IGS that was a truncate variant of the 6.0 kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8 kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S-5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S-5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S-5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary.
Galián, J A; Rosato, M; Rosselló, J A
2012-01-01
In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8 kb IGS. In this work, we report the presence of the 45S–5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0 kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8 kb IGS that was a truncate variant of the 6.0 kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8 kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S–5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S–5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S–5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary. PMID:22354111
Chanderbali, André S; Albert, Victor A; Leebens-Mack, Jim; Altman, Naomi S; Soltis, Douglas E; Soltis, Pamela S
2009-06-02
The debate on the origin and evolution of flowers has recently entered the field of developmental genetics, with focus on the design of the ancestral floral regulatory program. Flowers can differ dramatically among angiosperm lineages, but in general, male and female reproductive organs surrounded by a sterile perianth of sepals and petals constitute the basic floral structure. However, the basal angiosperm lineages exhibit spectacular diversity in the number, arrangement, and structure of floral organs, whereas the evolutionarily derived monocot and eudicot lineages share a far more uniform floral ground plan. Here we show that broadly overlapping transcriptional programs characterize the floral transcriptome of the basal angiosperm Persea americana (avocado), whereas floral gene expression domains are considerably more organ specific in the model eudicot Arabidopsis thaliana. Our findings therefore support the "fading borders" model for organ identity determination in basal angiosperm flowers and extend it from the action of regulatory genes to downstream transcriptional programs. Furthermore, the declining expression of components of the staminal transcriptome in central and peripheral regions of Persea flowers concurs with elements of a previous hypothesis for developmental regulation in a gymnosperm "floral progenitor." Accordingly, in contrast to the canalized organ-specific regulatory apparatus of Arabidopsis, floral development may have been originally regulated by overlapping transcriptional cascades with fading gradients of influence from focal to bordering organs.
Reinheimer, Renata; Kellogg, Elizabeth A.
2009-01-01
AGAMOUS-like6 (AGL6) genes encode MIKC-type MADS box transcription factors and are closely related to SEPALLATA and AP1/FUL-like genes. Here, we focus on the molecular evolution and expression of the AGL6-like genes in grasses. We have found that AGL6-like genes are expressed in ovules, lodicules (second whorl floral organs), paleas (putative first whorl floral organs), and floral meristems. Each of these expression domains was acquired at a different time in evolution, indicating that each represents a distinct function of the gene product and that the AGL6-like genes are pleiotropic. Expression in the inner integument of the ovule appears to be an ancient expression pattern corresponding to the expression of the gene in the megasporangium and integument in gymnosperms. Expression in floral meristems appears to have been acquired in the angiosperms and expression in second whorl organs in monocots. Early in grass evolution, AGL6-like orthologs acquired a new expression domain in the palea. Stamen expression is variable. Most grasses have a single AGL6-like gene (orthologous to the rice [Oryza sativa] gene MADS6). However, rice and other species of Oryza have a second copy (orthologous to rice MADS17) that appears to be the result of an ancient duplication. PMID:19749151
Four hundred million years of silica biomineralization in land plants
Trembath-Reichert, Elizabeth; Wilson, Jonathan Paul; McGlynn, Shawn E.; Fischer, Woodward W.
2015-01-01
Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diverging land plant clades, which show that silica biomineralization is widespread across terrestrial plant linages. Particularly high silica abundances are observed in lycophytes and early-diverging ferns. However, silica biomineralization is rare within later-evolving gymnosperms, implying a complex evolutionary history within the seed plants. Electron microscopy and X-ray spectroscopy show that the most common silica-mineralized tissues include the vascular system, epidermal cells, and stomata, which is consistent with the hypothesis that biomineralization in plants is frequently coupled to transpiration. Furthermore, sequence, phylogenetic, and structural analysis of nodulin 26-like intrinsic proteins from diverse plant genomes points to a plastic and ancient capacity for silica accumulation within terrestrial plants. The integration of these two comparative biology approaches demonstrates that silica biomineralization has been an important process for land plants over the course of their >400 My evolutionary history. PMID:25825729
Herrmann, Jonathan; Nathin, David; Lee, Soon Goo; Sun, Tony; Jez, Joseph M
2015-10-09
In plants, adenosine 5'-phosphosulfate (APS) kinase (APSK) is required for reproductive viability and the production of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfur donor in specialized metabolism. Previous studies of the APSK from Arabidopsis thaliana (AtAPSK) identified a regulatory disulfide bond formed between the N-terminal domain (NTD) and a cysteine on the core scaffold. This thiol switch is unique to mosses, gymnosperms, and angiosperms. To understand the structural evolution of redox control of APSK, we investigated the redox-insensitive APSK from the cyanobacterium Synechocystis sp. PCC 6803 (SynAPSK). Crystallographic analysis of SynAPSK in complex with either APS and a non-hydrolyzable ATP analog or APS and sulfate revealed the overall structure of the enzyme, which lacks the NTD found in homologs from mosses and plants. A series of engineered SynAPSK variants reconstructed the structural evolution of the plant APSK. Biochemical analyses of SynAPSK, SynAPSK H23C mutant, SynAPSK fused to the AtAPSK NTD, and the fusion protein with the H23C mutation showed that the addition of the NTD and cysteines recapitulated thiol-based regulation. These results reveal the molecular basis for structural changes leading to the evolution of redox control of APSK in the green lineage from cyanobacteria to plants. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Berke, Lidija; Snel, Berend
2015-03-13
Polycomb repressive complex 1 (PRC1) is an essential protein complex for plant development. It catalyzes ubiquitination of histone H2A that is an important part of the transcription repression machinery. Absence of PRC1 subunits in Arabidopsis thaliana plants causes severe developmental defects. Many aspects of the plant PRC1 are elusive, including its origin and phylogenetic distribution. We established the evolutionary history of the plant PRC1 subunits (LHP1, Ring1a-b, Bmi1a-c, EMF1, and VRN1), enabled by sensitive phylogenetic methods and newly sequenced plant genomes from previously unsampled taxonomic groups. We showed that all PRC1 core subunits exist in gymnosperms, earlier than previously thought, and that VRN1 is a recent addition, found exclusively in eudicots. The retention of individual subunits in chlorophytes, mosses, lycophytes and monilophytes indicates that they can moonlight as part of other complexes or processes. Moreover, we showed that most PRC1 subunits underwent a complex, duplication-rich history that differs significantly between Brassicaceae and other eudicots. PRC1 existed in the last common ancestor of seed plants where it likely played an important regulatory role, aiding their radiation. The presence of LHP1, Ring1 and Bmi1 in mosses, lycophytes and monilophytes also suggests the presence of a primitive yet functional PRC1.
Gleason, Sean M; Westoby, Mark; Jansen, Steven; Choat, Brendan; Hacke, Uwe G; Pratt, Robert B; Bhaskar, Radika; Brodribb, Tim J; Bucci, Sandra J; Cao, Kun-Fang; Cochard, Hervé; Delzon, Sylvain; Domec, Jean-Christophe; Fan, Ze-Xin; Feild, Taylor S; Jacobsen, Anna L; Johnson, Daniel M; Lens, Frederic; Maherali, Hafiz; Martínez-Vilalta, Jordi; Mayr, Stefan; McCulloh, Katherine A; Mencuccini, Maurizio; Mitchell, Patrick J; Morris, Hugh; Nardini, Andrea; Pittermann, Jarmila; Plavcová, Lenka; Schreiber, Stefan G; Sperry, John S; Wright, Ian J; Zanne, Amy E
2016-01-01
The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2) < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2) < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem. No claim to US government works. New Phytologist © 2015 New Phytologist Trust.
NorWood: a gene expression resource for evo-devo studies of conifer wood development.
Jokipii-Lukkari, Soile; Sundell, David; Nilsson, Ove; Hvidsten, Torgeir R; Street, Nathaniel R; Tuominen, Hannele
2017-10-01
The secondary xylem of conifers is composed mainly of tracheids that differ anatomically and chemically from angiosperm xylem cells. There is currently no high-spatial-resolution data available profiling gene expression during wood formation for any coniferous species, which limits insight into tracheid development. RNA-sequencing data from replicated, high-spatial-resolution section series throughout the cambial and woody tissues of Picea abies were used to generate the NorWood.conGenIE.org web resource, which facilitates exploration of the associated gene expression profiles and co-expression networks. Integration within PlantGenIE.org enabled a comparative regulomics analysis, revealing divergent co-expression networks between P. abies and the two angiosperm species Arabidopsis thaliana and Populus tremula for the secondary cell wall (SCW) master regulator NAC Class IIB transcription factors. The SCW cellulose synthase genes (CesAs) were located in the neighbourhoods of the NAC factors in A. thaliana and P. tremula, but not in P. abies. The NorWood co-expression network enabled identification of potential SCW CesA regulators in P. abies. The NorWood web resource represents a powerful community tool for generating evo-devo insights into the divergence of wood formation between angiosperms and gymnosperms and for advancing understanding of the regulation of wood development in P. abies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Greenwood, Sarah; Ruiz-Benito, Paloma; Martinez-Vilalta, Jordi; Lloret, Francisco; Kitzberger, Thomas; Allen, Craig D.; Fensham, Rod; Laughlin, Daniel C.; Kattge, Jens; Bönisch, Gerhard; Kraft, Nathan J. B.; Jump, Alistair S.
2017-01-01
Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity [log mortality (trees trees−1 year−1) increased 0.46 (95% CI = 0.2–0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future.
Wong, J C H; Zou, Y; Millar, J G; Hanks, L M
2017-06-01
Here, we describe a field experiment that tested for attraction of cerambycid beetles to odors from angiosperm hosts, and whether plant volatiles also serve to enhance attraction of beetles to their aggregation-sex pheromones. Traps were baited with a blend of synthesized chemicals that are common pheromone components of species in the subfamilies Cerambycinae and Lamiinae. The source of plant volatiles was chipped wood from trees of three angiosperm species, as well as from one nonhost, gymnosperm species. Bioassays were conducted in wooded areas of east-central Illinois. Traps were baited with the pheromone blend alone, the blend + wood chips from one tree species, wood chips alone, or a solvent control lure. Seven species of cerambycids were significantly attracted to the pheromone blend, with or without wood chips. In two cases, wood chips from angiosperms appeared to enhance attraction to pheromones, whereas they inhibited attraction in another three cases. Pine chips did not strongly influence attraction of any species. Overall, our results suggest that host plant volatiles from wood chips may improve trap catch with synthesized pheromones for some cerambycid species, but the effect is not general, necessitating case-by-case testing to determine how individual target species are affected. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Galeron, M.-A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J.-F.
2014-10-01
Lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France). This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant-derived particulate organic matter (POM), with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Major terrigenous contributors to our samples are gymnosperms, and more precisely their roots and stems, as evidenced by the presence of high proportions of ω-hydroxydocosanoic acid (a suberin biomarker). The high amounts of coprostanol detected clearly show that the Rhone River is significantly affected by sewage waters. Specific sterol degradation products were quantified and used to assess the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation-inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could affect the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea.
NASA Astrophysics Data System (ADS)
Galeron, M.-A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J.-F.
2015-03-01
Lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhône River (France). This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrestrial higher-plant contribution to the particulate organic matter (POM), with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Major terrigenous contributors to our samples are gymnosperms, and more precisely their roots and stems, as evidenced by the presence of high proportions of ω-hydroxydocosanoic acid (a suberin biomarker). The high amounts of coprostanol detected clearly show that the Rhône River is significantly affected by sewage waters. Specific sterol degradation products were quantified and used to assess the part of biotic and abiotic degradation of POM within the river. Higher-plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of mammal or human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation-inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could affect the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea.
Lachance, Denis; Giguère, Isabelle; Séguin, Armand
2014-01-01
This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF–candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter–TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms. PMID:24713992
NASA Astrophysics Data System (ADS)
Williford, Kenneth H.; Grice, Kliti; Holman, Alexander; McElwain, Jennifer C.
2014-02-01
Terrestrial ecosystem collapse at the end of the Triassic Period coincided with a major mass extinction in the marine realm and has been linked to increasing atmospheric carbon dioxide, global warming, and fire activity. Extractable hydrocarbons in samples from the fluvial Triassic-Jurassic boundary section at Astartekløft, East Greenland were analyzed to investigate the molecular and isotopic organic record of biotic and environmental change during this event. Carbon isotopic compositions of individual plant wax lipids show a >4‰ negative excursion coinciding with peak extinction and a further decrease of 2‰ coinciding with peak pCO2 as estimated from the stomatal indices of fossil Gingkoales. An increase of ˜30‰ in the hydrogen isotopic compositions of the same plant wax lipids coincides with ecosystem collapse, suggesting that the biotic crisis was accompanied by strong hydrologic change. Concentrations of polycyclic aromatic hydrocarbons related to combustion also increase together with abrupt plant diversity loss and peak with fossil charcoal abundance and maximum plant turnover, supporting the role of fire in terrestrial extinctions. Anomalously high concentrations of a monoaromatic diterpenoid related to gymnosperm resin derivatives (and similar to dehydroabietane) occur uniquely in samples from the boundary bed, indicating that environmental stress factors leading to peak plant extinction stimulated increased resin production, and that plant resin derivatives may be effective biomarkers of terrestrial ecosystem stress.
NASA Astrophysics Data System (ADS)
Ding, Xiaodong; Bao, Hongyan; Zheng, Liwei; Li, Dawei; Kao, Shuh-Ji
2017-03-01
The Younger Dryas (YD) event, which punctuated the last glacial-Holocene transition period and had a profound impact on global climate, is the most well studied millennial-scale climate event although the triggering mechanism remains debate. Weakened Asian summer monsoon during the YD is recorded in oxygen isotopes of stalagmite from Mainland China. However, lacustrine climate record of the YD event has not been reported from the subtropical land-ocean boundary of the Asian continent near the Pacific warm pool. We provide a lignin biomarker record covering the last deglaciation and early Holocene (17-9 ka BP) from the Dongyuan Lake, southern Taiwan, located at the frontal zone of typhoon invasion. The lignin phenol ratio S/V shows that the vegetation in the catchments had shifted from gymnosperm dominant to angiosperm dominant plants since 12.2 ka BP. Significantly decreased lignin concentrations (TLP and λ8) and elevated lignin degradation parameters ((Ad/Al)v, P/(V + S), DHBA/V) in combination with other organic proxies (TOC, δ13Corg) during the late YD suggest a severe drought had occurred in southern Taiwan during this specific period. Changes in the lignin proxies from the Dongyuan Lake lagged the climate changes registered in stalagmite records by around 500-800 years, suggesting a slow response of vegetation and soil processes to rapid climate changes.
NASA Astrophysics Data System (ADS)
Wu, Fuli; Zhao, Yan; Fang, Xiaomin; Meng, Qingquan
2018-06-01
The Eocene/Oligocene (E/O) transition, corresponds to an abrupt global cooling, thought to have been one of the greatest temperature changes in the mid-Cenozoic Earth's history. Sparse studies have successfully reconstructed the terrestrial ecological response to this temperature change. Here, we report results from the study of organic carbon isotopes (δ13CTOC), together with n-alkanes biomarker analysis, in the Yongdeng Section, Lanzhou Basin, Northwest China, and discuss changes in δ13CTOC and their mechanisms. The results show that between 35.3 Ma and 31.0 Ma, δ13CTOC ranged from -26.72‰ to -21.27‰. The main change occurred at 33.4 Ma, when δ13CTOC became heavier by 3‰. At this time the long-chain n-alkane members (C27, C29 and C31) were dominant, suggesting the most likely sources of organic matter were terrestrial plants. Combining these results with existing measurements of plant δ13CTOC and sporopollen data in adjacent areas, we infer that this change at 33.4 Ma might have been caused by an increase in gymnosperm content especially coniferous trees adapted to cold climates, which have a heavier δ13CTOC than that of the angiosperms, this would have been a response to the global cooling characteristic of this period.
Carlsbecker, Annelie; Sundström, Jens F; Englund, Marie; Uddenberg, Daniel; Izquierdo, Liz; Kvarnheden, Anders; Vergara-Silva, Francisco; Engström, Peter
2013-10-01
Reproductive organs in seed plants are morphologically divergent and their evolutionary history is often unclear. The mechanisms controlling their development have been extensively studied in angiosperms but are poorly understood in conifers and other gymnosperms. Here, we address the molecular control of seed cone development in Norway spruce, Picea abies. We present expression analyses of five novel MADS-box genes in comparison with previously identified MADS and LEAFY genes at distinct developmental stages. In addition, we have characterized the homeotic transformation from vegetative shoot to female cone and associated changes in regulatory gene expression patterns occurring in the acrocona mutant. The analyses identified genes active at the onset of ovuliferous and ovule development and identified expression patterns marking distinct domains of the ovuliferous scale. The reproductive transformation in acrocona involves the activation of all tested genes normally active in early cone development, except for an AGAMOUS-LIKE6/SEPALLATA (AGL6/SEP) homologue. This absence may be functionally associated with the nondeterminate development of the acrocona ovule-bearing scales. Our morphological and gene expression analyses give support to the hypothesis that the modern cone is a complex structure, and the ovuliferous scale the result of reductions and compactions of an ovule-bearing axillary short shoot in cones of Paleozoic conifers. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohlrogge, J.B.
1989-01-01
Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms ofmore » ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.« less
Jacobs, Sophie; Zechmann, Bernd; Molitor, Alexandra; Trujillo, Marco; Petutschnig, Elena; Lipka, Volker; Kogel, Karl-Heinz; Schäfer, Patrick
2011-01-01
Piriformospora indica is a root-colonizing basidiomycete that confers a wide range of beneficial traits to its host. The fungus shows a biotrophic growth phase in Arabidopsis (Arabidopsis thaliana) roots followed by a cell death-associated colonization phase, a colonization strategy that, to our knowledge, has not yet been reported for this plant. P. indica has evolved an extraordinary capacity for plant root colonization. Its broad host spectrum encompasses gymnosperms and monocotyledonous as well as dicotyledonous angiosperms, which suggests that it has an effective mechanism(s) for bypassing or suppressing host immunity. The results of our work argue that P. indica is confronted with a functional root immune system. Moreover, the fungus does not evade detection but rather suppresses immunity triggered by various microbe-associated molecular patterns. This ability to suppress host immunity is compromised in the jasmonate mutants jasmonate insensitive1-1 and jasmonate resistant1-1. A quintuple-DELLA mutant displaying constitutive gibberellin (GA) responses and the GA biosynthesis mutant ga1-6 (for GA requiring 1) showed higher and lower degrees of colonization, respectively, in the cell death-associated stage, suggesting that P. indica recruits GA signaling to help establish proapoptotic root cell colonization. Our study demonstrates that mutualists, like pathogens, are confronted with an effective innate immune system in roots and that colonization success essentially depends on the evolution of strategies for immunosuppression. PMID:21474434
NASA Astrophysics Data System (ADS)
Cabaleri, Nora G.; Benavente, Cecilia A.; Monferran, Mateo D.; Narváez, Paula L.; Volkheimer, Wolfgang; Gallego, Oscar F.; Do Campo, Margarita D.
2013-10-01
Six facies associations are described for the Puesto Almada Member at the Cerro Bandera locality (Fossati sub-basin). They correspond to lacustrine, palustrine, and pedogenic deposits (limestones); and subordinated alluvial fan, fluvial, aeolian, and pyroclastic deposits. The lacustrine-palustrine depositional setting consisted of carbonate alkaline shallow lakes surrounded by flooded areas in a low-lying topography. The facies associations constitute four shallowing upward successions defined by local exposure surfaces: 1) a Lacustrine-Palustrine-pedogenic facies association with a 'conchostracan'-ostracod association; 2) a Palustrine facies association representing a wetland subenvironment, and yielding 'conchostracans', body remains of insects, fish scales, ichnofossils, and palynomorphs (cheirolepidiacean species and ferns growing around water bodies, and other gymnosperms in more elevated areas); 3) an Alluvial fan facies association indicating the source of sediment supply; and 4) a Lacustrine facies association representing a second wetland episode, and yielding 'conchostracans', insect ichnofossils, and a palynoflora mainly consisting of planktonic green algae associated with hygrophile elements. The invertebrate fossil assemblage found contains the first record of fossil insect bodies (Insecta-Hemiptera and Coleoptera) for the Cañadón Asfalto Formation. The succession reflects a mainly climatic control over sedimentation. The sedimentary features of the Puesto Almada Member are in accordance with an arid climatic scenario across the Upper Jurassic, and they reflect a strong seasonality with periods of higher humidity represented by wetlands and lacustrine sediments.
Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg
2012-01-01
The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889
Dr. Roberto Miguel Klein Herbarium (FURB), Blumenau, Southern Brazil
de Gasper, André Luís; Vibrans, Alexander Christian; Funez, Luís Adriano; Rigon-Jr, Morilo José; Bittencourt, Felipe; Vieira, Carina
2014-01-01
Abstract The premise of this study is to present the collection of the FURB herbarium, its collection area and type specimens, as well as its projects and contributions to the flora of the Subtropical Atlantic Forest. The FURB herbarium currently has nearly 41,000 records of vascular plants and has the largest collection of lycophytes and ferns in Southern Brazil, with more than 8,000 records. More than 4,500 scanned images of 4,436 species are available online, and it is expected that the whole collection will be scanned in less than one year. There are 198 families of angiosperms, 33 of ferns, three of lycophytes and six of gymnosperms. All collections of the Floristic and Forest Inventory of Santa Catarina project are recorded in FURB, which represents almost 35,000 herbarium specimens. The families with the largest number of species are: Cyperaceae (109 species), Rubiaceae (129), Solanaceae (131), Poaceae (155), Melastomataceae (157), Myrtaceae (257), Orchidaceae (288), Fabaceae (323), and Asteraceae (426), between angiosperms. Among the ferns and lycophytes are: Hymenophyllaceae (30), Thelypteridaceae (31), Aspleniaceae (32), Dryopteridaceae (43), Pteridaceae (54) and Polypodiaceae (60). There are five type specimens among them: one holotype, one isotype and three paratypes. To date, the FURB herbarium has donated 19,521 herbarium duplicates for identification or expansion of other herbaria. PMID:25383009
Sequencing and assembly of the 22-gb loblolly pine genome.
Zimin, Aleksey; Stevens, Kristian A; Crepeau, Marc W; Holtz-Morris, Ann; Koriabine, Maxim; Marçais, Guillaume; Puiu, Daniela; Roberts, Michael; Wegrzyn, Jill L; de Jong, Pieter J; Neale, David B; Salzberg, Steven L; Yorke, James A; Langley, Charles H
2014-03-01
Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer "super-reads," rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp.
Ghosh, Ajit; Kushwaha, Hemant R; Hasan, Mohammad R; Pareek, Ashwani; Sopory, Sudhir K; Singla-Pareek, Sneh L
2016-01-01
Glyoxalase pathway, comprising glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, is the major pathway for detoxification of methylglyoxal (MG) into D-lactate involving reduced glutathione (GSH). However, in bacteria, glyoxalase III (GLY III) with DJ-1/PfpI domain(s) can do the same conversion in a single step without GSH. Our investigations for the presence of DJ-1/PfpI domain containing proteins in plants have indicated the existence of GLY III-like proteins in monocots, dicots, lycopods, gymnosperm and bryophytes. A deeper in silico analysis of rice genome identified twelve DJ-1 proteins encoded by six genes. Detailed analysis has been carried out including their chromosomal distribution, genomic architecture and localization. Transcript profiling under multiple stress conditions indicated strong induction of OsDJ-1 in response to exogenous MG. A member of OsDJ-1 family, OsDJ-1C, showed high constitutive expression at all developmental stages and tissues of rice. MG depletion study complemented by simultaneous formation of D-lactate proved OsDJ-1C to be a GLY III enzyme that converts MG directly into D-lactate in a GSH-independent manner. Site directed mutagenesis of Cys-119 to Alanine significantly reduces its GLY III activity indicating towards the existence of functional GLY III enzyme in rice—a shorter route for MG detoxification. PMID:26732528
Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq
2015-01-01
Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114
Greenwood, Sarah; Ruiz-Benito, Paloma; Martínez-Vilalta, Jordi; Lloret, Francisco; Kitzberger, Thomas; Allen, Craig D; Fensham, Rod; Laughlin, Daniel C; Kattge, Jens; Bönisch, Gerhard; Kraft, Nathan J B; Jump, Alistair S
2017-04-01
Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity [log mortality (trees trees -1 year -1 ) increased 0.46 (95% CI = 0.2-0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Herman, A. B.
2011-02-01
The Arman' Flora from volcanogenic-sedimentary deposits in the Arman' River basin and Naraula Formation in the Nel'kandzha-Khasyn interfluve includes 82 species of fossil plants comprising liverworts, horsetails, ferns, caytonealeans, cycadaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms incertae sedis, and angiosperms. The Arman' Flora appears to be of Turonian-Coniacian age, as it is close to the reliably dated Penzhina and Kaivayam floras from the Northwest Kamchatka and to Tyl'pegyrgynai Flora of the Pekul'nei Ridge. The dating is consistent with isotopic dates (40Ar/39Ar and U-Pb SHRIMP) characterizing the age of plant-bearing sequences. Based on the considered position of the Arman' Flora in the scheme of Cretaceous florogenesis, a leading role in that florogenesis was played by the gradual invasion of floras by new, angiosperm dominated, plant communities. These communities initially populated unstable habitats in the coastal lowlands of Northeast Asia and Alaska, gradually invading with time the Asiatic intracontinental areas. The peculiar combination of Early and Late Cretaceous plants characteristic of the Arman' Flora is strong evidence that Cenophytic plant communities dominated by angiosperms colonized areas still populated in the Late Cretaceous by Mesophytic communities. Absence of Mesophytic and Cenophytic taxa mixing in the Arman' Flora burials suggests a replacement of plant communities as whole rather than of separate plants by more advanced taxa.
Gossner, Martin M; Chao, Anne; Bailey, Richard I; Prinzing, Andreas
2009-05-01
The relative roles of evolutionary history and geographical and ecological contingency for community assembly remain unknown. Plant species, for instance, share more phytophages with closer relatives (phylogenetic conservatism), but for exotic plants introduced to another continent, this may be overlaid by geographically contingent evolution or immigration from locally abundant plant species (mass effects). We assessed within local forests to what extent exotic trees (Douglas-fir, red oak) recruit phytophages (Coleoptera, Heteroptera) from more closely or more distantly related native plants. We found that exotics shared more phytophages with natives from the same major plant lineage (angiosperms vs. gymnosperms) than with natives from the other lineage. This was particularly true for Heteroptera, and it emphasizes the role of host specialization in phylogenetic conservatism of host use. However, for Coleoptera on Douglas-fir, mass effects were important: immigration from beech increased with increasing beech abundance. Within a plant phylum, phylogenetic proximity of exotics and natives increased phytophage similarity, primarily in younger Coleoptera clades on angiosperms, emphasizing a role of past codiversification of hosts and phytophages. Overall, phylogenetic conservatism can shape the assembly of local phytophage communities on exotic trees. Whether it outweighs geographic contingency and mass effects depends on the interplay of phylogenetic scale, local abundance of native tree species, and the biology and evolutionary history of the phytophage taxon.
Lu, Xiu-Mei; Zhang, Wei-Wei; Liu, Xing-Yue
2016-01-01
Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4–1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions. PMID:27149436
Wu, Feng; Shi, Xiaowei; Lin, Xuelei; Liu, Yuan; Chong, Kang; Theißen, Günter; Meng, Zheng
2017-01-01
The well-known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B- and C-functions are highly conserved throughout flowering plants and even in gymnosperms, the A-function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL-like subfamily of MADS-box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass-specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)-function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL-like genes were independently recruited to fulfil the (A)-function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Occurrence of plastid RNA editing in all major lineages of land plants
Freyer, Regina; Kiefer-Meyer, Marie-Christine; Kössel, Hans
1997-01-01
RNA editing changes posttranscriptionally single nucleotides in chloroplast-encoded transcripts. Although much work has been done on mechanistic and functional aspects of plastid editing, little is known about evolutionary aspects of this RNA processing step. To gain a better understanding of the evolution of RNA editing in plastids, we have investigated the editing patterns in ndhB and rbcL transcripts from various species comprising all major groups of land plants. Our results indicate that RNA editing occurs in plastids of bryophytes, fern allies, true ferns, gymnosperms, and angiosperms. Both editing frequencies and editing patterns show a remarkable degree of interspecies variation. Furthermore, we have found that neither plastid editing frequencies nor the editing pattern of a specific transcript correlate with the phylogenetic tree of the plant kingdom. The poor evolutionary conservation of editing sites among closely related species as well as the occurrence of single species-specific editing sites suggest that the differences in the editing patterns and editing frequencies are probably due both to independent loss and to gain of editing sites. In addition, our results indicate that RNA editing is a relatively ancient process that probably predates the evolution of land plants. This supposition is in good agreement with the phylogenetic data obtained for plant mitochondrial RNA editing, thus providing additional evidence for common evolutionary roots of the two plant organellar editing systems. PMID:9177209
Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism
NASA Astrophysics Data System (ADS)
van de Schootbrugge, B.; Quan, T. M.; Lindström, S.; Püttmann, W.; Heunisch, C.; Pross, J.; Fiebig, J.; Petschick, R.; Röhling, H.-G.; Richoz, S.; Rosenthal, Y.; Falkowski, P. G.
2009-08-01
One of the five largest mass extinctions of the past 600million years occurred at the boundary of the Triassic and Jurassic periods, 201.6million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.
Wu, Chung-Shien; Chaw, Shu-Miaw
2016-12-01
Conifers II (cupressophytes), comprising about 400 tree species in five families, are the most diverse group of living gymnosperms. Their plastid genomes (plastomes) are highly variable in size and organization, but such variation has never been systematically studied. In this study, we assessed the potential mechanisms underlying the evolution of cupressophyte plastomes. We analyzed the plastomes of 24 representative genera in all of the five cupressophyte families, focusing on their variation in size, noncoding DNA content, and nucleotide substitution rates. Using a tree-based method, we further inferred the ancestral plastomic organizations of internal nodes and evaluated the inversions across the evolutionary history of cupressophytes. Our data showed that variation in plastome size is statistically associated with the dynamics of noncoding DNA content, which results in different degrees of plastomic compactness among the cupressophyte families. The degrees of plastomic inversions also vary among the families, with the number of inversions per genus ranging from 0 in Araucariaceae to 1.27 in Cupressaceae. In addition, we demonstrated that synonymous substitution rates are significantly correlated with plastome size as well as degree of inversions. These data suggest that in cupressophytes, mutation rates play a critical role in driving the evolution of plastomic size while plastomic inversions evolve in a neutral manner. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Liu, X Q; Xu, H; Huang, C
1993-10-01
Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a 'yellow-in-the-dark' phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.
Yamamoto, Haruki; Kusumi, Junko; Yamakawa, Hisanori; Fujita, Yuichi
2017-05-24
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a key enzyme to produce chlorophyll in the dark. Among photosynthetic eukaryotes, all three subunits chlL, chlN, and chlB are encoded by plastid genomes. In some gymnosperms, two codons of chlB mRNA are changed by RNA editing to codons encoding evolutionarily conserved amino acid residues. However, the effect of these substitutions on DPOR activity remains unknown. We first prepared cyanobacterial ChlB variants with amino acid substitution(s) to mimic ChlB translated from pre-edited mRNA. Their activities were evaluated by measuring chlorophyll content of dark-grown transformants of a chlB-lacking mutant of the cyanobacterium Leptolyngbya boryana that was complemented with pre-edited mimic chlB variants. The chlorophyll content of the transformant cells expressing the ChlB variant from the fully pre-edited mRNA was only one-fourth of the control cells. Co-purification experiments of ChlB with Strep-ChlN suggested that a stable complex with ChlN is greatly impaired in the substituted ChlB variant. We then confirmed that RNA editing efficiency was markedly greater in the dark than in the light in cotyledons of the black pine Pinus thunbergii. These results indicate that RNA editing on chlB mRNA is important to maintain appropriate DPOR activity in black pine chloroplasts.
A multi-species synthesis of physiological mechanisms in drought-induced tree mortality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.
Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show thatmore » xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.« less
Thorley, Rachel M S; Taylor, Lyla L; Banwart, Steve A; Leake, Jonathan R; Beerling, David J
2015-09-01
On million-year timescales, carbonate rock weathering exerts no net effect on atmospheric CO2 concentration. However, on timescales of decades-to-centuries, it can contribute to sequestration of anthropogenic CO2 and increase land-ocean alkalinity flux, counteracting ocean acidification. Historical evidence indicates this flux is sensitive to land use change, and recent experimental evidence suggests that trees and their associated soil microbial communities are major drivers of continental mineral weathering. Here, we review key physical and chemical mechanisms by which the symbiotic mycorrhizal fungi of forest tree roots potentially enhance carbonate rock weathering. Evidence from our ongoing field study at the UK's national pinetum confirms increased weathering of carbonate rocks by a wide range of gymnosperm and angiosperm tree species that form arbuscular (AM) or ectomycorrhizal (EM) fungal partnerships. We demonstrate that calcite-containing rock grains under EM tree species weather significantly faster than those under AM trees, an effect linked to greater soil acidification by EM trees. Weathering and corresponding alkalinity export are likely to increase with rising atmospheric CO2 and associated climate change. Our analyses suggest that strategic planting of fast-growing EM angiosperm taxa on calcite- and dolomite-rich terrain might accelerate the transient sink for atmospheric CO2 and slow rates of ocean acidification. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Perdiguero, Pedro; Barbero, María Del Carmen; Cervera, María Teresa; Collada, Carmen; Soto, Alvaro
2013-06-01
Adaptation to water stress has determined the evolution and diversification of vascular plants. Water stress is forecasted to increase drastically in the next decades in certain regions, such as in the Mediterranean basin. Consequently, a proper knowledge of the response and adaptations to drought stress is essential for the correct management of plant genetic resources. However, most of the advances in the understanding of the molecular response to water stress have been attained in angiosperms, and are not always applicable to gymnosperms. In this work we analyse the transcriptional response of two emblematic Mediterranean pines, Pinus pinaster and Pinus pinea, which show noticeable differences in their performance under water stress. Using microarray analysis, up to 113 genes have been detected as significantly induced by drought in both species. Reliability of expression patterns has been confirmed by RT-PCR. While induced genes with similar profiles in both species can be considered as general candidate genes for the study of drought response in conifers, genes with diverging expression patterns can underpin the differences displayed by these species under water stress. Most promising candidate genes for drought stress response include genes related to carbohydrate metabolism, such as glycosyltransferases or galactosidases, sugar transporters, dehydrins and transcription factors. Additionally, differences in the molecular response to drought and polyethylene-glycol-induced water stress are also discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar
2017-07-01
Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.
Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau
Wen, Jun; Zhang, Jian-Qiang; Nie, Ze-Long; Zhong, Yang; Sun, Hang
2014-01-01
The Qinghai-Tibetan Plateau (QTP) is the highest and one of the most extensive plateaus in the world. Phylogenetic, phylogeographic, and ecological studies support plant diversifications on the QTP through multiple mechanisms such as allopatric speciation via geographic isolation, climatic oscillations and divergences, pollinator-mediated isolation, diploid hybridization and introgression, and allopolyploidy. These mechanisms have driven spectacular radiations and/or species diversifications in various groups of plants such as Pedicularis L., Saussurea DC., Rhododendron L., Primula L., Meconopsis Vig., Rhodiola L., and many lineages of gymnosperms. Nevertheless, much work is needed toward understanding the evolutionary mechanisms of plant diversifications on the QTP. Well-sampled biogeographic analyses of the QTP plants in the broad framework of the Northern Hemisphere as well as the Southern Hemisphere are still relatively few and should be encouraged in the next decade. This paper reviews recent evidence from phylogenetic and biogeographic studies in plants, in the context of rapid radiations, mechanisms of species diversifications on the QTP, and the biogeographic significance of the QTP in the broader context of both the Northern and Southern Hemisphere biogeography. Integrative multidimensional analyses of phylogeny, morphological innovations, geography, ecology, development, species interactions and diversifications, and geology are needed and should shed insights into the patterns of evolutionary assembly and radiations in this fascinating region. PMID:24575120
NASA Astrophysics Data System (ADS)
Yamanaka, Shigeru; Sato, Kanna; Ito, Fuyu; Komatsubara, Satoshi; Ohata, Hiroshi; Yoshino, Katsumi
2012-02-01
This research deals with detailed analyses of silica and lignin distribution in horsetail with special reference to mechanical strength. Scanning electron images of a cross-section of an internode showed silica deposited densely only around the outer epidermis. Detailed histochemical analyses of lignin showed no lignin deposition in the silica-rich outer internodes of horsetail, while a characteristic lignin deposition was noticed in the vascular bundle in inner side of internodes. To analyze the structure of horsetail from a mechanical viewpoint, we calculated the response of a model structure of horsetail to a mechanical force applied perpendicularly to the long axis by a finite element method. We found that silica distributed in the outer epidermis may play the major structural role, with lignin's role being limited ensuring that the vascular bundle keep waterproof. These results were in contrast to more modern tall trees like gymnosperms, for which lignin provides mechanical strength. Lignin has the advantage of sticking to cellulose, hemicellulose, and other materials. Such properties make it possible for plants containing lignin to branch. Branching of tree stems aids in competing for light and other atmospheric resources. This type of branching was impossible for ancient horsetails, which relied on the physical properties of silica. From the evolutional view points, over millennia in trees with high lignin content, true branching, and many chlorophyll-containing leaves developed.
Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.
Feild, Taylor S; Brodribb, Timothy J; Iglesias, Ari; Chatelet, David S; Baresch, Andres; Upchurch, Garland R; Gomez, Bernard; Mohr, Barbara A R; Coiffard, Clement; Kvacek, Jiri; Jaramillo, Carlos
2011-05-17
The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO(2) for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (D(V)) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated several-fold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein D(V) that overlapped the D(V) range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in D(V). During the first mid-Cretaceous surge, angiosperm D(V) first surpassed the upper bound of D(V) limits for nonangiosperms. However, the upper limits of D(V) typical of modern megathermal rainforest trees first appear during a second wave of increased D(V) during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms.
Niu, Shihui; Yuan, Lu; Zhang, Yuncheng; Chen, Xiaoyang; Li, Wei
2014-12-01
Gibberellins (GAs) are important in the floral regulatory networks of angiosperm plants. Several lines of evidence suggest that GAs also play a pivotal role in conifer male and female cone development. To gain new insights into the GA metabolism pathway in conifer trees and the role of GA metabolism in male and female cone development, we identified GA metabolism genes in Pinus tabuliformis. These included one PtCPS gene, one PtKS gene, one PtKO gene, TWO PtKAO genes, one PtGA20ox gene, two PtGA3ox genes and 12 PtGA2ox genes. According to phylogenetic analysis, the GA biosynthesis pathway evolved after the divergence of mosses from ferns, but the GA-deactivating gene family underwent divided expansion after divergence of the angiosperms from gymnosperms. However, the active sites of all GA metabolism enzymes were conserved during the evolution of land plants. During male and female cone development of P. tabuliformis, the expression of most of the PtGA2ox genes, especially PtGA2ox10, was higher than GA biosynthesis genes. However, the expression of PtKAO1 in cones peaked at a very early developmental stage. The expression pattern of GA metabolism genes indicated that GAs play different roles at the early and late stages of cone development.
Liesche, Johannes; Pace, Marcelo R; Xu, Qiyu; Li, Yongqing; Chen, Shaolin
2017-04-01
In the sieve elements (SEs) of the phloem, carbohydrates are transported throughout the whole plant from their site of production to sites of consumption or storage. SE structure, especially of the pore-rich end walls, has a direct effect on translocation efficiency. Differences in pore size and other features were interpreted as an evolutionary trend towards reduced hydraulic resistance. However, this has never been confirmed. Anatomical data of 447 species of woody angiosperms and gymnosperms were used for a phylogenetic analysis of end wall types, calculation of hydraulic resistance and correlation analysis with morphological and physiological variables. end wall types were defined according to pore arrangement: either grouped into a single area (simple) or into multiple areas along the end wall (compound). Convergent evolution of end wall types was demonstrated in woody angiosperms. In addition, an optimization of end wall resistance with plant height was discovered, but found to be independent of end wall type. While physiological factors also showed no correlation with end wall types, the number of sieve areas per end wall was found to scale with SE length. The results exclude the minimization of hydraulic resistance as evolutionary driver of different end wall types, contradicting this long-standing assumption. Instead, end wall type might depend on SE length. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Optimal allocation of leaf epidermal area for gas exchange.
de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J
2016-06-01
A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.
Pribat, Anne; Noiriel, Alexandre; Morse, Alison M.; Davis, John M.; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W.; Hanson, Andrew D.
2010-01-01
Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559
Phylogenetic Variation in the Silicon Composition of Plants
HODSON, M. J.; WHITE, P. J.; MEAD, A.; BROADLEY, M. R.
2005-01-01
• Background and Aims Silicon (Si) in plants provides structural support and improves tolerance to diseases, drought and metal toxicity. Shoot Si concentrations are generally considered to be greater in monocotyledonous than in non-monocot plant species. The phylogenetic variation in the shoot Si concentration of plants reported in the primary literature has been quantified. • Methods Studies were identified which reported Si concentrations in leaf or non-woody shoot tissues from at least two plant species growing in the same environment. Each study contained at least one species in common with another study. • Key Results Meta-analysis of the data revealed that, in general, ferns, gymnosperms and angiosperms accumulated less Si in their shoots than non-vascular plant species and horsetails. Within angiosperms and ferns, differences in shoot Si concentration between species grouped by their higher-level phylogenetic position were identified. Within the angiosperms, species from the commelinoid monocot orders Poales and Arecales accumulated substantially more Si in their shoots than species from other monocot clades. • Conclusions A high shoot Si concentration is not a general feature of monocot species. Information on the phylogenetic variation in shoot Si concentration may provide useful palaeoecological and archaeological information, and inform studies of the biogeochemical cycling of Si and those of the molecular genetics of Si uptake and transport in plants. PMID:16176944
Yi, Xuan; Gao, Lei; Wang, Bo; Su, Ying-Juan; Wang, Ting
2013-01-01
We have determined the complete chloroplast (cp) genome sequence of Cephalotaxus oliveri. The genome is 134,337 bp in length, encodes 113 genes, and lacks inverted repeat (IR) regions. Genome-wide mutational dynamics have been investigated through comparative analysis of the cp genomes of C. oliveri and C. wilsoniana. Gene order transformation analyses indicate that when distinct isomers are considered as alternative structures for the ancestral cp genome of cupressophyte and Pinaceae lineages, it is not possible to distinguish between hypotheses favoring retention of the same IR region in cupressophyte and Pinaceae cp genomes from a hypothesis proposing independent loss of IRA and IRB. Furthermore, in cupressophyte cp genomes, the highly reduced IRs are replaced by short repeats that have the potential to mediate homologous recombination, analogous to the situation in Pinaceae. The importance of repeats in the mutational dynamics of cupressophyte cp genomes is also illustrated by the accD reading frame, which has undergone extreme length expansion in cupressophytes. This has been caused by a large insertion comprising multiple repeat sequences. Overall, we find that the distribution of repeats, indels, and substitutions is significantly correlated in Cephalotaxus cp genomes, consistent with a hypothesis that repeats play a role in inducing substitutions and indels in conifer cp genomes.
The role of fire in deep time ecosystems
NASA Astrophysics Data System (ADS)
Scott, Andrew C.; Bond, William J.; Collinson, Margaret E.; Glasspool, Ian J.; Brown, Sarah; Braman, Dennis R.
2010-05-01
before juveniles had reached "fire-proof" sizes. The effect would be to create more open conditions favouring plants with the angiosperm innovations of high photosynthetic rates, rapid maturation and rapid reproduction relative to gymnosperms. Fire has some analogies to large vertebrate herbivory, particularly in the potential to open forests and create habitat for low-growing sun-loving plants over extensive areas. The role of fire in favouring low-growing ‘ruderal', plants of open habitats is similar to that proposed for dinosaurs. A switch from high-browsing dinosaurs in the Jurassic to low-browsing dinosaurs in the Cretaceous has been noted and it has been argued that the switch in browse height would favour fast-growing angiosperms. The dinosaur hypothesis has recently been tested and found wanting, for example in the timing and coincidence of angiosperm abundance and low vs. high-browsing dinosaurs. Our research of the co-occurrence of dinosaur remains and charcoal assemblages in Dinosaur Provincial Park, Alberta, has suggested that it was a dominance of gymnospermous, woody vegetation that was ravaged by fire. In addition, the co-occurrence of dinosaur remains and charcoal is significant in demonstrating that the some dinosaur bone beds may have formed as a result of extensive post-fire erosion/rapid deposition cycles. In this paper we consider the evidence for and against fire as a major factor promoting vegetation change and angiosperm spread in the Cretaceous.
NASA Astrophysics Data System (ADS)
Bush, R. T.; McInerney, F. A.; Baczynski, A. A.; Wing, S. L.
2011-12-01
modern plant data. These results suggest that n-alkanes extracted directly from a fossil leaf provide a true signature of an individual leaf fossil rather than a mixture from the entire plant community. Therefore, comparisons between fossil morphotypes and between fossil and related modern taxa should be robust. Furthermore, by placing fossil leaf data within the context of the chemostratigraphy of Bighorn Basin sediments across the P-E boundary, fossil leaf n-alkanes can be used to bridge the gap between our understanding of modern plant lipids and bulk lipid data from sediments across the PETM. It has been hypothesized that changes in the both the molecular distribution and carbon isotope composition of n-alkanes across the PETM were due to changes in the local plant community, which included a large proportion of deciduous gymnosperms before and after-but not during-the PETM. Analysis of fossils such as Ginkgo and angiosperms provides the opportunity to compare and distinguish the molecular and isotopic signatures of gymnosperms and angiosperms. These comparisons shed light on the dynamics of climate and ecosystem changes as they are recorded in the signatures of lipid biomarkers.
Temperature & wood source control PyOM turnover in a Northern American forest
NASA Astrophysics Data System (ADS)
Hatton, Pierre-Joseph; Le Moine, James; Auclerc, Apolline; Gormley, Mark; Filley, Tim R.; Nadelhoffer, Knute J.; Bird, Jeff. A.
2016-04-01
Surprisingly little is known about how pyrolysis temperature and wood source affect the stability of forest-fire derived pyrogenic organic matter (PyOM). Here, we show that wood source and temperature affect in situ mineralization rates of PyOM in soils for two co-occurring gymnosperm (jack pine; JP [Pinus banksiana]) and angiosperm (red maple; RM [Acer rubrum])¬ species from North American boreal-temperate ecotones. We assess the effect of pyrolysis temperature on PyOM fates by following the decay of 13C/15N-enriched JP wood (JPwood) and PyOM produced at 300 °C (JP300) and 450 °C (JP450); and assess the effect of PyOM wood source by comparing fates of JP450 and RM450. JPwood mineralized 18× faster than JP300 and 44× faster than JP450 after 2.8y. RM450 mineralized initially faster than JP450 during the first ~2y, but became equivalent afterwards (1.1±0.2% of CO¬2 losses after 2.8y). Modeled turnover times suggest that this can be attributed to ~1% of fast-cycling PyOM (<3y). Slower-cycling pools are 12× faster for JPwood (13±5y) than for JP300 (157±28y) and 55× faster than for JP450 (700±229y). Modeled turnover times of the slow-cycling pools were equivalent for JP450 and RM450. The priming effect was positive for JPwood (0.10±0.05), neutral for JP300 (-0.02±0.04), and negative for JP450 (-0.15±0.03) and RM50 (-0.59±0.03). DOC losses were minimal compared with CO2 losses (DOC:CO2 ratio ≤0.005), but followed the same patterns: JPwood 6× greater than that of JP300 and 39× greater compared with JP450. After 1y, C recoveries were lower for JPwood than for PyOM, with no influence of pyrolysis temperature or wood source (yet); N recoveries did not differ. PLFA-(13)C data reveal that (i) treatments have similar microbial communities after 1y, (ii) JPwood is preferentially utilized by fungi, and (iii) bacteria increasingly utilize PyOM as pyrolysis temperature increases. Estimated carbon use efficiency decreased with increasing pyrolysis temperature
Wenke, Torsten; Döbel, Thomas; Sörensen, Thomas Rosleff; Junghans, Holger; Weisshaar, Bernd; Schmidt, Thomas
2011-01-01
Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5′ truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3′ end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families. PMID:21908723
Wenke, Torsten; Döbel, Thomas; Sörensen, Thomas Rosleff; Junghans, Holger; Weisshaar, Bernd; Schmidt, Thomas
2011-09-01
Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5' truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3' end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families.
Stolárik, Tibor; Hedtke, Boris; Šantrůček, Jiří; Ilík, Petr; Grimm, Bernhard; Pavlovič, Andrej
2017-05-01
Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.
Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.
2015-01-01
Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915
The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought
Bartlett, Megan K.; Klein, Tamir; Jansen, Steven; Choat, Brendan; Sack, Lawren
2016-01-01
Climate change is expected to exacerbate drought for many plants, making drought tolerance a key driver of species and ecosystem responses. Plant drought tolerance is determined by multiple traits, but the relationships among traits, either within individual plants or across species, have not been evaluated for general patterns across plant diversity. We synthesized the published data for stomatal closure, wilting, declines in hydraulic conductivity in the leaves, stems, and roots, and plant mortality for 262 woody angiosperm and 48 gymnosperm species. We evaluated the correlations among the drought tolerance traits across species, and the general sequence of water potential thresholds for these traits within individual plants. The trait correlations across species provide a framework for predicting plant responses to a wide range of water stress from one or two sampled traits, increasing the ability to rapidly characterize drought tolerance across diverse species. Analyzing these correlations also identified correlations among the leaf and stem hydraulic traits and the wilting point, or turgor loss point, beyond those expected from shared ancestry or independent associations with water stress alone. Further, on average, the angiosperm species generally exhibited a sequence of drought tolerance traits that is expected to limit severe tissue damage during drought, such as wilting and substantial stem embolism. This synthesis of the relationships among the drought tolerance traits provides crucial, empirically supported insight into representing variation in multiple traits in models of plant and ecosystem responses to drought. PMID:27807136
PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine.
Pascual, María Belén; Llebrés, María-Teresa; Craven-Bartle, Blanca; Cañas, Rafael A; Cánovas, Francisco M; Ávila, Concepción
2018-05-01
The transcriptional regulation of phenylalanine metabolism is particularly important in conifers, long-lived species that use large amounts of carbon in wood. Here, we show that the Pinus pinaster transcription factor, PpNAC1, is a main regulator of phenylalanine biosynthesis and utilization. A phylogenetic analysis classified PpNAC1 in the NST proteins group and was selected for functional characterization. PpNAC1 is predominantly expressed in the secondary xylem and compression wood of adult trees. Silencing of PpNAC1 in P. pinaster results in the alteration of stem vascular radial patterning and the down-regulation of several genes associated with cell wall biogenesis and secondary metabolism. Furthermore, transactivation and EMSA analyses showed that PpNAC1 is able to activate its own expression and PpMyb4 promoter, while PpMyb4 is able to activate PpMyb8, a transcriptional regulator of phenylalanine and lignin biosynthesis in maritime pine. Together, these results suggest that PpNAC1 is a functional ortholog of the ArabidopsisSND1 and NST1 genes and support the idea that key regulators governing secondary cell wall formation could be conserved between gymnosperms and angiosperms. Understanding the molecular switches controlling wood formation is of paramount importance for fundamental tree biology and paves the way for applications in conifer biotechnology. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Stomatal Blue Light Response Is Present in Early Vascular Plants.
Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro
2015-10-01
Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.
Small RNAs of Sequoia sempervirens during rejuvenation and phase change.
Chen, Y-T; Shen, C-H; Lin, W-D; Chu, H-A; Huang, B-L; Kuo, C-I; Yeh, K-W; Huang, L-C; Chang, I-F
2013-01-01
In this work, the population of small RNAs (sRNAs) was studied in the gymnosperm Sequoia sempervirens during phase changes, specifically in the juvenile, adult and rejuvenated plants obtained in vitro. The potential target genes of Sequoia sRNAs were predicted through bioinformatics. Rejuvenation is a pivotal process in woody plants that enables them to regain their growth potential, which results in the recovery of physiologic and molecular characteristics that were lost when the juveniles mature into adult plants. The results from the five repeated graftings of juvenile, adult and rejuvenated plants in vitro showed that sRNAs could be classified into structural RNAs (Group I), small interfering RNAs (Group II), annotated microRNAs (Group III, and unannotated sRNAs (Group IV). The results indicate that only 573 among 15,485,415 sRNAs (Groups III and IV) had significantly different expression patterns associated with rejuvenation and phase change. A total of 215 sRNAs exhibited up-regulated expression patterns in adult shoots, and 358 sRNAs were down-regulated. Expression profiling and prediction of possible target genes of these unique small RNAs indicate possible functions in the control of photosynthetic efficiency and rooting competence abundance during plant rejuvenation. Moreover, the increase in SsmiR156 and decrease in SsmiR172 during plant rejuvenation suggested that these two microRNAs extensively affect phase transition. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
A Key Role for Apoplastic H2O2 in Norway Spruce Phenolic Metabolism.
Laitinen, Teresa; Morreel, Kris; Delhomme, Nicolas; Gauthier, Adrien; Schiffthaler, Bastian; Nickolov, Kaloian; Brader, Günter; Lim, Kean-Jin; Teeri, Teemu H; Street, Nathaniel R; Boerjan, Wout; Kärkönen, Anna
2017-07-01
Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H 2 O 2 ) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce ( Picea abies ) was used as a research model. Scavenging of apoplastic H 2 O 2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H 2 O 2 -scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H 2 O 2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H 2 O 2 production in addition to potential H 2 O 2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism. © 2017 American Society of Plant Biologists. All Rights Reserved.
Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality
Zhang, Qingyin; Shao, Ming’an; Jia, Xiaoxu; Wei, Xiaorong
2017-01-01
Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P < 0.01). Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes. PMID:28095437
A Key Role for Apoplastic H2O2 in Norway Spruce Phenolic Metabolism1[OPEN
Laitinen, Teresa
2017-01-01
Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H2O2) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce (Picea abies) was used as a research model. Scavenging of apoplastic H2O2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H2O2-scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H2O2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H2O2 production in addition to potential H2O2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism. PMID:28522458
Palynology of the Kashafrud Formation, Koppeh Dagh basin, Northeastern Iran
NASA Astrophysics Data System (ADS)
Hashemi, H.; Sajjadi, F.; Dehbozorgi, A.
2009-04-01
Diverse and moderately well-preserved palynofloras occur in Middle Jurassic sediments of the Kashafrud Formation at the Senjedak section, southeast of Mashhad, northeastern Iran. Trilete and monolete spores and pollen dominate the assemblages, whereas dinoflagellate cysts, foraminiferal test linings, and fungal spores are minor components. Forty-seven species of spores (30 genera) and 15 species of pollen (eight genera) are identified. Representatives of Dictyophyllidites and Klukisporites are particularly abundant. Based on the stratigraphic distribution of miospores, three distinctive stratigraphically successive palynofloras informally termed in ascending order, Assemblages A, B, and C are identified within the Kashafrud Formation. These are compared with palynozones known from Iran and elsewhere. Based on the presence of certain miospore species, the Kashafrud palynofloras are collectively dated as Middle Jurassic (Bajocian-Bathonian), thus corroborating the faunal (ammonoid) evidence. The appearance of a key miospore species, Contignisporites burgeri, within the succession has been used to attribute a late Bajocian age and early Bathonian age to the lower and upper parts of the studied interval, respectively. Inferred natural relationships of the miospores imply derivation from a diverse parental flora of Pterophyta and gymnosperms, such as Coniferophyta, Cycadophyta, and Ginkgophyta, growing under warm, humid conditions during the Bajocian-Bathonian. The associated marine fauna (ammonites), marine palynomorphs (proximate dinoflagellate cysts, and acritarchs such as Micrhystridium), and foraminiferal test linings, along with terrestrial palynomorphs (spores and pollen) collectively indicate an open marine, nearshore depositional setting for the Kashafrud Formation at the section studied.
Battey, J F; Ohlrogge, J B
1990-02-01
We have examined the occurrence of multiple acyl-carrier protein (ACP), isoforms in evolutionarily diverse species of higher and lower plants. Isoforms were resolved by native polyacrylamide gel electrophoresis (PAGE), and were detected by Western blotting or fluorography of [(3)H]-palmitate-labelled ACPs. Multiple isoforms of ACP were found in leaf tissue of the monocotyledons Avena sativa and Hordeum vulgare and dicotyledons Arabidopsis thaliana, Cuphea wrightii, and Brassica napus. Lower vascular plants including the lycopod Selaginella krausseriana, the gymnosperms Ephedra sp. and Dioon edule, the ferns Davallia feejensis and Marsilea sp. and the most primitive known extant vascular plant, Psilotum nudum, were all found to have multiple ACP isoforms, as were the nonvascular liverworts, Lunularia sp. and Marchantia sp. and the moss, Polytrichum sp. Therefore, the development of ACP isoforms appears to have occurred early in plant evolution. However, we could detect only a single electrophoretic form of ACP in the unicellular algae Chlamydomonas reinhardtii and Dunaliella tertiolecta and the photosynthetic cyanobacteria Synechocystis strain 6803 and Agmnellum quadruplicatum. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants. We have also examined tissue specificity and light control over the expression of ACP isoforms. The relative abundance of multiple forms of ACP in leaf of Spinacia and Avena was altered very little by light. Rather, the different patterns of ACP isoforms were primarily dependent on the tissue type.
The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought.
Bartlett, Megan K; Klein, Tamir; Jansen, Steven; Choat, Brendan; Sack, Lawren
2016-11-15
Climate change is expected to exacerbate drought for many plants, making drought tolerance a key driver of species and ecosystem responses. Plant drought tolerance is determined by multiple traits, but the relationships among traits, either within individual plants or across species, have not been evaluated for general patterns across plant diversity. We synthesized the published data for stomatal closure, wilting, declines in hydraulic conductivity in the leaves, stems, and roots, and plant mortality for 262 woody angiosperm and 48 gymnosperm species. We evaluated the correlations among the drought tolerance traits across species, and the general sequence of water potential thresholds for these traits within individual plants. The trait correlations across species provide a framework for predicting plant responses to a wide range of water stress from one or two sampled traits, increasing the ability to rapidly characterize drought tolerance across diverse species. Analyzing these correlations also identified correlations among the leaf and stem hydraulic traits and the wilting point, or turgor loss point, beyond those expected from shared ancestry or independent associations with water stress alone. Further, on average, the angiosperm species generally exhibited a sequence of drought tolerance traits that is expected to limit severe tissue damage during drought, such as wilting and substantial stem embolism. This synthesis of the relationships among the drought tolerance traits provides crucial, empirically supported insight into representing variation in multiple traits in models of plant and ecosystem responses to drought.
Kucukoglu, Melis; Nilsson, Jeanette; Zheng, Bo; Chaabouni, Salma; Nilsson, Ove
2017-07-01
Plant secondary growth derives from the meristematic activity of the vascular cambium. In Arabidopsis thaliana, cell divisions in the cambium are regulated by the transcription factor WOX4, a key target of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED 41 (CLE41) signaling pathway. However, function of the WOX4-like genes in plants that are dependent on a much more prolific secondary growth, such as trees, remains unclear. Here, we investigate the role of WOX4 and CLE41 homologs for stem secondary growth in Populus trees. In Populus, PttWOX4 genes are specifically expressed in the cambial region during vegetative growth, but not after growth cessation and during dormancy, possibly involving a regulation by auxin. In PttWOX4a/b RNAi trees, primary growth was not affected whereas the width of the vascular cambium was severely reduced and secondary growth was greatly diminished. Our data show that in Populus trees, PttWOX4 genes control cell division activity in the vascular cambium, and hence growth in stem girth. This activity involves the positive regulation of PttWOX4a/b through PttCLE41-related genes. Finally, expression profiling suggests that the CLE41 signaling pathway is an evolutionarily conserved program for the regulation of vascular cambium activity between angiosperm and gymnosperm tree species. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification.
Li, Yanbang; Provenzano, Sofia; Bliek, Mattijs; Spelt, Cornelis; Appelhagen, Ingo; Machado de Faria, Laura; Verweij, Walter; Schubert, Andrea; Sagasser, Martin; Seidel, Thorsten; Weisshaar, Bernd; Koes, Ronald; Quattrocchio, Francesca
2016-08-01
Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes. © 2016 European Union. New Phytologist © 2016 New Phytologist Trust.
Lin, Xuan; Faridi, Nurul; Casola, Claudio
2016-01-01
Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138
Plant diversity and conservation status of Himalayan Region Poonch Valley Azad Kashmir (Pakistan).
Khan, Muhammad Azam; Khan, Mir Ajab; Hussain, Mazhar; Mujtaba, Ghulam
2014-09-01
The plant diversity of Himalayan region has been reduced to greater extent due to environmental degradation and human exploitation. Anthropogenic disturbance was the major factor responsible for fragmentation of forest vegetation into small patches. Little research has been conducted in the Himalayan region of Poonch Valley of North eastern Pakistan with reference to plants biodiversity and its conservation. The present research was carried out to provide a checklist of vegetation for biodiversity conservation. A total of 430 vascular and 5 nonvascular plant species with 5 species of Bryophytes (5 families), 13 species of Pteridophytes (6 families), 4 species of Gymnosperms (1 family) and 413 species of angiosperms (95 families) were enumerated from the Poonch valley Azad Kashmir. The genera were classified into three categories according to the number of species. 25 plant communities with phytosociological parameters and diversity indices were reported. Present study revealed that there were 145 threatened, 30 endangered, 68 vulnerable and 47 rare species. It is recorded that extensive grazing, uprooting of plants and soil slope erosion intensify the environmental problems. Since there is maximum exploitation of vegetation, the valley showed a decline in plant diversity. The study was also indicated that the main threats to the biodiversity are expansion of settlement and army installations in the forest area of the valley. For sustainable use In-situ and Ex-situ conservation, controlled harvesting and afforestation may be the solution. Moreover, forest area should be declared prohibited for settlements and army installations.
Lignin Formation and the Effects of Gravity: A New Approach
NASA Technical Reports Server (NTRS)
Lewis, Norman G.
1997-01-01
Two aspects of considerable importance in the enigmatic processes associated with lignification have made excellent progress. The first is that, even in a microgravity environment, compression wood formation, and hence altered lignin deposition, can be induced upon mechanically bending the stems of woody gymnosperms. It now needs to be established if an organism reorientating its woody stem tissue will generate this tissue in microgravity, in the absence of externally applied pressure. If it does not, then gravity has no effect on its formation, and instead it results from alterations in the stress gradient experienced by the organism impacted. The second area of progress involves establishing how the biochemical pathway to lignin is regulated, particularly with respect to selective monolignol biosynthesis. This is an important question since individual monomer deposition occurs in a temporally and spatially specific manner. In this regard, the elusive metabolic switch between E-p-coumaryl alcohol and E-coniferyl alcohol synthesis has been detected, the significance of which now needs to be defined at the enzyme and gene level. Switching between monolignol synthesis is important, since it is viewed to be a consequence of different perceptions by plants in the gravitational load experienced, and thus in the control of the type of lignification response. Additional experiments also revealed the rate-limiting processes involved in monolignol synthesis, and suggest that a biological system (involving metabolite concentrations, as well as enzymatic and gene (in)activation processes) is involved, rather than a single rate-limiting step.
Carpenter, Raymond J; Macphail, Michael K; Jordan, Gregory J; Hill, Robert S
2015-12-01
The origin of biomes is of great interest globally. Molecular phylogenetic and pollen evidence suggest that several plant lineages that now characterize open, burnt habitats of the sclerophyll biome, became established during the Late Cretaceous of Australia. However, whether this biome itself dates to that time is problematic, fundamentally because of the near-absence of relevant, appropriately aged, terrestrial plant macro- or mesofossils. We recovered, identified, and interpreted the ecological significance of fossil pollen, foliar and other remains from a section of core drilled in central Australia, which we dated as Late Campanian-Maastrichtian. The sediments contain plant fossils that indicate nutrient-limited, open, sclerophyllous vegetation and abundant charcoal as evidence of fire. Most interestingly, >30 pollen taxa and at least 12 foliage taxa are attributable to the important Gondwanan family Proteaceae, including several minute, amphistomatic, and sclerophyllous foliage forms consistent with subfamily Proteoideae. Microfossils, including an abundance of Sphagnales and other wetland taxa, provided strong evidence of a fenland setting. The local vegetation also included diverse Ericaceae and Liliales, as well as a range of ferns and gymnosperms. The fossils provide strong evidence in support of hypotheses of great antiquity for fire and open vegetation in Australia, point to extraordinary persistence of Proteaceae that are now emblematic of the Mediterranean-type climate southwestern Australian biodiversity hotspot and raise the profile of open habitats as centers of ancient lineages. © 2015 Botanical Society of America.
Zhang, Yong-Jiang; Rockwell, Fulton E.; Wheeler, James K.; Holbrook, N. Michele
2014-01-01
Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to −1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than −3 MPa. Declines in Kleaf between −2 and −3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue. PMID:24948828
Declining hydraulic efficiency as transpiring leaves desiccate: two types of response.
Brodribb, Tim J; Holbrook, N Michele
2006-12-01
The conductance of transpiring leaves to liquid water (Kleaf) was measured across a range of steady-state leaf water potentials (Psileaf). Manipulating the transpiration rate in excised leaves enabled us to vary Psileaf in the range -0.1 MPa to less than -1.5 MPa while using a flowmeter to monitor the transpiration stream. Employing this technique to measure how desiccation affects Kleaf in 19 species, including lycophytes, ferns, gymnosperms and angiosperms, we found two characteristic responses. Three of the six angiosperm species sampled maintained a steady maximum Kleaf while Psileaf remained above -1.2 MPa, although desiccation of leaves beyond this point resulted in a rapid decline in Kleaf. In all other species measured, declining Psileaf led to a proportional decrease in Kleaf, such that midday Psileaf of unstressed plants in the field was sufficient to depress Kleaf by an average of 37%. It was found that maximum Kleaf was strongly correlated with maximum CO2 assimilation rate, while Kleaf = 0 occurred at a Psileaf slightly less negative than at leaf turgor loss. A strong linear correlation across species between Psileaf at turgor loss and Psileaf at Kleaf = 0 raises the possibility that declining Kleaf was related to declining cell turgor in the leaf prior to the onset of vein cavitation. The vulnerability of leaves rehydrating after desiccation was compared with vulnerability of leaves during steady-state evaporation, and differences between methods suggest that in many cases vein cavitation occurs only as Kleaf approaches zero.
An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.
Peng, Qing-Zhong; Zhu, Yue; Liu, Zhong; Du, Ci; Li, Ke-Gang; Xie, De-Yu
2012-09-01
Proanthocyanidins (PAs) are oligomers or polymers of plant flavan-3-ols and are important to plant adaptation in extreme environmental conditions. The characterization of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) has demonstrated the different biogenesis of four stereo-configurations of flavan-3-ols. It is important to understand whether ANR and the ANR pathway widely occur in the plant kingdom. Here, we report an integrated approach to demonstrate the ANR pathway in plants. This includes different methods to extract native ANR from different tissues of eight angiosperm plants (Lotus corniculatus, Desmodium uncinatum, Medicago sativa, Hordeum vulgare, Vitis vinifera, Vitis bellula, Parthenocissus heterophylla, and Cerasus serrulata) and one fern plant (Dryopteris pycnopteroides), a general enzymatic analysis approach to demonstrate the ANR activity, high-performance liquid chromatography-based fingerprinting to demonstrate (-)-epicatechin and other flavan-3-ol molecules, and phytochemical analysis of PAs. Results demonstrate that in addition to leaves of M. sativa, tissues of other eight plants contain an active ANR pathway. Particularly, the leaves, flowers and pods of D. uncinatum, which is a model plant to study LAR and the LAR pathways, are demonstrated to express an active ANR pathway. This finding suggests that the ANR pathway involves PA biosynthesis in D. uncinatum. In addition, a sequence BLAST analysis reveals that ANR homologs have been sequenced in plants from both gymnosperms and angiosperms. These data show that the ANR pathway to PA biosynthesis occurs in both seed and seedless vascular plants.
Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality.
Zhang, Qingyin; Shao, Ming'an; Jia, Xiaoxu; Wei, Xiaorong
2017-01-01
Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P < 0.01). Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes.
Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Senior, Rebecca A; Bennett, Dominic J; Booth, Hollie; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; White, Hannah J; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Ancrenaz, Marc; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Báldi, András; Banks, John E; Barlow, Jos; Batáry, Péter; Bates, Adam J; Bayne, Erin M; Beja, Pedro; Berg, Åke; Berry, Nicholas J; Bicknell, Jake E; Bihn, Jochen H; Böhning-Gaese, Katrin; Boekhout, Teun; Boutin, Céline; Bouyer, Jérémy; Brearley, Francis Q; Brito, Isabel; Brunet, Jörg; Buczkowski, Grzegorz; Buscardo, Erika; Cabra-García, Jimmy; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Carrijo, Tiago F; Carvalho, Anelena L; Castro, Helena; Castro-Luna, Alejandro A; Cerda, Rolando; Cerezo, Alexis; Chauvat, Matthieu; Clarke, Frank M; Cleary, Daniel F R; Connop, Stuart P; D'Aniello, Biagio; da Silva, Pedro Giovâni; Darvill, Ben; Dauber, Jens; Dejean, Alain; Diekötter, Tim; Dominguez-Haydar, Yamileth; Dormann, Carsten F; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Elek, Zoltán; Entling, Martin H; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Ficetola, Gentile F; Filgueiras, Bruno K C; Fonte, Steven J; Fraser, Lauchlan H; Fukuda, Daisuke; Furlani, Dario; Ganzhorn, Jörg U; Garden, Jenni G; Gheler-Costa, Carla; Giordani, Paolo; Giordano, Simonetta; Gottschalk, Marco S; Goulson, Dave; Gove, Aaron D; Grogan, James; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hawes, Joseph E; Hébert, Christian; Helden, Alvin J; Henden, John-André; Hernández, Lionel; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Horgan, Finbarr G; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Jonsell, Mats; Jung, Thomas S; Kapoor, Vena; Kati, Vassiliki; Katovai, Eric; Kessler, Michael; Knop, Eva; Kolb, Annette; Kőrösi, Ádám; Lachat, Thibault; Lantschner, Victoria; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Letcher, Susan G; Littlewood, Nick A; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Marin-Spiotta, Erika; Marshall, E J P; Martínez, Eliana; Mayfield, Margaret M; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Naidoo, Robin; Nakamura, Akihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Neuschulz, Eike L; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Nöske, Nicole M; O'Dea, Niall; Oduro, William; Ofori-Boateng, Caleb; Oke, Chris O; Osgathorpe, Lynne M; Paritsis, Juan; Parra-H, Alejandro; Pelegrin, Nicolás; Peres, Carlos A; Persson, Anna S; Petanidou, Theodora; Phalan, Ben; Philips, T Keith; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Ribeiro, Danilo B; Richardson, Barbara A; Richardson, Michael J; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rosselli, Loreta; Rossiter, Stephen J; Roulston, T'ai H; Rousseau, Laurent; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Samnegård, Ulrika; Schüepp, Christof; Schweiger, Oliver; Sedlock, Jodi L; Shahabuddin, Ghazala; Sheil, Douglas; Silva, Fernando A B; Slade, Eleanor M; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Stout, Jane C; Struebig, Matthew J; Sung, Yik-Hei; Threlfall, Caragh G; Tonietto, Rebecca; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Vanbergen, Adam J; Vassilev, Kiril; Verboven, Hans A F; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Walker, Tony R; Wang, Yanping; Watling, James I; Wells, Konstans; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Woodcock, Ben A; Yu, Douglas W; Zaitsev, Andrey S; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy
2014-01-01
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015. PMID:25558364
Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies.
Lin, Ching-Ping; Huang, Jen-Pan; Wu, Chung-Shien; Hsu, Chih-Yao; Chaw, Shu-Miaw
2010-01-01
As the largest and the basal-most family of conifers, Pinaceae provides key insights into the evolutionary history of conifers. We present comparative chloroplast genomics and analysis of concatenated 49 chloroplast protein-coding genes common to 19 gymnosperms, including 15 species from 8 Pinaceous genera, to address the long-standing controversy about Pinaceae phylogeny. The complete cpDNAs of Cathaya argyrophylla and Cedrus deodara (Abitoideae) and draft cpDNAs of Larix decidua, Picea morrisonicola, and Pseudotsuga wilsoniana are reported. We found 21- and 42-kb inversions in congeneric species and different populations of Pinaceous species, which indicates that structural polymorphics may be common and ancient in Pinaceae. Our phylogenetic analyses reveal that Cedrus is clustered with Abies-Keteleeria rather than the basal-most genus of Pinaceae and that Cathaya is closer to Pinus than to Picea or Larix-Pseudotsuga. Topology and structural change tests and indel-distribution comparisons lend further evidence to our phylogenetic finding. Our molecular datings suggest that Pinaceae first evolved during Early Jurassic, and diversification of Pinaceous subfamilies and genera took place during Mid-Jurassic and Lower Cretaceous, respectively. Using different maximum-likelihood divergences as thresholds, we conclude that 2 (Abietoideae and Larix-Pseudotsuga-Piceae-Cathaya-Pinus), 4 (Cedrus, non-Cedrus Abietoideae, Larix-Pseudotsuga, and Piceae-Cathaya-Pinus), or 5 (Cedrus, non-Cedrus Abietoideae, Larix-Pseudotsuga, Picea, and Cathaya-Pinus) groups/subfamilies are more reasonable delimitations for Pinaceae. Specifically, our views on subfamilial classifications differ from previous studies in terms of the rank of Cedrus and with recognition of more than two subfamilies.
Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies
Lin, Ching-Ping; Huang, Jen-Pan; Wu, Chung-Shien; Hsu, Chih-Yao; Chaw, Shu-Miaw
2010-01-01
As the largest and the basal-most family of conifers, Pinaceae provides key insights into the evolutionary history of conifers. We present comparative chloroplast genomics and analysis of concatenated 49 chloroplast protein-coding genes common to 19 gymnosperms, including 15 species from 8 Pinaceous genera, to address the long-standing controversy about Pinaceae phylogeny. The complete cpDNAs of Cathaya argyrophylla and Cedrus deodara (Abitoideae) and draft cpDNAs of Larix decidua, Picea morrisonicola, and Pseudotsuga wilsoniana are reported. We found 21- and 42-kb inversions in congeneric species and different populations of Pinaceous species, which indicates that structural polymorphics may be common and ancient in Pinaceae. Our phylogenetic analyses reveal that Cedrus is clustered with Abies–Keteleeria rather than the basal-most genus of Pinaceae and that Cathaya is closer to Pinus than to Picea or Larix–Pseudotsuga. Topology and structural change tests and indel-distribution comparisons lend further evidence to our phylogenetic finding. Our molecular datings suggest that Pinaceae first evolved during Early Jurassic, and diversification of Pinaceous subfamilies and genera took place during Mid-Jurassic and Lower Cretaceous, respectively. Using different maximum-likelihood divergences as thresholds, we conclude that 2 (Abietoideae and Larix–Pseudotsuga–Piceae–Cathaya–Pinus), 4 (Cedrus, non-Cedrus Abietoideae, Larix–Pseudotsuga, and Piceae–Cathaya–Pinus), or 5 (Cedrus, non-Cedrus Abietoideae, Larix–Pseudotsuga, Picea, and Cathaya–Pinus) groups/subfamilies are more reasonable delimitations for Pinaceae. Specifically, our views on subfamilial classifications differ from previous studies in terms of the rank of Cedrus and with recognition of more than two subfamilies. PMID:20651328
NASA Astrophysics Data System (ADS)
Godin, Pamela; Macdonald, Robie W.; Kuzyk, Zou Zou A.; Goñi, Miguel A.; Stern, Gary A.
2017-07-01
Concentrations and compositions of particulate and dissolved organic carbon (POC and DOC, respectively) and aromatic compounds including lignin were analyzed in water samples from 17 rivers flowing into Hudson Bay, northern Canada. These rivers incorporate basins to the south with no permafrost to basins in the north with continuous permafrost, and dominant vegetation systems that include Boreal Forest, the Hudson Plains, Taiga Shield, and Tundra. Major latitudinal trends in organic carbon and lignin concentrations and compositions were evident, with both DOC and dissolved lignin concentrations dominating over their particulate counterparts and exhibiting significant correlations with total dissolved and suspended solids, respectively. The composition of lignin reaction products in terms of the syringyl, cinnamyl, and vanillyl compositions indicate mixed sources of vascular land plant-derived organic carbon, with woody gymnosperms contributions dominating in the southern river basins whereas nonwoody angiosperm sources were more important in the most northerly rivers. The composition of nonlignin aromatic compounds, which provides a tracer for nonvascular plant contributions, suggests stronger contributions from Sphagnum mosses to dissolved organic matter in rivers below the tree line, including those with large peat bogs in their basins. Acid/aldehyde ratios of the lignin products together with Δ14C data for DOC in selected rivers indicate that DOC has generally undergone greater alteration than POC. Interestingly, several northern rivers exhibited relatively old DOC according to the Δ14C data suggesting that either old DOC is being released from permafrost or old DOC survives river transport in these rivers.
Zhang, Yi-Xuan; Li, Qiu-Yue; Yan, Li-Li; Shi, Yue
2011-08-15
Biflavonoids, a special class of flavonoids, are widely distributed in gymnosperm plants and have various biological activities. They are also major bioactive ingredients in Selaginella tamariscina. In this work, we report the use of high-performance liquid chromatography with a diode-array detector (HPLC-DAD) and electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)) to study the fragmentation behavior of three main types of biflavonoids using seven biflavonoid reference compounds and analyze the biflavonoids in Selaginella tamariscina. The most useful fragmentations in terms of structural identification are those involving the C-ring cleavage of biflavonoids. For amentoflavone-type biflavonoids (containing flavonoid parts I and II), fragmentation on the flavonoid part II at positions 1/3 and 0/4 are the primary pathways, whereas the chances are greater for C-ring cleavage fragmentation occurring on flavonoid part I at positions 1/3 and 1/4 for robustaflavone-type biflavonoids. However, the predominant diagnostic ions of the specific C-O-C-connected hinokiflavone-type biflavonoids are a series of ions resulting from the rupture of the connective C-O bond. Based on the fragmentation patterns of these reference compounds, 17 biflavonoids were identified in an extract of Selaginella tamariscina, three of which have not been previously reported as constituents of this plant. This study provides a powerful approach for the online structural elucidation and identification of different types of biflavonoids and positional isomers from Selaginella tamariscina and other biflavonoids distributed in related plants and prescriptions. Copyright © 2011 John Wiley & Sons, Ltd.
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.
Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek
2014-09-23
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are