The Gypsum: White gold of Rajasthan, introduction, uses and future prospective
NASA Astrophysics Data System (ADS)
Sharma, Gayatri
2013-06-01
Rajasthan is mineral based state and Bikaner and its surrounding district have been gifted with Gypsum. Mt of Gypsum is available in these districts. Gypsum has multiple uses including basic raw material for POP industry, addition in cement and a natural fertilizer. This mineral has changes the economic scenario in the remote areas of Bikaner, Nagaur, Hanumangarh, Sanchore, Shriganganagar etc. Gypsum and selenite are mined about 3.0 million tons per year. There is huge demand from cement industry as Gypsum is added for improving setting time of cement. Gypsum is a natural fertilizer for alkaline land and it role is vital in state like India where alkaline land is major role. Its high use as fertilizer has potential to change millions of poor farmer families and improving in crop production. Cement Industry has started importing Gypsum from Thailand, Bankong, Pakistan, Iran etc. The mining of gypsum of purity of 70% CaSO4.2H2O is cooperative effort between the land owners and Rajasthan State Mines and Minerals Limited. Gypsum fulfills the demand of POP and Cement industry in Rajasthan and powder gypsum used in agriculture for recon dining of alkaline soil. This paper deals with multiple uses, availability, and future prospective of Gypsum, a white gold of Rajasthan.
Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr
Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorlymore » crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.« less
Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength
NASA Astrophysics Data System (ADS)
Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed
2017-08-01
Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buecker, B.
2007-11-15
The article first explains how gypsum by-product is produced in flue gas desulfurization systems in coal-fired power plants. It goes on to talk about the main markets for gypsum - wallboard manufacture (Plaster of Paris), cement production and soil stabilization. In the USA in 2006 41.6 million tons of gypsum was used by manufacturers of wallboard and plaster products, 3.0 mt for cement production and 1.1 mt for agricultural purposes. A method of determining the by-product gypsum content by thermogravimetric analysis is outlined. 4 refs., 1 fig.
Possibilities of using aluminate cements in high-rise construction
NASA Astrophysics Data System (ADS)
Kaddo, Maria
2018-03-01
The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.
Tunisian gypsums: Characteristics and use in cement
NASA Astrophysics Data System (ADS)
Mahmoudi, Salah; Bennour, Ali; Chalwati, Youssef; Souidi, Khouloud; Thabet, Manel; Srasra, Ezzedine; Zargouni, Fouad
2016-09-01
Gypsum materials of hundred meters thickness and interbedded with marine claystones and limestones from different paleogeographic sectors in the Tunisian territory are studied to assess their suitability for cement production. For this reason, thirty representative samples are analysed by chemical, physical and geotechnical tests. The obtained results for the studied gypsum materials are compared to Tunisian and European norms and with the local cements, currently marketed and which obey international norms. Indeed, for all samples hydraulic modulus HM, silica modulus SM and alumina modulus AM vary from (2.37-2.44), (2.48-2.68) and (1.45-2.5), respectively; whereas the required values for these modulus are (1.5-2.5), (2-3) and (1.5-2.5). The same behavior is observed for mineralogical analyses of C3S, C2S, C3A and C4AF and compressive strength at different ages. Briefly, Tunisia contains important reserves of gypsum scattered and spread over the Tunisian territory and can be used for cement production.
Petroleum sludge treatment and reuse for cement production as setting retarder
NASA Astrophysics Data System (ADS)
Aeslina, A. K.; Ali, B.
2017-05-01
Petroleum sludge is a dangerous waste that needs to be treated to avoid any contamination of soil and groundwater due to its disposal. As an attempt to treat this waste, it has been incorporated into cement production as substitution for gypsum. As results, 5% of petroleum sludge has shown effective results and could play the same role of gypsum in delaying the flash setting of cement clinker.
Formulation of portland composite cement using waste glass as a supplementary cementitious material
NASA Astrophysics Data System (ADS)
Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina
2017-09-01
Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.
MARKETING OF BYPRODUCT GYPSUM FROM FLUE GAS DESULFURIZATION
The report gives results of an evaluation of the 1985 marketing potential of byproduct gypsum from utility flue gas desulfurization (FGD), for the area east of the Rocky Mountains, using the calculated gypsum production rates of 14 selected power plants. The 114 cement plants and...
Criteria for Remote Sensing Detection of Sulfate Cemented Soils on Mars
NASA Technical Reports Server (NTRS)
Cooper, Christopher D.; Mustard, John F.
2000-01-01
Spectral measurements of loose and cemented mixtures of palagonitic soil and sulfates were made to determine whether cemented soils could be identified on Mars. Cemented MgSO4 mixtures exhibit an enhanced 9 micron sulfate fundamental compared to gypsum mixtures due to more diffuse and pervasive cementing.
Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste
This work investigates the combined influence of borate and lithium ions on the hydration of two calcium sulfoaluminate (CSA) cements containing 0 or 10 wt% gypsum. On the one hand, borates are known to retard CSA cement hydration due to the rapid precipitation of ulexite. On the other hand, lithium ions accelerate CSA cement hydration thanks to the fast precipitation of Li-containing aluminum hydroxide. When borates and lithium are present simultaneously, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later convertedmore » into a borated AFt phase when hydration accelerates. Lithium salts can counteract the retardation by sodium borate. However, their influence is limited once a sufficient amount of Li-containing Al(OH){sub 3} seeds is formed. For the CSA cements under investigation, the threshold lithium concentration is close to 0.03 mmol/g of cement and similar with or without borate.« less
NASA Astrophysics Data System (ADS)
Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin
2017-12-01
The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.
Properties study of cotton stalk fiber/gypsum composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Guozhong; Yu Yanzhen; Zhao Zhongjian
This manuscript addresses treating cotton stalk fiber surface with styrene acrylic emulsion, which improves the interfacial combined state of cotton stalk fiber/gypsum composite effectively and improves its mechanical properties notably. Mixes less slag, ordinary Portland cement, etc., to modify gypsum base. The electron microscope was utilized to analyze and research on the effect on composite properties of the abovementioned mixtures.
Selected Bibliography on Fiber-Reinforced Cement and Concrete.
1976-08-01
A listing of 660 references with author index is given for fiber reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)
The physical properties of accelerated Portland cement for endodontic use.
Camilleri, J
2008-02-01
To investigate the physical properties of a novel accelerated Portland cement. The setting time, compressive strength, pH and solubility of white Portland cement (Lafarge Asland; CEM 1, 52.5 N) and accelerated Portland cement (Proto A) produced by excluding gypsum from the manufacturing process (Aalborg White) and a modified version with 4 : 1 addition of bismuth oxide (Proto B) were evaluated. Proto A set in 8 min. The compressive strength of Proto A was comparable with that of Portland cement at all testing periods (P > 0.05). Additions of bismuth oxide extended the setting time and reduced the compressive strength (P < 0.05). Both cements and storage solution were alkaline. All cements tested increased by >12% of their original weight after immersion in water for 1 day with no further absorption after 28 days. Addition of bismuth oxide increased the water uptake of the novel cement (P < 0.05). The setting time of Portland cement can be reduced by excluding the gypsum during the last stage of the manufacturing process without affecting its other properties. Addition of bismuth oxide affected the properties of the novel cement. Further investigation on the effect that bismuth oxide has on the properties of mineral trioxide aggregate is thus warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, E.C.
2005-09-30
According to ACAA's 'Coal combustion production and user survey' covering 2003, FGD gypsum utilization in the USA has risen to 70% but with 12 m tons being produced annually there is great opportunity to expand its use in producing wallboard (its primary use) and also in cement and concrete products and agriculture. In 2003 less than 1 mt of FGD gypsum was sold into these latter markets. Although nearly all the 12 newest wallboard plants announced since 1995 have been designed to use this material, only 27% of total gypsum wallboard production in the USA utilizes FGD gypsum. 1 ref.,more » 2 figs., 2 photos.« less
Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement number 1.
1977-09-01
A listing of 156 additional references with author index is given for fiber-reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)
Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 2.
1979-07-01
A listing of 471 additional references with author index is given for fiber-reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)
Use of Flue Gas Desulfurization (FGD) Gypsum as a Heavy Metal Stabilizer in Contaminated Soils
Flue Gas Desulfurization (FGD) gypsum is a synthetic by-product generated from the flue gas desulfurization process in coal power plants. It has several beneficial applications such as an ingredient in cement production, wallboard production and in agricultural practice as a soil...
Tsalafoutas, I A; Yakoumakis, E; Sandilos, P; Vlahos, L; Proukakis, C
2001-04-01
Panelcrete, Aquapanel and Betopan are cement-based building materials with uses similar to those of gypsum wallboard, whose properties as a diagnostic X-ray shielding material have been extensively studied. The X-ray attenuation characteristics of these cement-based boards as well as those of a gypsum wallboard, Gypsoplak Superboard, are investigated for broad beam geometry conditions and for tube potentials of 50 kVp, 70 kVp, 100 kVp, 125 kVp and 140 kVp. Comparisons between these materials as well as with published data for gypsum wallboard are made. An example of their use as secondary barriers is given. Furthermore, it is confirmed that when building materials are considered for diagnostic X-ray shielding, calculations based on data for similar materials and corrected for density differences can be used only as an approximation.
Porous materials based on foaming solutions obtained from industrial waste
NASA Astrophysics Data System (ADS)
Starostina, I. V.; Antipova, A. N.; Ovcharova, I. V.; Starostina, Yu L.
2018-03-01
This study analyzes foam concrete production efficiency. Research has shown the possibility of using a newly-designed protein-based foaming agent to produce porous materials using gypsum and cement binders. The protein foaming agent is obtained by alkaline hydrolysis of a raw mixture consisting of industrial waste in an electromagnetic field. The mixture consists of spent biomass of the Aspergillus niger fungus and dust from burning furnaces used in cement production. Varying the content of the foaming agent allows obtaining gypsum binder-based foam concretes with the density of 200-500 kg/m3 and compressive strength of 0.1-1.0 MPa, which can be used for thermal and sound insulation of building interiors. Cement binders were used to obtain structural and thermal insulation materials with the density of 300-950 kg/m3 and compressive strength of 0.9-9.0 MPa. The maximum operating temperature of cement-based foam concretes is 500°C because it provides the shrinkage of less than 2%.
Fatta, Despo; Papadopoulos, Achilleas; Stefanakis, Nikos; Loizidou, Maria; Savvides, Chrysanthos
2004-08-01
The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.
Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate.
Jroundi, Fadwa; Gonzalez-Muñoz, Maria Teresa; Garcia-Bueno, Ana; Rodriguez-Navarro, Carlos
2014-09-01
Gypsum plasterworks and decorative surfaces are easily degraded, especially when exposed to humidity, and thus they require protection and/or consolidation. However, the conservation of historical gypsum-based structural and decorative materials by conventional organic and inorganic consolidants shows limited efficacy. Here, a new method based on the bioconsolidation capacity of carbonatogenic bacteria inhabiting the material was assayed on historical gypsum plasters and compared with conventional consolidation treatments (ethyl silicate; methylacrylate-ethylmethacrylate copolymer and polyvinyl butyral). Conventional products do not reach in-depth consolidation, typically forming a thin impervious surface layer which blocks pores. In contrast, the bacterial treatment produces vaterite (CaCO3) biocement, which does not block pores and produces a good level of consolidation, both at the surface and in-depth, as shown by drilling resistance measurement system analyses. Transmission electron microscopy analyses show that bacterial vaterite cement formed via oriented aggregation of CaCO3 nanoparticles (∼20nm in size), resulting in mesocrystals which incorporate bacterial biopolymers. Such a biocomposite has superior mechanical properties, thus explaining the fact that drilling resistance of bioconsolidated gypsum plasters is within the range of inorganic calcite materials of equivalent porosity, despite the fact that the bacterial vaterite cement accounts for only a 0.02 solid volume fraction. Bacterial bioconsolidation is proposed for the effective consolidation of this type of material. The potential applications of bacterial calcium carbonate consolidation of gypsum biomaterials used as bone graft substitutes are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Implications of Earth analogs to Martian sulfate-filled Fractures
NASA Astrophysics Data System (ADS)
Holt, R. M.; Powers, D. W.
2017-12-01
Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veazey, G.W.; Schake, A.R.; Shalek, P.D.
1996-10-01
The process used at TA-55 to cement transuranic (TRU) waste has experienced several problems with the gypsum-based cement currently being used. Specifically, the waste form could not reliably pass the Waste Isolation Pilot Plant (WIPP) prohibition for free liquid and the Environmental Protection Agency (EPA)-Toxicity Characteristic Leaching Procedure (TCLP) standard for chromium. This report describes the project to develop a portland cement-based waste form that ensures compliance to these standards, as well as other performance standards consisting of homogeneous mixing, moderate hydration temperature, timely initial set, and structural durability. Testing was conducted using the two most common waste streams requiringmore » cementation as of February 1994, lean residue (LR)- and oxalate filtrate (OX)-based evaporator bottoms (EV). A formulation with a pH of 10.3 to 12.1 and a minimum cement-to-liquid (C/L) ratio of 0.80 kg/l for OX-based EV and 0.94 kg/L for LR-based EV was found to pass the performance standards chosen for this project. The implementation of the portland process should result in a yearly cost savings for raw materials of approximately $27,000 over the gypsum process.« less
NASA Technical Reports Server (NTRS)
Parnell, J.; Osinski, G. R.; Lee, P.; Cockell, C. S.
2005-01-01
Microbes in Haughton Crater Sulfates: Impact craters are of high interest in planetary exploration because they are viewed as possible sites for evidence of life [1]. Hydrothermal systems in craters are particularly regarded as sites where primitive life could evolve. Evidence from the Miocene Haughton impact structure shows that crater hydrothermal deposits may also be a preferred site for subsequent colonization and hence possible extant life: Hydrothermal sulfates at Haughton are colonized by viable cyanobacteria [2]. The Haughton impact structure, Devon Island, Canadian High Arctic, is a 24 km-diameter crater of mid-Tertiary age. The structure preserves an exceptional record of impact-induced hydrothermal activity, including sulfide, and sulfate mineralization [3]. The target rocks excavated at the site included massive gypsum-bearing carbonate rocks of Ordovician age. Impact-remobilized sulfates occur as metre-scale masses of intergrown crystals of the clear form of gypsum selenite in veins and cavity fillings within the crater s impact melt breccia deposits [4]. The selenite is part of the hydrothermal assemblage as it was precipitated by cooling hot waters that were circulating as a result of the impact. Remobilization of the sulfate continues to the present day, such that it occurs in soil crusts (Fig. 1) including sandy beds with a gypsum cement. The sulfate-cemented beds make an interesting comparison with the sulfate-bearing sandy beds encountered by the Opportunity MER [5]. The selenite crystals are up to 0.3 m in width, of high purity, and transparent. They locally exhibit frayed margins where cleavage surfaces have separated. This exfoliation may be a response to freeze-thaw weathering. The selenite contains traces of rock detritus, newly precipitated gypsum, and microbial colonies. The rock detritus consists of sediment particles which penetrated the opened cleavages by up to 2cm from the crystal margins. Some of the detritus is cemented into place by gypsum, which must have been dissolved and reprecipitated from the host selenite.
Mechanical properties of simulated Mars materials: gypsum-rich sandstones and lapilli tuff
Morrow, Carolyn; Lockner, David; Okubo, Chris
2013-01-01
Observations by the Mars Exploration Rover (MER) Opportunity, and other recent studies on diagenesis in the extensive equatorial layered deposits on Mars, suggest that the likely lithologies of these deposits are gypsum-rich sandstones and tuffaceous sediments (for example, Murchie and others, 2009; Squyres and others, 2012; Zimbelman and Scheidt, 2012). Of particular interest is how the diagenesis history of these sediments (degree of cementation and composition) influences the strength and brittle behavior of the material. For instance, fractures are more common in lower porosity materials under strain, whereas deformation bands, characterized by distributed strain throughout a broader discontinuity in a material, are common in higher porosity sedimentary materials. Such discontinuities can either enhance or restrict fluid flow; hence, failure mode plays an important role in determining the mechanics of fluid migration through sediments (Antonellini and Aydin, 1994; 1995; Taylor and Pollard, 2000; Ogilvie and Glover, 2001). As part of a larger study to characterize processes of fault-controlled fluid flow in volcaniclastic and gypsum-rich sediments on Mars, we have completed a series of laboratory experiments to focus on how gypsum clast content and degree of authigenic cementation affects the strength behavior of simulated Mars rocks. Both axial deformation and hydrostatic pressure tests were done at room temperature under dry conditions.
Godinho-Castro, Alcione P; Testolin, Renan C; Janke, Leandro; Corrêa, Albertina X R; Radetski, Claudemir M
2012-01-01
Civil engineering-related construction and demolition debris is an important source of waste disposed of in municipal solid waste landfills. After clay materials, gypsum waste is the second largest contributor to the residential construction waste stream. As demand for sustainable building practices grows, interest in recovering gypsum waste from construction and demolition debris is increasing, but there is a lack of standardized tests to evaluate the technical and environmental viability of this solid waste recycling process. By recycling gypsum waste, natural deposits of gypsum might be conserved and high amounts of the waste by-product could be reused in the civil construction industry. In this context, this paper investigates a physical property (i.e., resistance to axial compression), the chemical composition and the ecotoxicological potential of ceramic blocks constructed with different proportions of clay, cement and gypsum waste, and assesses the feasibility of using a minimal battery of tests to evaluate the viability of this recycling process. Consideration of the results for the resistance to axial compression tests together with production costs revealed that the best formulation was 35% of plastic clay, 35% of non-plastic clay, 10% of Portland cement and 20% of gypsum waste, which showed a mean resistance of 4.64MPa. Energy dispersive X-ray spectrometry showed calcium and sulfur to be the main elements, while quartz, gypsum, ettringite and nacrite were the main crystalline compounds found in this formulation. Ecotoxicity tests showed that leachate from this formulation is weakly toxic toward daphnids and bacteria (EC(20%)=69.0 and 75.0, respectively), while for algae and fish the leachate samples were not toxic at the EC(50%) level. Overall, these results show that the addition of 20% of gypsum waste to the ceramic blocks could provide a viable substitute for clay in the ceramics industry and the tests applied in this study proved to be a useful tool for the technical and environmental evaluation of this recycling process, bacterial and daphnid tests being more sensitive than algae and fish tests. Copyright © 2011 Elsevier Ltd. All rights reserved.
A study on super-sulfated cement using Dinh Vu phosphogypsum
NASA Astrophysics Data System (ADS)
Lam, Nguyen Ngoc
2018-04-01
Super-sulfated cement (SSC) is a newly developed unburnt cementitious material. It is a kind of environmental-friendly cementitious material due to its energy-saving, carbon emission reducing, and waste-utilization. It mainly composes of phosphogysum (PG) and ground granulated blast furnace slag (GFS), with a small amount of cement. In Vietnam, the Diammonium Phosphate DAP – Dinh Vu fertilizer plant in Dinh Vu industrial zone in the northern port city of Hai Phong – has discharged millions of tons of solid waste containing gypsum after 9 years of operation. The waste has changed the color of the water, eroded metal and destroyed fauna and floral systems in the surrounding area. Notably, according to the environmental impact assessment, the gypsum landfill area is supposed to be 13 hectares and the storage time reaches up to five years. This paper presents the experimental results on SSC using a high amount of Dinh Vu phosphogypsum and GFS in comparison with those of ordinary Portland cement (PC). The results show that the setting time of SSC is much longer than that of Portland cement but the compressive strength of SSC can be obtained 45-50 MPa at the age of 28 days, similar to that of the control sample using 100% PC40, and 69MPa at the age of 90 days. This value even exceeds the compressive strength of the PC40 cement.
Microstructural and Microanalytical Study on Concrete Exposed to the Sulfate Environment
NASA Astrophysics Data System (ADS)
Qing, Fang; Beixing, Li; Jiangang, Yin; Xiaolu, Yuan
2017-11-01
Microstructural properties have been examined to investigate the effect of mineral admixtures on the sulfate resistance of concrete. Concrete and cement paste specimens made with ordinary Portland cement (OPC) or ordinary Portland cement incorporating 20% fly ash (FA) or 30% ground blast furnace slag (GBFS), were made and exposed to 250 cycles of the cyclic sulfate environment. Microstructural and Microanalytical study was conducted by means of x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Results indicate that the pore structure of concrete after sulfate exposure possesses the fractal feature. The OPC concrete presents more complex pore internal surface, higher porosity and less micro-pores than the concrete incorporating fly ash and GBFS. Portlandite in OPC concrete and OPC-FA concrete is mainly converted to gypsum; while for OPC-GBFS concrete, both gypsum and ettringite are formed. In the cyclic sulfate environment, repeated hydration and dehydration of sulfates produce the expansive stress in pores, aggravating the demolishment of concrete structure.
Biodeterioration of the Cement Composites
NASA Astrophysics Data System (ADS)
Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana
2016-10-01
The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising
In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.
Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (αmore » ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.« less
NASA Astrophysics Data System (ADS)
Bhamidipati, Raghava A.
Gypsum rich soils are found in many parts of the world, particularly in arid and semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that precipitate out of water due to a high rate of evaporation and a high mineral concentration. Gypsum rich soils make good foundation material under dry conditions but pose major engineering hazards when exposed to water. Gypsum acts as a weak cementing material and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the soils to undergo unpredictable collapse settlement leading to severe structural damages. The damages incur heavy financial losses every year. The objective of this research was to use geophysical methods such as free-free resonant column testing and electrical resistivity testing to characterize gypsum rich soils based on the shear wave velocity and electrical resistivity values. The geophysical testing methods could provide quick, non-intrusive and cost-effective methodologies to screen sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. Additionally geotechnical tests such as direct shear strength tests and consolidation tests were conducted to estimate the shear strength parameters (drained friction angle and cohesion) and the collapse potential of the soils. The effect of gypsum content on the geophysical and geotechnical parameters of soil was of particular interest. It was found that gypsum content had an influence on the shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and friction angle of the soil increased with increase in gypsum. The information derived from the geophysical and geotechnical tests was used to develop statistical design equations and correlations to estimate gypsum content and soil collapse potential.
40 CFR 98.460 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... foundry sand). (vii) Clay, gypsum, or pottery cull. (viii) Bricks, mortar, or cement. (ix) Furnace slag. (x) Materials used as refractory (e.g., alumina, silicon, fire clay, fire brick). (xi) Plastics (e.g...
40 CFR 98.460 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... foundry sand). (vii) Clay, gypsum, or pottery cull. (viii) Bricks, mortar, or cement. (ix) Furnace slag. (x) Materials used as refractory (e.g., alumina, silicon, fire clay, fire brick). (xi) Plastics (e.g...
40 CFR 98.460 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... foundry sand). (vii) Clay, gypsum, or pottery cull. (viii) Bricks, mortar, or cement. (ix) Furnace slag. (x) Materials used as refractory (e.g., alumina, silicon, fire clay, fire brick). (xi) Plastics (e.g...
NASA Astrophysics Data System (ADS)
Petrash, Daniel A.; Gingras, Murray K.; Lalonde, Stefan V.; Orange, François; Pecoits, Ernesto; Konhauser, Kurt O.
2012-03-01
Meter-sized thrombolites coated by well developed zonally differentiated microbial mats have been found growing in the shallow waters (depth < 1 m) of a restricted hypersaline lagoon on the Archipelago Los Roques in Venezuela. By contrast, within the deeper parts of the studied lagoon, sedimentation is characterized by several decimeters of organic-rich material containing gypsum granules lacking carbonate cementation. The lithification of the thrombolites is thought to have proceeded as follows. First, extracellular polymeric substances (EPS) comprising the microbial mat concentrate Ca2 + and other metal cations by adsorption from the hypersaline waters. Second, some of these bound metals then serve as nucleation sites for primary calcium carbonate (CaCO3) precipitation. Third, while carbonate phases are forming in some zones of the mat, in others zones they are being re-dissolved due to the acidity generated through the metabolism of sulfide-oxidizing bacteria, Fourth, as the dissolved sulfide is oxidized into sulfate, the pore-water become saturated with respect to gypsum (CaSO4·2H2O). Fifth, as primary gypsum precipitates within the structures, endolithic sulfate-reducing bacteria metabolize the sulfate moiety in the mineral phase, while simultaneously oxidizing the EPS trapped during accretion. Sixth, as microbial EPS degradation proceeds, the anaerobic oxidation of specific protein fractions of the EPS matrix leads to increased alkalinity, the partial dissolution of gypsum, supersaturation with respect to calcium carbonate, and ultimately pseudomorphic aragonite replacement; this differs from secondary calcite cements in being enriched in 12C, and depleted in minor and trace metals initially associated with the EPS. The biogeochemical processes occurring in this thrombolite-constructing lagoon represent a novel field site for studying the chemical and isotopic processes characterizing early diagenetic gypsum and the role microbes play in its precipitation, dissolution and calcification. In this regard, insights gained from this modern field site will help to better understand mechanisms by which some Precambrian microbialites were lithified.
Influence of ferrite phase in alite-calcium sulfoaluminate cements
NASA Astrophysics Data System (ADS)
Duvallet, Tristana Yvonne Francoise
Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition. The mechanical data were equivalent to OPC strengths for some compositions with 25% ferrite. This preliminary work constitutes the first research phase of this novel cement and requires additional research for its improvement. Topics for additional research are identified in this dissertation. KEYWORDS: alite, calcium sulfoaluminate, ferrite, low-energy cement, triisopropanolamine.
The cement solidification systems at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veazey, G.W.
1990-01-01
There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cementmore » type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.« less
NASA Astrophysics Data System (ADS)
Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Turk, K.; Kubo, M.
2007-12-01
Gypsum (CaSO4·H2O) is an important phase in biogeochemistry and sedimentology as a mineral sink for sulfur, a paleoclimatic indicator, and an endolithic niche for phototrophic and chemotrophic bacteria. Sulfate deposits are also important targets of exploration for evidence of habitable environments and life on Mars. Gypsum deposits from a range of sedimentary environments at the Guerrero Negro crystallizer ponds and sabkha settings were investigated for microscale structure and composition to differentiate fabrics formed under microbial influence from those formed under abiogenic conditions. Sub-sedimentary gypsum forms in sabkha environments as mm to cm scale selenite discs (termed bird beak gypsum; Warren, 2006) and selenite disc aggregates. Selenite discs and other sub-sedimentary gypsum are characterized by a sinuous axial microtexture and poikilitically enclosed detrital particles. Sub-aqueous gypsum forms as cements, granules (termed gypsooids), and massive botryoidal crusts that line the sediment water interface and margins of managed crystallizer ponds and natural anchialine pools. Sub-aqueous gypsum exhibits a wide range of textures and mineral/biofilm associations that include amorphous to euhedral, tabular, needle and lensoidal morphologies. Elemental sulfur forms rinds on prismatic, growth aligned gypsum twins and reticulate magnesian carbonate is interspersed with both twinned crystals and rosette aggregates in stratified sub-aqueous environments. Intracrystalline biofilms and cell material was observed in association with nearly all sub-aqueous morphologies but only scarce evidence has been found for intercrystalline microbial communities. Columnar microbial communities living in anchialine pools were found to host precipitation of mm scale gypsum granules in their EPS matrix. Fine scale gypsum textures are unlikely to persist through diagenetic alteration, but understanding their primary associations with sulfur and carbonates is necessary for interpreting sulfates or their replacement phases in the ancient record.
Impact of welan gum on tricalcium aluminate-gypsum hydration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Lei, E-mail: malei198713@163.com; Zhao Qinglin, E-mail: zhaoqinglin@whut.edu.cn; Yao Chukang
The retarding effect of welan gum on tricalcium aluminate-gypsum hydration, as a partial system of ordinary Portland cement (OPC) hydration, was investigated with several methods. The tricalcium aluminate-gypsum hydration behavior in the presence or absence of welan gum was researched by field emission gun scanning electron microscopy, X-ray diffraction and zeta potential analysis. Meanwhile, we studied the surface electrochemical properties and adsorption characteristics of welan gum by utilizing a zeta potential analyzer and UV-VIS absorption spectrophotometer. By adding welan gum, the morphology change of ettringite and retardation of hydration stages in tricalcium aluminate-gypsum system was observed. Moreover, we detected themore » adsorption behavior and zeta potential inversion of tricalcium aluminate and ettringite, as well as a rapid decrease in the zeta potential of tricalcium aluminate-gypsum system. The reduction on nucleation rate of ettringite and hydration activity of C{sub 3}A was also demonstrated. Thus, through the adsorption effect, welan gum induces a retarding behavior in tricalcium aluminate-gypsum hydration. Highlights: Black-Right-Pointing-Pointer Adsorption characteristics of welan gum on C{sub 3}A and ettringite have been studied. Black-Right-Pointing-Pointer C{sub 3}A-gypsum hydration behavior and the hydration products are examined in L/S = 3. Black-Right-Pointing-Pointer Welan gum retards the process of C{sub 3}A-gypsum hydration. Black-Right-Pointing-Pointer The addition of welan gum changes the nucleation growth of ettringite.« less
NASA Astrophysics Data System (ADS)
Zentmyer, R. A.; Pufahl, P. K.; James, N. P.; Hiatt, E. E.
2011-06-01
The Denault Formation (2.1-1.9 Ga) crops out in the Labrador Trough, northeastern Québec and western Labrador. Rocks surrounding the town of Schefferville, Quebec contain textural characteristics consistent with deposition on the middle and outer portions of a storm-influenced shallow ramp. Mid-ramp facies consist of intraclastic grainstones with hummocky cross-stratification (HCS), swaley cross-stratification (SCS), current ripples, and graded event beds. Further outboard, grainstones grade into deeper-water laminites that are composed of even, mm-scale couplets of flat-lying organic and dolomudstone laminae. Scours within the laminites suggest periodic storm activity. Laminites gradually grade into outer ramp deep-water shales. An isolated eastern stromatolitic buildup is separated from these ramp facies by 50 km (present day). This succession can be interpreted as the remnant of a near-continuous margin or may simply represent an isolated accumulation that developed on a pre-existing topographic high. The presence of gypsum pseudomorphs in all lithofacies indicates that the Denault margin was restricted and evaporitic. Four paragenetic stages are recognized in the diagenetic evolution of the Denault Formation: (1) carbonate deposition, contemporaneous marine cementation, authigenic gypsum growth, and precipitation of authigenic chert; (2) synsedimentary mimetic dolomite precipitation; (3) pore-rimming and pore-occluding shallow burial dolomite cement; and (4) fabric destructive, sutured, anhedral burial dolomite. Gypsum crystals occur in all lithofacies, form the nuclei of interstitial dolomite rhombs, average 10 μm in length, and often display swallowtail twinning. Paleoproterozoic ocean water had very low concentrations of dissolved sulfate and evaporation in restricted settings would have been required to form gypsum. Formation of microcrystalline gypsum across this restricted ramp facilitated dolomite precipitation by increasing pore water Mg/Ca ratios and lowering its dissolved sulfate concentrations. Such an interpretation may explain why there is an abundance of synsedimentary dolostone in the Precambrian and the relative paucity of Phanerozoic analogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Shiyun, E-mail: tjzhongshiyun@163.com; Ni Kun; Li Jinmei
2012-07-15
Highlights: Black-Right-Pointing-Pointer The mortar with uncalcined FGD gypsum has suitable workability. Black-Right-Pointing-Pointer The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratiomore » (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO{sub 4}{sup 2-} from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO{sub 4}{sup 2-} releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO{sub 4}{sup 2-} from the mortar with 20% FGD gypsum is 9200 mg{center_dot}m{sup -2}, which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.« less
NASA Astrophysics Data System (ADS)
Singh, Vishwanath P.; Badiger, N. M.; El-Khayatt, A. M.
2014-06-01
We have computed γ-ray exposure buildup factors (EBF) of some building materials; glass, marble, flyash, cement, limestone, brick, plaster of paris (POP) and gypsum for energy 0.015-15 MeV up to 40 mfp (mfp, mean free path) penetration depth. Also, the macroscopic effective removal cross-sections (ΣR) for fast neutron were calculated. We discussed the dependency of EBF values on photon energy, penetration depth and chemical elements. The half-value layer and kinetic energy per unit mass relative to air of building materials were calculated for assessment of shielding effectiveness. Shielding thicknesses for glass, marble, flyash, cement, limestone and gypsum plaster (or Plaster of Paris, POP) were found comparable with ordinary concrete. Among the studied materials limestone and POP showed superior shielding properties for γ-ray and neutron, respectively. Radiation safety inside houses, schools and primary health centers for sheltering and annual dose can be assessed by the determination of shielding parameters of common building materials.
The influence of sugarcane bagasse ash as fly ash on cement quality
NASA Astrophysics Data System (ADS)
Rauf, N.; Damayanti, M. C.; Pratama, S. W. I.
2017-01-01
Fly ash often is used as the third material for cement. The fly ash from sugarcane bagasse is usually considered as industrial waste material that can be added to the base material of cement (clinker, trash, gypsum and lime stone) for economic and environment reason. The amount of fly ash usually up to 30 % of cement material, but in this research the percentage of sugarcane bagasse ash (SBA) is added to cement material is up to 15% total weight. Then the x-rays fluorescence (XRF) was used to determine its chemical composition of raw material and cement samples. The physical properties of cement such as fineness, setting time, expansion, and compressive strength were measured using Automatic Blaine, Vicat, Autoclave, respectively. The result show that the percentage of sugarcane bagasse ash influences the quality of cement and concrete, and this is confirmed with Indonesia National Standard (SNI). It is showed that the sugarcane bagasse ash could be use as material to improve the quality of cement and will solve the environment waste material
NASA Astrophysics Data System (ADS)
Roesyanto; Iskandar, R.; Hastuty, IP; Lubis, AIU
2018-02-01
Soil stabilization is an effort to improve engineering properties of soil. The conventional soil stabilization is by adding additives to the soil such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and volcanic ash. The research purposes were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% volcanic ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT values of original soil and original soil plus 2% gypsum were 1.40 kg/cm2 and 1.66 kg/cm2 respectively. The CBR soaked and unsoaked values of original soil were 4.44% and 6.28% correspondingly. Meanwhile, CBR soaked and CBR unsoaked values of original soil plus 2% gypsum were 6.74% and 8.02% respectively. The research results showed that the additives materials of gypsum and volcanic ash improved the engineering properties of clay. The UCT result from the stabilized soil by 2% gypsum and 10% volcanic ash gave value of 2.79 kg/cm2 (increased 99.28% from original soil). For CBR test, the most effective mixture were in variation of 2% gypsum and 9% volcanic ash which gave value of 9.07% (104.27% increase from original soil) for CBR soaked and 10.29% (63.85% increase from original soil) for CBR unsoaked. The stabilized soil with 2% gypsum and 9% volcanic ash was classified as CL based on USCS and was classified as A-6 (4) based on AASHTO classification system.
NASA Technical Reports Server (NTRS)
Donovan, T. J.; Termain, P. A.; Henry, M. E. (Principal Investigator)
1979-01-01
The author has identified the following significant results. The Cement oil field, Oklahoma, was a test site for an experiment designed to evaluate LANDSAT's capability to detect an alteration zone in surface rocks caused by hydrocarbon microseepage. Loss of iron and impregnation of sandstone by carbonate cements and replacement of gypsum by calcite were the major alteration phenomena at Cement. The bedrock alterations were partially masked by unaltered overlying beds, thick soils, and dense natural and cultivated vegetation. Interpreters, biased by detailed ground truth, were able to map the alteration zone subjectively using a magnified, filtered, and sinusoidally stretched LANDSAT composite image; other interpreters, unbiased by ground truth data, could not duplicate that interpretation.
Salt Attack on Rocks and Expansion of Soils on Mars
NASA Astrophysics Data System (ADS)
Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.
2004-12-01
Salt-rich sediments observed by the MER rover Opportunity at Meridiani Planum show that brines have been present on Mars in the past, but a role for groundwater in widespread rock weathering and soil formation is uncertain. Experiments by several groups suggest instead the action of acid fog over long time spans, with episodic input of volcanic gases, as a more significant agent of Mars weathering. Salt minerals formed in these acid weathering experiments consistently include gypsum and alunogen, with epsomite or hexahydrite forming where olivine provides a source of Mg. Analogous to the martian acid fog scenario are terrestrial acid rain or acid fog attacks on building and monument stone by chemical action and mechanical wedging through growth of gypsum, anhydrite, epsomite, hexahydrite, kieserite, and other sulfate minerals. Physical effects can be aggressive, operating by both primary salt growth and hydration of anhydrous or less-hydrous primary salts. In contrast, soils evolve to states where chemical attack is lessened and salt mineral growth leads to expansion with cementation; in this situation the process becomes constructive rather than destructive. We have made synthetic salt-cemented soils (duricrusts) from clays, zeolites, palagonites and other media mixed with ultrapure Mg-sulfate solutions. Although near-neutral in pH, these solutions still exchange or leach Ca from the solids to form cements containing gypsum as well as hexahydrite. At low total P (1 torr) and low RH (<1%) hexahydrite becomes amorphous but gypsum does not. If allowed to rehydrate from vapor at higher RH, the Mg-sulfate component of the duricrust expands by formation of a complex mixture of Mg-sulfate phases with various hydration states. The expanded form is retained even if the duricrust is again dehydrated, suggesting that soil porosity thus formed is difficult to destroy. These processes can be considered in the context of Viking, Pathfinder, and MER evidence for differing salt components in the weathered surfaces of rocks versus duricrust-like materials in soils. The divergent chemical trends indicate that soil formation on Mars is not merely a result of enhanced weathering of locally comminuted rock but requires an eolian component. The resulting soils thus appear to be a three-component mixture of local detritus, a regional or global eolian component, and acid fog additions. In the absence of rainfall or groundwater action, expanded and salt-cemented soil horizons are likely to persist as a regolith component in soil-atmosphere interactions over long time spans.
Mercury enrichment and its effects on atmospheric emissions in cement plants of China
NASA Astrophysics Data System (ADS)
Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming
2014-08-01
The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.
Evaluation of calcium-bearing material for treatment of CO2 leakage-induced pollution
NASA Astrophysics Data System (ADS)
Park, J.; Park, M.; Jeong, H. Y.
2017-12-01
Several Ca2+-bearing materials were evaluated for their capability to treat CO2 leakage-induced pollution for the application of permeable reactive barriers (PRBs). In this regard, a series of batch experiments were carried out with Portland cement, quick lime (CaO), and gypsum (CaSO4). Each of these materials was added to 50 mL of CO2-saturated solutions ( 7.5-8.5 mM) in serum vials sealed with Teflon-coated grey butyl stopper. Subsequently, the resultant batches were agitated at room temperature for 24 h. At predetermined intervals, each vial was sacrificed to monitor changes in pH, EC, and dissolved CO2 concentration. Despite the pH-neutralizing capacity, 0.15 g of Portland cement did not lower any dissolved CO2. When amended with 0.05 g of Ca(OH)2 or Mg(OH)2, the cement at this loading could sequester dissolved CO2, with the former being more effective. Even without such amendments, the cement at or greater than 0.2 g was shown to completely sequester dissolved CO2. In case of quick lime, its loading as low as 0.05 g instantaneously removed all dissolved CO2, which was also noted for Portland cement at 0.5 g. For gypsum, its loading at 0.12 g was not effective for immobilizing dissolved CO2. By both X-ray diffraction (XRD) and thermogravimetry (TG) analyses, the CO2 sequestration by Ca2+-bearing materials was found to be mainly due to the formation of calcite (CaCO3). Funding source: The "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).
Wongkornchaowalit, Norachai; Lertchirakarn, Veera
2011-03-01
Important limitations of mineral trioxide aggregate for use in clinical procedures are extended setting time and difficult handling characteristics. The removal of gypsum at the end stage of the Portland cement manufacturing process and polycarboxylate superplasticizer admixture may solve these limitations. Different concentrations of polycarboxylate superplasticizer (0%, 1.2%, 1.8%, and 2.4% by volume) and liquid-to-powder ratios (0.27, 0.30, and 0.33 by weight) were mixed with white Portland cement without gypsum (AWPC-experimental material). Type 1 ordinary white Portland cement mixed with distilled water at the same ratios as the experimental material was used as controls. All samples were tested for setting time and flowability according to the International Organization for Standardization 6876:2001 guideline. The data were analyzed by two-way analysis of variance. Then, one-way analysis of variance and multiple comparison tests were used to analyze the significance among groups. The data are presented in mean ± standard deviation values. In all experimental groups, the setting times were in the range of 4.2 ± 0.4 to 11.3 ± 0.2 minutes, which were significantly (p < 0.05) lower than the control groups (26.0 ± 2.4 to 54.8 ± 2.5 minutes). The mean flows of AWPC plus 1.8% and 2.4% polycarboxylate superplasticizer groups were significantly increased (p < 0.001) at all liquid-to-powder ratios compared with control groups. Polycarboxylate superplasticizer at concentrations of 1.8% and 2.4% and the experimental liquid-to-powder ratios reduced setting time and increased flowability of cement, which would be beneficial for clinical use. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
East Europe Report, Economic and Industrial Affairs, Long-Term Program for Production Quality
1984-05-29
increase the production of confectionery goods and snacks with a lower sugar content but enriched with natural juice and vegetable fillers, vegetable and...variety of con- struction materials and items by organizing the production of gasconcrete, extruded asbestos cement walls, gypsum board, heat, water
Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fei; Yu, Zhenglei; Yang, Fengling
Belite-calcium sulfoaluminate (BCSA) cement is a promising low-CO{sub 2} alternative to ordinary Portland cement. Herein, aluminum hydroxide (AH{sub 3}), the main amorphous hydration product of BCSA cement, was investigated in detail. The microstructure of AH{sub 3} with various quantities of gypsum was investigated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The AH{sub 3} with various morphologies were observed and confirmed in the resulting pastes. Particular attention was paid to the fact that AH{sub 3} always contained a small amount of Ca according to the results of EDS analysis. The AH{sub 3} was then characterized via highmore » resolution transmission electron microscopy (HRTEM). The results of HRTEM indicated that Ca arose from nanosized tricalcium aluminate hexahydrate which existed in the AH{sub 3}.« less
The behavior of biogenic silica-rich rocks and volcanic tuffs as pozzolanic additives in cement
NASA Astrophysics Data System (ADS)
Fragoulis, Dimitris; Stamatakis, Michael; Anastasatou, Marianthi
2015-04-01
Cements currently produced, include a variety of pozzolanic materials, aiming for lower clinker addition and utilization of vast deposits of certain raw materials and/or mining wastes and byproducts. The major naturally occurring pozzolanic materials include glassy tuffs, zeolitic tuffs, diatomites and volcanic lavas rich in glassy phase, such as perlites. Therefore, based on the available raw materials in different locations, the cement composition might vary according to the accessibility of efficient pozzolanic materials. In the present investigation, the behavior of pozzolanic cements produced with representative samples of the aforementioned materials was studied, following the characterization of the implemented pozzolanas with respect to their chemical and mineralogical characteristics. Laboratory cements were produced by co-grinding 75% clinker, 5% gypsum and 20% pozzolana, for the same period of time (45 min). Regarding pozzolanic materials, four different types of pozzolanas were utilized namely, diatomite, perlite, zeolite tuff and glassy tuff. More specifically, two diatomite samples originated from Australia and Greece, with high and low reactive silica content respectively, two perlite samples originated from Turkey and from Milos Island, Greece, with different reactive silica contents, a zeolite tuff sample originated from Turkey and a glassy tuff sample originated from Milos Island, Greece. The above pozzolana samples, which were ground in the laboratory ball mill for cement production performed differently during grinding and that was reflected upon the specific surface area (cm2/gr) values. The perlites and the glassy tuff were the hardest to grind, whereas, the zeolite tuff and the Australian diatomite were the easiest ones. However, the exceedingly high specific surface area of the Australian diatomite renders cement difficult to transport and tricky to use for concrete manufacturing, due to the high water demand of the cement mixture. Regarding late compressive strength, the worst performing cement was the one with the lowest reactive silica content with biogenic opal-A as the only reactive pozzolana constituent. Cements produced with perlites, raw materials consisting mainly of a glassy phase, were characterized by higher strength and a rather ordinary specific surface area. Cements produced with Turkish zeolite tuff and Milos glassy tuff exhibited higher late compressive strength than those mentioned above. The highest strength was achieved by the implementation of Australian diatomite for cement production. Its 28 day strength exceeded that of the control mixture consisting of 95% clinker and 5% gypsum. That could be attributed to both, high specific surface of cement and reactive SiO2 of diatomite. Therefore, a preliminary assessment regarding late strength of pozzolanic cements could be obtained by the consideration of two main parameters, namely: specific surface area of cement and reactive silica content of pozzolana.
Diagenetic gypsum related to sulfur deposits in evaporites (Libros Gypsum, Miocene, NE Spain)
NASA Astrophysics Data System (ADS)
Ortí, Federico; Rosell, Laura; Anadón, Pere
2010-07-01
The Libros Gypsum is the thickest evaporite unit of the Miocene infill of the Teruel Basin in NE Spain. During the deposition of this unit, intense bacterial sulfate-reducing (BSR) activity in the lake depocenter generated a native sulfur deposit. Diagenetic gypsum resulted from subsequent sulfur oxidation. The different processes involved in these transformations were first investigated by Anadón et al. (1992). The present paper is concerned with this diagenetic gypsum from the stratigraphic, petrographic, isotopic and genetic points of view. Diagenetic gypsum occurs mainly as continuous or discontinuous layers, individual levels or lenses, irregular masses, nodules and micronodules, and veins. Its main textures are coarse-crystalline anhedral and fine-grained (alabastrine), both of which can replace any former lithology (carbonate, gypsum, and sulfur). The following sequence of processes and mineral/textural transformations is deduced: primary gypsum deposition — BSR and biodiagenetic carbonate/H 2S production — growth of native sulfur — growth of diagenetic gypsum — partial recrystallization of the diagenetic gypsum textures. The gypsification of the native sulfur generated two types of banded structures in the diagenetic gypsum: (1) concentric structures of centripetal growth, and (2) expansive, roughly concentric structures. In the first type, the gypsification operated from the outer boundaries towards the inner parts. In the second type, part of the carbonate hosting the sulfur was also gypsified (replaced/cemented). In the diagenetic gypsum, the δ34S values are in agreement with a native sulfur and H 2S provenance. The δ18O sulfate values, however, enable us to differentiate two main groups of values: one with positive values and the other with negative values. In the group of positive values, interstitial (evaporated) solutions participated in the sulfur oxidation; this process presumably occurred in a first oxidation stage during shallow-to-deeper burial of the Libros Gypsum unit. In the group of negative values, however, only meteoric waters participated in the oxidation, which presumably occurred in a second oxidation stage during the final exhumation of the unit. A third group of values is characterized by very high sulfur and oxygen values, suggesting that BSR residual solutions also participated in the oxidation processes locally. During the two oxidation stages, both the textural characteristics and the isotopic composition of the diagenetic gypsum indicate that gypsification operated as a multistadic process.
NASA Astrophysics Data System (ADS)
Henares, S.; Bloemsma, M. R.; Donselaar, M. E.; Mijnlieff, H. F.; Redjosentono, A. E.; Veldkamp, H. G.; Weltje, G. J.
2014-12-01
The Rotliegend (Upper Permian) reservoir interval in the Southern Permian Basin (SPB) contains low-permeability streaks corresponding to anhydrite-cemented intervals. An integrated study was conducted using core, cuttings, thin sections and well-log data from a gas exploration well and two geothermal wells that target the zone of interest. This study aims at understanding the origin and nature of these low-permeability streaks, as well as their impact on reservoir properties, and to establish a predictive model of their spatial distribution. High-resolution XRF core-scanning analysis allowed to extrapolate spot observations in thin sections to the entire core. Diagenetic history includes grain rearrangement and anhydrite, haematitic clay coatings, dolomite rims, quartz overgrowths, kaolinite and second-generation carbonates as cementing phases. Coupling of all data reveals the detrital origin of the anhydrite/gypsum grains which were deposited together with the coarse-grained sand fraction in an aeolian sandflat environment. Such partially or completely dissolved grains acted as local sources of anhydrite cement and as nuclei for precipitation, explaining its preferential occurrence in coarse-grained laminae. Thick gypscretes in the vicinity likely supplied the anhydrite/gypsum grains. A conceptual model is proposed, including the location of nearby gypscretes and the prevailing west-southwest aeolian transport direction on the southern rim of the SPB.
Li, Yuan-Cheng; Min, Xiao-Bo; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liyang, Wen-Jun
2016-10-01
Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste
This work investigates the influence of lithium ions on the hydration at 25 °C of two calcium sulfoaluminate (CSA) cements comprising 0 or 10% gypsum. Small concentrations of lithium salts (LiOH, LiNO{sub 3}) accelerate the early hydration of both CSA cements either in paste or in diluted and stirred suspension. The effect of the lithium cation is much stronger than its counter-ion. Hydration is accelerated by an increase in the lithium concentration up to 30 μmol Li/g of the used CSA cement (with a high ye'elimite content), and then levels off. The postulated mechanism relies on a fast precipitation ofmore » amorphous Li-containing Al(OH){sub 3}, which acts as seeds for accelerating the precipitation of amorphous Al(OH){sub 3} that speeds up the whole hydration process. This process seems to be closely related to the one involved in the acceleration of the hydration of calcium aluminate cement by lithium ions.« less
Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing
2018-03-01
Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.
Investigation on the potential of waste cooking oil as a grinding aid in Portland cement.
Li, Haoxin; Zhao, Jianfeng; Huang, Yuyan; Jiang, Zhengwu; Yang, Xiaojie; Yang, Zhenghong; Chen, Qing
2016-12-15
Although there are several methods for managing waste cooking oil (WCO), a significant result has not been achieved in China. A new method is required for safe WCO management that minimizes the environmental threat. In this context, this work was developed in which cement clinker and gypsum were interground with various WCOs, and their properties, such as grindability, water-cement ratio required to achieve a normal consistency, setting times, compressive strength, contents of calcium hydroxide and ettringite in the hardened paste, microstructure and economic and environmental considerations, were addressed in detail. The results show that, overall, WCO favorably improves cement grinding. WCO prolonged the cement setting times and resulted in longer setting times. Additionally, more remarkable effects were found in cements in which WCO contained more unsaturated fatty acid. WCOs increased the cement strength. However, this enhancement was rated with respect to the WCO contents and components. WCOs decreased the CH and AFt contents in the cement hardened paste. Even the AFt content at later ages was reduced when WCO was used. WCO also densify microstructure of the hardened cement paste. It is economically and environmentally feasible to use WCOs as grinding aids in the cement grinding process. These results contribute to the application of WCOs as grinding aids and to the safe management of WCO. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shaffer, K.R.
2006-01-01
In 2005, the Indiana industrial minerals industry generated $789 million, a record high for the state and an increase of 2.2% from 2004. Among all states, Indiana ranked 24th. Mineral commodities produced in the state included crushed limestone and dolomite, construction sand and gravel, industrial sand, dimension limestone, dimension sandstone, gypsum, common clay and shale, freshwater pearls, peat, lime, and masonry and portland cement.
,
2013-01-01
Trends in other sectors of the domestic economy were similar to those in mineral production and consumption rates (Table 1). After continued decline following the 2008-2009 recession, the construction industry began to show signs of improvement late in 2011 and throughout 2012, with increased production and consumption of cement, construction sand and gravel, crushed stone and gypsum, mineral commodities that are used almost exclusively in construction.
Kirgiz, Mehmet Serkan
2014-01-01
Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737
NASA Astrophysics Data System (ADS)
Bai, Y.; Collier, N. C.; Milestone, N. B.; Yang, C. H.
2011-06-01
The UK currently uses composite blends of Portland cement and other inorganic cementitious material such as blastfurnace slag and pulverised fuel ash to encapsulate or immobilise intermediate and low level radioactive wastes. Typically levels up 9:1 blast furnace slag:Portland cement or 4:1 pulverised fuel ash:Portland cement are used. Whilst these systems offer many advantages, their high pH causes corrosion of various metallic intermediate level radioactive wastes. To address this issue, lower pH/weakly alkaline cementitious systems have to be explored. While the blast furnace slag:Portland cement system is referred to as a composite cement system, the underlying reaction is actually an indirect activation of the slag hydration by the calcium hydroxide generated by the cement hydration, and by the alkali ions and gypsum present in the cement. However, the slag also can be activated directly with activators, creating a system known as alkali-activated slag. Whilst these activators used are usually strongly alkaline, weakly alkaline and near neutral salts can also be used. In this paper, the potential for using weakly alkaline and near neutral salts to activate slag in this manner is reviewed and discussed, with particular emphasis placed on the immobilisation of reactive metallic nuclear wastes.
NASA Astrophysics Data System (ADS)
Laurent, Gindre-Chanu; Edoardo, Perri; Ian, Sharp R.; Peacock, D. C. P.; Roger, Swart; Ragnar, Poulsen; Hercinda, Ferreira; Vladimir, Machado
2016-08-01
Ephemeral evaporitic conditions developed within the uppermost part of the transgressive Late Sag sequence in the Namibe Basin (SW Angola), leading to the formation of extensive centimetre- to metre-thick sulphate-bearing deposits and correlative microbialitic carbonates rich in pseudomorphs after evaporite crystals. The onshore pre-salt beds examined in this study are located up to 25 m underneath the major mid-Aptian evaporitic succession, which is typified at the outcrop by gypsiferous Bambata Formation and in the subsurface by the halite-dominated Loeme Formation. Carbonate-evaporite cycles mostly occur at the top of metre-thick regressive parasequences, which progressively onlap and overstep landward the former faulted (rift) topography, or fill major pre-salt palaeo-valleys. The sulphate beds are made up of alabastrine gypsum associated with embedded botryoidal nodules, dissolution-related gypsum breccia, and are cross-cut by thin satin-spar gypsum veins. Nodular and fine-grained fabrics are interpreted as being diagenetic gypsum deposits resulting from the dissolution and recrystallisation of former depositional subaqueous sulphates, whereas gypsum veins and breccia result from telogenetic processes. The carbonates display a broader diversity of facies, characterised by rapid lateral variations along strike. Thin dolomitic and calcitic bacterial-mediated filamentous microbialitic boundstones enclose a broad variety of evaporite pseudomorphs and can pass laterally over a few metres into sulphate beds. Dissolution-related depositional breccias are also common and indicate early dissolution of former evaporite layers embedded within the microbialites. Sulphate and carbonate units are interpreted as being concomitantly deposited along a tide-dominated coastal supra- to intertidal- sabkha and constitute high-frequency hypersaline precursor events, prior to the accumulation of the giant saline mid-Aptian Bambata and Loeme Formations. Petrographic and geochemical analyses reveal successive dissolution, recrystallisation and cementation phases that occurred during burial, uplift and exhumation, implying a complex diagenetic evolution of both gypsum and carbonates, influenced by pore fluids of diverse composition which distinctly varied from meso- to telogenetic domains.
On the relevance of volume increase for the length changes of mortar bars in sulfate solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunther, Wolfgang, E-mail: wkunther@googlemail.com; Lothenbach, Barbara; Scrivener, Karen L.
2013-04-01
The ingress of sulfate ions into cementitious materials leads to the formation of ettringite, gypsum and other phases. The increase in solid volume through the formation of these phases is often assumed to be the only reason for expansion. In this paper we systematically compare the volume increase predicted by thermodynamic modeling to macroscopic expansion for mortars made with CEM I in different sulfate solutions and for mortars made with a range of blended cements in sodium sulfate solution. It is shown that the length changes cannot be explained by simple volume increase alone. A more plausible explanation of expansionmore » lies in the theory of crystallization pressure, in which crystals forming from a supersaturated solution may exert pressure on their surroundings. It is observed that expansion occurs in systems where thermodynamic modeling predicts the co-existence of ettringite with gypsum. In such a case, if monosulfate and gypsum are both present locally, the solution can be highly supersaturated with respect to ettringite, whose formation in confined conditions (such as within C–S–H) can then exert expansive forces.« less
Clay stabilization by using gypsum and paddy husk ash with reference to UCT and CBR value
NASA Astrophysics Data System (ADS)
Roesyanto; Iskandar, R.; Hastuty, I. P.; Dianty, W. O.
2018-02-01
Clays that have low shear strength need to be stabilized in order to meet the technical requirements to serve as a subgrade material. One of the usual soil stabilization methods is by adding chemicals such as Portland cement, lime, and bitumen. The clay stabilization research was done by adding gypsum and paddy husk ash. The research goals were to find out the value of engineering properties of clay due to the addition of 2% gypsum and 2% - 15% paddy husk ash. The soil was classified as Clay - Low Plasticity (CL) based on USCS and was classified as A-7-6 (10) based on AASHTO classification system. The UCT value of original soil was 1.41 kg/cm2. While the CBR soaked and unsoaked values of original soil were 4.41% and 6.23% respectively. The research results showed the addition of paddy husk ash decreased the value of unconfined compressive strength as well as CBR. The stabilized soil by 2% gypsum and 0% paddy husk ash gave maximum UCT value of 1.67 kg/cm2, while the maximum value of CBR were found 6.71% for CBR soaked and 8.00% for CBR unsoaked. The addition of paddy husk ash did not alter the soil classification according to AASHTO or USCS, even degrade the engineering properties of original soil.
Materials characterization of dusts generated by the collapse of the World Trade Center
Meeker, Gregory P.; Sutley, Stephen J.; Brownfield, Isabelle; Lowers, Heather; Bern, Amy M.; Swayze, Gregg A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Clark, Roger N.; Gent, Carol A.
2009-01-01
The major inorganic components of the dusts generated from the collapse of the World Trade Center buildings on September 11, 2001 were concrete materials, gypsum, and man-made vitreous fibers. These components were likely derived from lightweight Portland cement concrete floors, gypsum wallboard, and spray-on fireproofing and ceiling tiles, respectively. All of the 36 samples collected by the USGS team had these materials as the three major inorganic components of the dust. Components found at minor and trace levels include chrysotile asbestos, lead, crystalline silica, and particles of iron and zinc oxides. Other heavy metals, such as lead, bismuth, copper, molybdenum, chromium, and nickel, were present at much lower levels occurring in a variety of chemical forms. Several of these materials have health implications based on their chemical composition, morphology, and bioaccessibility.
Donovan, Terrence J.; Termain, Patricia A.; Henry, Mitchell E.
1979-01-01
The Cement oil field, Oklahoma, was a test site for an experiment designed to evaluate LANDSAT's capability to detect an alteration zone in surface rocks caused by hydrocarbon microseepage. Loss of iron and impregnation of sandstone by carbonate cements and replacement of gypsum by calcite are the major alteration phenomena at Cement. The bedrock alterations are partially masked by unaltered overlying beds, thick soils, and dense natural and cultivated vegetation. Interpreters biased by detailed ground truth were able to map the alteration zone subjectively using a magnified, filtered, and sinusoidally stretched LANDSAT composite image; other interpreters, unbiased by ground truth data, could not duplicate that interpretation. Similar techniques were applied at a secondary test site (Garza oil field, Texas), where similar alterations in surface rocks occur. Enhanced LANDSAT images resolved the alteration zone to a biased interpreter and some individual altered outcrops could be mapped using higher resolution SKYLAB color and conventional black and white aerial photographs suggesting repeat experiments with LANDSAT C and D.
Developing Low-Clinker Ternary Blends for Indian Cement Industry
NASA Astrophysics Data System (ADS)
Pal, Aritra
2018-05-01
In today's scenario cement-concrete has become the backbone of infrastructure development. The use of concrete is increasing day by day and so does cement. One of the major concerns is that the cement manufacturing contributes 7% of total man-made CO2 emission in the environment. At the same time India being a developing country secured the second position in cement production. On the other hand solid waste management is one of the growing problems in India. As we are one of the major contributors in this situation so, the time has come to think about the sustainable alternatives. From various researches it has been observed that the low clinker cement can be suitable option. In the present paper we have tried to develop a low clinker ternary blend for Indian cement industry using the concept of synergetic behavior of fly ash-limestone reaction and formation of more stable monocarboaluminate hydrate and hemicarboaluminate hydrate. 30% fly ash and 15% limestone and 5% gypsum have been used as supplementary cementing material for replacing 50% clinker. The mechanical properties like, compressive strength, have been studied for the fly ash limestone ternary blends cements and the results have been compared with the other controlled blends and ternary blends. The effect of intergrinding of constituent materials has shown a comparable properties which can be used for various structural application. The effect of dolomitic limestone has also been studied in fly ash limestone ternary blends and the result shows the relation between compressive strength and dolomite content is inversely proportional.
Engineering and sustainability aspect of palm oil shell powder in cement
NASA Astrophysics Data System (ADS)
Karim, Mohammad Razaul; Hossain, Md. Moktar; Yusoff, Sumiani Binti
2017-06-01
Palm oil shell (POS) is a waste material which significantly produced in palm oil mills. In current practice, this waste is dumped in open land or landfill sites or is used as fuel to run a steam turbine of a boiler, which leads to environmental pollutions. The characterization, engineering and sustainability aspect of this waste for using in cement-based applications lead to reduce the emission of carbon dioxide and cost, save natural resources for cement production and also sustainable usage of waste material. The characterization was carried out using particle size analyzer, XRF, SEM and total organic carbon analyzer. ASTM standard methods were used to observe the setting time and water for normal consistency. The compressive strength of palm oil shell powder (POSP) blended cement was explored with the water to cement and cement to sand ratio of 0.40 and 0.50, respectively up to 40% replacement levels of OPC. Result found that the setting time and water demand were increased, but compressive strength was decreased to replacement levels. However, the incorporation of POSP in cement was reduced 9.6% of CO2 emission, 25 % of the cost and save natural resource, i.e. limestone, clay, iron ore, silica shale and gypsum of 35.1%, 4.95%, 0.9%, 4.05 % and 1.2 %, respectively at 30% replacement level of OPC. The results of this extensive study on POSP characterization, effect on basic cement properties and sustainability aspect provide the guidance for using the POSP at industrial scale for cement production.
Analyses of heavy metals in mineral trioxide aggregate and Portland cement.
Schembri, Matthew; Peplow, George; Camilleri, Josette
2010-07-01
Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use.
Camilleri, J; Montesin, F E; Di Silvio, L; Pitt Ford, T R
2005-11-01
To evaluate the biocompatibility of mineral trioxide aggregate and accelerated Portland cement and their eluants by assessing cell metabolic function and proliferation. The chemical constitution of grey and white Portland cement, grey and white mineral trioxide aggregate (MTA) and accelerated Portland cement produced by excluding gypsum from the manufacturing process (Aalborg White) was determined using both energy dispersive analysis with X-ray and X-ray diffraction analysis. Biocompatibility of the materials was assessed using a direct test method where cell proliferation was measured quantitatively using Alamar Blue dye and an indirect test method where cells were grown on material elutions and cell proliferation was assessed using methyltetrazolium assay as recommended by the International standard guidelines, ISO 10993-Part 5 for in vitro testing. The chemical constitution of all the materials tested was similar. Indirect studies of the eluants showed an increase in cell activity after 24 h compared with the control in culture medium (P<0.05). Direct cell contact with the cements resulted in a fall in cell viability for all time points studied (P<0.001). Biocompatibility testing of the cement eluants showed the presence of no toxic leachables from the grey or white MTA, and that the addition of bismuth oxide to the accelerated Portland cement did not interfere with biocompatibility. The new accelerated Portland cement showed similar results. Cell growth was poor when seeded in direct contact with the test cements. However, the elution made up of calcium hydroxide produced during the hydration reaction was shown to induce cell proliferation.
NASA Astrophysics Data System (ADS)
Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.
2018-01-01
Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.
NASA Astrophysics Data System (ADS)
Hafsi, Fouad; Kriker, Abdelouahed; Abani, Said
2017-02-01
Algerian Desert areas were characterized by very hot climate in summer and very cold in winter. The most widely used building material in these areas are concrete, mortar cement, which has a bad thermal insulation, causing a significant increase in cooling and heating costs; in order to avoid this problem it become a must to replace these materials with a good thermal isolation material and lower production cost. This work is part of the evaluation of local materials by improving their performance in the field of thermal insulation, which is considered a first step in the development of new local materials to be used in the construction field, the material used in this study is the gypsum reinforced with date palm fiber. In fact, Algeria has extraordinary resources in natural fibers (from Palm, Abaca, Hemp…) but without any large valorization in building materials. The aim of this work is then to characterization of those date palm fibers in new building materials approved for use in the construction of buildings in the desert areas. The date palm fibers were added to samples of the gypsum material in the form of cutting layers at different volume fraction, so as to determine the extent of their impact in the improvement of the thermal performance. The results were very satisfactory, reaching improvement rate of 16% for samples gypsum reinforced with single cut fiber form, and 32% of the samples reinforced with fiber in the form of layers.
Katsioti, M; Tsakiridis, P E; Leonardou-Agatzini, S; Oustadakis, P
2006-04-17
The aim of the present research work was to investigate the possibility of adding a jarosite-alunite chemical precipitate, a waste product of a new hydrometallurgical process developed to treat economically low-grade nickel oxides ores, in the raw meal for the production of sulfoaluminate cement clinker. For that reason, two samples of raw meals were prepared, one contained 20% gypsum, as a reference sample ((SAC)Ref) and another with 11.31% jarosite-alunite precipitate ((SAC)J/A). Both raw meals were sintered at 1300 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the jarosite-alunite precipitate did not affect the mineralogical characteristics of the so produced sulfoaluminate cement clinker and there was confirmed the formation of the sulfoaluminate phase (C4A3S), the most typical phase of this cement type. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of jarosite-alunite precipitate did not negatively affect the quality of the produced cement.
Phase evolution, characterisation, and performance of cement prepared in an oxy-fuel atmosphere.
Zheng, Liya; Hills, Thomas P; Fennell, Paul
2016-10-20
Cement manufacture is one of the major contributors (7-10%) to global anthropogenic CO 2 emissions. Carbon capture and storage (CCS) has been identified as a vital technology for decarbonising the sector. Oxy-fuel combustion, involving burning fuel in a mixture of recycled CO 2 and pure O 2 instead of air, makes CO 2 capture much easier. Since it combines a theoretically lower energy penalty with an increase in production, it is attractive as a CCS technology in cement plants. However, it is necessary to demonstrate that changes in the clinkering atmosphere do not reduce the quality of the clinker produced. Clinkers were successfully produced in an oxy-fuel atmosphere using only pure oxides as raw materials as well as a mixture of oxides and clay. Then, CEM I cements were prepared by the addition of 5 wt% gypsum to the clinkers. Quantitative XRD and XRF were used to obtain the phase and elemental compositions of the clinkers. The particle size distribution and compressive strength of the cements at 3, 7, 14, and 28 days' ages were tested, and the effect of the particle size distribution on the compressive strength was investigated. Additionally, the compressive strength of the cements produced in oxy-fuel atmospheres was compared with those of the cement produced in air and commercially available CEMEX CEM I. The results show that good-quality cement can be successfully produced in an oxy-fuel atmosphere and it has similar phase and chemical compositions to CEM I. Additionally, it has a comparable compressive strength to the cement produced in air and to commercially available CEMEX CEM I.
NASA Astrophysics Data System (ADS)
Carmona-Quiroga, Paula María; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, María Teresa; Martínez-Ramírez, Sagrario
2010-11-01
Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ("Protectosil Antigraffiti" marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur accumulation in hydrated cement mortar is provided by means of EDX. In case of a second anti-graffiti considered, Protectosil, no influence of the anti-graffiti treatment on the SO 2 uptake of any of the building materials was observed.
NASA Astrophysics Data System (ADS)
Yue, Yanfei; Bai, Yun; Basheer, P. A. Muhammed; Boland, John J.; Wang, Jing Jing
2013-04-01
Formation of ettringite and gypsum from sulfate attack together with carbonation and chloride ingress have been considered as the most serious deterioration mechanisms of concrete structures. Although Electrical Resistance Sensors and Fibre Optic Chemical Sensors could be used to monitoring the latter two mechanisms in situ, currently there is no system for monitoring the deterioration mechanisms of sulfate attack and hence still needs to be developed. In this paper, a preliminary study was carried out to investigate the feasibility of monitoring the sulfate attack with optical fibre Raman spectroscopy through characterizing the ettringite and gypsum formed in deteriorated cementitious materials under an `optical fibre excitation + spectroscopy objective collection' configuration. Bench-mounted Raman spectroscopy analysis was also used to validate the spectrum obtained from the fibre-objective configuration. The results showed that the expected Raman bands of ettringite and gypsum in the sulfate attacked cement paste have been clearly identified by the optical fibre Raman spectroscopy and are in good agreement with those identified from bench-mounted Raman spectroscopy. Therefore, based on these preliminary results, there is a good potential of developing an optical fibre Raman spectroscopy-based system for monitoring the deterioration mechanisms of concrete subjected to the sulfate attack in the future.
Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material
NASA Astrophysics Data System (ADS)
Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming
2016-10-01
Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.
The formation and potential importance of cemented layers in inactive sulfide mine tailings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blowes, D.W.; Reardon, E.J.; Cherry, J.A.
Investigations of inactive sulfide-rich tailings impoundments at the Heath Steele (New Brunswick) and Waite Amulet (Quebec) minesites have revealed two distinct types of cemented layers or hardpans. That at Heath Steele is 10-15 cm thick, occurs 20-30 cm below the depth of active oxidation, is continuous throughout the tailings impoundment, and is characterized by cementation of tailings by gypsum and Fe(II) solid phases, principally melanterite. Hardpan at the Waite Amulet site is only 1-5 cm thick, is laterally discontinuous (10-100 cm), occurs at the depth of active oxidation, and is characterized by cementation of tailings by Fe(III) minerals, principally goethite,more » lepidocrocite, ferrihydrite, and jarosite. At Heath Steele, an accumulation of gas-phase CO{sub 2}, of up to 60{percent} of the pore gas, occurs below the hardpan. The calculated diffusivity of the hardpan layer is only about 1/100 that of the overlying, uncemented tailings. The pore-water chemistry at Heath Steele has changed little over a 10-year period, suggesting that the cemented layer restricts the movement of dissolved metals through the tailings and also acts as a zone of metal accumulation. Generation of a cemented layer therefore has significant environmental and economic implications. It is likely that, in sulfide-rich tailings impoundments, the addition of carbonate-rich buffering material during the late stages of tailings deposition would enhance the formation of hardpan layers.« less
Atta-ur-Rehman; Qudoos, Abdul; Kim, Hong Gi
2018-01-01
In this study, the effects of titanium dioxide (TiO2) nanoparticles on the sulfate attack resistance of ordinary Portland cement (OPC) and slag-blended mortars were investigated. OPC and slag-blended mortars (OPC:Slag = 50:50) were made with water to binder ratio of 0.4 and a binder to sand ratio of 1:3. TiO2 was added as an admixture as 0%, 3%, 6%, 9% and 12% of the binder weight. Mortar specimens were exposed to an accelerated sulfate attack environment. Expansion, changes in mass and surface microhardness were measured. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetry Analysis (TGA) and Differential Scanning Calorimetry (DSC) tests were conducted. The formation of ettringite and gypsum crystals after the sulfate attack were detected. Both these products had caused crystallization pressure in the microstructure of mortars and deteriorated the mortars. Our results show that the addition of nano-TiO2 accelerated expansion, variation in mass, loss of surface microhardness and widened cracks in OPC and slag-blended mortars. Nano-TiO2 containing slag-blended mortars were more resistant to sulfate attack than nano-TiO2 containing OPC mortars. Because nano-TiO2 reduced the size of coarse pores, so it increased crystallization pressure due to the formation of ettringite and gypsum thus led to more damage under sulfate attack. PMID:29495616
NASA Astrophysics Data System (ADS)
Vaniman, David T.; Bish, D.; Guthrie, G.; Chipera, S.; Blake, David E.; Collins, S. Andy; Elliott, S. T.; Sarrazin, P.
1999-10-01
There is a large variety of mining and manufacturing operations where process monitoring and control can benefit from on-site analysis of both chemical and mineralogic constituents. CHEMIN is a CCD-based instrument capable of both X-ray fluorescence (XRF; chemical) and X-ray diffraction (XRD; mineralogic) analysis. Monitoring and control with an instrument like CHEMIN can be applied to feedstocks, intermediate materials, and final products to optimize production. Examples include control of cement feedstock, of ore for smelting, and of minerals that pose inhalation hazards in the workplace. The combined XRD/XRF capability of CHEMIN can be used wherever a desired commodity is associated with unwanted constituents that may be similar in chemistry or structure but not both (e.g., Ca in both gypsum and feldspar, where only the gypsum is desired to make wallboard). In the mining industry, CHEMIN can determine mineral abundances on the spot and enable more economical mining by providing the means to assay when is being mined, quickly and frequently, at minimal cost. In manufacturing, CHEMIN could be used to spot-check the chemical composition and crystalline makeup of a product at any stage of production. Analysis by CHEMIN can be used as feedback in manufacturing processes where rates of heating, process temperature, mixture of feedstocks, and other variables must be adjusted in real time to correct structure and/or chemistry of the product (e.g., prevention of periclase and alkali sulfate coproduction in cement manufacture).
Effects of the restoration mortar on chalk stone buildings
NASA Astrophysics Data System (ADS)
Ion, R. M.; Teodorescu, S.; Ştirbescu, R. M.; Dulamă, I. D.; Şuică-Bunghez, I. R.; Bucurică, I. A.; Fierăscu, R. C.; Fierscu, I.; Ion, M. L.
2016-06-01
The monument buildings as components of cultural heritage are exposed to degradation of surfaces and chemical and mechanical degradation, often associated to soiling and irreversible deterioration of the building. In many conservative and restorative works, a cement-based mortar was used without knowing all the adverse effects of this material on the building. This paper deals with the study of the effects of natural cement used in restorative works in the particular case of the Basarabi-Murfatlar Churches Ensemble. Cement-based materials exposed to sulfate present in the chalk stone - gypsum (CaSO4.2H2O), can induce signs of deterioration, due to ettringite ([Ca3Al (OH)612H2O]2(SO4)32H2O) or thaumasite (Ca3[Si(OH)612H2O](CO3)SO4) formation. These phases contribute to strain within the material, inducing expansion, strength loss, spalling and severe degradation. Several combined techniques (XRD, EDXRF, ICP-AES, SEM, EDS, sulphates content, FT-IR and Raman analysis were carried out to put into evidence the effects of them on the building walls.
Study of Zn-Pb ore tailings and their potential in cement technology
NASA Astrophysics Data System (ADS)
Nouairi, J.; Hajjaji, W.; Costa, C. S.; Senff, L.; Patinha, C.; Ferreira da Silva, E.; Labrincha, J. A.; Rocha, F.; Medhioub, M.
2018-03-01
This paper describes the synthesis of sulfobelite clinkers incorporating mining rejects. The targeted Zn-Pb tailing wastes generated in the diapiric zone (NW Tunisia) were tested in clinker/cement compositions to ensure the inertization of existing hazardous heavy metals. Mineralogical composition of the two selected samples revealed calcite, dolomite, quartz, kaolinite, galena, pyrite and gypsum as crystalline phases. Vertical distributions of dominant heavy metals (Pb, Zn and Cu) in soil profiles show enrichment in the surface layers and decrease towards the depth. In sintered clinkers powders, the presence of the targeted crystalline phases (trialuminate sulphate (C4A3Š), belite (C2S), and ferrite (C4AF)) are in the predicted desirable amounts. Heat flow generated during the hydration of different cement pastes showed a slower reaction for clinkers with higher amounts of C4A3Š or constituted by coarser particles. After 28 days curing, the best mechanical resistance (24.34 MPa under compression) was obtained for the clinker calcined at 1350 °C and showing a suitable particle size distribution. Concerning heavy metals, immobilisation of 75-85% of Pb, Zn and Cu was assessed in the mortars formulated with the produced clinker/cement, posing no hazardous risks to the environment.
Thermal highly porous insulation materials made of mineral raw materials
NASA Astrophysics Data System (ADS)
Mestnikov, A.
2015-01-01
The main objective of the study is to create insulating foam based on modified mineral binders with rapid hardening. The results of experimental studies of the composition and properties of insulating foam on the basis of rapidly hardening Portland cement (PC) and gypsum binder composite are presented in the article. The article proposes technological methods of production of insulating foamed concrete and its placement to the permanent shuttering wall enclosures in monolithic-frame construction and individual energy-efficient residential buildings, thus reducing foam shrinkage and improving crack-resistance.
Krukowski, S.T.
2006-01-01
In 2005, Oklahoma mines produced both industrial minerals and coal. No metals were mined in the state. Based on value, leading industrial minerals include crushed stone followed by cement, construction sand and gravel, industrial sand and gravel, iodine and gypsum. The Oklahoma Department of Mines (ODOM) reported that more than 343 mine operators produced nonfuel minerals from 405 mines in the state. However, 530 mining permitted sites were on file. The Oklahoma Miner Training Institute (OMTI) held 239 classes for 33,768 classroom hours of instruction, in which 84 coal miners and 4,587 metal/nonmetal miners were trained.
Testing of Binders Toxicological Effects
NASA Astrophysics Data System (ADS)
Strokova, V.; Nelyubova, V.; Rykunova, M.
2017-11-01
The article presents the results of a study of the toxicological effect of binders with different compositions on the vital activity of plant and animal test-objects. The analysis of the effect on plant cultures was made on the basis of the phytotesting data. The study of the effect of binders on objects of animal origin was carried out using the method of short-term testing. Based on the data obtained, binders are ranked according to the degree of increase in the toxic effect: Gypsum → Portland cement → Slag Portland cement. Regardless of the test-object type, the influence of binders is due to the release of various elements (calcium ions or heavy metals) into the solution. In case of plant cultures, the saturation of the solution with elements has a positive effect (there is no inhibitory effect), and in case of animal specimens - an increase in the toxic effect.
NASA Astrophysics Data System (ADS)
Shkolyar, S.; Farmer, J. D.
2015-12-01
Major priorities for Mars science include assessing the preservation potential and impact of diagenesis on biosignature preservation in aqueous sedimentary environments. We address these priorities with field and lab studies of playa evaporites of the Verde Formation (upper Pliocene) in Arizona. Evaporites studied include bottom-nucleated halite and displacive growth gypsum in magnesite-rich mudstone. These lithotypes are potential analogs for ancient lacustrine habitable environments on Mars. This study aimed to understand organic matter preservation potential under different diagenetic histories. Methods combined outcrop-scale field observations and lab analyses, including: (1) thin-section petrography to understand diagenetic processes and paragenesis; (2) X-ray powder diffraction to obtain bulk mineralogy; (3) Raman spectroscopy to identify and place phases (and kerogenous fossil remains) within a microtextural context; (4) Total Organic Carbon (TOC) analyses to estimate weight percentages of preserved organic carbon for each subfacies endmember; and (5) electron microprobe to create 2D kerogen maps semi-quantifying kerogen preservation in each subfacies. Results revealed complex diagenetic histories for each evaporite subfacies and pathways for organic matter preservation. Secondary gypsum grew displacively within primary playa lake mudstones during early diagenesis. Mudstones then experienced cementation by Mg-carbonates. Displacive-growth gypsum was sometimes dissolved, forming crystal molds. These molds were later either infilled by secondary sulfates or recrystallized to gypsum pseudomorphs with minor phases present (i.e., glauberite). These observations helped define taphonomic models for organic matter preservation in each subfacies. This work has the potential to inform in situ target identification, sampling strategies, and data interpretations for future Mars Sample Return missions (e.g., sample caching strategies for NASA's Mars 2020 mission).
Recent trends in the nonfuel minerals industry of Iran
Hastorun, Sinan; Renaud, Karine M.; Lederer, Graham W.
2016-07-11
The U.S. Geological Survey estimated that Iran held globally significant reserves of feldspar (2d largest in the world), barite (5th largest), gypsum (5th largest), fluorspar (8th largest), and iron ore (10th largest). The Government of Iran claimed to also have significant reserves of chromium, copper, gold, manganese, phosphate rock, and zinc. In 2014, Iran was the second-leading producer of gypsum and the sixth-leading producer of barite, with 6.1 percent and 3.6 percent of world output, respectively. Iran was also the world’s 7th-leading producer of cement, feldspar, and fluorspar; 8th-leading producer of bentonite; 9th-leading producer of molybdenum; 11th-leading producer of iron ore; and 14th-leading producer of crude steel. The Government of Iran plans to quadruple the output of aluminum, copper cathode, direct-reduced iron, and iron ore pellets; triple that of crude steel and gold; and double that of cement, pig iron, and zinc by 2025. It also plans to double the contribution of mining and to quadruple that of mineral processing to the national economy in the next decade. In order to achieve these major goals, the construction and expansion of several mines and mineral facilities are planned or under development. Whether Iran’s annual mineral production increases as rapidly as envisioned by the Government will depend largely on the amount of foreign investment into the minerals industry; integration of modern technology into mineral facilities; and availability of energy to aluminum, copper, and steel plants at competitive prices to international investors.
Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.
Cianconi, L; Palopoli, P; Campanella, V; Mancini, M
2016-12-01
The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.
El-Mekawy, A F; Badran, H M; Seddeek, M K; Sharshar, T; Elnimr, T
2015-09-01
Non-nuclear industries use raw materials containing significant levels of naturally occurring radioactive material (NORM). The processing of these materials may expose workers engaged in or even people living near such sites to technologically enhanced naturally occurring radioactive material (TENORM) above the natural background. Inductively coupled plasma and gamma ray spectrometry have been used to determine major and trace elements and radionuclide concentrations in various samples, respectively, in order to investigate the environmental impact of coal mining and cement plant in North Sinai, Egypt. Generally, very little attention was directed to the large volumes of waste generated by either type of industrial activities. Different samples were analyzed including various raw materials, coal, charcoal, Portland and white cement, sludge, and wastes. Coal mine and cement plant workers dealing with waste and kaolin, respectively, are subjected to a relatively high annual effective dose. One of the important finding is the enhancement of all measured elements and radionuclides in the sludge found in coal mine. It may pose an environmental threat because of its large volume and its use as combustion material. The mine environment may have constituted Al, Fe, Cr, and V pollution source for the local area. Higher concentration of Al, Fe, Mn, B, Co, Cr, Mn, Ni, Sr, V, and TENORM were found in Portland cement and Zn in white cement. Coal has higher concentrations of Al, Fe, B, Co, Cr, and V as well as (226)Ra and (232)Th. The compiled results from the present study and different worldwide investigations demonstrate the obvious unrealistic ranges normally used for (226)Ra and (232)Th activity concentrations in coal and provided ranges for coal, Portland and white cement, gypsum, and limestone.
Barbudo, Auxi; Galvín, Adela P; Agrela, Francisco; Ayuso, Jesús; Jiménez, Jose Ramón
2012-06-01
In some recycled aggregates applications, such as component of new concrete or roads, the total content of soluble sulphates should be measured and controlled. Restrictions are usually motivated by the resistance or stability of the new structure, and in most cases, structural concerns can be remedied by the use of techniques such as sulphur-resistant cements. However, environmental risk assessment from recycling and reuse construction products is often forgotten. The purpose of this study is to analyse the content of soluble sulphate on eleven recycled aggregates and six samples prepared in laboratory by the addition of different gypsum percentages. As points of reference, two natural aggregates were tested. An analysis of the content of the leachable amount of heavy metals regulated by European regulation was included. As a result, the correlation between solubility and leachability data allow suggest a limiting gypsum amount of 4.4% on recycled aggregates. This limit satisfies EU Landfill Directive criteria, which is currently used as reference by public Spanish Government for recycled aggregates in construction works. Copyright © 2012 Elsevier Ltd. All rights reserved.
Early-age hydration and volume change of calcium sulfoaluminate cement-based binders
NASA Astrophysics Data System (ADS)
Chaunsali, Piyush
Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement-based binders without taking into account the viscoelastic effects. For the first time, model based on poromechanics was used to calculate the macroscopic tensile stress that develops in CSA cement-based binders due to crystallization of ettringite. The models enabled a reasonable prediction of tensile stress due to crystallization of ettringite including the failure of an OPC-CSA binder which had high CSA cement content. Elastic strain based on crystallization stress was calculated and compared with the observed strain. A mismatch between observed and calculated elastic strain indicated the presence of early-age creep. Lastly, the application of CSA cement in concretes is discussed to link the paste and concrete behavior.
NASA Astrophysics Data System (ADS)
Molina Piernas, Eduardo; Rueda Quero, Lucia; Cultrone, Giuseppe; Ruiz Agudo, Encarnación
2015-04-01
The reaction between diammonium hydrogen phosphate (DAP) and calcite in the stone to form hydroxyapatite (HAP) had provided a new product to consolidate limestone or Ca-rich stones, for example sandstones with carbonatic cement. However, what does it happen with the stones without Ca-bearing compounds? Obviously, HAP cannot form. In the other hand, recent research about consolidation with DAP show a good interaction between carbonatic stones and HAP, improving their mechanical properties. For these reasons, we propose a new method for the consolidation of building stone capable of cleaning the gypsum crust and consolidating stones at the same time, based in the Ferroni-Dini method [1] and using DAP. Based on this method, we aim at obtaining a consolidating component reacting DAP (instead of ammonium carbonate) and the gypsum contained in the crust of weathered stones in polluted environments. As an advantage, we do not need to use barium hydroxide (the second step required in the Ferroni-Dini method), thereby reducing the time necessary to carry out the consolidation. Here, we report different tests to evaluate this new procedure. In a first set of experiments, a DAP solution was poured on a gypsum (dihydrate calcium sulphate) saturated solution and by monitoring the free calcium content of the solution using an ion-selective electrode we have evaluated the fluctuations in the content in calcium of the solution and the speed of the reaction. Once the reaction finished, we analyzed the solids formed to verify the formation of hydroxyapatite by FTIR and microRAMAN. The second test consisted in the alteration of limestone blocks with sulfuric acid to obtain a crust of gypsum and, after that, the samples were consolidated by means of cellulose compress soaked in DAP 3M during different reaction times (30 minutes, 1 hour and 4 hours, at controlled temperature -20 °C- and relative humidity -40% HR-). The samples were then analyzed by XRD, FTIR, microRAMAN and SEM-EDX to verify the formation of hydroxyapatite and the elimination of gypsum by transformation into ammonium sulphate (highly soluble). Our preliminary results show that the reaction occurs at room temperature in a short period of time. The amount of gypsum decreases with reaction time, while the amount of HAP significantly increases, with the gypsum being almost completely removed after 4 hours of reaction. We can conclude that this procedure is an optimal solution to remove the gypsum contained in the crust of the weathered stones and to consolidate them, independently of the mineralogical composition of the stone. Acknowledgements: This study was financially supported by Research Group RNM179 of the Junta de Andalucía and by the Research Project MAT2012-34473. [1] M. Matteini, "In review: An assessment of Florentine Methods of Wall Painting Conservation Based on the Use of Mineral Treatments", in "The Conservation of Wall Paintings: Proceedings of a Symposium organized by the Courtauld Institute of Art and the Getty Conservation Institute", London, 1987, pp. 137-146.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovorka, S.D.; Dutton, A.R.; Ruppel, S.C.
1994-09-01
The three-dimensional distribution of water in the Edwards aquifer was assessed using a core and log-based study. Porosity distribution reflects both depositional fabric and subsequent diagenesis. Vertical facies stacking patterns influence the depositional porosity as well as dolomitization and diagentic porosity modification. Subtidal facies deposited during sea level highstands are generally undolomitized and exhibit low porosity (5-10%); platform grainstones typically have high depositional porosity and significant solution enhancement (20-42% porosity). Dolomitized subtidal facies in tidal-flat-capped cycles have very high porosity (20-40%) because of selective dolomite dissolution in the freshwater aquifer. Porosity in gypsum beds is high in some areas becausemore » of dissolution and collapse, but low where gypsum was replaced by calcite cement. Low-energy subtidal and evaporitic units in the Maverick basin have porosity generally less than 15%. The overlying basinal packstones and grainstones have solution-enhanced porosities of 25 to 35%. Diagenesis associated with fluctuations in water chemistry near the saline-freshwater interface may explain one high-porosity trend. Other complex patterns of high and low porosity are attributed to structurally and hydrologically controlled porosity enhancement and cementation. Three-dimensional mapping of porosity trends provides data for improved aquifer management. Only about 3% of the maximum stored water lies above the water table at which natural spring flow is diminished. An average specific yield of 42% in the unconfined aquifer is determined from total porosity, changes in the water-table elevation, and changes in estimated recharge and discharge. Average storativity of 2.6 x 10{sup -4} in the confined Edwards is estimated using average porosity and barometric efficiency calculated from comparing water-level hydrographs and atmospheric pressure changes.« less
Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio
2012-03-15
Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.
Preliminary investigation of cement materials in the Taif area, Saudi Arabia
Martin, Conrad
1970-01-01
A preliminary investigation of possible sources of cement rock in the Taft area was made during the latter part of August 1968. Adequate deposits of limestone, clay, quartz conglomerate and sandstone, and pisolitic iron ore, yet no gypsum, were located to support a Cement plant should it prove feasible to establish one in this area. These materials, made up mostly of Tertiary and later sediments, crop out in isolated, inconspicuous low hills in a north- trending belt, 10 to 15 kilometers wide, lying about 90 kilometers to-the east of At Taft. The belt extends for more than 90 kilometers from the vicinity of Jabal 'An in the south to the crushed rock pits at Radwan and beyond in the north. The area is readily accessible either from the Talf-Riyadh highway or from the Taif-Bishah road presently under construction. The limestone, which is quite pure and dense in some localities but dolomitic, argillaceous, and cherty in others, occurs in a variety of colors and would make suitable decorative building stone. The volcanic rocks of the Harrat Hadan, lying directly to the east of the limestone belt, include volcanic ash beds some of which may have been altered to bentonitlc clays. Others may have been lithified and might be suitable for light-weight aggregate. These possibilities remain to be investigated. Precambrian metamorphic rocks lying directly to the south and southeast of Taif were also investigated as possible cement rock sources, but no suitable material was found here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Hachem, R.; Roziere, E.; Grondin, F.
2012-10-15
This work aims to contribute to the design of durable concrete structures exposed to external sulphate attacks (ESA). Following a preliminary study aimed at designing a representative test, the present paper suggests a study on the effect of the water-to-cement (w/c) ratio and the cement composition in order to understand the degradation mechanisms. Length and mass measurements were registered continuously, leached calcium and hydroxide ions were also quantified. In parallel, scanning electron microscopy observations as well as X-ray microtomography were realised at different times to identify the formed products and the crack morphology. Test results provide information on the basicmore » aspects of the degradation mechanism, such as the main role of leaching and diffusion in the sulphate attack process. The mortar composition with a low w/c ratio leads to a better resistance to sulphate attack because the microstructure is less permeable. Reducing the C{sub 3}A content results in a macro-cracking decrease but it does not prevent expansion, which suggests the contribution of other expansive products, such as gypsum, in damage due to ESA. The observation of the cracks network in the microstructure helps to understand the micro-mechanisms of the degradation process.« less
Basic Aspects of Deep Soil Mixing Technology Control
NASA Astrophysics Data System (ADS)
Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław
2017-10-01
Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.
Rivas, T; Pozo, S; Paz, M
2014-06-01
We describe the results of sulphur and oxygen isotope analyses used to identify sources of the gypsum present in black crusts that grow on the granite of historical buildings. The crusts were sampled at various locations in and near the city of Vigo (NW Spain) and were analysed for their sulphur content and δ(34)S and δ(18)O isotope ratios. Sampled crusts had δ(34)S values of 7.3‰ to 12.9‰ and δ(18)O values of 6.56‰ to 12.51‰. Sampled as potential sulphur sources were bulk depositions, seawater, foundation, ashlar and construction materials and combustion residues. The results indicated marine and, to a lesser extent, anthropogenic, origins for the sulphur and ruled out the contribution of sub-soil sulphates by capillary rise from building foundations. Isotope analyses would indicate that cement and mortar were enriched in sulphur after their application in buildings. The fact that facade orientation (towards the sea or fossil fuel pollution sources) was correlated with sulphur isotope distribution pointed to various contributions to black crust formation. Copyright © 2014 Elsevier B.V. All rights reserved.
Updated database on natural radioactivity in building materials in Europe.
Trevisi, R; Leonardi, F; Risica, S; Nuccetelli, C
2018-07-01
The paper presents the latest collection of activity concentration data of natural radionuclides ( 226 Ra, 232 Th and 4 K) in building materials. This database contains about 24200 samples of both bulk materials and their constituents (bricks, concrete, cement, aggregates) and superficial materials used in most European Union Member States and some European countries. This collection also includes radiological information about some NORM residues and by-products (by-product gypsum, metallurgical slags, fly and bottom ashes and red mud) which can be of radiological concern if recycled in building materials as secondary raw materials. Moreover, radon emanation and radon exhalation rate data are reported for bricks and concrete. Copyright © 2018 Elsevier Ltd. All rights reserved.
Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.
Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo
2018-01-01
The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.
Acid attack on hydrated cement — Effect of mineral acids on the degradation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutberlet, T.; Hilbig, H.; Beddoe, R.E., E-mail: robin.beddoe@tum.de
During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone betweenmore » the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.« less
Shabalala, Ayanda N; Ekolu, Stephen O; Diop, Souleymane; Solomon, Fitsum
2017-02-05
This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber's salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water. Copyright © 2016 Elsevier B.V. All rights reserved.
Reactive transport modelling of a high-pH infiltration test in concrete
NASA Astrophysics Data System (ADS)
Chaparro, M. Carme; Soler, Josep M.; Saaltink, Maarten W.; Mäder, Urs K.
2017-06-01
A laboratory-scale tracer test was carried out to characterize the transport properties of concrete from the Radioactive Waste Disposal Facility at El Cabril (Spain). A hyperalkaline solution (K-Ca-OH, pH = 13.2) was injected into a concrete sample under a high entry pressure in order to perform the experiment within a reasonable time span, obtaining a decrease of permeability by a factor of 1000. The concentrations of the tracers, major elements (Ca2+, SO4 2 - , K+ and Na+) and pH were measured at the outlet of the concrete sample. A reactive transport model was built based on a double porosity conceptual model, which considers diffusion between a mobile zone, where water can flow, and an immobile zone without any advective transport. The numerical model assumed that all reactions took place in the immobile zone. The cement paste consists of C-S-H gel, portlandite, ettringite, calcite and gypsum, together with residual alite and belite. Two different models were compared, one with portlandite in equilibrium (high initial surface area) and another one with portlandite reaction controlled by kinetics (low initial surface area). Overall the results show dissolution of alite, belite, gypsum, quartz, C-S-H gel and ettringite and precipitation of portlandite and calcite. Permeability could have decreased due to mineral precipitation.
Investigations of some building materials for γ-rays shielding effectiveness
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh; Kaur, Baljit; Sidhu, Gurdeep Singh; Kumar, Ajay
2013-06-01
For construction of residential and non-residential buildings bricks are used as building blocks. Bricks are made from mixtures of sand, clay, cement, fly ash, gypsum, red mud and lime. Shielding effectiveness of five soil samples and two fly ash samples have been investigated using some energy absorption parameters (Mass attenuation coefficients, mass energy absorption coefficients, KERMA (kinetic energy released per unit mass), HVL, equivalent atomic number and electron densities) firstly at 14 different energies from 81-1332 keV then extended to wide energy range 0.015-15 MeV. The soil sample with maximum shielding effectiveness has been used for making eight fly ash bricks [(Lime)0.15 (Gypsum)0.05 (Fly Ash)x (Soil)0.8-x, where values of x are from 0.4-0.7]. High Purity Germanium (HPGe) detector has been used for gamma-ray spectroscopy. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence (EDXRF) spectrometer. The agreements of theoretical and experimental values of mass attenuation coefficient have been found to be quite satisfactory. It has been verified that common brick possess the maximum shielding effectiveness for wide energy range 0.015-15 MeV. The results have been shown graphically with some useful conclusions for making radiation safe buildings.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1997-01-01
A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.
A thermodynamic and experimental study of the conditions of thaumasite formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Thomas; Lothenbach, Barbara; Romer, Michael
2008-03-15
The formation of thaumasite was investigated with the progressive equilibrium approach (PEA). This approach experimentally simulates the conditions of various levels of sulfate addition in hardened cement pastes. The influence of limestone, time, C{sub 3}A content, temperature and leaching on thaumasite formation was investigated. The results show that thaumasite formation is favoured at lower temperatures (8 deg. C) independently of the type of cement clinker (high or low C{sub 3}A content) used. Thaumasite was found to form only in systems where limestone was present and where sufficient sulfate had been added. Thaumasite precipitated only in systems where the Al presentmore » has already been consumed to form ettringite and the molar SO{sub 3}/Al{sub 2}O{sub 3} ratio exceeded 3. In leached samples (reduction of portlandite and alkalis) slightly less thaumasite was formed whereas gypsum and ettringite are favoured under these conditions. The PEA, used to investigate the chemical aspects of sulfate attack was found to be a good tool for simulating external sulfate attack. Generally, thaumasite was detected were it was modelled to be stable in significant amounts. However, in this study equilibrium conditions were not reached after 9 months.« less
Bräu, Michael; Ma-Hock, Lan; Hesse, Christoph; Nicoleau, Luc; Strauss, Volker; Treumann, Silke; Wiench, Karin; Landsiedel, Robert; Wohlleben, Wendel
2012-07-01
Nanotechnology creates new possibilities to control and improve material properties for civil infrastructure. Special focus in this area is put on Portland cement and gypsum. Together their annual production is by far larger than for any other material worldwide. Nanomodification of these materials can be done during the few hours between dissolution and hardening, especially by nucleation of the re-crystallization with suitable colloids. Here we report first results in homogeneous seeding of the precipitation of calcium silicate hydrates within a real Portland cement composition. The occupational safety during the production phase and during mixing of concrete paste is addressed in detail by in vivo testing. We perform 5-day inhalation with 21-day recovery in rats and analyze organ-specific toxicity and 71 endpoints from bronchoalveolar lavage (BALF) and blood. In BALF parameters, no test-related changes were observed, indicating the generally low toxicity of the test material. Some mild lesions were observed in larynx level. In the lungs, all animals of the 50 mg/m³ concentration group revealed a minimal to mild increase in alveolar macrophages, which recovered back to control level.
Effect of sulfate and carbonate minerals on particle-size distributions in arid soils
Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.
2014-01-01
Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.
Experimental Study of Goaf Filling Materials Based on Red Mud
NASA Astrophysics Data System (ADS)
Mu, Mangen; Gao, Xiaozhen; Guo, Taoming; Hu, Xinping
2018-01-01
Red mud as soild waste is difficult to treatment. Goaf filling materials can make a large use of red mud. By the experimental study,we find that the red mud, fly ash, ground slag and desulfida-tion gypsum can be used to make goaf filling materials based on the principle of alkali excitation and metalion stability.Through the control variable method, we find that the optimal proportion of goaf filling materials based on red mud is red mud 55%, fly ash 30%, cement 7.5%, fly ash 2.5%, desulfurization gypsum 5%, admixture 1%, and water solid ratio=1:1.2.The 28days final material strength was 2.0 MPa,which achives the technical specification requirements.Through the test of SEM, XRD and IR, it is indicated that the strength formation of goaf filling material based on red mud is from the unformed linking hydration products of amorphous alkali excitation system. With curing time from 3 to 7 days, the unformed linking hydration products grown a lot of vitreous hydration products. When hydration reaction basicly finished after 28 days, the hydration products have developed into a large volume of massive vitreous with an extremely dense structure. The Ca2SiO3 mineral phase is significantly reduced, which is participate in hydration reactions. The decrease of Ca2SiO3 indicates that the Si-O bond in the system have been ruptured and reorganized.
Bolukbasi, A; Kurt, L; Palacio, S
2016-03-01
Depending on their specificity to gypsum, plants can be classified as gypsophiles (gypsum exclusive) and gypsovags (non-exclusive). The former may further be segregated into wide and narrow gypsophiles, depending on the breadth of their distribution area. Narrow gypsum endemics have a putative similar chemical composition to plants non-exclusive to gypsum (i.e. gypsovags), which may indicate their similar ecological strategy as stress-tolerant plant refugees on gypsum. However, this hypothesis awaits testing in different regions of the world. We compared the chemical composition of four narrow gypsum endemics, one widely distributed gypsophile and six gypsovags from Turkey. Further, we explored the plasticity in chemical composition of Turkish gypsovags growing on high- and low-gypsum content soils. Differences were explored with multivariate analyses (RDA) and mixed models (REML). Narrow gypsum endemics segregated from gypsovags in their chemical composition according to RDAs (mainly due to higher K and ash content in the former). Nevertheless, differences were small and disappeared when different nutrients were analysed individually. All the gypsovags studied accumulated more S and ash when growing on high-gypsum than on low-gypsum soils. Similar to narrow gypsum endemics from other regions of the world, most local gypsum endemics from Turkey show a similar chemical composition to gypsovags. This may indicate a shared ecological strategy as stress-tolerant plants not specifically adapted to gypsum. Nevertheless, the narrow gypsum endemic Gypsophila parva showed a chemical composition typical of gypsum specialists, indicating that various strategies are feasible within narrowly distributed gypsophiles. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Khanna, Om Shervan
The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The cement industry is currently under pressure to reduce greenhouse gas (GHG) emissions and solid by-products in the form of CKDs. The use of CKDs in concrete has the potential to substantially reduce the environmental impact of their disposal and create significant cost and energy savings to the cement industry. Studies have shown that CKDs can be used as a partial substitute of PC in a range of 5--15%, by mass. Although the use of CKDs is promising, there is very little understanding of their effects in CKD-PC blends. Previous studies provide variable and often conflicting results. The reasons for the inconsistent results are not obvious due to a lack of material characterization data. The characteristics of a CKD must be well-defined in order to understand its potential impact in concrete. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. The CKDs have a wide range of chemical and physical composition based on different raw material sources and technologies. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. The first objective of this study was to conduct a comprehensive composition analysis of CKDs and compare their characteristics to PC. CKDs are unique materials that must be analyzed differently from PC for accurate chemical and physical analysis. The present study identifies the chemical and physical analytical methods that should be used for CKDs. The study also introduced a method to quantify the relative abundance of the different mineralogical phases within CKDs. It was found that CKDs can contain significant amounts of amorphous material (>30%) and clinker compounds (>20%) and small amounts of slag and/or flyash (<5%) and calcium langbeinite (<5%). The dissolution of ionic species and composition of the liquid phase play an important role in PC hydration. The dissolved ion contributions from CKDs were compared to PC using dilute stirred suspensions at 10 minutes and it was found that the ion contributions from CKDs are qualitatively the same as the ion contributions from PC, with the exception of chloride ions. The second objective was to utilize the material characterization analysis to determine the relationships among the composition properties of CKD-PC blends and their effects on fresh and hardened properties. The study found that CKDs from preheater/precalciner kilns have different effects on workability and heat evolution than CKDs from wet and long-dry kilns due to the presence of very reactive and high free lime contents (>20%). The blends with the two CKDs from preheater/precalciner plants had higher paste water demand, lower mortar flows, and higher heat generation during initial hydrolysis in comparison to all other CKD-PC blends and control cements. The hardened properties of CKD as a partial substitute of PC appear to be governed by the sulfate content of the CKD-PC blend (the form of the CKD sulfate is not significant). According to analysis of the ASTM expansion in limewater test results, the CKD-PC blend sulfate content should be less than ˜0.40% above the optimum sulfate content of the PC. It was also found that the sulfate contribution of CKD behaves similar to gypsum. Therefore, CKD-PC blends could be optimized for sulfate content by using CKD as a partial substitute of gypsum during the grinding process to control the early hydration of C3A. The wet and long-dry kiln CKDs contain significant amounts of calcium carbonate (>20%) which could also be used as partial replacement of limestone filler in PC.
Surface denudation rate of gypsum in Sicily
NASA Astrophysics Data System (ADS)
Madonia, Giuliana; Vattano, Marco; Di Maggio, Cipriano; De Waele, Jo
2016-04-01
Studies on surface denudation rate of karst rocks were carried out for many years with different methods, although researches on limestones are much more numerous than those on gypsum. In Sicily the most large and complete Messinian evaporite succession of Gruppo Gessoso - Solfifero outcrops and since 1993-1994 surface denudation measurements were performed on different types of gypsum by the Micro-Erosion Meter (M.E.M.) method. MEM stations were placed on natural sites representing different lithological features of gypsum outcrops of the Island: 1) selenite gypsum with centimetre-sized crystals; 2) selenite gypsum with sub-centimetre crystals; 3) gypsum arenite; 4) microcrystalline gypsum; and 5) gypsum laminite (balatino type). The measuring stations are positioned in three localities in western and central Sicily: Santa Ninfa (Trapani), Ciminna (Palermo) and Campofranco (Caltanissetta). The average lowering rates vary in the different lithofacies: from 0.25 mm yr-1 in microcrystalline gypsum to 0.74 mm yr-1 in selenite gypsum with centimetre-sized crystals. The average surface denudation rates are 0.40 mm yr-1 in balatino gypsum and gypsum arenite, and 0.37 mm yr-1 in selenite gypsum with sub-centimetre crystals. These different values are connected to several factors such as: rock texture, dip of gypsum surfaces, climatic conditions, troubles on the measurement sites (e.g.: presence of lichens, soil, remains of vegetation, etc.). The aim of this paper is to show the results of roughly twenty years of experimental measurements, and to compare the surface denudation rate of gypsum in Sicily with those of other evaporite areas characterised by different climatic settings.
NASA Astrophysics Data System (ADS)
Abrantes, Francisco R.; Nogueira, Afonso C. R.; Soares, Joelson L.
2016-07-01
Extreme aridity during Late Permian - Early Triassic period was the main factor for resetting the entire paleoclimate of the planet. Permian evaporite basins and lacustrine red beds were widely distributed along the supercontinent of Pangea. Sulphate deposits in Western Pangea, particularly in Northern Brazil, accumulated in an extensive playa lake system. Outcrop-based facies and stratigraphic analysis of up to 20 m thick evaporite-siliciclastic deposits reveal the predominance of laminated reddish mudstone with subordinate limestone, marl and lenses of gypsum. The succession was deposited in shallow lacustrine and inland sabkha environments associated with saline pans and mudflats. Gypsum deposits comprise six lithofacies: 1) bottom-growth gypsum, 2) nodular/micronodular gypsum, 3) mosaic gypsum, 4) fibrous/prismatic gypsum, 5) alabastrine gypsum, and 6) rosettes of gypsum. Gypsum types 1 and 2 are interpreted as primary deposition in saline pans. Bottom-growth gypsum forms grass-like crusts while nodular/micronodular gypsum indicates displacive precipitation of the crust in shallow water and the groundwater capillary zone. Types 3 and 4 are early diagenetic precipitates. Abundant inclusions of tiny lath-like anhydrite crystals suggest a primary origin of anhydrite. Alabastrine gypsum, fibrous gypsum (satinspar) and rosettes of gypsum probably derived from near-surface hydration of anhydrite. The gypsum-bearing deposits in the Parnaíba Basin contribute towards understanding paleogeographic changes in Western Pangea. A progressive uplift of East Pangea, culminated in the forced regression and retreat of epicontinental seas to the West. Restricted seas or large lakes were formed before the definitive onset of desert conditions in Pangea, leading to the development of extensive ergs.
Physicochemical Properties and Cellular Responses of Strontium-Doped Gypsum Biomaterials
Pouria, Amir; Bandegani, Hadis; Pourbaghi-Masouleh, Milad; Hesaraki, Saeed; Alizadeh, Masoud
2012-01-01
This paper describes some physical, structural, and biological properties of gypsum bioceramics doped with various amounts of strontium ions (0.19–2.23 wt%) and compares these properties with those of a pure gypsum as control. Strontium-doped gypsum (gypsum:Sr) was obtained by mixing calcium sulfate hemihydrate powder and solutions of strontium nitrate followed by washing the specimens with distilled water to remove residual salts. Gypsum was the only phase found in the composition of both pure and gypsum:Sr, meanwhile a shift into lower diffraction angles was observed in the X-ray diffraction patterns of doped specimens. Microstructure of all gypsum specimens consisted of many rod-like small crystals entangled to each other with more elongation and higher thickness in the case of gypsum:Sr. The Sr-doped sample exhibited higher compressive strength and lower solubility than pure gypsum. A continuous release of strontium ions was observed from the gypsum:Sr during soaking it in simulated body fluid for 14 days. Compared to pure gypsum, the osteoblasts cultured on strontium-doped samples showed better proliferation rate and higher alkaline phosphatase activity, depending on Sr concentration. These observations can predict better in vivo behavior of strontium-doped gypsum compared to pure one. PMID:22719270
Optimization of the gypsum-based materials by the sequential simplex method
NASA Astrophysics Data System (ADS)
Doleželová, Magdalena; Vimmrová, Alena
2017-11-01
The application of the sequential simplex optimization method for the design of gypsum based materials is described. The principles of simplex method are explained and several examples of the method usage for the optimization of lightweight gypsum and ternary gypsum based materials are given. By this method lightweight gypsum based materials with desired properties and ternary gypsum based material with higher strength (16 MPa) were successfully developed. Simplex method is a useful tool for optimizing of gypsum based materials, but the objective of the optimization has to be formulated appropriately.
Characterizing synthetic gypsum for wallboard manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henkels, P.J.; Gynor, J.C.
1996-12-31
United States Gypsum Company (USGC) has developed specifications and guidelines covering the chemical and physical aspects of synthetic gypsum to help predict end use acceptability in wallboard manufacture. These guidelines are based in part on past experiences with natural and synthetic gypsum. Similarly, most wallboard manufacturers in North America have developed their own guidelines based in part on its unique history and particular experiences with synthetic gypsum. While there are similarities between manufacturers` guidelines, differences do exist. This paper discusses the importance of selected parameters contained in the FGD gypsum guidelines. In most cases, the parameters are equally relevant tomore » other synthetic gypsums and the naturally occurring gypsum mineral as well.« less
Park, Chan-Gi; Yun, Sung-Wook; Baveye, Phillippe C.; Yu, Chan
2015-01-01
The use of industrial by-products as admixture to ASTM Type I cement (ordinary Portland cement (OPC)) was investigated with the objective of improving the solidification of organic marine clayey soils. The industrial by-products considered in this paper were oyster-shell powder (OSP), steelmaking slag dust (SMS) and fuel-gas-desulfurized (FGD) gypsum. The industrial by-products were added to OPC at a ratio of 5% based on dry weight to produce a mixture used to solidify organic marine clayey soils. The dosage ratios of mixtures to organic marine clayey soils were 5, 10 and 15% on a dry weight basis. Unconfined compressive strength (UCS) test after 28 days revealed that the highest strength was obtained with the OPC + SMS 15% mixing ratio. The UCS of specimens treated with this mixture was >500 kPa, compared with 300 kPa for specimens treated with a 15% OPC + OSP mixture and 200 kPa when 15% of OPC was used alone. These results were attributed to the more active hydration and pozzolanic reaction of the OPC + SMS mixture. This hypothesis was verified through X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, and was confirmed by variations in the calcium carbonate (CaCO3) content of the materials during curing. PMID:28793493
Kohfahl, Claus; Graupner, Torsten; Fetzer, Christian; Pekdeger, Asaf
2010-11-01
This article reports fibre-optic oxygen measurements on a reactive mine waste heap located in the polymetallic sulphide mine district of Freiberg in south-eastern Germany. The heaped material consists of sulphide-bearing tailings from a processing plant of a lead-zinc mine. Mine waste material was deposited in the water phase after separation of mining ores in a flotation process. The tailing impoundment is partly covered with coarse sand and topsoil. Oxygen profiles were monitored during one year at eleven locations showing different physical and mineralogical compositions. At each location a borehole was drilled where the optic sensors were installed at 2-5 different depths. After installation the oxygen profiles were monitored seven times during one year from 2006-2007 and three to five oxygen profiles at each location were obtained. Oxygen measurements were accompanied by physical, chemical and mineralogical data of the tailing material. Additionally, a detailed mineralogical profile was analysed at a location representative for the central part of the heap, where the cemented layers show lateral continuity. Results showed that cemented layers have a significant influence on natural attenuation of the toxic As and Pb species owing to their capacity of water retention. The measured oxygen profiles are controlled by the zone of active pyrite weathering as well as by the higher water content in the cemented layers which reduces gaseous atmospheric oxygen supply. In contrast, gypsum bearing hardpans detected at three other locations have no detectable influence on oxygen profiles. Furthermore, the grain size distribution was proved to have a major effect on oxygen diffusivity due to its control on the water saturation. Temporal changes of the oxygen profiles were only observed at locations with coarse sediment material indicating also an important advective part of gas flux. Copyright © 2010 Elsevier B.V. All rights reserved.
Arrieta, Nikole; Iturregui, Ane; Martínez-Arkarazo, Irantzu; Murelaga, Xabier; Baceta, Juan Ignacio; de Diego, Alberto; Olazabal, María Ángeles; Madariaga, Juan Manuel
2017-03-01
This work outlines a temperate latitude beachrock occurrence, which represents the legacy of heavy anthropogenic environmental disturbance. The units contain high amounts of slag and iron-rich wastes derived from metallurgical activities that attest the impact of the past industrial development on such coastal systems. The exposition of the anthropogenic wastes to weathering processes, such as the influence of marine aerosols and the chemical attack of acid gases like the SOx coming from the nearby urban-industrial atmosphere, gave rise to the formation of early diagenetic ferruginous cements. A new analytical methodology based on the combination of micro-Raman spectroscopy (MRS), Raman chemical imaging, SEM-EDS and the Structural and Chemical Analyzer (SCA, an emerging system that hyphenates micro-Raman and SEM-EDS), was applied for the first time to characterize the ferruginous cements. The MRS analyses revealed Fe 2+ /Fe 3+ oxides and oxyhydroxides, CaCO 3 polymorphs and less frequently silicates. The Fe mineral species detected were hydrated goethite, hematite, magnetite, magnesioferrite, lepidocrocite and goethite. Complementary Raman imaging, SEM-EDS and SCA analyses unraveled the preferential distribution of hydrated goethite. The identified iron mineral phases are weathering sub-products of hematite commonly derived from atmospheric/aqueous leaching processes triggered by the chemical attack of the acid gases. EDS showed the existence of other elements such as Si, Mg, Cl, Na, Al, K and sporadically S that indicated the importance of permeability, atmospheric deposition and the acid attack. Additionally, calcite and gypsum minerals also evidenced the action of meteoric waters, dry deposition processes or the attack of SOx acid gases. The presence of such compounds is modifying the cement stratigraphy and suggests that the dissolution of carbonates is currently taking place. Those facts influence the erosive susceptibility and the release of the anthropogenic materials trapped originally in the beachrocks, which could act as potential secondary sources of contaminants to the coastal environment. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization gypsum (FGD-gypsum), a byproduct from coal fired electricity generators, has the potential for beneficial use in agricultural systems as a soil amendment. Similar to mined gypsum it can improve soil chemical and physical properties and increase crop productivity. FGD-gypsum ...
Economics of Gypsum Production in Iran
NASA Astrophysics Data System (ADS)
Esmaeili, Abdoulkarim
The purpose of this research is to analyze the economics of gypsum production in Iran. The trend in production cost, selling price and profit are used to investigate economics of gypsum production. In addition, the multivariate time series method is used to determine factors affecting gypsum price in domestic market. The results indicated that due to increase in production and inflation, profitability of gypsum production has decreased during recent years. It is concluded that tariff and non-tariff barriers on mines machinery are among reasons for increasing production cost in Iranian gypsum mines. Decreasing such barriers could increase profitability of gypsum production in Iran.
Gypsum ground: a new occurrence of gypsum sediment in playas of central Australia
NASA Astrophysics Data System (ADS)
Xiang Yang Chen; Bowler, James M.; Magee, John W.
1991-06-01
There are many playas (dry salt lakes) in arid central Australia (regional rainfall about 250 mm/y and pan evaporation around 3000 mm/y). Highly soluble salts, such as halite, only appear as a thin (several centimetres thick), white, ephemeral efflorescent crust on the dry surface. Gypsum is the major evaporite precipitating both at present and preserved in sediment sequences. One type of gypsum deposit forms a distinctive surface feature, which is here termed "gypsum ground". It consists of a thick (up to 80 cm) gypsum zone which rises from the surrounding smooth white playa surface and is overlain by a heaved brown crust. The gypsum zone, with an average gypsum content above 60%, consists of pure gypsum sublayers and interlayered clastic bands of sandy clay. The gypsum crystals are highly corroded, especially in the direction parallel to the c-axis and on the upper sides where illuviated clay has accumulated in corrosion hollows. Overgrowth parallel to the a- and b-axes is very common, forming highly discoidal habits. These secondary changes (corrosion and overgrowth) are well-developed in the vadose zone and absent from crystals below the long-term watertable (depth around 40 cm). These crystal characteristics indicate a rainwater leaching process. At Lake Amadeus, one of the largest playas (800 km 2) of central Australia, such gypsum ground occupies 16% of the total area. The gypsum ground is interpreted as an alteration of a pre-existing gypsum deposit which probably extended across the whole playa before breaking down, leaving a playa marginal terrace and several terrace islands within the gypsum ground. This pre-existing gypsum deposit, preserved in the residual islands, consists of pure, pale, sand-sized lenticular crystals. It is believed to have been deposited during an episode of high regional watertable, causing active groundwater seepage and more frequent surface brine in the playa. A later fall in watertable, probably resulting from climatic change, caused the degradation of the gypsum deposit by dissolution and leaching processes. The common distribution of the gypsum ground and marginal terraces in the playas of central Australia demonstrates the extent of this hydrologic and climatic history.
Minerals yearbook, 1991: California. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrillo, F.V.; Davis, J.F.; Alfors, J.T.
1993-05-01
The report has been prepared under a Memorandum of Understanding between the U.S. Bureau of Mines, U.S. Department of the Interior, and the California Department of Conservation, Division of Mines and Geology, for collecting information on all nonfuel minerals. California ranked second among the States, after Arizona, in the value of nonfuel minerals produced in 1991, accounting for almost 10% of the U.S. total. The value of the commodities produced during the year decreased about 9% to $2.5 billion, following last year's 4% decline. California was the sole producer of boron and tungsten and led all States in the productionmore » of asbestos, portland cement, diatomite, calcined gypsum, rare-earth concentrates, and construction sand and gravel. It was second in natural calcium chloride, gold, magnesium compounds, pumice, industrial sand and gravel, and soda ash.« less
SCM Paste Samples Exposed To Aggressive Solutions. Cementitious Barriers Partnership
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, T.
This report summarizes experimental work performed by SIMCO Technologies Inc. (SIMCO) as part of the Cementitious Barriers Partnership (CBP) project. The test series followed an experimental program dedicated to the study of ordinary Portland cement (OPC) hydrated cement pastes exposed to aggressive solutions. In the present study, the scope is extended to hydrated cement pastes incorporating supplementary cementitious materials (SCM) such as fly ash and ground granulated blast furnace slag (GGBFS). Also, the range of aggressive contact solutions was expanded. The experimental program aimed at testing aggressive contact solutions that more closely mimic the chemical composition of saltstone pore solution.more » Five different solutions, some of which incorporated high levels of carbonate and nitrate, were placed in contact with four different hydrated cement paste mixes. In all solutions, 150 mmol/L of SO 4 2– (14 400 ppm) were present. The solutions included different pH conditions and different sodium content. Two paste mixes were equivalent to Vault 1/4 and Vault 2 concrete mixes used at SRS in storage structures. Two additional paste mixes, cast at the same water-to-cement ratio and using the same cements but without SCMs, were also tested. The damage evolution in samples was monitored using ultrasonic pulse velocity (UPV) and mass measurements. After three and twelve months of exposure conditions, samples were taken out of solution containers and analyzed to perform migration tests and porosity measurements. Globally, results were in line with the previous study and confirmed that high pH may limit the formation of some deleterious phases like gypsum. In this case, ettringite may form but is not necessarily associated with damage. However, the high concentration of sodium may be associated with the formation of an AFm-like mineral called U-phase. The most significant evidences of damage were all associated with the Vault 2 paste analog. This material proved very sensitive to high pH. All measurement techniques used to monitor and evaluate damage to samples indicated significant alterations to this mix when immersed in contact solutions containing sodium hydroxide. It was hypothesized that the low cement content, combined with high silica content coming from silica fume, fly ash and GGBFS led to the presence unreacted silica. It is possible that the pozzolanic reaction of these SCMs could not be activated due to the low alkali content, a direct consequence of low cement content. In this scenario, the material end up having a lot of silica available to react upon contact with sodium hydroxide, possibly forming a gel that may be similar to the gel formed in alkali-silica reactions. This scenario needs further experimental confirmation, but it may well explain the poor behavior of mix PV2 in presence of NaOH.« less
Effects of gypsum on trace metals in soils and earthworms
USDA-ARS?s Scientific Manuscript database
Mined gypsum has been beneficially used for many years as an agricultural amendment. Currently a large amount of flue gas desulfurization (FGD) gypsum is produced by removal of SO2 from flue gas streams when fuels with high S content are burned. The FGD gypsum, similar to mined gypsum, can enhance c...
Zhao, Jinping; Peng, Ping'an; Song, Jianzhong; Ma, Shexia; Sheng, Guoying; Fu, Jiamo
2010-09-01
Guangzhou is the central city in the Pearl River Delta (PRD), China, and is one of the most polluted cities in the world. To characterize the ambient falling dust pollution, two typical sampling sites: urban (Wushan) and suburban (University Town) areas in Guangzhou city were chosen for falling dust collection over 1 year at time intervals of 1 or 2 months. The flux of dry deposition was calculated. In addition, mineral composition and morphology of atmospheric falling dust were studied by X-ray diffraction, scanning electron microscopy, and microscopic observation. The results revealed that the dust flux in Guangzhou city was 3.34-3.78 g/(m(2) month) during the study period. The main minerals in the dust were quartz, illite, calcite, kaolinite, gypsum, plagioclase, dolomite, and amorphous matter. The morphological types included grained and flaky individual minerals, chain-like aggregates, spherical flying beads, and irregular aggregates, with the chain-like and spherical aggregates indicators of industrial ash. The major dusts were derived from industrial and construction activities. The gypsum present in the dust collected in winter season was not only derived from cement dust but may also have originated from the reaction of calcic material with sulfuric acids resulting from photooxidation of SO(x) and NO(x), which confirmed serious air pollution due to SO(x) and NO(x) in Guangzhou. The abatement of fossil fuel combustion emissions and construction dust will have a significant beneficial effect on dust reduction.
Crangle, R.D.
2012-01-01
The United States is the world's fourth leading producer and consumer of gypsum. Production of gypsum in the U.S. during 2011 was estimated to be 9.4 Mt (103 million st), an increase of 6 percent compared with 2010 production. The average price of mined crude gypsum was $7/t ($6.35/st). Synthetic gypsum, most of which is generated as a fluegas desulfurization process from coal-fired electric powerplants, was priced at approximately $1.50/t (1.36/st). Forty-seven companies produced gypsum in the U.S. at 54 mines and plants in 34 states. U.S. gypsum exports totaled about 300 kt (330,000 st). Imports were much higher at approximately 3.3 Mt (3.6 million st).
Gypsum crystals observed in experimental and natural sea ice
NASA Astrophysics Data System (ADS)
Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.
2013-12-01
gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.
NASA Astrophysics Data System (ADS)
Tuyukina, T. Yu.
2009-07-01
In the taiga gypsum karst ecosystems, gypsum soils formed on the hard gypsum substrates predominate in the soil cover. In these soils, the mineral horizons consist of 95-99% gypsum (CaSO4·2H2O) and the litter is the main horizon for nutrient accumulation. For this reason, the ecosystems are vulnerable to fire and erosion by walkers, from which they only recover slowly. Gypsum mining for industrial uses is also leading to the destruction of this unique ecosystem.
The crystallization water of gypsum rocks is a relevant water source for plants.
Palacio, Sara; Azorín, José; Montserrat-Martí, Gabriel; Ferrio, Juan Pedro
2014-08-18
Some minerals, like gypsum, hold water in their crystalline structure. Although still unexplored, the use of such crystallization water by organisms would point to a completely new water source for life, critical under dry conditions. Here we use the fact that the isotopic composition of free water differs from gypsum crystallization water to show that plants can use crystallization water from the gypsum structure. The composition of the xylem sap of gypsum plants during summer shows closer values to gypsum crystallization water than to free soil water. Crystallization water represents a significant water source for organisms growing on gypsum, especially during summer, when it accounts for 70-90% of the water used by shallow-rooted plants. Given the widespread occurrence of gypsum in dry lands throughout the Earth and in Mars, these results may have important implications for arid land reclamation and exobiology.
Gypsum-bonded alumina dental investment for high-fusing casting.
Yan, M; Takahashi, H
1998-09-01
In this study, we developed a new gypsum-bonded investment for high-fusing alloys. The investment was composed of gypsum as a binder and alumina as a refractory. Effects of type of alumina powder and gypsum content on characteristics of the gypsum-bonded alumina investment were investigated. Obtained characteristics of this experimental investment were as follows: fluidities ranged from 48.8 to 88.9 mm; setting times ranged from 21.2 to more than 120 minutes; setting expansions ranged from 0.4 to 1.3%; green strengths showed 0.5 to 4.5 MPa; fired strengths ranged from 0.2 to 1.7 MPa; thermal expansions after firing were -1.60 to 2.16%. Thermal expansion occurred because of the chemical reaction between Al2O3 and CaO decomposed from gypsum. These results suggest that this gypsum-bonded alumina investment with 20 or 25 mass% gypsum content possessed the fundamental properties for high-fusing alloy casting.
Ercikdi, Bayram; Baki, Hakan; İzki, Muhammet
2013-01-30
This paper presents the effect of desliming on the short- and long-term strength, stability and rheological properties of cemented paste backfill (CPB) produced from two different mill tailings. A 28-day unconfined compressive strength (UCS) of ≥1.0 MPa and the maintenance of stability over 224 days of curing were selected as the design criteria for the evaluation of paste backfill performance. Desliming induced some changes in the physical, chemical, mineralogical and rheological properties of the tailings. CPB mixture of the deslimed tailings achieved the required consistency at a lower water to cement ratio. The short-term UCSs of CPB samples of the deslimed tailings were found to be 30-100% higher than those samples of the reference tailings at all the binder dosages and curing times. CPB samples of the deslimed tailings achieved the long-term stability at relatively low binder dosages (e.g. 5 wt% c.f. ≥6.1% for the reference tailings). It was also estimated that desliming could allow a 13.4-23.1% reduction in the binder consumption depending apparently on the inherent characteristics of the tailings. Over the curing period, generation of sulphate and acid by the oxidation of pyrite present in the tailings was also monitored to correlate with the strength losses observed in the long term. Scanning electron microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses provided an insight into the microstructure of CPB and the formation of secondary mineral phases (i.e. gypsum) confirming the beneficial effect of desliming. These findings suggest that desliming can be suitably exploited for CPB of sulphide-rich mill tailings to improve the strength and stability particularly in the long term and to reduce binder consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, B.L.; Johnson, C.M.; Simo, J.A.
1995-04-03
The isotope (Sr and O) and elemental (Mg, Ca, Mn, Fe, and Sr) compositions of the various dolomites in the Middle Ordovician St. Peter Sandstone in the Michigan Basin are determined and the variations are modeled in terms of fluid-rock interaction or as mixing relations. These geochemical models, combined with the paragenetic sequence of the dolomites and late anhydrite cement, suggest the existence of at least four distinct diagenetic fluids in the St. Peter Sandstone during the paleozoic. Fluid 1 has a composition consistent with a modified older (pre-Middle Ordovician) seawater origin, which indicates that the flow path for thismore » fluid had a major upward component. This fluid resulted in the first and volumetrically most important burial dolomitization event, producing dolomite in both carbonate and quartz sandstone lithofacies in the St. Peter Sandstone. Fluid 2 has a composition consistent with a modified Middle to early Late Ordovician seawater origin, suggesting a major downward component for fluid flow. Fluid 2 produced dolomite cement in the carbonate lithofacies that postdates Fluid 1 dolomite. The composition of Fluid 3 is best interpreted to reflect a heated, deep basinal brine that had previously interacted with the K-feldspar-rich rocks near the Cambrian-Precambrian unconformity in the Michigan Basin, indicating a major upward component for fluid flow. Fluid 3 produced dolomite cement in quartz sandstone lithofacies that postdates Fluid 1 dolomite. Fluid 4 resulted in precipitation of late anhydrite in fractures. The {sup 87}Sr/{sup 86}Sr ratio of the anhydrite is consistent with Fluid 4 originating as a dilute fluid that interacted extensively with Silurian gypsum in the Michigan Basin; this indicates that the flow path of Fluid 4 had a major downward component.« less
Gas and Liquid Permeability Measurements in Wolfcamp Samples
NASA Astrophysics Data System (ADS)
Bhandari, A. R.; Flemings, P. B.; Ramiro-Ramirez, S.; Polito, P. J.
2017-12-01
Argon gas and liquid (dodecane) permeability measurements in three mixed quality Wolfcamp samples demonstrate it is possible to close multiple bedding parallel open artificial micro-fractures and obtain representative matrix permeability by applying two confining stress cycles at a constant pore pressure under effective stresses ranging from 6.9 MPa to 59.7 MPa. The fractured sample (with no bridging-cement in fractures) exhibited a three order decrease in permeability from 4.4×10-17 m2 to 2.1×10-20 m2. In contrast, the most intact sample exhibited initial liquid permeability of 1.61×10-19 m2 that declined gradually to 2.0×10-20 m2 over the same effective stress range. A third sample, that contained a bridging-cement (gypsum) fracture, exhibited much higher initial liquid permeability of 2.8×10-15 m2 and declined gradually to 1.3×10-17 m2 with stress; this suggested that it is difficult to close partially cemented fractures and that the permeability we measured was impacted by the presence of a propped-fracture and not the matrix. We developed a new permeability testing protocol and analytical approaches to interpret the evolution of fractures and resolve the matrix permeability using matrix permeability estimates based on initial pulse decay gas permeability measurements at effective stress of 6.9 MPa. The tested samples are an argillaceous siliceous siltstone facies within the Wolfcamp Formation. A better understanding of permeability will lead to new approaches to determine the best completion and production strategies and, more importantly, to reduce the high water cut problem in Wolfcamp reservoirs.
Radium-226 content of agricultural gypsums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindeken, C.L.; Coles, D.G.
1977-01-01
Gypsum (CaSO/sub 4/ . 2H/sub 2/O), used as a soil amendment for saline-alkali soils, is obtained either by quarrying or as a by-product in the phosphate fertilizer industry. The latter, termed phospho gypsum, contains variable amounts of /sup 226/Ra, depending on the uranium content of the phosphate rock. Radium-226 contents of both quarried and phospho gypsum were determined by gamma counting in a low-background Ge(Li) spectrometer equipped with Compton suppression. Quarried samples from Nova Scotia, Iowa, Texas, and California were compared with phospho gypsum derived from Florida land pebble phosphates. Quarried gypsums showed an average radium content of 0.21 pCi/g.more » The average radium in phospho gypsum was 14.6 pCi/g. Uranium-238 measurements showed that near secular equilibrium existed between the uranium and radium in the quarried samples. Disequilibrium in the phospho gypsums occurred because of the preferential separation of radium during chemical processing. At the levels observed, no health hazard is implied from uptake of radium by plants grown in phospho gypsum treated soil.« less
MICROBIAL RESISTANT GYPSUM PRODUCTS
Gypsum building materials often become wet, resulting in mold growth that leads to health and productivity impacts. A major source of mold growth is gypsum wallboard since nearly 90% of the interior finished surfaces of buildings are covered with gypsum products. It has been est...
Gypsum accumulation on carbonate stone
McGee, E.S.; Mossotti, V.G.
1992-01-01
The accumulation of gypsum on carbonate stone has been investigated through exposure of fresh samples of limestone and marble at monitored sites, through examination of alteration crusts from old buildings and through laboratory experiments. Several factors contribute to gypsum accumulation on carbonate stone. Marble or limestone that is sheltered from direct washing by rain in an urban environment with elevated pollution levels is likely to accumulate a gypsum crust. Crust development may be enhanced if the stone is porous or has an irregular surface area. Gypsum crusts are a surficial alteration feature; gypsum crystals form at the pore opening-air interface, where evaporation is greatest.
Langer, William H.
2015-01-01
Previous PRISM reports discuss a variety of industrial minerals. Gypsum, phosphate, salt, stone, sulfur, and ilmenite command the majority of the attention in the earlier geologic reports. (Ilmenite is evaluated in a separate U.S. Geological Survey report in the current study). Asbestos, arsenic, barite, fluorite, and kaolin are listed in indices (occurrence datasets) as potential mineral resources (Marsh and Anderson, 2015), but previous reports do not elaborate on their development potential. Beryl, described herein with the discussions of pegmatites, is also listed in indices of potential mineral resources, but has not been described in terms of its industrial mineral potential. Short discussions on the potential for cement (carbonate rocks), glass sand, peat, and sillimanite resources are included in this report.
Reconnaissance investigation of brine in the eastern Rub al Khali, Kingdom of Saudi Arabia
Smith, C.L.
1981-01-01
Al Uruq al Mu'taridah-Umm as Samim area is located in a large topographic depression in the eastern Rub al Khali desert where playas several thousand square kilometers in area are exposedo A crust of eolian sand cemented with gypsum and halite has formed on many playa surfaces. Anhydrite nodules are common in the sampled area, where the depth to ground water generally exceeds 172 Cmo The chemistry of the three ground-water samples collected near the water well Ramallah-1 (lat 22?10'20'' N., long 54?20'37'' E.) is similar to that of sabkhah-related brines on the coast of the United Arab Emirates. Although there is no indication of economic quantities of evaporite minerals in the sampled area, the extent of the depression and its unique geologic environment recommend it for resource-evaluation studies.
Crangle, R.D.
2013-01-01
The United States is the world’s fifth ranked producer and consumer of gypsum. Production of crude gypsum in the United States during 2012 was estimated to be 9.9 Mt (10.9 million st), an increase of 11 percent compared with 2011 production. The average price of mined crude gypsum was $7/t ($6.35/st). Synthetic gypsum production in 2012, most of which is generated as a flue-gas desulphurization product from coal-fired electric powerplants, was estimated to be 11.8 Mt (13 million st) and priced at approximately $1.50/t ($1.36/st). Forty-seven companies produced gypsum in the United States at 54 mines and plants in 34 states. U.S. gypsum exports totaled 408 kt (450,000 st). Imports were much higher at 3.2 Mt (3.5 million st).
Growth of indoor fungi on gypsum.
Segers, F J J; van Laarhoven, K A; Wösten, H A B; Dijksterhuis, J
2017-08-01
To have a better understanding of fungal growth on gypsum building materials to prevent indoor fungal growth. Gypsum is acquired by mining or as a by-product of flue-gas desulphurization or treatment of phosphate ore for the production of fertilizer. Natural gypsum, flue-gas gypsum and phosphogypsum therefore have different mineral compositions. Here, growth of fungi on these types of gypsum was assessed. Conidia of the indoor fungi Aspergillus niger, Cladosporium halotolerans and Penicillium rubens were inoculated and observed using microscopic techniques including low-temperature scanning electron microscopy. Elemental analysis of gypsum was done using inductively coupled plasma atomic emission spectroscopy and segmented flow analysis. Moisture content of the gypsum was determined using a dynamic vapour sorption apparatus. Aspergillus niger, C. halotolerans and P. rubens hardly germinated on natural gypsum and flue-gas gypsum. The latter two fungi did show germination, outgrowth, and conidiation on phosphogypsum, while A. niger hardly germinated on this substrate. Other experiments show that C. halotolerans and P. rubens can develop in pure water, but A. niger does not. The observations show that the lack of germination of three indoor fungi is explained by the low amount of phosphor in natural, flue-gas and laboratory-grade gypsum. Additionally, C. halotolerans and P. rubens can develop in pure water, while conidia of A. niger do not show any germination, which is explained by the need for organic molecules of this species to induce germination. Indoor fungal growth is a potential threat to human health and causes damage to building materials. This study possibly helps in the application of the right type of gypsum in buildings. © 2017 The Society for Applied Microbiology.
Flue gas desulfurization gypsum agricultural network alabama (cotton)
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization gypsum (FGDG) is an excellent source of gypsum (CaSO4•2H2O) that can be beneficially used in agriculture. Research was conducted as part of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute in collaboration wi...
Flue gas desulfurization gypsum agricultural network alabama (bermudagrass)
USDA-ARS?s Scientific Manuscript database
Synthetic gypsum is being produced in large quantities each year as a byproduct of SO2 removal from flue gas stream at coal-fired utility plants. This synthetic gypsum which is believed to be comparable or better than mined gypsum may enhance crop production. However, there is a paucity of informati...
Zhang, Na; Liu, Xiaoming; Sun, Henghu; Li, Longtu
2011-01-15
Red mud is generated from alumina production, and its disposal is currently a worldwide problem. In China, large quantities of red mud derived from bauxite calcination method are being discharged annually, and its utilization has been an urgent topic. This experimental research was to evaluate the feasibility of blends red mud derived from bauxite calcination method with other industrial wastes for use as a cementitious material. The developed cementitious material containing 30% of the bauxite-calcination-method red mud possessed compressive strength properties at a level similar to normal Portland cement, in the range of 45.3-49.5 MPa. Best compressive strength values were demonstrated by the specimen RSFC2 containing 30% bauxite-calcination-method red mud, 21% blast-furnace slag, 10% fly ash, 30% clinker, 8% gypsum and 1% compound agent. The mechanical and physical properties confirm the usefulness of RSFC2. The hydration characteristics of RSFC2 were characterized by XRD, FTIR, (27)Al MAS-NMR and SEM. As predominant hydration products, ettringite and amorphous C-S-H gel are principally responsible for the strength development of RSFC2. Comparing with the traditional production for ordinary Portland cement, this green technology is easier to be implemented and energy saving. This paper provides a key solution to effectively utilize bauxite-calcination-method red mud. Copyright © 2010 Elsevier B.V. All rights reserved.
Effects of FGD-gypsum, used-wallboard and calcium sulfate on corn and soybean root growth
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization (FGD)-gypsum production has increased 44 percent from 2007 to 2008. The major use of FGD-gypsum today is in the wallboard industry. Reduction in the construction, however, reduces the demand for wallboard. Agriculture could become the second largest user of FGD-gypsum. F...
Montero, A; Tojo, Y; Matsuo, T; Matsuto, T; Yamada, M; Asakura, H; Ono, Y
2010-03-15
With insufficient source separation, construction and demolition (C&D) waste becomes a mixed material that is difficult to recycle. Treatment of mixed C&D waste generates residue that contains gypsum and organic matter and poses a risk of H(2)S formation in landfills. Therefore, removing gypsum and organic matter from the residue is vital. This study investigated the distribution of gypsum and organic matter in a sorting process. Heavy liquid separation was used to determine the density ranges in which gypsum and organic matter were most concentrated. The fine residue that was separated before shredding accounted for 27.9% of the waste mass and contained the greatest quantity of gypsum; therefore, most of the gypsum (52.4%) was distributed in this fraction. When this fine fraction was subjected to heavy liquid separation, 93% of the gypsum was concentrated in the density range of 1.59-2.28, which contained 24% of the total waste mass. Therefore, removing this density range after segregating fine particles should reduce the amount of gypsum sent to landfills. Organic matter tends to float as density increases; nevertheless, separation at 1.0 density could be more efficient. (c) 2009 Elsevier B.V. All rights reserved.
Raman spectroscopy of shocked gypsum from a meteorite impact crater
NASA Astrophysics Data System (ADS)
Brolly, Connor; Parnell, John; Bowden, Stephen
2017-07-01
Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.
Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.
Watts, Dexter B; Dick, Warren A
2014-01-01
Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Carbonate replacement of lacustrine gypsum deposits in two Neogene continental basins, eastern Spain
NASA Astrophysics Data System (ADS)
Anadón, P.; Rosell, L.; Talbot, M. R.
1992-07-01
Bedded nonmarine gypsum deposits in the Miocene Teruel and Cabriel basins, eastern Spain, are partly replaced by carbonate. The Libros gypsum (Teruel Graben) is associated with fossiliferous carbonate wackestones and finely laminated, organic matter-rich mudstones which accumulated under anoxic conditions in a meromictic, permanent lake. The gypsum is locally pseudomorphed by aragonite or, less commonly, replaced by calcite. Low δ 13C values indicate that sulphate replacement resulted from bacterial sulphate reduction processes that were favoured by anacrobic conditions and abundant labile organic matter in the sediments. Petrographic evidence and oxygen isotopic composition suggest that gypsum replacement by aragonite occurred soon after deposition. A subsequent return to oxidising conditions caused some aragonite to be replaced by diagenetic gypsum. Native sulphur is associated with some of these secondary gypsum occurrences. The Los Ruices sulphate deposits (Cabriel Basin) contain beds of clastic and selenitic gypsum which are associated with limestones and red beds indicating accumulation in a shallow lake. Calcite is the principal replacement mineral. Bacterial sulphate reduction was insignificant in this basin because of a scarcity of organic matter. Stable isotope composition of diagenetic carbonate indicates that gypsum replacement occurred at shallow burial depths due to contact with dilute groundwaters of meteoric origin. Depositional environment evidently has a major influence upon the diagenetic history of primary sulphate deposits. The quantity of preserved organic matter degradable by sulphate-reducing bacteria is of particular importance and, along with groundwater composition, is the main factor controlling the mechanism of gypsum replacement by carbonate.
Ward, Dwight Edward; Goldsmith, Richard; Cruz, Bruna B.; Restrepo, Jaime; Hernan, A.
1970-01-01
The areas covered by this report lies in the eastern Cordillera of the Colombian Andes in the region around Bucaramanga. This part of the eastern Cordillera consists of a structurally complex core of metamorphic and igneous rocks of Precambrian to Mesozoic age, flanked to east and west by faulted and folded sedimentary strata of late Paleozoic to Tertiary age. Infaulted blocks of sedimentary rocks are locally present in the massif. Unconsolidated deposits of Quaternary age, primarily terraced alluvium, are 10cally extensive in valleys on the flanks of the range. The crystalline central core of the range is called the Santander massif. In it are located the principal sold deposits and scattered deposits of copper, lead, zinc, and fluorite. The sedimentary rocks flanking the massif contain significant deposits of phosphate rock and gypsum, as well as other nonmetallic industrial minerals such as limestone, barite, glass sand, and coal. A belt of lead-zinc prospects in carbonate and sandstone beds of Cretaceous age on the east side of the range warrants further investigation. Gold and silver are the only important metallic minerals that have been produced in the Santander massif. Mining dates back to colonial and possibly to pre-colonial times and continues on a small scale at present. The California and Vetas district was the main area of investigation of metallic minerals during the present project. Results of geochemical sampling of stream sediments and assays of vein material indicate that the main potential of the area is in gold with lesser potentials in copper, lead, zinc, and silver. Mineralization of the district is probably younger than Early Cretaceous. Although no copper minerals have been mined elsewhere in the massif, small amounts of copper minerals in various rocks in scattered areas is revealed by green and blue stains of copper carbonates and sulfates. Deposits of greatest areal extent are in arkosic conglomeratic beds of the Giron Formation. These are being explored and sampled at the present time (1969). A little lead has been mined and smelted in the past but operations were on a very small scale and of short duration. Small amounts of lead, zinc, and copper minerals accompany dolomite replacement of Cretaceous limestone in a few scattered places, and several promising prospects are being investigated by means of trenches and drilling. One magnetite and several hematite prospects were examined but none offers any potential for economic development. Thick beds of gypsum in Lower Cretaceous limestone on Mesa de Los Santos, south of Bucaramanga are being quarried from outcrops for use in cement manufacture. The deposit was discovered shortly before the present project began, and although its extent beneath overlying strata is not yet determined by drilling, it appears to be in a small evaporite basin of about three kilometers in radius. Reserves of gypsum are large, but future development will have to be by underground mining. Outcrops of Cretaceous limestone of high purity are widespread and are more than adequate to meet all demands, which at present are for cement and calcined lime, road construction material, and to a small extent for agricultural lime and polished decorative stone. Upper Paleozoic limestone of the Diamante Formation crops out in a few places; it has been used near Bucaramanga for cement manufacture. Marble is present in several localities of the Santander massif in Lower Paleozoic and Devonian rocks. Impurities, fractures, and solution cavities render most of it unsuitable for decorative purposes, but selected parts are used in floor tile and terrazo. Recrystallized limestone of the Diamante Formation in the same area, usually referred to as marble, is of uniform high purity throughout a thick and uninterrupted section, and offers a good source of limestone raw material. A little is now used for agricultural lime. The potential of this resource has not been fully evalua
USDA-ARS?s Scientific Manuscript database
Gypsum has various potential benefits as a soil amendment, but data are lacking on gypsum effects on crop yields and on environmental impacts across diverse field sites. Gypsum studies were conducted in six states using a common design with three rates each of mined and flue gas desulfurization (FGD...
Mechanical properties of gypsum board at elevated temperatures
S.M. Cramer; O.M. Friday; R.H. White; G. Sriprutkiat
2003-01-01
Gypsum board is a common fire barrier used in house and general building construction. Recently, evaluation of the collapses of the World Trade Center Towers highlighted the potential role and failure of gypsum board in containing the fires and resisting damage. The use of gypsum board as primary fire protection of light-flame wood or steel construction is ubiquitous....
Mechanism of Hg(II) Immobilization in Sediments by Sulfate-Cement Amendment.
Serrano, Susana; Vlassopoulos, Dimitri; O'Day, Peggy A
2016-04-01
Reactive amendments such as Portland and super-sulfate cements offer a promising technology for immobilizing metalloid contaminants such as mercury (Hg) in soils and sediments through sequestration in less bioavailable solid forms. Tidal marsh sediments were reacted with dissolved Hg(II) in synthetic seawater and fresh water solutions, treated with Portland cement and FeSO 4 amendment, and aged for up to 90 days. Reacted solids were analyzed with bulk sequential extraction methods and characterized by powder X-ray diffraction (XRD), electron microscopy, and synchrotron X-ray absorption spectroscopy at the Hg L III - and S K-edge. In amended sediments, XRD, SEM and sulfur K-edge XANES indicated formation of gypsum in seawater experiments or ettringite-type (Ca 6 Al 2 (SO 4 ) 3 (OH) 12 . 26H 2 O) phases in fresh water experiments, depending on the final solution pH (seawater ∼8.5; freshwater ∼10.5). Analysis of Hg EXAFS spectra showed Cl and Hg ligands in the first- and second-coordination shells at distances characteristic of a polynuclear chloromercury(II) salt, perhaps as a nanoparticulate phase, in both seawater and fresh water experiments. In addition to the chloromercury species, a smaller fraction (∼20-25%) of Hg was bonded to O atoms in fresh water sample spectra, suggesting the presence of a minor sorbed Hg fraction. In the absence of amendment treatment, Hg sorption and resistance to extraction can be accounted for by relatively strong binding by reduced S species present in the marsh sediment detected by S XANES. Thermodynamic calculations predict stable aqueous Hg-Cl species at seawater final pH, but higher final pH in fresh water favors aqueous Hg-hydroxide species. The difference in Hg coordination between aqueous and solid phases suggests that the initial Hg-Cl coordination was stabilized in the cement hydration products and did not re-equilibrate with the bulk solution with aging. Collectively, results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt as the primary immobilization mechanism.
Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe
2015-01-01
Abstract Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline–alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation. PMID:26064038
Alfalfa Responses to Gypsum Application Measured Using Undisturbed Soil Columns
Tirado-Corbalá, Rebecca; Slater, Brian K.; Dick, Warren A.; Barker, Dave
2017-01-01
Gypsum is an excellent source of Ca and S, both of which are required for crop growth. Large amounts of by-product gypsum [Flue gas desulfurization gypsum-(FGDG)] are produced from coal combustion in the United States, but only 4% is used for agricultural purposes. The objective of this study was to evaluate the effects of (1) untreated, (2) short-term (4-year annual applications of gypsum totaling 6720 kg ha−1), and (3) long-term (12-year annual applications of gypsum totaling 20,200 kg ha−1) on alfalfa (Medicago sativa L.) growth and nutrient uptake, and gypsum movement through soil. The study was conducted in a greenhouse using undisturbed soil columns of two non-sodic soils (Celina silt loam and Brookston loam). Aboveground growth of alfalfa was not affected by gypsum treatments when compared with untreated (p > 0.05). Total root biomass (0–75 cm) for both soils series was significantly increased by gypsum application (p = 0.04), however, increased root growth was restricted to 0–10 cm depth. Soil and plant analyses indicated no unfavorable environmental impact from of the 4-year and 12-year annual application of FGDG. We concluded that under sufficient water supply, by-product gypsum is a viable source of Ca and S for land application that might benefit alfalfa root growth, but has less effect on aboveground alfalfa biomass production. Undisturbed soil columns were a useful adaptation of the lysimeter method that allowed detailed measurements of alfalfa nutrient uptake, root biomass, and yield and nutrient movement in soil. PMID:28696383
Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe
2015-06-01
Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline-alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation.
NASA Astrophysics Data System (ADS)
Pop, P. A.; Ungur, P. A.; Caraban, A.; Marcu, F.
2009-11-01
The paper has presented some experiments realized at "Congips" Co. Oradea and University of Oradea, regarding of increase machining efficiency and quality for modeling gypsum plaster by using of microwave energy to gypsum ore roast. The elaboration process of microwave energy for modeling gypsum plaster has done on electromagnetic waves properties and specific properties for dielectric materials. Microwaves are radiations of electromagnetic waveform nature, determine by pulsations of electrical-E) and magnetically-H components of electromagnetic wave in interdependence with Maxwell equations. The gypsum ore is calcium sulphate dehydrate (CaSO4ṡ2H2O) using at modeling gypsum plaster fabrication, which is calcium sulphate hemihydrate (CaSO4ṡ1/2H2O), that has behavior of dielectric with losses. The gypsum ore getting in microwave field, in conditions of predictable pressure and temperature has transformed in modeling gypsum plaster, by quick lost of a part from crystallization water. The processing time is very short, which due to a great productivity and machining efficiency, finally of low process cost. All of these recommend continuing the research at pilot station level.
Measuring the gypsum content of C&D debris fines.
Musson, Stephen E; Xu, Qiyong; Townsend, Timothy G
2008-11-01
Construction and demolition (C&D) debris recycling facilities often produce a screened material intended for use as alternative daily cover (ADC) at active landfills or for shaping and grading at closed landfills. This product contains soil and small pieces of wood, concrete, gypsum drywall, shingles and other components of C&D debris. Concerns have been raised over the contribution of gypsum drywall in C&D debris fines to odor problems at landfills where the product is used. To address such concerns, limitations may be placed on the percentage of gypsum (or sulfate) that can occur, and standardized testing procedures are required to permit valid compliance testing. A test procedure was developed for measuring the gypsum content in C&D debris fines. The concentration of sulfate leached in an aqueous solution was used to estimate the initial gypsum content of the sample. The impact of sample size and leaching time were evaluated. Precision and accuracy increased with increasing gypsum content. Results from replicate samples had an average relative standard deviation of 9%. The gypsum content of fines obtained from different facilities in the US varied widely from 1% to over 25%. These variations not only occurred between differing facilities, but within batches produced within a single facility.
Fate of Mercury in Synthetic Gypsum Used for Wallboard Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessica Marshall Sanderson
2006-06-01
This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasingmore » the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more significant percentage of the mercury detected was in the oxidized form, particularly from the stack near the product discharge end of the kiln. However, this represented a very small percentage of the overall mercury loss.« less
Gypsum under pressure: A first-principles study
NASA Astrophysics Data System (ADS)
Giacomazzi, Luigi; Scandolo, Sandro
2010-02-01
We investigate by means of first-principles methods the structural response of gypsum (CaSO4ṡ2H2O) to pressures within and above the stability range of gypsum-I (P≤4GPa) . Structural and vibrational properties calculated for gypsum-I are in excellent agreement with experimental data. Compression within gypsum-I takes place predominantly through a reduction in the volume of the CaO8 polyhedra and through a distortion of the hydrogen bonds. The distance between CaSO4 layers becomes increasingly incompressible, indicating a mechanical limit to the packing of water molecules between the layers. We find that a structure with collapsed interlayer distances becomes more stable than gypsum-I above about 5 GPa. The collapse is concomitant with a rearrangement of the hydrogen-bond network of the water molecules. Comparison of the vibrational spectra calculated for this structure with experimental data taken above 5 GPa supports the validity of our model for the high-pressure phase of gypsum.
Effect of gypsum application on enzymatic browning activity in lettuce.
Chutichudet, Prasit; Chutichudet, B; Kaewsit, S
2009-09-15
A comprehensive study to evaluate calcium, in terms of gypsum (CaSO4.2H2O) by soil dressing application, on enzymatic browning activity of Polyphenol oxidase (PPO) and internal qualities was tested on lettuce var. Grand Rapids under field conditions. A factorial in completely randomized design was arranged with four replications. The results showed that plants-treated with 50 mg kg(-1) gypsum applied at 40 DAP had the maximal fresh weight of 25.83 g plant(-1). The internal qualities of the lettuce at harvest showed that plants treated with 50 mg kg(-1) gypsum had the maximal chlorophyll content (26.80 mg m(-2)), while all gypsum concentrations applied in this study, had less content of ascorbic acid than the control plants. Plants-treated with 100 mg kg(-1) gypsum affected to the lowest level of PPO activity at week 3 after transplanting. Furthermore, gypsum application had no effect to biomass, leaf colour, the contents of phenolic and quinone in lettuce at harvesting stage.
NASA Astrophysics Data System (ADS)
De Lange, Gert J.; Krijgsman, Wout
2014-05-01
The Messinian Salinity Crisis (MSC) is a dramatic event that took place ~ 5.9 Ma ago, and resulted in the deposition of 0.3-3 km thick evaporites at the Mediterranean seafloor. A considerable and long-lasting controversy existed on the modes of their formation. During the CIESM Almeria Workshop a consensus was reached on several aspects. In addition, remaining issues to be solved were identified, such as for the observed shallow gypsum versus deep dolostone deposits for the early phase of MSC. The onset of MSC is marked by deposition of gypsum/sapropel-like alternations, thought to relate to arid/humid climate conditions. Gypsum precipitation only occurred at marginal settings, while dolomite containing rocks have been reported from deeper settings. A range of potential explanations have been reported, most of which cannot satisfactorily explain all observations. Biogeochemical processes during MSC are poorly understood and commonly neglected. These may, however, explain that different deposits formed in shallow versus deep environments without needing exceptional physical boundary conditions for each. We present here a unifying mechanism in which gypsum formation occurs at all shallow water depths but its preservation is mostly limited to shallow sedimentary settings. In contrast, ongoing anoxic organic matter (OM) degradation processes in the deep basin result in the formation of dolomite. Gypsum precipitation in evaporating seawater takes place at 3-7 times concentrated seawater; seawater is always largely oversaturated relative to dolomite but its formation is thought to be inhibited by the presence of dissolved sulphate. Thus the conditions for formation of gypsum exclude those for the formation of dolomite and vice versa. Another process that links the saturation states of gypsum and dolomite is that of OM degradation by sulphate reduction. In stagnant deep water, oxygen is rapidly depleted through OM degradation, then sulphate becomes the main oxidant for OM mineralization, thus reducing the deep-water sulphate content. In addition, considerable amounts of dissolved carbonate are formed. This means that low-sulphate conditions as for MSC deepwater, i.e. unfavorable conditions for gypsum formation, always coincide with anoxic, i.e. oxygen-free conditions. Thus one would expect a bath-tub rim of gypsum at all shallow depths, but gypsum appears mainly at silled marginal basins. However, a thick package of heavy gypsum on top of more liquid mud in a marginal/slope setting is highly unstable, thus any physical disturbance such as tectonic activity or sea-level change, would easily lead to downslope transport of such marginal gypsum deposits. The absence of gypsum and the presence of erosional unconformities at the sill-less Mediterranean passive margins concord to such removal mechanism. In addition, large-scale re-sedimentation of gypsum has also been found for deep Messinian settings in the Northern Apennines and Sicily. Only at those marginal settings that were silled, the marginal gypsum deposits have been preserved. Including the dynamic biogeochemical processes in the thusfar static interpretations of evaporite formation mechanisms can thus account for the paradoxal, isochronous formation of shallow gypsum and deep-dolomite during the early MSC (1). (1) De Lange G.J. and Krijgsman W. (2010) Mar. Geol. 275, 273-277.
The calcium isotope evolution of Lake Lisan, the Dead Sea glacial precursor
NASA Astrophysics Data System (ADS)
Bradbury, H. J.; Turchyn, A. V.; Wong, K.; Torfstein, A.
2016-12-01
Calcium is a stoichiometric component of carbonate minerals whose calcium isotopic composition reflects changes in the calcium isotope composition of the water from which it precipitates as well as the calcium isotope fractionation factor during precipitation. The lacustrine deposits of the last glacial Dead Sea (Lisan Formation) are dominated by carbonate minerals (aragonite) that record the geochemical history of the lake. The sediment sequence comprises alternating laminae of aragonite and clay-rich marls, interspersed with primary gypsum beds and disseminated secondary gypsum crystals. The aragonite precipitated annually during high lake stands associated with wet periods, while the primary gypsum precipitated during low lake conditions (arid periods). We report the calcium isotopic composition (δ44Ca in ‰ relative to bulk silicate earth) of primary aragonite laminae, primary gypsum and secondary gypsum at 1-5kyr resolution throughout the Lisan Formation sampled at the Masada section (70 - 14.5 ka). The δ44Ca of the primary gypsum averages +0.29‰, and displays smaller temporal variations than the aragonite, which averages -0.35‰ but ranges between +0.18‰ and -0.68‰. The aragonite δ44Ca changes temporally in sync with the previously reconstructed lake level suggesting the aragonite δ44Ca reflects changes in the lake calcium balance during lake level changes. The secondary gypsum composition (-0.3‰) corresponds to coeval aragonite samples. For the secondary gypsum to have a similar δ44Ca to the aragonite it is likely that the calcium derived from the aragonite in a near quantitative fashion through recrystallization of the aragonite to gypsum. A numerical box model is used to explore the effect of changing lake water levels on the calcium isotope composition of the aragonite and gypsum over the time interval studied.
Gypsum-karst problems in constructing dams in the USA
Johnson, K.S.
2008-01-01
Gypsum is a highly soluble rock and is dissolved readily to form caves, sinkholes, disappearing streams, and other karst features that typically are also present in limestones and dolomites. Gypsum karst is widespread in the USA and has caused problems at several sites where dams were built, or where dam construction was considered. Gypsum karst is present (at least locally) in most areas where gypsum crops out, or is less than 30-60 m below the land surface. These karst features can compromise on the ability of a dam to hold water in a reservoir, and can even cause collapse of a dam. Gypsum karst in the abutments or foundation of a dam can allow water to pass through, around, or under a dam, and solution channels can enlarge quickly, once water starts flowing through such a karst system. The common procedure for controlling gypsum karst beneath the dam is a deep cut-off trench, backfilled with impermeable material, or a close-spaced grout curtain that hopefully will fill all cavities. In Oklahoma, the proposed Upper Mangum Dam was abandoned before construction, because of extensive gypsum karst in the abutments and impoundment area. Catastrophic failure of the Quail Creek Dike in southwest Utah in 1989 was due to flow of water through an undetected karstified gypsum unit beneath the earth-fill embankment. The dike was rebuilt, at a cost of US $12 million, with construction of a cut-off trench 600 m long and 25 m deep. Other dams in the USA with severe gypsum-karst leakage problems in recent years are Horsetooth and Carter Lake Dams, in Colorado, and Anchor Dam, in Wyoming. ?? 2007 Springer-Verlag.
Pre-contamination of new gypsum wallboard with potentially harmful fungal species.
Andersen, B; Dosen, I; Lewinska, A M; Nielsen, K F
2017-01-01
Gypsum wallboard is a popular building material, but is also very frequently overgrown by Stachybotrys chartarum after severe and/or undetected water damage. The purpose of this study was to determine whether Stachybotrys and other fungi frequently isolated from wet gypsum wallboard are already present in the panels directly from the factory. Surface-disinfected gypsum disks were wetted with sterile water, sealed, and incubated for 70 days. The results showed that Neosartorya hiratsukae (≡ Aspergillus hiratsukae) was the most dominant fungus on the gypsum wallboard followed by Chaetomium globosum and Stachybotrys chartarum. Our results suggest that these three fungal species are already embedded in the materials, presumably in the paper/carton layer surrounding the gypsum core, before the panels reach the retailers/building site. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mahan, Shannon; Kay, John
2012-01-01
The long term stability and reliability of the luminescence signal for gypsum has not been well documented or systematically measured until just recently. A review of the current literature for luminescence dating of gypsum is compiled here along with original efforts at dating an intact and in-situ bed of selenite gypsum at Salt Basin Playa, New Mexico and Texas. This effort differs from other documented luminescence dating efforts because the gypsum is not powdery or redistributed from its original growth patterns within the playa basin but is instead of a crystalline form. Sixteen ages from eight cores were ultimately produced with seven of the ages coming from rare detrital quartz encased in or with the gypsum crystals while the remaining ages are from the crystalline gypsum. As far as can be ascertained, the quartz was measured separately from the gypsum and no contaminants were noted in any of the aliquots. Some basic and preliminary tests of signal stability were measured and found to be mitigated by lessening of pre-heat protocols. Ages ranged from 8 ka to 10 ka in the shallow cores and 16 ka to 22 ka in the deeper cores. These ages will be useful in determining rates of gypsum growth within a sequence of evaporates which, in turn, will help to better document historic rates of evaporation and thus estimate, with more precision, the corresponding annual evaporation rates.
The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite.
Cockell, C S; Osinski, G R; Banerjee, N R; Howard, K T; Gilmour, I; Watson, J S
2010-09-01
Evaporitic deposits are a globally widespread habitat for micro-organisms. The microbe-mineral environment in weathered and remobilized gypsum from exposed mid-Ordovician marine evaporite beds in the polar desert of Devon Island, Nunavut, Canadian High Arctic was examined. The gypsum is characterized by internal green zones of cyanobacterial colonization (dominated by Gloeocapsa/Aphanothece and Chroococcidiopsis spp. morphotypes) and abundant black zones, visible from the surface, that contain pigmented cyanobacteria and fungi. Bioessential elements in the gypsum are primarily provided by allochthonous material from the present-day polar desert. The disruption, uplift and rotation of the evaporite beds by the Haughton meteorite impact 39 Ma have facilitated gypsum weathering and its accessibility as a habitat. No cultured cyanobacteria, bacteria and fungi were halophilic consistent with the expectation that halophily is not required to persist in gypsum habitats. Heterotrophic bacteria from the evaporite were slightly or moderately halotolerant, as were heterotrophs isolated from soil near the gypsum outcrop showing that halotolerance is common in arctic bacteria in this location. Psychrotolerant Arthrobacter species were isolated. No psychrophilic organisms were isolated. Two Arthrobacter isolates from the evaporite were used to mediate gypsum neogenesis in the laboratory, demonstrating a potential role for microbial biomineralization processes in polar environments.
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
40 CFR 60.734 - Monitoring of emissions and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuller's earth rotary dryer, a gypsum rotary dryer, a gypsum flash calciner, gypsum kettle calciner, an... water column gauge pressure at the level of operation. The liquid flow rate monitoring device must be...
Wang, Hui; Song, Qiang; Yang, Rui-ming; Yao, Qiang; Chen, Chang-he
2010-09-01
Three acids (HNO3, HNO3/HF and HNO3 /HF+ H3BO3) were used to decompose gypsum with microwave digestion system. The contents of 10 mineral elements (Al, Ca, Mg, Fe, K, Na, S, Ti, Si and Sr) in gypsum were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) while 6 heavy metals (V, Cr, Mn, Zn, Se and Ce) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). GBW03109a, GBW03110 and FGD-2 were used as gypsum standard reference materials. The results showed that two-step microwave digestion with HNO3/HF at 210 degrees C and then adding H3BO3 for the removal of HF and fluorides completely decomposed the gypsums, while this method achieved good recoveries for all elements in the three gypsum standard reference materials. The recovery was from 88% to 112% and the RSD of tests was below 3%. The method was applied to the elemental analysis for flue gas desulfurization gypsums from three coal-fired power plants.
Krause, Michael; Geer, William; Swenson, Lonie; Fallah, Payam; Robbins, Coreen
2006-08-01
The basis for some common gypsum wallboard mold remediation practices was examined. The bottom inch of several gypsum wallboard panels was immersed in bottled drinking water; some panels were coated and others were untreated. The panels were examined and tested for a period of 8 weeks. This study investigated: (a) whether mold growth, detectable visually or with tape lift samples, occurs within 1 week on wet gypsum wallboard; (b) the types, timing, and extent of mold growth on wet gypsum wallboard; (c) whether mold growth is present on gypsum wallboard surfaces 6 inches from visible mold growth; (d) whether some commonly used surface treatments affect the timing of occurrence and rate of mold growth; and (e) if moldy but dried gypsum wallboard can be cleaned with simple methods and then sealed with common surface treatments so that residual mold particles are undetectable with typical surface sampling techniques. Mold growth was not detected visually or with tape lift samples after 1 week on any of the wallboard panels, regardless of treatment, well beyond the 24-48 hours often mentioned as the incubation period. Growth was detected at 2 weeks on untreated gypsum. Penicillium, Cladosporium, and Acremonium were early colonizers of untreated panels. Aspergillus, Epicoccum, Alternaria, and Ulocladium appeared later. Stachybotrys was not found. Mold growth was not detected more than 6 inches beyond the margin of visible mold growth, suggesting that recommendations to remove gypsum wallboard more than 1 foot beyond visible mold are excessive. The surface treatments resulted in delayed mold growth and reduced the area of mold growth compared with untreated gypsum wallboard. Results showed that simple cleaning of moldy gypsum wallboard was possible to the extent that mold particles beyond "normal trapping" were not found on tape lift samples. Thus, cleaning is an option in some situations where removal is not feasible or desirable. In cases where conditions are not similar to those of this study, or where large areas may be affected, a sample area could be cleaned and tested to verify that the cleaning technique is sufficient to reduce levels to background or normal trapping. These results are generally in agreement with laboratory studies of mold growth on, and cleaning of, gypsum wallboard.
Initiation and growth of gypsum piercement structures in the Zechstein Basin
Williams-Stroud, S. C.; Paul, J.
1997-01-01
The importance of tectonic processes in initiating halite diapirs has become much better understood in recent years. Less well understood is the development of diapiric structures involving rocks composed predominantly of gypsum. Below about 1000 m, gypsum dehydrates to anhydrite, which often obscures primary sedimentary textures. If the strain associated with diapiric rise in the rock induces the transition to anhydrite, obliteration of primary features in the gypsum can be expected. In our study, we infer that the diapiric movement in the Werra Anhydrite member of cycle 1 of the Zechstein Formation of Europe occurred before the initial transition of gypsum to anhydrite based on the presence of pseudomorphs of bedded primary gypsum crystals, the overburden lithologies and depositional environment, and the mechanical properties of gypsum, anhydrite and carbonate rocks. Faulting and differential loading of a shallow overburden were the key components in initiating the gypsum diapirism. The transition to anhydrite occurred after burial and after cessation of diapirism. In comparison, the diapirism of calcium sulfate of the Leine Anhydrite into the Leine Halite members of cycle 3 of the Zechstein Formation probably occurred much later after burial and appears to have been triggered by halite diapirism, which in turn triggered the dehydration reaction, causing the calcium sulfate to become the incompetent phase relative to the halite. Published by Elsevier Science Ltd.
Shock, Scott S; Noggle, Jessica J; Bloom, Nicholas; Yost, Lisa J
2009-04-01
Synthetic gypsum produced by flue-gas desulfurization (FGD) in coal-fired power plants (FGD gypsum) is put to productive use in manufacturing wallboard. FGD gypsum wallboard is widely used, accounting for nearly 30% of wallboard sold in the United States. Mercury is captured in flue gas and thus is one of the trace metals present in FGD gypsum; raising questions about the potential for mercury exposure from wallboard. Mercury is also one of the trace metals present in "natural" mined gypsum used to make wall board. Data available in the literature were not adequate to assess whether mercury in wallboard from either FGD or natural gypsum could volatilize into indoor air. In this study, mercury volatilization was evaluated using small-scale (5 L) glass and Teflon flux chambers, with samples collected using both iodated carbon and gold-coated sand traps. Mercury flux measurements made using iodated carbon traps (n=6) were below the detection limit of 11.5 ng/m2-day for all natural and synthetic gypsum wallboard samples. Mercury flux measurements made using gold-coated sand traps (n=6) were 0.92 +/- 0.11 ng/m2-day for natural gypsum wallboard and 5.9 +/- 2.4 ng/m2-day for synthetic gypsum wallboard. Room air mercury concentrations between 0.028 and 0.28 ng/m3 and between 0.13 and 2.2 ng/m3 were estimated based on the flux-rate data for natural and synthetic gypsum wallboard samples, respectively, and were calculated assuming a 3 m x 4 m x 5 m room, and 10th and 90th percentile air exchange rates of 0.18/hour and 1.26/hour. The resulting concentration estimates are well below the U.S. Environmental Protection Agency (EPA) reference concentration for indoor air elemental mercury of 300 ng/m3 and the Agency for Toxic Substances and Disease Registry minimal risk level (MRL) of 200 ng/m3. Further, these estimates are below background mercury concentrations in indoor air and within or below the range of typical background mercury concentrations in outdoor air.
Method Analysis of Microbial Resistant Gypsum Products
Abstract: Several commercially available gypsum products are marketed as microbial-resistant. During previous test method research on a microbial resistant gypsum wallboard study, a common theme from both stakeholders and product vendors was the need for a unified and accepted m...
Mineral resources of Colombia (other than petroleum)
Singewald, Quentin Dreyer
1950-01-01
The following report summarizes data acquired during 1942-45, in Colombia, by geologists and engineers of the Foreign Economic Administration, with whom the United States Geological Survey cooperated. Twenty-nine mineral commodities are considered, but the data for five of them are scant because they were of no interest to FEA personnel. Petroleum is not considered. Preliminary to a review of individual mineral commodities, resumes are given of the general geography and geology of Colombia and of the country's mining laws. The principal mineral commodities, besides petroleum, produced in Colombia are (1) emeralds, gold, platinum, and silver, mainly for export, and (2) barite, cement, clay, coal, gypsum, salt, sand and gravel, silica, and stone, mainly for the domestic market. A large number of other mineral commodities are known in "raw" prospects, some of which may eventually become productive. Their distribution and apparent potentialities, as of 1945, are given. Factors unfavorable to mining are the ruggedness of the terrain, the scarcity of outcrops, and the very high transportation costs.
BIRDSEYE, NEPHI, AND SANTAQUIN ROADLESS AREAS, UTAH.
Sorensen, Martin L.; Korzeb, Stanley L.
1984-01-01
The results of a mineral-resource appraisal of the Birdseye, Nephi, And Santaquin Roadless Areas in Utah indicate several areas with probable or substantiated mineral-resource potential. The Eva mine in the Santaquin Roadless Area contains small, demonstrated resources of lead-zinc-silver ore. A probable resource potential for lead, zinc, and silver deposits exists in the area around the Eva mine, and elsewhere in the Birdseye, Nephi, and Santaquin Roadless Areas where Mississipian and Cambrian carbonate rocks occur. A substantiated potential for gypsum is recognized in the southwest corner of the Nephi Roadless Area and a probable resource potential in adjacent areas underlain by the Jurassic Arapien Shale. There are limestone resources for use in cement and smelter flux in the Nephi and Santaquin Roadless Areas, but similar limestone occurs abundantly outside the area. The potential for oil and gas resources cannot be assessed from available data. There are no indications of coal or geothermal resources in the roadless areas.
Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunther, W., E-mail: Wolfgang.Kunther@empa.ch; Lothenbach, B.; Scrivener, K.
2013-02-15
This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposedmore » in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.« less
Quantitative Mineralogical Analysis of Mars Analogues Using CHEMIN Data and Rietveld Refinement
NASA Technical Reports Server (NTRS)
Bish, D. L.; Sarrazin, P.; Chipera, S. J.; Vaniman, D. T.; Blake, D.
2004-01-01
Mineralogical analysis is a critical component of planetary surface exploration. Chemical data alone leave serious gaps in our understanding of the surfaces of planets where complex minerals may form in combination with H, S, and halogens. On such planets (e.g., Mars) a single chemical composition may represent a range of mineral assemblages. For example, Viking chemical analyses of excavated duricrust indicate that Mg and S are correlated and 10% MgSO4 (anhydrous weight) is a likely cementing agent. Pathfinder chemical data support a similar abundance of MgSO4 in the most altered materials. However, there are many possible Mg-sulfates with widely varying hydration states (including dehydrated and 1-, 2-, 3-, 4-, 5-, 6-, and 7-hydrates). In addition, other sulfate minerals such as gypsum (CaSO4 .2H2O) and other salts containing Cl may also exist. X-ray diffraction (XRD) has the ability to decipher mixtures of these phases that would be difficult, if not impossible to unravel using only chemical or spectral data.
Rosenthal, E.; Jones, B.F.; Weinberger, G.
1998-01-01
The chemical evolution of the Kurnub Group paleowater was studied starting from rainwater in recharge areas of the Sinai and along groundwater flowpaths leading to the natural outlets of this regional aquifer. This was achieved by investigating the chemical composition of groundwater, ionic ratios, degrees of saturation with common mineral species, normative analysis of dissolved salts and by modeling of rock/water interaction and mixing processes occurring along groundwater flow paths. The initial groundwater composition used is from the Nakhel well in Sinai. It evolves from desert rainwater percolating through typical Kurnub Group lithology in Sinai. This rainwater dissolves mainly gypsum, halite and dolomite together with smaller amounts of marine aerosol and K-feldspar. At the same time it precipitates calcite, SiO2, smectite and degasses CO2. Between the area of Nakhel and the northern Negev the chemistry of Kurnub Group waters is influenced by dissolution of halite and lesser amounts of gypsum of surficial origin in recharge areas, small amounts of feldspars and of dolomite cement in sandstones eroded from the Arabo-Nubian igneous massif of Sinai and organic degradation-derived CO2. Concomitantly, there is precipitation of calcite, smectite, SiO2 and probably analcime characteristic of sediments in continental closed basins. North of the Negev, the Kurnub Group fluids are diluted and altered by mixing with Judea Group aquifer groundwaters. On the E there is mixing with residual brines from the water body ancestral to the Dead Sea, prior to discharge into the Arava valley. Rock/water interaction indicated by NETPATH and PHREEQC modeling is in agreement with lithology and facies changes previously observed in the Kurnub Group sequence.
Lin, Jinru; Sun, Wei; Desmarais, Jacques; Chen, Ning; Feng, Renfei; Zhang, Patrick; Li, Dien; Lieu, Arthur; Tse, John S; Pan, Yuanming
2018-01-01
Phosphogypsum formed from the production of phosphoric acid represents by far the biggest accumulation of gypsum-rich wastes in the world and commonly contains elevated radionuclides, including uranium, as well as other heavy metals and metalloids. Therefore, billions-of-tons of phosphogypsum stockpiled worldwide not only possess serious environmental problems but also represent a potential uranium resource. Gypsum is also a major solid constituent in many other types of radioactive mine tailings, which stems from the common usage of sulfuric acid in extraction processes. Therefore, management and remediation of radioactive mine tailings as well as future beneficiation of uranium from phosphogysum all require detailed knowledge about the nature and behavior of uranium in gypsum. However, little is known about the uptake mechanism or speciation of uranium in gypsum. In this study, synthesis experiments suggest an apparent pH control on the uptake of uranium in gypsum at ambient conditions: increase in U from 16 μg/g at pH = 6.5 to 339 μg/g at pH = 9.5. Uranium L 3 -edge synchrotron X-ray absorption spectroscopic analyses of synthetic gypsum show that uranyl (UO 2 ) 2+ at the Ca site is the dominant species. The EXAFS fitting results also indicate that uranyl in synthetic gypsum occurs most likely as carbonate complexes and yields an average U-O distance ∼0.25 Å shorter than the average Ca-O distance, signifying a marked local structural distortion. Applications to phosphogypsum from the New Wales phosphoric acid plant (Florida, USA) and uranium mine tailings from the Key Lake mill (Saskatchewan, Canada) show that gypsum is an important carrier of uranium over a wide range of pH and controls the fate of this radionuclide in mine tailings. Also, development of new technologies for recovering U from phosphogypsum in the future must consider lattice-bound uranyl in gypsum. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sami Us, Muhammed; Tekin, Erdoǧan
2016-04-01
The Cihanbeyli-Yeniceoba Tertiary basin and other neighbouring basins such as Haymana on the NW and Tuzgölü on the east were formed after ophiolite emplacement and then evolved as tectonic controlled basins bordered with normal and oblique-slip fault systems NW-SE in extending. Where sedimentation commenced with Late Cretaceous-Early Paleocene marine transgression and ended by late Middle Eocene-Early Oligocene regression that involved thick evaporite sedimentation just before the onset of the terrestrial regime through the early Late Oligocene-Pliocene time. This study mainly was focused on the evaporitic sediments of the Late Oligocene-Middle Miocene aged Gökdaǧ Formation which unconformably overlain by fluvial and alluvial units of the Cihanbeyli Formation (Late Miocene-Early Pliocene). Typical outcrops have been seen around the Yeniceoba-Kütükuşaǧı-Kuşca region located in the western part of Tuz Gölü (Salt Lake). The study includes several targets. These are stratigraphical contact and relationship between evaporite and non-evaporite units, evaporite environments and mineralogical, petrographical and microtextural features of the evaporites. The following five evaporite facies were described: a) massive gypsum (F1), b) laminated-banded gypsum (F2), c) nodular gypsum (F3), d) clastic gypsum (F4), e) satin-spar gypsum (F5). On the other hand polarized microscope and scanning electron microscope (SEM) show that secondary gypsums are represented by alabastrine and porfiroblastic textures. Primary anhydrite relicts, euhedral celestine crystals accompanied with the secondary gypsum. Clastic gypsum is rich in fragment fossils (mostly nummulites) and kaolinite clay minerals. All data suggest that evaporites were widely deposited as basin margin evaporite that temporally underwent atmospheric conditions gave rise to detrital gypsum ranging from gypsarenite to gypsum conglomerate. Acknowledgement:This presentation was prepared MS thesis to financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK-CAYDAG) with 113 Y 090 numbered project.
Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom.
Wollenburg, J E; Katlein, C; Nehrke, G; Nöthig, E-M; Matthiessen, J; Wolf-Gladrow, D A; Nikolopoulos, A; Gázquez-Sanchez, F; Rossmann, L; Assmy, P; Babin, M; Bruyant, F; Beaulieu, M; Dybwad, C; Peeken, I
2018-05-16
Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m -2 gypsum crystals were formed in sea ice at temperatures below -6.5 °C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.
Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal
2015-07-01
This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.
Hydrogen sulfide release from dairy manure storages containing gypsum bedding
USDA-ARS?s Scientific Manuscript database
Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...
Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Craig W.; Telesca, Antonio; Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu
Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum loweredmore » the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite.« less
Fate of Mercury in Synthetic Gypsum Used for Wallboard Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessica Sanderson
2007-12-31
This report presents and discusses results from the project 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production', performed at five different full-scale commercial wallboard plants. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercurymore » in FGD systems. The objective of this study has been to determine whether any mercury is released into the atmosphere at wallboard manufacturing plants when the synthetic gypsum material is used as a feedstock for wallboard production. The project has been co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope included seven discrete tasks, each including a test conducted at various USG wallboard plants using synthetic gypsum from different wet FGD systems. The project was originally composed of five tasks, which were to include (1) a base-case test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5,could not be conducted as planned and instead was conducted at conditions similar to Task 3. Subsequently an opportunity arose to test gypsum produced from the Task 5 FGD system, but with an additive expected to impact the stability of mercury, so Task 6 was added to the project. Finally, Task 7 was added to evaluate synthetic gypsum produced at a power plant from an additional coal type. In the project, process stacks in the wallboard plant were sampled using the Ontario Hydro method. In every task, the stack locations sampled included a gypsum dryer and a gypsum calciner. In Tasks 1 and 4 through 7, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. These results and process data were used to construct mercury mass balances across the wallboard plants. The results from the project showed a wide range of percentage mercury losses from the synthetic gypsum feedstocks as measured by the Ontario Hydro method at the process stacks, ranging from 2% to 55% of the mercury in the gypsum feedstock. For the tasks exceeding 10% mercury loss across the wallboard plant, most of the loss occurred across the gypsum calciner. When total wallboard emissions remained below 10%, the primary emission location varied with a much less pronounced difference in emission between the gypsum dryer, calciner and board dryer. For all seven tasks, the majority of the mercury emissions were measured to be in the elemental form (Hg{sup 0}). Overall, the measured mercury loss mass rates ranged from 0.01 to 0.17 grams of mercury per dry ton of synthetic gypsum processed, or 0.01 to 0.4 pounds of mercury released per million square feet of wallboard produced from synthetic gypsum. The Coal Combustion Product Production and Use Survey from the American Coal Ash Association (ACAA) indicate that 7,579,187 short tons of synthetic gypsum were used for wallboard production in 2006. Extrapolating the results of this study to the ACAA industry usage rate, we estimate that mercury releases from wallboard production plants in 2006 ranged between 150 to 3000 pounds for the entire U.S. wallboard industry. With only seven sets of wallboard plant measurements, it is difficult to draw firm conclusions about what variables impact the mercury loss percentages across the wallboard plants. One significant observation from this study was that higher purge rates of chlorides and fine solid particles from the wet FGD systems appear to produce gypsum with lower mercury concentrations. Any chemical interaction between mercury and chlorides is not well understood; however, based on the information available the lower mercury content in the gypsum product is likely due to the blow down of fine, mercury-rich particles as opposed to a decreased chloride concentration. One possible explanation is that a decrease of fine particles in the FGD slurry allows for less adsorption of mercury onto those particles, thus the mercury remains with the FGD liquor rather than the gypsum product. A more detailed discussion on synthetic gypsum sources and FGD chemistry data can be found in the Experimental section of this report and Table 4.« less
NASA Astrophysics Data System (ADS)
Perry, Eugene; Paytan, Adina; Pedersen, Bianca; Velazquez-Oliman, Guadalupe
2009-03-01
SummaryWe report 87Sr/ 86Sr and ion concentrations of sulfate, chloride, and strontium in the groundwater of the northern and central Yucatan Peninsula, Mexico. Correlation between these data indicates that ejecta from the 65.95 m.y. old Chicxulub impact crater have an important effect on hydrogeology, geomorphology, and soil development of the region. Ejecta are present at relatively shallow subsurface depths in north-central Yucatan and at the surface along the Rio Hondo escarpment in southeast Quintana Roo, where they are referred to as the Albion Formation. Anhydrite/gypsum (and by inference celestite) are common in impact ejecta clasts and in beds and cements of overlying Paleocene and Lower Eocene rocks cored around the margin of the crater. The sulfate-rich minerals that are found in rocks immediately overlying the impact ejecta blanket, may either be partially mobilized from the ejecta layer itself or may have been deposited after the K/T impact event in an extensive pre-Oligocene shallow sea. These deposits form a distinctive sedimentary package that can be easily traced by the Eocene-Cretaceous 87Sr/ 86Sr signal. A distinct Sr isotopic signature and high SO 4/Cl ratios are observed in groundwater of northwestern and north-central Yucatan that interacts with these rocks. Moreover, the distribution of the gypsum-rich stratigraphic unit provides a solution-enhanced subsurface drainage pathway for a broad region characterized by dissolution features (poljes) extending from Chetumal, Quintana Roo to Campeche, Campeche. The presence of gypsum quarries in the area is also consistent with a sulfate-rich stratigraphic "package" that includes ejecta. The distinctive chemistry of groundwater that has been in contact with evaporite/ejecta can be used to trace flow directions and confirms a groundwater divide in the northern Peninsula. Information about groundwater flow directions and about deep subsurface zones of high permeability is useful for groundwater and liquid waste management in the area. Where it discharges at the coast, the unique chemistry of the groundwater that has interacted with the evaporite/ejecta strata may also have significant geomorphologic implications. While groundwater-seawater mixing at the coast has been shown to dissolve and erode limestone, PHREEQC modeling shows that mixing of water nearly saturated in CaSO 4 with seawater has a less vigorous dissolution effect due to its high Ca content.
Sustainable uses of FGD gypsum in agricultural systems
USDA-ARS?s Scientific Manuscript database
Interest in using gypsum as a management tool to improve crop yields and soil/water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur (S) from combustion gases at coal-fired power plants, in major agricultural...
Gypsum as a bedding source for broiler chickens
USDA-ARS?s Scientific Manuscript database
Three trials examined the feasibility of flue gas desulfurization gypsum as a bedding material for raising broilers. Gypsum was used alone, under or on top of pine shavings and pine bark. Test materials were placed as bedding in pens to simulate commercial broiler production through three growout cy...
An important tool with no instruction manual: A review of gypsum use in agriculture
USDA-ARS?s Scientific Manuscript database
Land application of gypsum has been studied and utilized in agriculture and environmental remediation for many years. Most of the published literature has focused on gypsum application impacts on soil properties rather than crop yields. This literature review was conducted to (i) gather results from...
Impact of FGD gypsum on soil fertility and plant nutrient uptake
USDA-ARS?s Scientific Manuscript database
Use of FGD gypsum is thought to improve soil productivity and increase plant production. Thus, a study was conducted to evaluate the effects of FGD gypsum on yield, plant nutrient uptake and soil productivity. The study was conducted on an established bermudagrass pasture. Poultry litter was applied...
NASA Astrophysics Data System (ADS)
Chen, Dong; Wang, En-yuan; Li, Nan
2017-08-01
In order to study the mechanism of rock bursts in a mined-out area of a gypsum mine, in this paper acoustic emission testing of the uniaxial compression of gypsum and sandstone samples is carried out. The case of rupture of the specimen is observed, and the load axial deformation curve and acoustic emission parameters are obtained for the whole process of specimen rupture. The similarities and differences between the gypsum and sandstone samples are determined in terms of their mechanical properties, their damage evolution laws and frequency band energy distributions, and the instantaneous energy characteristics of their acoustic emission. The results show that the main fracture morphology of gypsum is ‘eight’-type, and the macroscopic fracture morphology of sandstone is mainly of partial ‘Y’-type and inverted Y-type. The intensity and uniformity of the gypsum and sandstone of the medium are different; because the gypsum is more uniform, it does not show as much variation as sandstone, instead suddenly increasing and decreasing. The maximum value of the damage variable D of gypsum reached 1, but the maximum value of D of the sandstone only reached 0.9. The frequency band of the maximum energy of gypsum and sandstone gradually decreased across the the four stages of rupture, while the maximum energy percentage increased gradually. From the stage where damage gradually increases to the stage of integral fracture of the specimen, the instantaneous energy showed a certain degree of increase. With an increase in the strength of the sample, the maximum energy percentage of the two materials corresponding to each phase gradually increases, and from the stage where damage gradually increases to the stage of integral fracture of the specimen, the value of instantaneous energy obviously increases. The results indicate that gypsum mines will also experience rock bursts, as coal mines do, but the intensity will be different. Therefore, using the three indicators, the frequency band of the maximum energy, the maximum energy percentage, and the maximum instantaneous energy, the rupture of the sample can be predicted, which can be used to improve the accuracy and efficiency of early warning systems for rock bursts in gypsum mines.
Operator Exposure to Hydrogen Sulfide from Dairy Manure Storages Containing Gypsum Bedding.
Fabian-Wheeler, Eileen E; Hile, Michael L; Murphy, Dennis J; Hill, Davis E; Meinen, Robert; Brandt, Robin C; Elliott, Hershel A; Hofstetter, Daniel
2017-01-26
Dairy manure storages containing gypsum-based bedding have been linked anecdotally with injury and death due to presumed dangerous levels of gases released. Recycled gypsum products are used as a cost-effective bedding alternative to improve animal welfare and provide agronomic benefits to manure recycled back to the land. Sulfur contained in gypsum (calcium sulfate) can contribute to hydrogen sulfide (H2S) gas formation under the anaerobic storage conditions typical of dairy manure slurry. Disturbance of stored manure during agitation releases a burst of volatile gases. On-farm monitoring was conducted to document conditions during manure storage agitation relative to gas concentration and operator safety. One objective was to document operator exposure to H2S levels; therefore, each operator wore a personal gas monitor while performing tasks associated with manure storage agitation. Data from three dairy bedding management categories on ten farms were compared: (1) traditional organic bedding, (2) gypsum bedding, and (3) gypsum bedding plus a manure additive thought to reduce H2S formation and/or release. Portable meters placed around the perimeter of dairy manure storages recorded H2S concentrations prior to and during 19 agitation events. Results show that farms using gypsum bedding produced higher H2S concentrations during manure storage agitation than farms using traditional bedding. In most cases, gypsum-containing manure storages produced H2S levels above recognized safe thresholds for both livestock and humans. Farm operators were most at risk during activities in close proximity to the manure storage during agitation, and conditions 10 m away from the storage were above the 20 ppm H2S threshold on some farms using gypsum bedding. Although H2S concentrations rose to dangerous levels, only two of 18 operators were exposed to >50 ppm H2S during the first 60 min of manure storage agitation. Operators who are aware of the risk of high H2S concentrations near gypsum-laden manure storages can reduce their exposure risk by working upwind and away from the H2S plume within a closed tractor cab. Copyright© by the American Society of Agricultural Engineers.
NASA Astrophysics Data System (ADS)
De Lange, G. J.; Krijgsman, W.
2015-12-01
The Messinian Salinity Crisis (MSC) is a dramatic event that took place ~ 5.9 Ma ago, resulting in deposition of 1-3 km thick evaporites at the Mediterranean seafloor. A considerable, long-lasting controversy existed on the modes of their formation, including the observed shallow gypsum versus deep dolostone deposits for the early phase of MSC. The onset of MSC is marked by deposition of gypsum/sapropel-like alternations, thought to relate to arid/humid climate conditions at a precessional rhythm. Gypsum precipitation only occurred at marginal- and dolomite formation at deeper settings. A range of potential explanations was given, most of which cannot satisfactorily explain all observations. Biogeochemical processes during MSC are commonly neglected but may explain that different deposits formed in shallow vs deep environments without exceptional physical boundary conditions for each. A unifying mechanism is presented in which gypsum formation occurs at all shallow water depths but its preservation is limited to shallow sedimentary settings. In contrast, ongoing deep-basin anoxic organic matter (OM) degradation processes result in dolomite formation. Gypsum precipitation in evaporating seawater takes place at 3-7 times concentrated seawater; seawater is always oversaturated relative to dolomite but its formation is inhibited by the presence of dissolved sulphate. Thus conditions for formation of gypsum exclude those for formation of dolomite and vice versa. Another process linking the saturation states of gypsum and dolomite is that of OM degradation by sulphate reduction. In stagnant deep water, ongoing OM-degradation may result in reducing the sulphate and enhancing the dissolved carbonate content. Such low-sulphate / high carbonate conditions in MSC deepwater are. unfavorable for gypsum preservation and favorable for dolomite formation, and always coincide with anoxic, i.e. oxygen-free conditions. Including dynamic biogeochemical processes in the thusfar static interpretations of evaporite formation mechanisms can thus account for the paradoxal, isochronous formation of shallow gypsum and deep-dolomite during the early MSC (1). (1) De Lange G.J. and Krijgsman W. (2010) Mar. Geol. 275, 273-277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, A.B.
1986-08-01
The Sheep Mountain anticlinal complex between Lovell and Greybull, Wyoming, in the Bighorn basin provides exposure suitable for three-dimensional stratigraphic studies of Mesozoic rocks. The lower unit of the Gypsum Spring Formation is interbedded shale and gypsum. The middle unit is a cyclic sequence of variegated shales, mudstones, and wackestones. The upper unit is red shale. The contact between the underlying Upper Triassic Chugwater Group and the Gypsum Spring Formation is unconformable, as evidenced by an erosional surface. The Sundance Formation is divided into Sundance A and Sundance B, based on fossil data. Sundance A is predominantly green shale withmore » some limestone-shale interbeds. Sundance B lithology is similar to Sundance A with belemnoid guards. Toward the top of Sundance B are beds of glauconitic sandstones that grade upward into fossiliferous limestone. The contact between the Gypsum Spring, Sundance, and Morrison Formations appears to be gradational. The Western Interior sedimentary basin experienced four major transgressions during the Jurassic, resulting in the deposition of the Gypsum Spring and Sundance. Gypsum Spring deposition was influenced by paleohighs, specifically the Belt Island and Sheridan arch, and a warm, arid climate with rare storms. The lower Gypsum Spring unit was deposited in a restricted basin, with the middle and upper units reflecting subsequent deepening and freshening of the Jurassic sea. Most of the Sundance Formation was deposited in a relatively quiet, open-marine environment. Individual units represent shoaling conditions during minor regressions. Storms cut channels into sand bars, which were filled with coquinoid deposits.« less
Use of FGD gypsum on a bermudagrass pasture in the Appalachian Plateau Region
USDA-ARS?s Scientific Manuscript database
Addition of industrial by-products from coal fired power plants (FGD gypsum and FGD gypsum + fly ash) are thought to increase plant production. Thus, a study was conducted to evaluate the effects of industrial by-products as a soil amendment on bermudagrass (Cynodon dactylon L.) yield. The study was...
Effect of gypsum application on mineral composition in peanut pod walls and seeds
USDA-ARS?s Scientific Manuscript database
Alleviation of soil-Ca deficiency through gypsum amendment increases the yield potential and ensures high seed quality in peanut (Arachis hypogaea L.). The effects of gypsum treatment, plant life cycle stage, and the fruit development stages on the accrual of several essential minerals (Ca, S, Mg, P...
Potential of a gypsum-free composting process of wheat straw for mushroom production.
Mouthier, Thibaut M B; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry; Kabel, Mirjam A
2017-01-01
Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process.
Potential of a gypsum-free composting process of wheat straw for mushroom production
Mouthier, Thibaut M. B.; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry
2017-01-01
Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process. PMID:28982119
Fate of Mercury in Synthetic Gypsum Used for Wallboard Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessica Sanderson; Gary M. Blythe; Mandi Richardson
2006-12-01
This report presents and discusses results from Task 6 of the study 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capturemore » of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope now includes six discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The project was originally composed of five tasks, which were to include (1) a baseline test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to include testing with an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to Task 3, although with gypsum from an alternate FGD system. Subsequent to conducting Task 5 under these revised conditions, an opportunity arose to test gypsum produced at the same FGD system, but with an additive (Degussa Corporation's TMT-15) being used in the FGD system. TMT-15 was expected to impact the stability of mercury in synthetic gypsum used to produce wallboard, so Task 6 was added to the project to test this theory. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. For every task, the stack locations sampled have included a dryer for the wet gypsum as it enters the plant and a gypsum calciner. For Tasks 1, 4, 5 and 6, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 6 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant has a single-loop, open spray tower limestone forced oxidation FGD system, with the forced oxidation conducted in the reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, and the SCR was in service during the time period the gypsum tested was produced. Also, as mentioned above, Degussa additive TMT-15 was being added to the FGD system when this gypsum was produced. The results of the Task 6 stack testing, as measured by the Ontario Hydro method, detected that an average of 55% of the incoming mercury was emitted during wallboard production. These losses were distributed as about 4% across the dryer mill, 6% across the board dryer kiln, and 45% across the kettle calciner. Emissions were similar to what Task 5 results showed on a percentage basis, but about 30% lower on a mass basis. The same power plant FGD system produced the synthetic gypsum used in Task 5 (with no use of TMT-15) and in Task 6 (with TMT-15 added to the FGD system). The lower emissions on a mass basis appeared to be due to lower average mercury content in the gypsum being processed. It is not certain whether the lower average mercury content in the gypsum was an effect of TMT-15 addition to the FGD system. As was seen in the Task 1 through 5 results, most of the mercury detected in the Ontario Hydro method stack testing was in the form of elemental mercury.« less
NASA Astrophysics Data System (ADS)
Lafuente, B.; Bishop, J. L.; Fenton, L. K.; King, S. J.; Blake, D.; Sarrazin, P.; Downs, R.; Horgan, B. H.
2013-12-01
A field portable X-ray Diffraction (XRD) instrument was used at White Sands National Monument to perform in-situ measurements followed by laboratory analyses of the gypsum-rich dunes and to determine its modal mineralogy. The field instrument is a Terra XRD (Olympus NDT) based on the technology of the CheMin (Chemistry and Mineralogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [1]. Using Terra at White Sands will contribute to 'ground truth' for gypsum-bearing environments on Mars. Together with data provided by VNIR spectra [2], this study clarifies our understanding of the origin and history of gypsum-rich sand dunes discovered near the northern polar region of Mars [3]. The results obtained from the field analyses performed by XRD and VNIR spectroscopy in four dunes at White Sands revealed the presence of quartz and dolomite. Their relative abundance has been estimated using the Reference Intensity Ratio (RIR) method. For this study, particulate samples of pure natural gypsum, quartz and dolomite were used to prepare calibration mixtures of gypsum-quartz and gypsum-dolomite with the 90-150μm size fractions. All single phases and mixtures were analyzed by XRD and RIR factors were calculated. Using this method, the relative abundance of quartz and dolomite has been estimated from the data collected in the field. Quartz appears to be present in low amounts (2-5 wt.%) while dolomite is present at percentages up to 80 wt.%. Samples from four dunes were collected and prepared for subsequent XRD analysis in the lab to estimate their composition and illustrate the changes in mineralogy with respect to location and grain size. Gypsum-dolomite mixtures: The dolomite XRD pattern is dominated by an intense diffraction peak at 2θ≈36 deg. which overlaps a peak of gypsum, This makes low concentrations of dolomite difficult to quantify in mixtures with high concentration of gypsum. Dolomite has been detected in some locations at dune 3 as high as 80 wt.%. Gypsum-quartz mixtures: The intensity of the main diffraction peak of quartz at 2θ≈31 deg. decreases progressively with the decrease of the amount of quartz in the mixtures. Samples from dune 1 and 2 show quartz abundance at 5.6 and 2.6 wt.% respectively . [1] Blake et al. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9905-1. [2] King et al. (2013) AGU, submitted. [3] Langevin et al. (2005). Science 307, 1584-1586.
NASA Astrophysics Data System (ADS)
Vogel, Marilyn B.; Des Marais, David J.; Parenteau, Mary N.; Jahnke, Linda L.; Turk, Kendra A.; Kubo, Michael D. Y.
2010-01-01
Gypsum (CaSO 4·2H 2O) deposits from a range of sedimentary environments at Guerrero Negro, Baja California Sur, Mexico were investigated for microscale texture and composition in order to differentiate features formed under substantial microbial influence from those for which microbial effects were relatively minor or absent. Gypsum deposits were classified according to their sedimentary environment, textures, crystal habit, brine composition and other geochemical factors. The environments studied included subaqueous sediments in anchialine pools and in solar salterns, as well as subsurface sediments of mudflats and saltpans. Gypsum that developed in the apparent absence of biofilms included crystals precipitated in the water column and subsedimentary discs that precipitated from phreatic brines. Subsedimentary gypsum developed in sabkha environments exhibited a sinuous microtexture and poikilitically enclosed detrital particles. Water column precipitates had euhedral prismatic habits and extensive penetrative twinning. Gypsum deposits influenced by biofilms included bottom nucleated crusts and gypsolites developing in anchialine pools and saltern ponds. Gypsum precipitating within benthic biofilms, and in biofilms within subaerial sediment surfaces provided compelling evidence of biological influences on crystal textures and habits. This evidence included irregular, high relief surface textures, accessory minerals (S°, Ca-carbonate, Sr/Ca-sulfate and Mg-hydroxide) and distinctive crystal habits such as equant forms and crystals having distorted prism faces.
NASA Astrophysics Data System (ADS)
Lawton, Timothy F.; Buck, Brenda J.
2006-10-01
Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.
Starting in the 1940s, gypsum drywall began replacing plaster and lathe in the U.S. home construction industry. Our goal was to evaluate whether some mold populations differ in water- damaged homes primarily constructed with gypsum drywall compared to plaster. The dust samples fr...
Utilization of FGD gypsum in agriculture for environmental benefits
USDA-ARS?s Scientific Manuscript database
This paper will discuss the utilization of FGD gypsum in agriculture for environmental benefits. Gypsum (CaSO4 .2H2O) has been used as an agricultural soil amendment for over 250 years. It is a soluble source of calcium and sulfur for crops and has been shown to improve soil physical and chemical pr...
Gypsum's influence on corn yield and p loss from an eroded southern piedmont soil
USDA-ARS?s Scientific Manuscript database
Gypsum (CaSO4) has been shown to reduce dissolved P in surface water runoff from pastures fertilized with poultry litter (PL). However, limited research has evaluated gypsum’s influence on P loss under row crops. Moreover, can gypsum effectively reduce P loss when applied only to grass buffer strips...
The report gives results of a study to identify fossil-fuel-fired power plants that might, in competition with existing crude gypsum sources and other power plants, lower the cost of compliance with SO2 regulations by producing and marketing abatement gypsum. In the Eastern U.S.,...
The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert, Namibia
NASA Astrophysics Data System (ADS)
Eckardt, F. D.; Spiro, B.
1999-02-01
This study investigates the sulphur source of gypsum sulphate and dissolved groundwater sulphate in the Central Namib Desert, home to one of Africa's most extensive gypsum (CaSO 4·2H 2O) accumulations. It investigates previously suggested sulphate precursors such as bedrock sulphides and decompositional marine biogenic H 2S and studies the importance of other potential sources in order to determine the origin of gypsum and dissolved sulphate in the region. An attempt has been made to sample all possible sulphur sources, pathways and types of gypsum accumulations in the Central Namib Desert. We have subjected those samples to sulphur isotopic analyses and have compiled existing results. In addition, ionic ratios of Cl/SO 4 are used to determine the presence of non-sea-salt (NSS) sulphur in groundwater and to investigate processes affecting groundwater sulphate. In contrast to previous work, this study proposes that the sulphur cycle, and the formation of gypsum, in the Namib Desert appears to be dominated by the deposition of atmospheric sulphates of phytoplanktonic origin, part of the primary marine production of the Benguela upwelling cells. The aerosol sulphates are subjected to terrestrial storage within the gypsum deposits on the hyper-arid gravel plain and are traceable in groundwater including coastal sabkhas. The hypothesis of decompositional marine biogenic H 2S or bedrock sulphide sources, as considered previously for the Namib Desert, cannot account for the widespread accumulation of gypsum in the region. The study area in the Central Namib Desert, between the Kuiseb and Omaruru rivers, features extensive gypsum accumulations in a ca. 50-70 km wide band, parallel to the shore. They consist of surficial or shallow pedogenic gypsum crusts in the desert pavement, hydromorphic playa or sabkha gypsum, as thin isolated pockets on bedrock ridges and as discrete masses of gypsum selenite along some faults. The sulphur isotopic values (δ 34S ‰CDT) of these occurrences are between δ 34S +13.0 and +18.8‰, with lower values in proximity to sulphuric ore bodies (δ 34S +3.1 and +3.4‰). Damaran bedrock sulphides have a wide range from δ 34S -4.1 to +13.8‰ but seem to be significant sources on a local scale at the most. Dissolved sulphate at playas, sabkhas, springs, boreholes and ephemeral rivers have an overall range between δ 34S +9.8 and +20.8‰. However, they do not show a systematic geographical trend. The Kalahari waters have lower values, between δ 34S +5.9 and +12.3‰. Authigenic gypsum from submarine sediments in the upwelling zone of the Benguela Current between Oranjemund and Walvis Bay ranges between δ 34S -34.6 to -4.6‰. A single dry atmospheric deposition sample produced a value of δ 34S +15.9‰. These sulphur isotopic results, complemented by meteorological, hydrological and geological information, suggest that sulphate in the Namib Desert is mainly derived from NSS sulphur, in particular oxidation products of marine dimethyl sulphide CH 3SCH 3 (DMS). The hyper-arid conditions prevailing along the Namibian coast since Miocene times favour the overall preservation of the sulphate minerals. However, sporadic and relatively wetter periods have promoted gypsum formation: the segregation of sulphates from the more soluble halite, and the gradual seaward redistribution of sulphate. This study suggests that the extreme productivity of the Benguela Current contributes towards the sulphur budget in the adjacent Namib Desert.
NASA Astrophysics Data System (ADS)
Chen, G. Q.; Chen, Z. M.
2010-11-01
A 135-sector inventory and embodiment analysis for carbon emissions and resources use by Chinese economy 2007 is presented in this paper by an ecological input-output modeling based on the physical entry scheme. Included emissions and resources belong to six categories as: (1) greenhouse gas (GHG) in terms of CO 2, CH 4, and N 2O; (2) energy in terms of coal, crude oil, natural gas, hydropower, nuclear power, and firewood; (3) water in terms of freshwater; (4) exergy in terms of coal, crude oil, natural gas, grain, bean, tuber, cotton, peanut, rapeseed, sesame, jute, sugarcane, sugar beet, tobacco, silkworm feed, tea, fruits, vegetables, wood, bamboo, pulp, meat, egg, milk, wool, aquatic products, iron ore, copper ore, bauxite, lead ore, zinc ore, pyrite, phosphorite, gypsum, cement, nuclear fuel, and hydropower; (5) and (6) solar and cosmic emergies in terms of sunlight, wind power, deep earth heat, chemical power of rain, geopotential power of rain, chemical power of stream, geopotential power of stream, wave power, geothermal power, tide power, topsoil loss, coal, crude oil, natural gas, ferrous metal ore, non-ferrous metal ore, non-metal ore, cement, and nuclear fuel. Accounted based on the embodied intensities are carbon emissions and resources use embodied in the final use as rural consumption, urban consumption, government consumption, gross fixed capital formation, change in inventories, and export, as well as in the international trade balance. The resulted database is basic to environmental account of carbon emissions and resources use at various levels.
Demir, I.; Hughes, R.E.; DeMaris, P.J.
2001-01-01
Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.
Qayyum, Muhammad Farooq; Rehman, Muhammad Zia Ur; Ali, Shafaqat; Rizwan, Muhammad; Naeem, Asif; Maqsood, Muhammad Aamer; Khalid, Hinnan; Rinklebe, Jörg; Ok, Yong Sik
2017-05-01
Cadmium (Cd) accumulation in agricultural soils is one of the major threats to food security. The application of inorganic amendments such as mono-ammonium phosphate (MAP), gypsum and elemental sulfur (S) could alleviate the negative effects of Cd in crops. However, their long-term residual effects on decreasing Cd uptake in latter crops remain unclear. A field that had previously been applied with treatments including control and 0.2, 0.4 and 0.8% by weight of each MAP, gypsum and S, and grown with wheat and rice and thereafter wheat in the rotation was selected for this study. Wheat (Triticum aestivum L.) was grown in the same field as the third crop without further application of amendments to evaluate the residual effects of the amendments on Cd uptake by wheat. Plants were harvested at maturity and grain, and straw yield along with Cd concentration in soil, straw, and grains was determined. The addition of MAP and gypsum significantly increased wheat growth and yield and decreased Cd accumulation in straw and grains compared to control while the reverse was found in S application. Both MAP and gypsum decreased AB-DTPA extractable Cd in soil while S increased the bioavailable Cd in soil. Both MAP and gypsum increased the Cd immobilization in the soil and S decreased Cd immobilization in a dose-additive manner. We conclude that MAP and gypsum had a significant residual effect on decreasing Cd uptake in wheat. The cost-benefit ratio revealed that gypsum is an effective amendment for decreasing Cd concentration in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Córdoba, Patricia; Castro, Iria; Maroto-Valer, Mercedes; Querol, Xavier
2015-06-01
Experimental and geochemical modelling studies were carried out to identify mineral and solid phases containing major, minor, and trace elements and the mechanism of the retention of these elements in Flue Gas Desulphurisation (FGD)-gypsum samples from a coal-fired power plant under filtered water recirculation to the scrubber and forced oxidation conditions. The role of the pH and related environmental factors on the mobility of Li, Ni, Zn, As, Se, Mo, and U from FGD-gypsums for a comprehensive assessment of element leaching behaviour were also carried out. Results show that the extraction rate of the studied elements generally increases with decreasing the pH value of the FGD-gypsum leachates. The increase of the mobility of elements such as U, Se, and As in the FGD-gypsum entails the modification of their aqueous speciation in the leachates; UO2SO4, H2Se, and HAsO2 are the aqueous complexes with the highest activities under acidic conditions. The speciation of Zn, Li, and Ni is not affected in spite of pH changes; these elements occur as free cations and associated to SO4(2) in the FGD-gypsum leachates. The mobility of Cu and Mo decreases by decreasing the pH of the FGD-gypsum leachates, which might be associated to the precipitation of CuSe2 and MoSe2, respectively. Time-of-Flight mass spectrometry of the solid phase combined with geochemical modelling of the aqueous phase has proved useful in understanding the mobility and geochemical behaviour of elements and their partitioning into FGD-gypsum samples. Copyright © 2015. Published by Elsevier B.V.
Impact of FGD gypsum soil amendment applications on soil and environmental quality
USDA-ARS?s Scientific Manuscript database
This paper will discuss the utilization of FGD gypsum in agriculture for improving soil quality and other environmental benefits. Gypsum (CaSO4 .2H2O) has been used as an agricultural soil amendment for over 250 years. It is a soluble source of calcium and sulfur- for crops and has been shown to i...
In 2007, 12.3 million tons of flue gas desulfurization (FGD) gypsum was produced due to air emission controls at coal-fired power plants. With increasing use of wet scrubbers in response to more stringent air pollution control requirements, FGD gypsum production is expected to in...
[The effect of disinfectant soaking on dental gypsum model size].
Zhu, Cao-yun; Xu, Yun-wen; Xu, Kan
2012-12-01
To study the influence of disinfectant soaking on the dimensional stability of three kinds of dental gypsum model. Three commonly used gypsums ( type III,IV,Vtype) in clinic were used to make 24 specimens for 50 mm×15 mm×10 mm in size. One hour after release, the specimens were placed for 24 h. A digital caliper was used to measure the size of the gypsum model. Distilled water immersion was as used control, glutaraldehyde disinfectant and Metrix CaviCide disinfectant soaking were used for the experimental group. After soaking for 0.5h, the gypsum models were removed and placed for 0.5 h, 1 h, 2 h, 24 h. The size of the models was measured again using the same method. The data was analyzed with SPSS10.0 software package. The initial gypsum model length was (50.07±0.017) mm, (50.048±0.015) mm and (50.027±0.015) mm. After soaking for different times, the size of the model changed little, and the dimensions changed less than 0.01%. The results show that disinfectant soaking has no significant effect on dental model dimensions.
Gypsum: a review of its role in the deterioration of building materials
NASA Astrophysics Data System (ADS)
Charola, A. Elena; Pühringer, Josef; Steiger, Michael
2007-03-01
The deterioration of buildings and monuments by gypsum is the result of crystallization cycles of this salt. Although gypsum can dehydrate to a hemihydrate, the mineral bassanite, and to an anhydrate, the mineral anhydrite, this reaction occurs in nature on a geological time scale and therefore it is unlikely to occur when gypsum is found on and in building materials. The CaSO4-H2O system appears deceptively simple, however there are still discrepancies between the experimental and thermodynamically calculated data. The reason for the latter can be attributed to the slow crystallization kinetics of anhydrite. Apart from this, the large numbers of studies carried out on this system have focused on industrially important metastable phases, such as the hemihydrate and soluble anhydrite. The paper presents a review of the studies dealing with the phase equilibria of the CaSO4-H2O system as well as the influence of other salts on the solubility of gypsum. It tries to glean out the relevant information that will serve to explain the deterioration observed on building materials by the crystallization of gypsum and thus allows developing improved conservation methods.
NASA Astrophysics Data System (ADS)
Çakal, G. Ö.; Eroğlu, İ.; Özkar, S.
2006-04-01
Colemanite, one of the important boron minerals, is dissolved in aqueous sulfuric acid to produce boric acid. In this reaction, gypsum is obtained as a by-product. Gypsum crystals are in the shape of thin needles. These crystals should be grown to an easily filterable size in order to increase the production yield and purity of boric acid. In this paper, the particle size distributions and the volume-weighted mean diameters of the gypsum crystals obtained in batch and continuous flow systems were compared. Experiments in both batch and continuous reactors were performed at a temperature of 85 °C, a stirring rate of 400 rpm, and the inlet CaO to SO42- molar ratio of 1.0 using colemanite mineral in particle size smaller than 150 μm. The average diameter of the gypsum crystals obtained at 3.5 h from the batch reactor was found to be 37-41 μm. This value for the continuous system at steady state was observed to change between 44-163 μm. The particle size of the gypsum crystals was found to increase with the residence time of the solid in the continuous system.
Founie, Alan
2004-01-01
The earliest known use of gypsum as a building material was in Anatolia (in what is now Turkey) around 6000 B.C. It has been found on the interiors of the great pyramids in Egypt, which were erected in about 3700 B.C. Now an average new American home contains more than 7 metric tons of gypsum in the form of more than 6,000 square feet of wallboard.
Sedimentary differentiation of aeolian grains at the White Sands National Monument, New Mexico, USA
NASA Astrophysics Data System (ADS)
Fenton, Lori K.; Bishop, Janice L.; King, Sara; Lafuente, Barbara; Horgan, Briony; Bustos, David; Sarrazin, Philippe
2017-06-01
Gypsum (CaSO4·2H2O) has been identified as a major component of part of Olympia Undae in the northern polar region of Mars, along with the mafic minerals more typical of Martian dune fields. The source and age of the gypsum is disputed, with the proposed explanations having vastly different implications for Mars' geological history. Furthermore, the transport of low density gypsum grains relative to and concurrently with denser grains has yet to be investigated in an aeolian setting. To address this knowledge gap, we performed a field study at White Sands National Monument (WSNM) in New Mexico, USA. Although gypsum dominates the bulk of the dune field, a dolomite-rich [CaMg(CO3)2] transport pathway along the northern border of WSNM provides a suitable analog site to study the transport of gypsum grains relative to the somewhat harder and denser carbonate grains. We collected samples along the stoss slope of a dune and on two coarse-grained ripples at the upwind margin of the dune field where minerals other than gypsum were most common. For comparison, additional samples were taken along the stoss slope of a dune outside the dolomite transport pathway, in the center of the dune field. Visible and near-infrared (VNIR), X-ray powder diffraction (XRD), and Raman analyses of different sample size fractions reveal that dolomite is only prevalent in grains larger than ∼1 mm. Other minerals, most notably calcite, are also present in smaller quantities among the coarse grains. The abundance of these coarse grains, relative to gypsum grains of the same size, drops off sharply at the upwind margin of the dune field. In contrast, gypsum dominated the finer fraction (<∼1 mm) at all sample sites, displaying no spatial variation. Estimates of sediment fluxes indicate that, although mineralogical differentiation of wind-transported grains occurs gradually in creep, the process is much more rapid when winds are strong enough to saltate the ⩾1 mm grains. The observed grain segregation is consistent with the WSNM dune field formative friction velocity (0.39 m/s) proposed by Jerolmack et al. (2011): winds significantly weaker than this value would not lift the large grains into differentiation-inducing saltation, whereas the observed differentiated trend would be obliterated by significantly stronger winds. When applied to Olympia Undae, a similar sediment flux analysis suggests that the strongest winds modeled by the Mars Climate Database (MCD) are consistent with the observed concentration of gypsum at dune crests. Density-driven differentiation in transport should not influence sediment fluxes of finer grains (<1 mm) as strongly on Earth, suggesting that the high ratio of fine gypsum grains to other minerals at WSNM is caused by a relatively high production and/or abrasion rate of gypsum sand. The observed preferential transport of coarse-grained gypsum in the dune field conceals a broader range of coarse-grained minerals present on Alkali Flat, contributing to the problem that mineralogy determined through both remote sensing of dune fields and analysis of dune foresets does not fully represent that of the source regions. Unlike quartz, the concentration of gypsum in WSNM occurs not because it is more resistant to weathering and erosion than other minerals, but rather because it is more readily produced (in the case of finer grains) and transported (in the case of coarser grains) than other minerals present in the region.
Gypsum Formation during the Messinian Salinity Crisis: an Alternative Model
NASA Astrophysics Data System (ADS)
Grothe, A.; Krijgsman, W.; Sangiorgi, F.; Vasiliev, I.; Baak, C. V.; Wolthers, M.; Stoica, M.; Reichart, G. J.; Davies, G.
2016-12-01
During the Messinian Salinity Crisis (MSC; 5.97 - 5.33 Myr ago), thick packages of evaporites (gypsum and halite) were deposited in the Mediterranean Basin. Traditionally, the occurrence of these evaporites is explained by the so-called "desiccation-model", in which evaporites are considered to result from a (partly) desiccated basin. In the last decade, it was thought that changes in the Mediterranean-Atlantic connectivity could explain the formation of gypsum. Stable isotope studies, however, show that the gypsum formed under influence of large freshwater input. Here we present new strontium isotope data from two well-dated Messinian sections in the Black and Caspian Seas. Our Sr isotope records suggest a persistent Mediterranean-Black Sea connection throughout the salinity crisis, which implies a large additional freshwater source to the Mediterranean. We claim that low saline waters from the Black Sea region are a prerequisite for gypsum formation in the Mediterranean and speculate about the mechanisms explaining this apparent paradox.
Development of gypsum alteration on marble and limestone
McGee, E.S.
1996-01-01
Blackened alteration crusts of gypsum plus particulates that form on sheltered areas on marble and limestone buildings pose a challenge for rehabilitation and cleaning. Fresh marble and limestone samples exposed at monitored exposure sites present conditions of simple geometry and well-documented exposures but have short exposure histories (one to five years). The gypsum alteration crusts that develop on these samples provide insight into the early stages and rate of alteration crust formation. Alteration crusts from buildings give a longer, but less well known exposure history and present much more complex surfaces for gypsum accumulation. Integrated observations and measurements of alteration crusts from exposure samples and from buildings identify four factors that are important in the formation and development of alteration crusts on marble and limestone: (1) pollution levels, (2) exposure to rain or washing, (3) geometry of exposure of the stone surface, and (4) permeability of the stone. The combination of these factors contributes to both the distribution and the physical characteristics of the gypsum crusts which may affect cleaning decisions.
Factors influencing gypsum crystal morphology within a flue gas desulfurization vessel
NASA Astrophysics Data System (ADS)
Lewis, Kinsey M.
Flue gas desulfurization (FGD) is utilized by the coal--powered generating industry to safely eliminate sulfur dioxide. A FGD vessel (scrubber) synthetically creates gypsum crystals by combining limestone (CaCO3), SO2 flue gas, water and oxygen resulting in crystalline gypsum (CaSO4 · 2H2O), which can be sold for an economic return. Flat disk--like crystals, opposed to rod--like crystals, are hard to dewater, lowering economic return. The objectives were to investigate the cause of varying morphologies, understand the environment of precipitation, as well as identify correlations between operating conditions and resulting unfavorable gypsum crystal growth. Results show evidence supporting airborne impurities due to the onsite coal pile, the abundance and size of CaCO 3 and high Ca:SO4 ratios within the scrubber as possible factors controlling gypsum crystal morphology. In conclusion, regularly purging the system and incorporating a filter on the air intake valve will provide an economic byproduct avoiding costly landfill deposits.
Gypsum-permineralized microfossils and their relevance to the search for life on Mars.
Schopf, J William; Farmer, Jack D; Foster, Ian S; Kudryavtsev, Anatoliy B; Gallardo, Victor A; Espinoza, Carola
2012-07-01
Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (∼260 Ma) of New Mexico, USA; one from the Miocene (∼6 Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum.
Investigation of a mercury speciation technique for flue gas desulfurization materials.
Lee, Joo-Youp; Cho, Kyungmin; Cheng, Lei; Keener, Tim C; Jegadeesan, Gautham; Al-Abed, Souhail R
2009-08-01
Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method. Potential candidates of pure mercury standards including mercuric chloride (HgCl2), mercurous chloride (Hg2Cl2), mercury oxide (HgO), mercury sulfide (HgS), and mercuric sulfate (HgSO4) were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg2Cl2 and HgCl2 could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury.
Investigation of a mercury speciation technique for flue gas desulfurization materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.Y.; Cho K.; Cheng L.
2009-08-15
Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidatesmore » of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.« less
López-Lozano, Nguyen E.; Eguiarte, Luis E.; Bonilla-Rosso, Germán; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Rooks, Christine
2012-01-01
Abstract The OMEGA/Mars Express hyperspectral imager identified gypsum at several sites on Mars in 2005. These minerals constitute a direct record of past aqueous activity and are important with regard to the search of extraterrestrial life. Gale Crater was chosen as Mars Science Laboratory Curiosity's landing site because it is rich in gypsum, as are some desert soils of the Cuatro Ciénegas Basin (CCB) (Chihuahuan Desert, Mexico). The gypsum of the CCB, which is overlain by minimal carbonate deposits, was the product of magmatic activity that occurred under the Tethys Sea. To examine this Mars analogue, we retrieved gypsum-rich soil samples from two contrasting sites with different humidity in the CCB. To characterize the site, we obtained nutrient data and analyzed the genes related to the N cycle (nifH, nirS, and nirK) and the bacterial community composition by using 16S rRNA clone libraries. As expected, the soil content for almost all measured forms of carbon, nitrogen, and phosphorus were higher at the more humid site than at the drier site. What was unexpected is the presence of a rich and divergent community at both sites, with higher taxonomic diversity at the humid site and almost no taxonomic overlap. Our results suggest that the gypsum-rich soils of the CCB host a unique microbial ecosystem that includes novel microbial assemblies. Key Words: Cuatro Ciénegas Basin—Gale Crater—Gypsum soil microbial diversity—Molecular ecology—Nitrogen cycle. Astrobiology 12, 699–709. PMID:22920518
Application of small panel damping measurements to larger walls
NASA Astrophysics Data System (ADS)
Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison
1996-05-01
Damping properties of a viscoelastic material were determined using a standard resonant beam technique. The damping material was then applied to 1 by 2 foot gypsum panels in a constrained layer construction. Damping loss factors in panels with and without the constrained layer were determined based on reverberation times after excitation at third-octave band center frequencies. The constrained damping layer had been designed to increase damping by an order of magnitude above that of a single gypsum panel at 2000 Hz; however, relative to a gypsum panel of the same overall thickness as the panel with the constrained layer, loss factors increased only by a factor of three to five. Next modal damping loss factors in 9 by 14 foot gypsum single and double walls were calculated from the experimentally determined quality factor for each modal resonance. Results showed that below 2500 Hz, modes in 1 by 2 foot gypsum panels had nearly the same damping loss factors as modes in a 9 by 14 foot gypsum wall of the same thickness; however, loss factors for the wall were an order of magnitude lower than those of the 1 by 2 foot panels at frequencies above 2500 Hz, the coincidence frequency for 5/8-inch thick gypsum plates. Thus it was inconclusive whether or not damping loss factors measured using small panels could be used to estimate the effect of a constrained damping layer on transmission loss through a 9 by 14 foot wall unless boundary conditions and modal frequencies were the same for each size.
Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use?
Inagaki, Thiago Massao; de Moraes Sá, João Carlos; Caires, Eduardo Fávero; Gonçalves, Daniel Ruiz Potma
2017-12-01
Field experiments have been used to explain how soil organic carbon (SOC) dynamics is affected by lime and gypsum applications, however, how SOC storage occurs is still debatable. We hypothesized that although many studies conclude that Ca-based soil amendments such as lime and gypsum may lead to SOC depletion due to the enhancement of microbial activity, the same does not occur under conservation agriculture conditions. Thus, the objective of this study was to elucidate the effects of lime and gypsum applications on soil microbial activity and SOC stocks in a no-till field and in a laboratory incubation study simulating no-till conditions. The field experiment was established in 1998 in a clayey Oxisol in southern Brazil following a completely randomized blocks design with a split-plot arrangement and three replications. Lime and gypsum were surface applied in 1998 and reapplied in 2013. Undisturbed soil samples were collected before the treatments reapplications, and one year after. The incubation experiment was carried out during 16months using these samples adding crop residues on the soil surface to simulate no-till field conditions. Lime and gypsum applications significantly increased the labile SOC stocks, microbial activity and soil fertility attributes in both field and laboratory experiments. Although the microbial activity was increased, no depletion of SOC stocks was observed in both experiments. Positive correlations were observed between microbial activity increase and SOC gains. Labile SOC and Ca 2+ content increase leads to forming complex with mineral soil fractions. Gypsum applications performed a higher influence on labile SOC pools in the field than in the laboratory experiment, which may be related to the presence of active root system in the soil profile. We conclude that incubation experiments using lime and gypsum in undisturbed samples confirm that soil microbial activity increase does not deplete SOC stocks under conservation agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Szynkiewicz, A.; Modelska, M.; Buczynski, S.; Borrok, D.; Pratt, L.
2010-12-01
Hydrated sulfates such as gypsum are important constituents of the low-elevation areas around the North Polar residual ice cap on Mars, but the origin of hydrological process which led to the formation and accumulation of gypsum is poorly understood. To address this uncertainty, we investigated the origin of proglacial gypsum in the Werenskioldbreen, a polythermal glacier of Spitsbergen in the Svalbard archipelago east of Greenland. We measured S isotopes, major chemistry and surface water flow rates to calculate SO4 fluxes from sulfide weathering in this polar climate. Sulfides comprised 0.02 to 0.42 weight % of the fine-grained fraction of proglacial sediments and their δ34S varied over the range of +9 to +16 ‰. The δ34S of dissolved SO4 in glacier melt waters (+9 to +17 ‰) was consistent with SO4 generation being dominated by sulfide oxidation. In summer 2008, the calculated SO4 flux was ~6,200 kg/day in the main glacier stream of the Werenskioldbreen discharging to the Greenland Sea and it translated to 4.3 x 105 mol/yr-km2 based on the scale of the entire Werenskioldbreen catchment (~27.4 km2). Our measured polar SO4 flux was 6 times larger than reported estimates for pyrite-derived SO4 loading in a considerably larger (1.78 x 106 km2) watershed of Northern Canada. This implies that small glacier catchments can generate an important global-scale flux of sulfide-derived SO4. Both evaporation and freezing of glacial waters lead to precipitation, accumulation, and temporary storage of gypsum in the proglacial zone. Poor preservation of gypsum on the surface of proglacial sediments mainly results from its quick dissolution during warmer condition when the hydrological cycle is most active. The observed distribution of gypsum and hydrated sulfates around the north polar ice residual deposits of Planum Boreum on Mars matches the spatial and geochemical patterns of gypsum formation controlled by sulfide weathering in terrestrial polar environments like Werenskioldbreen. The highest occurrences of gypsum are in the eastern part of Olympia Undae Dune Field, nearby plausible fluvio-glacial features and the impact crater which might have activated confined water circulation in the past. Given that ancient aeolian strata underlying Planum Boreum are of basaltic composition and sulfides are common minor minerals in basalt, it is likely that slow weathering of this material in the presence of water ice may have contributed elevated SO4 fluxes during short-lived melting events in the past. The westward gypsum decrease in the Olympia Undae suggests re-distribution of weathering products like gypsum from the confined source area during subsequent aeolian transport. In contrast to Earth, limited water activity and prevailing dry conditions on the surface of Mars are the likely factors that account for the larger accumulation and preservation of polar gypsum on the surface and its broad aeolian distribution in the north polar depression.
Gypsum karst in Italy: a review
NASA Astrophysics Data System (ADS)
De Waele, Jo; Chiarini, Veronica; Columbu, Andrea; D'Angeli, Ilenia M.; Madonia, Giuliana; Parise, Mario; Piccini, Leonardo; Vattano, Marco; Vigna, Bartolomeo; Zini, Luca; Forti, Paolo
2016-04-01
Although outcropping only rarely in Italy, gypsum karst has been described in detail since the early XXth century (Marinelli, 1917). Gypsum caves are now known from almost all Italian regions (Madonia & Forti, 2003), but are mainly localised along the northern border of the Apennine chain (Emilia Romagna and Marche regions), Calabria, and Sicily, where the major outcrops occur. Recently, important caves have also been discovered in the underground gypsum quarries in Piedmont (Vigna et al., 2010). During the late 80s and 90s several multidisciplinary studies have been carried out in many gypsum areas. All this work converged into a comprehensive overview in 2003 (Madonia & Forti, 2003). Further detailed studies focused on the gypsum areas of Emilia Romagna (Chiesi et al., 2010; Forti & Lucci, 2010; Demaria et al., 2012; De Waele & Pasini, 2013; Ercolani et al., 2013; Columbu et al., 2015; Lucci & Piastra, 2015; Tedeschi et al., 2015) and of Sicily (Madonia & Vattano, 2011). Sinkholes related to Permo-Triassic gypsum have been studied in Friuli Venezia Giulia (Zini et al., 2015). This presentation will review the state of the art regarding different aspects of evaporite karst in Italy focusing on the main new results. References Chiesi M., et al. (2010) - Origin and evolution of a salty gypsum/anhydrite karst spring: the case of Poiano (Northern Apennines, Italy). Hydrogeology Journal, 18, pp. 1111-1124. Columbu A. et al. (2015) - Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region. Geology, 43(6), 539-542. Demaria D. et al. (Eds.) (2012), Le Grotte Bolognesi, GSB-USB, 431 p. De Waele J., Pasini G. (2013) - Intra-messinian gypsum palaeokarst in the northern Apennines and its palaeogeographic implications. Terra Nova 25, pp. 199-205. Ercolani M., et al. (Eds.) (2013), I Gessi e la Cave i Monte Tondo. Studio multidisciplinare di un'area carsica nella Vena del Gesso Romagnola. Memorie Ist. It. Spel. II(26), 559 p. Forti P., Lucci P. (Eds.) (2010) - Il Progetto Stella-Basino. Studio multidisciplinare di un sistema carsico nella Vena del Gesso Romagnola. Memorie Ist. It. Spel. II(14), 260 p. Lucci P., Piastra S. (Eds.) (2015), I Gessi di Brisighella e Rontana: studio multidisciplinare di un'area carsica nella Vena del Gesso Romagnola. Memorie Ist. It. Spel. II(28), 751 p. Madonia G., Forti P. (2003) - Le aree carsiche gessose d'Italia. Memorie Ist. It. Spel. II(14), 285 p. Madonia G., Vattano M. (2011) - New knowledge on the Monte Conca gypsum karst system (central-western Sicily, Italy). Acta Carsologica, 40, (1), pp. 53-64. Marinelli O. (1917) - Fenomeni carsici nelle regioni gessose d'Italia. Mem. Geografiche di Giotto Dainelli, 34, pp. 263-416, suppl. to Riv. Geografica It Tedeschi L. et al. (2015) - Comportamento idrogeologico di alcune risorgenti carsiche nei gessi dell'Emilia-Romagna. Memorie Ist. It. Spel. II(29), pp. 399-404. Vigna B. et al. (2010) - Evolution of karst in Messinian gypsum (Monferrato, Northern Italy). Geodinamica Acta, 23(1-3), pp. 29-40. Zini L. et al. (2015) - a multidisciplinary approach in sinkhole analysis: the Quinis village case study (NE-Italy). Engineering Geology, 197, pp.132-144.
Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey
NASA Astrophysics Data System (ADS)
Bilgin, Oyku
2017-12-01
The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.
Utilization of Phase Change Materials (PCM) to Reduce Energy Consumption in Buildings
2011-09-14
incorporating PCM for use in building applications. Ongoing research in thermal storage in which the PCM were encapsulated in concrete, gypsum wallboard ... wallboards were made from commercial panels after a first attempt to use gypsum walls. Three types of wallboards were studied: (i) a polycarbonate panel...and compared with ordinary gypsum wallboard . Within this comparison, the PCM composite solidification temperature was 22 °C (i.e. 2 K higher than the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yibirin, H.; Stehouwer, R. C.; Bigham, J. M.
The Clean Air Act, as revised in 1992, has spurred the development of flue gas desulfurization (FGD) technologies that have resulted in large volumes of wet scrubber sludges. In general, these sludges must be dewatered, chemically treated, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives must be found. Wet scrubbing with magnesium (Mg)-enhanced lime has emerged as an efficient, cost effective technology for SO 2 removal. When combined with an appropriate oxidation system, the wet scrubber sludge can be used to produce gypsum (CaSO 4-2H 2O) and magnesium hydroxide [Mg(OH) 2]more » of sufficient purity for beneficial re-use. Product value generally increases with purity of the by-product(s). The pilot plant at the CINERGY Zimmer Station near Cincinnati produces gypsum by products that can be formulated to contain varying amounts of Mg(OH) 2. Such materials may have agricultural value as soil conditioners, liming agents and sources of plant nutrients (Ca, Mg, S). This report describes a greenhouse study designed to evaluate by-product gypsum and Mg gypsum from the Zimmer Station pilot plant as amendments for improving the quality of agricultural soils and mine spoils that are currently unproductive because of phytotoxic conditions related to acidity and high levels of toxic dissolved aluminum (Al). In particular, the technical literature contains evidence to suggest that gypsum may be more effective than agricultural limestone in modifying soil chemical conditions below the immediate zone of application. Representative samples of by-product gypsum and Mg(OH) 2 from the Zimmer Station were initially characterized. The gypsum was of high chemical purity and consisted of well crystalline, lath-shaped particles of low specific surface area. By contrast, the by-product Mg(OH) 2 was a high surface area material (50 m 2 g -1) that contained 20% CaSO 4 with variable hydration state. Artificial blends of these materials containing 4% and 8% Mg(OH) 2 were prepared for comparison with other liming agents in the form of agricultural limestone and gypsum amended with laboratory Ca(OH) 2.« less
NASA Astrophysics Data System (ADS)
Skarbek, R. M.; Savage, H. M.; Spiegelman, M. W.; Kelemen, P. B.; Yancopoulos, D.
2017-12-01
Deformation and cracking caused by reaction-driven volume increase is an important process in many geological settings, however the conditions controlling these processes are poorly understood. The interaction of rocks with reactive fluids can change permeability and reactive surface area, leading to a large variety of feedbacks. Gypsum is an ideal material to study these processes. It forms rapidly at room temperature via bassanite hydration, and is commonly used as an analogue for rocks in high-temperature, high-pressure conditions. We conducted uniaxial strain experiments to study the effects of applied axial load on deformation and fluid flow during the formation of gypsum from bassanite. While hydration of bassanite to gypsum involves a solid volume increase, gypsum exhibits significant creep compaction when in contact with water. These two volume changing processes occur simultaneously during fluid flow through bassanite. We cold-pressed bassanite powder to form cylinders 2.5 cm in height and 1.2 cm in diameter. Samples were compressed with a static axial load of 0.01 to 4 MPa. Water infiltrated initially unsaturated samples through the bottom face and the height of the samples was recorded as a measure of the total volume change. We also performed experiments on pure gypsum samples to constrain the amount of creep observed in tests on bassanite hydration. At axial loads < 0.15 MPa, volume increase due to the reaction dominates and samples exhibit monotonic expansion. At loads > 1 MPa, creep in the gypsum dominates and samples exhibit monotonic compaction. At intermediate loads, samples exhibit alternating phases of compaction and expansion due to the interplay of the two volume changing processes. We observed a change from net compaction to net expansion at an axial load of 0.250 MPa. We explain this behavior with a simple model that predicts the strain evolution, but does not take fluid flow into account. We also implement a 1D poro-visco-elastic model of the imbibition process that includes the reaction and gypsum creep. We use the results of these models, with models of the creep rate in gypsum, to estimate the temperature dependence of the axial load where total strain transitions from compaction to expansion. Our results have implications for the depth dependence of reaction induced volume changes in the Earth.
Towards the establishment of a general rate law for gypsum nucleation
NASA Astrophysics Data System (ADS)
Reznik, Itay J.; Ganor, Jiwchar; Gruber, Chen; Gavrieli, Ittai
2012-05-01
Gypsum nucleation kinetics from a wide range of chemical compositions (1.45 < Ca2+/SO42- < 115), ionic strengths (I = 2.5-10 m) and saturation state with respect to gypsum (Ωgyp = 1.07-8.4) were examined in batch experiments containing mixtures of Ca2+-rich Dead Sea brine and SO42-rich seawater with or without addition of extra Na2SO4 and CaCl2·2H2O. The induction times attained in the present study were compiled together with literature values from experiments carried out under significantly different conditions (synthetic NaCl solutions; I = 0.09-6.3 m; Ca2+/SO42- = 1; Ωgyp:1.59-7.76). Despite the variability in the experimental solutions, a single rate law based on classic nucleation theory was formulated to describe the induction times from more than 80 experiments: logT=log{1}/{3.17·Cs·exp{-}7.08ln2Ω}+0.072·Cs·exp-{1.426}/{ln2Ω} where Tind is the induction time, Cs is the solubility of gypsum and Ω is the saturation state with respect to gypsum. The rate law provides Tind for gypsum precipitation from aqueous solutions at 25 °C, containing no synthetic antiscalants or catalysts, within a 95% confidence interval within a factor of 5. Based on this rate law, we show that at present most of the precipitation of gypsum from the Dead Sea brine occurs following significant evaporation in the industrial evaporation ponds and not in the Dead Sea itself. Whereas Tind in Dead Sea brines is very long (on the order of 3 years), the evaporation of brine in the industrial ponds leads to increased Ω values, and thus to short Tind in the order of a few days. However, if seawater or reject brine from seawater desalinization will be introduced to the Dead Sea to restore its declining level, Tind will be significantly reduced and gypsum nucleation and precipitation will occur. For evaporated seawater, the proposed rate law predicts that even though saturation is obtained when seawater is evaporated by a factor of 2.8, gypsum will nucleate at reasonable times (few years) only when seawater are evaporated by a factor of ˜3.3.
Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator
NASA Technical Reports Server (NTRS)
Bell, Mary S.; Zolensky, Michael E.
2011-01-01
The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8] reanalyzed the calcite and anhydrite shock wave experiments of Yang [9] using improved equations of state of porous materials and vaporized products. They determined the pressures for incipient and complete vaporization to be 32.5 and 122 GPa for anhydrite GPa which is a factor of 2 to 3 lower than reported earlier by Yang [9]. These studies are not in agreement regarding the onset of sulfate decomposition and documentation of shock effects in gypsum is incomplete.
Triple oxygen isotope systematics of structurally bonded water in gypsum
NASA Astrophysics Data System (ADS)
Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael
2017-07-01
The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.
Prediction Model for Impulsive Noise on Structures
2012-09-01
construction usually have an interior wall finish of: a) gypsum wallboard (also called plasterboard or drywall), b) plaster or c) wood paneling... Gypsum Plaster , Wall Board 11,67 0.04 NA For simply-supported beams vibrating in their fundamental mode, the value of KS is needed for...Dev of log10(f0) for wood panel interior to be average for wood walls with plaster or gypsum board interior. (8) L(w) based on estimated standard
López-Lozano, Nguyen E; Eguiarte, Luis E; Bonilla-Rosso, Germán; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Rooks, Christine; Souza, Valeria
2012-07-01
The OMEGA/Mars Express hyperspectral imager identified gypsum at several sites on Mars in 2005. These minerals constitute a direct record of past aqueous activity and are important with regard to the search of extraterrestrial life. Gale Crater was chosen as Mars Science Laboratory Curiosity's landing site because it is rich in gypsum, as are some desert soils of the Cuatro Ciénegas Basin (CCB) (Chihuahuan Desert, Mexico). The gypsum of the CCB, which is overlain by minimal carbonate deposits, was the product of magmatic activity that occurred under the Tethys Sea. To examine this Mars analogue, we retrieved gypsum-rich soil samples from two contrasting sites with different humidity in the CCB. To characterize the site, we obtained nutrient data and analyzed the genes related to the N cycle (nifH, nirS, and nirK) and the bacterial community composition by using 16S rRNA clone libraries. As expected, the soil content for almost all measured forms of carbon, nitrogen, and phosphorus were higher at the more humid site than at the drier site. What was unexpected is the presence of a rich and divergent community at both sites, with higher taxonomic diversity at the humid site and almost no taxonomic overlap. Our results suggest that the gypsum-rich soils of the CCB host a unique microbial ecosystem that includes novel microbial assemblies.
Lewinska, Anna M; Hoof, Jakob B; Peuhkuri, Ruut H; Rode, Carsten; Lilje, Osu; Foley, Matthew; Trimby, Patrick; Andersen, Birgitte
2016-10-01
Fungal growth in indoor environments is associated with many negative health effects. Many studies focus on brown- and white-rot fungi and their effect on wood, but there is none that reveals the influence of soft-rot fungi, such as Stachybotrys spp. and Chaetomium spp., on the structure of building materials such as plywood and gypsum wallboard. This study focuses on using micro-computed tomography (microCT) to investigate changes of the structure of plywood and gypsum wallboard during fungal degradation by S. chartarum and C. globosum. Changes in the materials as a result of dampness and fungal growth were determined by measuring porosity and pore shape via microCT. The results show that the composition of the building material influenced the level of penetration by fungi as shown by scanning electron microscopy (SEM). Plywood appeared to be the most affected, with the penetration of moisture and fungi throughout the whole thickness of the sample. Conversely, fungi grew only on the top cardboard in the gypsum wallboard and they did not have significant influence on the gypsum wallboard structure. The majority of the observed changes in gypsum wallboard occurred due to moisture. This paper suggests that the mycelium distribution within building materials and the structural changes, caused by dampness and fungal growth, depend on the type of the material. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, C.; Chien, C.; Yang, T. F.; Lin, S.
2005-12-01
The Kaoping Slope off SW Taiwan represents the syn-collision accretionary prism characterized by active NW-trending folding - thrusting structures and high sedimentation rate favoring the formation of gas hydrate. For an assessment of gas hydrate potential in the Kaoping Slope off SW Taiwan, sedimentology, paleontology and geochemistry in box cores and piston cores were studied. BSRs are commonly found in seismic profiles in 400-600 m below seafloor of water depth 2500-1000 m. Active expulsions of methane were found along active thrust faults where sulfate/methane interface could be as shallow as 30 cm and the methane concentration of dissolved gases in bottom water and in pore-space of drilled core samples could be three-four order higher than the normal marine environments. Occurrences of authigenic carbonate and elongated pyrite tubes are correlated with shallow SMI depth and high methane content in bottom water and pore-space of sediment cores. Authigenic carbonates were found in seafloor surface and in 20-25 meters below seafloor. The authigenic carbonate nodules are characterized by irregular shape, whitish color, no visible microfossil, containing native sulfur, pyrites, gypsum, small open spaces, and very depleted carbon isotope (-54 ~ -43 per mil PDB). Tiny native sulfur and gypsum crystals were commonly found either on surface of foraminiferal tests and elongated pyrite tubes or in the authigenic carbonate nodules. Morphological measurements of elongated pyrite tubes show that they could represent pseudomorphs after three types of Pogonophora tube worm. Foraminifers are commonly filled by rhomboidal pyrites or cemented by pyrite crystals. Normal marine benthic foraminifers predominated by calcareous tests of slope fauna are associated with authigenic carbonate nodules in the study area, suggesting no major geochemistry effect on distribution of benthic foraminifers. Integrating sedimentology, paleontology and geochemistry characters, there could be high potential to have gas hydrate in the accretionary prism off SW Taiwan.
Airborne sound insulation evaluation and flanking path prediction of coupled room
NASA Astrophysics Data System (ADS)
Tassia, R. D.; Asmoro, W. A.; Arifianto, D.
2016-11-01
One of the parameters to review the acoustic comfort is based on the value of the insulation partition in the classroom. The insulation value can be expressed by the sound transmission loss which converted into a single value as weighted sound reduction index (Rw, DnTw) and also have an additional sound correction factor in low frequency (C, Ctr) .In this study, the measurements were performed in two positions at each point using BSWA microphone and dodecahedron speaker as the sound source. The results of field measurements indicate the acoustic insulation values (DnT w + C) is 19.6 dB. It is noted that the partition wall not according to the standard which the DnTw + C> 51 dB. Hence the partition wall need to be redesign to improve acoustic insulation in the classroom. The design used gypsum board, plasterboard, cement board, and PVC as the replacement material. Based on the results, all the material is simulated in accordance with established standards. Best insulation is cement board with the insulation value is 69dB, the thickness of 12.5 mm on each side and the absorber material is 50 mm. Many factors lead to increase the value of acoustic insulation, such as the thickness of the panel, the addition of absorber material, density, and Poisson's ratio of a material. The prediction of flanking path can be estimated from noise reduction values at each measurement point in the class room. Based on data obtained, there is no significant change in noise reduction from each point so that the pathway of flanking is not affect the sound transmission in the classroom.
Nomura, Shunsuke; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki; Takahashi, Ichiro; Ishikawa, Kunio
2014-01-01
Carbonate apatite (CO3Ap), fabricated by dissolution-precipitation reaction based on an appropriate precursor, is expected to be replaced by bone according to bone remodeling cycle. One of the precursor candidates is gypsum because it shows self-setting ability, which then enables it to be shaped and molded. The aim of this study, therefore, was to fabricate CO3Ap blocks from set gypsum. Set gypsum was immersed in a mixed solution of 0.4 mol/L disodium hydrogen phosphate (Na2HPO4) and 0.4 mol/L sodium hydrogen carbonate (NaHCO3) at 80-200°C for 6-48 h. Powder X-ray diffraction patterns and Fourier transform infrared spectra showed that CO3Ap block was fabricated by dissolution-precipitation reaction in Na2HPO4-NaHCO3 solution using set gypsum in 48 h when the temperature was 100°C or higher. Conversion rate to CO3Ap increased with treatment temperature. CO3Ap block containing a larger amount of carbonate was obtained when treated at lower temperature.
Bishop, Tom; Turchyn, Alexandra V.; Sivan, Orit
2013-01-01
We present coupled sulfur and oxygen isotope data from sulfur nodules and surrounding gypsum, as well as iron and manganese concentration data, from the Lisan Formation near the Dead Sea (Israel). The sulfur isotope composition in the nodules ranges between -9 and -11‰, 27 to 29‰ lighter than the surrounding gypsum, while the oxygen isotope composition of the gypsum is constant around 24‰. The constant sulfur isotope composition of the nodule is consistent with formation in an ‘open system’. Iron concentrations in the gypsum increase toward the nodule, while manganese concentrations decrease, suggesting a redox boundary at the nodule-gypsum interface during aqueous phase diagenesis. We propose that sulfur nodules in the Lisan Formation are generated through bacterial sulfate reduction, which terminates at elemental sulfur. We speculate that the sulfate-saturated pore fluids, coupled with the low availability of an electron donor, terminates the trithionate pathway before the final two-electron reduction, producing thionites, which then disproportionate to form abundant elemental sulfur. PMID:24098403
Gypsum crystallization from cadmium-poisoned solutions
NASA Astrophysics Data System (ADS)
Rinaudo, C.; Franchini-Angela, M.; Boistelle, R.
1988-06-01
Gypsum crystals, CaSO4⋯2H2O, are grown from solutions containing large amounts of cadmium chloride as an impurity. The initial supersaturations necessary for the gypsum nucleation increase with increasing cadmium concentration. Accordingly, at constant initial supersaturation, the induction periods also increase with increasing cadmium concentration. Cadmium and chlorine are incorporated into the crystals probably as CdCl+ or CdCl2, which are the most abundant complexes in the solutions. Consequently, the gypsum crystals grow curved, distorted and exhibit fractures along the [100] direction. The amount of incorporated cadmium increases with increasing supersaturation. Cadmium is mainly detected near the {120} faces in the area where the fractures release the internal stresses. Supersaturation and concentration of free ions and complexes are calculated for all solutions. Adsorption on {120} is discussed.
1993-09-01
interior is finished with plaster or wallboard (i.e., sheetrock, drywall, gypsum board , etc.) walls and ceilings, "cheese-cloth" wall and ceiling lining...with wallboard (i.e., sheetrock, drywall, gypsum board , etc.) walls and ceilings, acoustical ceiling panels/tiles, and vinyl tile or bare concrete...finished with wallboard (i.e., sheetrock, drywall, gypsum board , etc.) walls and ceilings, and vinyl tile or bare concrete floors. "* No fireproofing or
Performing Mineral Hydration Experiments in the CheMin Diffractometer on Mars
NASA Technical Reports Server (NTRS)
Vaniman, D. T.; Yen, A. S.; Rampe, E. B.; Blake, D. F.; Chipera, S. J.; Morookian, J. M.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Geller, R.;
2016-01-01
Laboratory work is the cornerstone of experimental planetary geochemistry, mineralogy, and petrology, but much is to be gained by "experiments" while on a planet surface. Earth-bound experiments are often limited in ability to control multiple conditions relevant to planetary bodies (e.g. cycles in temperature and vapor pressure of water), but observations on-planet provide a unique opportunity where conditions are native to the planet and those affected by sampling and analysis can be constrained. The CheMin XRD instrument on Mars Science Laboratory has been able to test mineral hydration in samples held for up to 300 Mars days (sols). Clay minerals sampled at Yellowknife Bay early in the mission had both collapsed (10 Å) and expanded (13.2 Å) basal spacing. Collapsed interlayers were expected, but larger spacing was not; it was uncertain whether larger basal spacing would collapse on prolonged exposure to warmer conditions inside CheMin. Observation over several hundred sols showed no collapse, with the conclusion that expanded interlayer spacing was due to partial intercalation by metal-hydroxyl groups that resist dehydration. More recently, a sample of the Murray Formation, Oudam, provided the first XRD detection of gypsum and a chance to observe gypsum stability. Laboratory work suggests gypsum should be stable at Mars surface conditions, and indeed gypsum has been observed from orbit at higher latitudes and in thick veins at Yellowknife Bay by Mastcam reflectance spectra. Laboratory experiments have shown that on dehydration the gypsum would not become X-ray amorphous but would rather transform to a water-deficient bassanite structure. Over a period of 37 sols, it was observed that the Oudam sample in CheMin transformed from an assemblage of gypsum+anhydrite, to gypsum+bassanite+anhydrite, and finally to bassanite+anhydrite. Mg-sulfates were also anticipated but have not been observed in CheMin despite chemical evidence for their presence. Unlike gypsum, hydrated Mg-sulfates can transition to an X-ray amorphous form. Crystalline Mg-sulfates are expected higher in the section on Mount Sharp, where it should be possible to determine whether they persist or are destabilized after sampling, providing further insight into hydrous mineral stability at Mars near-equatorial conditions.
Transport-Induced Spatial Patterns of Sulfur Isotopes (δ34S) as Biosignatures
NASA Astrophysics Data System (ADS)
Mansor, Muammar; Harouaka, Khadouja; Gonzales, Matthew S.; Macalady, Jennifer L.; Fantle, Matthew S.
2018-01-01
Cave minerals deposited in the presence of microbes may host geochemical biosignatures that can be utilized to detect subsurface life on Earth, Mars, or other habitable worlds. The sulfur isotopic composition of gypsum (CaSO4·2H2O) formed in the presence of sulfur-oxidizing microbes in the Frasassi cave system, Italy, was evaluated as a biosignature. Sulfur isotopic compositions (δ34SV-CDT) of gypsum sampled from cave rooms with sulfidic air varied from -11 to -24‰, with minor deposits of elemental sulfur having δ34S values between -17 and -19‰. Over centimeter-length scales, the δ34S values of gypsum varied by up to 8.5‰. Complementary laboratory experiments showed negligible fractionation during the oxidation of elemental sulfur to sulfate by Acidithiobacillus thiooxidans isolated from the caves. Additionally, gypsum precipitated in the presence and absence of microbes at acidic pH characteristic of the sulfidic cave walls has δ34S values that are on average 1‰ higher than sulfate. We therefore interpret the 8.5‰ variation in cave gypsum δ34S (toward more negative values) to reflect the isotopic effect of microbial sulfide oxidation directly to sulfate or via elemental sulfur intermediate. This range is similar to that expected by abiotic sulfide oxidation with oxygen, thus complicating the use of sulfur isotopes as a biosignature at centimeter-length scales. However, at the cave room (meter-length) scale, reactive transport modeling suggests that the overall ˜13‰ variability in gypsum δ34S reflects isotopic distillation of circulating H2S gas due to microbial sulfide oxidation occurring along the cave wall-atmosphere interface. Systematic variations of gypsum δ34S along gas flow paths can thus be interpreted as biogenic given that slow, abiotic oxidation cannot produce the same spatial patterns over similar length scales. The expression and preservation potential of this biosignature is dependent on gas flow parameters and diagenetic processes that modify gypsum δ34S values over geological timescales.
Yan, Min; Takahashi, Hidekazu; Nishimura, Fumio
2004-12-01
The aim of the present study was to evaluate the dimensional accuracy and surface property of titanium casting obtained using a gypsum-bonded alumina investment. The experimental gypsum-bonded alumina investment with 20 mass% gypsum content mixed with 2 mass% potassium sulfate was used for five cp titanium castings and three Cu-Zn alloy castings. The accuracy, surface roughness (Ra), and reaction layer thickness of these castings were investigated. The accuracy of the castings obtained from the experimental investment ranged from -0.04 to 0.23%, while surface roughness (Ra) ranged from 7.6 to 10.3microm. A reaction layer of about 150 microm thickness under the titanium casting surface was observed. These results suggested that the titanium casting obtained using the experimental investment was acceptable. Although the reaction layer was thin, surface roughness should be improved.
Thermal analysis of calcium sulfate dihydrate sources used to manufacture gypsum wallboard
Engbrecht, Dick C.; Hirschfeld, Deidre A.
2016-07-27
Gypsum wallboard has been used for over 100 years as a barrier to the spread of fire in residential and commercial structures. The gypsum molecule, CaSO 4·2H 2O, provides two crystalline waters that are released upon heating providing an endothermic effect. Manufacturers have recognized that the source of the gypsum ore is a factor that affects all aspects of its performance; thus, it is hypothesized that the impurities present in the gypsum ore are the causes of the performance differences. Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TGA) and X-ray Diffraction (XRD) were used in this paper to compare and characterize samples ofmore » gypsum ore representing sources of natural, synthetic from a Flue Gas Desulfurization process (FGD) and blends thereof. The hemihydrate phase of representative natural, FGD, and reagent grade calcium sulfate were rehydrated with distilled water and evaluated by DTA/TGA. Analysis of the data shows distinct areas of similarity separated by the conversion to anhydrite ~250 °C. Compositional reconstructions based on DTA/TGA and XRD data were compared and although, the results were comparable, the DTA/TGA suggests thermally active compounds that were not detected by XRD. Anhydrite, silica and halite were reported by XRD but were not thermally reactive in the temperature range evaluated by DTA/TGA (ambient to 1050 °C). Finally, the presence of carbonate compounds (e.g., calcite and dolomite) were indicated by XRD and estimated from the thermal decomposition reaction ~700 °C.« less
Lehoux, Alizée P; Lockwood, Cindy L; Mayes, William M; Stewart, Douglas I; Mortimer, Robert J G; Gruiz, Katalin; Burke, Ian T
2013-10-01
Red mud is highly alkaline (pH 13), saline and can contain elevated concentrations of several potentially toxic elements (e.g. Al, As, Mo and V). Release of up to 1 million m(3) of bauxite residue (red mud) suspension from the Ajka repository, western Hungary, caused large-scale contamination of downstream rivers and floodplains. There is now concern about the potential leaching of toxic metal(loid)s from the red mud as some have enhanced solubility at high pH. This study investigated the impact of red mud addition to three different Hungarian soils with respect to trace element solubility and soil geochemistry. The effectiveness of gypsum amendment for the rehabilitation of red mud-contaminated soils was also examined. Red mud addition to soils caused a pH increase, proportional to red mud addition, of up to 4 pH units (e.g. pH 7 → 11). Increasing red mud addition also led to significant increases in salinity, dissolved organic carbon and aqueous trace element concentrations. However, the response was highly soil specific and one of the soils tested buffered pH to around pH 8.5 even with the highest red mud loading tested (33 % w/w); experiments using this soil also had much lower aqueous Al, As and V concentrations. Gypsum addition to soil/red mud mixtures, even at relatively low concentrations (1 % w/w), was sufficient to buffer experimental pH to 7.5-8.5. This effect was attributed to the reaction of Ca(2+) supplied by the gypsum with OH(-) and carbonate from the red mud to precipitate calcite. The lowered pH enhanced trace element sorption and largely inhibited the release of Al, As and V. Mo concentrations, however, were largely unaffected by gypsum induced pH buffering due to the greater solubility of Mo (as molybdate) at circumneutral pH. Gypsum addition also leads to significantly higher porewater salinities, and column experiments demonstrated that this increase in total dissolved solids persisted even after 25 pore volume replacements. Gypsum addition could therefore provide a cheaper alternative to recovery (dig and dump) for the treatment of red mud-affected soils. The observed inhibition of trace metal release within red mud-affected soils was relatively insensitive to either the percentage of red mud or gypsum present, making the treatment easy to apply. However, there is risk that over-application of gypsum could lead to detrimental long-term increases in soil salinity.
Formation of natural gypsum megacrystals in Naica, Mexico
NASA Astrophysics Data System (ADS)
García-Ruiz, Juan Manuel; Villasuso, Roberto; Ayora, Carlos; Canals, Angels; Otálora, Fermín
2007-04-01
Exploration in the Naica mine (Chihuahua, Mexico) recently unveiled several caves containing giant, faceted, and transparent single crystals of gypsum (CaSO4•2H2O) as long as 11 m. These large crystals form at very low supersaturation. The problem is to explain how proper geochemical conditions can be sustained for a long time without large fluctuations that would trigger substantial nucleation. Fluid inclusion analyses show that the crystals grew from low-salinity solutions at a temperature of ˜54 °C, slightly below the one at which the solubility of anhydrite equals that of gypsum. Sulfur and oxygen isotopic compositions of gypsum crystals are compatible with growth from solutions resulting from dissolution of anhydrite previously precipitated during late hydrothermal mineralization, suggesting that these megacrystals formed by a self-feeding mechanism driven by a solution-mediated, anhydrite-gypsum phase transition. Nucleation kinetics calculations based on laboratory data show that this mechanism can account for the formation of these giant crystals, yet only when operating within the very narrow range of temperature identified by our fluid inclusion study. These singular conditions create a mineral wonderland, a site of scientific interest, and an extraordinary phenomenon worthy of preservation.
NASA Astrophysics Data System (ADS)
Pop, P. A.; Ungur, P. A.; Lazar, L.; Marcu, F.
2009-11-01
The EU Norms about of protection environment, outside and inside ambient, and human health demands has lead at obtain of new materials on the base of airborne material, with high thermo and phonic-absorbent properties, porous and lightweight. The α and β-modeling gypsum plaster quality and lightweight depend on many factors as: fabrication process, granulation, roast temperature, work temperature, environment, additives used, breakage, etc. Also, the objectively appraisal of modeling gypsum quality depends of proper tests methods selection, which are legislated in norms, standards and recommendations. In Romanian Standards SR EN 13279-1/2005 and SR EN 13279-2/2005, adaptable from EU Norms EN 13279-1/2004 and EN 13279-2/2004, the characteristics gypsum family tests are well specification, as: granule-metric analysis, determination of water/plaster ratio, setting time, mechanical characteristics, adhesions and water restrain. For plaster with special use (phonic-absorbent and orthopedic materials, etc.) these determinations are not concluding, being necessary more parameters finding, as: elastic constant, phonic-absorbent coefficient, porosity, working, etc., which is imposed the completion of norms and standards with new determinations.
NASA Astrophysics Data System (ADS)
Azieyanti, N. A.; Hakim, Alif; Hasini, Hasril
2017-10-01
A composite mixture of gypsum and natural fibers has been considered in this study to enhance the fire resistance rating of a fire door. Previously the materials used to make a fire door are gypsum and fiber wool where it acts as a protective coating. Normally this fire door must be compact and able to close on its own. Natural fibers have the ability to replace glass fiber cotton because of its features that are available in fiber glass wool. When using fiberglass, it can cause health problem once it is swallowed and inhaled, and may remain in the lungs indefinitely. It also can contribute to lungs cancer. Kapok fiber has been used in this experiment as natural fibers. The objective of the experiment is to analyze the fire resistant rating of the composite mixture of gypsum with kapok fiber. The scopes of the experiment consist of a preparation of composite mixture samples of gypsum with kapok fiber with different composition and thickness, and the fabrication of a fire resistant testing furnace. A testing of samples which were conducted in accordance with the standard MS 1073: PART 2:1996.
Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard
This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices
Testing CO2 Sequestration in an Alkaline Soil Treated with Flue Gas Desulfurization Gypsum (FGDG)
NASA Astrophysics Data System (ADS)
Han, Y.; Tokunaga, T. K.
2012-12-01
Identifying effective and economical methods for increasing carbon storage in soils is of interest for reducing soil CO2 fluxes to the atmosphere in order to partially offset anthropogenic CO2 contributions to climate change This study investigates an alternative strategy for increasing carbon retention in soils by accelerating calcite (CaCO3) precipitation and promoting soil organic carbon (SOC) complexation on mineral surfaces. The addition of calcium ion to soils with pH > 8, often found in arid and semi-arid regions, may accelerate the slow process of calcite precipitation. Increased ionic strength from addition of a soluble Ca source also suppresses microbial activity which oxidizes SOC to gaseous CO2. Through obtaining C mass balances in soil profiles, this study is quantifying the efficiency of gypsum amendments for mitigating C losses to the atmosphere. The objective of this study is to identify conditions in which inorganic and organic C sequestration is practical in semi-arid and arid soils by gypsum treatment. As an inexpensive calcium source, we proposed to use flue gas desulfurization gypsum (FGDG), a byproduct of fossil fuel burning electric power plants. To test the hypothesis, laboratory column experiments have been conducted in calcite-buffered soil with addition of gypsum and FGDG. The results of several months of column monitoring are demonstrating that gypsum-treated soil have lowered amounts of soil organic carbon loss and increased inorganic carbon (calcite) production. The excess generation of FGDG relative to industrial and agricultural needs, FGDG, is currently regarded as waste. Thus application of FGDG application in some soils may be an effective and economical means for fixing CO2 in soil organic and inorganic carbon forms.Soil carbon cycle, with proposed increased C retention by calcite precipitation and by SOC binding onto soil mineral surfaces, with both processes driven by calcium released from gypsum dissolution.
NASA Astrophysics Data System (ADS)
Yazdanpanah, Najme; Mahmoodabadi, Majid
2010-05-01
Soil salinity and sodicity are escalating problems worldwide, especially in Iran since 90 percent of the country is located in arid and semi-arid. Reclamation of sodic soils involves replacement of exchangeable Na by Ca. While some researches have been undertaken in the controllable laboratory conditions using soil column with emphasis on soil properties, the properties of effluent as a measure of soil reclamation remain unstudied. In addition, little attention has been paid to the temporal variability of effluent quality. The objective of this study was to investigate the effect of different amendments consist of gypsum, manure, pistachio residue, and their combination for ameliorating a calcareous saline sodic soil. Temporal variability of effluent properties during reclamation period was studied, as well. A laboratory experiment was conducted to evaluate the effect of different amendments using soil columns. The amendment treatments were: control, manure, pistachio residue, gypsum powder (equivalent of gypsum requirement), manure+gypsum and pistachio residue+gypsum, which were applied once in the beginning of the experiment. The study was performed in 120 days period and totally four irrigation treatments were supplied to each column. After irrigations, the effluent samples were collected every day at the bottom of the soil columns and were analyzed. The results show that for all treatments, cations (e.g. Ca, Mg, Na and K) in the outflow decreased with time, exponentially. Manure treatment resulted in highest rate of Ca, Mg, Na leaching from soil solution, in spite of the control which had the lowest rate. In addition, pistachio residue had the most effect on K leaching. Manure treatment showed the most EC and SAR in the leachate, while gypsum application leads to the least rate of them. The findings of this research reveal different rates of cations leaching from soil profile, which is important in environmental issues. Keywords: Saline sodic soil, Reclamation, Organic Matter, Gypsum, Leachate.
An in vitro investigation into the physical properties of irreversible hydrocolloid alternatives.
Patel, Rishi D; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S
2010-11-01
A number of manufacturers have introduced new products that are marketed as alternatives to irreversible hydrocolloid impression materials. However, there is a paucity of laboratory and clinical research on these products compared to traditional irreversible hydrocolloid. The purpose of this study was to evaluate the detail reproduction, gypsum compatibility, and linear dimensional change of 3 recently introduced impression materials designed as alternatives to irreversible hydrocolloid. The tested materials were Position Penta Quick, Silgimix, and AlgiNot. An irreversible hydrocolloid impression material, Jeltrate Plus Antimicrobial, served as the control. The parameters of detail reproduction, gypsum compatibility, and linear dimensional change were tested in accordance with ANSI/ADA Specifications No. 18 and 19. The gypsum compatibility was tested using a type III stone (Microstone Golden) and a type IV stone (Die-Keen Green). The data were analyzed using the Kruskal-Wallis rank test and the Mann-Whitney U test (α=.05). The test materials demonstrated significantly (P<.001) better detail reproduction than the control material. Silgimix exhibited the best compatibility with Microstone, whereas AlgiNot and Position Penta Quick exhibited the best gypsum compatibility with Die-Keen. An incompatibility was observed over time between the Jeltrate control material and the Microstone gypsum material. For linear dimensional change, the mean dimension of the control material most closely approximated the distance between the lines on the test die, but it exhibited the greatest variability in measurements. All of the test materials exhibited linear dimensional change within the ADA's accepted limit of 1.0%. The 3 new impression materials exhibited better detail reproduction and less variability in linear dimensional change than the irreversible hydrocolloid control. Gypsum compatibility varied with the brand of gypsum used, with an incompatibility identified between the control material (Jeltrate Plus Antimicrobial) and Microstone related to surface changes observed over time. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Oriented attachment by enantioselective facet recognition in millimeter-sized gypsum crystals.
Viedma, Cristóbal; Cuccia, Louis A; McTaggart, Alicia; Kahr, Bart; Martin, Alexander T; McBride, J Michael; Cintas, Pedro
2016-09-22
Crystal growth by oriented attachment involves the spontaneous self-assembly of adjoining crystals with common crystallographic orientations. Herein, we report the oriented attachment of gypsum crystals on agitation to form stereoselective mesoscale aggregates.
Compartmentalization of gypsum and halite associated with cyanobacteria in saline soil crusts.
Canfora, Loredana; Vendramin, Elisa; Vittori Antisari, Livia; Lo Papa, Giuseppe; Dazzi, Carmelo; Benedetti, Anna; Iavazzo, Pietro; Adamo, Paola; Jungblut, Anne D; Pinzari, Flavia
2016-06-01
The interface between biological and geochemical components in the surface crust of a saline soil was investigated using X-ray diffraction, and variable pressure scanning electron microscopy in combination with energy dispersive X-ray spectrometry. Mineral compounds such as halite and gypsum were identified crystallized around filaments of cyanobacteria. A total of 92 genera were identified from the bacterial community based on 16S gene pyrosequencing analysis. The occurrence of the gypsum crystals, their shapes and compartmentalization suggested that they separated NaCl from the immediate microenvironment of the cyanobacteria, and that some cyanobacteria and communities of sulfur bacteria may had a physical control over the distinctive halite and gypsum structures produced. This suggests that cyanobacteria might directly or indirectly promote the formation of a protective envelope made of calcium and sulfur-based compounds. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Environmental chamber measurements of mercury flux from coal utilization by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekney, Natalie J.; Martello, Donald; Schroeder, Karl
2009-05-01
An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7- day experiment averages ranging from -6.8 to 73 ng/m(2) h for the fly ash samples and -5.2 to 335 ng/m(2) h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples,more » the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.« less
Environmental chamber measurements of mercury flux from coal utilization by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekney, N.J.; Martello, D.V.; Schroeder, K.T.
2009-05-01
An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, themore » effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.« less
Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil.
Yang, Ping; Li, Xian; Tong, Ze-Jun; Li, Qu-Sheng; He, Bao-Yan; Wang, Li-Li; Guo, Shi-Hong; Xu, Zhi-Min
2016-04-01
A soil column leaching experiment was conducted to eliminate heavy metals from reclaimed tidal flat soil. Flue gas desulfurization (FGD) gypsum was used for leaching. The highest removal rates of Cd and Pb in the upper soil layers (0-30 cm) were 52.7 and 30.5 %, respectively. Most of the exchangeable and carbonate-bound Cd and Pb were removed. The optimum FGD gypsum application rate was 7.05 kg·m(-2), and the optimum leaching water amount for the application was 217.74 L·m(-2). The application of FGD gypsum (two times) and the extension of the leaching interval time to 20 days increased the heavy metal removal rate in the upper soil layers. The heavy metals desorbed from the upper soil layers were re-adsorbed and fixed in the 30-70 cm soil layers.
NASA Astrophysics Data System (ADS)
Tao, Meng; Yechao, You; Jie, Chen; Yaoqing, Hu
2017-08-01
The permeability of the surrounding rock is a critical parameter for the designing and assessment of radioactive waste disposal repositories in the rock salt. Generally, in the locations that are chosen for radioactive waste storage, the bedded rock salt is a sedimentary rock that contains NaCl and Na2SO4. Most likely, there are also layers of gypsum ( {CaSO}_{ 4} \\cdot 2 {H}_{ 2} {O)} present in the salt deposit. Radioactive wastes emit a large amount of heat and hydrogen during the process of disposal, which may result in thermal damage of the surrounding rocks and cause a great change in their permeability and tightness. Therefore, it is necessary to investigate the permeability evolution of the gypsum interlayer under high temperature and high pressure in order to evaluate the tightness and security of the nuclear waste repositories in bedded rock salt. In this study, a self-designed rock triaxial testing system by which high temperature and pressure can be applied is used; the μCT225kVFCB micro-CT system is also employed to investigate the permeability and microstructure of gypsum specimens under a constant hydrostatic pressure of 25 MPa, an increasing temperature (ranging from 20 to 650 °C), and a variable inlet gas pressure (1, 2, 4, 6 MPa). The experimental results show: (a) the maximum permeability measured during the whole experiment is less than 10-17 m2, which indicates that the gypsum interlayer has low permeability under high temperature and pressure that meet the requirements for radioactive waste repository. (b) Under the same temperature, the permeability of the gypsum specimen decreases at the beginning and then increases as the pore pressure elevates. When the inlet gas pressure is between 0 and 2 MPa, the Klinkenberg effect is very pronounced. Then, as the pore pressure increases, the movement behavior of gas molecules gradually changes from free motion to forced directional motion. So the role of free movement of gas molecules gradually reduced, which eventually leads to a decrease in permeability. When the inlet gas pressure is between 2 and 6 MPa, the Klinkenberg effect dribbles away, and the gas flow gradually obeys to the Darcy's law. Hence, the permeability increased with the increase in inlet gas pressure. (c) The curve of permeability versus temperature is divided into five stages based on its gradient. In the temperature range of 20-100 °C, the permeability of gypsum decreased slowly when the temperature decreased. From 100 to 200 °C, the permeability of gypsum increased dramatically when the temperature increased. However, a dramatic increase in permeability was observed from 200 to 450 °C. Subsequently, in the temperature range of 450-550 °C, due to closure of pores and fractures, the permeability of the specimens slowly lessened when the temperature increased. From 550 to 650 °C, the permeability of gypsum slightly increased when the temperature increased; (d) the micro-cracks and porosity obtained from the CT images show a high degree of consistency to the permeability evolution; (e) when compared to the permeability evolutions of sandstone, granite, and lignite, gypsum exhibits a stable evolution trend of permeability and has a much greater threshold temperature when its permeability increases sharply. The results of the paper may provide essential and valuable references for the design and construction of high-level radioactive wastes repository in bedded salt rock containing gypsum interlayers.
Sulfur Isotope Analysis of Minerals and Fluids in a Natural CO2 Reservoir, Green River, Utah
NASA Astrophysics Data System (ADS)
Chen, F.; Kampman, N.; Bickle, M. J.; Busch, A.; Turchyn, A. V.
2013-12-01
Predicting the security of geological CO2 storage sites requires an understanding of the geochemical behavior of the stored CO2, especially of fluid-rock reactions in reservoirs, caprocks and fault zones. Factors that may influence geochemical behavior include co-injection of sulfur gases along with the CO2, either in acid-gas disposal or as contaminants in CO2 storage sites, and microbial activity, such as bacterial sulfate reduction. The latter may play an important role in buffering the redox chemistry of subsurface fluids, which could affect toxic trace metal mobilization and transport in acidic CO2-rich fluids. These processes involving sulfur are poorly understood. Natural CO2-reservoirs provide natural laboratories, where the flow and reactions of the CO2-charged fluids and the activity of microbial communities are integrated over sufficient time-scales to aid prediction of long-term CO2 storage. This study reports on sulfur isotope analyses of sulfate and sulfide minerals in rock core and in CO2-charged fluids collected from a stacked sequence of natural CO2 reservoirs at Green River, Utah. Scientific drilling adjacent to a CO2-degassing normal fault to a depth of 325m retrieved core and fluid samples from two CO2 reservoirs in the Entrada and Navajo Sandstones and from the intervening Carmel Formation caprock. Fluid samples were collected from CO2-charged springs that discharge through the faults. Sulfur exists as sulfate in the fluids, as sedimentary gypsum beds in the Carmel Formation, as remobilized gypsum veins within a fault damage zone in the Carmel Fm. and in the Entrada Sandstone, and as disseminated pyrite and pyrite-mineralized open fractures throughout the cored interval. We use the stable sulfur (δ34S) and oxygen (δ18OSO4) isotopes of the sulfate, gypsum, and pyrite to understand the source of sulfur in the reservoir as well as the timing of gypsum vein and pyrite formation. The hydration water of the gypsum is also reported to explore the different timing of gypsum vein formation. Macroscopic and microscopic gradients in the sulfur isotope composition of pyrite throughout the core and at discernible redox-reaction fronts were examined in detail to assess the role of bacteria in mediating sulfate reduction, sulfide mineralization and buffering of groundwater redox chemistry. The CO2 charged fluids and gypsum veins within the Entrada Sandstone have a narrow and very similar range in both δ34SSO4 and δ18OSO4, suggesting that the fluids (9.1-10.7‰) are the most likely source of the sulfate in the veins (11.4-12.8‰) and that the veins formed during recent fluid flow through the Entrada, with sulfate coming from remobilized gypsum beds in the Carmel. The Carmel also contains two isotopically distinct types of gypsum veins: one with δ34SSO4 values similar to the Entrada veins and one with much higher δ34SSO4 values (15.1-16.1‰). The latter are likely primary gypsum, while the former are likely secondary gypsum. Sulfur isotope fractionation between pyrite (-16.5‰ to -35.7‰) at the Carmel-Navajo interface and reservoir fluids (9.1-10.7‰) suggest that sulfur reducing bacteria play a role in producing the deposited sulfide. This data demonstrates active sulfur cycling in CO2 reservoirs with many different sulfur species cycled among various pools creating the wide isotope dispersion we observe.
NASA Astrophysics Data System (ADS)
Campana, Claudia; Fidelibus, Maria Dolores
2015-11-01
The gypsum coastal aquifer of Lesina Marina (Puglia, southern Italy) has been affected by sinkhole formation in recent decades. Previous studies based on geomorphologic and hydrogeological data ascribed the onset of collapse phenomena to the erosion of material that fills palaeo-cavities (suffosion sinkholes). The change in the hydrodynamic conditions of groundwater induced by the excavation of a canal within the evaporite formation nearly 100 years ago was identified as the major factor in triggering the erosion, while the contribution of gypsum dissolution was considered negligible. A combined reactive-transport/density-dependent flow model was applied to the gypsum aquifer to evaluate whether gypsum dissolution rate is a dominant or insignificant factor in recent sinkhole formation under current hydrodynamic conditions. The conceptual model was first defined with a set of assumptions based on field and laboratory data along a two-dimensional transect of the aquifer, and then a density-dependent, tide-influenced flow model was set up and solved using the numerical code SEAWAT. Finally, the resulting transient flow field was used by the reactive multicomponent transport model PHT3D to estimate the gypsum dissolution rate. The validation tests show that the model accurately represents the real system, and the multi-disciplinary approach provides consistent information about the causes and evolution time of dissolution processes. The modelled porosity development rate is too low to represent a significant contribution to the recent sinkhole formation in the Lesina Marina area, although it justifies cavity formation and cavity position over geological time.
NASA Astrophysics Data System (ADS)
Tilak B., Vidya; Dutta, Rakesh Kumar; Mohanty, Bijayananda
2015-06-01
This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite - lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.
Xiankai, Bao; Jinchang, Zhao
2018-01-01
Based on the engineering background of water dissolving mining for hydrocarbon storage in multi-laminated salt stratum, the mixed mode fracture toughness and fracture trajectory of gypsum interlayers soaked in half-saturated brine at various temperatures (20°C, 50°C and 80°C) were studied by using CSNBD (centrally straight-notched Brazilian disc) specimens with required inclination angles (0°, 7°, 15°, 22°, 30°, 45°, 60°, 75°, 90°) and SEM (scanning electron microscopy). The results showed: (i) The fracture load of gypsum specimens first decreased then increased with increasing inclination angle, due to the effect of friction coefficient. When soaked in brine, the fracture toughness of gypsum specimens gradually decreased with increasing brine temperature. (ii) When soaked in brine, the crystal boundaries of gypsum separated and became clearer, and the boundaries became more open between the crystals with increasing brine temperature. Besides, tensile micro-cracks appeared on the gypsum crystals when soaked in 50°C brine, and the intensity of tensile cracks became more severe when soaking in 80°C brine. (iii) The experimental fracture envelopes derived from the conventional fracture criteria and lay outside these conventional criteria. The experimental fracture envelopes were dependent on the brine temperature and gradually expanded outward as brine temperature increases. (iv) The size of FPZ (fracture process zone) was greatly dependent on the damage degree of materials and gradually increased with increase of brine temperature. The study has important implication for the control of shape and size of salt cavern. PMID:29410841
MOISTURE MOVEMENT (WICKING) WITHIN GYPSUM WALLBOARD
Gypsum wallboard with repeated or prolonged exposure to water or excess moisture can lose its structural integrity and provide a growth medium for biological contaminants. Poorly sealed buildings, leaking or failed plumbing systems, or improperly constructed HVAC systems can all ...
Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.
2007-01-01
Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results also show that there are no significant differences between modeled and laboratory-measured grain size values. Hyperspectral grain size modeling can help to determine dynamic processes shaping the formation of the dunes such as wind directions, and the relative strengths of winds through time. This has implications for studying such processes on other planetary landforms that have mineralogy with unique absorption bands in VNIR-SWIR hyperspectral data. ?? 2006 Elsevier B.V. All rights reserved.
Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite
Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; King, Sara J.; Brown, Adrian J.; Swayze, Gregg A.
2014-01-01
This study of the spectral properties of Ca-sulfates was initiated to support remote detection of these minerals on Mars. Gypsum, bassanite, and anhydrite are the currently known forms of Ca-sulfates. They are typically found in sedimentary evaporites on Earth, but can also form via reaction of acidic fluids associated with volcanic activity. Reflectance, emission, transmittance, and Raman spectra are discussed here for various sample forms. Gypsum and bassanite spectra exhibit characteristic and distinct triplet bands near 1.4–1.5 μm, a strong band near 1.93–1.94 μm, and multiple features near 2.1–2.3 μm attributed to H2O. Anhydrite, bassanite, and gypsum all have SO4 combination and overtone features from 4.2–5 μm that are present in reflectance spectra. The mid-IR region spectra exhibit strong SO4 ν3 and ν4 vibrational bands near 1150–1200 and 600–680 cm−1 (~8.5 and 16 μm), respectively. Additional weaker features are observed near 1005–1015 cm−1 (~10 μm) for ν1 and near 470–510 cm−1 (~20 μm) for ν2. The mid-IR H2O bending vibration occurs near 1623–1630 cm−1 (~6.2 μm). The visible/near-infrared region spectra are brighter for the finer-grained samples. In reflectance and emission spectra of the mid-IR region the ν4 bands begin to invert for the finer-grained samples, and the ν1 vibration occurs as a band instead of a peak and has the strongest intensity for the finer-grained samples. The ν2 vibration is a sharp band for anhydrite and a broad peak for gypsum. The band center of the ν1 vibration follows a trend of decreasing frequency (increasing wavelength) with increasing hydration of the sample in the transmittance, Raman, and reflectance spectra. Anhydrite forms at elevated temperatures compared to gypsum, and at lower temperature, salt concentration, and pH than bassanite. The relative humidity controls whether bassanite or gypsum is stable. Thus, distinguishing among gypsum, bassanite, and anhydrite via remote sensing can provide constraints on the geochemical environment.
Coal combustion products: trash or treasure?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T.
2006-07-15
Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (frommore » Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.« less
Tufo, Ana E; Porzionato, Natalia F; Curutchet, Gustavo
2017-10-31
In this work, we report on the structural and textural changes in fluvial sediments from Reconquista River´s basin, Argentina, due to processes of contamination with organic matter and remediation by bioleaching. The original uncontaminated matrix showed quartz and phyllosilicates as the main primary mineral constituents and phases of interstratified illite-montmorillonite as secondary minerals. It was found that in contaminated sediments, the presence of organic matter in high concentration causes changes in the specific surface area, particle size distribution, size and distribution of micro and meso, and the morphology of the particles with respect to the uncontaminated sediment. After the bioleaching process, there were even greater changes in these parameters at the level of secondary mineral formation and the appearance of nanoparticles, which were confirmed by SEM. Especially, we found the formation of cementing substances such as gypsum, promoting the formation of macroporous aggregates and the weathering of clay components. Our results indicate that the bioleaching not only decreases the content of metals but also favors the formation of a material with improved characteristics for potential future applications.
The paper describes results of experiments assessing the efficacy of treating mold-contaminated gypsum wallboard with cleaners and/or disinfectants. Although the accepted recommendations for handling Stachybotrys chartarum contaminated gypsum wallboard are removal and replacement...
Study of Fresh and Hardening Process Properties of Gypsum with Three Different PCM Inclusion Methods
Serrano, Susana; Barreneche, Camila; Navarro, Antonia; Haurie, Laia; Fernandez, A. Inés; Cabeza, Luisa F.
2015-01-01
Gypsum has two important states (fresh and hardened states), and the addition of phase change materials (PCM) can vary the properties of the material. Many authors have extensively studied properties in the hardened state; however, the variation of fresh state properties due to the addition of Micronal® DS 5001 X PCM into gypsum has been the object of few investigations. Properties in fresh state define the workability, setting time, adherence and shrinkage, and, therefore the possibility of implementing the material in building walls. The aim of the study is to analyze, compare and evaluate the variability of fresh state properties after the inclusion of 10% PCM. PCM are added into a common gypsum matrix by three different methods: adding microencapsulated PCM, making a suspension of PCM/water, and incorporating PCM through a vacuum impregnation method. Results demonstrate that the inclusion of PCM change completely the water required by the gypsum to achieve good workability, especially the formulation containing Micronal® DS 5001 X: the water required is higher, the retraction is lower (50% less) due to the organic nature of the PCM with high elasticity and, the adherence is reduced (up to 45%) due to the difference between the porosity of the different surfaces as well as the surface tension difference. PMID:28793584
Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann
2014-12-01
Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.
Zaman, Chowdury Tanira; Takeuchi, Akari; Matsuya, Shigeki; Zaman, Q H M Shawket; Ishikawa, Kunio
2008-09-01
B-type carbonate apatite (CO3Ap) block may be an ideal artificial bone substitute because it is closer in chemical composition to bone mineral. In the present study, the feasibility to fabricate CO3Ap blocks was investigated using compositional transformation, which was based on the dissolution-precipitation reaction of a gypsum-calcite composite with free-molding behavior. For the compositional change, or phosphorization, gypsum-calcite composites of varying CaCO3 contents were immersed in 1 mol/L (NH4)3PO4 aqueous solution at 100 degrees C for 24 hours. No macroscopic changes were found after the treatment, whereas microscopic change was observed at SEM level. X-ray diffraction, Fourier transform infrared spectroscopy and CHN analysis indicated that the composites were B-type CO3Ap containing approximately 6-7 wt% of CO3, a value similar to that of biological bone apatite. Diametral tensile strength of the CO3Ap block was approximately 1-3 MPa. Based on the results obtained, it was therefore concluded that gypsum-calcite was a good candidate for the fabrication of CO3Ap blocks, coupled with the advantage that the composite can be molded to any shape by virtue of the setting property of gypsum.
NASA Astrophysics Data System (ADS)
Rustichelli, Andrea; Di Celma, Claudio; Tondi, Emanuele; Baud, Patrick; Vinciguerra, Sergio
2016-04-01
New knowledge on patterns of fibrous gypsum veins, their genetic mechanisms, deformation style and weathering are provided by a field- and laboratory-based study carried out on the Neogene to Quaternary Pisco Basin sedimentary strata (porous sandstones, siltstones and diatomites) exposed in the Ica desert, southern Peru. Gypsum veins vary considerably in dimensions, attitudes and timing and can develop in layered and moderately fractured rocks also in the absence of evaporitic layers. Veins occur both as diffuse features, confined to certain stratigraphic levels, and localised within fault zones. Arrays formed by layer-bounded, mutually orthogonal sets of steeply-dipping gypsum veins are reported for the first time. Vein length, height and spacing depend on the thickness of the bed packages in which they are confined. Within fault zones, veins are partly a product of faulting but also inherited layer-bounded features along which faults are superimposed. Due to the different petrophysical properties with respect to the parent rocks and their susceptibility to textural and mineralogical modifications, water dissolution and rupture, gypsum veins may have a significant role in geofluid management. Depending on their patterns and grade of physical and chemical alteration, veins may influence geofluid circulation and storage, acting as barriers to flow and possibly also as conduits.
Effect of amino acids on the precipitation kinetics and Ca isotopic composition of gypsum
NASA Astrophysics Data System (ADS)
Harouaka, Khadouja; Kubicki, James D.; Fantle, Matthew S.
2017-12-01
Stirred gypsum (CaSO4 · 2H2O) precipitation experiments (initial Ωgypsum = 2.4 ± 0.14, duration ≈ 1.0-1.5 h) were conducted in the presence of the amino acids glycine (190 μM), L-alanine (190 μM), D- and L-arginine (45 μM), and L-tyrosine (200 μM) to investigate the effect of simple organic compounds on both the precipitation kinetics and Ca isotopic composition of gypsum. Relative to abiotic controls, glycine, tyrosine, and alanine inhibited precipitation rates by ∼22%, 27%, and 29%, respectively, while L- and D-arginine accelerated crystal growth by ∼8% and 48%, respectively. With the exception of tyrosine, amino acid induced inhibition resulted in fractionation factors (αs-f) associated with precipitation that were no more than 0.3‰ lower than amino acid-free controls. In contrast, the tyrosine and D- and L-arginine experiments had αs-f values associated with precipitation that were similar to the controls. Our experimental results indicate that Ca isotopic fractionation associated with gypsum precipitation is impacted by growth inhibition in the presence of amino acids. Specifically, we propose that the surface-specific binding of amino acids to gypsum can change the equilibrium fractionation factor of the bulk mineral. We investigate the hypothesis that amino acids can influence the growth of gypsum at specific crystal faces via adsorption and that different faces have distinct fractionation factors (αface-fluid). Accordingly, preferential sorption of amino acids at particular faces changes the relative, face-specific mass fluxes of Ca during growth, which influences the bulk isotopic composition of the mineral. Density functional theory (DFT) calculations suggest that the energetic favorability of glycine sorption onto gypsum crystal faces occurs in the order: (1 1 0) > (0 1 0) > (1 2 0) > (0 1 1), while glycine sorption onto the (-1 1 1) face was found to be energetically unfavorable. Face-specific fractionation factors constrained by frequency calculations of clusters derived from DFT structures vary by as much as 1.4‰. This suggests that the equilibrium fractionation factor for the bulk crystal can vary substantially, and that surface sorption can induce changes in αeq associated with gypsum precipitation. While we do not rule out the influence of kinetic isotope effects, our results clearly demonstrate that the mode of crystal growth can have a sizeable effect on the bulk fractionation factor (αs-f). Ultimately, our results suggest that the same mechanism by which organic molecules affect the morphology of a mineral can also impact the isotopic composition of the mineral. The results of our study provide valuable insight into the mechanism of Ca isotopic fractionation during gypsum precipitation. Our results are also important for establishing a framework for accurate interpretations of mineral-hosted Ca isotope records of the past, as we demonstrate a mechanistic pathway by which the biological and chemical environment can impact Ca isotopic fractionation during mineral precipitation.
Method Analysis of Microbial-Resistant Gypsum Products
Method Analysis of Microbial-Resistant Gypsum ProductsD.A. Betancourt1, T.R.Dean1, A. Evans2, and G.Byfield2 1. US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory; RTP, NC 277112. RTI International, RTP, NCSeveral...
Gypsum Wallboard as a sink for formaldehyde
Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...
Can isotopic variations in structural water of gypsum reveal paleoclimatic changes?
NASA Astrophysics Data System (ADS)
Gatti, E.; Bustos, D.; Coleman, M. L.
2015-12-01
Water of crystallization in gypsum can be used as paleo-environmental proxy to study large scale climatic variability in arid areas. This is because changes in the isotopic composition of water of crystallization are due to isotopic variations in the mother brine from which the mineral precipitated, and the brine isotopic composition is linked to evaporation processes and humidity. This is particularly important when the salts are the only traces left of the original water, i.e. in modern arid areas. This study aims to prove that the 2-D/18-O compositions of the water of crystallization extracted from successive precipitates or even different growth zones of natural gypsum (CaSO4·H2O) can reconstruct the evaporation history and paleo-humidity of the source water basin. The method was tested in a laboratory experiment that evaporated CaSO4 brines under controlled temperature and humidity conditions. The brine was left to evaporate for five days at two different humidities (45 and 75 RH%); subsequently, brines and precipitated gypsum were sampled at 24 hour intervals. In this way we simulated zoned growth of gypsum. The samples were then analyzed for oxygen and hydrogen isotopic composition using a Thermo Scientific TC/EA with modified column, coupled to a MAT 253 Thermo Finnigan mass spectrometer at JPL. If preliminary results validate the novel hypothesis that changes in mineral composition can reveal details of paleo-environmental conditions the theory will be tested on natural gypsum collected from selected areas in White Sands National Monument, New Mexico. The study is currently ongoing but the full dataset will be presented at the conference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These featuresmore » all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.« less
NASA Astrophysics Data System (ADS)
Kasprzyk, Alicja
2003-05-01
Anhydrite deposits are widely distributed in the Middle Miocene Badenian evaporite basin of Poland, including the marginal sulphate platform and adjacent salt depocenter. Particular sedimentological, petrographic and geochemical characteristics of these anhydrite deposits and especially common pseudomorphic features, inherited from the precursor gypsum deposits, allow the interpretation of the original sedimentary facies. The observed facies distribution and succession (lower and upper members) reveal three distinct facies associations that record a range of depositional environments from nearshore to deeper basinal settings. Platform sulphates were deposited in subaerial and shallow-marine environments (shoreline and inner platform-lagoon system) mainly as autochthonous selenitic gypsum. This was reworked and redistributed into deeper waters (outer platform-lagoon, slope and the proximal basin floor system) to form resedimented facies composed mostly of allochthonous clastic gypsum and minor anhydrite. The general variation in petrographic and geochemical compositions of anhydrite lithofacies of the lower and upper members reflects the brine evolution, as the result of interactions between seawater, meteoric runoff and highly saline, residual pore fluids. The results indicate the importance of synsedimentary and diagenetic anhydritisation processes in formation of the Badenian anhydrite lithofacies, all of which preserve the original depositional features of the former gypsum. This also applies to the basinal anhydrite previously interpreted to have a depositional genesis. Two different genetic patterns of anhydrite have been reinforced by this study: (1) synsedimentary anhydritisation of gypsum deposits by highly concentrated brines or elevated temperatures in surficial to shallow-burial environments (lower member), and (2) successive phases (syndepositional de novo growth, early diagenetic to late diagenetic replacement of former gypsum) of anhydrite formation during progressive burial (upper member).
Origin of increased sulfate in groundwater at the ETF disposal site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, E.C.
1997-09-01
Treated effluent being discharged to the vadose zone from the C-018H Effluent Treatment Facility (ETF) at the Hanford Site has infiltrated vertically to the unconfined aquifer, as indicated by increasing tritium activity levels in the groundwater. Well 699-48-77A, in particular, exhibits increased levels of tritium and also sulfate in the groundwater. The origin of increased sulfate levels in the groundwater is attributed to the dissolution of gypsum as the effluent flows through the vadose zone. This is supported by the observation that sulfate was found to be present in soils collected from the vadose zone at an average value ofmore » about 10.6 ppm. The maximum observed sulfate concentration of 190 mg/L from well 699-48-77A was observed on August 6, 1996, and is less than the maximum value of 879 mg/L that potentially could be achieved if water in the vadose zone was to attain saturation with respect to gypsum and calcite. It is suggested that infiltration rates were high enough that the effluent did not completely equilibrate with gypsum in the vadose zone, and thus, sulfate levels remained below gypsum saturation levels. Sulfate levels appear to be dropping, which may be attributed to the completion of the dissolution of the bulk of gypsum present along the vadose zone flow path traversed by the effluent. Geochemical modeling was undertaken to evaluate the influence of effluent chemistry on sulfate concentration levels in the presence of excess calcite and gypsum. In general, the effect is fairly minor for dilute solutions, but becomes more significant for concentrated solutions.« less
Gypsum treated fly ash as a liner for waste disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivapullaiah, Puvvadi V., E-mail: siva@civil.iisc.ernet.in; Baig, M. Arif Ali, E-mail: reach2arif@gmail.com
2011-02-15
Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulicmore » conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner.« less
NASA Astrophysics Data System (ADS)
Guerrero, J.; Gutiérrez, F.
2017-11-01
Most of the Spanish fluvial systems excavated in Tertiary evaporitic gypsum formations show asymmetric valleys characterized by a stepped sequence of fluvial terraces on one valley flank and kilometric-long and > 100-m high prominent river scarp on the opposite side of the valley. Scarp undermining by the continuous preferential lateral migration of the river channel toward the valley margin leads to vertical to overhanging unstable slopes affected by a large number of slope failures that become the main geological hazard for villages located at the toe of the scarps. Detailed mapping of the gypsum scarps along the Ebro and Huerva Rivers gypsum scarps demonstrates that landslides and lateral spreading processes are predominant when claystones crop out at the base of the scarp, while rockfalls and topples become the dominant movement in those reaches where the rock mass is mainly constituted by evaporites. The dissolution of gypsum nodules, seasonal swelling and shrinking, and dispersion processes contribute to a decrease in the mechanical strength of claystones. The existence of dissolution-enlarged joints, sinkholes, and severely damaged buildings at the toe of the scarp from karstic subsidence demonstrates that the interstratal karstification of evaporites becomes a triggering factor in the instability of the rock mass. The genesis of asymmetric valleys and river gypsum scarps in the study area seem to be caused by the random migration of the river channel in the absence of lateral tilting related to tectonics or dissolution-induced subsidence. Once the scarp is developed, its preservation depends on the physicochemical properties of the substratum, the ratio between bedrock erosion and river incision rates, and climatic conditions that favour runoff erosion versus dissolution.
NASA Astrophysics Data System (ADS)
Scarciglia, Fabio; Mercatante, Giuseppe; Donato, Paola; Ghinassi, Massimiliano; Carnevale, Giorgio; Delfino, Massimo; Oms, Oriol; Papini, Mauro; Pavia, Marco; Sani, Federico; Rook, Lorenzo
2017-04-01
The Aalat stratigraphic succession represents a 300 m-thick continental archive in the northern sector of the African Rift Valley (Dandiero basin, Eritrea). Based on high-resolution magnetostratigraphy, along with tephrostratigrapic, paleontological and paleoanthropological data and correlations, the chronological constraints for the emplacement of this succession can be fixed at two stages characterized by normal polarity of the Earth's magnetic field, i.e. the base of the Jaramillo event and the lower part of the Brunhes chron, marking the Early to Middle Pleistocene transition. Remains of Homo erectus/ergaster and abundant fossil vertebrates were identified. Despite nowadays the study area has a typical arid, hot desert climate, the sedimentary succession records repeated shifts from fluvial to lacustrine facies, in line with dominant mammalian taxa characterized by strong water dependence and ichthyofauna typical of shallow-water fluvio-lacustrine paleoenvironments. The dominance of these water-controlled depositional environments over more than 250 ka suggests a major tectonic control, even though a clear overprinting of Pleistocene climate changes can be detected. The main morphological soil features, along with physico-chemical, mineralogical, geochemical and micromorphological data of selected soil profiles and horizons depict an overall poor to moderate degree of soil development, coherently with high rates of sedimentation of about 1 mm/year and local erosive phases. Nonetheless, the presence of calcic and especially petrocalcic horizons and one petrogypsic horizon at different stratigraphic heights clearly indicates cyclical phases of geomorphic stability, which allowed important leaching and accumulation of carbonate (or gypsum). Their complex, polygenetic fabric, often showing brecciation and re-dissolution features, points to a polyphased genesis, caused by changes in soil moisture conditions over time. This finding, together with the alternation of these cemented horizons with layers affected by local to extensive staining of the matrix with reddish to yellowish iron-oxides/hydroxides, suggests cyclical changes from dry to wet environmental conditions. This pattern is quite consistent with the main Pleistocene climate oscillations evidenced in global-scale paleoclimatic curves, where glacial/interglacial cycles of higher latitudes well correspond to the formation of carbonate- or gypsum-cemented and the iron-stained layers, respectively. In addition, some carbonate parent material enhancing secondary carbonate dynamics within the soil system, dominated by siliciclastic grains sourced from the metamorphic basement rocks prevailing in the Dandiero basin, could have been supplied as eolian dust during dryer (glacial) periods. A comparison of the different evolutionary (maturity-related) stages of calcic/petrocalcic and petrogypsic horizons of the chronologically well-constrained Aalat succession suggests that their time ranges of development were between 102 - 103 years and a few tens of thousands years. Further investigations are required to assess the potential role of paleoenvironmental changes recorded in the Dandiero basin fill on human settlement, dispersal and evolution in East Africa during the Early-Middle Pleistocene transition.
MOLD GROWTH ON GYPSUM WALLBOARD--A RESEARCH SUMMARY
Reducing occupant exposure to mold growing on damp gypsum wallboard is a research objective of the U.S. Environmental Protection Agency. Often mold contaminated building materials are not properly removed but instead surface cleaners are used and then paint is applied in an attem...
Evaluation of gypsum rates on greenhouse crop production
USDA-ARS?s Scientific Manuscript database
This study was to determine the potential of an added value distribution channel for gypsum waste by evaluating various greenhouse crops with captious pH and calcium needs. Three studies consisting of: Zonal geranium (Pelargonium x hortorum) and petunia (Petunia x hybrida); tomato (Solanum lycoper...
Impact of FGD gypsum application on trace elements
USDA-ARS?s Scientific Manuscript database
There are concerns regarding the fate of nutrients from surface application of animal waste. One approach to reduce losses of P is to treat manure with the industrial byproducts flue gas desulfurization gypsum (FGDG). However, concerns regarding heavy metal contributions to the environment have ar...
In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature
NASA Astrophysics Data System (ADS)
Liu, Chuan-Jiang; Zheng, Hai-Fei
2012-04-01
An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320°C in the pressure range of 1.0-1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T-0.7126 (250°C<=T<=320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.
Effect of Time on Gypsum-Impression Material Compatibility
NASA Astrophysics Data System (ADS)
Won, John Boram
The purpose of this study was to evaluate the compatibility of dental gypsum with three recently introduced irreversible hydrocolloid (alginate) alternatives. The test materials were Alginot® (Kerr™), Position Penta Quick® (3M ESPE™) and Silgimix ® (Sultan Dental™). The irreversible hydrocolloid impression material, Jeltrate Plus antimicrobial® (Dentsply Caulk™) served as the control.
NASA Technical Reports Server (NTRS)
Yager, T. J.; Horne, W. B.
1980-01-01
Friction measurement results obtained on the gypsum surface runways at Northrup Strip, White Sands Missile Range, N. M., using an instrumented tire test vehicle and a diagonal braked vehicle, are presented. These runways were prepared to serve as backup landing and retrieval sites to the primary sites located at Dryden Flight Research Center for shuttle orbiter during initial test flights. Similar friction data obtained on paved and other unpaved surfaces was shown for comparison and to indicate that the friction capability measured on the dry gypsum surface runways is sufficient for operations with the shuttle orbiter and the Boeing 747 aircraft. Based on these ground vehicle friction measurements, estimates of shuttle orbiter and aircraft tire friction performance are presented and discussed. General observations concerning the gypsum surface characteristics are also included and several recommendations are made for improving and maintaining adequate surface friction capabilities prior to the first shuttle orbiter landing.
NASA Astrophysics Data System (ADS)
Torfstein, Adi; Turchyn, Alexandra V.
2017-08-01
We report the d34S and d18O(SO4) values measured in gypsum, pyrite, and elemental sulfur through a 456-m thick sediment core from the center of the Dead Sea, representing the last 200 kyrs, as well as from the exposed glacial outcrops of the Masada M1 section located on the margins of the modern Dead Sea. The results are used to explore and quantify the evolution of sulfur microbial metabolism in the Dead Sea and to reconstruct the lake’s water column configuration during the late Quaternary. Layers and laminae of primary gypsum, the main sulfur-bearing mineral in the sedimentary column, display the highest d34S and d18O(SO4) in the range of 13-28‰ and 13-30‰, respectively. Within this group, gypsum layers deposited during interglacials have lower d34S and d18O(SO4) relative to those associated with glacial or deglacial stages. The reduced sulfur phases, including chromium reducible sulfur, and secondary gypsum crystals are characterized by extremely low d34S in the range of -27 to +7‰. The d18O(SO4) of the secondary gypsum in the M1 outcrop ranges from 8 to 14‰. The relationship between d34S and d18O(SO4) of primary gypsum suggests that the rate of microbial sulfate reduction was lower during glacial relative to interglacial times. This suggests that the freshening of the lake during glacial wet intervals, and the subsequent rise in sulfate concentrations, slowed the rate of microbial metabolism. Alternatively, this could imply that sulfate-driven anaerobic methane oxidation, the dominant sulfur microbial metabolism today, is a feature of the hypersalinity in the modern Dead Sea. Sedimentary sulfides are quantitatively oxidized during epigenetic exposure, retaining the lower d34S signature; the d18O(SO4) of this secondary gypsum is controlled by oxygen atoms derived equally from atmospheric oxygen and from water, which is likely a unique feature in this hyperarid environment.
NASA Astrophysics Data System (ADS)
Munoz, V. O. S.; Maher, A.; Jaime-Geraldo, A. J.; Niemi, T.
2017-12-01
Most geologic studies of the Santa Rosalía basin (SRB) have focused on the mineralization of the ore deposits, depositional environment of the sedimentary formations, and volcanism associated with the opening of the Gulf of California. Studies on the depositional setting, features, and patterns of the thick evaporite sequences in the SRB have been neglected even though one of the largest gypsum mines in the world is located in these deposits. Previous reports on the thick gypsum deposits suggested that the deposits were precipitated from hydrothermal submarine springs or from evaporation from bodies of water partly enclosed and cut off from the sea (Wilson and Rocha, 1955; Ochoa-Landin et al., 2000). Contemporary studies on the geochemistry of the gypsum supports an interpretation of marine deposition based on the isotopic values of δ34S and δ18O congruent with the precipitation of Miocene water (Conly et al., 2006). Nonetheless, our sedimentologic and stratigraphic descriptions suggest a more dynamic terrestrial to nearshore setting with graded fluvial beds, debris flow, and a clastic dike within a clastic unit of the gypsum along the Arroyo Boleo. This is compatible with the description of the San Marco Formation reported by Anderson (1940) composed of clastic sediments with no marine fossils, carbonized wood and leaf fragments as well as gypsum along the southeastern shore of the San Marcos Island asserting there is sufficient lithologic resemblance and proximity to indicate that they are the same formation. Furthermore, a multichannel seismic transect study of the Guaymas Basin by Miller and Lizarralde (2013) revealed an approximately 2-km-thick, 50 × 100 km evaporite body under the shelf on the eastern margin of the Guaymas Basin and suggest that this thick evaporitic unit correlates with the gypsum beds of the SRB on the Baja California peninsula. Additional research on the source of water and depositional evolution based on sedimentological characteristics and geochemistry of the gypsum unit is ongoing. Wilson & Rocha, USGS PP273; Ochoa-Landin et al., RMCG 17(2); Conly et al., Miner Deposita (41); Miller & Lizarralde, Geology, 41(2).
Uranium minerals in Oligocene gypsum near Chadron, Dawes County, Nebraska
Dunham, R.J.
1955-01-01
Carnotite, sabugalite [HAI(UO2)4(PO4)4 • 16H2O] and autunite occur in the basal 25 feet of a 270-foot sequence of nonmarine bedded gypsum and gypsiferous clay in the Brule formation of Oligocene age about 12 miles northeast of Chadron in northeastern Dawes County, Nebraska. Uranium minerals are visible at only two localities and are associated with carbonaceous matter. Elsewhere the basal 25 feet of the gypsum sequence is interbedded with carbonate rocks and is weakly but persistently uraniferous. Uranium probably was emplaced from above by uranyl solutions rich in sulfate.
COMPARING MOISTURE METER READINGS WITH MEASURED EQUILIBRIUM MOISTURE CONTENT OF GYPSUM BOARD
Moisture meters routinely used in the field to determine the moisture content in gypsum wallboard are primarily designed and manufactured to measure the moisture content of wood. Often they are used to decide whether to replace wallboard by determining if moisture is qualitativel...
NASA Astrophysics Data System (ADS)
Greenberger, Rebecca N.; Mustard, John F.; Osinski, Gordon R.; Tornabene, Livio L.; Pontefract, Alexandra J.; Marion, Cassandra L.; Flemming, Roberta L.; Wilson, Janette H.; Cloutis, Edward A.
2016-12-01
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite-marcasite-bearing vug at the 23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65-1.1 μm) and samples in the laboratory (0.4-2.5 μm), point spectroscopy (0.35-2.5 μm), major element chemistry, and X-ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat-lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite-rich host rock formed gypsum-bearing red coatings. These results have implications for understanding water-rock interactions and habitabilities at this site and on Mars.
NASA Astrophysics Data System (ADS)
Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar
2018-03-01
The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.
Cheung, K C; Venkitachalam, T H
2004-01-01
Fly ash has been found to be a potential material for the treatment of municipal and industrial wastewater, and may be useful in the treatment of septic tank effluent. Laboratory columns (30 cm) were used to determine the sorption capacity and hydraulic properties of lagoon fly ash, loamy sand, sand, and sand amended by lagoon fly ash (30 and 60%) and red mud gypsum (20%). The removal of chemical oxygen demand (COD) was high in all column effluents (71-93%). Extent of nitrification was high in Spearwood sand, Merribrook loamy sand and 20% red mud gypsum amended Spearwood sand. However, actual removal of nitrogen (N) was high in columns containing lagoon fly ash. Unamended Spearwood sand possessed only minimal capacity for P sorption. Merribrook loamy sand and red mud gypsum amended sand affected complete P removal throughout the study period of 12 weeks. Significant P leakage occurred from lagoon fly ash amended sand columns following 6-10 weeks of operation. Neither lagoon fly ash nor red mud gypsum caused any studied heavy metal contamination including manganese (Mn), lead (Pb), zinc (Zn), cadmium (Cd) and chromium (Cr) of effluent. It can be concluded that Merribrook loamy sand is better natural soil than Spearwood sand as a filter medium. The addition of lagoon fly ash enhanced the removal of P in Spearwood sand but the efficiency was lower than with red mud gypsum amendment.
Assessment of Mercury in Soils, Crops, Earthworms, and Water when Soil is Treated with Gypsum
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization (FGD) gypsum from fossil fuel combustion has many potential uses in agriculture, but there is concern about the potential environmental effects of its elevated mercury (Hg) concentration. The wet limestone scrubbing process that removes sulfur from flue gas (and produces gyp...
Composting and gypsum amendment of broiler litter to reduce nutrient leaching loss
USDA-ARS?s Scientific Manuscript database
Relative to fresh broiler litter, little is known about the dynamics of composted litter derived-nutrient in the ecosystem. In this study, the potential leaching losses of nutrients from compost relative to fresh broiler litter along with flue gas desulfurization (FGD gypsum), as a nutrient immobil...
The interest in using Flue Gas Desulfurization Gypsum(FGDG) has increased recently. This study evaluates the leaching characteristics of trace elements in "modern" FGDG (produced after fly ash removal) and FGDG-mixed soil (SF) under different environmental conditions using rece...
Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops
USDA-ARS?s Scientific Manuscript database
Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
Composite Gypsum Binders with Silica-containing Additives
NASA Astrophysics Data System (ADS)
Chernysheva, N. V.; Lesovik, V. S.; Drebezgova, M. Yu; Shatalova, S. V.; Alaskhanov, A. H.
2018-03-01
New types of fine mineral additives are proposed for designing water-resistant Composite Gypsum Binders (CGB); these additives significantly differ from traditional quartz feed: wastes from wet magnetic separation of Banded Iron Formation (BIF WMS waste), nanodispersed silica powder (NSP), chalk. Possibility of their combined use has been studied as well.
This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...
Hydrologic transport of fecal bacteria attenuated by flu gas desulfurized (FGD) gypsum
USDA-ARS?s Scientific Manuscript database
Background Flue gas desulfurized (FGD) gypsum is a byproduct of coal-fired power plants. As a soil amendment for crop production it has the potential of improving soil water infiltration, soil conservation, and decreasing nutrient losses from broiler litter applications. Because broiler litter is a ...
Hydrologic transport of fecal bacteria attenuated by flue gas desulfurization gypsum
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization (FGD) gypsum is a byproduct of coal-fired power plants. As a soil amendment for crop and pasture production it may increase water infiltration, reduce soil erosion, and decrease nutrient losses from applications of animal manures. Broiler litter is used as a source of plan...
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization gypsum (FGDG) may be a viable low-cost alternative bedding material for broiler production. In order to evaluate FGD gypsum’s viability, three consecutive trials were conducted to determine its influence on live performance (body weight, feed consumption, feed efficiency, an...
Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum
USDA-ARS?s Scientific Manuscript database
Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...
NASA Technical Reports Server (NTRS)
2006-01-01
This Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 'targeted image' shows a region of sand dunes surrounding the Martian north polar cap. CRISM, an instrument on NASA's Mars Reconnaissance Orbiter, acquired the image at 1811 UTC (2:11 p.m. EDT) on Oct. 1, 2006. The imaged site is near 80.0 degrees north latitude, 240.7 degrees east longitude. It covers an area about 12 kilometers (7.5 miles) square. At the center of the image, the spatial resolution is as good as 20 meters (65 feet) per pixel. The image was taken in 544 colors covering 0.36 to 3.92 micrometers. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and discovered that several regions of the planet are rich in sulfate minerals formed by liquid water. Surprisingly, one of the sulfate-rich deposits is a part of the giant field of sand dunes surrounding the north polar cap. CRISM is remapping the dune field at about five times higher resolution than OMEGA, and imaging selected regions at 50 times higher resolution. This image is the first of the high-resolution images of the dune field. This visualization includes two renderings of the data, both map-projected. The left images are false-color representations showing brightness of the surface at selected infrared wavelengths. The right images show strength of an absorption band at 1900 nanometers wavelength, which indicates the relative abundance of the sulfate mineral gypsum. Brighter areas have more gypsum, and darker areas have less gypsum. The bottom views are enlargements of the central part of the two versions of the image shown at top. Gypsum is a light-colored, whitish mineral, so it was anticipated that gypsum-rich parts of the sand dunes would be light in color. In fact, there are light-colored areas in the left images, but the images of the gypsum absorption at right show that the light areas have only low gypsum abundance. The dark sand dunes contain most of the gypsum, which is particularly concentrated at the dune crests. CRISM's scientists are taking more high-resolution images of the dune fields to see if this pattern is prevalent, and to attempt to track down the source of the gypsum that makes an arid dune field so rich in minerals formed long ago in liquid water. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate. NASA's Jet Propulsion Laboratory, a division of the Califonia Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft.Raman spectroscopy for characterizing and determining the pozzolanic reactivity of fly ashes
NASA Astrophysics Data System (ADS)
Garg, Nishant
The efficacy and potential of Raman spectroscopy in characterization of a commercial Ordinary Portland Cement (OPC) and three fly ashes (FA's), and their evolving hydration products were studied in this Master's thesis work. While there have been several studies focusing on the application of Raman spectroscopy to synthetic, pure samples, work on commercial cementitious systems is scarce. This work covers this gap by evaluating mixtures containing cements and fly ashes. The study first involved determination followed by establishment of instrumental configuration and testing parameters optimum for studying cementitious materials both in the dry and wet form. It was found that by tweaking several parameters, collection methodologies and analysis techniques, improved, representative and reproducible data could be obtained. Mapping a representative area to determine the spatial distribution and concentration of sulfates and hydroxides on sample surfaces was found to be the most effective way to study these complex and heterogeneous systems. The Raman dry analysis of OPC and three different FA's of varying calcium contents and reactivity was able to identify the major mineralogical phases in these binders and the results were in correlation with the X-ray diffraction data. The observed calcium and sulfate phases and their relative concentration also agreed well with the supplementary compositional data obtained from X-ray fluorescence and Atomic absorption spectrometry. The wet analysis of pastes prepared with 100% OPC and 50%OPC+50%FA(1,2,3) followed the hydration process of the systems for 56 days (0, 0.2, 2, 4, 8, 12, 16, 20, 24, 48, 72 hours, 7, 14, 21, 28, and 56 days). Consistency of trends in the hydration mechanism of such pastes was only obtained when studies were focused on narrow wavenumber ranges: 950--1050 cm-1 for evolution of sulfates and 3600--3700cm-1 for evolution of hydroxides. Gradual disappearance of Gypsum with a parallel formation of Ettringite was clearly visible in most mixes, while transition of AFt to AFm was not very obvious and needs further research. Evolution of hydroxides showed the gradual spatial growth of portlandite in the studied areas of the samples. The growth rate and concentration of portlandite in different fly ash-cement-water mixes was correlated to the reactivity of the given fly ashes. While a clear connection wasnot established, several observations were made based on the interpretation of the obtained data. This lack of agreement between expected and observed results may be attributed to the heterogeneity of the studied materials, potential problems in sample preparations as well as limitations of the technique. Overall, Raman was effectively applied to the study of commercial, cementitious systems---this work being one of the early attempts if not the first attempt to study multi-phase fly ash blended cement pastes. While Raman may not be able to completely characterize and analyze such systems as a standalone tool, it definitely has a great potential in serving as a supplementary tool for deeper understanding of cement chemistry and hydration mechanisms.
Okunade, Akintunde Akangbe
2002-12-01
Present interest is in the shielding of diagnostic X-ray units. Numerical comparison has been made of the attenuation and hardening properties of lead and some particular alternative materials: steel, plate glass and gypsum wallboard. Results show, for particular choices of thickness, that lead and steel can be made to provide closely similar attenuation and spectral hardening, values of lead attenuation equivalent (LAE) and lead hardening equivalent (LHE) thicknesses being nearly the same. Significant differences in the attenuation and hardening properties of lead are found in comparison with plate glass and gypsum wallboard. LAE produces better matching of exposure for lead-plate glass and lead-gypsum wallboard than LHE.
Mori, T; Yamane, M
1982-02-01
A fractographical study of dental cast gypsum was made in order to correlate the mechanical properties with the microstructure. Wet specimens fractured under tensile stress showed intercrystalline fracture and the tensile strength depended on the porosity present. Thus, it was assumed that tensile strength was dependent on the contact area between individual gypsum crystals and changes in porosity approximated to changes in contact area. Strength differences among specimens of a given W/P ratio, therefore, can be related to differences in intercrystalline contact areas. These theoretical considerations suggest that the classification of dental die stone and dental stone into high and low strength types based on strength properties only would be more practical and less confusing than at present.
Animal waste and FGD gypsum effects on bermudagrass and soil leachate nutrient contents
USDA-ARS?s Scientific Manuscript database
In previous experiments on newly relcaimed coal mine soils in northeastern Mississippi, applying poultry litter at 22.4 Mg ha-1 yr-1 enhanced bermudagrass (Cynodon dactylon L.) biomass and selected soil quality parameters. Additionally, co-application of 11.2 Mg ha-1 FGD gypsum and litter reduced so...
FGD gypsum filters remove soluble phosphorus from agricultural drainage waters
USDA-ARS?s Scientific Manuscript database
Decades of chicken litter applications has led to phosphorus (P) levels up to ten times the agronomic optimum in soils of the Delmarva Peninsula. This legacy P is a major source of P entering drainage ditches that eventually empty into the Chesapeake Bay. A Flue Gas Desulfurization (FGD) gypsum ditc...
Gypsum as a best management practice for reducing P loss from agricultural fields
USDA-ARS?s Scientific Manuscript database
Phosphorus loss from agricultural fields fertilized with poultry litter (PL) may contribute to eutrophication of nearby rivers, lakes, and streams. It has been suggested that gypsum can be used as a soil amendment to reduce P loss from these fields. Also, a new USDA-NRCS National Conservation Practi...
Framework of risk assessment in relation to FGD-gypsum use as agricultural amendment
USDA-ARS?s Scientific Manuscript database
Due to the concerns by EPA of air pollution from coal fired power plants, the industry are building and retrofitting existing facilities to remove more impurities from the environment. Industry has introduced removal of fly ash contaminates before SO2 removal, allowing generation of FGD-gypsum with...
1984-03-20
E. Anderson reviewed what was known about the dehydrations of gypsum, smectite, halloysite , vermiculite, and the zeolite minerals. Simple...dehydrations such as those of gypsum and halloysite occur at sharply-defined temperatures and thus contribute a time-limited fluid pulse at a given point. The
Salt composition of groundwater and reclaimed solonetzes in the Baraba Lowland
NASA Astrophysics Data System (ADS)
Semendyaeva, N. V.; Elizarov, N. V.
2017-10-01
Solonetzes of experimental trials established in 1981 and 1986 in the Baraba Lowland were examined. It was found that gypsum-based ameliorants improve the soil and lead to a decrease in the content of soluble salts in the soil profile. Exchange processes between cations of the soil adsorption complex and calcium of gypsum were particularly intensive in the first years after gypsum application. This resulted in a sharp rise in the content of soluble salts that migrated down the soil profile to the groundwater. In the following years, the reclaimed solonetzes were desalinized under the conditions of relatively stable groundwater level. On the 30th year after single gypsum application, the groundwater level sharply rose (to 50 cm), and the soil was subjected to the secondary salinization; the contents of bicarbonates, carbonates, and sodium in the soils increased. Spring leaching caused some desalinization, but the content of soluble salts in the upper soil meter increased again in the fall. A close correlation between the salt compositions of the groundwater and the reclaimed solonetzes was revealed.
Testing antimicrobial paint efficacy on gypsum wallboard contaminated with Stachybotrys chartarum.
Menetrez, M Y; Foarde, K K; Webber, T D; Dean, T R; Betancourt, D A
2008-02-01
The goal of this research was to reduce occupant exposure to indoor mold through the efficacy testing of antimicrobial paints. An accepted method for handling Stachybotrys chartarum-contaminated gypsum wallboard (GWB) is removal and replacement. This practice is also recommended for water-damaged or mold-contaminated GWB but is not always followed completely. The efficacy of antimicrobial paints to eliminate or control mold regrowth on surfaces can be tested easily on nonporous surfaces. The testing of antimicrobial efficacy on porous surfaces found in the indoor environment, such as gypsum wallboard, can be more complicated and prone to incorrect conclusions regarding residual organisms. The mold S. chartarum has been studied for toxin production and its occurrence in water-damaged buildings. Research to control its growth using seven different antimicrobial paints and two commonly used paints on contaminated, common gypsum wallboard was performed in laboratory testing at high relative humidity. The results indicate differences in antimicrobial efficacy for the period of testing, and that proper cleaning and resurfacing of GWB with an antimicrobial paint can be an option in those unique circumstances when removal may not be possible.
Fabrication of hydroxyapatite block from gypsum block based on (NH4)2HPO4 treatment.
Suzuki, Yumiko; Matsuya, Shigeki; Udoh, Koh-ichi; Nakagawa, Masaharu; Tsukiyama, Yoshihiro; Koyano, Kiyoshi; Ishikawa, Kunio
2005-12-01
The aim of this study was to evaluate the feasibility of fabricating low-crystalline, porous apatite block using set gypsum as a precursor based on the fact that apatite is thermodynamically more stable than gypsum. When the set gypsum was immersed in 1 mol/L diammonium hydrogen phosphate aqueous solution at 100 degrees C, it transformed to low-crystalline porous apatite retaining its original shape. The transformation reaction caused a release of sulfate ions due to an ion exchange with phosphate ions, thus leading to a decrease in the pH of the solution. Then, due to decreased pH, dicalcium phosphate anhydrous--which has similar thermodynamic stability at lower pH--was also produced as a by-product. Apatite formed in the present method was low-crystalline, porous B-type carbonate apatite that contained approximately 0.5 wt% CO3, even though no carbonate sources--except carbon dioxide from air--were added to the reaction system. We concluded therefore that this is a useful bone filler fabrication method since B-type carbonate apatite is the biological apatite contained in bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syslo, S.K.; Myhre, D.L.; Harris, W.G.
1988-02-01
The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation ismore » attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.« less
Mineralogy and autoradiography of selected mineral-spring precipitates in the Western United States
Bove, Dana; Felmlee, J.K.
1982-01-01
X-ray diffaction analysis of 236 precipitate or sediment samples from 97 mineral-spring sites in nine Western States showed the presence of 25 minerals, some precipitated and some detrital. Calcite and (or) aragonite are the most common of all the precipitated minerals. Gypsum and (or) anhydrite, as well as barite and native sulfur, are less common but are also believed to be precipitated minerals. Precipitated manganese and iron oxides, including romanechite, manganite, pyrolusite, goethite, and hematite, were found in some of the samples. Various salts of sodium, including halite and thenardite, were also identified. Dolomite and an unknown type of siliceous material are present in some of the samples and were possibly precipitated at the spring sites. Quartz, feldspar, and mica are present in many of the samples and are believed to be detrital contaminants. An autoradiographic and thin section study of 11 samples from nine of the most radioactive spring sites showed the radioactivity, which is due primarily to radium, to be directly associated with mineral phases containing barium, manganese, iron, and (or) calcium as major constituents. Furthermore, the radioactivity has an exclusive affinity for the manganese-bearing minerals, which in these samples contain a substantial amount of barium, even if calcite or iron oxides are present. Where calcite predominates and manganese- and barium-bearing minerals are absent, the radioactivity shows a close association with the iron oxides present, especially hematite, but also shows a moderate association with the calcite and (or) aragonite cementing phases. In other samples composed predominantly of calcite but lacking iron oxides, the radioactivity is preferentially associated with an early stage of calcite development and is considerably lower in the later cementing stages. The radioactivity observed in all these samples is believed to be caused by radium substituting for barium in mineral lattices, filling irregularities in other crystal structures, or adsorbing on the surfaces of precipitated molecules.
NASA Astrophysics Data System (ADS)
Doğan, Uğur
2005-11-01
Karstification-based land subsidence was found in the Upper Tigris Basin with dimensions not seen anywhere else in Turkey. The area of land subsidence, where there are secondary and tertiary subsidence developments, reaches 140 km 2. Subsidence depth ranges between 40 and 70 m. The subsidence was formed as a result of subsurface gypsum dissolution in Lower Miocene formation. Although there are limestones together with gypsum and Eocene limestone below them in the area, a subsidence with such a large area is indicative of karstification in the gypsum. The stratigraphical cross-sections taken from the wells and the water analyses also verify this fact. The Lower Miocene gypsum, which shows confined aquifer features, was completely dissolved by the aggressive waters injected from the top and discharged through by Zellek Fault. This resulted in the development of subsidence and formation of caprock dolines on loosely textured Upper Miocene-Pliocene cover formations. The Tigris River runs through the subsidence area between Batman and Bismil. There are four terrace levels as T1 (40 m), T2 (30 m), T3 (10 m) and T4 (4-5 m) in the Tigris River valley. It was also found that there were some movements of the levels of the terraces in the valley by subsidence. The subsidence developed gradually throughout the Quaternary; however no terrace was formed purely because of subsidence.
Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Tai-Shung
2013-01-01
We have examined the gypsum (CaSO4·2H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42° ± 14.85° after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 °C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. PMID:24957062
Evolution of limited seed dispersal ability on gypsum islands.
Schenk, John J
2013-09-01
Dispersal is a major feature of plant evolution that has many advantages but is not always favored. Wide dispersal, for example, leads to greater seed loss in oceanic-island endemics, and evolution has favored morphologies that limit dispersal. I tested the hypothesis that selection favored limited dispersal on gypsum islands in western North America, where edaphic communities are sparsely vegetated except for a specialized flora that competes poorly with the surrounding flora. • I applied a series of comparative phylogenetic approaches to gypsophilic species of Mentzelia section Bartonia (Loasaceae) to investigate the evolution of limited dispersal function in seed wings, which increase primary dispersal by wind. Through these tests, I determined whether narrowed wings were selected for in gypsophilic species. • Gypsophily was derived four to seven times. Seed area was not significantly correlated with gypsophily or wing area. Wing area was significantly smaller in the derived gypsum endemics, supporting the hypothesis in favor of limited dispersal function. A model-fitting approach identified two trait optima in wing area, with gypsum endemics having a lower optimum. • Evolution into novel ecologies influences morphological evolution. Morphological characters have been selected for limited dispersal following evolution onto gypsum islands. Selection for limited dispersal ability has occurred across animals and plants, both in oceanic and terrestrial systems, which suggests that reduced dispersal ability may be a general process: selection favors limited dispersal if the difference in survival between the habitat of the parent and the surrounding area is great enough.
NASA Astrophysics Data System (ADS)
Wang, Bo; Pan, Zihe; Cheng, Huaigang; Chen, Zuliang; Cheng, Fangqin
2018-06-01
Vaterite-type calcium carbonate particles have some unique properties such as high hydrophilicity, large surface areas, and hierarchical structures consisting of primary vaterite particles in comparison with calcite or aragonite-type polymorphs. In this paper, gypsum (CaSO4·2H2O) suspension is used to synthesize micro-sized vaterite CaCO3 through magnetic stirring (MS) and ultrasonic probe vibration (UPV) methods. The effects of ammonia concentration, CO2 flow rate, solid-liquid ratio on the gypsum carbonation process, mineral phase composition, morphology and particle size distribution of CaCO3 are investigated. The results show that the carbonation process is significantly influenced by ammonia concentration, CO2 flow rate and ultrasound. Comparing with magnetic stirring, ultrasonic probe vibration take less time to reach the complete carbonate reaction. Gypsum is transformed to vaterite with the conversion rate about ∼95% when the mole ratio of NH4+/Ca2+ is 2.4 otherwise the carbonation reaction was uncompleted with gypsum residues left. Comparing with MS method, the UPV method resulted in smaller size and narrower size distribution of as-prepared microparticles and approximately 80% reduction of the particle size was achieved. It is established that increasing the solid-liquid ratio resulted in larger particle size in MS system and smaller particle size in UPV system. Increasing CO2 flow rate caused the particle size decreased in MS system and increased in UPV system.
NASA Astrophysics Data System (ADS)
Li, Jun; Duan, Zhenhao
2011-08-01
A thermodynamic model is developed for the calculation of both phase and speciation equilibrium in the H 2O-CO 2-NaCl-CaCO 3-CaSO 4 system from 0 to 250 °C, and from 1 to 1000 bar with NaCl concentrations up to the saturation of halite. The vapor-liquid-solid (calcite, gypsum, anhydrite and halite) equilibrium together with the chemical equilibrium of H+,Na+,Ca, CaHCO3+,Ca(OH)+,OH-,Cl-, HCO3-,HSO4-,SO42-, CO32-,CO,CaCO and CaSO 4(aq) in the aqueous liquid phase as a function of temperature, pressure and salt concentrations can be calculated with accuracy close to the experimental results. Based on this model validated from experimental data, it can be seen that temperature, pressure and salinity all have significant effects on pH, alkalinity and speciations of aqueous solutions and on the solubility of calcite, halite, anhydrite and gypsum. The solubility of anhydrite and gypsum will decrease as temperature increases (e.g. the solubility will decrease by 90% from 360 K to 460 K). The increase of pressure may increase the solubility of sulphate minerals (e.g. gypsum solubility increases by about 20-40% from vapor pressure to 600 bar). Addition of NaCl to the solution may increase mineral solubility up to about 3 molality of NaCl, adding more NaCl beyond that may slightly decrease its solubility. Dissolved CO 2 in solution may decrease the solubility of minerals. The influence of dissolved calcite on the solubility of gypsum and anhydrite can be ignored, but dissolved gypsum or anhydrite has a big influence on the calcite solubility. Online calculation is made available on www.geochem-model.org/model.
Halite-clay interplay in the Israeli Messinian
NASA Astrophysics Data System (ADS)
Cohen, Avigdor
1993-08-01
The Mavqi'im Formation in Israel is the equivalent of the evaporite part of the Messinian stage (Upper Miocene). It is found in the subsurface in the offshore with eastward extensions into ancient buried channels in the coastal plain and in the Jordan Rift valley and in a few outcrops southwest of Lake Tiberias. Most of the anhydrite horizons can be used as correlation markers. Lateral facies changes between halite, anhydrite and shales can be traced. This is interpreted as contemporaneous sedimentation in giant marine salt ponds (halite and anhydrite) and in drowned desert valleys and/or salt-marsh coasts (shales with sabkha-like anhydrites). Another type of shale is that directly underflooring halite horizons. It is regarded as deep-water halite facies, in contrast with shallow-water facies where halite overlies gypsum and/or anhydrite. A "twofold bull's-eye model" is proposed, which assumes that either: (a) sedimentation of gypsum and halite was 'separated in space'—i.e., gypsum was deposited in the part of the basin proximal to oceanic inlets or on shallow shelves, whereas halite was deposited in the central deep part of the basin or on its distal edge; or (b) sedimentation of gypsum and halite was not contemporaneous, or 'separated in time'—i.e., in the deep parts of the basin gypsum precipitates were disintegrated by anaerobic bacteria which removed the sulfate. The lower limit of gypsum deposition is considered to be 200 m, which is the lower limit of the photic and wave zones. In the Israeli Messinian there is no difference between the clay minerals of marine and fluvial shales. Differentiation of marine shales from fluvial and mud flat shales is based on their geometry, i.e., thin persistent horizons spreading across the whole area versus thick shale lenses wedging out in 500-1000 m distances. Another consideration is the palynologic and microfauna remains: in the first case the cyst/pollen ratio may be as high as 100, whereas in the second pollen is dominant.
NASA Astrophysics Data System (ADS)
Cama, J.; Garcia-Rios, M.; Luquot, L.; Soler Matamala, J. M.
2014-12-01
A test site for CO2 geological storage is situated in Hontomín (Spain) with a reservoir rock that is mainly composed of limestone. During and after CO2 injection, the resulting CO2-rich acid brine gives rise to the dissolution of carbonate minerals (calcite and dolomite) and gypsum (or anhydrite at depth) may precipitate since the reservoir brine contains sulfate. Experiments using columns filled with crushed limestone or dolostone were conducted under different P-pCO2 conditions (atmospheric: 1-10-3.5 bar; subcritical: 10-10 bar; and supercritical: 150-34 bar), T (25, 40 and 60 ºC) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). We evaluated the effect of these parameters on the coupled reactions of calcite/dolomite dissolution and gypsum/anhydrite precipitation. The CrunchFlow and PhreeqC (v.3) numerical codes were used to perform reactive transport simulations of the experiments. Under the P-pCO2-T conditions, the volume of precipitated gypsum was smaller than the volume of dissolved carbonate minerals, yielding an increase in porosity (Δporosity up to ≈ 4%). A decrease in T favored limestone dissolution regardless of pCO2 owing to increasing undersaturation with decreasing temperature. However, gypsum precipitation was favored at high T and under atmospheric pCO2 conditions but not at high T and under 10 bar of pCO2 conditions. The increase in limestone dissolution with pCO2 was directly attributed to pH, which was more acidic at higher pCO2. Increasing pCO2, carbonate dissolution occurred along the column whereas it was localized in the very inlet under atmospheric conditions. This was due to the buffer capacity of the carbonic acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to calcite and dolomite along the column. 1D reactive transport simulations reproduced the experimental data (carbonate dissolution and gypsum precipitation for different P-pCO2-T conditions). Drawing on reaction rate laws in the literature, we used the reactive surface area to fit the models to the experimental data. The values of the reactive surface area were much smaller than those calculated of the geometric areas.
Urea hydrolysis and calcium carbonate precipitation in gypsum-amended broiler litter.
USDA-ARS?s Scientific Manuscript database
Broiler litter (BL) contains significant amounts of organic nitrogen (N) in the form of urea which is subject to ammonia (NH3) volatilization. Previous work has shown that the addition of gypsum to BL can increase nitrogen (N) mineralization, and decrease NH3 losses due to a decrease in pH but the ...
23. VIEW TOWARD EAST CORNER OF ROOM 205. FORMER SKYLIGHT ...
23. VIEW TOWARD EAST CORNER OF ROOM 205. FORMER SKYLIGHT IN SLOPED GYPSUM BOARD CEILING HAS BEEN ROOFED OVER. WALLS ARE A COMBINATION OF GYPSUM BOARD AND WOOD PLANK. WOOD POST SUPPORTS BEAM AT NORTHEAST WALL. - Presidio of San Francisco, Cavalry Stables, Cowles Street, between Lincoln Boulevard & McDowell Street, San Francisco, San Francisco County, CA
1984-02-01
exterior exposed concrete block walls with 2 inch (nominal) furring, 1 inch cellular board ( expanded polystyrene ) insulation, and gypsum board finish, as...furring strips, and new expanded polystyrene board thermal insu- lation and new gypsum board were installed. The purpose of the coating on the concrete
USDA-ARS?s Scientific Manuscript database
A study was conducted to evaluate the growth response and consumer preference of three plant species to substrate blends containing flue gas desulfurization gypsum (FGDG). Substrate blends used in this study were derived from a previous experiment that evaluated the use of FGD Gas a bedding material...
Use of FGD gypsum to reduce p loss from agricultural fields
USDA-ARS?s Scientific Manuscript database
Controlling P loss from agricultural fields has become a major issue in recent years, especially in areas where manure is used as nutrient sources. It is believed that FGD gypsum can be used as a management practice to reduce soluble P loss. Thus, the objective of this study was to determine FGD gy...
Potential adherence of gypsum to forage as a consideration for excessive ingestion by ruminates
USDA-ARS?s Scientific Manuscript database
Gypsum (calcium sulfate dihydrate, CaSO4•2H2O) has long been used in agriculture to improve soils and crop production and its use has recently been encouraged by the USDA NRCS for soil conservation through a new National Conservation Practice Standard: Code 333. However, there is concern regarding ...
FGD gypsum application: Impacts on soil P from city parks in the Tampa area
USDA-ARS?s Scientific Manuscript database
Controlling excessive P loss from agricultural fields has become a major issue in recent years. However, managed city parks may also contribute to P loss. Thus, a study was conducted at three different city parks located in the Tampa Area to evaluate the use of FGD gypsum as an amendment to reduce w...
Application of gypsum to control P runoff from poultry litter fertilization of pasture
USDA-ARS?s Scientific Manuscript database
This paper will discuss the utilization of gypsum (CaSO4 .2H2O) to reduce P losses from surface runoff when poultry litter is used as a fertilizer source in agriculture. Utilization of poultry litter as a fertilizer source is common in regions with intense poultry production. While poultry litter ...
Gypsum adherence to forage: consideration for excessive ingestion by ruminates
USDA-ARS?s Scientific Manuscript database
Gypsum (calcium sulfate dihydrate, CaSO4•2H2O) has long been used as a soil amendment to improve soil conditions and its use has recently been encouraged by the USDA-NRCS for soil conservation through a new National Conservation Practice Standard: Code 333. However, there is concern regarding the e...
USDA-ARS?s Scientific Manuscript database
A major concern of the broiler industry is the volatilization of ammonia (NH3) from the mixture of bedding material and broiler excretion that covers the floor of broiler houses. Gypsum has been proposed as a litter amendment to reduce NH3 volatilization, but reports of NH3 abatement vary among stu...
USDA-ARS?s Scientific Manuscript database
Controlling the potential threat that pasture systems which have been intensively fertilized with poultry litter (PL) pose to accelerate eutrophication of surface waters has become a major issue in the southeastern U.S. Gypsum has been identified as a promising management tool for ameliorating the ...
Soil test and bermudagrass forage yield responses to animal waste and FGD gypsum ammendments
USDA-ARS?s Scientific Manuscript database
Knowledge of soil and plant responses to animal or industrial byproducts is needed for effective use of these potential amendments on reclaimed mine soil. This study compared seven treatments of 11.2 Mg ha-1 flue gas desulfurized (FGD) gypsum (control), 896 kg ha-1 NPK fertilizer (13-13-13), 22.4 M...
Air pollution levels reflected in deposits on building stone
NASA Astrophysics Data System (ADS)
Nord, Anders G.; Svärdh, Anna; Tronner, Kate
About 1400 samples of building stone have been collected in Sweden and other European countries, mainly from polluted areas but also from countryside districts. All samples have been analysed by SEM/EDS, and some selected by other techniques like XRPD, GC/MS, or ICP. In particular, we have determined concentrations of gypsum, iron and some other metals; chlorine, phosphorus, soot (carbon), and organic components. The results confirm a positive correlation between SO 2 concentrations and gypsum formation on calcareous stone. Polluted areas generate more metal particles and particles of soot, asphalt, car-tyre rubber, fly-ash, quartz, calcite, gypsum, and chlorides. On building façades in polluted cities about 100 constituents have been identified, including carcinogeneous organic compounds like benzopyrene.
Matsushita, Yasuyuki; Yasuda, Seiichi
2005-03-01
In order to effectively utilize a by-product of the acid saccharification process of woody materials, the chemical conversion of guaiacyl sulfuric acid lignin (SAL), one of the acid hydrolysis lignins, into water-soluble sulfonated products with high dispersibitity was investigated. At first, SAL was phenolated (P-SAL) to enhance the solubility and reactivity. Lignosulfonates were prepared from P-SAL by three methods of hydroxymethylation followed by neutral sulfonation (two-step method), sulfomethylation (one-step method) and arylsulfonation. Surprisingly, all prepared lignosulfonates possessed 30 to 70% higher dispersibility for gypsum paste than the commercial lignosulfonate. Evaluation of the preparations for gypsum paste suggested that the higher molecular weights and sulfur contents of the preparations increased their dispersibility.
Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.
Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook
2015-01-01
Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391 mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.
Alkali-activated complex binders from class C fly ash and Ca-containing admixtures.
Guo, Xiaolu; Shi, Huisheng; Chen, Liming; Dick, Warren A
2010-01-15
Processes that maximize utilization of industrial solid wastes are greatly needed. Sodium hydroxide and sodium silicate solution were used to create alkali-activated complex binders (AACBs) from class C fly ash (CFA) and other Ca-containing admixtures including Portland cement (PC), flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). Specimens made only from CFA (CFA100), or the same fly ash mixed with 40 wt% PC (CFA60-PC40), with 10 wt% FGDG (CFA90-FGDG10), or with 10 wt% WTR (CFA90-WTR10) had better mechanical performance compared to binders using other mix ratios. The maximum compressive strength of specimens reached 80.0 MPa. Geopolymeric gel, sodium polysilicate zeolite, and hydrated products coexist when AACB reactions occur. Ca from CFA, PC, and WTR precipitated as Ca(OH)(2), bonded in geopolymers to obtain charge balance, or reacted with dissolved silicate and aluminate species to form calcium silicate hydrate (C-S-H) gel. However, Ca from FGDG probably reacted with dissolved silicate and aluminate species to form ettringite. Utilization of CFA and Ca-containing admixtures in AACB is feasible. These binders may be widely utilized in various applications such as in building materials and for solidification/stabilization of other wastes, thus making the wastes more environmentally benign.
Accuracy of Gypsum Casts after Different Impression Techniques and Double Pouring
Silva, Stephania Caroline Rodolfo; Messias, Aion Mangino; Abi-Rached, Filipe de Oliveira; de Souza, Raphael Freitas; Reis, José Maurício dos Santos Nunes
2016-01-01
This study evaluated the accuracy of gypsum casts after different impression techniques and double pouring. Ten patients were selected and for each one it was obtained 5 partial putty/wash impressions with vinyl polysiloxane (VPS) material from teeth #13 to #16 with partial metal stock trays. The following techniques were performed: (1) one-step; two-step relief with: (2) PVC film; (3) slow-speed tungsten carbide bur and scalpel blade, (4) small movements of the tray and (5) without relief—negative control. The impressions were disinfected with 0.5% sodium hypochlorite for 10 minutes and stored during 110 and 230 minutes for the first and second pouring, respectively, with type IV gypsum. Three intra-oral lateral photographs of each patient were taken using a tripod and a customized radiographic positioner. The images were imported into ImageJ software and the total area of the buccal surface from teeth #13 to #16 was measured. A 4.0% coefficient of variance was criterion for using these measurements as Baseline values. The casts were photographed and analyzed using the same standardization for the clinical images. The area (mm2) obtained from the difference between the measurements of each gypsum cast and the Baseline value of the respective patient were calculated and analyzed by repeated-measures two way-ANOVA and Mauchly’s Sphericity test (α = 0.05). No significant effect was observed for Impression technique (P = 0.23), Second pouring (P = 0.99) and their interaction (P = 0.25). The impression techniques and double pouring did not influence the accuracy of the gypsum casts. PMID:27736967
de Beer, M; Doucet, F J; Maree, J P; Liebenberg, L
2015-12-01
We recently showed that the production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste by thermally reducing the waste into calcium sulphide (CaS) followed by its direct aqueous carbonation yielded low-grade carbonate products (i.e. <90 mass% as CaCO3). In this study, we used the insight gained from our previous work and developed an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). The process used an acid gas (H2S) to improve the aqueous dissolution of CaS, which is otherwise poorly soluble. The carbonate product was primarily calcite (99.5%) with traces of quartz (0.5%). Calcite was the only CaCO3 polymorph obtained; no vaterite or aragonite was detected. The product was made up of micron-size particles, which were further characterised by XRD, TGA, SEM, BET and true density. Results showed that about 0.37 ton of high-grade PCC can be produced from 1.0 ton of gypsum waste, and generates about 0.19 ton of residue, a reduction of 80% from original waste gypsum mass to mass of residue that needs to be discarded off. The use of gypsum waste as primary material in replacement of mined limestone for the production of PPC could alleviate waste disposal problems, along with converting significant volumes of waste materials into marketable commodities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rehman, Muhammad Zia-ur; Rizwan, Muhammad; Ghafoor, Abdul; Naeem, Asif; Ali, Shafaqat; Sabir, Muhammad; Qayyum, Muhammad Farooq
2015-11-01
Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.
Accuracy of Gypsum Casts after Different Impression Techniques and Double Pouring.
Silva, Stephania Caroline Rodolfo; Messias, Aion Mangino; Abi-Rached, Filipe de Oliveira; de Souza, Raphael Freitas; Reis, José Maurício Dos Santos Nunes
2016-01-01
This study evaluated the accuracy of gypsum casts after different impression techniques and double pouring. Ten patients were selected and for each one it was obtained 5 partial putty/wash impressions with vinyl polysiloxane (VPS) material from teeth #13 to #16 with partial metal stock trays. The following techniques were performed: (1) one-step; two-step relief with: (2) PVC film; (3) slow-speed tungsten carbide bur and scalpel blade, (4) small movements of the tray and (5) without relief-negative control. The impressions were disinfected with 0.5% sodium hypochlorite for 10 minutes and stored during 110 and 230 minutes for the first and second pouring, respectively, with type IV gypsum. Three intra-oral lateral photographs of each patient were taken using a tripod and a customized radiographic positioner. The images were imported into ImageJ software and the total area of the buccal surface from teeth #13 to #16 was measured. A 4.0% coefficient of variance was criterion for using these measurements as Baseline values. The casts were photographed and analyzed using the same standardization for the clinical images. The area (mm2) obtained from the difference between the measurements of each gypsum cast and the Baseline value of the respective patient were calculated and analyzed by repeated-measures two way-ANOVA and Mauchly's Sphericity test (α = 0.05). No significant effect was observed for Impression technique (P = 0.23), Second pouring (P = 0.99) and their interaction (P = 0.25). The impression techniques and double pouring did not influence the accuracy of the gypsum casts.
Decreasing Phosphorus Loss in Tile-Drained Landscapes Using Flue Gas Desulfurization Gypsum.
King, K W; Williams, M R; Dick, W A; LaBarge, G A
2016-09-01
Elevated phosphorus (P) loading from agricultural nonpoint-source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P sorbing potential. A before-after control-impact paired field experiment was used to examine the water quality effects of successive FGD gypsum applications (2.24 Mg ha; 1 ton acre each) to an Ohio field with high soil test P levels (>480 ppm Mehlich-3 P). Analysis of covariance was used to compare event discharge, dissolved reactive P (DRP), and total P (TP) concentrations and loadings in surface runoff and tile discharge between the baseline period (86 precipitation events) and Treatment Period 1 (42 precipitation events) and Treatment Period 2 (84 precipitation events). Results showed that, after the first application of FGD gypsum, event mean DRP and TP concentrations in treatment field tile water were significantly reduced by 21 and 10%, respectively, and DRP concentrations in surface runoff were significantly reduced by 14%; however, no significant reductions were noted in DRP or TP loading. After the second application, DRP and TP loads were significantly reduced in surface runoff (DRP, 41%; TP 40%), tile discharge (DRP, 35%; TP, 15%), and combined (surface + tile) discharge (DRP, 36%; TP, 38%). These findings indicate that surface application of FGD gypsum can be used as a tool to address elevated P concentrations and loadings in drainage waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
The stratigraphic record of Khawr Al Maqta, Abu Dhabi, United Arab Emirates
NASA Astrophysics Data System (ADS)
Lokier, S. W.; Herrmann, S.
2012-04-01
Well-constrained modern depositional analogues are vital to the development of accurate geological reservoir models. The development of realistic hydrocarbon reservoir models requires the application of high-precision, well-constrained outcrop and sub-surface data sets with accurately-documented facies geometries and depositional sequence architectures. The Abu Dhabi coastline provides the best modern analogue for the study of ramp-style carbonate depositional facies akin to those observed in the sub-surface reservoirs of the United Arab Emirates (UAE). However, all previous studies have relied on temporally limited surface datasets. This study employed thirty five shallow subsurface cores spanning the width of the Khawr Al Maqta - the narrow shallow tidal channel that separates Abu Dhabi Island from the mainland. The cores were taken over a transect measuring 1.2 km in length by 50 m wide thus providing a high-resolution record of sub-surface facies geometries in a stratigraphically complex setting. Geometries in these Pleistocene to Holocene facies are complex with interdigitating, laterally heterogeneous carbonate, siliciclastic and evaporite units represented throughout the area of the study. Carbonate facies range from molluscan rudstones to marls and are all indicative of deposition in a shallow, relatively low energy marine setting akin to that seen in the environs of Abu Dhabi Island today. Texturally mature quartz sands occur as thin lenses and as thin cross bedded or laminated horizons up to twenty five centimetres thick. Glauconitic mudstones are common and locally exhibit evidence of rootlets and desiccation cracks. Evaporites are present in the form of gypsum occurring as isolated crystals and nodules or as massive chicken-wire units in excess of three metres thick. All of these textures are consistent with evaporite development in the shallow subsurface. Early, shallow-burial diagenesis has been important. Bioclasts are pervasively leached throughout the stratigraphic sequence thereby resulting in a significant enhancement in porosity in the carbonate lithologies. This pervasive mouldic porosity is locally occluded by the precipitation of gypsum cements. The displacive precipitation of significant quantities of gypsum has resulted in the deformation of primary sedimentary structures. This complex sequence of mixed carbonate-siliciclastic-evaporite lithofacies is interpreted to record repeated episodes of flooding and sub-aerial exposure associated with the waxing and waning of the Pleistocene ice-sheets. During periods of relative sea-level fall carbonate sequences entered the meteoric realm with the consequent dissolution of unstable bioclasts. Transgression and reflooding once again isolated Abu Dhabi Island from the mainland, thus permitting the precipitation of shallow-water carbonate lithofacies. During sea-level highstands the north-westerly Shamal wind transported carbonate sediments into the lee-of the island resulting in the south-easterly shore-wards development of a tombolo. However, the strong tidal currents of the Khawr Al Maqta prevented final connection to the mainland, thus ensuring the isolation of Abu Dhabi until the subsequent regression.
USDA-ARS?s Scientific Manuscript database
Flue gas desulfurization gypsum (FGDG) from coal-fired power plants is available for agricultural use in many US regions. Broiler litter (BL) provides plant available N, P, and K but may be a source of unwanted arsenic (As), copper (Cu), and zinc (Zn). FGDG provides Ca and S and can reduce runoff lo...
USDA-ARS?s Scientific Manuscript database
Considerable amounts of flue gas desulfurization (FGD) gypsum are being produced as a by-product of generating electricity. As a result, beneficial reuse of this by-product is being sought to reduce landfilling and its associated cost. The use of this byproduct as a low-cost soil amendment for suppl...
USDA-ARS?s Scientific Manuscript database
Gypsum (calcium sulfate dihydrate, CaSO4·2H2O) has long been used to improve soils and crop production, and its use has recently been encouraged by the USDA-NRCS for soil conservation through a new Conservation Practice Standard: Code 333. However, there is concern regarding adverse effects of exce...
Accuracy of Digital vs. Conventional Implant Impressions
Lee, Sang J.; Betensky, Rebecca A.; Gianneschi, Grace E.; Gallucci, German O.
2015-01-01
The accuracy of digital impressions greatly influences the clinical viability in implant restorations. The aim of this study is to compare the accuracy of gypsum models acquired from the conventional implant impression to digitally milled models created from direct digitalization by three-dimensional analysis. Thirty gypsum and 30 digitally milled models impressed directly from a reference model were prepared. The models were scanned by a laboratory scanner and 30 STL datasets from each group were imported to an inspection software. The datasets were aligned to the reference dataset by a repeated best fit algorithm and 10 specified contact locations of interest were measured in mean volumetric deviations. The areas were pooled by cusps, fossae, interproximal contacts, horizontal and vertical axes of implant position and angulation. The pooled areas were statistically analysed by comparing each group to the reference model to investigate the mean volumetric deviations accounting for accuracy and standard deviations for precision. Milled models from digital impressions had comparable accuracy to gypsum models from conventional impressions. However, differences in fossae and vertical displacement of the implant position from the gypsum and digitally milled models compared to the reference model, exhibited statistical significance (p<0.001, p=0.020 respectively). PMID:24720423
Reeslev, M.; Miller, M.; Nielsen, K. F.
2003-01-01
Two mold species, Stachybotrys chartarum and Aspergillus versicolor, were inoculated onto agar overlaid with cellophane, allowing determination of a direct measurement of biomass density by weighing. Biomass density, ergosterol content, and beta-N-acetylhexosaminidase (3.2.1.52) activity were monitored from inoculation to stationary phase. Regression analysis showed a good linear correlation to biomass density for both ergosterol content and beta-N-acetylhexosaminidase activity. The same two mold species were inoculated onto wallpapered gypsum board, from which a direct biomass measurement was not possible. Growth was measured as an increase in ergosterol content and beta-N-acetylhexosaminidase activity. A good linear correlation was seen between ergosterol content and beta-N-acetylhexosaminidase activity. From the experiments performed on agar medium, conversion factors (CFs) for estimating biomass density from ergosterol content and beta-N-acetylhexosaminidase activity were determined. The CFs were used to estimate the biomass density of the molds grown on gypsum board. The biomass densities estimated from ergosterol content and beta-N-acetylhexosaminidase activity data gave similar results, showing significantly slower growth and lower stationary-phase biomass density on gypsum board than on agar. PMID:12839773
Formaldehyde sorption and desorption characteristics of gypsum wallboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, T.G.; Hawthorne, A.R.; Thompson, C.V.
1987-07-01
The sorption and subsequent desorption of formaldehyde (CH/sub 2/O) vapor from unpainted gypsum wallboard have been investigated in environmental chamber experiments conducted at 23 /sup 0/C, 50% relative humidity, an air exchange to board loading ratio of 0.43 m/h, and CH/sub 2/O concentrations ranging from 0 to 0.50 mg/m/sup 3/. Both CH/sub 2/O sorption and CH/sub 2/O desorption processes are described by a three-parameter, single-exponential model with an exponential lifetime of 2.9 +/- 0.1 days. The storage capacity of gypsum board for CH/sub 2/O vapor results in a time-dependent buffer to changes in CH/sub 2/O vapor concentration surrounding the boardmore » but appears to cause only a weak, permanent loss mechanism for CH/sub 2/O vapor. Prior to significant depletion of sorbed CH/sub 2/O, desorption rates from CH/sub 2/O-exposed gypsum board exhibit a linear dependence with negative slope on CH/sub 2/O vapor concentration. Analogous CH/sub 2/O emissions properties have been observed for pressed-wood products bonded with urea-formaldehyde resins. 17 references, 5 figures.« less
Formaldehyde sorption and desorption characteristics of gypsum wallboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, T.G.; Hawthorne, A.R.; Thompson, C.V.
1986-01-01
The sorption and subsequent desorption of formaldehyde (CH/sub 2/O) vapor from unpainted gypsum wallboard has been investigated in environmental chamber experiments conducted at 23/sup 0/C, 50% relative humidity, an air exchange to board loading ratio of 0.43 m/h, and CH/sub 2/O concentrations ranging from 0 to 0.50 mg/m/sup 3/. Both CH/sub 2/O sorption and desorption processes are described using a three-parameter, single-exponential model with an exponential lifetime of 2.9 +- 0.1 days. The storage capacity of gypsum board for CH/sub 2/O vapor results in a time-dependent buffer to changes in CH/sub 2/O vapor concentration surrounding the board, but appears tomore » cause only a weak, permanent loss mechanism for CH/sub 2/O vapor. Short-term CH/sub 2/O desorption rates from CH/sub 2/O-exposed gypsum board (prior to significant depletion of sorbed CH/sub 2/O) exhibit a linear dependence with negative slope on CH/sub 2/O vapor concentration analogous to CH/sub 2/O emissions from pressed-wood products bonded with urea-formaldehyde resins.« less
Porosity change after gypsum crust formation on macro-porous limestones
NASA Astrophysics Data System (ADS)
Dewanckele, Jan; Cnudde, Veerle; de Kock, Tim; Boone, Marijn; Boone, Matthieu; van Hoorebeke, Luc; Jacobs, Patric
2010-05-01
The deterioration of stone is a complex process in which physical, biological and chemical mechanisms are involved. In this research, pore structure changes inside two types of porous limestone were analyzed before, during and after strong acid tests with SO2. Sulphatation and crust formation phenomena on natural building stones exposed to a polluted environment, are largely described in literature. As far as rocks rich in calcium carbonate are concerned, the main processes involved are the dissolution of the calcium carbonate and the formation of gypsum (CaSO4.2H2O) in presence of an acid atmosphere. The low mobility of this newly formed salt favours its accumulation in porous materials and at the surface of less porous media. The main actor in the process of gypsum crystallization on limestone is the aggressive sulphur dioxide gas (SO2). In this study, the Savonnières and Euville limestone were subjected to tests with a strong acid. According to the standard EN 13919:2002E, samples were put in acid environment for 21 days. At the bottom of the container a mixture of 500 ± 10 ml H2SO3 and 150 ± 10 ml de-mineralized H2O was added. No airborne particles or oxides of nitrogen (NOx) were added. Before exposure, after 6 days in the polluted environment and at the end of the test, the two samples were scanned with X-ray computed tomography (X-ray CT) at the Centre for X-ray Tomography at Ghent University, Belgium (UGCT; www.ugct.ugent.be). This visualization technique allows 2D and 3D reconstructions on a micrometer scale of the internal structure of an object without damaging the material. It thus enables to scan the same sample in a sequential way. In order to obtain information about the sample's interior of which the characteristics can be compared before, during and after the test, the same scanning parameters (exposure time, amount of frames, energy, etc.) were used. In addition, the same adjustments like beam hardening correction, normalizing, ring and spot filter, etc. were applied for the reconstruction. Total porosity, open and closed porosity and radial porosity were calculated for each sample by using the in-house developed software program Morpho+. The analysis of the various scans revealed that the Euville limestone developed a distinct gypsum crust, behind which a secondary porous layer of 100 μm thickness had developed. Inside the sample the porosity decreased by infilling of the large pore spaces with gypsum. However, after 6 days exposure the total porosity of the sample increased from 5.70% to 8.45%. In this case, the formation of secondary porosity behind the newly formed exterior gypsum layer prevailed upon the crystallizing of gypsum inside the pores located in the sample's interior. Also, the firstly formed gypsum crystals prevented the further interaction of the sulphuric acid with the stone material. After 21 days, the total porosity of the sample still reached 8.45%. The results of the radial porosity measurements were also the same after 6 and 21 days, indicating that the secondary porosity and the filling of pores inside the samples were stabilized. On the other hand, the gypsum crust on the Savonnières limestone was less visible. No secondary formed porous layer was measured and the total porosity decreased from 12.10% to 10.94% after 6 days and further to 10.31% at the end of the test. The decrease of porosity was still measurable at a depth of 500 μm inside the sample. The combination of micro-CT, image analysis and induced weathering tests are a promising combination of tools and techniques that allow for a better understanding of gypsum crust formation and pore structure change just behind the crust and deeper inside the rock sample.
NASA Astrophysics Data System (ADS)
Evans, Nicholas P.; Gázquez, Fernando; McKenzie, Judith A.; Chapman, Hazel J.; Hodell, David A.
2016-04-01
We used oxygen and hydrogen isotopes of gypsum hydration water (GHW) coupled with salinity deduced from ice melting temperatures of primary fluid inclusions in the same samples (in tandem with 87Sr/86Sr, δ34S and other isotopic measurements) to determine the composition of the mother fluids that formed the gypsum deposits of the Messinian Salinity Crisis from shallow and intermediate-depth basins. Using this method, we constrain the origin of the Messinian Primary Lower Gypsum (PLG) of the Sorbas basin (Betic foreland) and both the Upper Gypsum (UG) and the Lower Gypsum of the Sicilian basin. We then compare these results to measurements made on UG recovered from the deep Ionian and Balearic basins drilled during DSDP Leg 42A. The evolution of GHW δ18O/δD vs. salinity is controlled by mixing processes between fresh and seawater, coupled with the degree of evaporation. Evaporation and subsequent precipitation of gypsum from fluids dominated by freshwater will result in a depressed 87Sr/86Sr values and different trajectory in δ18O/δD vs. salinity space compared to fluids dominated by seawater. The slopes of these regression equations help to define the end-members from which the fluid originated. For example, salinity estimates from PLG cycle 6 in the Sorbas basin range from 18 to 51ppt, and after correction for fractionation factors, estimated δ18O and δD values of the mother water are low (-2.6 < δ18O < 2.7‰ ; -16.2 < δD < 15.8‰). The intercepts of the regression equations (i.e. at zero salinity) are within error of the average isotope composition of the modern precipitation and groundwater in this region of SE Spain. This indicates there was a significant contribution of meteoric water during gypsum deposition, while 87Sr/86Sr (0.708942 < 87Sr/86Sr < 0.708971) indicate the ions originated from the dissolution of previously marine evaporites. Gypsum from cycle 2 displays similar mother water values (-2.4 < δ18O < 2.4‰ ; -13.2 < δD < 17.0‰) to cycle 6, but salinities of fluid inclusions are higher averaging ˜100ppt. In contrast to cycle 6, the intercepts of the regression equations of cycle 2 display more positive δ18O/δD values. While the estimated range in δ18O and δD of the mother water and salinities fall below those expected from the evaporation of seawater alone, the slope of the regression equation is similar to that of seawater evaporation. This implies that there is a change up-section from a dominantly marine environment in cycle 2 to a greater influence of meteoric water in cycle 6. The UG from the Sicilian basin display greater δ18O/δD values (2.9 < δ18O < 6.0‰ ; 16.6 < δD < 38.3‰) compared to the PLG of Sorbas, with average salinities of ˜90ppt. The intercept of the regression equations are similar to those of Sorbas cycle 6, indicating the mother fluid was composed of a large percentage of meteoric water that subsequently underwent intense evaporation. This observation concurs with the low values of 87Sr/86Sr from the same UG samples (0.708745 < 87Sr/86Sr < 0.708810) that have been interpreted previously to reflect a substantial dilution of Mediterranean surface water during this period, and with brackish to fresh-water fauna described from the associated marl of the UG in other studies. Ongoing analyses will test if this pattern of intense evaporation of a predominately meteoric mother fluid is reflected in the isotopic composition of the UG deposited in the deep Ionian and Balearic basins.
Crystallization of calcium sulfate dihydrate in the presence of some metal ions
NASA Astrophysics Data System (ADS)
Hamdona, Samia K.; Al Hadad, Umaima A.
2007-02-01
Crystallization of calcium sulfate dihydrate (CaSO 4·2H 2O gypsum) in sodium chloride solutions in the presence of some metal ions, and over a range of relative super-saturation has been studied. The addition of metal ions, even at relatively low concentration (10 -6 mol l -1), markedly retard the rate of crystallization of gypsum. Retardation effect was enhanced with increase in the additives contents. Moreover, the effect was enhanced as the relative super-saturation decreases. Influence of mixed additives on the rate of crystallization (Cd 2++Arg, Cd 2++H 3PO 4 and Cd 2++PAA) has also been studied. Direct adsorption experiments of these metal ions on the surface of gypsum crystals have been made for comparison.
High Strength Phosphogypsum and Its Use as a Building Material
NASA Astrophysics Data System (ADS)
Kanno, Wellington Massayuki; Rossetto, Hebert Luis; de Souza, Milton Ferreira; Máduar, Marcelo Francis; de Campos, Marcia Pires; Mazzilli, Barbara Paci
2008-08-01
A new process (patent applied) that works equally well with both plaster of mineral gypsum and phosphogypsum for the preparation of gypsum components, UCOS, has been developed. The process consists of the following steps: humidification of plaster by fine water droplets, uni-axial compression, hydration reaction and drying. Strong hydrogen bonds develop among the crystals together with adhesion provided by confined water that accounts for nearly 70% of the adhesion forces. By reducing the plaster to water ratio to close the minimum necessary, new features are generated. An experimental house has been constructed, in which walls and ceilings have been built of gypsum and phosphogypsum. Since phosphogypsum potentially contain radioactive elements, the application of an activity concentration index to the phosphogypsum employed in the building was carried out.
North Polar Gypsum Dunes in Olympia Undae
2016-07-15
These sand dunes are a type of aeolian bedform and partly encircle the Martian North Pole in a region called Olympia Undae. Unlike most of the sand dunes on Mars that are made of the volcanic rock basalt, these are made of a type of sulfate mineral called gypsum. Whence the sand? Well, gypsum is a mineral that can often form from the evaporation of water that has sulfur and calcium dissolved in it. This sand was probably sourced from a northern region on Mars that used to be quite wet. The boxy gridding of the dunes indicates that the wind blows in multiple directions. Note: "Aeolian" means wind-blown and "bedform" means piles of sediment shaped by a flowing fluid (liquid or gas). http://photojournal.jpl.nasa.gov/catalog/PIA20743
Structural quality of on Oxisol in recovery for 18 years
NASA Astrophysics Data System (ADS)
dos Santos Batista Bonini, C.; Alves, M. C.; Marchini, D. C.; Garcia de Arruda, O.; Nilce Souto Filho, S.
2012-04-01
Incorrect use of soil and large buildings construction in rural areas are causing changes to it, making them less productive and thus increasing the degraded areas. Techniques aimed at ecological restoration of degraded soils have been investigated. In this sense we investigated the positive changes in the structural quality of a soil that was beheaded in human intervention techniques for recovery for 18 years, having been used green manures, gypsum and pasture. The studied area is located in Mato Grosso do Sul, Brazil. The experimental design was a completely randomized with seven treatments and four replications. The treatments were: control (tilled soil without culture); Stizolobium aterrium; Cajanus cajan; lime+S. aterrimum; lime+C. cajan; lime+gypsum+S. aterrimum; lime+gypsum+C. cajan. In 1994, all treatments with C. cajan were replaced by Canavalia ensiformis and in 1999, Brachiaria decumbens was implanted in all treatments. Data from vegetated treatments were compared with the control bare soil and native vegetation (savannah). We evaluated the distribution and aggregate stability in water, soil samples were collected in 2010 in the depths: 0.00-0.10; 0.10-0.20 and 0,20-0.40 m. The results were analyzed by analysis of variance, following Scott-Knott test (5%) of probability to compare averages. Evaluating the results is noted that in the depth of 0.00-0.10 m, the control bare soil and savannah soil had lower and higher DMP, respectively. All recovery treatments were DMP greater than found for the bare soil control. Treatments: S. aterrimum, lime + gypsum + C. cajan and lime + gypsum + S. aterrimum and the savannah control were similar in the depth of 0.00-0.10 m. All of the recovery treatment in the depth from 0.00-0.10 m with values is close to the native vegetation of the savannah. Depths of 0.10-0.20 and 0.20-0.40 m results obtained for DMP treatments in recovery are similar to the bare soil, except for treatments with S. aterrimum and lime + gypsum + S. aterrimum that had values were similar to the savannah control. This behavior shows that the recovery of soil treatments were eficient only the superficial layer soil and other depths in the structure is still in recovery. It is concluded that the recovery treatment have positively influenced the structure quality in the 0.00-0.10 m depth : the recovery treatment with S. aterrimum and lime + gypsum + S. aterrimum were the most promising in the recovery structural quality.
Gypsum and hydrohalite dynamics in sea ice brines
NASA Astrophysics Data System (ADS)
Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary
2017-09-01
Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its experimental solubility in this system. Incorporation of hydrohalite solubility into a 1D thermodynamic model of the growth of first-year Arctic sea ice showed its precipitation to initiate once the incoming shortwave radiation dropped to 0 W m-2, and that it can reach concentrations of 9.9 g kg-1 within the upper and coldest layers of the ice pack. This suggests a limited effect of hydrohalite on the albedo of sea ice. The insights provided by the solubility measurements into the behaviour of gypsum and hydrohalite in the ice-brine system cannot be gleaned from field investigations at present.
Evaluation of Potential Damage to Unconventional Structures by Sonic Booms
1990-05-01
plaster and gypsum board caused by sonic boom is broken...on wood lath 3.3 5.6 2. Plaster on gyplath 7.5 16 3. Plaster on expanded metal lath 16 16 4. Plaster on concrete block 16 16 5. Gypsum board (new) 16... wallboard (also called plasterboard or drywall), it is assumed that interior walls of unconventional historic wood frame buildings used plaster instead.
The status of Lepidospartum burgessii (Burgess Broomshrub or Gypsum Broomscale)
Juanita A. R. Lndyman; Patricia Gegick
2001-01-01
Lepidospartum burgessii is designated a Species of Concern by the U.S. Fish and Wildlife Service. This shrub is endemic to gypsum soils in north Culberson County, Texas and southern Otero County, New Mexico. In 1991-92 the condition and number of plants in New Mexico were examined but otherwise little was known about the ecology or biology of this species. Our...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacomino, V.M.; Canut, M.; Magalhaes Gomes, A.
NORM stands for 'naturally occurring radioactive material', which is a material that naturally contains one or more radionuclides, mainly, uranium, thorium and potassium-40, and their radioactive decay products, such as radium and radon. An example of this material is the Phosphogypsum (PG), which results from the processing of phosphate ore into phosphoric acid for fertilizer production. In order to support regulation of the reuse of phosphogypsum as a raw material of the Brazilian civil construction industry, a characterization study was performed. The physical and chemical properties of PG and natural gypsum were determinate by evaluating the results of thermal (DTAmore » and TG), X-ray fluorescence (XRF), X-ray diffraction (XRD) and laser granulometric analyses. The radioactivity concentration of each sample was measured by gamma spectrometry analyses. The results of thermal analyses demonstrated that phosphogypsum must be treated (initially heated in an electrical oven at 60 deg. C for 24 hours, then sieved and heated again at 160 deg. C for one hour) to obtain the same mineralogical properties of the gypsum used in the civil construction industry. The X- ray fluorescence analysis showed that PG and natural gypsum are similar with both being composed mainly of S, O, Ca, P and small quantities of trace elements (Ce, Ti, La, Sr, Zr, and Pr). The main crystalline compounds found in PG samples were gypsita (CaSO{sub 4}.2H{sub 2}O) and in natural gypsum were bassanite (CaSO{sub 4}.0.5H{sub 2}O). The concentration of Ra-226, Ra-228 and Pb-210 present in PG samples was 467 Bq/kg, 224 Bq/kg and 395 Bq/kg, respectively. The levels of radioactivity in natural gypsum samples were much lower (around 3 Bq/kg). The same behavior was observed for the uranium and thorium content. The results of all the analyses showed that phosphogypsum can be a viable substitute for gypsum, after certain, beneficial processes. (authors)« less
NASA Astrophysics Data System (ADS)
Yasui, Minami; Arakawa, Masahiko
2011-08-01
Laboratory impact experiments were conducted for gypsum-glass bead targets simulating the parent bodies of ordinary chondrites. The effects of the chondrules included in the parent bodies on impact disruption were experimentally investigated in order to determine the impact conditions for the formation of rubble-pile bodies after catastrophic disruption. The targets included glass beads with a diameter ranging from 100 μm to 3 mm and the volume fraction was 0.6, similar to that of ordinary chondrites, which is about 0.65-0.75. Nylon projectiles with diameters of 10 mm and 2 mm were impacted at 60-180 m s -1 by a single-stage gas gun and at 4 km s -1 by a two-stage light gas gun, respectively. The impact strength of the gypsum-glass bead target was found to range from 56 to 116 J kg -1 depending on the glass bead size, and was several times smaller than that of the porous gypsum target, 446 J kg -1 in low-velocity collisions. The impact strengths of the 100 μm bead target and the porous gypsum target strongly depended on the impact velocity: those obtained in high-velocity collisions were several times greater than those obtained in low-velocity collisions. The velocities of fragments ejected from two corners on the impact surface of the target, measured in the center of the mass system, were slightly dependent on the target materials, irrespective of impact velocity. These results suggest that chondrule-including planetesimals (CiPs) can reconstruct rubble-pile bodies in catastrophic disruptions at the size of the planetesimal smaller than that of planetesimals without chondrules.
Adeli, Ardeshir; Read, John J; Brooks, John P; Miles, Dana; Feng, Gary; Jenkins, Johnie N
2017-03-01
The inability to incorporate broiler litter (BL) into permanent hayfields and pastures leads to nutrient accumulation near the soil surface and increases the potential transport of nutrients in runoff. This study was conducted on Marietta silt loam soil to determine the effect of flue gas desulfurization (FGD) gypsum and lignite on P, N, C, and microbial concentrations in runoff. Treatments were (i) control (unfertilized) and (ii) BL at 13.4 Mg ha alone or (iii) treated with either FGD gypsum or lignite applied at 20% (w/w) (2.68 Mg ha). Rainfall simulators were used to produce a 5.6 cm h storm event sufficient in duration to cause 15 min of continuous runoff. Repeated rains were applied at 3-d intervals to determine how long FGD gypsum and lignite are effective in reducing loss of litter-derived N, P, and C from soil. Application of BL increased N, P, and C concentrations in runoff as compared to the control. Addition of FGD gypsum reduced ( < 0.05) water-soluble P and dissolved organic C concentrations in runoff by 39 and 16%, respectively, as compared to BL alone. Lignite reduced runoff total N and NH-N concentrations by 38 and 70%, respectively, as compared to BL alone. Addition of FGD gypsum or lignite failed to significantly reduce microbial loads in runoff, although both treatments reduced microbial concentration by >20%. Thus, BL treated with FGD and lignite can be considered as cost-effective management practices in the mitigation of P, N, and C and possibly microbial concentration in runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi
2016-01-01
For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Post-fire analysis of construction materials
NASA Astrophysics Data System (ADS)
Schroeder, Robert Allen
The objective of this thesis is to determine and document the extent to which the fire damage in wood, concrete, and gypsum wallboard can be used to determine the time and heat flux exposure of the incipient stages of an uncontrolled fire event. A literature review outlines the state-of-the-art in three distinct areas: (1) Fire investigation; (2) The physical properties of wood, concrete, and gypsum wallboard, and (3) The fire response characteristics of those materials and their use in fire investigations. The results from quantitative experimental fire exposures of the subject materials are presented. The experiments were conducted under controlled conditions with the intent to develop standards for macroscopic and microscopic states of the materials for a given heat flux exposure and temperature. Standards and procedures are introduced for field sample collection, laboratory testing of the field samples, and interpretation of results. There are three major conclusions to be derived from this dissertation. The first two are that (1) wood and (2) concrete should not be viewed as reliable sources of information for a fire investigator to use for an analysis of how an actual fire ignited or spread. On the other hand the third major conclusion is that (3) gypsum wallboard can be considered a reliable source of information of fire behavior. The basis of each these conclusions is described in each of the chapters associated with each of the materials. One of the most important findings in this research is the use of X-ray diffraction to determine the maximum temperature reached by a sample of gypsum wallboard. Then by using the plots of isotherm progression it is possible to estimate the approximate length of exposure to a given heat flux. The use of gypsum-based post evidence is much more accurate than any available for wood or for concrete.
Chen, Tian-Hu; Wang, Jin; Zhou, Yue-Fei; Yue, Zheng-Bo; Xie, Qiao-Qin; Pan, Min
2014-01-01
Synthetic effect between sulfate minerals (gypsum) and iron oxide (hematite) on the anaerobic transformation of organic substance was investigated in the current study. The results showed that gypsum was completely decomposed while hematite was partially reduced. The mineral phase analysis results showed that FeS and CaCO3 was the major mineralization product. Methane generation process was inhibited and inorganic carbon contents in the precipitates were enhanced compared to the control without hematite and gypsum. The inorganic carbon content increased with the increasing of hematite dosages. Co-addition of sulfate minerals and iron oxide would have a potential application prospect in the carbon sequestration area and reduction of the greenhouse gas release. The results would also reveal the role of inorganic mineral in the global carbon cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Effect of Orthodontic Model Fabrication Procedures on Gypsum Materials.
1992-06-01
views expressed in this paper are exclusively those of the author and do not reflect those of the United States Air Force Dental Corps, the United...Artificial Stone ............... 6 1.3 Improved Dental Stone . . . . . . . . . . . . . 7 1.4 Manipulation Techniques . . . . . . . . . . . . 10 1.5 Mixing...properties which can be obtained, 9 , 13- 42 gypsum has been found to have applications in most dental specialties, orthodontics being no exception. Since
Experimental 3-D SAR Human Target Signature Analysis
2014-07-21
is a fairly transparent one constructed of drywall made of wood studs, gypsum, insulating material, and vinyl coating on the exterior. A LIDAR image...transparent wall such as drywall , there is a significant increase in the amount of clutter and multipath. Figure 8. LIDAR imagery of a human...standing inside a building constructed of drywall made of wood stud, gypsum, insulating material, and vinyl coating. In the human standing images
Batool, Aniqa; Taj, Samia; Rashid, Audil; Khalid, Azeem; Qadeer, Samia; Saleem, Aansa R.; Ghufran, Muhammad A.
2015-01-01
Water being an essential component for plant growth and development, its scarcity poses serious threat to crops around the world. Climate changes and global warming are increasing the temperature of earth hence becoming an ultimate cause of water scarcity. It is need of the day to use potential soil amendments that could increase the plants’ resistance under such situations. Biochar and gypsum were used in the present study to improve the water use efficiency (WUE) and growth of Abelmoschus esculentus L. Moench (Lady’s Finger). A 6 weeks experiment was conducted under greenhouse conditions. Stress treatments were applied after 30 days of sowing. Plant height, leaf area, photosynthesis, transpiration rate (Tr), stomatal conductance and WUE were determined weekly under stressed [60% field capacity (F.C.)] and non-stressed (100% F.C.) conditions. Stomatal conductance and Tr decreased and reached near to zero in stressed plants. Stressed plants also showed resistance to water stress upto 5 weeks and gradually perished at sixth week. On the other hand, WUE improved in stressed plants containing biochar and gypsum as compared to untreated plants. Biochar alone is a better strategy to promote plant growth and WUE specifically of A. esculentus, compared to its application in combination with gypsum. PMID:26442046
Thongsook, T; Kongbangkerd, T
2011-08-01
Supplements of gypsum (calcium source), pumice (silicon source) and pumice sulfate (silicon and calcium source) into substrates for oyster mushrooms (Pleurotus ostreatus) were searched for their effects on production as well as qualities of fresh and canned mushrooms. The addition of pumice up to 30% had no effect on total yield, size distribution and cap diameters. The supplementation of gypsum at 10% decreased the total yield; and although gypsum at 5% did not affect total yield, the treatment increased the proportion of large-sized caps. High content (>10%) of pumice sulfate resulted in the lower yield. Calcium and silicon contents in the fruit bodies were not influenced by supplementations. The centrifugal drip loss values and solid content of fresh mushrooms, and the percentage of weight gained and firmness of canned mushrooms, cultivated in substrates supplemented with gypsum, pumice and pumice sulfate were significantly (p≤0.05) higher than those of the control. Scanning electron micrographs revealed the more compacted hyphae of mushroom stalks supplemented with silicon and/or calcium after heat treatment, compared to the control. Supplementation of P. ostreatus substrates with 20% pumice was the most practical treatment because it showed no effect on yield and the most cost-effective.
Mao, Yumei; Li, Xiaping; Dick, Warren A; Chen, Liming
2016-07-01
Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization (FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60Mg/ha to remediate tidal flat soils of the Yangtze River estuary. Exchangeable sodium percentage (ESP), exchangeable sodium (ExNa), pH, soluble salt concentration, and composition of soluble salts were measured in 10cm increments from the surface to 30cm depth after 6 and 18months. The results indicated that the effect of FGD-gypsum is greatest in the 0-10cm mixing soil layer and 60Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil pH to neutral (7.0). The improvement effect was reached after 6months, and remained after 18months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na(+), HCO3(-)+CO3(2-) and Cl(-) to neutral salt ions mainly containing Ca(2+) and SO4(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Mitchell, Julie L.; Broyan, James L.; Pickering, Karen D.; Adam, Niklas; Casteel, Michael; Callahan, Michael; Carrier, Chris
2012-01-01
In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its ability to remove calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 13 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.
Vesper, Stephen; Wymer, Larry; Cox, David; Dewalt, Gary
2016-08-15
Starting in the 1940s, gypsum drywall began replacing plaster and lathe in the U.S. home construction industry. Our goal was to evaluate whether some mold populations differ in water- damaged homes primarily constructed with gypsum drywall compared to plaster. The dust samples from the 2006 Department of Housing and Urban Development's (HUD) American Health Homes Survey (AHHS) were the subject of this analysis. The concentrations of the 36 Environmental Relative Moldiness Index (ERMI) molds were compared in homes of different ages. The homes (n=301) were built between 1878 and 2005. Homes with ERMI values >5 (n=126) were defined as water-damaged. Homes with ERMI values >5 were divided in the years 1976 to 1977 into two groups, i.e., older (n=61) and newer (n=65). Newer water-damaged homes had significantly (p=0.002) higher mean ERMI values than older water-damaged homes, 11.18 and 8.86, respectively. The Group 1 molds Aspergillus flavus, Ammophilus fumigatus, Aspergillus ochraceus, Cladosporium sphaerospermum and Trichoderma viride were found in significantly higher concentrations in newer compared to older high-ERMI homes. Some mold populations in water-damaged homes may have changed after the introduction of gypsum drywall. Published by Elsevier B.V.
Geology of the Jewel Cave SW Quadrangle, Custer County, South Dakota
Braddock, William A.
1963-01-01
The Jewel Cave SW quadrangle is in the southwestern part of the Black Hills in Custer County, S. Dak., about midway between Edgemont, S. Dak., and Newcastle, Wyo. All the rocks that crop out within the quadrangle are of sedimentary origin and range in age from Pennsylvanian to Early Cretaceous. The Minnesota Formation of Pennsylvania and Permian age, which is about 1,000 feet thick, was studied in outcrop and from two diamond-drill cores. In the subsurface the upper part of the formation consists of gray sandstone, very fine grained dolomite, and anhydrite. The anhydrite has been leached from the formation near the outcrop, perhaps in the early part of the Cenozoic Era, and the resulting subsidence has produced collapse breccias in the Minnelusa and milder deformation in the overlying units. In the collapse breccias the rocks have been oxidized and are red, whereas in the subsurface they are gray. The anhydrite cement of the subsurface sandstone has been replaced by calcite, and the dolomite beds have been partially converted to limestone. The Opeche Formation of Permian age consists of 75 to 115 feet of red siltstone and shale and two thin gypsum beds. The Minnekahta Limestone of Permian age is about 40 feet thick. The Spearfish Formation of Permian and Triassic age is about 550 feet thick and consists of red siltstone red sandstone, dolomite, and gypsum. The dolomite and gypsum beds are restricted to the lower half of the formation. In the northeast corner of the quadrangle the gypsum beds have been dissolved by ground water. The Sundance Formation of Late Jurassic age is divided into five members that have a total thickness of about 360 feet. The Morrison Formation of Late Jurassic age ranges in thickness from 60 to 120 feet. It consists of blocky weathering noncarbonaceous mudstone and subordinate beds of limestone and sandstone. The Inyan Kara Group of Early Cretaceous age has been subdivided into the Lakota Formation and the Fall River Formation. The Lakota Formation consists of 200 to 300 feet of carbonaceous siltstone blocky-weathering claystone, and fine-grained to conglomeratic sandstone. These rocks were deposited in stream channels, flood plains, and ponds. The Fall River Formation is about 110 to 130 feet thick. Along the northeast side of the outcrop the formation consists of fine- to medium-grained sandstone, which forms an elongate body at least 1-1/2 miles wide and more than 25 miles long. To the southwest the formation consists of thinly stratified interbedded sandstone, carbonaceous siltstone, and varicolored mudstone. The Skull Creek and Mowry Shales of Early Cretaceous age consist of black fissile shale. The Mowry contains abundant fish scales and weathers to a silver gray. Alluvium fills the bottom of many intermittent streams, and small gravel-covered terraces mark the former high levels of these streams. Gravel, which caps hills at altitudes of 4,460 to 4,620 feet, is believed to have been deposited by a Pleistocene stream that drained southeastward toward the town of Minnekahta. Many landslides are present along the northward- and eastward-facing scarp of the Inyan Kara hogback. The Dewey fault, trending N. 75 deg E., crosses the quadrangle. It is probably a vertical dip-slip fault, and has an apparent displacement of 250 to 440 feet. Two northwest-trending anticlines are in the quadrangle - one extends from the Edgemont NE quadrangle to near the center of the Jewel Cave SW quadrangle, and the other is limited to the center of the Jewel Cave SW quadrangle. Collapse structures, which were produced by the solution of anhydrite, are (a) breccias in the Minnelusa Formation, (b) limestone-dolomite breccias in the Spearfish Formation, (c) undulations and normal faults in the formations overlying the Minnelusa and (d) breccia pipes that extend upward from the Minnelusa to at least as high as the Lakota Formation. The leaching probably occurred in early Cenozoic time. Minor deformationa
Reforestation and landscape reconstruction in gypsum mine area from the semiarid region of NE Brazil
NASA Astrophysics Data System (ADS)
Bittar, S. M. B.; Straaten, P. V.; de Araujo Vieura Santos, M. de Fatima; Agra Bezerra da Silva, Y. J.; da Silva, M.; Saraiva de Melo Pinheiro, T.; Gusmao Didier de Moraes, F.; de Aguiar Accioly, A. M.; Alves de Santana, S. R.; dos Santos, H. A.; de Carvalho, D. M.; de Lima Ferreira, G.; de Carvalho Santos, C.
2012-04-01
In the Araripe region, Northeast Brazil, exist the world's second largest reserve of gypsum, estimated at over than one billion tons, which accounts for 95% of the Brazilian production and constitutes an important segment of the regional economy. The gypsum deposit occurs in the Lower Cretaceous Santana Formation of the Araripe basin, which is constituted by siltstones, marls, limestones, shales and gypsum layers. The ore extraction is from an open pit, on simple benches with a height of about 15 meters. Activities in mining operations involve stripping, drilling, loading explosives, blast, fragmentation and block loading / transport. Currently, gypsum mining and processing results in major changes in the landscape (pits and wastes heaps sedimentary rocks and soil mixture), deforestation of the "caatinga" ecosystem for use as firewood in small calcinations, dust pollution and changes in hydrology. To promote environmental remediation of this area, a multidisciplinary research has being done with the aim to support reforestation at the wastes heaps. The study involved the following activities: collection and physical, chemical and mineralogical characterization of mine waste materials; a floristic survey around the mines (botanical identification and measuring physical parameters in 16 plots, in order to identify which species are best suited to the conditions of the substrate at the mine site); an experiment (randomized block design) developed in a greenhouse, where seedlings of various native tree species were grown in a "constructed soil" made up of gypsum waste combined with chicken, goat and cattle manure, aimed to select tree species and soil treatment to be used in a waste heap; and an assessment of water quality for irrigation of the reforestation areas. The waste materials consist of large clayey aggregates, which may present physical/chemical properties unfavorable for plant development. The mineralogy of the sand fraction (> 85% quartz, gypsum and aggregates with carbonate, clay, ferrous and/or manganese oxides) indicates a low potential reserve of plant nutrients. The clay mineralogy, with the presence of 2:1 minerals, explains the high CEC (60.95 cmolc dm-3). Moderately alkaline pH is above the desirable range. P (282 mg kg-1) is high, while N (0.3 g kg-1) is low. ESP < 4% classifies the waste as non-sodium and the EC (60.95 cmolc dm-3) reflects mainly the Ca. The low values of soil organic matter (3,56 g kg-1) indicate the relevance of using organic amendments for the reconstruction of the soil for plant growth. Based on these data a forestation experiment (randomized block design) was done on a large waste heap preserved for scientific research, where 500 tree seedling were planted (9 different species) in a plot of 134 m x 60 m in size.Two substrates treatments were used: block with 1.4 kg organic matter per plant hole and blocks without organic matter. The preliminary statistical data show good responses to the treatments. This constitutes a way to transform gypsum mining wastes into soil. Application of these technologies for environmental rehabilitation can be used in other problems.
Mossotti, Victor G.
2014-01-01
Over the past decade, the U.S. Government has invested more than $106 billion for physical, societal, and governmental reconstruction assistance to Afghanistan (Special Inspector General for Afghanistan Reconstruction, 2012a). This funding, along with private investment, has stimulated a growing demand for particular industrial minerals and construction materials. In support of this effort, the U.S. Geological Survey released a preliminary mineral assessment in 2007 on selected Afghan nonfuel minerals (Peters and others, 2007). More recently, the 2007 mineral assessment was updated with the inclusion of a more extensive array of Afghan nonfuel minerals (Peters and others, 2011). As a follow-up on the 2011 assessment, this report provides an analysis of the current use and prospects of the following Afghan industrial minerals required to manufacture construction materials: clays of various types, bauxite, gypsum, cement-grade limestone, aggregate (sand and gravel), and dimension stone (sandstone, quartzite, granite, slate, limestone, travertine, marble). The intention of this paper is to assess the: Use of Afghan industrial minerals to manufacture construction materials, Prospects for growth in domestic construction materials production sectors, Factors controlling the competitiveness of domestic production relative to foreign imports of construction materials, and Feasibility of using natural gas as the prime source of thermal energy and for generating electrical energy for cement production. The discussion here is based on classical principles of supply and demand. Imbedded in these principles is an understanding that the attributes of supply and demand are highly variable. For construction materials, demand for a given product may depend on seasons of the year, location of construction sites, product delivery time, political factors, governmental regulations, cultural issues, price, and how essential a given product might be to the buyer. Moreover, failure on the supply side to mirror such attributes can be deal-breakers in a transaction. For qualitative interpretation of the findings in this report, the value chain was used to conceptualize the relation between supply and demand. Although quantitative data on the Afghan construction materials sector have been hard to come by, the premise herein was that qualitative aspects of supply and demand are revealed by following the flow of funding through projects of varying sizes. It was found that the spectrum of attributes on the demand side of large multimillion dollar reconstruction projects is generally high dimensional, distributed over a broad line of construction materials at diverse locations, and in varying quantities. As interpreted herein, project funds dispensed at the higher hierarchical levels of a project are often concentrated on procurement of construction materials and services at the upper end of the value chain. In contrast, project funds dispensed at the lower hierarchical levels are disseminated across a multiplicity of subprojects, thus restricting project acquisitions to the lower end of the value chain. Evidence suggests that under the current conditions in Afghanistan producers of construction materials at the lower end of the value chain (adobe brick, aggregate, low-end marble products) can successfully compete in local markets and turn a profit. In contrast, producers of energy-intensive products such as cement will continue to face intense competition from imports, at least in the near-term. In the long-term, as infrastructure issues are resolved, and as business conditions in Afghanistan improve, domestic producers will have a locational advantage in establishing a solid niche in their respective home markets. In the process of tendering properties for cement production, the pivotal issues of abundant, reliable, and cost-effective thermal and electrical energy sources for cement production have become prominent. Over the past 50 years, powdered coal and natural gas have been proven to be excellent fuels for firing kilns at cement plants, and both fuels are used as energy sources for electricity generation. After reviewing the main aspects of the coal and natural gas sectors, it is concluded here that the issues for plant design are not that of energy source feasibility but rather that of optimization of energy technologies for a given plant at a particular time and place, based on a diverse mix of energy and transport technologies.
Simplified Methods for Improving the Blast Resistance of Cold-Formed Steel Walls
2011-01-01
sheathing products such as oriented strand board ( OSB ) offer a level of blast resistance that may be effective in mitigating lower-level blast...considered in order to keep designs to a minimum cost. Standard sheathing materials such as OSB , gypsum and plywood— as well as specially selected sheathing...commercially available clip connectors. Sheathing materials such as gypsum and OSB are brittle and have significantly lower capacity than sheet steel
NASA Astrophysics Data System (ADS)
Porzucek, Sławomir; Łój, Monika; Matwij, Karolina; Matwij, Wojciech
2018-03-01
In the region of Siesławice (near Busko-Zdrój, Poland) there are unique phenomena of gypsum karst. Atmospheric factors caused numerous gypsum outcrops, canals and underground voids. The article presents the possibility of using non-invasive gravimetric surveys supplemented with geodetic measurements to illustrate karst changes occurring around the void. The use of modern geodetic measurement techniques including terrestrial and airborne laser scanning enables to generate a digital terrain model and a three-dimensional model of voids. Gravimetric field studies allowed to map the anomalies of the gravitational field of the near-surface zone. Geodetic measurement results have made it possible to accurately determine the terrain correction that supplemented the gravimetric anomaly information. Geophysical interpretation indicate the presence of weathered rocks in the near surface zone and fractures and loosened zones located surround the karst cave.
Chen, Xi; Crupper, Scott S
2016-09-01
Gypsum caves found throughout the Red Hills of Kansas have the state's most diverse and largest population of cave-roosting bats. White-nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans, which threatens all temperate bat species, has not been previously detected in the gypsum caves as this disease moves westward from the eastern United States. Cave soil was obtained from the gypsum caves, and using the polymerase chain reaction, a 624-nucleotide DNA fragment specific to the Type 1 intron-internal transcribed spacer region of the 18S rRNA gene from Pseudogymnoascus species was amplified. Subsequent cloning and DNA sequencing indicated P. destructans DNA was present, along with 26 uncharacterized Pseudogymnoascus DNA variants. However, no evidence of WNS was observed in bat populations residing in these caves.
Removal of Calcium from Scheelite Leaching Solution by Addition of CaSO4 Inoculating Crystals
NASA Astrophysics Data System (ADS)
Liu, Wenting; Li, Yongli; Zeng, Dewen; Li, Jiangtao; Zhao, Zhongwei
2018-04-01
In this work, the solubility behaviors of gypsum and anhydrite in the H2SO4-H3PO4-H2O system were investigated over the temperature range T = 30-80°C, and the results showed that the solubility of anhydrite was considerably lower than that of gypsum. On the basis of the differential solubilities of gypsum and anhydrite, a method was developed to remove calcium from the scheelite leaching solution by adding anhydrite as an inoculating crystal. The effects of the reaction time, concentration of the CaSO4 inoculating crystals, and temperature were investigated. With an addition of CaSO4 inoculating crystals at a concentration of 60 g/L, the Ca2+ concentration of the scheelite leaching solution decreased to a low level of approximately 0.76 g/L after 10 h at 70°C.
Pal, P K; Kamble, Suresh S; Chaurasia, Ranjitkumar Rampratap; Chaurasia, Vishwajit Rampratap; Tiwari, Samarth; Bansal, Deepak
2014-06-01
The present study was done to evaluate the dimensional stability and surface quality of Type IV gypsum casts retrieved from disinfected elastomeric impression materials. In an in vitro study contaminated impression material with known bacterial species was disinfected with disinfectants followed by culturing the swab sample to assess reduction in level of bacterial colony. Changes in surface detail reproduction of impression were assessed fallowing disinfection. All the three disinfectants used in the study produced a 100% reduction in colony forming units of the test organisms. All the three disinfectants produced complete disinfection, and didn't cause any deterioration in surface detail reproduction. How to cite the article: Pal PK, Kamble SS, Chaurasia RR, Chaurasia VR, Tiwari S, Bansal D. Evaluation of dimensional stability and surface quality of type IV gypsum casts retrieved from disinfected elastomeric impression materials. J Int Oral Health 2014;6(3):77-81.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, T.L.; Landry, R.J.
1983-09-01
The DeQueen Formation of the Trinity Group, Comanchean Cretaceous, crops out in southwestern Arkansas and southeastern Oklahoma. The outcrop, located in the Highland gypsum quarry of Pike County, southwestern Arkansas, is described in detail in this paper and presented as a reference locality. Data from the locality provide the basis for a nomenclature change from the DeQueen Limestone Member to the DeQueen Formation. The formation consists of 64.23% clastic sediments, 24.72% gypsum, and 11.05% limestone. Hopper salt casts, ripple marks, scattered pyrite and marcasite nodules, celestite, and chickenwire gypsum can also be found. The DeQueen Formation is underlain by claysmore » and the Ultima Thule Gravel lentil, while the top is unconformably overlain by Upper Cretaceous Tokio gravels. The general paleoenvironment represents a normally low-energy subtidal environment ranging from brackish to normal to hypersaline waters in a lagoonal setting that shallows upward.« less
Mold growth on gypsum wallboard--a summary of three techniques.
Menetrez, M Y; Foarde, K K; Webber, T D; Dean, T R; Betancourt, D A
2009-01-01
Reducing occupant exposure to mold growing on damp gypsum wallboard and controlling mold contamination in the indoor environment was studied through 1) delineation of environmental conditions required to promote and avoid mold growth and 2) efficacy testing of antimicrobial products, specifically cleaners and paints, on gypsum wallboard (GWB) surfaces. The effects of moisture and relative humidity (RH) on mold growth and transport are important in avoiding and eliminating problems. These effects have been demonstrated on GWB and are discussed in this article for use as control guidance. The authors discuss the efficacy of antimicrobial cleaners and paints to remove, eliminate, or control mold growth on GWB. Research to control Stachybotrys chartarum growth using 13 separate antimicrobial cleaners and nine varieties of antimicrobial paint on contaminated GWB was performed in laboratory testing. GWB surfaces were subjected to high RH. GWB control measures are summarized and combined, and the antimicrobial product results are explained.
EFFECT OF AN ACID RAIN ENVIRONMENT ON LIMESTONE SURFACES.
Mossotti, Victor G.; Lindsay, James R.; Hochella, Michael F.
1987-01-01
Salem limestone samples were exposed to weathering for 1 y in several urban and one rural environments. Samples exposed in the rural location were chemically indistinguishable from the freshly quarried limestone, whereas all samples collected from urban exposure sites developed gypsum stains on the ground-facing surfaces where the stones were not washed by precipitation. The gas-solid reaction of SO//2 with calcite was selected for detailed consideration. It appears from the model that under arid conditions, the quantity of stain deposited on an unwashed surface is independent of atmospheric SO//2 concentration once the surface has been saturated with gypsum. Under wet conditions, surface sulfation and weight loss are probably dominated by mechanisms involving wet stone. However, if the rain events are frequent and delimited by periods of dryness, the quantity of gypsum produced by a gas-solid reaction mechanism should correlate with both the frequency of rain events and the atmospheric SO//2 level.
Matta, Ragai E; Schmitt, Johannes; Wichmann, Manfred; Holst, Stefan
2012-10-01
Techniques currently applied to determine the marginal accuracy of dental crown restorations yield inadequate information. This investigation aimed to test a new virtual approach for determining the precision of fit of single-crown copings. Zirconia single crown copings were manufactured on 10 gypsum, single-tooth master casts with two different established computer-aided design/computer-assisted manufacture (CAD/CAM) systems (groups A and B). After cementation, the circumferential fit was assessed with an industrial noncontact scanner and virtual 3D analysis, following a triple-scan protocol. Marginal fit was determined by virtual sectioning; each abutment-coping complex was digitally sliced in 360 vertical sections (1 degree per section). Standardized measurement distances for analyzing the marginal fit (z, xy, xyz) were selected, and a crosshair alignment was utilized to determine whether crowns were horizontally and/or vertically too large or small. The Mann-Whitney test was applied to test for differences between groups. Significant differences in the xy direction (P = .008) were measured between groups. Group A showed a greater number of horizontally overextended margins and a higher frequency of xy distances greater than 150 Μm, in addition to a tendency for excessive z distances (P = .095). The mean marginal gap values were clinically acceptable in the present investigation; however, a full circumferential analysis revealed significant differences in marginal coping quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A.; Duchesne, J., E-mail: josee.duchesne@ggl.ulaval.ca; Fournier, B.
Damages in concrete containing sulfide-bearing aggregates were recently observed in the Trois-Rivieres area (Quebec, Canada), characterized by rapid deterioration within 3 to 5 years after construction. A petrographic examination of concrete core samples was carried out using a combination of tools including: stereomicroscopic evaluation, polarized light microscopy, scanning electron microscopy, X-ray diffraction and electron microprobe analysis. The aggregate used to produce concrete was an intrusive igneous rock with different metamorphism degrees and various proportions of sulfide minerals. In the rock, sulfide minerals were often surrounded by a thin layer of carbonate minerals (siderite). Secondary reaction products observed in the damagedmore » concrete include 'rust' mineral forms (e.g. ferric oxyhydroxides such as goethite, limonite (FeO (OH) nH{sub 2}O) and ferrihydrite), gypsum, ettringite and thaumasite. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste/aggregate and provokes the formation of sulfate minerals. Understanding both mechanisms, oxidation and internal sulfate attack, is important to be able to duplicate the damaging reaction in laboratory conditions, thus allowing the development of a performance test for evaluating the potential for deleterious expansion in concrete associated with sulfide-bearing aggregates.« less
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
The role of adhesives in building design is discussed. Three major areas are as follows--(1) lamination of structural timber beams, (2) bonding of cementitious materials, and (3) bonding of gypsum drywall construction. Topical coverage includes--(1) structural lamination today, (2) adhesives in use today, (3) new adhesives needed, (4) production…
Crack Coalescence in Molded Gypsum and Carrara Marble
NASA Astrophysics Data System (ADS)
Wong, N.; Einstein, H. H.
2007-12-01
This research investigates the fracturing and coalescence behavior in prismatic laboratory-molded gypsum and Carrara marble specimens, which consist of either one or two pre-existing open flaws, under uniaxial compression. The tests are monitored by a high speed video system with a frame rate up to 24,000 frames/second. It allows one to precisely observe the cracking mechanisms, in particular if shear or tensile fracturing takes place. Seven crack types and nine crack coalescence categories are identified. The flaw inclination angle, the ligament length and the bridging angle between two flaws have different extents of influence on the coalescence patterns. For coplanar flaws, as the flaw inclination angle increases, there is a general trend of variation from shear coalescence to tensile coalescence. For stepped flaws, as the bridging angle changes from negative to small positive, and further up to large positive values, the coalescence generally progresses from categories of no coalescence, indirect coalescence to direct coalescence. For direct coalescence, it generally progresses from shear, mixed shear-tensile to tensile as the bridging angle increases. Some differences in fracturing and coalescence processes are observed in gypsum and marble, particularly the crack initiation in marble is preceded by the development of macroscopic white patches, but not in gypsum. Scanning Electron Microprobe (SEM) study reveals that the white patches consist of zones of microcracks (process zones).
Ayukawa, Yasunori; Suzuki, Yumiko; Tsuru, Kanji; Koyano, Kiyoshi; Ishikawa, Kunio
2015-01-01
Carbonate apatite (CO3Ap), the form of apatite found in bone, has recently attracted attention. The purpose of the present study was to histologically evaluate the tissue/cellular response toward the low-crystalline CO3Ap fabricated using a dissolution-precipitation reaction with set gypsum as a precursor. When set gypsum was immersed in a 100°C 1 mol/L Na3PO4 aqueous solution for 24 h, the set gypsum transformed into CO3Ap. Both CO3Ap and sintered hydroxyapatite (s-HAp), which was used as a control, were implanted into surgically created tibial bone defects of rats for histological evaluation. Two and 4 weeks after the implantation, histological sections were created and observed using light microscopy. The CO3Ap granules revealed both direct apposition of the bone matrix by osteoblasts and osteoclastic resorption. In contrast, the s-HAp granules maintained their contour even after 4 weeks following implantation which implied that there was a lack of replacement into the bone. The s-HAp granules were sometimes encapsulated with fibrous tissue, and macrophage polykaryon was occasionally observed directly apposed to the implanted granules. From the viewpoint of bone remodeling, the CO3Ap granules mimicked the bone matrix, suggesting that CO3Ap may be an appropriate bone substitute. PMID:26504813
Dutto, Paola; Stickle, Miguel Martin; Pastor, Manuel; Manzanal, Diego; Yague, Angel; Moussavi Tayyebi, Saeid; Lin, Chuan; Elizalde, Maria Dolores
2017-01-01
The choice of a pure cohesive or a pure frictional viscoplastic model to represent the rheological behaviour of a flowslide is of paramount importance in order to obtain accurate results for real cases. The principal goal of the present work is to clarify the influence of the type of viscous model—pure cohesive versus pure frictional—with the numerical reproduction of two different real flowslides that occurred in 1966: the Aberfan flowslide and the Gypsum tailings impoundment flowslide. In the present work, a depth-integrated model based on the v-pw Biot–Zienkiewicz formulation, enhanced with a diffusion-like equation to account for the pore pressure evolution within the soil mass, is applied to both 1966 cases. For the Aberfan flowslide, a frictional viscous model based on Perzyna viscoplasticity is considered, while a pure cohesive viscous model (Bingham model) is considered for the case of the Gypsum flowslide. The numerical approach followed is the SPH method, which has been enriched by adding a 1D finite difference grid to each SPH node in order to improve the description of the pore water evolution in the propagating mixture. The results obtained by the performed simulations are in agreement with the documentation obtained through the UK National Archive (Aberfan flowslide) and the International Commission of large Dams (Gypsum flowslide). PMID:28772924
NASA Astrophysics Data System (ADS)
Pratt, Brian R.
2001-06-01
The carbonate-dominated Helena Formation of the Mesoproterozoic Belt Supergroup of western North America provides an instructive example of how a range of regional depositional and environmental characteristics of an ancient sea can be deduced on the basis of micron- to metre-scale features. Particularly revealing is the window opened by the presence of abundant molar-tooth structure onto the paleoceanography, paleobathymetry, paleoclimate and tectonic regime of this intracratonic Precambrian basin. The facies hosting molar-tooth structure is composed dominantly of lime mud with substantial subangular quartz and feldspar silt and clay derived from the western and southwestern side of the basin. These are low-energy tempestites deposited on a remarkably flat sea bottom at the limit of storm-wave base, at about 50 m. Sporadic domical, stromatolite patch reefs confirm that the sea bottom was normally within the photic zone. The ubiquity of molar-tooth structure suggests frequent, near-field seismic activity during subsidence, which generated ground motion sufficient to liquefy granular lime mud and terrigenous silt. Sporadic tsunamis from major submarine faults far to the west pounded the shallow-water platform to the east. Tsunami off-surge swept ooids and rounded, coarse-grained, feldspathic quartz sand westward into deeper water, and created strongly erosive currents that left gutter casts composed of lags of preferentially cemented molar-tooth structure in otherwise relatively low-energy facies. Mineralogical and geochemical evidence, confirms that the Belt basin was marine. Organic matter was essentially fully oxidized in the water column. Original high-Mg composition and cementation of lime mud in molar-tooth structure indicate that calcite precipitated above the thermocline in supersaturated seawater under tropical conditions. Scattered bimineralic ooids in allochthonous grainstones indicate that shoals on the platform to the east were intermittently above a shallow aragonite compensation depth in warm water. Rare vestiges of halite and gypsum demonstrate occasional, temporary salinity stratification for periods of up to a few years. Unaltered feldspar and mica grains point to a generally arid climate, but the large volume of clay is suggestive of protracted weathering and transport.
Pons-Branchu, E; Roy-Barman, M; Jean-Soro, L; Guillerme, A; Branchu, P; Fernandez, M; Dumont, E; Douville, E; Michelot, J L; Phillips, A M
2017-02-01
Speleothem-like deposits that develop underground in urban areas are an archive of the environmental impact of anthropic activities that has been little studied so far. In this paper, the sulfate content in shallow groundwater from northern Paris (France) is compared with the sulfur content in two 300-year-old urban carbonate deposits that grew in a historical underground aqueduct. The present-day waters of the aqueduct have very high sulfur and calcium contents, suggesting pollution from gypsum dissolution. However, geological gypsum levels are located below the water table. Sulfur content was measured by micro-X-ray fluorescence in these very S-rich carbonate deposits (0.5 to 1% of S). A twofold S increase during the second half of the 1800s was found in both samples. These dates correspond to two major periods of urbanization above the site. We discus three possible S sources: anthropic sources (industries, fertilizers…), volcanic eruptions and input within the water through gypsum brought for urbanization above the studied site (backfill with quarry waste) since the middle of the 19th century. For the younger second half of the studied section, S input from gypsum brought during urbanization was confirmed by the study of isotopic sulfur composition (δ 34 S=+15.2‰ at the top). For the oldest part, several sulfur peaks could be related to early industrial activity in Paris, that caused high local air pollution, as reported in historical archives but also to historical gypsum extraction. This study provides information on the origin and timing of the very high SO 4 2- levels measured nowadays within the shallow groundwater, thus demonstrating the interest in using carbonate deposits in urban areas as a proxy for the history of urbanization or human activities and their impact on water bodies. Copyright © 2016 Elsevier B.V. All rights reserved.
Utilization of the gypsum from a wet limestone flue gas desulfurization process
Chou, I.-Ming; Patel, V.; Lytle, J.M.; Chou, S.J.; Carty, R.H.
1999-01-01
The authors have been developing a process which converts FGD-gypsum to ammonium sulfate fertilizer with precipitated calcium carbonate as a by-product during the conversion. Preliminary cost estimates suggest that the process is economically feasible when ammonium sulfate crystals are produced in a granular size (1.2 to 3.3 mm), instead of a powder form. However, if additional revenue from the sale of the PCC for higher-value commercial application is applicable, this could further improve the economics of the process. Ammonium sulfate is known to be an excellent source of nitrogen and sulfur in fertilizer for corn and wheat production. It was not known what impurities might co-exist in ammonium sulfate derived from scrubber gypsum. Before the product could be recommended for use on farm land, the impurities and their impact on soil productivity had to be assessed. The objectives of this phase of the study were to evaluate the chemical properties of ammonium sulfate made from the FGD-gypsum, to estimate its effects on soil productivity, and to survey the marketability of the two products. The results of this phase of the study indicated that the impurities in the ammonium sulfate produced would not impose any practical limitations on its use at application levels used by farmers. The market survey showed that the sale price of solid ammonium sulfate fertilizer increased significantly from 1974 at $110/ton to 1998 at $187/ton. Utilities currently pay $16 to $20/ton for the calcium carbonate they use in their flue gas scrubber system. The industries making animal-feed grade calcium supplement pay $30/ton to $67/m-ton for their source of calcium carbonate. Paper, paint, and plastic industries pay as much as $200 to $300/ton for their calcium carbonate filers. The increased sale price of solid ammonium sulfate fertilizer and the possible additional revenue from the sale of the PCC by-product could further improve the economics of producing ammonium sulfate from FGD-gypsum.
NASA Astrophysics Data System (ADS)
Szynkiewicz, Anna; Modelska, Magdalena; Buczyński, Sebastian; Borrok, David M.; Merrison, Jonathan P.
2013-04-01
In this study we investigated the polar cycling of sulfur (S) associated with the Werenskioldbreen glacier in Spitsbergen (Svalbard). Sulfide-derived S comprised 0.02-0.42 wt% of the fine-grained fraction of proglacial sediments. These sediments originated from glacial erosion of Precambrian sulfide-rich quartz and carbonate veins. In summer 2008, the δ34S of dissolved SO4 in glacier melt waters (+9‰ to +17‰) was consistent with SO4 generation from oxidation of primary sulfide minerals in the bedrock (+9‰ to +16‰). The calculated monthly SO4 load was ˜6881 kg/month/km2 in the main glacier stream. Subsequent evaporation and freezing of glacial waters lead to precipitation, accumulation, and temporary storage of sulfate salt efflorescences in the proglacial zone. These salts are presumably ephemeral, as they dissolve during annual snow/glacial melt events. Hydrated sulfates such as gypsum are also important constituents of the low-elevation areas around the polar ice cap of Planum Boreum on Mars. The origin of this gypsum on Mars might be better understood by using the investigated polar S cycle in Spitsbergen as a foundation. Assuming a trace sulfide content in the basaltic bedrock on Mars, the weathering of sulfides within the fine, porous texture of the ancient aeolian strata (basal unit) underlying Planum Boreum could have created elevated SO4 fluxes (and gypsum precipitation) during episodic thawing/melting events in the past. Limited water activity and prevailing dry conditions on the surface of Mars are the likely factors that accounted for the larger accumulation and preservation of polar gypsum on the surface and its broad aeolian distribution around Planum Boreum. This suggestion is also supported by an experiment showing that gypsum sand can be transported, under dry conditions, over great distances (˜2000 km) without a significant loss of mass.
NASA Astrophysics Data System (ADS)
Foubert, Anneleen; Pirlet, Hans; Thierens, Mieke; de Mol, Ben; Henriet, Jean-Pierre; Swennen, Rudy
2010-05-01
Sub-recent cold-water carbonate mounds localized in deeper slope settings on the Atlantic continental margins cannot be any longer neglected in the study of carbonate systems. They clearly play a major role in the dynamics of mixed siliciclastic-carbonate and/or carbonate-dominated continental slopes. Carbonate accumulation rates of cold-water carbonate mounds are about 4 to 12 % of the carbonate accumulation rates of tropical shallow-water reefs but exceed the carbonate accumulation rates of their slope settings by a factor of 4 to 12 (Titschack et al., 2009). These findings emphasize the importance of these carbonate factories as carbonate niches on the continental margins. The primary environmental architecture of such carbonate bodies is well-characterized. However, despite proven evidences of early diagenesis overprinting the primary environmental record (e.g. aragonite dissolution) (Foubert & Henriet, 2009), the extent of early diagenetic and biogeochemical processes shaping the petrophysical nature of mounds is until now not yet fully understood. Understanding (1) the functioning of a carbonate mound as biogeochemical reactor triggering early diagenetic processes and (2) the impact of early diagenesis on the petrophysical behaviour of a carbonate mound in space and through time are necessary (vital) for the reliable prediction of potential late diagenetic processes. Approaching the fossil carbonate mound record, through a profound study of recent carbonate bodies is innovative and will help to better understand processes observed in the fossil mound world (such as cementation, brecciation, fracturing, etc…). In this study, the 155-m high Challenger mound (Porcupine Seabight, SW of Ireland), drilled during IODP Expedition 307 aboard the R/V Joides Resolution (Foubert & Henriet, 2009), and mounds from the Gulf of Cadiz (Moroccan margin) will be discussed in terms of early diagenetic processes and petrophysical behaviour. Early differential diagenesis overprints the primary environmental signals in Challenger mound, with extensive coral dissolution and the genesis of small-scaled semi-lithified layers in the Ca-rich intervals. The low cementation rates compared to the extensive dissolution patterns can be explained by an open-system diagenetic model. Moreover, Pirlet et al. (2009) emphasizes the occurrence of gypsum and dolomite in another mound system (Mound Perseverance) in Porcupine Seabight, which might be also related with fluid oxidation events in a semi-open diagenetic system. Along the Moroccan margins, fluid seepage and fluxes in pore water transport affect the development of mound structures, enhancing extensive cold-water coral dissolution and precipitation of diagenetic minerals such as dolomite, calcite, pyrite, etc. (Foubert et al., 2008). Recent carbonate mounds provide indeed an excellent opportunity to study early diagenetic processes in carbonate systems without the complications of burial and/or later meteoric diagenesis. References Foubert, A. and Henriet, J.P. (2009) Nature and Significance of the Recent Carbonate Mound Record: The Mound Challenger Code. Lecture Notes in Earth Sciences, Vol. 126. Springer, 298 pp. ISBN: 978-3-642-00289-2. Pirlet, H., Wehrmann, L., Brunner, B., Frank, N., Dewanckele, J., Van Rooij, D., Foubert, A., Swennen, R., Naudts, L., Boone, M., Cnudde, V. and Henriet, J.P. (2009) Diagenetic formation of gypsum and dolomite in a cold-water coral mound in the Porcupine Seabight, off Ireland. Sedimentology. doi: 10.1111/j.1365-3091.2009.01119.x. Titschack, J., Thierens, M., Dorschel, B., Schulbert, C., Freiwald, A., Kano, A., Takashima, C., Kawagoe, N., Li, X. and the IODP Expedition 307 Scientific Party (2009) Carbonate budget of a cold-water coral mound (Challenger Mound, IODP Exp. 307). Marine Geology, 259, 36-46.
The effect of gypsum products and separating materials on the typography of denture base materials.
Firtell, D N; Walsh, J F; Elahi, J M
1980-09-01
The typography of polymethyl methacrylate processed against various gypsum products coated with various separating materials was studied under an SEM. Tinfoil and two commercial tin foil substitutes were used as separating material during processing, and the surfaces of the resulting acrylic resin forms were studied for topographical differences. Tinfoil and alpha 2 hemihydrates produced the smoothest surfaces. As a practical solution, a good quality tinfoil substitute and alpha 1 hemihydrate could be used when processing polymethyl methacrylate resin.
NASA Astrophysics Data System (ADS)
Pichat, Alexandre; Hoareau, Guilhem; Legeay, Etienne; Lopez, Michel; Bonnel, Cédric; Callot, Jean-Paul; Ringenbach, Jean-Claude
2017-04-01
The Sivas Basin, located in the central part of the Anatolian Plateau in Turkey, formed after the closure of the northern Neotethys from Paleocene to Pliocene times. It developed over an ophiolitic basement obducted from the north during the Late Cretaceous. During Paleocene to Eocene times, the onset of the Tauride compression led to the development of a foreland basin affected by north-directed thrusts. The associate general deepening of the basin favored the accumulation of a thick marine turbiditic succession in the foredeep area, followed by a fast shallowing of the basin and thick evaporitic sequence deposition during the late Eocene. We present here the detailed sedimentological architecture of this flysch to evaporite transition. In the northern part of the basin, volcanoclastic turbidites gradually evolved into basinal to prodelta deposits regularly fed by siliciclastic material during flood events. Locally (to the NE), thick-channelized sandstones are attributed to the progradation of delta front distributary channels. The basin became increasingly sediment-starved and evolved toward azoic carbonates and shaly facies, interlayered with organic-rich shales before the first evaporitic deposits. In the southern part of the basin, in the central foredeep, the basinal turbidites become increasingly gypsum-rich and record a massive mega-slump enclosing olistoliths of gypsum and of ophiolitic rocks. Such reworked evaporites were fed by the gravitational collapsing of shallow water evaporites that had previously precipitated in silled piggy-back basins along the southern fold-and-thrust-belt of the Sivas Basin. Tectonic activity that led to the dismantlement of such evaporites probably also contributed to the closure of the basin from the marine domain. From the north to the south, subsequent deposits consist in about 70 meters of secondary massive to fine-grained gypsiferous beds interpreted as recording high to low density gypsum turbidites. Such facies were probably fed from shallow water evaporitic platforms developing contemporaneously along the borders of the halite-? and gypsum-saturated basin. Finally, the reworked evaporites are sealed by a thick (> 100 m) chaotic and coarse crystalline gypsum mass, carrying folded rafts and boudins of carbonate and gypsum beds. Such unit is interpreted as a gypsiferous caprock resulting from the leaching of significant amount of halite deposits. Gypsum crystals are secondary and grew from the hydration of anhydrite grains left as a residual phase after the leaching of halite. The halite probably formed in a perennial shallow hypersaline basin fed in solute by marine seepages. This former halite sequence is interpreted to have triggered mini-basin salt tectonics during the Oligo-Miocene. The described facies and proposed scenario of the Tuzhisar Formation in the central part of the Sivas Basin may find analogies with other Central Anatolian Basins (e.g. the Ulukisla Basin) or with other basin-wide salt accumulations in the world (e.g. in the Carpathian Foredeep).
Evaluation of Technologies to Prevent Precipitation During Water Recovery from Urine
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Pickering, Karen D.; Adam, Niklas M.; Mitchell, Julie L.; Anderson, Molly S.; Carter, Layne; Muirhead, Dean; Gazda, Daniel B.
2011-01-01
The International Space Station (ISS) Urine Processor Assembly (UPA) experienced a hardware failure in the Distillation Assembly (DA) in October 2010. Initially the UPA was operated to recover 85% of the water from urine through distillation, concentrating the contaminants in the remaining urine. The DA failed due to precipitation of calcium sulfate (gypsum) which caused a loss of UPA function. The ISS UPA operations have been modified to only recover 70% of the water minimizing gypsum precipitation risk but substantially increasing water resupply needs. This paper describes the feasibility assessment of several technologies (ion exchange, chelating agents, threshold inhibitors, and Lorentz devices) to prevent gypsum precipitation. The feasibility assessment includes the development of assessment methods, chemical modeling, bench top testing, and validation testing in a flight-like ground UPA unit. Ion exchange technology has been successfully demonstrated and has been recommended for further development. The incorporation of the selected technology will enable water recovery to be increased from 70% back to the original 85% and improve the ISS water balance.
NASA Astrophysics Data System (ADS)
Vimmrová, Alena; Kočí, Václav; Krejsová, Jitka; Černý, Robert
2016-06-01
A method for lightweight-gypsum material design using waste stone dust as the foaming agent is described. The main objective is to reach several physical properties which are inversely related in a certain way. Therefore, a linear optimization method is applied to handle this task systematically. The optimization process is based on sequential measurement of physical properties. The results are subsequently point-awarded according to a complex point criterion and new composition is proposed. After 17 trials the final mixture is obtained, having the bulk density equal to (586 ± 19) kg/m3 and compressive strength (1.10 ± 0.07) MPa. According to a detailed comparative analysis with reference gypsum, the newly developed material can be used as excellent thermally insulating interior plaster with the thermal conductivity of (0.082 ± 0.005) W/(m·K). In addition, its practical application can bring substantial economic and environmental benefits as the material contains 25 % of waste stone dust.
Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels
Jiang, Nan; Ma, Shaochun
2015-01-01
In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels. PMID:28793631
2007-10-02
The Naica mine in Chihuahua, Mexico, with its enormous gypsum crystals, may well be called the "Queen of the Giant Crystals localities." Though the Naica mine is no show mine, but still a working lead-zinc mine hosted in layered limestones, the first of several crystal caves was discovered in 1910. This "Cave of the Swords" contained extraordinary large sword-like selenite (gypsum) crystals up to 2 m long. In 2000 another crystal cave system was discovered at 300 m depth, even more spectacular than the original cave. Inside were free growing gypsum crystals up to 12 m long and 2 m in diameter. The ASTER image uses SWIR bands 4, 6, and 8 in RGB. Limestone is displayed in yellow-green colors, vegetation is red. The image was acquired February 16, 2004, covers an area of 26 x 23.5 km, and is located near 27.8 degrees north latitude, 105.5 degrees west longitude. The photo of crystals was taken from: http://www.thatcrystalsite.com/. http://photojournal.jpl.nasa.gov/catalog/PIA10615
Evolution of microstructure and elastic wave velocities in dehydrated gypsum samples
NASA Astrophysics Data System (ADS)
Milsch, Harald; Priegnitz, Mike
2012-12-01
We report on changes in P and S-wave velocities and rock microstructure induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air, at ambient pressure, and temperatures between 378 and 423 K. Dehydration did not proceed homogeneously but via a reaction front moving sample inwards separating an outer highly porous rim from the remaining gypsum which, above approximately 393 (±5) K, concurrently decomposed into hemihydrate. Overall porosity was observed to continuously increase with reaction progress from approximately 2% for fully hydrated samples to 30% for completely dehydrated ones. Concurrently, P and S-wave velocities linearly decreased with porosity from 5.2 and 2.7 km/s to 1.0 and 0.7 km/s, respectively. It is concluded that a linearized empirical Raymer-type model extended by a critical porosity term and based on the respective time dependent mineral and pore volumes reasonably replicates the P and S-wave data in relation to reaction progress and porosity.
Theoretical and Numerical Investigation of the Cavity Evolution in Gypsum Rock
NASA Astrophysics Data System (ADS)
Li, Wei; Einstein, Herbert H.
2017-11-01
When water flows through a preexisting cylindrical tube in gypsum rock, the nonuniform dissolution alters the tube into an enlarged tapered tube. A 2-D analytical model is developed to study the transport-controlled dissolution in an enlarged tapered tube, with explicit consideration of the tapered geometry and induced radial flow. The analytical model shows that the Graetz solution can be extended to model dissolution in the tapered tube. An alternative form of the governing equations is proposed to take advantage of the invariant quantities in the Graetz solution to facilitate modeling cavity evolution in gypsum rock. A 2-D finite volume model was developed to validate the extended Graetz solution. The time evolution of the transport-controlled and the reaction-controlled dissolution models for a single tube with time-invariant flow rate are compared. This comparison shows that for time-invariant flow rate, the reaction-controlled dissolution model produces a positive feedback between the tube enlargement and dissolution, while the transport-controlled dissolution does not.
Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay
2017-11-01
For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.
Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels.
Jiang, Nan; Ma, Shaochun
2015-10-27
In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels.
Matsushita, Yasuyuki; Imai, Masanori; Iwatsuki, Ayuko; Fukushima, Kazuhiko
2008-05-01
In this study, water-soluble anionic and cationic polymers were prepared from sulfuric acid lignin (SAL), an acid hydrolysis lignin, and the relationship between the surface tension of these polymers and industrial performance was examined. The SAL was phenolized (P-SAL) to enhance its solubility and reactivity. Sulfonation and the Mannich reaction with aminocarboxylic acids produced water-soluble anionic polymers and high-dispersibility gypsum paste. The dispersing efficiency increased as the surface tension decreased, suggesting that the fluidity of the gypsum paste increased with the polymer adsorption on the gypsum particle surface. Water-soluble cationic polymers were prepared using the Mannich reaction with dimethylamine. The cationic polymers showed high sizing efficiency under neutral papermaking conditions; the sizing efficiency increased with the surface tension. This suggests that the polymer with high hydrophilicity spread in the water and readily adhered to the pulp surface and the rosin, showing good retention.
Enrichments for phototrophic bacteria and characterization by morphology and pigment analysis
NASA Technical Reports Server (NTRS)
Brune, D.
1985-01-01
The purpose of this investigation was to examine several sulfide containing environments for the presence of phototrophic bacteria and to obtain enriched cultures of some of the bacteria present. The field sites were Alum Rock State Park, the Palo Alto salt marsh, the bay area salt ponds, and Big Soda Lake (near Fallon, Nevada). Bacteria from these sites were characterized by microscopic examination, measurement of in vitro absorption spectra, and analysis of carotenoid pigments. Field observations at one of the bay area salt ponds, in which the salt concentration was saturating (about 30 percent NaCl) and the sediments along the shore of the pond covered with a gypsum crust, revealed a layer of purple photosynthetic bacteria under a green layer in the gypsum crust. Samples of this gypsum crust were taken to the laboratory to measure light transmission through the crust and to try to identify the purple photosynthetic bacteria present in this extremely saline environment.
NASA Astrophysics Data System (ADS)
Qian, Chaojun; Li, Dahua; Zhang, xian; Zhou, Dongqing; Zhang, Baoliang
2017-08-01
Xuan city + 1100 kv search for converter station in Anhui province, in the process of foundation treatment, there is a cloth with a large number of lacustrine soft soil can not reach the need of engineering construction, so we want to cure the soft soil. By combining ratio of blast furnace slag (GGBS), gypsum, exciting agent CaO as a main curing agent for combination of reinforcing soft soil, the indoor unconfined compressive strength test, the influence factors on blast furnace slag, exciting agent and dosage of gypsum as impact factors, response value is 7 d and 28 d unconfined compressive strength of solidified soil, the experimental method is the Box - Behnken. The results show that the 7 d gypsum and the interaction of the blast furnace slag is obvious; 28 d exciting agent and gypsum interaction is obvious. By the analysis plaster, CaO, GGBSIn 7 d optimal proportion is 3.71%, 3.62%, 12.18%, the actual strength of the solidified soil age 1479.33 kPa; 28 d optimal proportion was 4.08%, 4.50%, 11.6%, the actual strength of the solidified soil age 2936.78 kPa. In the soil and the water curing effect of GGBS solidified soil, thereby GGBS this is a kind of new solidification material that can be used as the engineering foundation treatment of soft soil stabilizer has a certain value.
Pitz, Carline; Mahy, Grégory; Vermeulen, Cédric; Marlet, Christine; Séleck, Maxime
2016-07-01
This study aims to establish a common Key Performance Indicators (KPIs) framework for reporting about the gypsum industry biodiversity at the European level. In order to integrate different opinions and to reach a consensus framework, an original participatory process approach has been developed among different stakeholder groups: Eurogypsum, European and regional authorities, university scientists, consulting offices, European and regional associations for the conservation of nature, and the extractive industry. The strategy is developed around four main steps: (1) building of a maximum set of indicators to be submitted to stakeholders based on the literature (Focus Group method); (2) evaluating the consensus about indicators through a policy Delphi survey aiming at the prioritization of indicator classes using the Analytic Hierarchy Process method (AHP) and of individual indicators; (3) testing acceptability and feasibility through analysis of Environmental Impact Assessments (EIAs) and visits to three European quarries; (4) Eurogypsum final decision and communication. The resulting framework contains a set of 11 indicators considered the most suitable for all the stakeholders. Our KPIs respond to European legislation and strategies for biodiversity. The framework aims at improving sustainability in quarries and at helping to manage biodiversity as well as to allow the creation of coherent reporting systems. The final goal is to allow for the definition of the actual biodiversity status of gypsum quarries and allow for enhancing it. The framework is adaptable to the local context of each gypsum quarry.
NASA Technical Reports Server (NTRS)
Mitchell, Julie L.; Broyan, James L.; Pickering, Karen D.; Adam, Niklas; Casteel, Michael; Callaham, Michael; Carrier, Chris
2011-01-01
In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 dot 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its advanced performance in removing calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 12 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Further dynamic column testing proved that G26 performance is +/- 10% of that value at flow rates of 0.45 and 0.79 Lph under continuous flow, and 10.45 Lph under pulsed flow. Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.
Landa, Edward R.; Le, Anh H.; Luck, Rudy L.; Yeich, Philip J.
1995-01-01
Sorption of thorium by pre-existing crystals of anglesite (PbSO4), apatite (Ca5(PO4)3(HO)), barite (BaSO4), bentonite (Na0.7Al3.3Mg0.7Si8O20(OH)4), celestite (SrSO4), fluorite (CaF2), galena (PbS), gypsum (CaSO4·2H2O), hematite (Fe2O3), jarosite (KFe3(SO4)2(OH)6), kaolinite (Al2O3·2SiO2·2H2O), quartz (SiO2) and sodium feldspar (NaAlSi3O8) was studied under conditions that simulate an acidic uranium mill effluent environment. Up to 100% removal of trace quantitiees of thorim (approx. 1.00 ppm in 0.01 N H2SO4) from solution occurred within 3 h with fluorite and within 48 h in the case of bentonite. Quartz, jarosite, hematite, sodium feldspar, gypsum and galena removed less than 15% of the thorium from solution. In the coprecipitation studies, barite, anglesite, gypsum and celestite were formed in the presence of thorium (approx. 1.00 ppm). Approximately all of the thorium present in solution coprecipitated with barite and celestite; 95% coprecipitated with anglesite and less than 5% with gypsum under similar conditions. When jarosite was precipitated in the presence of thorium, a significant amount of thorium (78%) was incorporated in the precipitate.
Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers.
Malherbe, Cedric; Hutchinson, Ian B; McHugh, Melissa; Ingley, Richard; Jehlička, Jan; Edwards, Howell G M
2017-04-01
Raman spectrometers will be utilized on two Mars rover missions, ExoMars and Mars 2020, in the near future, to search for evidence of life and habitable geological niches on Mars. Carotenoid pigments are recognized target biomarkers, and as they are highly active in Raman spectroscopy, they can be readily used to characterize the capabilities of space representative instrumentation. As part of the preparatory work being performed for the ExoMars mission, a gypsum crust colonized by microorganisms was interrogated with commercial portable Raman instruments and a flight representative Raman laser spectrometer. Four separate layers, each exhibiting different coloration resulting from specific halophilic microorganism activities within the gypsum crust, were studied by using two excitation wavelengths: 532 and 785 nm. Raman or fluorescence data were readily obtained during the present study. Gypsum, the main constituent of the crust, was detected with both excitation wavelengths, while the resonance Raman signal associated with carotenoid pigments was only detected with a 532 nm excitation wavelength. The fluorescence originating from bacteriochlorophyll a was found to overwhelm the Raman signal for the layer colonized by sulfur bacteria when interrogated with a 785 nm excitation wavelength. Finally, it was demonstrated that portable instruments and the prototype were capable of detecting a statistically significant difference in band positions of carotenoid signals between the sample layers. Key Words: Gypsum-Raman spectrometers-Carotenoids-ExoMars-Mars exploration-Band position shift. Astrobiology 17, 351-362.
Seismics-electrics Joint Interpretation in a gypsiferous context.
NASA Astrophysics Data System (ADS)
Marzan, Ignacio; Marti, David; Lobo, Agustin; Alvarez-Marron, Joaquina; Carbonell, Ramon
2016-04-01
The main objective of this study is to improve the geophysical characterization resulting from a shallow 3D high resolution travel-time tomography survey (500x500m). This survey was acquired in Villar de Cañas (Cuenca, Spain) in late 2013 and early 2014. Lithology down to 150 m depth in this site is characterized by endorheic sediments, mainly siltstone and gypsum. After processing the tomography data, the velocity model showed a good correlation with geology models and borehole data except for the siltstone-gypsum transition. The model involves two lithological limits: the "transition layer - massive gypsum layer" (well resolved by a relatively high velocity contrast) and the "siltstone layer - transition layer" (constrained only in the central part of the model by a relatively low velocity contrast). As electrical resistivity is able to characterize shale-gypsum transitions, we complemented the seismic data with results from a collection of 2D ERT surveys, for which we build a new 3D grid with 2 parameters by node: velocity and resistivity. In order to derive a geological interpretation, we apply a statistical classification method (Linear Discriminant Analysis) to the new bi-parametric grid, using reference classes from well logs. This process results on a final 3D lithological model with less ambiguity and thus with a better definition of the two limits under discussion. Our study shows that the integration of seismic and electric methods significantly improves geological characterization in a gypsiferous context.
Geology of uranium in the Chadron area, Nebraska and South Dakota
Dunham, Robert Jacob
1961-01-01
The Chadron area covers 375 square miles about 25 miles southeast of the Black Hills. Recurrent mild tectonic activity and erosion on the Chadron arch, a compound anticlinal uplift of regional extent, exposed 1900 feet of Upper Cretaceous rocks, mostly marine shale containing pyrite and organic matter, and 600 feet of Oligocene and Miocene rocks, mostly terrestrial fine-grained sediment containing volcanic ash. Each Cretaceous formation truncated by the sub-Oligocene unconformity is stained yellow and red, leached, kaolinized, and otherwise altered to depths as great as 55 feet. The composition and profile of the altered material indicate lateritic soil; indirect evidence indicates Eocene(?) age. In a belt through the central part of the area, the Brule formation of Oligocene age is a sequence of bedded gypsum, clay, dolomite, and limestone more than 300 feet thick. Uranium in Cretaceous shale in 58 samples averages 0.002 percent, ten times the average for the earths crust. Association with pyrite and organic matter indicates low valency. The uranium probably is syngenetic or nearly so. Uranium in Eocene(?) soil in 43 samples averages 0.054 percent, ranging up to 1.12 percent. The upper part of the soil is depleted in uranium; enriched masses in the basal part of the soil consist of remnants of bedrock shale and are restricted to the highest reaches of the ancient oxidation-reduction interface. The uranium is probably in the from of a low-valent mineral, perhaps uraninite. Modern weathering of Cretaceous shale is capable of releasing as much as 0.780 ppm uranium to water. Eocene(?) weathering probably caused enrichment of the ancient soil through 1) leaching of Cretaceous shale, 2) downward migration of uranyl complex ions, and 3) reduction of hydrogen sulfide at the water table. Uranium minerals occur in the basal 25 feet of the gypsum facies of the Brule formation at the two localities where the gypsum is carbonaceous; 16 samples average 0.066 percent uranium and range up to 0.43 percent. Elsewhere uranium in dolomite and limestone in the basal 25 feet of the gypsum facies in 10 samples averages 0.007 percent, ranging up to 0.12 percent. Localization of the uranium at the base of the gypsum facies suggests downward moving waters; indirect evidence that the water from which the gypsum was deposited was highly alkaline suggests that the uranium was leached from volcanic ash in Oligocene time.
NASA Astrophysics Data System (ADS)
María Foronda, Ana; Pueyo, Yolanda; Castillejo, José Miguel; Alados, Conceción L.
2017-04-01
Degraded areas such as quarries or dumps are devoid of vegetation where the spontaneous vegetation recovery is a very slow process that requires restoration actions, especially under harsh environmental conditions such as arid conditions and special substrates. Specifically, gypsum substrates have physical and chemical limitations such as surface crusts, poor water availability or high concentrations of SO4 and Ca. Some plants, the so called gypsophytes, are adapted to tolerate such limitations and thus, might be able to establish in gypsum bare soils. Thus, well adapted gypsophytes might play an important role in vegetation recovery by acting as ecosystem engineers, improving the environmental conditions under their canopy and facilitating the establishment of other species. Facilitation is being recently considered as a key process in restoration practices because it might enhance restoration effectiveness by favoring the plant establishment and therefore, plant succession. The aim of this study was to test the effectiveness of a gypsophyte (Gypsophila struthium) in facilitating the establishment and development of other species and thus in vegetation recovery of degraded gypsum substrates. To address this objective, a sowing and planting experiment was set in November 2014 in a gypsum dump located in Andorra municipality (Teruel, NE Spain). Forty well-established adults of G. struthium previously planted in that dump were employed as nurse plants in the experiment. Two species were used as test species in the experiment: Helianthemum squamatum (gypsophyte) and Stipa lagascae (non-gypsophyte). Seeds and seedlings of those test species were sowed and planted in two different microsites: under the canopy and in the surrounding bare soil of each G. struthium individual (n=80 per test species). Germination, survival and growth of test species were surveyed twice a year during two years. Soil compaction and soil temperature were seasonally measured at both microsites during two years to test the role of G. struthium plants as ecosystem engineers by changing abiotic conditions under their canopy. Preliminary results showed that planted seedlings of H. squamatum grew in volume and seedlings of S.lagascae grew in height significantly more under the canopy of G. struthium than in bare soil, while germination and survival rates were similar at both microsites. Additionally, abiotic data showed that soil compaction decreased and extreme temperatures were softened under the canopy of G. struthium plants. Our study suggests that G. struthium can play an important role in restoration effectiveness of areas degraded by quarrying because it improves micro-environmental conditions under its canopy, favoring the development of other species in gypsum substrates.
NASA Astrophysics Data System (ADS)
Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Kubo, M.
2009-12-01
We report on the mineralogy, organic preservation potential and habitability of sulfate deposits in acid sulfate volcanic settings at Valles Caldera, New Mexico. Fumaroles and acidic springs are potential analogs for aqueous environments on Mars and may offer insights into habitability of sulfate deposits such as those at Meridiani Planum. Sulfates recently detected on Mars are posited to have formed from fluids derived from basaltic weathering and igneous volatile input, ultimately precipitating from acidic brines subjected to desiccation and freeze-thaw cycles (McClennan and Grotzinger, 2008). Key issues concerning martian sulfate deposits are their relationship to aqueous clay deposits, and whether or not specific sulfates deposits represent former habitable environments (see Soderblum and Bell, 2008; Tosca et al., 2008). Modern terrestrial volcanic fumaroles and hot springs precipitate various Ca-, Mg- and Fe- sulfates along with clays, and can help clarify whether certain acid sulfate mineral assemblages reflect habitable environments. Valles caldera is a resurgent caldera last active in the Pleistocene (1.4 - 1.0 Ma) that hosts several active fumaroles and over 40 geothermal exploration wells (see Goff, 2009). Fumaroles and associated mudpots and springs at Valles range from pH < 1 to 3, and affect argillic alteration upon rhylolitic tuffs and sedimentary deposits (Charles et al., 1986). We identified assemblages containing gypsum, quartz, Al-sulfates, elemental sulfur, clays and other minerals using XRD and SEM-EDS. Our previous research has shown that sulfates from different marine depositional environments display textural and morphological traits that are indicative of biological influence, or specific conditions in the depositional environments (Vogel et al., 2009). Gypsum crystals that develop in the presence of microbial biofilms in marine environments may have distorted crystal morphologies, biofilm - associated dissolution features, and accessory carbonate minerals. Gypsum from Valles Caldera fumaroles develops in the absence of microbial biofilms and differs from biologically influenced marine gypsum in terms of is highly prismatic morphology, lack of texture, and association with clays, and other sulfates. Studies of Valles gypsum crystals therefore support the uniqueness of the putative morphological biosignatures in marine gypsum. We also assayed organic matter from fumarole encrustations to understand how low pH and sulfate content may discriminate against or enhance preservation of specific classes of organic compounds in acid sulfate environments. Similar to gypsiferous marine environments, organics are characterized by abundant organosulfur complexes. Long chain alkanes (> nC22) are abundant from acid sulfate environments. As with hypersaline marine depositional environments, sulfidation appears to be a major diagenetic pathway for organic matter in acid sulfate environments.
Design and basic properties of ternary gypsum-based mortars
NASA Astrophysics Data System (ADS)
Doleželová, M.; Vimmrová, A.
2017-10-01
Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.
Utility of hyperspectral imagers in the mining industry: Italy's gypsum reserves
NASA Astrophysics Data System (ADS)
Wilson, Janette H.; Greenberger, Rebecca N.
2014-05-01
The mining industry is plagued with socioeconomic and safety roadblocks with not many solutions in the midst of a demanding market. As more and more geologic research using hyperspectral technology has been performed, along with an affordable price point for commercial use of hyperspectral technology, the benefits of hyperspectral imaging to the mining industry has become apparent. This study identifies the key areas of use for hyperspectral imaging in the mining industry through a case study of gypsum mine samples obtained from a mine in central Tuscany.
Gypsum-wallboard formaldehyde-sorption model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silberstein, S.
1989-11-01
Gypsum wallboard was shown to absorb formaldehyde in a prototype house and in a measuring chamber, as reported previously by researchers at Oak Ridge National Laboratory (ORNL). Also as reported previously, formaldehyde concentrations attained equilibrium in two phases in response to a change in the air exchange rate or to the removal of the formaldehyde source. A rapid initial phase was followed by a slow phase lasting several days. A formaldehyde sorption model that accounts for the biphasic concentration pattern is presented here. Experiments for testing the predictability of the model are proposed.
Race, Amos; Miller, Mark A; Mann, Kenneth A
2008-10-20
Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.
Middle Jurassic (Bajocian and Bathonian) dinosaur megatracksites, Bighorn Basin, Wyoming, USA
Kvale, E.P.; Johnson, G.D.; Mickelson, Debra L.; Keller, K.; Furer, L.; Archer, A.
2001-01-01
Two previously unknown rare Middle Jurassic dinosaur megatracksites are reported from the Bighorn Basin of northern Wyoming in the Western Interior of the United States. These trace fossils occur in carbonate units once thought to be totally marine in origin, and constitute the two most extensive Middle Jurassic dinosaur tracksites currently known in North America. The youngest of these occurs primarily along a single horizon at or near the top of the "basal member" of the "lower" Sundance Formation, is mid-Bathonian in age, and dates to ??? 167 ma. This discovery necessitates a major change in the paleogeographic reconstructions for Wyoming for this period. The older tracksites occur at multiple horizons within a 1 m interval in the middle part of the Gypsum Spring Formation. This interval is uppermost Bajocian in age and dates to ??? 170 ma. Terrestrial tracks found, to date, have been all bipedal tridactyl dinosaur prints. At least some of these prints can be attributed to the theropods. Possible swim tracks of bipedal dinosaurs are also present in the Gypsum Spring Formation. Digitigrade prints dominate the Sundance trackways, with both plantigrade and digitigrade prints being preserved in the Gypsum Spring trackways. The Sundance track-bearing surface locally covers 7.5 square kilometers in the vicinity of Shell, Wyoming. Other tracks occur apparently on the same horizon approximately 25 kilometers to the west, north of the town of Greybull. The Gypsum Spring megatracksite is locally preserved across the same 25 kilometer east-west expanse, with the Gypsum Spring megatracksite more extensive in a north-south direction with tracks occurring locally across a 100 kilometer extent. Conservative estimates for the trackway density based on regional mapping in the Sundance tracksite discovery area near Shell suggests that over 150, 000 in situ tracks may be preserved per square kilometer in the Sundance Formation in this area. Comparable estimates have not been made for other areas. Similarities between the two megatracksites include their formation and preservation in upper intertidal to supratidal sediments deposited under at least seasonally arid conditions. Microbial mat growth on the ancient tidal flats apparently initiated the preservation of these prints.
NASA Astrophysics Data System (ADS)
Lin, Jinru; Chen, Ning; Nilges, Mark J.; Pan, Yuanming
2013-04-01
Gypsum (CaSO4·2H2O) is a major by-product of mining and milling processes of borate, phosphate and uranium deposits worldwide and, therefore, potentially plays an important role in the stability and bioavailability of heavy metalloids, including As, in tailings and surrounding areas. Gypsum containing 1900 and 185 ppm As, synthesized with Na2HAsO4·7H2O and NaAsO2 in the starting materials, respectively, have been investigated by synchrotron X-ray absorption spectroscopy (XAS), single-crystal electron paramagnetic resonance spectroscopy (EPR), and pulsed electron nuclear double resonance spectroscopy (ENDOR). Quantitative analyses of As K edge XANES and EXAFS spectra show that arsenic occurs in both +3 and +5 oxidation states and the As3+/As5+ value varies from 0.35 to 0.79. Single-crystal EPR spectra of gamma-ray-irradiated gypsum reveal two types of arsenic-associated oxyradicals: [AsO3]2- and an [AsO2]2-. The [AsO3]2- center is characterized by principal 75As hyperfine coupling constants of A1 = 1952.0(2) MHz, A2 = 1492.6(2) MHz and A3 = 1488.7(2) MHz, with the unique A axis along the S-O1 bond direction, and contains complex 1H superhyperfine structures that have been determined by pulsed ENDOR. These results suggest that the [AsO3]2- center formed from electron trapping on the central As5+ ion of a substitutional (AsO4)3- group after removal of an O1 atom. The [AsO2]2- center is characterized by its unique A(75As) axis approximately perpendicular to the O1-S-O2 plane and the A2 axis along the S-O2 bond direction, consistent with electron trapping on the central As3+ ion of a substitutional (AsO3)3- group after removal of an O2 atom. These results confirm lattice-bound As5+ and As3+ in gypsum and point to potential application of this mineral for immobilization and removal of arsenic pollution.
NASA Astrophysics Data System (ADS)
Hodell, David A.; Turchyn, Alexandra V.; Wiseman, Camilla J.; Escobar, Jaime; Curtis, Jason H.; Brenner, Mark; Gilli, Adrian; Mueller, Andreas D.; Anselmetti, Flavio; Ariztegui, Daniel; Brown, Erik T.
2012-01-01
We applied a new method to reconstruct paleotemperature in the tropics during the last deglaciation by measuring oxygen isotopes of co-occurring gypsum hydration water and biogenic carbonate in sediment cores from two lakes on the Yucatan Peninsula. Oxygen and hydrogen isotope values of interstitial and gypsum hydration water indicate that the crystallization water preserves the isotopic signal of the lake water, and has not undergone post-depositional isotopic exchange with sediment pore water. The estimated lake water δ18O is combined with carbonate δ18O to calculate paleotemperature. Three paired measurements of 1200-yr-old gypsum and gastropod aragonite from Lake Chichancanab, Mexico, yielded a mean temperature of 26 °C (range 23-29.5 °C), which is consistent with the mean and range of mean annual temperatures (MAT) in the region today. Paired measurements of ostracods, gastropods, and gypsum hydration water samples were measured in cores from Lake Petén Itzá, Guatemala, spanning the Late Glacial and early Holocene period (18.5-10.4 ka). The lowest recorded temperatures occurred at the start of Heinrich Stadial (HS) 1 at 18.5 ka. Inferred temperatures from benthic ostracods ranged from 16 to 20 °C during HS 1, which is 6-10 °C cooler than MAT in the region today, whereas temperatures derived from shallow-water gastropods were generally warmer (20-25 °C), reflecting epilimnetic temperatures. The derived temperatures support previous findings of greater tropical cooling on land in Central America during the Late Glacial than indicated by nearby marine records. Temperature increased in two steps during the last deglaciation. The first occurred during the Bolling-Allerod (B-A; from 14.7 to 13 ka) when temperature rose to 20-24 °C towards the end of this period. The second step occurred at 10.4 ka near the beginning of the Holocene when ostracod-inferred temperature rose to 26 °C, reflecting modern hypolimnetic temperature set during winter, whereas gastropod-derived temperature attained 30 °C, reflecting modern summer epilimnetic temperature.
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad
2016-01-01
Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions. PMID:27583217
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N Suman; Tadi, Durga Prasad
2016-01-01
This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions.
Gao, Pengfei; Martin, Jennifer
2002-06-01
Stachybotrys chartarum (atra) is a toxigenic fungus frequently found in water-damaged buildings. Although microbial volatile organic compounds (MVOCs) produced by Aspergillus, Penicillium, and other fungi have been investigated extensively, little information exists on what MVOCs can be produced by S. chartarum. In this study, three strains of S. chartarum isolated from water-damaged residential homes in Cleveland, Ohio, were cultivated on rice and gypsum board. Air samples were collected after one, two, three, four, and six weeks of cultivation using Tenax TA tubes. Unique MVOCs were determined and other alcohols, ketones, and terpenes were also investigated using gas chromatography/mass spectrometry after thermal desorption from the sampling tube. Four unique MVOCs, 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, and thujopsene, were detected on rice cultures, and only one of them (1-butanol) was detected on gypsum board cultures. For a given strain, volatiles were considerably different with different cultivation media. Concentration profiles of the volatile compounds varied among compounds; however, each compound exhibited corresponding concentration trends between the strains. In comparison with our previous studies of five Aspergillus species on gypsum board under the same experimental conditions, fewer unique MVOCs were produced by S. chartarum, and they were quite different. It thus may be possible to use marker-unique MVOCs as a fingerprint to distinguish fungi in indoor environments once enough information becomes available. Our findings also indicate that volatiles produced by S. chartarum may represent a relatively small fraction of the total volatiles present in problem buildings where Aspergillus spp., Penicillium spp., and other fungi usually coexist.
Evaluation of biogeneric design techniques with CEREC CAD/CAM system
2015-01-01
PURPOSE The aim of this study was to evaluate occlusal contacts generated by 3 different biogeneric design modes (individual (BI), copy (BC), reference (BR)) of CEREC software and to assess the designs subjectively. MATERIALS AND METHODS Ten pairs of maxillary and mandibular casts were obtained from full dentate individuals. Gypsum cast contacts were quantified with articulating paper and digital impressions were taken. Then, all ceramic crown preparation was performed on the left first molar teeth and digital impressions of prepared teeth were made. BI, BC, and BR crowns were designed. Occlusal images of designs including occlusal contacts were superimposed on the gypsum cast images and corresponding contacts were determined. Three designs were evaluated by the students. RESULTS The results of the study revealed that there was significant difference among the number of contacts of gypsum cast and digital models (P<.05). The comparison of the percentage of virtual contacts of three crown designs which were identical to the contacts of original gypsum cast revealed that BI and BR designs showed significantly higher percentages of identical contacts compared with BC design (P<.05). Subjective assessment revealed that students generally found BI designs and BR designs natural regarding naturalness of fissure morphology and cusp shape and cusp tip position. For general occlusal morphology, student groups generally found BI design "too strong" or "perfect", BC design "too weak", and BR design "perfect". CONCLUSION On a prepared tooth, three different biogeneric design modes of a CAD/CAM software reveals different crown designs regarding occlusal contacts and morphology. PMID:26816572
NASA Astrophysics Data System (ADS)
Gázquez, F.; Evans, N. P.; Herwartz, D.; Bauska, T. K.; Morellon, M.; Surma, J.; Moreno, A.; Staubwasser, M.; Valero-Garces, B. L.; Hodell, D. A.
2016-12-01
Variations in atmospheric relative humidity (RH) and precipitation may have driven major ecological and sociocultural changes during the Quaternary but quantitative proxies for RH are scarce and difficult to calibrate. The isotopic composition of lake water (δ17O, δ18O and δD, and derived d-excess and 17Oexcess) is sensitive to changes in atmospheric RH and temperature. Because 17Oexcess is less sensitive to temperature effects than the d-excess during evaporation, combining 17Oexces and d-excess provide information about the relative effects of humidity and temperature change in the hydrological cycle. Here we demonstrate how the isotope ratios of hydration water measured in gypsum from lake sediments can be used to reconstruct past changes in RH. We present stable isotopes of gypsum hydration water from two lake systems across the last deglaciation. In Lake Estanya (NE, Spain) the 17Oexcess and d-excess of the paleo-lake water indicates that evaporation of water during the Younger Dryas (ca. 12 kyr BP) occurred under RH conditions of 40-45%. Environmental humidity gradually increased over the Preboreal period and stabilised at 70-75% during the Holocene until present. In Lake Peten-Itza (Guatemala), the isotopic values of the paleo-lake waters during the Late Glacial can be explained by a lowering of atmospheric RH by 10% and cooling of temperature by 5oC compared with modern conditions. Our results demonstrate that the coupled measurement of 17Oexcess and d-excess of gypsum hydration water in lake sediments can provide a useful quantitative proxy for paleo-humidity.
NASA Astrophysics Data System (ADS)
Nakamura, Akiko M.; Yamane, Fumiya; Okamoto, Takaya; Takasawa, Susumu
2015-03-01
The outcome of collision between small solid bodies is characterized by the threshold energy density Q*s, the specific energy to shatter, that is defined as the ratio of projectile kinetic energy to the target mass (or the sum of target and projectile) needed to produce the largest intact fragment that contains one half the target mass. It is indicated theoretically and by numerical simulations that the disruption threshold Q*s decreases with target size in strength-dominated regime. The tendency was confirmed by laboratory impact experiments using non-porous rock targets (Housen and Holsapple, 1999; Nagaoka et al., 2014). In this study, we performed low-velocity impact disruption experiments on porous gypsum targets with porosity of 65-69% and of three different sizes to examine the size dependence of the disruption threshold for porous material. The gypsum specimens were shown to have a weaker volume dependence on static tensile strength than do the non-porous rocks. The disruption threshold had also a weaker dependence on size scale as Q*s ∝D-γ , γ ≤ 0.25 - 0.26, while the previous laboratory studies showed γ=0.40 for the non-porous rocks. The measurements at low-velocity lead to a value of about 100 J kg-1 for Q*s which is roughly one order of magnitude lower than the value of Q*s for the gypsum targets of 65% porosity but impacted by projectiles with higher velocities. Such a clear dependence on the impact velocity was also shown by previous studies of gypsum targets with porosity of 50%.
NASA Astrophysics Data System (ADS)
Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina
2002-05-01
The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.
Mineral resource of the month: hydraulic cement
van Oss, Hendrik G.
2012-01-01
Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.
Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza
2013-04-01
Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the highest amount of excess cement. The volume of cement used for group PI specimens was significantly higher than for those in the other groups (P=.001). With respect to the volume of cement loaded into the test crowns no statistically significant difference was observed among other test groups (groups IM, AH, and AA). Group MI used the least amount of cement, followed by group AH and AA. No correlation between the amount of used cement and the amount of excess cement was found in any of the tested groups. Within the limitations of this in vitro study, the least amount of excess cement was present when a cementation device was used to displace the excess cement before seating the crown on the abutment (Group PI). With this technique a uniform layer of the luting agent is distributed over the internal surface of the crown leaving minimal excess cement when the restoration is seated. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Li, Yuan-Cheng; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Shi, Mei-Qing; Tang, Chong-Jian; Wang, Qing-Wei; Liang, Yan-Jie; Lei, Jie; Liu, De-Gang
2018-02-15
A new method in which Pb/Zn smelter waste containing arsenic and heavy metals (arsenic sludge), red mud and lime are utilized to prepare red mud-based cementitious material (RCM) is proposed in this study. XRD, SEM, FTIR and unconfined compressive strength (UCS) tests were employed to assess the physicochemical properties of RCM. In addition, ettringite and iron oxide-containing ettringite were used to study the hydration mechanism of RCM. The results show that the UCS of the RCM (red mud+arsenic sludge+lime) was higher than that of the binder (red mud+arsenic sludge). When the mass ratio of m (binder): m (lime) was 94:6 and then maintained 28days at ambient temperature, the UCS reached 12.05MPa. The red mud has potential cementitious characteristics, and the major source of those characteristics was the aluminium oxide. In the red mud-arsenic sludge-lime system, aluminium oxide was effectively activated by lime and gypsum to form complex hydration products. Some of the aluminium in ettringite was replaced by iron to form calcium sulfoferrite hydrate. The BCR and leaching toxicity results show that the leaching concentration was strongly dependent on the chemical speciation of arsenic and the hydration products. Therefore, the investigated red mud and arsenic sludge can be successfully utilized in cement composites to create a red mud-based cementitious material. Copyright © 2017 Elsevier B.V. All rights reserved.
Research on Crack Formation in Gypsum Partitions with Doorway by Means of FEM and Fracture Mechanics
NASA Astrophysics Data System (ADS)
Kania, Tomasz; Stawiski, Bohdan
2017-10-01
Cracking damage in non-loadbearing internal partition walls is a serious problem that frequently occurs in new buildings within the short term after putting them into service or even before completion of construction. Damage in partition walls is sometimes so great that they cannot be accepted by their occupiers. This problem was illustrated by the example of damage in a gypsum partition wall with doorway attributed to deflection of the slabs beneath and above it. In searching for the deflection which causes damage in masonry walls, fracture mechanics applied to the Finite Element Method (FEM) have been used. For a description of gypsum behaviour, the smeared cracking material model has been selected, where stresses are transferred across the narrowly opened crack until its width reaches the ultimate value. Cracks in the Finite Element models overlapped the real damage observed in the buildings. In order to avoid cracks under the deflection of large floor slabs, the model of a wall with reinforcement in the doorstep zone and a 40 mm thick elastic junction between the partition and ceiling has been analysed.
Wang, Mengjing; Liu, Wenbin; Hou, Meifang; Li, Qianqian; Han, Ying; Liu, Guorui; Li, Haifeng; Liao, Xiao; Chen, Xuebin; Zheng, Minghui
2016-01-01
The sintering flue gas samples were collected at the inlets and outlets of the desulfurization systems to evaluate the influence of the systems on PCNs emission concentrations, profiles, and emission factors. The PCNs concentrations at the inlets and outlets were 27888–153672 pg m−3 and 11988–42245 pg m−3,respectively. Desulfurization systems showed excellent removal for PCNs, and the removal efficiencies of PCNs increase with increasing chlorination level. Lower chlorinated homologs are more sensitive to the desulfurization process than higher ones. High levels of PCNs were also detected in the gypsum (11600–29720 pg g−1) and fly ash samples (4946–64172 pg g−1). The annual total emissions of PCNs released to flue gas and gypsum from the sintering plants were about 394 kg, 48.5% of which was in gypsum. The surface area of the fly ash samples increased significantly from the first to the fourth stage of the series-connected electrostatic precipitator, accompanying obvious rising of concentration of PCNs in the fly ash samples. PMID:27197591
NASA Astrophysics Data System (ADS)
Osterrothová, Kateřina; Jehlička, Jan
2009-08-01
Raman spectroscopy using 785 nm excitation was tested as a nondestructive method for determining the presence of the potential biomarker, usnic acid, in experimentally prepared mineral matrices. Investigated samples consisting of usnic acid mixed with powdered hydrothermal minerals, gypsum and calcite were studied. Various concentrations of usnic acid in the mineral matrix were studied to determine the detection limits of this biomarker. Usnic acid was mixed with gypsum (respectively, calcite) and covered by a UV-transparent crystal of gypsum (CaSO 4·2H 2O), thereby creating artificial inclusions similar to those which could be present in Martian minerals. A Raman usnic acid signal at the concentration level as low as 1 g kg -1 was obtained in the powdered mineral matrix and 5 g kg -1 when analyzed through the monocrystal. The number of registered usnic acid key Raman bands was dependent on the particular mineral matrix. If a similar concentration of usnic acid could persist in Martian samples, then Raman spectroscopy will be able to identify it. Obtained results will aid both in situ Raman analyses on Mars and on Earth.
New constraints on Precambrian ocean composition
NASA Technical Reports Server (NTRS)
Grotzinger, J. P.; Kasting, J. F.
1993-01-01
The Precambrian record of carbonate and evaporite sedimentation is equivocal. In contrast to most previous interpretations, it is possible that Archean, Paleoproterozoic, and to a lesser extent, Meso to Neoproterozoic seawater favored surplus abiotic carbonate precipitation, as aragonite and (hi-Mg?) calcite, in comparison to younger times. Furthermore, gypsum/anhydrite may have been only rarely precipitated prior to halite precipitation during evaporation prior to about 1.8 Ga. Two effects may have contributed to these relationships. First, sulfate concentration of seawater may have been critically low prior to about 1.9 Ga so the product mCa++ x mSO4-- would not have produced gypsum before halite, as in the Mesoproterozoic to modern ocean. Second, the bicarbonate to calcium ratio was sufficiently high so that during progressive evaporation of seawater, calcium would have been exhausted before the gypsum field was reached. The pH of the Archean and Paleoproterozoic ocean need not have been significantly different from the modern value of 8.1, even at CO2 partial pressures of a tenth of an atmosphere. Higher CO2 partial pressures require somewhat lower pH values.
Zhang, Jing-lei; Ci, Hua-cong; He, Xing-dong; Liang, Yu-ting; Zhao, Xuan; Sun, Hui-ting; Xie, Hong-tao
2015-11-01
To explore the adaptability of plant under salt stress to crude oil pollution of soil and improvement measures, a pot experiment of Helianthus annuus seedlings was conducted using orthogonal experiment method with crude oil-sodium chloride-desulfurization gypsum and cinder-zeolite-desulfurization gypsum-sawdust. The results showed that, with the increase of soil crude oil concentration, the relative growth rate (RGR) of plant height, RGR of aboveground biomass and root N: P ratios of H. annuus seedlings decreased significantly, while the activity of SOD and CAT increased at first and then decreased significantly. The RGR of plant height and aboveground biomass significantly increased (P < 0.05), while the activity of SOD decreased gradually with the increase of the volume fraction of sawdust, indicating that sawdust had the most significant effect in comparison with cinder, zeolite, desulfurization gypsum under salinization condition. The crude oil pollution of soil could decrease the relative growth rate of H. annuus seedling, and sawdust could reduce the influence of crude oil pollution on plant growth under salt stress.
Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSutter, T.M.; Cihacek, L.J.
2009-07-15
Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant,more » and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.« less
Gorbett, Gregory E; Morris, Sarah M; Meacham, Brian J; Wood, Christopher B
2015-01-01
A new method to characterize the degree of fire damage to gypsum wallboard is introduced, implemented, and tested to determine the efficacy of its application among novices. The method was evaluated by comparing degree of fire damage assessments of novices with and without the method. Thirty-nine "novice" raters assessed damage to a gypsum wallboard surface, completing 66 ratings, first without the method, and then again using the method. The inter-rater reliability was evaluated for ratings of damage without and with the method. For novice fire investigators rating degree of damage without the aid of the method, ICC(1,2) = 0.277 with 95% CI (0.211, 0.365), and with the method, ICC(2,1) = 0.593 with 95% CI (0.509, 0.684). Results indicate that the raters were more reliable in their analysis of the degree of fire damage when using the method, which support the use of standardized processes to decrease the variability in data collection and interpretation. © 2014 American Academy of Forensic Sciences.
Pyrite formation driven by MSW landfill leachate in the Madrid Basin, Spain
NASA Astrophysics Data System (ADS)
Castelló, Ricardo; Recio, Clemente; Morillas, Pilar; Vizcayno, Carmen
2008-04-01
The role of municipal solid waste (MSW) landfill leachate on the genesis of minor amounts of pyrite associated with gypsum in an otherwise predominantly evaporitic sequence was studied in geological and geochemical terms. The potential association between landfill leachate and the conditions required for bacterial reduction of sulfate and fixation of H2S as pyrite were examined. The lithological column was generally found to contain little or no Fe. The δ34S values for sulfates were consistent with previously reported data; however, the measured δ18O values were slightly higher. Sulfides disseminated in the marl/lutite exhibited higher δ34S values (≈-8‰) than gypsum-coating pyrite crystals (δ34S < -30‰). Dissolution of gypsum to sulfate and the supply of metabolizable organic matter and Fe required for H2S fixation as sulfides may have originated from landfill leachate. Intermittent availability of leachate, a result of the precipitation regime, can facilitate sulfur disproportionation and lead to fractionations as high as δ_{text{SO}4^{2-}-{text{S}^{2-}}}≈ - {text{50}}permille.
Santosa, Robert E; Martin, William; Morton, Dean
2010-01-01
Excess residual cement around the implant margin has been shown to be detrimental to the peri-implant tissue. This in vitro study examines the retentive strengths of two different cementing techniques and two different luting agents on a machined titanium abutment and solid screw implants. The amount of reduction of excess cement weight between the two cementation techniques was assessed. Forty gold castings were fabricated for 4.1 mm in diameter and 10 mm in length solid-screw dental implants paired with 5.5-mm machined titanium abutments. Twenty implants received a provisional cement, and 20 implants received a definitive cement. Each group was further divided into two groups. In the control group, cement was applied and the castings seated over the implant-abutment assembly. The excess cement was then removed. In the study group, a "practice abutment" was used to express excess cement prior to cementation. The weight of the implant-casting assembly was measured and the residual weight of cement was calculated. The samples were then stored for 24 hours at 100% humidity prior to tensile strength testing. Statistical analysis revealed significant differences in tensile strength across the groups. Further Tukey tests showed no significant difference in tensile strength between the practice abutment technique and the conventional technique for both definitive and provisional cements. There was a significant reduction in residual cement weight, irrespective of the type of cement, when the practice abutment was used prior to cementation. Cementation of implant restorations on a machined abutment using the practice abutment technique and definitive cement may provide similar uniaxial retention force and significantly reduced residual cement weight compared to the conventional technique of cement removal.
Influence of cement film thickness on the retention of implant-retained crowns.
Mehl, Christian; Harder, Sönke; Steiner, Martin; Vollrath, Oliver; Kern, Matthias
2013-12-01
The main goal of this study was to establish a new, high precision procedure to evaluate the influence of cement film thickness on the retention of cemented implant-retained crowns. Ninety-six tapered titanium abutments (6° taper, 4.3 mm diameter, Camlog) were shortened to 4 mm. Computer-aided design was used to design the crowns, and selective laser sintering, using a cobalt-chromium alloy, was used to produce the crowns. This method used a focused high-energy laser beam to fuse a localized region of metal powder to build up the crowns gradually. Before cementing, preset cement film thicknesses of 15, 50, 80, or 110 μm were established. Glass ionomer, polycarboxylate, or resin cements were used for cementation. After 3 days storage in demineralized water, the retention of the crowns was measured in tension using a universal testing machine. The cement film thicknesses could be achieved with a high level of precision. Interactions between the factors cement and cement film thickness could be found (p ≤ 0.001). For all cements, crown retention decreased significantly between a cement film thickness of 15 and 50 μm (p ≤ 0.001). At 15 μm cement film thickness, the resin cement was the most retentive cement, followed by the polycarboxylate and then the glass ionomer cement (p ≤ 0.05). The results suggest that cement film thickness has an influence on the retentive strength of cemented implant-retained crowns. © 2013 by the American College of Prosthodontists.
The mechanical effect of the existing cement mantle on the in-cement femoral revision.
Keeling, Parnell; Lennon, Alexander B; Kenny, Patrick J; O'Reilly, Peter; Prendergast, Patrick J
2012-08-01
Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct. Primary cement mantles were formed by cementing a polished stem into sections of tubular steel. If in the test group, the mantle underwent conditioning in saline to simulate ageing and was subject to a fatigue of 1 million cycles. If in the control group no such conditioning or fatigue was carried out. The cement-in-cement procedure was then undertaken. Both groups underwent a fatigue of 1 million cycles subsequent to the revision procedure. Application of a Mann-Whitney test on the recorded subsidence (means: 0.51, 0.46, n=10+10, P=0.496) and inducible displacement (means: 0.38, 0.36, P=0.96) revealed that there was no statistical difference between the groups. This study represents further biomechanical investigation of the mechanical behaviour of cement-in-cement revision constructs. Results suggest that pre-revision fatigue and ageing of the cement may not be deleterious to the mechanical performance of the revision construct. Thus, this study provides biomechanical evidence to back-up recent successes with this useful revision technique. Copyright © 2012 Elsevier Ltd. All rights reserved.
Smith, Geoffrey C S; McCann, Phillip S; Simpson, Danielle; Blewitt, Neil; Amirfeyz, Rouin
2015-02-01
To compare the cement mantle characteristics associated with use of a narrow nozzle cement gun versus the use of a 60-mL catheter tip syringe. Twelve cadaveric distal humeri were cemented with either a cement gun or a syringe without canal occlusion. The humeri were sectioned and photographed. The corticocancellous junction and the outer margin of the cement mantle were analyzed digitally. The corticocancellous junction defined the available area for cement penetration. The outline of the cement mantle defined the actual area of penetration. The ratio of penetration to the available area was recorded for each slice. The mean ratio for each humerus was multiplied by the number of slices in that sample containing cement to calculate a cement index. The cement penetration ratios observed in cross-sections at the same level and the cement index were significantly greater with the use of the cement gun than with the use of the syringe. There was no difference in the number of slices that contained cement. The use of a cement gun with a narrow nozzle improved cement mantle characteristics compared with the use of a syringe when measured in a cadaveric model in the absence of canal occlusion. Improving cement mantle characteristics may decrease the incidence of aseptic loosening after total elbow arythroplasty. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Cappitelli, Francesca; Toniolo, Lucia; Sansonetti, Antonio; Gulotta, Davide; Ranalli, Giancarlo; Zanardini, Elisabetta; Sorlini, Claudia
2007-09-01
This study compares two cleaning methods, one involving an ammonium carbonate-EDTA mixture and the other involving the sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, for the removal of black crust (containing gypsum) on marble of the Milan Cathedral (Italy). In contrast to the chemical cleaning method, the biological procedure resulted in more homogeneous removal of the surface deposits and preserved the patina noble under the black crust. Whereas both of the treatments converted gypsum to calcite, allowing consolidation, the chemical treatment also formed undesirable sodium sulfate.
Cappitelli, Francesca; Toniolo, Lucia; Sansonetti, Antonio; Gulotta, Davide; Ranalli, Giancarlo; Zanardini, Elisabetta; Sorlini, Claudia
2007-01-01
This study compares two cleaning methods, one involving an ammonium carbonate-EDTA mixture and the other involving the sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, for the removal of black crust (containing gypsum) on marble of the Milan Cathedral (Italy). In contrast to the chemical cleaning method, the biological procedure resulted in more homogeneous removal of the surface deposits and preserved the patina noble under the black crust. Whereas both of the treatments converted gypsum to calcite, allowing consolidation, the chemical treatment also formed undesirable sodium sulfate. PMID:17601804
NASA Astrophysics Data System (ADS)
Feng Zengzhao; Zhang Yongsheng; Jin Zhenkui
1998-06-01
Dolostones are well developed in the Ordovician Majiagou Group in the Ordos area, North China Platform. These dolostones can be divided into four types: mud-sized to silt-sized crystalline dolostones not associated with gypsum and halite beds (type I), mud-sized to silt-sized crystalline dolostones associated with gypsum and halite beds (type II), mottled silt-sized to very fine sand-sized crystalline dolostones (fine saccharoidal dolostones) (type III), and mottled coarse silt-sized to fine sand-sized crystalline dolostones (coarse saccharoidal dolostones) (type IV). Type I dolostones consist of mud-sized to silt-sized dolomite crystals. Laminar stromatolites, ripple marks, mud cracks and birdseyes are common. Such dolostones are not associated with gypsum and halite beds, but lath-shaped pseudomorphs after gypsum are common. The ordering of dolomites averages 0.59, and molar concentration of CaCO 3 averages 51.44%. δ13C averages -0.8‰ (PDB Standard), δ18O averages -2.9‰, δCe averages 0.83. The above characteristics suggest that type I dolostones result from penecontemporaneous dolomitization of lime mud on supratidal flat environments by hypersaline sea water. Type II dolostones mainly consist of mud-sized to silt-sized dolomite crystals. They are commonly well laminated but show no desiccation structures. Such dolostones are intercalated within laminated gypsum and halite beds or are intermixed with them. Such dolostones resulted from dolomitization of lime mud by hypersaline sea water in gypsum and halite precipitating lagoons. Type III dolostones consist of coarse silt-sized to very fine sand-sized dolomite crystals. They commonly underlie type I dolostones and grade downwards to dolomite-mottled limestones and pure limestones. The ordering of dolomites averages 0.63, and molar concentration of CaCO 3 averages 55.64%. δ13C averages -0.2‰, δ18O averages -3.3‰, δCe averages 1.24. Such dolostones resulted from reflux dolomitization by hypersaline sea water. Type IV dolostones consist of coarse-silt-sized to fine-sand-sized dolomite crystals. In such dolostones, stylolites are cut by dolomite crystals. Fluid inclusions are present, and the homogenization temperature commonly ranges from 104°C to 203°C. The ordering of dolomites averages 0.85, and molar concentration of CaCO 3 averages 50.65%. δ13C averages 0.6‰, δ18O averages -7.4‰, and δCe averages 1.16. Such dolostones resulted from deep burial dolomitization. In the Ordos area, type I and II dolostones modified by palaeokarstification are the major gas reservoir rocks of the Ordos Gas Field at present. Type IV dolostones show good reservoir characteristics and may also be potential reservoir rocks.
Effect of temporary cements on the shear bond strength of luting cements
FIORI-JÚNIOR, Marco; MATSUMOTO, Wilson; SILVA, Raquel Assed Bezerra; PORTO-NETO, Sizenando Toledo; SILVA, Jaciara Miranda Gomes
2010-01-01
Objective The purpose of this study was to evaluate, by shear bond strength (SBS) testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods Forty human teeth divided in two halves were assigned to 8 groups (n=10): I and V (no temporary cementation); II and VI: Ca(OH)2-based cement; III and VII: zinc oxide (ZO)based cement; IV and VIII: ZO-eugenol (ZOE)-based cement. Final cementation was done with RelyX ARC cement (groups I to IV) and RelyX Unicem cement (groups V to VIII). Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. Results Means were (MPa): I - 3.80 (±1.481); II - 5.24 (±2.297); III - 6.98 (±1.885); IV - 6.54 (±1.459); V - 5.22 (±2.465); VI - 4.48 (±1.705); VII - 6.29 (±2.280); VIII - 2.47 (±2.076). Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII) showed statistically significant difference (p<0.001) only between Groups IV and VIII, in which ZOE-based cements were used. The use of either Ca(OH)2 based (Groups II and VI) or ZO-based (Groups III and VII) cements showed no statistically significant difference (p>0.05) for the different luting cements (RelyXTM ARC and RelyXTM Unicem). The groups that had no temporary cementation (Groups I and V) did not differ significantly from each other either (p>0.05). Conclusion When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation. PMID:20379679
NASA Astrophysics Data System (ADS)
Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.
2017-03-01
A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.
Anda, Markus; Suparto; Sukarman
2016-02-01
Eruption of Sinabung volcano in Indonesia began again in 2010 after resting for 1200 years. The volcano is daily emitting ash and pyroclastic materials since September 2013 to the present, damaging agroecosystems and costing for management restoration. The objective of the study was to assess properties and impacts of pristine volcanic material depositions on soil properties and to provide management options for restoring the affected agroecosytem. Land satellite imagery was used for field studies to observe the distribution, thickness and properties of ashfall deposition. The pristine ashfall deposits and the underlying soils were sampled for mineralogical, soluble salt, chemical, physical and toxic compound analyses. Results showed that uneven distribution of rainfall at the time of violent eruption caused the areas receiving mud ashfall developed surface encrustation, which was not occur in areas receiving dry ashfall. Ashfall damaged the agroecosytem by burning vegetation, forming surface crusts, and creating soil acidity and toxicity. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses of encrustated layer indicated the presence of gypsum and jarosite minerals. Gypsum likely acted as a cementing agent in the formation of the encrustation layer with extremely low pH (2.9) and extremely high concentrations of Al, Ca and S. Encrustation is responsible for limited water infiltration and root penetration, while the extremely high concentration of Al is responsible for crop toxicity. Mud ashfall and dry ashfall deposits also greatly changed the underlying soil properties by decreasing soil pH and cation exchange capacity and by increasing exchangeable Ca, Al, and S availability. Despite damaging vegetation in the short-term, the volcanic ashfall enriched the soil in the longer term by adding nutrients like Ca, Mg, K, Na, P, Si and S. Suggested management practices to help restore the agroecosystem after volcanic eruptions include: (i) the application of lime to increase soil pH, increase cation exchange capacity and decrease Al and S toxicities, (ii) the selection of crops which are tolerant to low pH and high concentrations of soluble Al and S, (iii) physically disrupting the hard surface crusts that form on some soils (if <2 cm thick) to allow water infiltration and root penetration, (iv) application of N and K fertilizers, and (v) incorporation of dry ashfall into the soil (if <5 cm thick) to exploit the newly deposited nutrients. Copyright © 2015 Elsevier B.V. All rights reserved.
Traction test of temporary dental cements.
Román-Rodríguez, Juan-Luis; Millan-Martínez, Diego; Fons-Font, Antonio; Agustín-Panadero, Rubén; Fernández-Estevan, Lucía
2017-04-01
Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Ten molars were prepared and ten provisional resin restorations were fabricated using CAD-CAM technology (n=10). Five temporary cements were selected: self-curing temporary cements, Dycal (D), Temp Bond (TB), Temp Bond Non Eugenol (TBNE); dual-curing esthetic cements Temp Bond Clear (TBC) and Telio CS link (TE). Each sample underwent traction testing, both with thermocycling (190 cycles at 5-55º) and without thermocycling. TE and TBC obtained the highest traction resistance values. Thermocycling reduced the resistance of all cements except TBC. The dual-cure esthetic cements tested provided optimum outcomes for bonding provisional restorations. Key words: Temporary dental cements, cements resistance.
High Early-Age Strength Concrete for Rapid Repair
NASA Astrophysics Data System (ADS)
Maler, Matthew O.
The aim of this research was to identify High Early-Age Strength (HES) concrete batch designs, and evaluate their suitability for use in the rapid repair of highways and bridge decks. To this end, two criteria needed to be met; a minimum compressive strength of 20.68 MPa (3000 psi) in no later than 12 hours, and a drying shrinkage of less than 0.06 % at 28 days after curing. The evaluations included both air-entrained, and non-air-entrained concretes. The cement types chosen for this study included Type III and Type V Portland cement and "Rapid Set"--a Calcium Sulfoaluminate (CSA) cement. In addition, two blended concretes containing different ratios of Type V Portland cement and CSA cement were investigated. The evaluation of the studied concretes included mechanical properties and transport properties. Additionally, dimensional stability and durability were investigated. Evaluations were conducted based on cement type and common cement factor. Fresh property tests showed that in order to provide a comparable workability, and still remain within manufactures guideline for plasticizer, the water-to-cement ratio was adjusted for each type of cement utilized. This resulted in the need to increase the water-to-cement ratio as the Blaine Fineness of the cement type increased (0.275 for Type V Portland cement, 0.35 for Type III Portland cement, and 0.4 for Rapid Set cement). It was also observed that negligible changes in setting time occurred with increasing cement content, whereas changes in cement type produced notable differences. The addition of air-entrainment had beneficial effect on workability for the lower cement factors. Increasing trends for peak hydration heat were seen with increases in cement factor, cement Blaine Fineness, and accelerator dosage. Evaluation of hardened properties revealed opening times as low as 5 hours for Type V Portland cement with 2.0 % accelerator per cement weight and further reduction in opening time by an hour when accelerator dosage was increased to 2.8 % by cement weight. When Type III Portland cement and Rapid Set cement were used, the opening time reduced to as low as 4.5 hours and 1 hour, respectively. The results for Type V Portland cement concretes showed that as cement factor increased so did mechanical properties until the cement factor exceeded 504 kg/m3 (850 lb/yd3), at which point the peak heat of hydration exceeded 46.1 °C (115 °F) and the mechanical properties decreased. Other evaluations on the studied High Early-Age Strength Type V Portland cement concretes revealed increases in absorption, rapid chloride penetration, water permeability, drying shrinkage, corrosion resistance, and resistance to wear with increases in cement content. The addition of air-entrainment had adverse effects on compressive strength, absorption, and rapid chloride migration; while showing lower values for rapid chloride penetration. Curing had positive effects on all hardened properties of the studied HES concretes containing Type V cement. When examining the studied Type III Portland cement concretes, it was seen that an increase in cement content led to decreases in mechanical properties. It is noted that the peak heat of hydration for these concrete exceeded the threshold of 46.1 °C (115 °F). In addition, increases in cement factor also resulted in decreases in rapid chloride migration, frost resistance and resistance to wear. Increases in cement content resulted in increases in absorption, rapid chloride penetration, water permeability, drying shrinkage, and corrosion resistance. The use of air-entrainment imparted decreases in compressive strength and rapid chloride penetration, increases in absorption, and negligible effects on rapid chloride migration. Extending curing period resulted in beneficial effects on all properties of the studied Type III cement concretes. The studied CSA cement concretes had slightly decreasing strength trends as cement content was increased. Concretes containing CSA cement produced the lowest opening time (one hour) and the highest peak hydration heats of all concretes studied. While its corrosion and frost resistance reduced as cement content increased, the absorption and rapid chloride penetration increased with increasing cement content. For drying shrinkage, opening time curing showed more volume change with increasing cement content, whereas extending curing to 24 hours and 28 days resulted in reduction of drying shrinkage. Increasing cement factor had minimal effects on water permeability and abrasion resistance. Air-entrainments reduced compressive strength, but increased absorption and rapid chloride penetration. Rapid chloride migration was found to be incompatible with CSA cements concretes. All hardened properties of the studied CSA cement concretes improved once curing age was extended to 24 hours and 28 days. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Chen, Irvin Allen
Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite cement that contained medium C4A3 S¯ and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement.
NASA Astrophysics Data System (ADS)
Himabindu, Ch.; Geethasri, Ch.; Hari, N.
2018-05-01
Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.
Korsch, Michael; Marten, Silke-Mareike; Dötsch, Andreas; Jáuregui, Ruy; Pieper, Dietmar H; Obst, Ursula
2016-12-01
Cementing dental restorations on implants poses the risk of undetected excess cement. Such cement remnants may favor the development of inflammation in the peri-implant tissue. The effect of excess cement on the bacterial community is not yet known. The aim of this study was to analyze the effect of two different dental cements on the composition of the microbial peri-implant community. In a cohort of 38 patients, samples of the peri-implant tissue were taken with paper points from one implant per patient. In 15 patients, the suprastructure had been cemented with a zinc oxide-eugenol cement (Temp Bond, TB) and in 23 patients with a methacrylate cement (Premier Implant Cement, PIC). The excess cement found as well as suppuration was documented. Subgingival samples of all patients were analyzed for taxonomic composition by means of 16S amplicon sequencing. None of the TB-cemented implants had excess cement or suppuration. In 14 (61%) of the PIC, excess cement was found. Suppuration was detected in 33% of the PIC implants without excess cement and in 100% of the PIC implants with excess cement. The taxonomic analysis of the microbial samples revealed an accumulation of oral pathogens in the PIC patients independent of the presence of excess cement. Significantly fewer oral pathogens occurred in patients with TB compared to patients with PIC. Compared with TB, PIC favors the development of suppuration and the growth of periodontal pathogens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Karkera, Reshma; Raj, A P Nirmal; Isaac, Lijo; Mustafa, Mohammed; Reddy, R Naveen; Thomas, Mathew
2016-12-01
This study was planned to find the solubility of the conventional luting cements in comparison with that of the polyacid-modified composite luting cement and recently introduced resin-modified glass ionomer cement (RMGIC) with exposure to water at early stages of mixing. An in vitro study of the solubility of the following five commercially available luting cements, viz., glass ionomer cement (GIC) (Fuji I, GC), zinc phosphate (Elite 100, GC), polyacid-modified resin cement (PMCR) (Principle, Dentsply), polycarboxylate cement (PC) (Poly - F, Dentsply), RMGIC (Vitremer, 3M), was conducted. For each of these groups of cements, three resin holders were prepared containing two circular cavities of 5 mm diameter and 2 mm depth. All the cements to be studied were mixed in 30 seconds and then placed in the prepared cavities in the resin cement holder for 30 seconds. From all of the observed luting cements, PMCR cement had shown the lowest mean loss of substance at all immersion times and RMGIC showed the highest mean loss of substanceat all immersion times in water from 2 to 8 minutes. The solubility of cements decreased by 38% for GIC, 33% for ZnPO 4 , 50% for PMCR, 29% for PC, and 17% for RMGIC. The PMCR cement (Principle-Dentsply) had shown lowest solubility to water at the given time intervals of immersion. This was followed by PC, zinc phosphate, and GIC to various time intervals of immersion.
Development of high-performance blended cements
NASA Astrophysics Data System (ADS)
Wu, Zichao
2000-10-01
This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.
Calcium phosphate compatible bone cement: Characterization, bonding properties and tissue response
NASA Astrophysics Data System (ADS)
Roemhildt, Maria Lynn
A novel, inorganic, bone cement, containing calcium phosphate, developed for implant fixation was evaluated. Setting properties were determined over a range of temperatures. The flow of the cement was greatly increased by application of vibration. Changes in the cement during hydration and aging were evaluated. Compressive strength of the cement over time was studied under simulated physiological conditions from 1 hour to 1 year after setting. After 1 day, this cement had equivalent compressive strength to commercially used PMMA cement. The strength was found to increase over 1 month and high strength was maintained up to 1 year. The shear strength of the cement-metal interface was studied in vitro using a pull-out test. Prepared specimens were stored under physiological conditions and tested at 4 hours, 24 hours, and 60 days. Comparable interfacial shear strength values were found at 4 hours, 24 hours and 60 days for the experimental cement and were not significantly different from values obtained for PMMA cement. In vivo tissue response was evaluated after cement implantation in the femoral medullary canal in canines. Tissue response and bonding at the cement-bone interface were evaluated at 2, 6, and 12 weeks. Cortical bone was found in direct contact with the OC-cement and was healthy. The strength of the cement-bone interface, measured using a push-out test, was significantly higher for the experimental cement than for commercial PMMA bone cement.
Korsch, Michael; Walther, Winfried
2015-10-01
The cementation of fixed implant-supported dental restorations involves the risk of leaving excess cement in the mouth which can promote biofilm formation in the peri-implant sulcus. As a result, an inflammation may develop. The aim of the present study was to investigate the clinical effect of two different luting cements on the peri-implant tissue. Within the scope of a retrospective clinical follow-up study, the prosthetic structures of 22 patients with 45 implants were revised. In all cases, a methacrylate cement (Premier Implant Cement [PIC], Premier® Dental Products Company, Plymouth Meeting, PA, USA) had been used for cementation. In 16 additional patients with 28 implants, the suprastructures were retained with a zinc oxide-eugenol cement (Temp Bond [TB], Kerr Sybron Dental Specialities, Glendora, CA, USA). These patients were evaluated in the course of routine treatment. In both populations, the retention time of the suprastructures was similar (TB 3.77 years, PIC 4.07 years). In the PIC cases, 62% of all implants had excess cement. In the TB cases, excess cement was not detectable on any of the implants. Bleeding on probing was significantly more frequent on implants cemented with PIC (100% with and 94% without excess cement) than on implants cemented with TB (46%). Pocket suppuration was observed on 89% of the PIC-cemented implants with excess cement (PIC without excess cement 24%), whereas implants with TB were not affected by it at all. The peri-implant bone loss was significantly greater in the PIC patients (with excess cement 1.37 mm, without excess cement 0.41 mm) than it was in the TB patients (0.07 mm). The frequency of undetected excess cement depends essentially on the type of cement used. Cements that tend to leave more undetected excess have a higher prevalence for peri-implant inflammation and cause a more severe peri-implant bone loss. © 2014 Wiley Periodicals, Inc.
Cantekin, Kenan; Delikan, Ebru; Cetin, Secil
2014-01-01
Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209
Mineralogical study of stream waters and efflorescent salts in Sierra Minera, SE Spain
NASA Astrophysics Data System (ADS)
Pérez-Sirvent, Carmen; Garcia-Lorenzo, Maria luz; Martinez-Sanchez, Maria Jose; Hernandez, Carmen; Hernandez-Cordoba, Manuel
2015-04-01
Trace elements contained in the residues from mining and metallurgical operations are often dispersed by wind and/or water after their disposal. These areas have severe erosion problems caused by water run-off in which soil and mine spoil texture, landscape topography and regional and microclimate play an important role. Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. The studied area, Sierra Minera, is close to the mining region of La Unión (Murcia, SE Spain). This area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. Studied area showed a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues. As a consequence of the long period of mining activity, large volumes of wastes were generated during the mineral concentration and smelting processes. Historically, these wastes were dumped into watercourses, filling riverbeds and contaminating their surroundings. 40 sediment samples were collected from the area affected by mining exploitations, and at increasing distances from the contamination sources in 4 zones In addition, 36 surficial water samples were collected after a rain episode The Zn and Fe content was determined by flame atomic absorption spectrometry (FAAS). The Pb and Cd content was determined by electrothermal atomization atomic absorption spectrometry (ETAAS). The As content was measured by atomic fluorescence spectrometry using an automated continuous flow hydride generation spectrometer and Al content was determined by ICP-MS. Mineralogical composition of the samples was made by X Ray Diffraction (XRD) analysis using Cu-Kα radiation with a PW3040 Philips Diffractometer. Zone A: Water sample collected in A5 is strongly influenced by a tailing dump, and showed high trace element contents. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH.The DRX results of evaporate water showed that halite, hexahydrite and gypsum are present: halite corroborates the sea influence and gypsum and hexahydrite the importance of soluble sulphates. A9 water showed acid pH and high trace elements content; is influenced by the tailing dump and also by waters from El Beal gully watercourse, transporting materials from Sierra Minera Waters affected by secondary contamination are influenced by mining wastes, the sea water and also are affected by agricultural activities (nitrate content). These waters have been mixed with carbonate materials, present in the zone increasing the pH. Some elements have precipitated, such as Cu and Pb, while Cd, Zn and As are soluble. The DRX analysis in the evaporate if A14 showed that halite and gypsum are present: halite confirms the seawater influence and gypsum the relationship between calcium and sulphates A2 and A6 waters are affected by tertiary contamination and showed basic pH, soluble carbonates and lower trace element content. Only Zn, Cd and Al are present. Zone B: All waters are strongly affected by mining activities and showed: acid pH, high trace element content and high content of soluble sulphates. The evaporate of B8 and B12 showed the presence of soluble sulphates: gypsum, halite, bianchite, paracoquimbite, halotrichite and siderotil in B8; gypsum, bianchite, paracoquimbite and coquimbite in B12; gypsum, hexahydrite, carnalite, bianchite, copiapite and sideroti in B10 and polihalite, gypsum, bianchite, coquimbite and paracoquimbite in B14. All the sampling points collected in Zone C are affected by primary contamination, because there are a lot of tailing dumps and sampling points are located close to them. C1 showed high trace element content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had acid pH and high trace element content, particularly As (remains soluble) and Zn and Cd (high mobility). In addition, they showed high soluble sulphates. C2 water showed neutral pH, soluble carbonate and low trace element content because is influenced by a stabilised tailing dump. However, the As remains soluble. Zone D: All waters collected in this zone showed acid pH and high trace element content, mainly Zn, Cd and As. Some differences were found from the high and the low part: samples located in the lower part (D2-D7) showed higher As content while Zn is higher in the high part (D8-D13) The DRX analysis in evaporates suggest that in D4 copiapite, coquimbite, gypsum, bianchite and ferrohexahydrite are formed and in D11 gypsum, bianchite, halotrichite and siderotil. D1 is affected by secondary contamination, which showed higher pH (still acid) and lower content in soluble salts and trace elements.
Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi
2012-02-01
The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Robertson, K. M.; Milliken, R. E.; Li, S.
2016-10-01
Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.
Farías, M E; Contreras, M; Rasuk, M C; Kurth, D; Flores, M R; Poiré, D G; Novoa, F; Visscher, P T
2014-03-01
In this paper, we report the presence of sedimentary microbial ecosystems in wetlands of the Salar de Atacama. These laminated systems, which bind, trap and precipitate mineral include: microbial mats at Laguna Tebenquiche and Laguna La Brava, gypsum domes at Tebenquiche and carbonate microbialites at La Brava. Microbial diversity and key biogeochemical characteristics of both lakes (La Brava and Tebenquiche) and their various microbial ecosystems (non-lithifying mats, flat and domal microbialites) were determined. The composition and abundance of minerals ranged from trapped and bound halite in organic-rich non-lithifying mats to aragonite-dominated lithified flat microbialites and gypsum in lithified domal structures. Pyrosequencing of the V4 region of the 16s rDNA gene showed that Proteobacteria comprised a major phylum in all of the microbial ecosystems studied, with a marked lower abundance in the non-lithifying mats. A higher proportion of Bacteroidetes was present in Tebenquiche sediments compared to La Brava samples. The concentration of pigments, particularly that of Chlorophyll a, was higher in the Tebenquiche than in La Brava. Pigments typically associated with anoxygenic phototrophic bacteria were present in lower amounts. Organic-rich, non-lithifying microbial mats frequently formed snake-like, bulbous structures due to gas accumulation underneath the mat. We hypothesize that the lithified microbialites might have developed from these snake-like microbial mats following mineral precipitation in the surface layer, producing domes with endoevaporitic communities in Tebenquiche and carbonate platforms in La Brava. Whereas the potential role of microbes in carbonate platforms is well established, the contribution of endoevaporitic microbes to formation of gypsum domes needs further investigation.
Thermal shock and splash effects on burned gypseous soils from the Ebro Basin (NE Spain)
NASA Astrophysics Data System (ADS)
León, J.; Seeger, M.; Badía, D.; Peters, P.; Echeverría, M. T.
2014-03-01
Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The middle Ebro Valley has extreme aridity, which results in a low plant cover and high soil erodibility, especially on gypseous substrates. The aim of this research is to analyze the effects of moderate heating on physical and chemical soil properties, mineralogical composition and susceptibility to splash erosion. Topsoil samples (15 cm depth) were taken in the Remolinos mountain slopes (Ebro Valley, NE Spain) from two soil types: Leptic Gypsisol (LP) in a convex slope and Haplic Gypsisol (GY) in a concave slope. To assess the heating effects on the mineralogy we burned the soils at 105 and 205 °C in an oven and to assess the splash effects we used a rainfall simulator under laboratory conditions using undisturbed topsoil subsamples (0-5 cm depth of Ah horizon). LP soil has lower soil organic matter (SOM) and soil aggregate stability (SAS) and higher gypsum content than GY soil. Gypsum and dolomite are the main minerals (>80%) in the LP soil, while gypsum, dolomite, calcite and quartz have similar proportions in GY soil. Clay minerals (kaolinite and illite) are scarce in both soils. Heating at 105 °C has no effect on soil mineralogy. However, heating to 205 °C transforms gypsum to bassanite, increases significantly the soil salinity (EC) in both soil units (LP and GY) and decreases pH only in GY soil. Despite differences in the content of organic matter and structural stability, both soils show no significant differences (P < 0.01) in the splash erosion rates. The size of pores is reduced by heating, as derived from variations in soil water retention capacity.
Effect of airborne particle on SO 2-calcite reaction
NASA Astrophysics Data System (ADS)
Böke, Hasan; Göktürk, E. Hale; Caner-Saltık, Emine N.; Demirci, Şahinde
1999-02-01
In modern urban atmosphere, sulphur dioxide (SO 2) attacks calcite (CaCO 3) in calcareous stone-producing gypsum (CaSO 4·2H 2O) which forms crust at rain sheltered surfaces and accelerates erosion at areas exposed to rain. The airborne particles collected on stone surfaces have always been considered to enhance the gypsum crust formation and thus it is believed that they should be removed from the surface to decrease the effects of SO 2. In this study, our aim was to investigate this event by carrying out a series of experiments in laboratory using pure calcium carbonate powder to represent calcareous stone. Sodium montmorillonite, activated carbon, ferric oxide, vanadium pentoxide and cupric chloride were mixed in the pure calcium carbonate powder as substitutes of the airborne particles in the polluted atmosphere. The samples have been exposed at nearly 10 ppmv SO 2 concentrations at 90% relative humidity conditions in a reaction chamber for several days. The mineralogical composition of the exposed samples were determined by X-ray diffraction (XRD) analysis and infrared spectrometer (IR). Sulphation reaction products, calcium sulphite hemihydrate, gypsum and unreacted calcite, were determined quantitatively using IR. Exposed samples have also been investigated morphologically using a scanning electron microscope (SEM). Experimental results reveal that calcium sulphite hemihydrate is the main reaction product of the SO 2-calcite reaction. It turns out that airborne particles play an important catalytic role in the oxidation of calcium sulphite hemihydrate into gypsum, although their presence does not very significantly affect the extent of sulphation reaction. This behaviour of airborne particles is explained by the presence of liquid film on the calcium carbonate surface where a series of reactions in the gas-liquid-solid interfaces takes place.
NASA Astrophysics Data System (ADS)
Losiak, Anna; Czechowski, Leszek; Velbel, Michael A.
2015-12-01
Gypsum, a mineral that requires water to form, is common on the surface of Mars. Most of it originated before 3.5 Gyr when the Red Planet was more humid than now. However, occurrences of gypsum dune deposits around the North Polar Residual Cap (NPRC) seem to be surprisingly young: late Amazonian in age. This shows that liquid water was present on Mars even at times when surface conditions were as cold and dry as the present-day. A recently proposed mechanism for gypsum formation involves weathering of dust within ice (e.g., Niles, P.B., Michalski, J. [2009]. Nat. Geosci. 2, 215-220.). However, none of the previous studies have determined if this process is possible under current martian conditions. Here, we use numerical modelling of heat transfer to show that during the warmest days of the summer, solar irradiation may be sufficient to melt pure water ice located below a layer of dark dust particles (albedo ⩽ 0.13) lying on the steepest sections of the equator-facing slopes of the spiral troughs within martian NPRC. During the times of high irradiance at the north pole (every 51 ka; caused by variation of orbital and rotational parameters of Mars e.g., Laskar, J. et al. [2002]. Nature 419, 375-377.) this process could have taken place over larger parts of the spiral troughs. The existence of small amounts of liquid water close to the surface, even under current martian conditions, fulfils one of the main requirements necessary to explain the formation of the extensive gypsum deposits around the NPRC. It also changes our understanding of the degree of current geological activity on Mars and has important implications for estimating the astrobiological potential of Mars.
Light in the darkening on Naica gypsum crystals
NASA Astrophysics Data System (ADS)
Castillo-Sandoval, I.; Fuentes-Cobas, L. E.; Fuentes-Montero, M. E.; Esparza-Ponce, H. E.; Carreno-Márquez, J.; Reyes-Cortes, M.; Montero-Cabrera, M. E.
2015-07-01
Naica mine is located in a semi-desertic region at the central-south of Chihuahua State. The Cave of Swords was discovered in 1910 and the Cave of Crystals 90 years later at Naica mines. It is expected that during the last century the human presence has changed the microclimatic conditions inside the cave, resulting in the deterioration of the crystals and the deposition of impurities on gypsum surfaces. As a contribution to the clarification of the mentioned issues, the present work refers to the use of synchrotron radiation for the identification of phases on these surfaces. All the experiments were performed at the Stanford Synchrotron Radiation Lightsource. Grazing incidence X-ray diffraction (GIXRD) and radiography-aided X-ray diffraction (RAXRD) experiments were performed at beamline 11-3. X-Ray micro-fluorescence (μ-SXRF) and micro-X-ray absorption (μ-XANES) were measured at beamline 2-3. Representative results obtained may be summarized as follows: a) Gypsum, galena, sphalerite, hematite and cuprite at the surface of the gypsum crystals were determined. b) The samples micro-structure is affected by impurities. c) The elemental distributions and correlations (0.6-0.9) of Cu, K, Fe, Mn, Pb, Zn, Ca and S were identified by μ-SXRF. The correlations among elemental contents confirmed the phase identification, with the exception of manganese and potassium due to the amorphous nature of some impurity compounds in these samples. The compounds hematite (Fe2O3), β-MnO2, Mn2O3, MnO and/or MnCO3, PbS, PbCO3 and/or PbSO4, ZnO4, ZnS and/or smithsonite (ZnCO3), CuS + Cu Oxide were identified by XANES. Plausibly, these latter compounds do not form crystalline phases.
Chlorophyll and carotenoid pigments in solar saltern microbial mats
NASA Astrophysics Data System (ADS)
Villanueva, Joan; Grimalt, Joan O.; de Wit, Rutger; Keely, Brendan J.; Maxwell, James R.
1994-11-01
The distributions of carotenoids, chlorophylls, and their degradation products have been studied in two microbial mat systems developed in the calcite and calcite/gypsum evaporite domains of a solar saltern system. Phormidium valderianum and Microcoleus chthonoplastes are the dominant cyanobacterial species, respectively, and large amounts of Chloroflexus-like bacteria occur in the carbonate/gypsum mat. In both systems, the major pigments are chlorophyll a, zeaxanthin, β-carotene and myxoxanthophyll, which originate from these mat-building cyanobacteria. This common feature contrasts with differences in other pigments that are specific for each mat community. Thus, chlorophyll c and fucoxanthin, reflecting diatom inputs, are only found in the calcite mat, whereas the calcite/gypsum mat contains high concentrations of bacteriochlorophylls c produced by the multicellular green filamentous bacteria. In both cases, the depth concentration profiles (0-30 and 0-40 mm) show a relatively good preservation of the cyanobacterial carotenoids, zeaxanthin, β-carotene, myxoxanthophyll, and echinenone. This contrasts with the extensive biodegradation of cyanobacterial remains observed microscopically. Fucoxanthin in the calcite mat is also transformed at a faster rate than the cyanobacterial carotenoids. Chlorophyll a, the major pigment in both mats, exhibits different transformation pathways. In the calcite/gypsum mat, it is transformed via C-13 2 carbomethoxy defunctionalization prior to loss of the phytyl chain, leading to the formation of pyrophaeophytin a and, subsequently, pyrophaeophorbide a. On the other hand, the occurrence of the enzyme chlorophyllase, attributed to diatoms in the calcite mat, gives rise to extensive phytyl hydrolysis, with the formation of chlorophyllide a, pyrophaeophorbide a and, in minor proportion, phaeophorbide a. Studies of the sources of the photosynthetic pigments and of their transformation pathways in such simplified ecosystems provide a basis for the understanding of the distribution patterns of these compounds in more complex aquatic environments.
Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas
2017-03-01
The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Davies, J P; Tse, M K; Harris, W H
1996-08-01
Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.
Zhang, Qing-Hang; Tozzi, Gianluca; Tong, Jie
2014-01-01
In this study, two micro finite element models of trabecular bone-cement interface developed from high resolution computed tomography (CT) images were loaded under compression and validated using the in situ experimental data. The models were then used under tension and shear to examine the load transfer between the bone and cement and the micro damage development at the bone-cement interface. In addition, one models was further modified to investigate the effect of cement penetration on the bone-cement interfacial behaviour. The simulated results show that the load transfer at the bone-cement interface occurred mainly in the bone cement partially interdigitated region, while the fully interdigitated region seemed to contribute little to the mechanical response. Consequently, cement penetration beyond a certain value would seem to be ineffective in improving the mechanical strength of trabecular bone-cement interface. Under tension and shear loading conditions, more cement failures were found in denser bones, while the cement damage is generally low under compression.
Traction test of temporary dental cements
Millan-Martínez, Diego; Fons-Font, Antonio; Agustín-Panadero, Rubén; Fernández-Estevan, Lucía
2017-01-01
Background Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Material and Methods Ten molars were prepared and ten provisional resin restorations were fabricated using CAD-CAM technology (n=10). Five temporary cements were selected: self-curing temporary cements, Dycal (D), Temp Bond (TB), Temp Bond Non Eugenol (TBNE); dual-curing esthetic cements Temp Bond Clear (TBC) and Telio CS link (TE). Each sample underwent traction testing, both with thermocycling (190 cycles at 5-55º) and without thermocycling. Results TE and TBC obtained the highest traction resistance values. Thermocycling reduced the resistance of all cements except TBC. Conclusions The dual-cure esthetic cements tested provided optimum outcomes for bonding provisional restorations. Key words:Temporary dental cements, cements resistance. PMID:28469824
Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.
Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian
2013-06-01
The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.
In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells
NASA Astrophysics Data System (ADS)
Kupresan, D.; Radonjic, M.; Heathman, J.
2013-12-01
Wellbore cement provides casing support, zonal isolation, and casing protection from corrosive fluids, which are essential for wellbore integrity. Cements can undergo one or more forms of failure such as debonding at cement/formation and cement/casing interface, fracturing and defects within cement matrix. Failures and defects within cement will ultimately lead to fluids migration, resulting in inter-zonal fluid migration and premature well abandonment. There are over 27,000 abandoned oil and gas wells only in The Gulf of Mexico (some of them dating from the late 1940s) with no gas leakage monitoring. Cement degradation linked with carbon sequestration can potentially lead to contamination of fresh water aquifers with CO2. Gas leaks can particularly be observed in deviated wells used for hydraulic fracking (60% leakage rate as they age) as high pressure fracturing increases the potential for migration pathways. Experimental method utilized in this study enables formation of impermeable seals at interfaces present in a wellbore by mechanically manipulating wellbore cement. Preliminary measurements obtained in bench scale experiments demonstrate that an impermeable cement/formation and cement/casing interface can be obtained. In post-modified cement, nitrogen gas flow-through experiments showed complete zonal isolation and no permeability in samples with pre-engineered microannulus. Material characterization experiments of modified cement revealed altered microstructural properties of cement as well as changes in mineralogical composition. Calcium-silicate-hydrate (CSH), the dominant mineral in hydrated cement which provides low permeability of cement, was modified as a result of cement pore water displacement, resulting in more dense structures. Calcium hydroxide (CH), which is associated with low resistance of cement to acidic fluids and therefore detrimental in most wellbore cements, was almost completely displaced and/or integrated in CSH as a result of mechanical manipulation (shear stress). The main advantage of this methodology is that mechanical manipulation of cement can induce healing of existing fractures, channels and microannulus seal in a wellbore without introducing new materials (e.g. cement squeeze jobs). Furthermore, this methodology is less sensitive to the influence of downhole conditions such as pressure, temperature and formation fluids, since it uses cement pore water as a medium to alter cement sheath. Based on lab experiments observation, it is possible to perceive that once tested at the industrial scale and if successful, the implementation of this method in the field can potentially mitigate leaky wells in CO2 sequestration projects, wellbores completed for hydraulic-fracturing and other conventional oil and gas producing wells. Key words: Wellbore cement integrity; Leaky wells; Cement microstructures; Casing expansion effect on cement mineralogy alterations.
Increased Antibiotic Release from a Bone Cement Containing Bacterial Cellulose
Nakai, Takahisa; Enomoto, Koichi; Uchio, Yuji; Yoshino, Katsumi
2010-01-01
Background Major disadvantages of antibiotic bone cements include limited drug release and reduced strength resulting from the addition of high doses of antibiotics. Bacterial cellulose, a three-dimensional hydrophilic mesh, may retain antibiotics and release them gradually. We hypothesized that the addition of cellulose to antibiotic bone cement would improve mechanical strength and antibiotic release. Questions/purposes We therefore examined the mechanical strength and antibiotic release of cellulose antibiotic cement. Methods A high dose of antibiotics (5 g per 40 g cement powder) was incorporated into bacterial cellulose and then mixed with bone cement. We compared the compression strength, fracture toughness, fatigue life, and elution kinetics of this formulation with those of plain cement and a traditional antibiotic cement. Results The average values for compression strength, fracture toughness, and fatigue life of the cellulose antibiotic cement were 97%, 97%, and 78% of the values obtained for plain cement, respectively. The corresponding values for the traditional antibiotic cement were 79%, 82%, and 17%, respectively. The cumulative elution over 35 days was 129% greater from the cellulose antibiotic cement than from the traditional antibiotic cement. Conclusions With a high dose of antibiotics, incorporating cellulose into the bone cement prevented compression and fracture fragility, improved fatigue life, and increased antibiotic elution. Clinical Relevance Antibiotic cements containing cellulose may have applications in clinical situations that require high levels of antibiotic release and preservation of the mechanical properties of the cement. PMID:20945120
Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihoon; Moridis, George
2014-11-01
We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, lowmore » cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hun Bok; Jansik, Danielle; Um, Wooyong
2013-01-02
ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity:more » 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.« less
Nagel, Katrin; Bishop, Nicholas E; Schlegel, Ulf J; Püschel, Klaus; Morlock, Michael M
2017-02-01
The strength of the cement-bone interface in tibial component fixation depends on the morphology of the cement mantle. The purpose of this study was to identify thresholds of cement morphology parameters to maximize fixation strength using a minimum amount of cement. Twenty-three cadaveric tibiae were analyzed that had been implanted with tibial trays in previous studies and for which the pull-out strength of the tray had been measured. Specimens were separated into a group failing at the cement-bone interface (INTERFACE) and one failing in the bulk bone (BULK). Maximum pull-out strength corresponds to the ultimate strength of the bulk bone if the cement-bone interface is sufficiently strong. 3D models of the cement mantle in situ were reconstructed from computed tomography scans. The influences of bone mineral density and 6 cement morphology parameters (reflecting cement penetration, bone-cement interface, cement volume) on pull-out strength of the BULK group were determined using multiple regression analysis. The threshold of each parameter for classification of the specimens into either group was determined using receiver operating characteristic analysis. Cement penetration exceeding a mean of 1.1 mm or with a maximum of 5.6 mm exclusively categorized all BULK bone failure specimens. Failure strength of BULK failure specimens increased with bone mineral density (R 2 = 0.67, P < .001) but was independent of the cement morphology parameters. To maximize fixation strength, a mean cement penetration depth of at least 1.1 mm should be achieved during tibial tray cementing. Copyright © 2016 Elsevier Inc. All rights reserved.
Piemjai, Morakot; Miyasaka, Kumiko; Iwasaki, Yasuhiko; Nakabayashi, Nobuo
2002-12-01
Demineralized dentin beneath set cement may adversely affect microleakage under fixed restorations. Microleakage of direct composite inlays cemented with acid-base cements and a methyl methacrylate resin cement were evaluated to determine their effect on the integrity of the underlying hybridized dentin. Sixty Class V box preparations (3 mm x 3 mm x 1.5 mm) were precisely prepared in previously frozen bovine teeth with one margin in enamel and another margin in dentin. Direct composite inlays (EPIC-TMPT) for each preparation were divided into 4 groups of 15 specimens each and cemented with 3 acid-base cements (control group): Elite, Ketac-Cem, Hy-Bond Carbo-Cem, and 1 adhesive resin cement: C&B Metabond. All specimens were stored in distilled water for 24 hours at 37 degrees C before immersion in 0.5% basic fuchsin for 24 hours. The dye penetration was measured on the sectioned specimens at the tooth-cement interface of enamel and cementum margins and recorded with graded criteria under light microscopy (Olympus Vanox-T) at original magnification x 50, 100, and 200. A Kruskal-Wallis and the Mann-Whitney test at P<.05 were used to analyze leakage score. All cementum margins of the 3 acid-base cements tested demonstrated significantly higher leakage scores than cementum margins for inlays cemented with the resin cement tested(P<.01). No leakage along the tooth-cement interface was found for inlays retained with the adhesive resin cement. Within the limitations of this study, the 3 acid-base cements tested exhibited greater microleakage at the cementum margins than did the adhesive resin cement that was tested.
Retention of cast crown copings cemented to implant abutments.
Dudley, J E; Richards, L C; Abbott, J R
2008-12-01
The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.
Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klyusov, A.A.
1988-08-20
Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration productsmore » are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.« less