Sample records for gyrokinetic code progresses

  1. 5D Tempest simulations of kinetic edge turbulence

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.; Umansky, M. V.; Qin, H.

    2006-10-01

    Results are presented from the development and application of TEMPEST, a nonlinear five dimensional (3d2v) gyrokinetic continuum code. The simulation results and theoretical analysis include studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry and its relationship to plasma flow generation with zero external momentum input, including the important orbit-squeezing effect due to the large electric field flow-shear in the edge. In order to extend the code to 5D, we have formulated a set of fully nonlinear electrostatic gyrokinetic equations and a fully nonlinear gyrokinetic Poisson's equation which is valid for both neoclassical and turbulence simulations. Our 5D gyrokinetic code is built on 4D version of Tempest neoclassical code with extension to a fifth dimension in binormal direction. The code is able to simulate either a full torus or a toroidal segment. Progress on performing 5D turbulence simulations will be reported.

  2. Progress with the COGENT Edge Kinetic Code: Collision operator options

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Compton, J. C.; ...

    2012-06-27

    In this study, COGENT is a continuum gyrokinetic code for edge plasmas being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of the fourth order conservative discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. It is written in v∥-μ (parallel velocity – magnetic moment) velocity coordinates, and making use of the gyrokinetic Poisson equation for the calculation of a self-consistent electric potential. In the present manuscript we report on the implementation and initial testing of a succession of increasingly detailed collision operator options, including a simple drag-diffusion operatormore » in the parallel velocity space, Lorentz collisions, and a linearized model Fokker-Planck collision operator conserving momentum and energy (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less

  3. Advances in stellarator gyrokinetics

    NASA Astrophysics Data System (ADS)

    Helander, P.; Bird, T.; Jenko, F.; Kleiber, R.; Plunk, G. G.; Proll, J. H. E.; Riemann, J.; Xanthopoulos, P.

    2015-05-01

    Recent progress in the gyrokinetic theory of stellarator microinstabilities and turbulence simulations is summarized. The simulations have been carried out using two different gyrokinetic codes, the global particle-in-cell code EUTERPE and the continuum code GENE, which operates in the geometry of a flux tube or a flux surface but is local in the radial direction. Ion-temperature-gradient (ITG) and trapped-electron modes are studied and compared with their counterparts in axisymmetric tokamak geometry. Several interesting differences emerge. Because of the more complicated structure of the magnetic field, the fluctuations are much less evenly distributed over each flux surface in stellarators than in tokamaks. Instead of covering the entire outboard side of the torus, ITG turbulence is localized to narrow bands along the magnetic field in regions of unfavourable curvature, and the resulting transport depends on the normalized gyroradius ρ* even in radially local simulations. Trapped-electron modes can be significantly more stable than in typical tokamaks, because of the spatial separation of regions with trapped particles from those with bad magnetic curvature. Preliminary non-linear simulations in flux-tube geometry suggest differences in the turbulence levels in Wendelstein 7-X and a typical tokamak.

  4. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott

    2012-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the GPU accelerator compiler directives. We have implemented the GPU acceleration on a Core I7 gaming PC with a NVIDIA GTX 580 GPU. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. Optimization strategies and comparisons between DIRAC and the gaming PC will be presented. We will also discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  5. Progress with the COGENT Edge Kinetic Code: Implementing the Fokker-Plank Collision Operator

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...

    2014-06-20

    Here, COGENT is a continuum gyrokinetic code for edge plasma simulations being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of a fourth-order finite-volume (conservative) discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. The distribution function F is discretized in v∥ – μ (parallel velocity – magnetic moment) velocity coordinates, and the code presently solves an axisymmetric full-f gyro-kinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. COGENT capabilities are extended by implementing the fully nonlinear Fokker-Plank operator to model Coulomb collisions in magnetized edge plasmas.more » The corresponding Rosenbluth potentials are computed by making use of a finite-difference scheme and multipole-expansion boundary conditions. Details of the numerical algorithms and results of the initial verification studies are discussed. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)« less

  6. Cross-separatrix Coupling in Nonlinear Global Electrostatic Turbulent Transport in C-2U

    NASA Astrophysics Data System (ADS)

    Lau, Calvin; Fulton, Daniel; Bao, Jian; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar; TAE Team

    2017-10-01

    In recent years, the progress of the C-2/C-2U advanced beam-driven field-reversed configuration (FRC) experiments at Tri Alpha Energy, Inc. has pushed FRCs to transport limited regimes. Understanding particle and energy transport is a vital step towards an FRC reactor, and two particle-in-cell microturbulence codes, the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC), are being developed and applied toward this goal. Previous local electrostatic GTC simulations find the core to be robustly stable with drift-wave instability only in the scrape-off layer (SOL) region. However, experimental measurements showed fluctuations in both regions; one possibility is that fluctuations in the core originate from the SOL, suggesting the need for non-local simulations with cross-separatrix coupling. Current global ANC simulations with gyrokinetic ions and adiabatic electrons find that non-local effects (1) modify linear growth-rates and frequencies of instabilities and (2) allow instability to move from the unstable SOL to the linearly stable core. Nonlinear spreading is also seen prior to mode saturation. We also report on the progress of the first turbulence simulations in the SOL. This work is supported by the Norman Rostoker Fellowship.

  7. Second order gyrokinetic theory for particle-in-cell codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric

    2016-08-15

    The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell–Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell–Vlasov system issuedmore » from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell–Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.« less

  8. A hybrid gyrokinetic ion and isothermal electron fluid code for astrophysical plasma

    NASA Astrophysics Data System (ADS)

    Kawazura, Y.; Barnes, M.

    2018-05-01

    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) Schekochihin et al. (2009) [9]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into AstroGK, an Eulerian δf gyrokinetics code specialized to a slab geometry Numata et al. (2010) [41]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant-Friedrichs-Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼ 2√{mi /me } ∼ 100 times faster than AstroGK with a single ion species and kinetic electrons where mi /me is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron-ion temperature ratio and plasma beta.

  9. Collisional tests and an extension of the TEMPEST continuum gyrokinetic code

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Xiong, Z.; Xu, X. Q.

    2006-04-01

    An important requirement of a kinetic code for edge plasmas is the ability to accurately treat the effect of colllisions over a broad range of collisionalities. To test the interaction of collisions and parallel streaming, TEMPEST has been compared with published analytic and numerical (Monte Carlo, bounce-averaged Fokker-Planck) results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. We also describe progress toward extension of (4-dimensional) TEMPEST into a ``kinetic edge transport code'' (a kinetic counterpart of UEDGE). The extension includes averaging of the gyrokinetic equations over fast timescales and approximating the averaged quadratic terms by diffusion terms which respect the boundaries of inaccessable regions in phase space. F. Najmabadi, R.W. Conn and R.H. Cohen, Nucl. Fusion 24, 75 (1984); T.D. Rognlien and T.A. Cutler, Nucl. Fusion 20, 1003 (1980).

  10. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert; Lang, Jianying; Chang, C. S.

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.

  11. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    DOE PAGES

    Hager, Robert; Lang, Jianying; Chang, C. S.; ...

    2017-05-24

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.

  12. Tempest simulations of kinetic GAM mode and neoclassical turbulence

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Dimits, A. M.

    2007-11-01

    TEMPEST is a nonlinear five dimensional (3d2v) gyrokinetic continuum code for studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry. The 4D TEMPEST code correctly produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons in homogeneous plasmas. For large q=4 to 9, the Tempest simulations show that a series of resonance at higher harmonics v||=φGqR0/n with n=4 become effective. The TEMPEST simulation also shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual with neoclassical transport, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude. Our 5D gyrokinetic code is built on 4D Tempest neoclassical code with extension to a fifth dimension in toroidal direction and with 3D domain decompositions. Progress on performing 5D neoclassical turbulence simulations will be reported.

  13. Global linear gyrokinetic particle-in-cell simulations including electromagnetic effects in shaped plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Borchardt, M.; Cole, M.; Hatzky, R.; Fehér, T.; Kleiber, R.; Könies, A.; Zocco, A.

    2015-05-01

    We give an overview of recent developments in electromagnetic simulations based on the gyrokinetic particle-in-cell codes GYGLES and EUTERPE. We present the gyrokinetic electromagnetic models implemented in the codes and discuss further improvements of the numerical algorithm, in particular the so-called pullback mitigation of the cancellation problem. The improved algorithm is employed to simulate linear electromagnetic instabilities in shaped tokamak and stellarator plasmas, which was previously impossible for the parameters considered.

  14. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    PubMed Central

    Lang, Jianying; Ku, S.; Chen, Y.; Parker, S. E.; Adams, M. F.

    2017-01-01

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons analogous to Chen and Parker [Phys. Plasmas 8, 441 (2001)]. Two representative long wavelength modes, shear Alfvén waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries. PMID:29104419

  15. Edge Simulation Laboratory Progress and Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began inmore » fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.« less

  16. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.

    PubMed

    Xu, X Q

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  17. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  18. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhihong

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the American Physics Society, Division of Plasma Physics (APS-DPP).« less

  19. Intercode comparison of gyrokinetic global electromagnetic modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Görler, T., E-mail: tobias.goerler@ipp.mpg.de; Tronko, N.; Hornsby, W. A.

    Aiming to fill a corresponding lack of sophisticated test cases for global electromagnetic gyrokinetic codes, a new hierarchical benchmark is proposed. Starting from established test sets with adiabatic electrons, fully gyrokinetic electrons, and electrostatic fluctuations are taken into account before finally studying the global electromagnetic micro-instabilities. Results from up to five codes involving representatives from different numerical approaches as particle-in-cell methods, Eulerian and Semi-Lagrangian are shown. By means of spectrally resolved growth rates and frequencies and mode structure comparisons, agreement can be confirmed on ion-gyro-radius scales, thus providing confidence in the correct implementation of the underlying equations.

  20. Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence

    NASA Astrophysics Data System (ADS)

    Belli, Emily Ann

    Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the enhancement of zonal flows with shaping, which is observed with the GS2 simulations. Finally, a local linear trial function-based gyrokinetic code is developed to aid in fast scoping studies of gyrokinetic linear stability. This code is successfully benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well as in the more general electromagnetic description with higher-order Hermite basis functions.

  1. LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks

    NASA Astrophysics Data System (ADS)

    Lauber, Ph.; Günter, S.; Könies, A.; Pinches, S. D.

    2007-09-01

    In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén waves (KAWs) with analytical results, ideal MHD codes, drift-kinetic codes and other codes based on kinetic models are reported.

  2. A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravenec, R. V.; Chen, Y.; Wan, W.

    2013-10-15

    A previous publication [R. V. Bravenec et al., Phys. Plasmas 18, 122505 (2011)] presented favorable comparisons of linear frequencies and nonlinear fluxes from the Eulerian gyrokinetic codes gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and gs2[W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)]. The motivation was to verify the codes, i.e., demonstrate that they correctly solve the gyrokinetic-Maxwell equations. The premise was that it is highly unlikely for both codes to yield the same incorrect results. In this work, we add the Lagrangian particle-in-cell code gem[Y. Chen and S. Parker, J. Comput. Phys.more » 220, 839 (2007)] to the comparisons, not simply to add another code, but also to demonstrate that the codes' algorithms do not matter. We find good agreement of gem with gyro and gs2 for the plasma conditions considered earlier, thus establishing confidence that the codes are verified and that ongoing validation efforts for these plasma parameters are warranted.« less

  3. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...

    2013-01-25

    The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy.more » Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.« less

  4. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClenaghan, J.; Lin, Z.; Holod, I.

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  5. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  6. Gyrokinetic continuum simulations of turbulence in the Texas Helimak

    NASA Astrophysics Data System (ADS)

    Bernard, T. N.; Shi, E. L.; Hammett, G. W.; Hakim, A.; Taylor, E. I.

    2017-10-01

    We have used the Gkeyll code to perform 3x-2v full-f gyrokinetic continuum simulations of electrostatic plasma turbulence in the Texas Helimak. The Helimak is an open field-line experiment with magnetic curvature and shear. It is useful for validating numerical codes due to its extensive diagnostics and simple, helical geometry, which is similar to the scrape-off layer region of tokamaks. Interchange and drift-wave modes are the main turbulence mechanisms in the device, and potential biasing is applied to study the effect of velocity shear on turbulence reduction. With Gkeyll, we varied field-line pitch angle and simulated biased and unbiased cases to study different turbulent regimes and turbulence reduction. These are the first kinetic simulations of the Helimak and resulting plasma profiles agree fairly well with experimental data. This research demonstrates Gkeyll's progress towards 5D simulations of the SOL region of fusion devices. Supported by the U.S. DOE SCGSR program under contract DE-SC0014664, the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE contract DE-AC02-09CH11466.

  7. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott; Chen, Yang

    2013-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the OpenACC compiler directives and Fortran CUDA. Mixed implementation of both Open-ACC and CUDA is demonstrated. CUDA is required for optimizing the particle deposition algorithm. We have implemented the GPU acceleration on a third generation Core I7 gaming PC with two NVIDIA GTX 680 GPUs. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. We also see enormous speedups (10 or more) on the Titan supercomputer at Oak Ridge with Kepler K20 GPUs. Results show speed-ups comparable or better than that of OpenMP models utilizing multiple cores. The use of hybrid OpenACC, CUDA Fortran, and MPI models across many nodes will also be discussed. Optimization strategies will be presented. We will discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  8. Global linear gyrokinetic simulations for LHD including collisions

    NASA Astrophysics Data System (ADS)

    Kauffmann, K.; Kleiber, R.; Hatzky, R.; Borchardt, M.

    2010-11-01

    The code EUTERPE uses a Particle-In-Cell (PIC) method to solve the gyrokinetic equation globally (full radius, full flux surface) for three-dimensional equilibria calculated with VMEC. Recently this code has been extended to include multiple kinetic species and electromagnetic effects. Additionally, a pitch-angle scattering operator has been implemented in order to include collisional effects in the simulation of instabilities and to be able to simulate neoclassical transport. As a first application of this extended code we study the effects of collisions on electrostatic ion-temperature-gradient (ITG) instabilities in LHD.

  9. Non-Maxwellian fast particle effects in gyrokinetic GENE simulations

    NASA Astrophysics Data System (ADS)

    Di Siena, A.; Görler, T.; Doerk, H.; Bilato, R.; Citrin, J.; Johnson, T.; Schneider, M.; Poli, E.; JET Contributors

    2018-04-01

    Fast ions have recently been found to significantly impact and partially suppress plasma turbulence both in experimental and numerical studies in a number of scenarios. Understanding the underlying physics and identifying the range of their beneficial effect is an essential task for future fusion reactors, where highly energetic ions are generated through fusion reactions and external heating schemes. However, in many of the gyrokinetic codes fast ions are, for simplicity, treated as equivalent-Maxwellian-distributed particle species, although it is well known that to rigorously model highly non-thermalised particles, a non-Maxwellian background distribution function is needed. To study the impact of this assumption, the gyrokinetic code GENE has recently been extended to support arbitrary background distribution functions which might be either analytical, e.g., slowing down and bi-Maxwellian, or obtained from numerical fast ion models. A particular JET plasma with strong fast-ion related turbulence suppression is revised with these new code capabilities both with linear and nonlinear gyrokinetic simulations. It appears that the fast ion stabilization tends to be less strong but still substantial with more realistic distributions, and this improves the quantitative power balance agreement with experiments.

  10. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, D. P., E-mail: dfulton@trialphaenergy.com; University of California, Irvine, California 92697; Lau, C. K.

    2016-05-15

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realisticmore » pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.« less

  11. Gyrokinetic simulation of driftwave instability in field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Schmitz, L.; Holod, I.; Lin, Z.; Tajima, T.; Binderbauer, M. W.

    2016-05-01

    Following the recent remarkable progress in magnetohydrodynamic (MHD) stability control in the C-2U advanced beam driven field-reversed configuration (FRC), turbulent transport has become one of the foremost obstacles on the path towards an FRC-based fusion reactor. Significant effort has been made to expand kinetic simulation capabilities in FRC magnetic geometry. The recently upgraded Gyrokinetic Toroidal Code (GTC) now accommodates realistic magnetic geometry from the C-2U experiment at Tri Alpha Energy, Inc. and is optimized to efficiently handle the FRC's magnetic field line orientation. Initial electrostatic GTC simulations find that ion-scale instabilities are linearly stable in the FRC core for realistic pressure gradient drives. Estimated instability thresholds from linear GTC simulations are qualitatively consistent with critical gradients determined from experimental Doppler backscattering fluctuation data, which also find ion scale modes to be depressed in the FRC core. Beyond GTC, A New Code (ANC) has been developed to accurately resolve the magnetic field separatrix and address the interaction between the core and scrape-off layer regions, which ultimately determines global plasma confinement in the FRC. The current status of ANC and future development targets are discussed.

  12. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chame, Jacqueline

    2011-05-27

    The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and formore » the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.« less

  13. Shear-Flow Instability Saturation by Stable Modes: Hydrodynamics and Gyrokinetics

    NASA Astrophysics Data System (ADS)

    Fraser, Adrian; Pueschel, M. J.; Terry, P. W.; Zweibel, E. G.

    2017-10-01

    We present simulations of shear-driven instabilities, focusing on the impact of nonlinearly excited, large-scale, linearly stable modes on the nonlinear cascade, momentum transport, and secondary instabilities. Stable modes, which have previously been shown to significantly affect instability saturation [Fraser et al. PoP 2017], are investigated in a collisionless, gyrokinetic, periodic zonal flow using the Gene code by projecting the results of nonlinear simulations onto a basis of linear eigenmodes that includes both stable and unstable modes. Benchmarking growth rates against previous gyrokinetic studies and an equivalent fluid system demonstrates comparable linear dynamics in the fluid and gyrokinetic systems. Cases of driven and decaying shear-flow turbulence are compared in Gene by using a Krook operator as an effective forcing. For comparison with existing hydrodynamic and MHD shear-flow instability studies, we present results for the shear layer obtained by similar means with the code Dedalus. Supported by U.S. DOE Grant No. DE-FG02-89ER53291, the NSF, and UW-Madison.

  14. Detailed study of spontaneous rotation generation in diverted H-mode plasma using the full-f gyrokinetic code XGC1

    NASA Astrophysics Data System (ADS)

    Seo, Janghoon; Chang, C. S.; Ku, S.; Kwon, J. M.; Yoon, E. S.

    2013-10-01

    The Full-f gyrokinetic code XGC1 is used to study the details of toroidal momentum generation in H-mode plasma. Diverted DIII-D geometry is used, with Monte Carlo neutral particles that are recycled at the limiter wall. Nonlinear Coulomb collisions conserve particle, momentum, and energy. Gyrokinetic ions and adiabatic electrons are used in the present simulation to include the effects from ion gyrokinetic turbulence and neoclassical physics, under self-consistent radial electric field generation. Ion orbit loss physics is automatically included. Simulations show a strong co-Ip flow in the H-mode layer at outside midplane, similarly to the experimental observation from DIII-D and ASDEX-U. The co-Ip flow in the edge propagates inward into core. It is found that the strong co-Ip flow generation is mostly from neoclassical physics. On the other hand, the inward momentum transport is from turbulence physics, consistently with the theory of residual stress from symmetry breaking. Therefore, interaction between the neoclassical and turbulence physics is a key factor in the spontaneous momentum generation.

  15. Study of no-man's land physics in the total-f gyrokinetic code XGC1

    NASA Astrophysics Data System (ADS)

    Ku, Seung Hoe; Chang, C. S.; Lang, J.

    2014-10-01

    While the ``transport shortfall'' in the ``no-man's land'' has been observed often in delta-f codes, it has not yet been observed in the global total-f gyrokinetic particle code XGC1. Since understanding the interaction between the edge and core transport appears to be a critical element in the prediction for ITER performance, understanding the no-man's land issue is an important physics research topic. Simulation results using the Holland case will be presented and the physics causing the shortfall phenomenon will be discussed. Nonlinear nonlocal interaction of turbulence, secondary flows, and transport appears to be the key.

  16. Simulation of ion-temperature-gradient turbulence in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B I; Dimits, A M; Kim, C

    Results are presented from nonlinear gyrokinetic simulations of toroidal ion temperature gradient (ITG) turbulence and transport. The gyrokinetic simulations are found to yield values of the thermal diffusivity significantly lower than gyrofluid or IFS-PPPL-model predictions. A new phenomenon of nonlinear effective critical gradients larger than the linear instability threshold gradients is observed, and is associated with undamped flux-surface-averaged shear flows. The nonlinear gyrokineic codes have passed extensive validity tests which include comparison against independent linear calculations, a series of nonlinear convergence tests, and a comparison between two independent nonlinear gyrokinetic codes. Our most realistic simulations to date have actual reconstructedmore » equilibria from experiments and a model for dilution by impurity and beam ions. These simulations highlight the need for still more physics to be included in the simulations« less

  17. Gyrokinetic particle simulation of a field reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, D. P., E-mail: dfulton@uci.edu; Lau, C. K.; Holod, I.

    2016-01-15

    Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ionmore » gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.« less

  18. A Systematic Method for Verification and Validation of Gyrokinetic Microstability Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravenec, Ronald

    My original proposal for the period Feb. 15, 2014 through Feb. 14, 2017 called for an integrated validation and verification effort carried out by myself with collaborators. The validation component would require experimental profile and power-balance analysis. In addition, it would require running the gyrokinetic codes varying the input profiles within experimental uncertainties to seek agreement with experiment before discounting a code as invalidated. Therefore, validation would require a major increase of effort over my previous grant periods which covered only code verification (code benchmarking). Consequently, I had requested full-time funding. Instead, I am being funded at somewhat less thanmore » half time (5 calendar months per year). As a consequence, I decided to forego the validation component and to only continue the verification efforts.« less

  19. The next-generation ESL continuum gyrokinetic edge code

    NASA Astrophysics Data System (ADS)

    Cohen, R.; Dorr, M.; Hittinger, J.; Rognlien, T.; Collela, P.; Martin, D.

    2009-05-01

    The Edge Simulation Laboratory (ESL) project is developing continuum-based approaches to kinetic simulation of edge plasmas. A new code is being developed, based on a conservative formulation and fourth-order discretization of full-f gyrokinetic equations in parallel-velocity, magnetic-moment coordinates. The code exploits mapped multiblock grids to deal with the geometric complexities of the edge region, and utilizes a new flux limiter [P. Colella and M.D. Sekora, JCP 227, 7069 (2008)] to suppress unphysical oscillations about discontinuities while maintaining high-order accuracy elsewhere. The code is just becoming operational; we will report initial tests for neoclassical orbit calculations in closed-flux surface and limiter (closed plus open flux surfaces) geometry. It is anticipated that the algorithmic refinements in the new code will address the slow numerical instability that was observed in some long simulations with the existing TEMPEST code. We will also discuss the status and plans for physics enhancements to the new code.

  20. Continuum Edge Gyrokinetic Theory and Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q; Xiong, Z; Dorr, M R

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regimemore » with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.« less

  1. Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q

    We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less

  2. Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER

    DOE PAGES

    Chang, Choong Seock; Ku, Seung -Hoe; Loarte, Alberto; ...

    2017-07-11

    Here, the XGC1 edge gyrokinetic code is used to study the width of the heat-flux to divertor plates in attached plasma condition. The flux-driven simulation is performed until an approximate power balance is achieved between the heat-flux across the steep pedestal pressure gradient and the heat-flux on the divertor plates.

  3. Overview of Edge Simulation Laboratory (ESL)

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Dorr, M.; Hittinger, J.; Rognlien, T.; Umansky, M.; Xiong, A.; Xu, X.; Belli, E.; Candy, J.; Snyder, P.; Colella, P.; Martin, D.; Sternberg, T.; van Straalen, B.; Bodi, K.; Krasheninnikov, S.

    2006-10-01

    The ESL is a new collaboration to build a full-f electromagnetic gyrokinetic code for tokamak edge plasmas using continuum methods. Target applications are edge turbulence and transport (neoclassical and anomalous), and edge-localized modes. Initially the project has three major threads: (i) verification and validation of TEMPEST, the project's initial (electrostatic) edge code which can be run in 4D (neoclassical and transport-timescale applications) or 5D (turbulence); (ii) design of the next generation code, which will include more complete physics (electromagnetics, fluid equation option, improved collisions) and advanced numerics (fully conservative, high-order discretization, mapped multiblock grids, adaptivity), and (iii) rapid-prototype codes to explore the issues attached to solving fully nonlinear gyrokinetics with steep radial gradiens. We present a brief summary of the status of each of these activities.

  4. Center for Extended Magnetohydrodynamics Modeling - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Scott

    This project funding supported approximately 74 percent of a Ph.D. graduate student, not including costs of travel and supplies. We had a highly successful research project including the development of a second-order implicit electromagnetic kinetic ion hybrid model [Cheng 2013, Sturdevant 2016], direct comparisons with the extended MHD NIMROD code and kinetic simulation [Schnack 2013], modeling of slab tearing modes using the fully kinetic ion hybrid model and finally, modeling global tearing modes in cylindrical geometry using gyrokinetic simulation [Chen 2015, Chen 2016]. We developed an electromagnetic second-order implicit kinetic ion fluid electron hybrid model [Cheng 2013]. As a firstmore » step, we assumed isothermal electrons, but have included drift-kinetic electrons in similar models [Chen 2011]. We used this simulation to study the nonlinear evolution of the tearing mode in slab geometry, including nonlinear evolution and saturation [Cheng 2013]. Later, we compared this model directly to extended MHD calculations using the NIMROD code [Schnack 2013]. In this study, we investigated the ion-temperature-gradient instability with an extended MHD code for the first time and got reasonable agreement with the kinetic calculation in terms of linear frequency, growth rate and mode structure. We then extended this model to include orbit averaging and sub-cycling of the ions and compared directly to gyrokinetic theory [Sturdevant 2016]. This work was highlighted in an Invited Talk at the International Conference on the Numerical Simulation of Plasmas in 2015. The orbit averaging sub-cycling multi-scale algorithm is amenable to hybrid architectures with GPUS or math co-processors. Additionally, our participation in the Center for Extend Magnetohydrodynamics motivated our research on developing the capability for gyrokinetic simulation to model a global tearing mode. We did this in cylindrical geometry where the results could be benchmarked with existing eigenmode calculations. First, we developed a gyrokinetic code capable of simulating long wavelengths using a fluid electron model [Chen 2015]. We benchmarked this code with an eigenmode calculation. Besides having to rewrite the field solver due to the breakdown in the gyrokinetic ordering for long wavelengths, very high radial resolution was required. We developed a technique where we used the solution from the eigenmode solver to specify radial boundary conditions allowing for a very high radial resolution of the inner solution. Using this technique enabled us to use our direct algorithm with gyrokinetic ions and drift kinetic electrons [Chen 2016]. This work was highlighted in an Invited Talk at the American Physical Society - Division of Plasma Physics in 2015.« less

  5. A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse

    DOE PAGES

    Shi, E. L.; Hakim, A. H.; Hammett, G. W.

    2015-02-03

    An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustratemore » some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.« less

  6. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chowdhury, J.; Parker, S. E.; Wan, W.

    2015-04-01

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ˜ η1/3, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  7. Development of a Grid-Based Gyro-Kinetic Simulation Code

    NASA Astrophysics Data System (ADS)

    Lapillonne, Xavier; Brunetti, Maura; Tran, Trach-Minh; Brunner, Stephan

    2006-10-01

    A grid-based semi-Lagrangian code using cubic spline interpolation is being developed at CRPP, for solving the electrostatic drift-kinetic equations [M. Brunetti et. al, Comp. Phys. Comm. 163, 1 (2004)] in a cylindrical system. This 4-dim code, CYGNE, is part of a project with long term aim of studying microturbulence in toroidal fusion devices, in the more general frame of gyro-kinetic equations. Towards their non-linear phase, the simulations from this code are subject to significant overshoot problems, reflected by the development of negative value regions of the distribution function, which leads to bad energy conservation. This has motivated the study of alternative schemes. On the one hand, new time integration algorithms are considered in the semi-Lagrangian frame. On the other hand, fully Eulerian schemes, which separate time and space discretisation (method of lines), are investigated. In particular, the Essentially Non Oscillatory (ENO) approach, constructed so as to minimize the overshoot problem, has been considered. All these methods have first been tested in the simpler case of the 2-dim guiding-center model for the Kelvin-Helmholtz instability, which enables to address the specific issue of the E xB drift also met in the more complex gyrokinetic-type equations. Based on these preliminary studies, the most promising methods are being implemented and tested in CYGNE.

  8. CICART Center For Integrated Computation And Analysis Of Reconnection And Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Amitava

    CICART is a partnership between the University of New Hampshire (UNH) and Dartmouth College. CICART addresses two important science needs of the DoE: the basic understanding of magnetic reconnection and turbulence that strongly impacts the performance of fusion plasmas, and the development of new mathematical and computational tools that enable the modeling and control of these phenomena. The principal participants of CICART constitute an interdisciplinary group, drawn from the communities of applied mathematics, astrophysics, computational physics, fluid dynamics, and fusion physics. It is a main premise of CICART that fundamental aspects of magnetic reconnection and turbulence in fusion devices, smaller-scalemore » laboratory experiments, and space and astrophysical plasmas can be viewed from a common perspective, and that progress in understanding in any of these interconnected fields is likely to lead to progress in others. The establishment of CICART has strongly impacted the education and research mission of a new Program in Integrated Applied Mathematics in the College of Engineering and Applied Sciences at UNH by enabling the recruitment of a tenure-track faculty member, supported equally by UNH and CICART, and the establishment of an IBM-UNH Computing Alliance. The proposed areas of research in magnetic reconnection and turbulence in astrophysical, space, and laboratory plasmas include the following topics: (A) Reconnection and secondary instabilities in large high-Lundquist-number plasmas, (B) Particle acceleration in the presence of multiple magnetic islands, (C) Gyrokinetic reconnection: comparison with fluid and particle-in-cell models, (D) Imbalanced turbulence, (E) Ion heating, and (F) Turbulence in laboratory (including fusion-relevant) experiments. These theoretical studies make active use of three high-performance computer simulation codes: (1) The Magnetic Reconnection Code, based on extended two-fluid (or Hall MHD) equations, in an Adaptive Mesh Refinement (AMR) framework, (2) the Particle Simulation Code, a fully electromagnetic 3D Particle-In-Cell (PIC) code that includes a collision operator, and (3) GS2, an Eulerian, electromagnetic, kinetic code that is widely used in the fusion program, and simulates the nonlinear gyrokinetic equations, together with a self-consistent set of Maxwell’s equations.« less

  9. Implementation of non-axisymmetric mesh system in the gyrokinetic PIC code (XGC) for Stellarators

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Hager, Robert; Cole, Micheal; Chang, Choong-Seock; Lazerson, Samuel; Ku, Seung-Hoe; Ishiguro, Seiji

    2017-10-01

    Gyrokinetic simulation is a powerful tool to investigate turbulent and neoclassical transports based on the first-principles of plasma kinetics. The gyrokinetic PIC code XGC has been developed for integrated simulations that cover the entire region of Tokamaks. Complicated field line and boundary structures should be taken into account to demonstrate edge plasma dynamics under the influence of X-point and vessel components. XGC employs gyrokinetic Poisson solver on unstructured triangle mesh to deal with this difficulty. We introduce numerical schemes newly developed for XGC simulation in non-axisymmetric Stellarator geometry. Triangle meshes in each poloidal plane are defined by PEST poloidal angle in the VMEC equilibrium so that they have the same regular structure in the straight field line coordinate. Electric charge of marker particle is distributed to the triangles specified by the field-following projection to the neighbor poloidal planes. 3D spline interpolation in a cylindrical mesh is also used to obtain equilibrium magnetic field at the particle position. These schemes capture the anisotropic plasma dynamics and resulting potential structure with high accuracy. The triangle meshes can smoothly connect to unstructured meshes in the edge region. We will present the validation test in the core region of Large Helical Device and discuss about future challenges toward edge simulations.

  10. Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, N. T.; White, A. E.; Greenwald, M.

    2013-03-15

    A so-called 'transport shortfall,' where ion and electron heat fluxes and turbulence are underpredicted by gyrokinetic codes, has been robustly identified in DIII-D L-mode plasmas for {rho}>0.55[T. L. Rhodes et al., Nucl. Fusion 51(6), 063022 (2011); and C. Holland et al., Phys. Plasmas 16(5), 052301 (2009)]. To probe the existence of a transport shortfall across different tokamaks, a dedicated scan of auxiliary heated L-mode discharges in Alcator C-Mod are studied in detail with nonlinear gyrokinetic simulations for the first time. Two discharges, only differing by the amount of auxiliary heating are investigated using both linear and nonlinear simulation of themore » GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. Nonlinear gyrokinetic simulation of the low and high input power discharges reveals a discrepancy between simulation and experiment in only the electron heat flux channel of the low input power discharge. However, both discharges demonstrate excellent agreement in the ion heat flux channel, and the high input power discharge demonstrates simultaneous agreement with experiment in both the electron and ion heat flux channels. A summary of linear and nonlinear gyrokinetic results and a discussion of possible explanations for the agreement/disagreement in each heat flux channel is presented.« less

  11. Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2005-10-01

    We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.

  12. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhao, E-mail: zhao.deng@foxmail.com; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively testedmore » over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of gyrokinetics. Thus, the cyclokinetic simulations do not account for the so-called “L-mode near edge short fall” seen in some low-frequency gyrokinetic transport and turbulence simulations.« less

  13. A basic plasma test for gyrokinetics: GDC turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2017-02-01

    Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.

  14. Mode Analyses of Gyrokinetic Simulations of Plasma Microturbulence

    NASA Astrophysics Data System (ADS)

    Hatch, David R.

    This thesis presents analysis of the excitation and role of damped modes in gyrokinetic simulations of plasma microturbulence. In order to address this question, mode decompositions are used to analyze gyrokinetic simulation data. A mode decomposition can be constructed by projecting a nonlinearly evolved gyrokinetic distribution function onto a set of linear eigenmodes, or alternatively by constructing a proper orthogonal decomposition of the distribution function. POD decompositions are used to examine the role of damped modes in saturating ion temperature gradient driven turbulence. In order to identify the contribution of different modes to the energy sources and sinks, numerical diagnostics for a gyrokinetic energy quantity were developed for the GENE code. The use of these energy diagnostics in conjunction with POD mode decompositions demonstrates that ITG turbulence saturates largely through dissipation by damped modes at the same perpendicular spatial scales as those of the driving instabilities. This defines a picture of turbulent saturation that is very different from both traditional hydrodynamic scenarios and also many common theories for the saturation of plasma turbulence. POD mode decompositions are also used to examine the role of subdominant modes in causing magnetic stochasticity in electromagnetic gyrokinetic simulations. It is shown that the magnetic stochasticity, which appears to be ubiquitous in electromagnetic microturbulence, is caused largely by subdominant modes with tearing parity. The application of higher-order singular value decomposition (HOSVD) to the full distribution function from gyrokinetic simulations is presented. This is an effort to demonstrate the ability to characterize and extract insight from a very large, complex, and high-dimensional data-set - the 5-D (plus time) gyrokinetic distribution function.

  15. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Chowdhury, J.; Parker, S. E.

    2015-04-15

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ∼ η{sup 1∕3}, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  16. Verification of a magnetic island in gyro-kinetics by comparison with analytic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzoso, D., E-mail: david.zarzoso-fernandez@polytechnique.org; Casson, F. J.; Poli, E.

    A rotating magnetic island is imposed in the gyrokinetic code GKW, when finite differences are used for the radial direction, in order to develop the predictions of analytic tearing mode theory and understand its limitations. The implementation is verified against analytics in sheared slab geometry with three numerical tests that are suggested as benchmark cases for every code that imposes a magnetic island. The convergence requirements to properly resolve physics around the island separatrix are investigated. In the slab geometry, at low magnetic shear, binormal flows inside the island can drive Kelvin-Helmholtz instabilities which prevent the formation of the steadymore » state for which the analytic theory is formulated.« less

  17. A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1

    NASA Astrophysics Data System (ADS)

    Ku, S.; Chang, C. S.; Hager, R.; Churchill, R. M.; Tynan, G. R.; Cziegler, I.; Greenwald, M.; Hughes, J.; Parker, S. E.; Adams, M. F.; D'Azevedo, E.; Worley, P.

    2018-05-01

    A fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. The main suppression action is located in a thin radial layer around ψN≃0.96 -0.98 , where ψN is the normalized poloidal flux, with the time scale ˜0.1 ms.

  18. Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team

    2017-10-01

    Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.

  19. Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.

    2006-10-01

    Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.

  20. Numerical Solution of the Gyrokinetic Poisson Equation in TEMPEST

    NASA Astrophysics Data System (ADS)

    Dorr, Milo; Cohen, Bruce; Cohen, Ronald; Dimits, Andris; Hittinger, Jeffrey; Kerbel, Gary; Nevins, William; Rognlien, Thomas; Umansky, Maxim; Xiong, Andrew; Xu, Xueqiao

    2006-10-01

    The gyrokinetic Poisson (GKP) model in the TEMPEST continuum gyrokinetic edge plasma code yields the electrostatic potential due to the charge density of electrons and an arbitrary number of ion species including the effects of gyroaveraging in the limit kρ1. The TEMPEST equations are integrated as a differential algebraic system involving a nonlinear system solve via Newton-Krylov iteration. The GKP preconditioner block is inverted using a multigrid preconditioned conjugate gradient (CG) algorithm. Electrons are treated as kinetic or adiabatic. The Boltzmann relation in the adiabatic option employs flux surface averaging to maintain neutrality within field lines and is solved self-consistently with the GKP equation. A decomposition procedure circumvents the near singularity of the GKP Jacobian block that otherwise degrades CG convergence.

  1. Comparisons of 'Identical' Simulations by the Eulerian Gyrokinetic Codes GS2 and GYRO

    NASA Astrophysics Data System (ADS)

    Bravenec, R. V.; Ross, D. W.; Candy, J.; Dorland, W.; McKee, G. R.

    2003-10-01

    A major goal of the fusion program is to be able to predict tokamak transport from first-principles theory. To this end, the Eulerian gyrokinetic code GS2 was developed years ago and continues to be improved [1]. Recently, the Eulerian code GYRO was developed [2]. These codes are not subject to the statistical noise inherent to particle-in-cell (PIC) codes, and have been very successful in treating electromagnetic fluctuations. GS2 is fully spectral in the radial coordinate while GYRO uses finite-differences and ``banded" spectral schemes. To gain confidence in nonlinear simulations of experiment with these codes, ``apples-to-apples" comparisons (identical profile inputs, flux-tube geometry, two species, etc.) are first performed. We report on a series of linear and nonlinear comparisons (with overall agreement) including kinetic electrons, collisions, and shaped flux surfaces. We also compare nonlinear simulations of a DIII-D discharge to measurements of not only the fluxes but also the turbulence parameters. [1] F. Jenko, et al., Phys. Plasmas 7, 1904 (2000) and refs. therein. [2] J. Candy, J. Comput. Phys. 186, 545 (2003).

  2. Simulating the effects of stellarator geometry on gyrokinetic drift-wave turbulence

    NASA Astrophysics Data System (ADS)

    Baumgaertel, Jessica Ann

    Nuclear fusion is a clean, safe form of energy with abundant fuel. In magnetic fusion energy (MFE) experiments, the plasma fuel is confined by magnetic fields at very high temperatures and densities. One fusion reactor design is the non-axisymmetric, torus-shaped stellarator. Its fully-3D fields have advantages over the simpler, better-understood axisymmetric tokamak, including the ability to optimize magnetic configurations for desired properties, such as lower transport (longer confinement time). Turbulence in the plasma can break MFE confinement. While turbulent transport is known to cause a significant amount of heat loss in tokamaks, it is a new area of research in stellarators. Gyrokinetics is a good mathematical model of the drift-wave instabilities that cause turbulence. Multiple gyrokinetic turbulence codes that had great success comparing to tokamak experiments are being converted for use with stellarator geometry. This thesis describes such adaptations of the gyrokinetic turbulence code, GS2. Herein a new computational grid generator and upgrades to GS2 itself are described, tested, and benchmarked against three other gyrokinetic codes. Using GS2, detailed linear studies using the National Compact Stellarator Experiment (NCSX) geometry were conducted. The first compares stability in two equilibria with different β=(plasma pressure)/(magnetic pressure). Overall, the higher β case was more stable than the lower β case. As high β is important for MFE experiments, this is encouraging. The second compares NCSX linear stability to a tokamak case. NCSX was more stable with a 20% higher critical temperature gradient normalized by the minor radius, suggesting that the fusion power might be enhanced by ˜ 50%. In addition, the first nonlinear, non-axisymmetric GS2 simulations are presented. Finally, linear stability of two locations in a W7-AS plasma were compared. The experimentally-measured parameters used were from a W7-AS shot in which measured heat fluxes match neoclassical theory predictions at inner radii, but are too large for neoclassical predictions at outer radii. Results from GS2 linear simulations show that the outer location has higher gyrokinetic instability growth rates than at the inner one. Mixing-length estimates of the heat flux are within a factor of 3 of the experimental measurements, indicating that gyrokinetic turbulence may be responsible for the higher transport measured by the experiment in the outer regions. Future nonlinear simulations can explore this question in more detail. This work is supported by the Princeton Plasma Physics Laboratory, which is operated by Princeton University for the U.S. Department of Energy under Contract No. DE-AC02-09CH11466, and the SciDAC Center for the Study of Plasma Microturbulence.

  3. A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1

    DOE PAGES

    Ku, S.; Chang, C. S.; Hager, R.; ...

    2018-04-18

    Here, a fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. As a result, the main suppression action is located in a thin radial layer around ψ N≃0.96–0.98, where ψ N is the normalized poloidal flux, with the time scale ~0.1more » ms.« less

  4. An Efficient Method for Verifying Gyrokinetic Microstability Codes

    NASA Astrophysics Data System (ADS)

    Bravenec, R.; Candy, J.; Dorland, W.; Holland, C.

    2009-11-01

    Benchmarks for gyrokinetic microstability codes can be developed through successful ``apples-to-apples'' comparisons among them. Unlike previous efforts, we perform the comparisons for actual discharges, rendering the verification efforts relevant to existing experiments and future devices (ITER). The process requires i) assembling the experimental analyses at multiple times, radii, discharges, and devices, ii) creating the input files ensuring that the input parameters are faithfully translated code-to-code, iii) running the codes, and iv) comparing the results, all in an organized fashion. The purpose of this work is to automate this process as much as possible: At present, a python routine is used to generate and organize GYRO input files from TRANSP or ONETWO analyses. Another routine translates the GYRO input files into GS2 input files. (Translation software for other codes has not yet been written.) Other python codes submit the multiple GYRO and GS2 jobs, organize the results, and collect them into a table suitable for plotting. (These separate python routines could easily be consolidated.) An example of the process -- a linear comparison between GYRO and GS2 for a DIII-D discharge at multiple radii -- will be presented.

  5. Extension of the XGC code for global gyrokinetic simulations in stellarator geometry

    NASA Astrophysics Data System (ADS)

    Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock

    2017-10-01

    In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.

  6. Full-f version of GENE for turbulence in open-field-line systems

    NASA Astrophysics Data System (ADS)

    Pan, Q.; Told, D.; Shi, E. L.; Hammett, G. W.; Jenko, F.

    2018-06-01

    Unique properties of plasmas in the tokamak edge, such as large amplitude fluctuations and plasma-wall interactions in the open-field-line regions, require major modifications of existing gyrokinetic codes originally designed for simulating core turbulence. To this end, the global version of the 3D2V gyrokinetic code GENE, so far employing a δf-splitting technique, is extended to simulate electrostatic turbulence in straight open-field-line systems. The major extensions are the inclusion of the velocity-space nonlinearity, the development of a conducting-sheath boundary, and the implementation of the Lenard-Bernstein collision operator. With these developments, the code can be run as a full-f code and can handle particle loss to and reflection from the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-off layer, LAPD turbulence involves collisions, parallel streaming, cross-field turbulent transport with steep profiles, and particle loss at the parallel boundary.

  7. Gyrokinetic Simulations of Transport Scaling and Structure

    NASA Astrophysics Data System (ADS)

    Hahm, Taik Soo

    2001-10-01

    There is accumulating evidence from global gyrokinetic particle simulations with profile variations and experimental fluctuation measurements that microturbulence, with its time-averaged eddy size which scales with the ion gyroradius, can cause ion thermal transport which deviates from the gyro-Bohm scaling. The physics here can be best addressed by large scale (rho* = rho_i/a = 0.001) full torus gyrokinetic particle-in-cell turbulence simulations using our massively parallel, general geometry gyrokinetic toroidal code with field-aligned mesh. Simulation results from device-size scans for realistic parameters show that ``wave transport'' mechanism is not the dominant contribution for this Bohm-like transport and that transport is mostly diffusive driven by microscopic scale fluctuations in the presence of self-generated zonal flows. In this work, we analyze the turbulence and zonal flow statistics from simulations and compare to nonlinear theoretical predictions including the radial decorrelation of the transport events by zonal flows and the resulting probability distribution function (PDF). In particular, possible deviation of the characteristic radial size of transport processes from the time-averaged radial size of the density fluctuation eddys will be critically examined.

  8. A new method for computing the gyrocenter orbit in the tokamak configuration

    NASA Astrophysics Data System (ADS)

    Xu, Yingfeng

    2013-10-01

    Gyrokinetic theory is an important tool for studying the long-time behavior of magnetized plasmas in Tokamaks. The gyrocenter trajectory determined by the gyrocenter equations of motion can be computed by using a special kind of the Lie-transform perturbation method. The corresponding Lie-transform called I-transform makes that the transformed equations of motion have the same form as the unperturbed ones. The gyrocenter trajectory in short time is divided into two parts. One is along the unperturbed orbit. The other one, which is related to perturbation, is determined by the I-transform generating vector. The numerical gyrocenter orbit code based on this new method has been developed in the tokamak configuration and benchmarked with the other orbit code in some simple cases. Furthermore, it is clearly demonstrated that this new method for computing gyrocenter orbit is equivalent to the gyrocenter Hamilton equations of motion up to the second order in timestep. The new method can be applied to the gyrokinetic simulation. The gyrocenter orbit of the unperturbed part determined by the equilibrium fields can be computed previously in the gyrokinetic simulation, and the corresponding time consumption is neglectable.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick, N. Pomphrey and P. Xanthopoulos

    Recent progress in reducing turbulent transport in stellarators and tokamaks by 3D shaping using a stellarator optimization code in conjunction with a gyrokinetic code is presented. The original applications of the method focussed on ion temperature gradient transport in a quasi-axisymmetric stellarator design. Here, an examination of both other turbulence channels and other starting configurations is initiated. It is found that the designs evolved for transport from ion temperature gradient turbulence also display reduced transport from other transport channels whose modes are also stabilized by improved curvature, such as electron temperature gradient and ballooning modes. The optimizer is also appliedmore » to evolving from a tokamak, finding appreciable turbulence reduction for these devices as well. From these studies, improved understanding is obtained of why the deformations found by the optimizer are beneficial, and these deformations are related to earlier theoretical work in both stellarators and tokamaks.« less

  10. Nonlinear electromagnetic gyrokinetic particle simulations with the electron hybrid model

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lin, Z.; Chen, L.; Hahm, T.; Wang, W.; Lee, W.

    2006-10-01

    The electromagnetic model with fluid electrons is successfully implemented into the global gyrokinetic code GTC. In the ideal MHD limit, shear Alfven wave oscillation and continuum damping is demonstrated. Nonlinear electromagnetic simulation is further pursued in the presence of finite ηi. Turbulence transport in the AITG unstable β regime is studied. This work is supported by Department of Energy (DOE) Grant DE-FG02-03ER54724, Cooperative Agreement No. DE-FC02-04ER54796 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Z. Lin, et al., Science 281, 1835 (1998). F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 30, 2240 (1998); G. Zhao and L. Chen, Phys. Plasmas 9, 861 (2002).

  11. Impact of centrifugal drifts on ion turbulent transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belli, Emily A.; Candy, J.

    Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less

  12. Impact of centrifugal drifts on ion turbulent transport

    DOE PAGES

    Belli, Emily A.; Candy, J.

    2018-03-01

    Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less

  13. Tempest Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.

    2006-04-01

    We are developing a continuum gyrokinetic full-F code, TEMPEST, to simulate edge plasmas. The geometry is that of a fully diverted tokamak and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The code, presently 4-dimensional (2D2V), includes kinetic ions and electrons, a gyrokinetic Poisson solver for electric field, and the nonlinear Fokker-Planck collision operator. Here we present the simulation results of neoclassical transport with Boltzmann electrons. In a large aspect ratio circular geometry, excellent agreement is found for neoclassical equilibrium with parallel flows in the banana regime without a temperature gradient. In divertor geometry, it is found that the endloss of particles and energy induces pedestal-like density and temperature profiles inside the magnetic separatrix and parallel flow stronger than the neoclassical predictions in the SOL. The impact of the X-point divertor geometry on the self-consistent electric field and geo-acoustic oscillations will be reported. We will also discuss the status of extending TEMPEST into a 5-D code.

  14. Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma

    DOE PAGES

    Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.; ...

    2017-05-29

    Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less

  15. Gyrokinetic particle simulations of the effects of compressional magnetic perturbations on drift-Alfvenic instabilities in tokamaks

    DOE PAGES

    Dong, Ge; Bao, Jian; Bhattacharjee, Amitava; ...

    2017-08-10

    The compressional component of magnetic perturbation δB- || to can play an important role in drift-Alfvenic instabilities in tokamaks, especially as the plasma β increases (β is the ratio of kinetic pressure to magnetic pressure). In this work, we have formulated a gyrokinetic particle simulation model incorporating δB- ||, and verified the model in kinetic Alfven wave simulations using the Gyrokinetic Toroidal Code in slab geometry. Simulations of drift-Alfvenic instabilities in tokamak geometry shows that the kinetic ballooning mode (KBM) growth rate decreases more than 20% when δB- || is neglected for β e = 0.02, and that δB- ||more » to has stabilizing effects on the ion temperature gradient instability, but negligible effects on the collisionless trapped electron mode. Lastly, the KBM growth rate decreases about 15% when equilibrium current is neglected.« less

  16. Transport and discrete particle noise in gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Lee, W. W.

    2006-10-01

    We present results from our recent investigations regarding the effects of discrete particle noise on the long-time behavior and transport properties of gyrokinetic particle-in-cell simulations. It is found that the amplitude of nonlinearly saturated drift waves is unaffected by discreteness-induced noise in plasmas whose behavior is dominated by a single mode in the saturated state. We further show that the scaling of this noise amplitude with particle count is correctly predicted by the fluctuation-dissipation theorem, even though the drift waves have driven the plasma from thermal equilibrium. As well, we find that the long-term behavior of the saturated system is unaffected by discreteness-induced noise even when multiple modes are included. Additional work utilizing a code with both total-f and δf capabilities is also presented, as part of our efforts to better understand the long- time balance between entropy production, collisional dissipation, and particle/heat flux in gyrokinetic plasmas.

  17. Verification of GENE and GYRO with L-mode and I-mode plasmas in Alcator C-Mod

    DOE PAGES

    Mikkelsen, D. R.; Howard, N. T.; White, A. E.; ...

    2018-04-25

    Here, verification comparisons are carried out for L-mode and I-mode plasma conditions in Alcator C-Mod. We compare linear and nonlinear ion-scale calculations by the gyrokinetic codes GENE and GYRO to each other and to the experimental power balance analysis. The two gyrokinetic codes' linear growth rates and real frequencies are in good agreement throughout all the ion temperature gradient mode branches and most of the trapped electron mode branches of the kyρs spectra at r/a = 0.65, 0.7, and 0.8. The shapes of the toroidal mode spectra of heat fluxes in nonlinear simulations are very similar for k yρ smore » ≤ 0.5, but in most cases GENE has a relatively higher heat flux than GYRO at higher mode numbers.« less

  18. Verification of GENE and GYRO with L-mode and I-mode plasmas in Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelsen, D. R.; Howard, N. T.; White, A. E.

    Here, verification comparisons are carried out for L-mode and I-mode plasma conditions in Alcator C-Mod. We compare linear and nonlinear ion-scale calculations by the gyrokinetic codes GENE and GYRO to each other and to the experimental power balance analysis. The two gyrokinetic codes' linear growth rates and real frequencies are in good agreement throughout all the ion temperature gradient mode branches and most of the trapped electron mode branches of the kyρs spectra at r/a = 0.65, 0.7, and 0.8. The shapes of the toroidal mode spectra of heat fluxes in nonlinear simulations are very similar for k yρ smore » ≤ 0.5, but in most cases GENE has a relatively higher heat flux than GYRO at higher mode numbers.« less

  19. Gyrokinetic simulations and experiment

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Bravenec, R. V.; Dorland, W.

    2002-11-01

    Nonlinear gyrokinetic simulations with the code GS2 have been carried out in an effort to predict transport fluxes and fluctuation levels in the tokamaks DIII-D and Alcator C-Mod.(W. Dorland et al. in Fusion Energy 2000 (International Atomic Energy Agency, Vienna, 2000).)^,( W. Ross and W. Dorland, submitted to Phys. Plasmas (2002).) These simulations account for full electron dynamics and, in some instances, electromagnetic waves.( D. W. Ross, W. Dorland, and B. N. Rogers, Bull. Am. Phys. Soc. 46, 115 (2001).) Here, some issues of the necessary resolution, precision and wave number range are examined in connection with the experimental comparisons and parameter scans.

  20. Analysis and optimization of gyrokinetic toroidal simulations on homogenous and heterogenous platforms

    DOE PAGES

    Ibrahim, Khaled Z.; Madduri, Kamesh; Williams, Samuel; ...

    2013-07-18

    The Gyrokinetic Toroidal Code (GTC) uses the particle-in-cell method to efficiently simulate plasma microturbulence. This paper presents novel analysis and optimization techniques to enhance the performance of GTC on large-scale machines. We introduce cell access analysis to better manage locality vs. synchronization tradeoffs on CPU and GPU-based architectures. Finally, our optimized hybrid parallel implementation of GTC uses MPI, OpenMP, and NVIDIA CUDA, achieves up to a 2× speedup over the reference Fortran version on multiple parallel systems, and scales efficiently to tens of thousands of cores.

  1. Core turbulence behavior moving from ion-temperature-gradient regime towards trapped-electron-mode regime in the ASDEX Upgrade tokamak and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Happel, T.; Navarro, A. Bañón; Conway, G. D.; Angioni, C.; Bernert, M.; Dunne, M.; Fable, E.; Geiger, B.; Görler, T.; Jenko, F.; McDermott, R. M.; Ryter, F.; Stroth, U.

    2015-03-01

    Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R / L Te in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R / L Te . Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4-18 cm-1 (k⊥ρs = 0.7-4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence level profiles. However, the turbulence intensity is increasing with additional heating in the experiment, while gyrokinetic simulations show a decrease.

  2. Development of a fully implicit particle-in-cell scheme for gyrokinetic electromagnetic turbulence simulation in XGC1

    NASA Astrophysics Data System (ADS)

    Ku, Seung-Hoe; Hager, R.; Chang, C. S.; Chacon, L.; Chen, G.; EPSI Team

    2016-10-01

    The cancelation problem has been a long-standing issue for long wavelengths modes in electromagnetic gyrokinetic PIC simulations in toroidal geometry. As an attempt of resolving this issue, we implemented a fully implicit time integration scheme in the full-f, gyrokinetic PIC code XGC1. The new scheme - based on the implicit Vlasov-Darwin PIC algorithm by G. Chen and L. Chacon - can potentially resolve cancelation problem. The time advance for the field and the particle equations is space-time-centered, with particle sub-cycling. The resulting system of equations is solved by a Picard iteration solver with fixed-point accelerator. The algorithm is implemented in the parallel velocity formalism instead of the canonical parallel momentum formalism. XGC1 specializes in simulating the tokamak edge plasma with magnetic separatrix geometry. A fully implicit scheme could be a way to accurate and efficient gyrokinetic simulations. We will test if this numerical scheme overcomes the cancelation problem, and reproduces the dispersion relation of Alfven waves and tearing modes in cylindrical geometry. Funded by US DOE FES and ASCR, and computing resources provided by OLCF through ALCC.

  3. Parallel filtering in global gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Jolliet, S.; McMillan, B. F.; Villard, L.; Vernay, T.; Angelino, P.; Tran, T. M.; Brunner, S.; Bottino, A.; Idomura, Y.

    2012-02-01

    In this work, a Fourier solver [B.F. McMillan, S. Jolliet, A. Bottino, P. Angelino, T.M. Tran, L. Villard, Comp. Phys. Commun. 181 (2010) 715] is implemented in the global Eulerian gyrokinetic code GT5D [Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Nucl. Fusion 49 (2009) 065029] and in the global Particle-In-Cell code ORB5 [S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.M. Tran, B.F. McMillan, O. Sauter, K. Appert, Y. Idomura, L. Villard, Comp. Phys. Commun. 177 (2007) 409] in order to reduce the memory of the matrix associated with the field equation. This scheme is verified with linear and nonlinear simulations of turbulence. It is demonstrated that the straight-field-line angle is the coordinate that optimizes the Fourier solver, that both linear and nonlinear turbulent states are unaffected by the parallel filtering, and that the k∥ spectrum is independent of plasma size at fixed normalized poloidal wave number.

  4. Gyrokinetic-Vlasov simulations of the ion temperature gradient turbulence in tokamak and helical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.-H.; Sugama, H.; Graduate University for Advanced Studies

    2006-11-30

    Recent progress of the gyrokinetic-Vlasov simulations on the ion temperature gradient (ITG) turbulence in tokamak and helical systems is reported, where the entropy balance is checked as a reference for the numerical accuracy. The tokamak ITG turbulence simulation carried out on the Earth Simulator clearly captures a nonlinear generation process of zonal flows. The tera-flops and tera-bytes scale simulation is also applied to a helical system with the same poloidal and toroidal periodicities of L = 2 and M = 10 as in the Large Helical Device.

  5. Features of Discontinuous Galerkin Algorithms in Gkeyll, and Exponentially-Weighted Basis Functions

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Hakim, A.; Shi, E. L.

    2016-10-01

    There are various versions of Discontinuous Galerkin (DG) algorithms that have interesting features that could help with challenging problems of higher-dimensional kinetic problems (such as edge turbulence in tokamaks and stellarators). We are developing the gyrokinetic code Gkeyll based on DG methods. Higher-order methods do more FLOPS to extract more information per byte, thus reducing memory and communication costs (which are a bottleneck for exascale computing). The inner product norm can be chosen to preserve energy conservation with non-polynomial basis functions (such as Maxwellian-weighted bases), which alternatively can be viewed as a Petrov-Galerkin method. This allows a full- F code to benefit from similar Gaussian quadrature employed in popular δf continuum gyrokinetic codes. We show some tests for a 1D Spitzer-Härm heat flux problem, which requires good resolution for the tail. For two velocity dimensions, this approach could lead to a factor of 10 or more speedup. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  6. Gyrokinetic micro-turbulence simulations on the NERSC 16-way SMP IBM SP computer: experiences and performance results

    NASA Astrophysics Data System (ADS)

    Ethier, Stephane; Lin, Zhihong

    2001-10-01

    Earlier this year, the National Energy Research Scientific Computing center (NERSC) took delivery of the second most powerful computer in the world. With its 2,528 processors running at a peak performance of 1.5 GFlops, this IBM SP machine has a theoretical performance of almost 3.8 TFlops. To efficiently harness such computing power in one single code is not an easy task and requires a good knowledge of the computer's architecture. Here we present the steps that we followed to improve our gyrokinetic micro-turbulence code GTC in order to take advantage of the new 16-way shared memory nodes of the NERSC IBM SP. Performance results are shown as well as details about the improved mixed-mode MPI-OpenMP model that we use. The enhancements to the code allowed us to tackle much bigger problem sizes, getting closer to our goal of simulating an ITER-size tokamak with both kinetic ions and electrons.(This work is supported by DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by the DOE Fusion SciDAC Project.)

  7. Simulation of drift wave instability in field-reversed configurations using global magnetic geometry

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Lin, Z.; Tajima, T.; Holod, I.; the TAE Team

    2016-10-01

    Minimizing transport in the field-reversed configuration (FRC) is essential to enable FRC-based fusion reactors. Recently, significant progress on advanced beam-driven FRCs in C-2 and C-2U (at Tri Alpha Energy) provides opportunities to study transport properties using Doppler backscattering (DBS) measurements of turbulent fluctuations and kinetic particle-in-cell simulations of driftwaves in realistic equilibria via the Gyrokinetic Toroidal Code (GTC). Both measurements and simulations indicate relatively small fluctuations in the scrape-off layer (SOL). In the FRC core, local, single flux surface simulations reveal strong stabilization, while experiments indicate quiescent but finite fluctuations. One possible explanation is that turbulence may originate in the SOL and propagate at very low levels across the separatrix into the core. To test this hypothesis, a significant effort has been made to develop A New Code (ANC) based on GTC physics formulations, but using cylindrical coordinates which span the magnetic separatrix, including both core and SOL. Here, we present first results from global ANC simulations.

  8. Advances in continuum kinetic and gyrokinetic simulations of turbulence on open-field line geometries

    NASA Astrophysics Data System (ADS)

    Hakim, Ammar; Shi, Eric; Juno, James; Bernard, Tess; Hammett, Greg

    2017-10-01

    For weakly collisional (or collisionless) plasmas, kinetic effects are required to capture the physics of micro-turbulence. We have implemented solvers for kinetic and gyrokinetic equations in the computational plasma physics framework, Gkeyll. We use a version of discontinuous Galerkin scheme that conserves energy exactly. Plasma sheaths are modeled with novel boundary conditions. Positivity of distribution functions is maintained via a reconstruction method, allowing robust simulations that continue to conserve energy even with positivity limiters. We have performed a large number of benchmarks, verifying the accuracy and robustness of our code. We demonstrate the application of our algorithm to two classes of problems (a) Vlasov-Maxwell simulations of turbulence in a magnetized plasma, applicable to space plasmas; (b) Gyrokinetic simulations of turbulence in open-field-line geometries, applicable to laboratory plasmas. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  9. Electromagnetic gyrokinetic simulation in GTS

    NASA Astrophysics Data System (ADS)

    Ma, Chenhao; Wang, Weixing; Startsev, Edward; Lee, W. W.; Ethier, Stephane

    2017-10-01

    We report the recent development in the electromagnetic simulations for general toroidal geometry based on the particle-in-cell gyrokinetic code GTS. Because of the cancellation problem, the EM gyrokinetic simulation has numerical difficulties in the MHD limit where k⊥ρi -> 0 and/or β >me /mi . Recently several approaches has been developed to circumvent this problem: (1) p∥ formulation with analytical skin term iteratively approximated by simulation particles (Yang Chen), (2) A modified p∥ formulation with ∫ dtE∥ used in place of A∥ (Mishichenko); (3) A conservative theme where the electron density perturbation for the Poisson equation is calculated from an electron continuity equation (Bao) ; (4) double-split-weight scheme with two weights, one for Poisson equation and one for time derivative of Ampere's law, each with different splits designed to remove large terms from Vlasov equation (Startsev). These algorithms are being implemented into GTS framework for general toroidal geometry. The performance of these different algorithms will be compared for various EM modes.

  10. Full-f XGC1 gyrokinetic study of improved ion energy confinement from impurity stabilization of ITG turbulence

    NASA Astrophysics Data System (ADS)

    Kim, Kyuho; Kwon, Jae-Min; Chang, C. S.; Seo, Janghoon; Ku, S.; Choe, W.

    2017-06-01

    Flux-driven full-f gyrokinetic simulations are performed to study carbon impurity effects on the ion temperature gradient (ITG) turbulence and ion thermal transport in a toroidal geometry. Employing the full-f gyrokinetic code XGC1, both main ions and impurities are evolved self-consistently including turbulence and neoclassical physics. It is found that the carbon impurity profile self-organizes to form an inwardly peaked density profile, which weakens the ITG instabilities and reduces the overall fluctuations and ion thermal transport. A stronger reduction appears in the low frequency components of the fluctuations. The global structure of E × B flow also changes, resulting in the reduction of global avalanche like transport events in the impure plasma. Detailed properties of impurity transport are also studied, and it is revealed that both the inward neoclassical pinch and the outward turbulent transport are equally important in the formation of the steady state impurity profile.

  11. Gyrokinetic simulation of edge blobs and divertor heat-load footprint

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Ku, S.; Hager, R.; Churchill, M.; D'Azevedo, E.; Worley, P.

    2015-11-01

    Gyrokinetic study of divertor heat-load width Lq has been performed using the edge gyrokinetic code XGC1. Both neoclassical and electrostatic turbulence physics are self-consistently included in the simulation with fully nonlinear Fokker-Planck collision operation and neutral recycling. Gyrokinetic ions and drift kinetic electrons constitute the plasma in realistic magnetic separatrix geometry. The electron density fluctuations from nonlinear turbulence form blobs, as similarly seen in the experiments. DIII-D and NSTX geometries have been used to represent today's conventional and tight aspect ratio tokamaks. XGC1 shows that the ion neoclassical orbit dynamics dominates over the blob physics in setting Lq in the sample DIII-D and NSTX plasmas, re-discovering the experimentally observed 1/Ip type scaling. Magnitude of Lq is in the right ballpark, too, in comparison with experimental data. However, in an ITER standard plasma, XGC1 shows that the negligible neoclassical orbit excursion effect makes the blob dynamics to dominate Lq. Differently from Lq 1mm (when mapped back to outboard midplane) as was predicted by simple-minded extrapolation from the present-day data, XGC1 shows that Lq in ITER is about 1 cm that is somewhat smaller than the average blob size. Supported by US DOE and the INCITE program.

  12. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    PubMed

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  13. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the effect of wave amplitude upon the validity of our analytic solution, exploring the nature of strong turbulence. In the kinetic limit where k⊥ rhoi ≳ 1 where incompressible MHD is no longer a valid description, we illustrate how the nonlinear evolution departs from our analytic expression. The analytic theory we develop provides a framework from which more sophisticated of weak and strong inertial-range turbulence theories may be developed. Characterization of the limits of this theory may provide guidance in the development of kinetic Alfven wave turbulence.

  14. Flux tube gyrokinetic simulations of the edge pedestal

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Wan, Weigang; Chen, Yang

    2011-10-01

    The linear instabilities of DIII-D H-mode pedestal are studied with gyrokinetic micro-turbulence simulations. The simulation code GEM is an electromagnetic δf code with global tokamak geometry in the form of Miller equilibrium. Local flux tube simulations are carried out for multiple positions of two DIII-D profiles: shot #98889 and shot #131997. Near the top of the pedestal, the instability is clearly ITG. The dominant instability of the pedestal appears at the steep gradient region, and it is identified as a low frequency mode mostly driven by electron temperature gradient. The mode propagates along the electron diamagnetic direction for low n and may propagate along the ion direction for high n. At some positions near the steep gradient region, an ion instability is found which shows some characteristics of kinetic ballooning mode (KBM). These results will be compared to the results of E. Wang et al. and D. Fulton et al. in the same session. We thank R. Groebner and P. Snyder for providing experimental profiles and helpful discussions.

  15. Calculation of the Neoclassical Radial Electric Field using a Gyrokinetic δ f Code

    NASA Astrophysics Data System (ADS)

    Lewandowski, J. L. V.; Boozer, A.; Williams, J.; Lin, Z.; Zarnstorff, M.

    2000-10-01

    The calculation of the radial electric field in stellarator devices is an important issue in neoclassical transport. The radial electric field, which is also related to the formation of transport barriers, can affect the anomalous transport. In stellarator configurations which depart only weakly from axi-symmetry, a direct Monte Carlo calculations of the radial electric is difficult due to the large statistical fluctuations. We present a novel method based on the evaluation of the perpendicular ( p_⊥ ) and parallel ( p_|| ) pressures. The variation of widehatp ≡ ( p_|| + p_⊥ ) /2 on the magnetic surface provides a low-noise calculation of the radial electric field. The low-noise method has been implemented in a three-dimensional gyro-kinetic particle code [1]. The calculation of the radial electric field for the National Compact Stellarator Experiment [2] will be presented. [ 1 ] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. White Science 281, 1835 (1998). [ 2 ] A. Reiman et al, invited talk (this conference).

  16. Gyrokinetic modeling of impurity peaking in JET H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Manas, P.; Camenen, Y.; Benkadda, S.; Weisen, H.; Angioni, C.; Casson, F. J.; Giroud, C.; Gelfusa, M.; Maslov, M.

    2017-06-01

    Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating and hence high values of toroidal rotation and corresponding gradient. Furthermore, the carbon profiles present particularly interesting shapes for fusion devices, i.e., hollow in the core and peaked near the edge. Dependencies of the experimental carbon peaking factor ( R / L nC ) on plasma parameters are investigated via multilinear regressions. A marked correlation between R / L nC and the normalised toroidal rotation gradient is observed in the core, which suggests an important role of the rotation in establishing hollow carbon profiles. The carbon peaking factor is then computed with the gyrokinetic code GKW, using a quasi-linear approach, supported by a few non-linear simulations. The comparison of the quasi-linear predictions to the experimental values at mid-radius reveals two main regimes. At low normalised collisionality, ν * , and T e / T i < 1 , the gyrokinetic simulations quantitatively recover experimental carbon density profiles, provided that rotodiffusion is taken into account. In contrast, at higher ν * and T e / T i > 1 , the very hollow experimental carbon density profiles are never predicted by the simulations and the carbon density peaking is systematically over estimated. This points to a possible missing ingredient in this regime.

  17. Microinstabilities in the pedestal region

    NASA Astrophysics Data System (ADS)

    Dickinson, David; Dudson, Benjamin; Wilson, Howard; Roach, Colin

    2014-10-01

    The regulation of transport at the pedestal top is important for the inter-ELM pedestal dynamics. Linear gyrokinetic analysis of the pedestal region during an ELM cycle on MAST has shown kinetic ballooning modes to be unstable at the knee of the pressure profile and in the steep pedestal region whilst microtearing modes (MTMs) dominate in the shallow gradient region inboard of the pedestal top. The transition between these instabilities at the pedestal knee has been observed in low and high collisionality MAST pedestals, and is likely to play an important role in the broadening of the pedestal. Nonlinear simulations are needed in this region to understand the microturbulence, the corresponding transport fluxes, and to gain further insight into the processes underlying the pedestal evolution. Such gyrokinetic simulations are numerically challenging and recent upgrades to the GS2 gyrokinetic code help improve their feasibility. We are also exploring reduced models that capture the relevant physics using the plasma simulation framework BOUT + + . An electromagnetic gyrofluid model has recently been implemented with BOUT + + that has significantly reduced computational cost compared to the gyrokinetic simulations against which it will be benchmarked. This work was funded by the RCUK Energy programme, EURATOM and a EUROFusion fellowship WP14-FRF-CCFE/Dickinson and was carried out using: HELIOS at IFERC, Japan; ARCHER (EPSRC Grant No. EP/L000237/1); HECToR (EPSRC Grant No. EP/H002081/1).

  18. Gyrokinetic simulation of residual turbulence in transport barriers

    NASA Astrophysics Data System (ADS)

    Jenko, Frank; Told, Daniel; Goerler, Tobias; Brunner, Stephan; Sautter, Olivier

    2011-10-01

    One of the ultimate aims for gyrokinetic simulation is to describe the formation and evolution of transport barriers. An important step in that direction is the study of the residual turbulence in established barriers - a challenging task in itself, given that a wide range of spatio-temporal scales can be involved. In the present work, we employ the physically comprehensive, nonlocal gyrokinetic turbulence code GENE to study turbulence in both core and edge transport barriers. First, we apply GENE to a set of discharges in the TCV tokamak which exhibit electron ITBs. Nonlinear gyrokinetic simulations are used to examine the influence of a varying current profile on the strength of the barrier. For each case, the transport spectra reveal how much transport (for each channel) is done in the low-k, medium-k, and high-k regimes, respectively. The role of ETG turbulence is discussed. Second, we explore the role of ETG turbulence in a typical ASDEX Upgrade H-mode discharge. Numerical convergence is carefully examined, and new insights on the characteristics of ETG turbulence in the edge will be discussed, focusing particularly on the role of streamers, which had been found to be a necessary ingredient for experimentally relevant ETG transport in core plasmas. The radial dependence of the resulting electron heat diffusivity is also examined and a simple ETG model is presented which can be used in future edge modeling efforts.

  19. Gyrofluid Modeling of Turbulent, Kinetic Physics

    NASA Astrophysics Data System (ADS)

    Despain, Kate Marie

    2011-12-01

    Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.

  20. Edge gyrokinetic theory and continuum simulations

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Dorr, M. R.; Hittinger, J. A.; Bodi, K.; Candy, J.; Cohen, B. I.; Cohen, R. H.; Colella, P.; Kerbel, G. D.; Krasheninnikov, S.; Nevins, W. M.; Qin, H.; Rognlien, T. D.; Snyder, P. B.; Umansky, M. V.

    2007-08-01

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five-dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the plateau regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL.

  1. Continuum kinetic methods for analyzing wave physics and distribution function dynamics in the turbulence dissipation challenge

    NASA Astrophysics Data System (ADS)

    Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.

    2015-12-01

    We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.

  2. Gyrokinetic Simulations of JET Carbon and ITER-Like Wall Pedestals

    NASA Astrophysics Data System (ADS)

    Hatch, David; Kotschenreuther, Mike; Mahajan, Swadesh; Liu, Xing; Blackmon, Austin; Giroud, Carine; Hillesheim, Jon; Maggi, Costanza; Saarelma, Samuli; JET Contributors Team

    2017-10-01

    Gyrokinetic simulations using the GENE code are presented, which target a fundamental understanding of JET pedestal transport and, in particular, its modification after installation of an ITER like wall (ILW). A representative pre-ILW (carbon wall) discharge is analyzed as a base case. In this discharge, magnetic diagnostics observe washboard modes, which preferentially affect the temperature pedestal and have frequencies (accounting for Doppler shift) consistent with microtearing modes and inconsistent with kinetic ballooning modes. A similar ILW discharge is examined, which recovers a similar value of H98, albeit at reduced pedestal temperature. This discharge is distinguished by a much higher value of eta, which produces strong ITG and ETG driven instabilities in gyrokinetic simulations. Experimental observations provide several targets for comparisons with simulation data, including the toroidal mode number and frequency of magnetic fluctuations, heat fluxes, and inter-ELM profile evolution. Strategies for optimizing pedestal performance will also be discussed. This work was supported by U.S. DOE Contract No. DE-FG02-04ER54742 and by EUROfusion under Grant No. 633053.

  3. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    DOE PAGES

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; ...

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for η e, exp ~2.2 with higher growth ratesmore » for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.« less

  4. Visualizing Gyrokinetic Turbulence in a Tokamak

    NASA Astrophysics Data System (ADS)

    Stantchev, George

    2005-10-01

    Multi-dimensional data output from gyrokinetic microturbulence codes are often difficult to visualize, in part due to the non-trivial geometry of the underlying grids, in part due to high irregularity of the relevant scalar field structures in turbulent regions. For instance, traditional isosurface extraction methods are likely to fail for the electrostatic potential field whose level sets may exhibit various geometric pathologies. To address these issues we develop an advanced interactive 3D gyrokinetic turbulence visualization framework which we apply in the study of microtearing instabilities calculated with GS2 in the MAST and NSTX geometries. In these simulations GS2 uses field-line-following coordinates such that the computational domain maps in physical space to a long, twisting flux tube with strong cross-sectional shear. Using statistical wavelet analysis we create a sparse multiple-scale volumetric representation of the relevant scalar fields, which we visualize via a variation of the so called splatting technique. To handle the problem of highly anisotropic flux tube configurations we adapt a geometry-driven surface illumination algorithm that places local light sources for effective feature-enhanced visualization.

  5. A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Bao, J.; Liu, D.; Lin, Z.

    2017-10-01

    A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.

  6. Verification of Gyrokinetic codes: Theoretical background and applications

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia; Bottino, Alberto; Görler, Tobias; Sonnendrücker, Eric; Told, Daniel; Villard, Laurent

    2017-05-01

    In fusion plasmas, the strong magnetic field allows the fast gyro-motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the subsequent transport. Naturally, these codes require thorough verification and validation. Here, we present a new and generic theoretical framework and specific numerical applications to test the faithfulness of the implemented models to theory and to verify the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which has rarely been done and therefore makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The verification of the numerical scheme is proposed via the benchmark effort. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC) and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations implemented in the ORB5 and GENE codes using the Lagrangian variational formulation. At the computational level, detailed verifications of global electromagnetic test cases developed from the CYCLONE Base Case are considered, including a parametric β-scan covering the transition from ITG to KBM and the spectral properties at the nominal β value.

  7. Verification of Gyrokinetic codes: theoretical background and applications

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia

    2016-10-01

    In fusion plasmas the strong magnetic field allows the fast gyro motion to be systematically removed from the description of the dynamics, resulting in a considerable model simplification and gain of computational time. Nowadays, the gyrokinetic (GK) codes play a major role in the understanding of the development and the saturation of turbulence and in the prediction of the consequent transport. We present a new and generic theoretical framework and specific numerical applications to test the validity and the domain of applicability of existing GK codes. For a sound verification process, the underlying theoretical GK model and the numerical scheme must be considered at the same time, which makes this approach pioneering. At the analytical level, the main novelty consists in using advanced mathematical tools such as variational formulation of dynamics for systematization of basic GK code's equations to access the limits of their applicability. The indirect verification of numerical scheme is proposed via the Benchmark process. In this work, specific examples of code verification are presented for two GK codes: the multi-species electromagnetic ORB5 (PIC), and the radially global version of GENE (Eulerian). The proposed methodology can be applied to any existing GK code. We establish a hierarchy of reduced GK Vlasov-Maxwell equations using the generic variational formulation. Then, we derive and include the models implemented in ORB5 and GENE inside this hierarchy. At the computational level, detailed verification of global electromagnetic test cases based on the CYCLONE are considered, including a parametric β-scan covering the transition between the ITG to KBM and the spectral properties at the nominal β value.

  8. Combining electromagnetic gyro-kinetic particle-in-cell simulations with collisions

    NASA Astrophysics Data System (ADS)

    Slaby, Christoph; Kleiber, Ralf; Könies, Axel

    2017-09-01

    It has been an open question whether for electromagnetic gyro-kinetic particle-in-cell (PIC) simulations pitch-angle collisions and the recently introduced pullback transformation scheme (Mishchenko et al., 2014; Kleiber et al., 2016) are consistent. This question is positively answered by comparing the PIC code EUTERPE with an approach based on an expansion of the perturbed distribution function in eigenfunctions of the pitch-angle collision operator (Legendre polynomials) to solve the electromagnetic drift-kinetic equation with collisions in slab geometry. It is shown how both approaches yield the same results for the frequency and damping rate of a kinetic Alfvén wave and how the perturbed distribution function is substantially changed by the presence of pitch-angle collisions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoyong; Budny, Robert; Gorelenkov, Nikolai

    We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfvenmore » modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.« less

  10. Benchmarking gyrokinetic simulations in a toroidal flux-tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Parker, S. E.; Wan, W.

    2013-09-15

    A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementationmore » shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.« less

  11. Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms

    DOE PAGES

    Madduri, Kamesh; Im, Eun-Jin; Ibrahim, Khaled Z.; ...

    2011-03-02

    The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this paper, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC’s key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broadmore » range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective GPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3–4.7× on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Finally, our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures.« less

  12. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, J.; Wan, Weigang; Chen, Yang

    2014-11-15

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error.more » Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.« less

  13. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  14. Kinetic simulation of edge instability in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel Patrick

    In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.

  15. Comparing simulation of plasma turbulence with experiment. II. Gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Dorland, William

    2002-12-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyrokinetic simulations with the GS2 code. This is a continuation of previous work with gyrofluid simulations [D. W. Ross et al., Phys. Plasmas 9, 177 (2002)], and the same L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] is studied. The simulated turbulence is dominated by ion temperature gradient (ITG) modes, corrected by trapped-electron, passing-electron and impurity effects. The energy fluxes obtained in the gyrokinetic simulations are comparable to, even somewhat higher than, those of the earlier work, and the simulated ion thermal transport, corrected for E×B flow shear, exceeds the experimental value by more than a factor of 2. The simulation also overestimates the density fluctuation level. Varying the local temperature gradient shows a stiff response in the flux and an apparent up-shift from the linear mode threshold [A. M. Dimits et al., Phys. Plasmas 7, 969 (2000)]. This effect is insufficient, within the estimated error, to bring the results into conformity with the experiment.

  16. Gyrokinetic simulations of particle transport in pellet fuelled JET discharges

    NASA Astrophysics Data System (ADS)

    Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.; Garzotti, L.; Lupelli, I.; Roach, C. M.; Romanelli, M.; Valovič, M.; Contributors, JET

    2017-10-01

    Pellet injection is a likely fuelling method of reactor grade plasmas. When the pellet ablates, it will transiently perturb the density and temperature profiles of the plasma. This will in turn change dimensionless parameters such as a/{L}n,a/{L}T and plasma β. The microstability properties of the plasma then changes which influences the transport of heat and particles. In this paper, gyrokinetic simulations of a JET L-mode pellet fuelled discharge are performed. The ion temperature gradient/trapped electron mode turbulence is compared at the time point when the effect from the pellet is the most pronounced with a hollow density profile and when the profiles have relaxed again. Linear and nonlinear simulations are performed using the gyrokinetic code GENE including electromagnetic effects and collisions in a realistic geometry in local mode. Furthermore, global nonlinear simulations are performed in order to assess any nonlocal effects. It is found that the positive density gradient has a stabilizing effect that is partly counteracted by the increased temperature gradient in the this region. The effective diffusion coefficients are reduced in the positive density region region compared to the intra pellet time point. No major effect on the turbulent transport due to nonlocal effects are observed.

  17. Analysis of transport in gyrokinetic tokamaks

    NASA Astrophysics Data System (ADS)

    Mynick, H. E.; Parker, S. E.

    1995-06-01

    Progress toward a detailed understanding of the transport in full-volume gyrokinetic simulations of tokamaks is described. The transition between the two asymptotic regimes (large and small) of scaling of the heat flux with system size a/ρg reported earlier is explained, along with the approximate size at which the transition occurs. The larger systems have transport close to that predicted by the simple standard estimates for transport by drift-wave turbulence (viz., Bohm or gyro-Bohm) in scaling with a/ρg, temperature, magnetic field, ion mass, safety factor, and minor radius, but lying much closer to Bohm, which seems the result better supported theoretically. The characteristic downshift in the spectrum observed previously in going from the linear to the turbulent phase is consistent with the numerically inferred coupling coefficients Mkpq of a reduced description of the system. An explanation of the downshift is given from the resemblance of the reduced system to the Hasegawa-Mima or Terry-Horton systems. These manifest an analogous downshift in slab geometry, and have Mkpq resembling those inferred from the gyrokinetic (GK) data.

  18. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E., E-mail: whitea@mit.edu; Howard, N. T.; Creely, A. J.

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and comparemore » with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.« less

  19. Recent gyrokinetic turbulence insights with GENE and direct comparison with experimental measurements

    NASA Astrophysics Data System (ADS)

    Goerler, Tobias

    2017-10-01

    Throughout the last years direct comparisons between gyrokinetic turbulence simulations and experimental measurements have been intensified substantially. Such studies are largely motivated by the urgent need for reliable transport predictions for future burning plasma devices and the associated necessity for validating the numerical tools. On the other hand, they can be helpful to assess the way a particular diagnostic experiences turbulence and provide ideas for further optimization and the physics that may not yet be accessible. Here, synthetic diagnostics, i.e. models that mimic the spatial and sometimes temporal response of the experimental diagnostic, play an important role. In the contribution at hand, we focus on recent gyrokinetic GENE simulations dedicated to ASDEX Upgrade L-mode plasmas and comparison with various turbulence measurements. Particular emphasis will be given to density fluctuation spectra which are experimentally accessible via Doppler reflectometry. A sophisticated synthetic diagnostic involving a fullwave code has recently been established and solves the long-lasting question on different spectral roll-overs in gyrokinetic and measured spectra as well as the potentially different power laws in the O- and X-mode signals. The demonstrated agreement furthermore extends the validation data base deep into spectral space and confirms a proper coverage of the turbulence cascade physics. The flux-matched GENE simulations are then used to study the sensitivity of the latter to the main microinstability drive and investigate the energetics at the various scales. Additionally, electron scale turbulence based modifications of the high-k power law spectra in such plasmas will be presented and their visibility in measurable signals be discussed.

  20. Energetically consistent collisional gyrokinetics

    DOE PAGES

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-30

    Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  1. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, T. F.; Lawrence Livermore National Laboratory, Livermore, California 94550; Xu, X. Q.

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan basedmore » on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.« less

  2. Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths

    NASA Astrophysics Data System (ADS)

    Monreal, Pedro; Calvo, Iván; Sánchez, Edilberto; Parra, Félix I.; Bustos, Andrés; Könies, Axel; Kleiber, Ralf; Görler, Tobias

    2016-04-01

    In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations performed with the Gene and EUTERPE codes. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.

    Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less

  4. Equilibrium Spline Interface (ESI) for magnetic confinement codes

    NASA Astrophysics Data System (ADS)

    Li, Xujing; Zakharov, Leonid E.

    2017-12-01

    A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium codes and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its irreducible set of equilibrium data consists of three (in the 2-D case with occasionally one extra in the 3-D case) functions of coordinates and four 1-D radial profiles together with their first and mixed derivatives. The C reconstruction routines, accessible also from FORTRAN, allow the calculation of basis functions and their first derivatives at any position inside the plasma and in its vicinity. After this all vector fields and geometric coefficients, required for the above mentioned types of codes, can be calculated using only algebraic operations with no further interpolation or differentiation.

  5. Gyrokinetic magnetohydrodynamics and the associated equilibria

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-01

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.

  6. Modeling of ion orbit loss and intrinsic toroidal rotation with the COGENT code

    NASA Astrophysics Data System (ADS)

    Dorf, M.; Dorr, M.; Cohen, R.; Rognlien, T.; Hittinger, J.

    2014-10-01

    We discuss recent advances in cross-separatrix neoclassical transport simulations with COGENT, a continuum gyro-kinetic code being developed by the Edge Simulation Laboratory (ESL) collaboration. The COGENT code models the axisymmetric transport properties of edge plasmas including the effects of nonlinear (Fokker-Planck) collisions and a self-consistent electrostatic potential. Our recent work has focused on studies of ion orbit loss and the associated toroidal rotation driven by this mechanism. The results of the COGENT simulations are discussed and analyzed for the parameters of the DIII-D experiment. Work performed for USDOE at LLNL under Contract DE-AC52-07NA27344.

  7. Advanced Discontinuous Galerkin Algorithms and First Open-Field Line Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Hakim, A.; Shi, E. L.

    2016-10-01

    New versions of Discontinuous Galerkin (DG) algorithms have interesting features that may help with challenging problems of higher-dimensional kinetic problems. We are developing the gyrokinetic code Gkeyll based on DG. DG also has features that may help with the next generation of Exascale computers. Higher-order methods do more FLOPS to extract more information per byte, thus reducing memory and communications costs (which are a bottleneck at exascale). DG uses efficient Gaussian quadrature like finite elements, but keeps the calculation local for the kinetic solver, also reducing communication. Sparse grid methods might further reduce the cost significantly in higher dimensions. The inner product norm can be chosen to preserve energy conservation with non-polynomial basis functions (such as Maxwellian-weighted bases), which can be viewed as a Petrov-Galerkin method. This allows a full- F code to benefit from similar Gaussian quadrature as used in popular δf gyrokinetic codes. Consistent basis functions avoid high-frequency numerical modes from electromagnetic terms. We will show our first results of 3 x + 2 v simulations of open-field line/SOL turbulence in a simple helical geometry (like Helimak/TORPEX), with parameters from LAPD, TORPEX, and NSTX. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  8. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouot, T.; Gravier, E.; Reveille, T.

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of themore » temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.« less

  9. The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.

    2015-02-15

    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradientmore » is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.« less

  10. Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q; Belli, E; Bodi, K

    We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependencemore » of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.« less

  11. Gyrokinetic Simulations with External Resonant Magnetic Perturbations: Island Torque and Nonambipolar Transport with Rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).

  12. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  13. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE PAGES

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  14. Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers

    DOE PAGES

    Wang, Bei; Ethier, Stephane; Tang, William; ...

    2017-06-29

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less

  15. Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bei; Ethier, Stephane; Tang, William

    The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less

  16. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team

    2018-05-01

    Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥<1.4 cm-1, kr<3.5 cm-1 ( k⊥ρs<0.28 and krρs<0.7 ). The phase angle between turbulent temperature and density fluctuations, αnT, has also been measured by using an ECE radiometer coupled to a reflectometer along the same line of sight. These quantities are used simultaneously to constrain a set of ion-scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.

  17. Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storelli, A., E-mail: alexandre.storelli@lpp.polytechnique.fr; Vermare, L.; Hennequin, P.

    2015-06-15

    In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is detected and identified with the Doppler backscattering technique. Observations are compared to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM frequency in experiments is lower than predicted by simulation and theory. Moreover, the disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscillations have been characterized with filtering techniques, such as the Hilbert-Huang transform. When comparing this dynamical behaviour between experiments and simulation, the probability density function of GAM amplitude and the burst autocorrelation timemore » are found to be remarkably similar. In the simulation, where the radial profile of GAM frequency is continuous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could influence the burst autocorrelation time.« less

  18. Nonlinear Full-f Edge Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Dimits, A. M.; Umansky, M. V.

    2008-11-01

    TEMPEST is a nonlinear full-f 5D electrostatic gyrokinetic code for simulations of neoclassical and turbulent transport for tokamak plasmas. Given an initial density perturbation, 4D TEMPEST simulations show that the kinetic GAM exists in the edge in the form of outgoing waves [1], its radial scale is set by plasma profiles, and the ion temperature inhomogeneity is necessary for GAM radial propagation. From an initial Maxwellian distribution with uniform poloidal profiles on flux surfaces, the 5D TEMPEST simulations in a flux coordinates with Boltzmann electron model in a circular geometry show the development of neoclassical equilibrium, the generation of the neoclassical electric field due to neoclassical polarization, and followed by a growth of instability due to the spatial gradients. 5D TEMPEST simulations of kinetic GAM turbulent generation, radial propagation, and its impact on transport will be reported. [1] X. Q. Xu, Phys. Rev. E., 78 (2008).

  19. Improvements of the particle-in-cell code EUTERPE for petascaling machines

    NASA Astrophysics Data System (ADS)

    Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Kleiber, Ralf; Castejón, Francisco; Cela, José M.

    2011-09-01

    In the present work we report some performance measures and computational improvements recently carried out using the gyrokinetic code EUTERPE (Jost, 2000 [1] and Jost et al., 1999 [2]), which is based on the general particle-in-cell (PIC) method. The scalability of the code has been studied for up to sixty thousand processing elements and some steps towards a complete hybridization of the code were made. As a numerical example, non-linear simulations of Ion Temperature Gradient (ITG) instabilities have been carried out in screw-pinch geometry and the results are compared with earlier works. A parametric study of the influence of variables (step size of the time integrator, number of markers, grid size) on the quality of the simulation is presented.

  20. Gyrokinetic magnetohydrodynamics and the associated equilibria

    DOE PAGES

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-27

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee, and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, Φ, and the vector potential, A, and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when Φ → 0 and A becomes constant in time, which, in turn, givesmore » ∇· (J ∥+J ⊥) = 0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. In conclusion, these gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.« less

  1. Gyrokinetic magnetohydrodynamics and the associated equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee, and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, Φ, and the vector potential, A, and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when Φ → 0 and A becomes constant in time, which, in turn, givesmore » ∇· (J ∥+J ⊥) = 0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. In conclusion, these gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.« less

  2. Optimizing fusion PIC code performance at scale on Cori Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskela, T. S.; Deslippe, J.

    In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale wellmore » up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.« less

  3. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE PAGES

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...

    2017-01-24

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  4. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  5. Suppressing Electron Turbulence and Triggering Internal Transport Barriers with Reversed Magnetic Shear in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Peterson, Jayson Luc

    2011-10-01

    Observations in the National Spherical Torus Experiment (NSTX) have found electron temperature gradients that greatly exceed the linear threshold for the onset for electron temperature gradient-driven (ETG) turbulence. These discharges, deemed electron internal transport barriers (e-ITBs), coincide with a reversal in the shear of the magnetic field and with a reduction in electron-scale density fluctuations, qualitatively consistent with earlier gyrokinetic predictions. To investigate this phenomenon further, we numerically model electron turbulence in NSTX reversed-shear plasmas using the gyrokinetic turbulence code GYRO. These first-of-a-kind nonlinear gyrokinetic simulations of NSTX e-ITBs confirm that reversing the magnetic shear can allow the plasma to reach electron temperature gradients well beyond the critical gradient for the linear onset of instability. This effect is very strong, with the nonlinear threshold for significant transport approaching three times the linear critical gradient in some cases, in contrast with moderate shear cases, which can drive significant ETG turbulence at much lower gradients. In addition to the experimental implications of this upshifted nonlinear critical gradient, we explore the behavior of ETG turbulence during reversed shear discharges. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of NCCS at ORNL and NERSC at LBNL. M. Ono et al., Nucl. Fusion 40, 557 (2000).

  6. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    NASA Astrophysics Data System (ADS)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madduri, Kamesh; Im, Eun-Jin; Ibrahim, Khaled Z.

    The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this paper, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC’s key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broadmore » range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective GPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3–4.7× on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Finally, our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures.« less

  8. Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Chen, Yang; Parker, Scott

    2017-10-01

    A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.

  9. Database-driven web interface automating gyrokinetic simulations for validation

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2010-11-01

    We are developing a web interface to connect plasma microturbulence simulation codes with experimental data. The website automates the preparation of gyrokinetic simulations utilizing plasma profile and magnetic equilibrium data from TRANSP analysis of experiments, read from MDSPLUS over the internet. This database-driven tool saves user sessions, allowing searches of previous simulations, which can be restored to repeat the same analysis for a new discharge. The website includes a multi-tab, multi-frame, publication quality java plotter Webgraph, developed as part of this project. Input files can be uploaded as templates and edited with context-sensitive help. The website creates inputs for GS2 and GYRO using a well-tested and verified back-end, in use for several years for the GS2 code [D. R. Ernst et al., Phys. Plasmas 11(5) 2637 (2004)]. A centralized web site has the advantage that users receive bug fixes instantaneously, while avoiding the duplicated effort of local compilations. Possible extensions to the database to manage run outputs, toward prototyping for the Fusion Simulation Project, are envisioned. Much of the web development utilized support from the DoE National Undergraduate Fellowship program [e.g., A. Suarez and D. R. Ernst, http://meetings.aps.org/link/BAPS.2005.DPP.GP1.57.

  10. Verification of GENE and GYRO with L-mode and I-mode plasmas in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Howard, N. T.; White, A. E.; Creely, A. J.

    2018-04-01

    Verification comparisons are carried out for L-mode and I-mode plasma conditions in Alcator C-Mod. We compare linear and nonlinear ion-scale calculations by the gyrokinetic codes GENE and GYRO to each other and to the experimental power balance analysis. The two gyrokinetic codes' linear growth rates and real frequencies are in good agreement throughout all the ion temperature gradient mode branches and most of the trapped electron mode branches of the kyρs spectra at r/a = 0.65, 0.7, and 0.8. The shapes of the toroidal mode spectra of heat fluxes in nonlinear simulations are very similar for kyρs ≤ 0.5, but in most cases GENE has a relatively higher heat flux than GYRO at higher mode numbers. The ratio of ion to electron heat flux is similar in the two codes' simulations, but the heat fluxes themselves do not agree in almost all cases. In the I-mode regime, GENE's heat fluxes are ˜3 times those from GYRO, and they are ˜60%-100% higher than GYRO in the L-mode conditions. The GYRO under-prediction of Qe is much reduced in GENE's L-mode simulations, and it is eliminated in the I-mode simulations. This largely improved agreement with the experimental electron heat flux is offset, however, by the large overshoot of GENE's ion heat fluxes, which are 2-3 times the experimental level, and its electron heat flux overshoot at r/a = 0.80 in the I-mode. Rotation effects can explain part of the difference between the two codes' predictions, but very significant differences remain in simulations without any rotation effects.

  11. Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Citrin, J.; Giroud, C.; Lerche, E.; Sozzi, C.; Taylor, D.; Tsalas, M.; Van Eester, D.; contributors, JET

    2018-02-01

    A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH power was deposited on- and off-axis in ({\\hspace{0pt}}3He)-D minority scheme in order to have a scan of local heat flux at constant total power with and without N injection. Experimentally, the ion temperature profiles are more peaked for similar heat fluxes when N is injected in the plasma. Gyro-kinetic simulations using the GENE code indicate that a stabilization of Ion Temperature Gradient driven turbulent transport due to main ion dilution and to changes in Te/Ti and s/q is responsible of the enhanced peaking. The quasi-linear models TGLF and QuaLiKiz are tested against the experimental and the gyro-kinetic results.

  12. Comparing Turbulence Simulation with Experiment in DIII-D

    NASA Astrophysics Data System (ADS)

    Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.

    2000-10-01

    Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick, P. Xanthopoulos and A.H. Boozer

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.

  14. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDACmore » GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.« less

  15. Gyrokinetic equations and full f solution method based on Dirac's constrained Hamiltonian and inverse Kruskal iteration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heikkinen, J. A.; Nora, M.

    2011-02-15

    Gyrokinetic equations of motion, Poisson equation, and energy and momentum conservation laws are derived based on the reduced-phase-space Lagrangian and inverse Kruskal iteration introduced by Pfirsch and Correa-Restrepo [J. Plasma Phys. 70, 719 (2004)]. This formalism, together with the choice of the adiabatic invariant J= as one of the averaging coordinates in phase space, provides an alternative to the standard gyrokinetics. Within second order in gyrokinetic parameter, the new equations do not show explicit ponderomotivelike or polarizationlike terms. Pullback of particle information with an iterated gyrophase and field dependent gyroradius function from the gyrocenter position defined by gyroaveraged coordinates allowsmore » direct numerical integration of the gyrokinetic equations in particle simulation of the field and particles with full distribution function. As an example, gyrokinetic systems with polarization drift either present or absent in the equations of motion are considered.« less

  16. Differential formulation of the gyrokinetic Landau operator

    DOE PAGES

    Hirvijoki, Eero; Brizard, Alain J.; Pfefferlé, David

    2017-01-05

    Subsequent to the recent rigorous derivation of an energetically consistent gyrokinetic collision operator in the so-called Landau representation, this work investigates the possibility of finding a differential formulation of the gyrokinetic Landau collision operator. It is observed that, while a differential formulation is possible in the gyrokinetic phase space, reduction of the resulting system of partial differential equations to five dimensions via gyroaveraging poses a challenge. Finally, based on the present work, it is likely that the gyrocentre analogues of the Rosenbluth–MacDonald–Judd potential functions must be kept gyroangle dependent.

  17. XGC developments for a more efficient XGC-GENE code coupling

    NASA Astrophysics Data System (ADS)

    Dominski, Julien; Hager, Robert; Ku, Seung-Hoe; Chang, Cs

    2017-10-01

    In the Exascale Computing Program, the High-Fidelity Whole Device Modeling project initially aims at delivering a tightly-coupled simulation of plasma neoclassical and turbulence dynamics from the core to the edge of the tokamak. To permit such simulations, the gyrokinetic codes GENE and XGC will be coupled together. Numerical efforts are made to improve the numerical schemes agreement in the coupling region. One of the difficulties of coupling those codes together is the incompatibility of their grids. GENE is a continuum grid-based code and XGC is a Particle-In-Cell code using unstructured triangular mesh. A field-aligned filter is thus implemented in XGC. Even if XGC originally had an approximately field-following mesh, this field-aligned filter permits to have a perturbation discretization closer to the one solved in the field-aligned code GENE. Additionally, new XGC gyro-averaging matrices are implemented on a velocity grid adapted to the plasma properties, thus ensuring same accuracy from the core to the edge regions.

  18. Edge-relevant plasma simulations with the continuum code COGENT

    NASA Astrophysics Data System (ADS)

    Dorf, M.; Dorr, M.; Ghosh, D.; Hittinger, J.; Rognlien, T.; Cohen, R.; Lee, W.; Schwartz, P.

    2016-10-01

    We describe recent advances in cross-separatrix and other edge-relevant plasma simulations with COGENT, a continuum gyro-kinetic code being developed by the Edge Simulation Laboratory (ESL) collaboration. The distinguishing feature of the COGENT code is its high-order finite-volume discretization methods, which employ arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. This paper discusses the 4D (axisymmetric) electrostatic version of the code, and the presented topics include: (a) initial simulations with kinetic electrons and development of reduced fluid models; (b) development and application of implicit-explicit (IMEX) time integration schemes; and (c) conservative modeling of drift-waves and the universal instability. Work performed for USDOE, at LLNL under contract DE-AC52-07NA27344 and at LBNL under contract DE-AC02-05CH11231.

  19. Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment.

    PubMed

    Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H

    2008-08-15

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  20. Identifying microturbulence regimes in a TCV discharge making use of physical constraints on particle and heat fluxes

    DOE PAGES

    Mariani, Alberto; Brunner, S.; Dominski, J.; ...

    2018-01-17

    Reducing the uncertainty on physical input parameters derived from experimental measurements is essential towards improving the reliability of gyrokinetic turbulence simulations. This can be achieved by introducing physical constraints. Amongst them, the zero particle flux condition is considered here. A first attempt is also made to match as well the experimental ion/electron heat flux ratio. This procedure is applied to the analysis of a particular Tokamak à Configuration Variable discharge. A detailed reconstruction of the zero particle flux hyper-surface in the multi-dimensional physical parameter space at fixed time of the discharge is presented, including the effect of carbon as themore » main impurity. Both collisionless and collisional regimes are considered. Hyper-surface points within the experimental error bars are found. In conclusion, the analysis is done performing gyrokinetic simulations with the local version of the GENE code, computing the fluxes with a Quasi-Linear (QL) model and validating the QL results with non-linear simulations in a subset of cases.« less

  1. Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.

    2016-04-01

    Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.

  2. Towards Multiscale Interactions Between Tearing Modes and Microturbulence

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.

    2017-10-01

    Work on the Madison Symmetric Torus Reversed-Field Pinch (RFP) has shown that large-scale tearing modes present in standard operation are highly detrimental to confinement. These tearing modes, even when reduced in improved confinement regimes of operation, significantly affect zonal flow activity and play a large role in setting microturbulent-induced transport levels. Previous gyrokinetic work has shown that a small but finite tearing fluctuation amplitude is necessary to produce transport values in agreement with experimental observation. This has previously been implemented via an ad-hoc, constant-in-time A∥ perturbation. This work details self-consistent modeling of tearing fluctuations in the RFP using the Gene code via the inclusion of a current gradient drive incorporated into the background distribution function. Tearing mode growth rates calculated from gyrokinetic simulations are benchmarked with results from fluid theory. Additionally, first results from multiscale Gene simulations describing tearing mode interactions with RFP microturbulence are presented. This work is supported by the U.S. Department of Energy, Grant No. DE-FG02-85ER-53121.

  3. Identifying microturbulence regimes in a TCV discharge making use of physical constraints on particle and heat fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, Alberto; Brunner, S.; Dominski, J.

    Reducing the uncertainty on physical input parameters derived from experimental measurements is essential towards improving the reliability of gyrokinetic turbulence simulations. This can be achieved by introducing physical constraints. Amongst them, the zero particle flux condition is considered here. A first attempt is also made to match as well the experimental ion/electron heat flux ratio. This procedure is applied to the analysis of a particular Tokamak à Configuration Variable discharge. A detailed reconstruction of the zero particle flux hyper-surface in the multi-dimensional physical parameter space at fixed time of the discharge is presented, including the effect of carbon as themore » main impurity. Both collisionless and collisional regimes are considered. Hyper-surface points within the experimental error bars are found. In conclusion, the analysis is done performing gyrokinetic simulations with the local version of the GENE code, computing the fluxes with a Quasi-Linear (QL) model and validating the QL results with non-linear simulations in a subset of cases.« less

  4. Gyrokinetic Studies of Turbulence Reduction with Reverse Shear ETG Transport Barriers or Lithium Walls

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Peterson, J. L.; Granstedt, E. M.; Bell, R.; Guttenfelder, W.; Kaye, S.; Leblanc, B.; Mikkelsen, D. R.; Smith, D. R.; Yuh, H. Y.; Candy, J.

    2012-03-01

    The National Spherical Torus Experiment (NSTX) can achieve high electron confinement regimes that are super-critically unstable to the electron temperature gradient (ETG) instability. These electron internal transport barriers (e-ITBs) occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO, the first nonlinear ETG simulations of NSTX e-ITB plasmas demonstrate reduced turbulence consistent with this observation. This is qualitatively consistent with a secondary instability picture of reduced ETG turbulence at negative shear (Jenko and Dorland PRL 2002). Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show that ETG-driven turbulence outside of the barrier is large enough to be experimentally relevant, but cannot propagate very far into the barrier. We also use GYRO to study turbulence in regimes that might be expected in the Lithium Torus eXperiment (LTX). While lithium has experimentally been shown to raise the edge temperature and improve performance, there can still be some turbulence from density-gradient-driven trapped electron modes, and a temperature pinch is found in some cases. (Supported by DOE.)

  5. Gyrokinetic global three-dimensional simulations of linear ion-temperature-gradient modes in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Kornilov, V.; Kleiber, R.; Hatzky, R.; Villard, L.; Jost, G.

    2004-06-01

    Using a global approach for solving an ion gyrokinetic model in three-dimensional geometry the linear stability and structure of ion-temperature-gradient (ITG) modes in the configuration of the stellarator Wendelstein 7-X (W7-X) [G. Grieger et al., in Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525.] is studied. The time evolution of electrostatic perturbations is solved as an initial value problem with a particle-in-cell δf method. The vacuum magnetohydrodynamic equilibrium is calculated by the code VMEC [S. P. Hirshman and D. K. Lee, Comput. Phys. Commun. 39, 161 (1986)]. In this work the most unstable ITG mode in W7-X is presented. This mode has a pronounced ballooning-type structure; however, it is not tokamak-like. A driving mechanism analysis using the energy transfer shows that the contribution of curvature effects is non-negligible. The growth rate and the mixing-length estimate for transport are compared with those for ITG modes found in axisymmetric geometries.

  6. A Nonlinear Gyrokinetic Vlasov-Maxwell System for High-frequency Simulation in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zhang, Wenlu; Lin, Jingbo; Li, Ding; Dong, Chao

    2016-10-01

    A nonlinear gyrokinetic Vlasov equation is derived through the Lie-perturbation method to the Lagrangian and Hamiltonian systems in extanded phase space. The gyrokinetic Maxwell equations are derived in terms of the moments of gyrocenter phase-space distribution through the push-forward and pull-back representations, where the polarization and magnetization effects of gyrocenter are retained. The goal of this work is to construct a global nonlinear gyrokinetic vlasov-maxwell system for high-frequency simulation in toroidal geometry relevent for ion cyclotron range of frequencies (ICRF) waves heating and lower hybrid wave current driven (LHCD). Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.

  7. Gyrokinetic simulation of ITG modes in a three-mode coupling model

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Lee, W. W.

    2004-11-01

    A three-mode coupling model of ITG modes with adiabatic electrons is studied both analytically and numerically in 2-dimensional slab geometry using the gyrokinetic formalism. It can be shown analytically that the (quasilinear) saturation amplitude of the waves in the system should be enhanced by the inclusion of the parallel velocity nonlinearity in the governing gyrokinetic equation. The effect of this (frequently neglected) nonlinearity on the steady-state transport properties of the plasma is studied numerically using standard gyrokinetic particle simulation techniques. The balance [1] between various steady-state transport properties of the model (particle and heat flux, entropy production, and collisional dissipation) is examined. Effects resulting from the inclusion of nonadiabatic electrons in the model are also considered numerically, making use of the gyrokinetic split-weight scheme [2] in the simulations. [1] W. W. Lee and W. M. Tang, Phys. Fluids 31, 612 (1988). [2] I. Manuilskiy and W. W. Lee, Phys. Plasmas 7, 1381 (2000).

  8. Gyroaveraging operations using adaptive matrix operators

    NASA Astrophysics Data System (ADS)

    Dominski, Julien; Ku, Seung-Hoe; Chang, Choong-Seock

    2018-05-01

    A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidal equilibrium has been studied. A successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viktor K. Decyk

    The UCLA work on this grant was to design and help implement an object-oriented version of the GTC code, which is written in Fortran90. The GTC code is the main global gyrokinetic code used in this project, and over the years multiple, incompatible versions have evolved. The reason for this effort is to allow multiple authors to work together on GTC and to simplify future enhancements to GTC. The effort was designed to proceed incrementally. Initially, an upper layer of classes (derived types and methods) was implemented which called the original GTC code 'under the hood.' The derived types pointedmore » to data in the original GTC code, and the methods called the original GTC subroutines. The original GTC code was modified only very slightly. This allowed one to define (and refine) a set of classes which described the important features of the GTC code in a new, more abstract way, with a minimum of implementation. Furthermore, classes could be added one at a time, and at the end of the each day, the code continued to work correctly. This work was done in close collaboration with Y. Nishimura from UC Irvine and Stefan Ethier from PPPL. Ten classes were ultimately defined and implemented: gyrokinetic and drift kinetic particles, scalar and vector fields, a mesh, jacobian, FLR, equilibrium, interpolation, and particles species descriptors. In the second state of this development, some of the scaffolding was removed. The constructors in the class objects now allocated the data and the array data in the original GTC code was removed. This isolated the components and now allowed multiple instantiations of the objects to be created, in particular, multiple ion species. Again, the work was done incrementally, one class at a time, so that the code was always working properly. This work was done in close collaboration with Y. Nishimura and W. Zhang from UC Irvine and Stefan Ethier from PPPL. The third stage of this work was to integrate the capabilities of the various versions of the GTC code into one flexible and extensible version. To do this, we developed a methodology to implement Design Patterns in Fortran90. Design Patterns are abstract solutions to generic programming problems, which allow one to handle increased complexity. This work was done in collaboration with Henry Gardner, a computer scientist (and former plasma physicist) from the Australian National University. As an example, the Strategy Pattern is being used in GTC to support multiple solvers. This new code is currently being used in the study of energetic particles. A document describing the evolution of the GTC code to this new object-oriented version is available to users of GTC.« less

  10. Gyrokinetic Magnetohydrodynamics and the Associated Equilibrium

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-10-01

    A proposed scheme for the calculations of gyrokinetic MHD and its associated equilibrium is discussed related a recent paper on the subject. The scheme is based on the time-dependent gyrokinetic vorticity equation and parallel Ohm's law, as well as the associated gyrokinetic Ampere's law. This set of equations, in terms of the electrostatic potential, ϕ, and the vector potential, ϕ , supports both spatially varying perpendicular and parallel pressure gradients and their associated currents. The MHD equilibrium can be reached when ϕ -> 0 and A becomes constant in time, which, in turn, gives ∇ . (J|| +J⊥) = 0 and the associated magnetic islands. Examples in simple cylindrical geometry will be given. The present work is partially supported by US DoE Grant DE-AC02-09CH11466.

  11. Electromagnetic nonlinear gyrokinetics with polarization drift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duthoit, F.-X.; Hahm, T. S., E-mail: tshahm@snu.ac.kr; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen,more » Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.« less

  12. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  13. Implementation of an anomalous radial transport model for continuum kinetic edge codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2007-11-01

    Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.

  14. Multi-scale gyrokinetic simulation of Alcator C-Mod tokamak discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, N. T., E-mail: nthoward@psfc.mit.edu; White, A. E.; Greenwald, M.

    2014-03-15

    Alcator C-Mod tokamak discharges have been studied with nonlinear gyrokinetic simulation simultaneously spanning both ion and electron spatiotemporal scales. These multi-scale simulations utilized the gyrokinetic model implemented by GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and the approximation of reduced electron mass (μ = (m{sub D}/m{sub e}){sup .5} = 20.0) to qualitatively study a pair of Alcator C-Mod discharges: a low-power discharge, previously demonstrated (using realistic mass, ion-scale simulation) to display an under-prediction of the electron heat flux and a high-power discharge displaying agreement with both ion and electron heat flux channels [N. T. Howard et al.,more » Nucl. Fusion 53, 123011 (2013)]. These multi-scale simulations demonstrate the importance of electron-scale turbulence in the core of conventional tokamak discharges and suggest it is a viable candidate for explaining the observed under-prediction of electron heat flux. In this paper, we investigate the coupling of turbulence at the ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron (k{sub θ}ρ{sub e}∼O(1.0)) scales for experimental plasma conditions both exhibiting strong (high-power) and marginally stable (low-power) low-k (k{sub θ}ρ{sub s} < 1.0) turbulence. It is found that reduced mass simulation of the plasma exhibiting marginally stable low-k turbulence fails to provide even qualitative insight into the turbulence present in the realistic plasma conditions. In contrast, multi-scale simulation of the plasma condition exhibiting strong turbulence provides valuable insight into the coupling of the ion and electron scales.« less

  15. Fluctuations, noise, and numerical methods in gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas Grant

    In this thesis, the role of the "marker weight" (or "particle weight") used in gyrokinetic particle-in-cell (PIC) simulations is explored. Following a review of the foundations and major developments of gyrokinetic theory, key concepts of the Monte Carlo methods which form the basis for PIC simulations are set forth. Consistent with these methods, a Klimontovich representation for the set of simulation markers is developed in the extended phase space {R, v||, v ⊥, W, P} (with the additional coordinates representing weight fields); clear distinctions are consequently established between the marker distribution function and various physical distribution functions (arising from diverse moments of the marker distribution). Equations describing transport in the simulation are shown to be easily derivable using the formalism. The necessity of a two-weight model for nonequilibrium simulations is demonstrated, and a simple method for calculating the second (background-related) weight is presented. Procedures for arbitrary marker loading schemes in gyrokinetic PIC simulations are outlined; various initialization methods for simulations are compared. Possible effects of inadequate velocity-space resolution in gyrokinetic continuum simulations are explored. The "partial-f" simulation method is developed and its limitations indicated. A quasilinear treatment of electrostatic drift waves is shown to correctly predict nonlinear saturation amplitudes, and the relevance of the gyrokinetic fluctuation-dissipation theorem in assessing the effects of discrete-marker-induced statistical noise on the resulting marginally stable states is demonstrated.

  16. Electron Scale Turbulence and Transport in an NSTX H-mode Plasma Using a Synthetic Diagnostic for High-k Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Ruiz Ruiz, Juan; Guttenfelder, Walter; Loureiro, Nuno; Ren, Yang; White, Anne; MIT/PPPL Collaboration

    2017-10-01

    Turbulent fluctuations on the electron gyro-radius length scale are thought to cause anomalous transport of electron energy in spherical tokamaks such as NSTX and MAST in some parametric regimes. In NSTX, electron-scale turbulence is studied through a combination of experimental measurements from a high-k scattering system and gyrokinetic simulations. Until now most comparisons between experiment and simulation of electron scale turbulence have been qualitative, with recent work expanding to more quantitative comparisons via synthetic diagnostic development. In this new work, we propose two alternate, complementary ways to perform a synthetic diagnostic using the gyrokinetic code GYRO. The first approach builds on previous work and is based on the traditional selection of wavenumbers using a wavenumber filter, for which a new wavenumber mapping was implemented for general axisymmetric geometry. A second alternate approach selects wavenumbers in real-space to compute the power spectra. These approaches are complementary, and recent results from both synthetic diagnostic approaches applied to NSTX plasmas will be presented. Work supported by U.S. DOE contracts DE-AC02-09CH11466 and DE-AC02-05CH11231.

  17. Continuum Gyrokinetic Simulations of Turbulence in a Helical Model SOL with NSTX-type parameters

    NASA Astrophysics Data System (ADS)

    Hammett, G. W.; Shi, E. L.; Hakim, A.; Stoltzfus-Dueck, T.

    2017-10-01

    We have developed the Gkeyll code to carry out 3D2V full- F gyrokinetic simulations of electrostatic plasma turbulence in open-field-line geometries, using special versions of discontinuous-Galerkin algorithms to help with the computational challenges of the edge region. (Higher-order algorithms can also be helpful for exascale computing as they reduce the ratio of communications to computations.) Our first simulations with straight field lines were done for LAPD-type cases. Here we extend this to a helical model of an SOL plasma and show results for NSTX-type parameters. These simulations include the basic elements of a scrape-off layer: bad-curvature/interchange drive of instabilities, narrow sources to model plasma leaking from the core, and parallel losses with model sheath boundary conditions (our model allows currents to flow in and out of the walls). The formation of blobs is observed. By reducing the strength of the poloidal magnetic field, the heat flux at the divertor plate is observed to broaden. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  18. Gyrofluid turbulence models with kinetic effects

    NASA Astrophysics Data System (ADS)

    Dorland, W.; Hammett, G. W.

    1993-03-01

    Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u∥, T∥, and T⊥ along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived that may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau damping model [G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)], which is equivalent to a multipole approximation to the plasma dispersion function, extended to include finite Larmor radius effects (FLR). In particular, new dissipative, nonlinear terms are found that model the perpendicular phase mixing of the distribution function along contours of constant electrostatic potential. These ``FLR phase-mixing'' terms introduce a hyperviscositylike damping ∝k⊥2‖Φkk×k'‖, which should provide a physics-based damping mechanism at high k⊥ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three-dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory.

  19. Gyrokinetic simulations of DIII-D near-edge L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Neiser, Tom; Jenko, Frank; Carter, Troy; Schmitz, Lothar; Merlo, Gabriele; Told, Daniel; Banon Navarro, Alejandro; McKee, George; Yan, Zheng

    2017-10-01

    In order to understand the L-H transition, a good understanding of the L-mode edge region is necessary. We perform nonlinear gyrokinetic simulations of a DIII-D L-mode discharge with the GENE code in the near-edge, which we define as ρtor >= 0.8 . At ρ = 0.9 , ion-scale simulations reproduce experimental heat fluxes within the uncertainty of the experiment. At ρ = 0 . 8 , electron-scale simulations reproduce the experimental electron heat flux while ion-scale simulations do not reproduce the respective ion heat flux due to a strong poloidal zonal flow. However, we reproduce both electron and ion heat fluxes by increasing the local ion temperature gradient by 80 % . Local fitting to the CER data in the domain 0.7 <= ρ <= 0.9 is compatible with such an increase in ion temperature gradient within the error bars. Ongoing multi-scale simulations are investigating whether radial electron streamers could dampen the poloidal zonal flows at ρ = 0.8 and increase the radial ion-scale flux. Supported by U.S. DOE under Contract Numbers DE-FG02-08ER54984, DE-FC02-04ER54698, and DE-AC02-05CH11231.

  20. Effects of plasma shaping on nonlinear gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belli, E. A.; Hammett, G. W.; Dorland, W.

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W. M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on bothmore » the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of {chi}{approx}{kappa}{sup -1.5} or {kappa}{sup -2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.« less

  1. Gyroaveraging operations using adaptive matrix operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominski, Julien; Ku, Seung -Hoe; Chang, Choong -Seock

    A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidalmore » equilibrium has been studied. As a result, a successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.« less

  2. Gyroaveraging operations using adaptive matrix operators

    DOE PAGES

    Dominski, Julien; Ku, Seung -Hoe; Chang, Choong -Seock

    2018-05-17

    A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidalmore » equilibrium has been studied. As a result, a successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.« less

  3. Conservation Laws for Gyrokinetic Equations for Large Perturbations and Flows

    NASA Astrophysics Data System (ADS)

    Dimits, Andris

    2017-10-01

    Gyrokinetic theory has proved to be very useful for the understanding of magnetized plasmas, both to simplify analytical treatments and as a basis for efficient numerical simulations. Gyrokinetic theories were previously developed in two extended orderings that are applicable to large fluctuations and flows as may arise in the tokamak edge and scrapeoff layer. In the present work, we cast the resulting equations in a field-theoretical variational form, and derive, up to second order in the respective orderings, the associated global and local energy and (linear and toroidal) momentum conservation relations that result from Noether's theorem. The consequences of these for the various possible choices of numerical discretization used in gyrokinetic simulations are considered. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and supported by the U.S. DOE, OFES.

  4. Linear and nonlinear verification of gyrokinetic microstability codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravenec, R. V.; Candy, J.; Barnes, M.

    2011-12-15

    Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set ofmore » parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2[W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of the nonlinear fluxes without collisions. With collisions, the differences between the time-averaged fluxes are larger than the uncertainties defined as the oscillations of the fluxes, with the GS2 fluxes consistently larger (or more positive) than those from GYRO. However, the electrostatic fluxes are much smaller than those without collisions (the electromagnetic energy flux is negligible in both cases). In fact, except for the electron energy fluxes, the absolute magnitudes of the differences in fluxes with collisions are the same or smaller than those without. None of the fluxes exhibit large absolute differences between codes. Beyond these results, the specific linear and nonlinear benchmarks proposed here, as well as the underlying methodology, provide the basis for a wide variety of future verification efforts.« less

  5. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey B.; LoDestro, Lynda L.; Told, Daniel; Merlo, Gabriele; Ricketson, Lee F.; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey A. F.

    2018-05-01

    The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.

  6. Low-Frequency Microinstabilities in Rotating Tokamak Plasmas.

    NASA Astrophysics Data System (ADS)

    Artun, Mehmet

    1994-01-01

    Low-frequency drift-type microinstabilities have often been suggested as the leading candidates to account for the anomalously large transport; observed in tokamak plasmas. The effects of sheared equilibrium flows on this important class of instabilities is systematically investigated in the present thesis. In particular, the analysis is carried out in two parts. In order to gain some insight into the key elements of this problem, the first part deals with the stability properties of the kinetic ion temperature gradient mode under the influence of parallel and perpendicular shear flows in a simplified sheared magnetic slab geometry. The eigenmode analysis is performed using a shooting code for long-wavelength modes (k_|rho _{i} << 1), and an integral eigenmode code for short-wavelength modes (k_ |rho_{i} ~ 1). Numerical results are cross-checked with analytical estimates in the fluid regime. While the differential analysis is mostly limited to ground state modes of the system--due to the requirement that the average perpendicular wavenumber be small--the integral eigenmode code has been used to calculate higher radial eigenmodes with confidence. New features observed through the introduction of shear flows are discussed. In the second part we present the shear flow generalization of the nonlinear electromagnetic gyrokinetic equation for realistic toroidal geometry. In accordance with the most natural choice for such studies, the coordinate frame is chosen to be shifted in velocity space and unchanged in configuration space. The natural equilibrium constraints of the toroidal problem limits the choice of the flow profile to that in which the angular velocity is a function of the flux surface. The general form of the gyrokinetic equation obtained is then used to derive the two-dimensional linear electrostatic eigenmode equation in circular toroidal geometry including trapped particle effects. In addition to magnetic trapping, electrostatic and centrifugal trapping are also found to play an important role here. A modified version of a finite element code is utilized to analyze shear flow effects on the trapped ion mode (TIM) in the long wavelength limit. Numerical results for fully coupled as well as single poloidal harmonic cases are presented. Implications of the results obtained in the present investigation are discussed and suggestions are given for future studies.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas

    The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning.

  8. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X. Q.; Xiong, Z.; Nevins, W. M.

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  9. Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.

    2008-05-01

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  10. TEMPEST simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals.

    PubMed

    Xu, X Q; Xiong, Z; Gao, Z; Nevins, W M; McKee, G R

    2008-05-30

    The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.

  11. Impact of energetic-particle-driven geodesic acoustic modes on turbulence.

    PubMed

    Zarzoso, D; Sarazin, Y; Garbet, X; Dumont, R; Strugarek, A; Abiteboul, J; Cartier-Michaud, T; Dif-Pradalier, G; Ghendrih, Ph; Grandgirard, V; Latu, G; Passeron, C; Thomine, O

    2013-03-22

    The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs, with the subsequent destruction of the transport barrier. This scenario could be particularly critical in those plasmas, such as burning plasmas, exhibiting a rich population of suprathermal particles capable of exciting energetic modes.

  12. Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W. W.

    2016-07-15

    The effort to obtain a set of MagnetoHydroDynamic (MHD) equations for a magnetized collisionless plasma was started nearly 60 years ago by Chew et al. [Proc. R. Soc. London, Ser. A 236(1204), 112–118 (1956)]. Many attempts have been made ever since. Here, we will show the derivation of a set of these equations from the gyrokinetic perspective, which we call it gyrokinetic MHD, and it is different from the conventional ideal MHD. However, this new set of equations still has conservation properties and, in the absence of fluctuations, recovers the usual MHD equilibrium. Furthermore, the resulting equations allow for themore » plasma pressure balance to be further modified by finite-Larmor-radius effects in regions with steep pressure gradients. The present work is an outgrowth of the paper on “Alfven Waves in Gyrokinetic Plasmas” by Lee and Qin [Phys. Plasmas 10, 3196 (2003)].« less

  13. Cross-verification of the GENE and XGC codes in preparation for their coupling

    NASA Astrophysics Data System (ADS)

    Jenko, Frank; Merlo, Gabriele; Bhattacharjee, Amitava; Chang, Cs; Dominski, Julien; Ku, Seunghoe; Parker, Scott; Lanti, Emmanuel

    2017-10-01

    A high-fidelity Whole Device Model (WDM) of a magnetically confined plasma is a crucial tool for planning and optimizing the design of future fusion reactors, including ITER. Aiming at building such a tool, in the framework of the Exascale Computing Project (ECP) the two existing gyrokinetic codes GENE (Eulerian delta-f) and XGC (PIC full-f) will be coupled, thus enabling to carry out first principle kinetic WDM simulations. In preparation for this ultimate goal, a benchmark between the two codes is carried out looking at ITG modes in the adiabatic electron limit. This verification exercise is also joined by the global Lagrangian PIC code ORB5. Linear and nonlinear comparisons have been carried out, neglecting for simplicity collisions and sources. A very good agreement is recovered on frequency, growth rate and mode structure of linear modes. A similarly excellent agreement is also observed comparing the evolution of the heat flux and of the background temperature profile during nonlinear simulations. Work supported by the US DOE under the Exascale Computing Project (17-SC-20-SC).

  14. Analysis of JT-60SA operational scenarios

    NASA Astrophysics Data System (ADS)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  15. Metriplectic Gyrokinetics and Discretization Methods for the Landau Collision Integral

    NASA Astrophysics Data System (ADS)

    Hirvijoki, Eero; Burby, Joshua W.; Kraus, Michael

    2017-10-01

    We present two important results for the kinetic theory and numerical simulation of warm plasmas: 1) We provide a metriplectic formulation of collisional electrostatic gyrokinetics that is fully consistent with the First and Second Laws of Thermodynamics. 2) We provide a metriplectic temporal and velocity-space discretization for the particle phase-space Landau collision integral that satisfies the conservation of energy, momentum, and particle densities to machine precision, as well as guarantees the existence of numerical H-theorem. The properties are demonstrated algebraically. These two result have important implications: 1) Numerical methods addressing the Vlasov-Maxwell-Landau system of equations, or its reduced gyrokinetic versions, should start from a metriplectic formulation to preserve the fundamental physical principles also at the discrete level. 2) The plasma physics community should search for a metriplectic reduction theory that would serve a similar purpose as the existing Lagrangian and Hamiltonian reduction theories do in gyrokinetics. The discovery of metriplectic formulation of collisional electrostatic gyrokinetics is strong evidence in favor of such theory and, if uncovered, the theory would be invaluable in constructing reduced plasma models. Supported by U.S. DOE Contract Nos. DE-AC02-09-CH11466 (EH) and DE-AC05-06OR23100 (JWB) and by European Union's Horizon 2020 research and innovation Grant No. 708124 (MK).

  16. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    NASA Astrophysics Data System (ADS)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  17. Collisional Ion and Electron Scale Gyrokinetic Simulations in the Tokamak Pedestal

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.; Snyder, P. B.

    2016-10-01

    A new gyrokinetic solver, CGYRO, has been developed for precise studies of high collisionality regimes, such as the H-mode pedestal and L-mode edge. Building on GYRO and NEO, CGYRO uses the same velocity-space coordinates as NEO to optimize the accuracy of the collision dynamics and allow for advanced operators beyond the standard Lorentz pitch-angle scattering model. These advanced operators include energy diffusion and finite-FLR collisional effects. The code is optimized for multiscale (coupled electron and ion turbulence scales) simulations, employing a new spatial discretization and array distribution scheme that targets scalability on next-generation (exascale) HPC systems. In this work, CGYRO is used to study the complex spectrum of modes in the pedestal region. The onset of the linear KBM with full collisional effects is assessed to develop an improved KBM/RBM model for EPED. The analysis is extended to high k to explore the role of electron-scale (ETG-range) physics. Comparisons with new analytic collisional theories are made. Inclusion of sonic toroidal rotation (including full centrifugal effects) for studies including heavy wall impurities is also reported. Work supported in part by the US DOE under DE-FC02-06ER54873 and DE-FC02-08ER54963.

  18. Internal transport barriers in the National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Yuh, H. Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.; Candy, J.; Waltz, R. E.; Domier, C. W.; Luhmann, N. C.; Lee, W.; Park, H. K.

    2009-05-01

    In the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum E ×B shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.

  19. Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers

    NASA Astrophysics Data System (ADS)

    Lapillonne, X.; Brunner, S.; Sauter, O.; Villard, L.; Fable, E.; Görler, T.; Jenko, F.; Merz, F.

    2011-05-01

    Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k⊥ρi < 0.5, k⊥ being the characteristic perpendicular wavenumber and ρi the ion Larmor radius) and shorter wavelength ion temperature gradient modes (ITG, k⊥ρi > 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.

  20. Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, Eric M.; Waltz, R. E.

    Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less

  1. Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes

    DOE PAGES

    Bass, Eric M.; Waltz, R. E.

    2017-12-08

    Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less

  2. Dynamics of kinetic geodesic-acoustic modes and the radial electric field in tokamak neoclassical plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Belli, E.; Bodi, K.; Candy, J.; Chang, C. S.; Cohen, R. H.; Colella, P.; Dimits, A. M.; Dorr, M. R.; Gao, Z.; Hittinger, J. A.; Ko, S.; Krasheninnikov, S.; McKee, G. R.; Nevins, W. M.; Rognlien, T. D.; Snyder, P. B.; Suh, J.; Umansky, M. V.

    2009-06-01

    We present edge gyrokinetic simulations of tokamak plasmas using the fully non-linear (full-f) continuum code TEMPEST. A non-linear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson equation. We demonstrate the following. (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high q (tokamak safety factor), and are necessary to explain the damping observed in our TEMPEST q-scans and consistent with the experimental measurements of the scaling of the GAM amplitude with edge q95 in the absence of obvious evidence that there is a strong q-dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and parallel flow characteristics qualitatively like those observed in experiments.

  3. Transport Barriers in Bootstrap Driven Tokamaks

    NASA Astrophysics Data System (ADS)

    Staebler, Gary

    2017-10-01

    Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02-04ER54698.

  4. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.

  5. Continuum kinetic modeling of the tokamak plasma edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.

    2016-05-15

    The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S.; Chang, C. S.; Hager, R.

    Here, a fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. As a result, the main suppression action is located in a thin radial layer around ψ N≃0.96–0.98, where ψ N is the normalized poloidal flux, with the time scale ~0.1more » ms.« less

  7. Effects of magnetic islands on drift wave instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, P., E-mail: jiangp@pku.edu.cn; Department of Physics and Astronomy, University of California, Irvine, California 92697; Lin, Z., E-mail: zhihongl@uci.edu

    2014-12-15

    Magnetic islands have been implemented in the gyrokinetic toroidal code to study the effects of the islands on microturbulence. The pressure profile flattening is verified in the simulation with the islands. Simulations of ion temperature gradient instability find that different toroidal modes are linearly coupled together and that toroidal spectra become broader when the island width increases. The real frequencies and growth rates of different toroidal modes approach each other with the averaged value independent of the island width. The linear mode structures are enhanced at the island separatrices and weakened at the island centers, consistent with the flattening ofmore » the pressure profile inside the islands.« less

  8. TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q; Xiong, Z; Nevins, W M

    The fully nonlinear (full-f) 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.

  9. TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X; Xiong, Z; Nevins, W

    The fully nonlinear 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of geodesic-acoustic mode (GAM) and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.

  10. Global simulation of edge pedestal micro-instabilities

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Parker, Scott; Chen, Yang

    2011-10-01

    We study micro turbulence of the tokamak edge pedestal with global gyrokinetic particle simulations. The simulation code GEM is an electromagnetic δf code. Two sets of DIII-D experimental profiles, shot #131997 and shot #136051 are used. The dominant instabilities appear to be two kinds of modes both propagating in the electron diamagnetic direction, with comparable linear growth rates. The low n mode is at the Alfven frequency range and driven by density and ion temperature gradients. The high n mode is driven by electron temperature gradient and has a low real frequency. A β scan shows that the low n mode is electromagnetic. Frequency analysis shows that the high n mode is sometimes mixed with an ion instability. Experimental radial electric field is applied and its effects studied. We will also show some preliminary nonlinear results. We thank R. Groebner, P. Snyder and Y. Zheng for providing experimental profiles and helpful discussions.

  11. Gyrokinetic statistical absolute equilibrium and turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jianzhou; Hammett, Gregory W.

    2010-12-15

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N+1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperaturemore » states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.« less

  12. Gyrokinetics with Advanced Collision Operators

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2014-10-01

    For gyrokinetic studies in the pedestal region, collisions are expected to play a more critical role than in the core and there is concern that more advanced collision operators, as well as numerical methods optimized for the strong collisionality regime, are needed. For this purpose, a new gyrokinetic solver CGYRO has been developed for precise studies of high collisionality regimes. Building on GYRO and NEO, CGYRO uses the NEO pitch angle and energy velocity-space coordinate system to optimize the accuracy of the collision dynamics, particularly for multi-species collisions and including energy diffusion. With implementation of the reduced Hirshman-Sigmar collision operator with full cross-species coupling, CGYRO recovers linear ITG growth rates and the collisional GAM test at moderate collision frequency. Methods to improve the behavior in the collisionless regime, particularly for the trapped/passing particle boundary physics for kinetic electrons, are studied. Extensions to advanced model operators with finite-k⊥ corrections, e.g., the Sugama operator, and the impact of high collisionality on linear gyrokinetic stability in the edge are explored. Work supported by the US DOE under DE-FG02-95ER54309.

  13. Center for the Study of Plasma Microturbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Scott E.

    We have discovered a possible "natural fueling" mechanism in tokamak fusion reactors using large scale gyrokinetic turbulence simulation. In the presence of a heat flux dominated tokamak plasma, cold ions naturally pinch radially inward. If cold DT fuel is introduced near the edge using shallow pellet injection, the cold fuel will pinch inward, at the expense of hot helium ash going radially outward. By adjusting the cold DT fuel concentration, the core DT density profiles can be maintained. We have also shown that cold source ions from edge recycling of cold neutrals are pinched radially inward. This mechanism may bemore » important for fully understanding the edge pedestal buildup after an ELM crash. Work includes benchmarking the gyrokinetic turbulence codes in the electromagnetic regime. This includes cyclone base case parameters with an increasing plasma beta. The code comparisons include GEM, GYRO and GENE. There is good linear agreement between the codes using the Cyclone base case, but including electromagnetics and scanning the plasma beta. All the codes have difficulty achieving nonlinear saturation as the kinetic ballooning limit is approached. GEM does not saturate well when beta gets above about 1/2 of the ideal ballooning limit. We find that the lack of saturation is due to the long wavelength k{sub y} modes being nonlinearly pumped to high levels. If the fundamental k{sub y} mode is zeroed out, higher values of beta nonlinearly saturate well. Additionally, there have been studies to better understand CTEM nonlinear saturation and the importance of zonal flows. We have continued our investigation of trapped electron mode (TEM) turbulence. More recently, we have focused on the nonlinear saturation of TEM turbulence. An important feature of TEM is that in many parameter regimes, the zonal flow is unimportant. We find that when zonal flows are unimportant, zonal density is the dominant saturation mechanism. We developed a simple theory that agrees with the simulation and predicts zonal density generation and feedback stabilization of the most unstable mode even in the absence of zonal flow. We are using GEM to simulate NSTX discharges. We have also done verification and validation on DIII-D. Good agreement with GYRO and DIII-D flux levels were reported in the core region.« less

  14. M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam

    2013-10-01

    Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.

  15. Gyrokinetic δ f simulation of collisionless and semi-collisional tearing mode instabilities

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Chen, Yang; Parker, Scott

    2004-11-01

    The evolution of collisionless and semi-collisional tearing mode instabilities is studied using a three-dimensional particle-in-cell simulation model that utilizes the δ f-method with the split-weight scheme to enhance the time step, and a novel algorithm(Y. Chen and S.E. Parker, J. Comput. Phys. 198), 463 (2003) to accurately solve the Ampere's equation for experimentally relevant β values, βfracm_im_e≫ 1. We use the model of drift-kinetic electrons and gyrokinetic ions. Linear simulation results are benchmarked with eigenmode analysis for the case of fixed ions. In small box simulations the ions response can be neglected but for large box simulations the ions response is important because the width of perturbed current is larger than ρ_i.The nonlinear dynamics of magnetic islands will be studied and the results will be compared with previous theoretical studiesfootnote J.F. Drake and Y. C. Lee, Phys. Rev. Lett. 39, 453 (1977) on the saturation level and the electron bounce frequency. A collision operator is included in the electron drift kinetic equation to study the simulation in the semi-collisional regime. The algebraical growth stage has been observed and compared quantitatively with theory. Our progress on three-dimensional simulations of tearing mode instabilities will be reported.

  16. Renormalization-group theory of plasma microturbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carati, D.; Chriaa, K.; Balescu, R.

    1994-08-01

    The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less

  17. Transport, noise, and conservation properties in gyrokinetic plasmas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas

    2005-10-01

    The relationship between various transport properties (such as particle and heat flux, entropy production, heating, and collisional dissipation) [1] is examined in electrostatic gyrokinetic simulations of ITG modes in simple geometry. The effect of the parallel velocity nonlinearity on the achievement of steady-state solutions and the transport properties of these solutions is examined; the effects of nonadiabatic electrons are also considered. We also examine the effectiveness of the electromagnetic split-weight scheme [2] in reducing the noise and improving the conservation properties (energy, momentum, particle number, etc.) of gyrokinetic plasmas. [1] W. W. Lee and W. M. Tang, Phys. Fluids 31, 612 (1988). [2] W. W. Lee, J. L. V. Lewandowski, T. S. Hahm, and Z.Lin, Phys. Plasmas 8, 4435 (2001).

  18. Fluctuations and discrete particle noise in gyrokinetic simulation of drift waves

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Lee, W. W.

    2007-03-01

    The relevance of the gyrokinetic fluctuation-dissipation theorem (FDT) to thermal equilibrium and nonequilibrium states of the gyrokinetic plasma is explored, with particular focus being given to the contribution of weakly damped normal modes to the fluctuation spectrum. It is found that the fluctuation energy carried in the normal modes exhibits the proper scaling with particle count (as predicted by the FDT in thermal equilibrium) even in the presence of drift waves, which grow linearly and attain a nonlinearly saturated steady state. This favorable scaling is preserved, and the saturation amplitude of the drift wave unaffected, for parameter regimes in which the normal modes become strongly damped and introduce a broad spectrum of discreteness-induced background noise in frequency space.

  19. A gyrokinetic perspective on the JET-ILW pedestal

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Liu, X.

    2017-03-01

    JET has been unable to recover historical confinement levels when operating with an ITER-like wall (ILW) due largely to the inaccessibility of high pedestal temperatures. Finding a path to overcome this challenge is of utmost importance for both a prospective JET DT campaign and for future ITER operation. Gyrokinetic simulations (using the Gene code) quantitatively capture experimental transport levels for a representative experimental discharge and qualitatively recover the major experimental trends. Microtearing turbulence is a major transport mechanisms for the low-temperature pedestals characteristic of unseeded JET-ILW discharges. At higher temperatures and/or lower {ρ\\ast} , we identify electrostatic ITG transport of a type that is strongly shear-suppressed on smaller machines. Consistent with observations, this transport mechanism is strongly reduced by the presence of a low-Z impurity (e.g. carbon or nitrogen at the level of {{Z}\\text{eff}}∼ 2 ), recovering the accessibility of high pedestal temperatures. Notably, simulations based on dimensionless {ρ\\ast} scans recover historical scaling behavior except in the unique JET-ILW parameter regime where ITG turbulence becomes important. Our simulations also elucidate the observed degradation of confinement caused by gas puffing, emphasizing the important role of the density pedestal structure. This study maps out important regions of parameter space, providing insights that may point to optimal physical regimes that can enable the recovery of high pedestal temperatures on JET.

  20. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-01

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Könies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  1. Multi-field/-scale interactions of turbulence with neoclassical tearing mode magnetic islands in the DIII-D tokamak

    DOE PAGES

    Bardoczi, Laszlo; Rhodes, Terry L.; Navarro, Alejandro Banon; ...

    2017-03-03

    We present the first localized measurements of long and intermediate wavelength turbulent density fluctuations (more » $$\\sim\\atop{n}$$) and long wavelength turbulent electron temperature fluctuations ($$\\sim\\atop{T}$$ e) modified by m/n = 2/1 Neoclassical Tearing Mode (NTM) islands (m and n are the poloidal and toroidal mode numbers, respectively). These long and intermediate wavelengths correspond to the expected Ion Temperature Gradient and Trapped Electron Mode scales, respectively. Two regimes have been observed when tracking $$\\sim\\atop{n}$$ during NTM evolution: (1) small islands are characterized by a steep T e radial profile and turbulence levels comparable to those of the background; (2) large islands have a flat T e profile and reduced turbulence level at the O-point. Radially outside the large island, the T e profile is steeper and the turbulence level increased compared to the no or small island case. Reduced turbulence at the O-point compared to the X-point leads to a 15% modulation of $$\\sim\\atop{n}$$ 2 across the island that is nearly in phase with the T e modulation. Qualitative comparisons to the GENE non-linear gyrokinetic code are promising with GENE replicating the observed scaling of turbulence modification with island size. Furthermore, these results are significant as they allow the validation of gyrokinetic simulations modeling the interaction of these multi-scale phenomena.« less

  2. Continuum kinetic modeling of the tokamak plasma edge

    DOE PAGES

    Dorf, M. A.; Dorr, M.; Rognlien, T.; ...

    2016-03-10

    In this study, the first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasmatransport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalousmore » radial transport.« less

  3. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE PAGES

    Hager, Robert; Chang, C. S.

    2016-04-08

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  4. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert; Chang, C. S.

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  5. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  6. Linear dispersion relation for the mirror instability in context of the gyrokinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porazik, Peter; Johnson, Jay R.

    2013-10-15

    The linear dispersion relation for the mirror instability is discussed in context of the gyrokinetic theory. The objective is to provide a coherent view of different kinetic approaches used to derive the dispersion relation. The method based on gyrocenter phase space transformations is adopted in order to display the origin and ordering of various terms.

  7. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, correspondingmore » to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.« less

  8. Gyrokinetic theory for particle and energy transport in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  9. The actual scaling of a nominally third-order Reynolds stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krommes, J. A., E-mail: krommes@princeton.edu; Hammett, G. W., E-mail: hammett@princeton.edu

    2014-05-15

    It is shown that a particular higher-order Reynolds stress arising from a term in the third-order gyrokinetic Hamiltonian is smaller than it nominally appears to be. However, it does not follow that all third-order terms are unimportant. The discussion is relevant to the ongoing debate about the importance of higher-order terms in the gyrokinetic theory of momentum transport.

  10. Turbulent Heating and Fluctuation Characteristics in Alfvenic Turbulence

    NASA Astrophysics Data System (ADS)

    Dorland, William

    2005-10-01

    Alfve'n waves are ubiquitous in natural and laboratory plasmas. In this talk, the main focus is on astrophysical plasmas that are turbulent, magnetized, hot and diffuse. The dynamically important characteristics of these plasmas are often well- described by magnetohydrodynamics [see e.g., Ref. 1]. However, much of what we actually observe is critically affected by how much of the turbulent energy is absorbed by (highly radiative) electrons [2], the amplitude of density fluctuations [3], and the spectral indices of turbulent, Alfve'nic cascades. These questions each have essentially kinetic aspects. In this talk, we present detailed simulations and analyses of of the cascade of shear Alfve'n waves, to and through scales comparable to the ion Larmor radius in the direction perpendicular to the magnetic field. We demonstrate analytically and numerically that the nonlinear gyrokinetic equations, originally developed for fusion applications, are perfectly suited to these astrophysical problems. We present extensive linear and nonlinear gyrokinetic simulation results from the GS2 code. We demonstrate accurate resolution of the damping of kinetic Alfve'n waves in plasmas with beta small, large and comparable to unity, for a wide range of electron-to-ion temperature ratios, in linear and nonlinear contexts. We have used the GS2 code to calculate the turbulent energy absorption, density fluctuation characteristics, and spectral indices for plasmas with parameters taken from hot accretion flows and from the interstellar plasma. These results will be compared with theoretical predictions [2] and to observations. Co-authors: S. C. Cowley (UCLA), G. W. Hammett (PPPL), E. Quataert and G. Howes (UC-Berkeley), and A. Scheckochihin (Cambridge) 1. S. Balbus and J. Hawley, Rev Mod Phys, Vol. 70, p. 1. 2. E. Quataert and A. Gruzinov, Ap J, Vol. 520, p. 248; E. Quataert, Ap J, Vol. 500, p. 978.3. Y. Lithwick and P. Goldreich, Ap J, Vol. 562, p. 279.4. P. Goldreich and Sridhar, Ap J, Vol. 438, p. 763; P. Goldreich and Sridhar, Ap J, Vol. 485, p. 680.

  11. Kinetic turbulence simulations at extreme scale on leadership-class systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bei; Ethier, Stephane; Tang, William

    2013-01-01

    Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCFmore » and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).« less

  12. GTC Turbulence Simulations near H-mode Pedestal with Resonant Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Ferraro, Nathaniel; Taimourzadeh, Sam; Fu, Jingyuan; Lin, Zhihong; Nazikian, Raffi

    2017-10-01

    Full plasma responses to Resonant Magnetic Perturbations (RMPs) as provided by the resistive MHD code M3D-C1 are implemented into Gyrokinetic Toroidal Code (GTC) to study the effect of magnetic islands and stochastic field regions on microturbulence in realistic DIII-D geometry. Electrostatic turbulence simulations with adiabatic electrons show no significant increase of the saturated ion heat conductivity in the presence of RMP-induced islands. However, electron response to zonal flow in the presence of magnetic islands and stochastic fields can drastically increase zonal flow dielectric constant for long wavelength fluctuations. Zonal flow generation can then be reduced and the microturbulence can be enhanced greatly. Furthermore, because the RMP magnetic island size is comparable to the ion banana width, electron and ion responses to these islands may be fundamentally different, which could drive non-ambipolar particles fluxes leading to changes of the radial electric field shear. This work is supported by General Atomics subcontract.

  13. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    NASA Astrophysics Data System (ADS)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  14. On push-forward representations in the standard gyrokinetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyato, N., E-mail: miyato.naoaki@jaea.go.jp; Yagi, M.; Scott, B. D.

    2015-01-15

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This ismore » true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.« less

  15. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, G. M.; Candy, J.; Howard, N. T.

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less

  16. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less

  17. Verification of TEMPEST with neoclassical transport theory

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Umansky, M.; Xu, X.

    2006-10-01

    TEMPEST is an edge gyro-kinetic continuum code developed to study boundary plasma transport over the region extending from the H-mode pedestal across the separatrix to the divertor plates. For benchmark purposes, we present results from the 4D (2r,2v) TEMPEST for both steady-state transport and time-dependent Geodesic Acoustic Modes (GAMs). We focus on an annular region inside the separatrix of a circular cross-section tokamak where analytical and numerical results are available. The parallel flow velocity and radial particle flux are obtained for different collisional regimes and compared with previous neoclassical results. The effect of radial electric field and the transition to steep edge gradients is emphasized. The dynamical response of GAMs is also shown and compared to recent theory.

  18. Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.

    2009-05-01

    Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.

  19. Initial development of 5D COGENT

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Lee, W.; Dorf, M.; Dorr, M.

    2015-11-01

    COGENT is a continuum gyrokinetic edge code being developed by the by the Edge Simulation Laboratory (ESL) collaboration. Work to date has been primarily focussed on a 4D (axisymmetric) version that models transport properties of edge plasmas. We have begun development of an initial 5D version to study edge turbulence, with initial focus on kinetic effects on blob dynamics and drift-wave instability in a shearless magnetic field. We are employing compiler directives and preprocessor macros to create a single source code that can be compiled in 4D or 5D, which helps to ensure consistency of physics representation between the two versions. A key aspect of COGENT is the employment of mapped multi-block grid capability to handle the complexity of diverter geometry. It is planned to eventually exploit this capability to handle magnetic shear, through a series of successively skewed unsheared grid blocks. The initial version has an unsheared grid and will be used to explore the degree to which a radial domain must be block decomposed. We report on the status of code development and initial tests. Work performed for USDOE, at LLNL under contract DE-AC52-07NA27344.

  20. Gyrokinetic analysis of pedestal transport

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, Mike; Liu, X.; Hatch, Dr; Zheng, Lj; Mahajan, S.; Diallo, A.; Groebner, Rj; Hubbard, Ae; Hughes, Jw; Maggi, Cf; Saarelma, S.; JET Contributors

    2017-10-01

    Surprisingly, basic considerations can determine which modes are responsible for pedestal energy transport (e.g., KBM, ETG, ITG, MTM etc.). Gyrokinetic simulations of experiments, and analysis of the Gyrokinetic-Maxwell equations, find that each mode type produces characteristic ratios of transport in the various channels: density, heat and impurities. This, together with the relative size of the driving sources of each channel, can strongly constrain or determine the dominant modes causing energy transport. MHD-like modes are not the dominant agent of energy transport - when the density source is weak as is often expected. Drift modes must fill this role. Detailed examination of experimental observations, including frequency and transport channel behavior, with simulations, demonstrates these points. Also see related posters by X. Liu, D.R. Hatch, and A. Blackmon. Work supported by US DOE under DE-FC02-04ER54698, DE-FG02-04ER54742 and DE-FC02-99ER54512 and by Eurofusion under Grant No. 633053.

  1. Resolving the mystery of transport within internal transport barriersa)

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Kinsey, J. E.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P.; Grierson, B. A.; Chrystal, C.

    2014-05-01

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E ×B velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E ×B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  2. Gauge-free gyrokinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, Joshua; Brizard, Alain

    2017-10-01

    Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).

  3. Resolving the mystery of transport within internal transport barriers

    DOE PAGES

    Staebler, Gary M.; Kinsey, Jon E.; Belli, Emily A.; ...

    2014-05-02

    Here, the Trapped Gyro-Landau Fluid (TGLF) quasi-linear model, which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E × B velocity shear.more » The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E × B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.« less

  4. Global linear gyrokinetic simulation of energetic particle-driven instabilities in the LHD stellarator

    DOE PAGES

    Spong, Donald A.; Holod, Ihor; Todo, Y.; ...

    2017-06-23

    Energetic particles are inherent to toroidal fusion systems and can drive instabilities in the Alfvén frequency range, leading to decreased heating efficiency, high heat fluxes on plasma-facing components, and decreased ignition margin. The applicability of global gyrokinetic simulation methods to macroscopic instabilities has now been demonstrated and it is natural to extend these methods to 3D configurations such as stellarators, tokamaks with 3D coils and reversed field pinch helical states. This has been achieved by coupling the GTC global gyrokinetic PIC model to the VMEC equilibrium model, including 3D effects in the field solvers and particle push. Here, this papermore » demonstrates the application of this new capability to the linearized analysis of Alfvénic instabilities in the LHD stellarator. For normal shear iota profiles, toroidal Alfvén instabilities in the n = 1 and 2 toroidal mode families are unstable with frequencies in the 75 to 110 kHz range. Also, an LHD case with non-monotonic shear is considered, indicating reductions in growth rate for the same energetic particle drive. Finally, since 3D magnetic fields will be present to some extent in all fusion devices, the extension of gyrokinetic models to 3D configurations is an important step for the simulation of future fusion systems.« less

  5. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Besse, Nicolas; Coulette, David

    2016-08-01

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov-Poisson and Vlasov-Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, "Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry" (submitted)] and were found to be surprisingly close to those for the original gyrokinetic-Vlasov equations. The purpose of the present paper is to make these new ideas accessible to two readerships: applied mathematicians and plasma physicists.

  6. Global gyrokinetic simulation of Tokamak edge pedestal instabilities.

    PubMed

    Wan, Weigang; Parker, Scott E; Chen, Yang; Yan, Zheng; Groebner, Richard J; Snyder, Philip B

    2012-11-02

    Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-n kinetic ballooning mode (KBM) and an intermediate-n kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DIII-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while the KBM is weakly destabilized and hence becomes the most-unstable mode. Collisions decrease the KBM's critical β and increase the growth rate.

  7. Comparisons of Measurements and Simulations of Turbulence and Transport for DIII-D Discharges with Off-Axis Modulated ECH

    NASA Astrophysics Data System (ADS)

    Bravenec, R. V.; Ross, D. W.; Austin, M. E.; Gentle, K. W.; Deboo, J. C.; DIII-D Team; McKee, G. R.; Dorland, W.; Rhodes, T. L.; Zeng, L.

    2002-11-01

    Experiments to elucidate the nature of electron thermal transport have been conducted in DIII-D plasmas using modulated off-axis electron-cyclotron heating (ECH). Density fluctuations were measured using beam-emission spectroscopy, microwave reflectometry, and far-infrared scattering. Simulations of the experiment are performed with the gyrokinetic and gyrofluid flux-tube codes GS2(F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7), 1904 (2000) and refs. therein. and GRYFFIN,(W. Dorland and G.W. Hammett, Phys. Fluids B 5), 812 (1993); M.A. Beer and G.W. Hammett, Phys. Plasmas 3, 4046 (1996). respectively. Comparisons of experiment and simulation results for the fluctuations and transport fluxes (ion and electron) will be presented for both time-averaged and modulated quantities.

  8. Gyrokinetic theory of slab universal modes and the non-existence of the gradient drift coupling (GDC) instability

    NASA Astrophysics Data System (ADS)

    Rogers, Barrett N.; Zhu, Ben; Francisquez, Manaure

    2018-05-01

    A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on k∥=0 universal (or entropy) modes driven by plasma gradients at small and large plasma β. These are small scale non-MHD instabilities with growth rates that typically peak near k⊥ρi˜1 and vanish in the long wavelength k⊥→0 limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate γ=√{β/[2 (1 +β)] }Cs/|Lp| with Cs2=p0/ρ0 for k⊥→0 and is universally unstable for 1 /Lp≠0 . We show that the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance p0+B02/(8 π)=constant , which renders the assumption B0'=0 inconsistent if p0'≠0 .

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, H.; Nunami, M.; Department of Fusion Science, SOKENDAI

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novelmore » gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.« less

  10. Investigating the radial structure of axisymmetric fluctuations in the TCV tokamak with local and global gyrokinetic GENE simulations

    NASA Astrophysics Data System (ADS)

    Merlo, G.; Brunner, S.; Huang, Z.; Coda, S.; Görler, T.; Villard, L.; Bañón Navarro, A.; Dominski, J.; Fontana, M.; Jenko, F.; Porte, L.; Told, D.

    2018-03-01

    Axisymmetric (n = 0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f 0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper (Z Huang et al, this issue). Given that f 0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f 0 is in fact smaller than the local linear GAM frequency {f}{GAM}. In this work we employ the Eulerian gyrokinetic code GENE to simulate TCV relevant conditions and investigate the nature and properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. Simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.

  11. Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.

    2018-01-01

    High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.

  12. The fusion code XGC: Enabling kinetic study of multi-scale edge turbulent transport in ITER [Book Chapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas

    The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning for balancing computational work in pushing particlesmore » and in grid related work, scalable and accurate discretization algorithms for non-linear Coulomb collisions, and communication-avoiding subcycling technology for pushing particles on both CPUs and GPUs are also utilized to dramatically improve the scalability and time-to-solution, hence enabling the difficult kinetic ITER edge simulation on a present-day leadership class computer.« less

  13. Effects of compressional magnetic perturbation on kinetic Alfven waves

    NASA Astrophysics Data System (ADS)

    Dong, Ge; Bhattacharjee, Amitava; Lin, Zhihong

    2016-10-01

    Kinetic Alfven waves play a very important role in the dynamics of fusion as well as space and astrophysical plasmas. The compressional magnetic perturbation δB|| can play important role in kinetic Alfven waves (KAW) and various instabilities at large plasma β. It could affect the nonlinear behavior of these modes significantly even at small β. In this study, we have implemented δB|| in gyrokinetic toroidal code (GTC). The perpendicular Ampere's law is solved as a force balance equation. Double gyroaveraging is incorporated in the code to treat the finite Larmor radius effects related to δB|| terms. KAW is studied in slab geometry as a benchmark case. A scan in β for the KAW dispersion relation shows that as β approaches 1 (>0.3), the effects of δB|| becomes important. Connections are made with other existing studies of KAWs in the fusion and space plasma literature. This new capability of including δB|| in GTC could be applied to nonlinear simulations of modes such as kinetic ballooning and tearing modes. This research is supported by DOE Contract No. DE-AC02-09CH11466.

  14. Measurements of localized core turbulence & turbulence suppression on DIII-D

    NASA Astrophysics Data System (ADS)

    Shafer, Morgan W.

    The crucial dynamics of turbulent-driven cross-field transport in tokamak plasmas reside in the two-dimensional (2D) radial/poloidal plane. Thus, 2D measurements of turbulence are needed to test theoretical models and validate sophisticated gyrokinetic codes. Furthermore, measurements are important for understanding the role of turbulence suppression in enhanced confinement regimes. The Beam Emission Spectroscopy (BES) diagnostic on the DIII-D tokamak measures localized, long-wavelength (k⊥rho i≤1) density fluctuations in the 2D radial/poloidal plane and is suitable for these studies. Measurements of turbulence amplitude, S(kr,k theta) spectra, correlation lengths, decorrelation rates and group velocities are obtained via BES in the core (0.3< r/a <0.9) and compared to nonlinear gyrokinetic simulations from the GYRO code. The 2D measurements show a tilted eddy structure in the core that is consistent with ExB shear. The S(kr,ktheta) spectra are directly compared to GYRO simulations. These comparisons show the 2D structure is in reasonable agreement at r/a = 0.5 where the predicted turbulence amplitude and heat flux agree well with the measurements. However, the simulations show a strongly tilted eddy structure that extends to high-kr at r/a = 0.75, where the simulations under-predict the turbulence amplitude and heat flux. This is not observed in the experiment and suggests a possible over-exaggeration of an ExB or zonal flow shearing mechanism in the simulations. Measurements demonstrate local turbulence suppression near low-order rational q-surfaces at low magnetic shear. This interaction can lead to an Internal Transport Barrier (ITB) provided sufficient equilibrium ExB shear (largely due to the toroidal rotation of neutral beam heated rotating plasmas) sustains the barrier. Related GYRO simulations suggest these ITBs are triggered by zonal flows that form near the q = 2 surface. Consistent with the simulations, localized measurements demonstrate increased shear in the poloidal turbulence velocity. The resulting shear rate transiently exceeds the decorrelation rate, causing a reduction in turbulence and radial correlation length. The layer of suppressed turbulence moves radially outward, nearly coincident with integer q-surfaces.

  15. Statistical description of turbulent transport for flux driven toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.

    2017-06-01

    A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.

  16. Gyrokinetic stability of electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.

    2018-02-01

    The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.

  17. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu; Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex; Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr

    2016-08-15

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to themore » VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original gyrokinetic-Vlasov equations. The purpose of the present paper is to make these new ideas accessible to two readerships: applied mathematicians and plasma physicists.« less

  18. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Anne

    The tokamak is a type of toroidal device used to confine a fusion plasma using large magnetic fields. Tokamaks and stellarators the leading devices for confining plasmas for fusion, and the capability to predict performance in these magnetically confined plasmas is essential for developing a sustainable fusion energy source. The magnetic configuration of tokamaks and stellarators does not exist in Nature, yet, the fundamental processes governing transport in fusion plasmas are universal – turbulence and instabilities, driven by inhomogeneity and asymmetry in the plasma, conspire to transport heat and particles across magnetic field lines and can play critical roles inmore » impurity confinement and generation of intrinsic rotation. Turbulence exists in all plasmas, and in neutral fluids as well. The study of turbulence is essential to developing a fundamental understanding of the nature of the fourth state of matter, plasmas. Experimental studies of turbulence in tokamaks date back to early scattering observations from the late 1970s. Since that time, great advances in turbulence diagnostics have been made, all of which have significantly enhanced our knowledge and understanding of turbulence in tokamaks. Through comparisons with advanced gyrokinetic theory and turbulent-transport models a great deal of evidence exists to implicate turbulent-driven transport as an important mechanism determining transport in all channels: heat, particle and momentum However, prediction and control of turbulent-driven transport remains elusive. Key to development of predictive transport models for magnetically confined fusion plasmas is validation of the nonlinear gyrokinetic transport model, which describes transport due to turbulence. Validation of gyrokinetic codes must include detailed and quantitative comparisons with measured turbulence characteristics, in addition to comparisons with inferred transport levels and equilibrium profiles. For this reason, advanced plasma diagnostics for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for testing and validating predictive models for the transport of heat and particles in fusion plasmas due to turbulence. Once validated, the models are used to predict performance in ITER and other burning plasmas, such as the MIT ARC design. Most recently, data from the newly developed, so-called “CECE diagnostic” [Cima 1995, White 2008] and “nT phase angle measurements” [Haese 1999, White 2010] ]will be combined with data from density fluctuation diagnostics at ASDEX Upgrade to support a long-term program of physics research in turbulence and transport that will allow for more stringent testing and validation of gyrokinetic turbulent-transport codes. This work directly impacts the development of predictive transport models in the U.S. FES program, such as TGLF, developed by General Atomics, which are used to predict performance in ITER and other burning plasma devices as part of advancing the development of fusion energy sciences.« less

  19. Collisionless damping of flows in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Sánchez, E.; Kleiber, R.; Hatzky, R.; Borchardt, M.; Monreal, P.; Castejón, F.; López-Fraguas, A.; Sáez, X.; Velasco, J. L.; Calvo, I.; Alonso, A.; López-Bruna, D.

    2013-01-01

    The results of global linear gyrokinetic simulations of residual flows carried out with the code EUTERPE in the TJ-II three-dimensional geometry are reported. The linear response of the plasma to potential perturbations homogeneous in a magnetic surface shows several oscillation frequencies: a Geodesic-acoustic-mode-like frequency, in qualitative agreement with the formula given by Sugama and Watanabe (2006 Plasma Phys. 72 825), and a much lower frequency oscillation in agreement with the predictions of Mishchenko et al (2008 Phys. Plasmas 15 072309) and Helander et al (2011 Plasma Phys. Control. Fusion 53 054006) for stellarators. The dependence of both oscillations on ion and electron temperatures and the magnetic configuration is studied. The low-frequency oscillations are in the frequency range supporting the long-range correlations between potential signals experimentally observed in TJ-II.

  20. Performance Analysis of GYRO: A Tool Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, P.; Roth, P.; Candy, J.

    2005-06-26

    The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO is analyzed on five high performance computing systems. First, a manual approach is taken, using custom scripts to analyze the output of embedded wall clock timers, floating point operation counts collected using hardware performance counters, and traces of user and communication events collected using the profiling interface to Message Passing Interface (MPI) libraries. Parts of the analysis are then repeated or extended using a number of sophisticated performance analysis tools: IPM, KOJAK, SvPablo, TAU, and the PMaC modeling tool suite. The paper briefly discusses what has been discovered via this manualmore » analysis process, what performance analyses are inconvenient or infeasible to attempt manually, and to what extent the tools show promise in accelerating or significantly extending the manual performance analyses.« less

  1. Simulation of Plasma Transport in a Toroidal Annulus with TEMPEST

    NASA Astrophysics Data System (ADS)

    Xiong, Z.

    2005-10-01

    TEMPEST is an edge gyro-kinetic continuum code currently under development at LLNL to study boundary plasma transport over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. Here we report simulation results from the 4D (θ, ψ, E, μ) TEMPEST, for benchmark purpose, in an annulus region immediately inside the separatrix of a large aspect ratio, circular cross-section tokamak. Besides the normal poloidal trapping regions, there are radial inaccessible regions at a fixed poloid angle, energy and magnetic moment due to the radial variation of the B field. To handle such cases, a fifth-order WENO differencing scheme is used in the radial direction. The particle and heat transport coefficients are obtained for different collisional regimes and compared with the neo-classical transport theory.

  2. A model of the saturation of coupled electron and ion scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, Gary M.; Howard, Nathan T.; Candy, Jeffrey M.

    A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less

  3. A model of the saturation of coupled electron and ion scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Howard, Nathan T.; Candy, Jeffrey M.; ...

    2017-05-09

    A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less

  4. Gyro-Landau fluid models for toroidal geometry

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Dominguez, R. R.; Hammett, G. W.

    1992-10-01

    Gyro-Landau fluid model equations provide first-order time advancement for a limited number of moments of the gyrokinetic equation, while approximately preserving the effects of the gyroradius averaging and Landau damping. This paper extends the work of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for electrostatic motion parallel to the magnetic field and E×B motion to include the gyroaveraging linearly and the curvature drift motion. The equations are tested by comparing the ion-temperature-gradient mode linear growth rates for the model equations with those of the exact gyrokinetic theory over a full range of parameters.

  5. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE PAGES

    Ku, S.; Hager, R.; Chang, C. S.; ...

    2016-04-01

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  6. Investigating the radial structure of axisymmetric fluctuations in the TCV tokamak with local and global gyrokinetic GENE simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merlo, Gabriele; Brunner, Stephan; Huang, Zhouji

    Axisymmetric (n=0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper [Z. Huang et al., this issue]. Given that f0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f0 is in fact smaller than the local linear GAM frequency fGAM . In this work we employ the Eulerian gyrokinetic code GENE tomore » simulate TCV relevant conditions and investigate the nature properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. In conclusion, simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.« less

  7. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E.; Howard, N. T.; Greenwald, M.

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxesmore » from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.« less

  8. Suppression of turbulent transport in NSTX internal transport barriers

    NASA Astrophysics Data System (ADS)

    Yuh, Howard

    2008-11-01

    Electron transport will be important for ITER where fusion alphas and high-energy beam ions will primarily heat electrons. In the NSTX, internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, High Harmonic Fast Wave (HHFW) heating can produce electron thermal ITBs under reversed magnetic shear conditions without momentum input. Interestingly, the location of the electron ITB does not necessarily match that of the ion ITB: the electron ITB correlates well with the minimum in the magnetic shear determined by Motional Stark Effect (MSE) [1] constrained equilibria, whereas the ion ITB better correlates with the maximum ExB shearing rate. Measured electron temperature gradients can exceed critical linear thresholds for ETG instability calculated by linear gyrokinetic codes in the ITB confinement region. The high-k microwave scattering diagnostic [2] shows reduced local density fluctuations at wavenumbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Fluctuation reductions are found to be spatially and temporally correlated with the local magnetic shear. These results are consistent with non-linear gyrokinetic simulations predictions showing the reduction of electron transport in negative magnetic shear conditions despite being linearly unstable [3]. Electron transport improvement via negative magnetic shear rather than ExB shear highlights the importance of current profile control in ITER and future devices. [1] F.M. Levinton, H. Yuh et al., PoP 14, 056119 [2] D.R. Smith, E. Mazzucato et al., RSI 75, 3840 [3] Jenko, F. and Dorland, W., PRL 89 225001

  9. Investigating the radial structure of axisymmetric fluctuations in the TCV tokamak with local and global gyrokinetic GENE simulations

    DOE PAGES

    Merlo, Gabriele; Brunner, Stephan; Huang, Zhouji; ...

    2017-12-19

    Axisymmetric (n=0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper [Z. Huang et al., this issue]. Given that f0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f0 is in fact smaller than the local linear GAM frequency fGAM . In this work we employ the Eulerian gyrokinetic code GENE tomore » simulate TCV relevant conditions and investigate the nature properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. In conclusion, simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.« less

  10. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, C., E-mail: csung@physics.ucla.edu; White, A. E.; Greenwald, M.

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local,more » electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].« less

  11. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S.; Hager, R.; Chang, C. S.

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  12. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S., E-mail: sku@pppl.gov; Hager, R.; Chang, C.S.

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  13. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Yoon, E.S., E-mail: yoone@rpi.edu; Ku, S., E-mail: sku@pppl.gov

    2016-06-15

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable onmore » high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.« less

  14. Parallel Transport with Sheath and Collisional Effects in Global Electrostatic Turbulent Transport in FRCs

    NASA Astrophysics Data System (ADS)

    Bao, Jian; Lau, Calvin; Kuley, Animesh; Lin, Zhihong; Fulton, Daniel; Tajima, Toshiki; Tri Alpha Energy, Inc. Team

    2017-10-01

    Collisional and turbulent transport in a field reversed configuration (FRC) is studied in global particle simulation by using GTC (gyrokinetic toroidal code). The global FRC geometry is incorporated in GTC by using a field-aligned mesh in cylindrical coordinates, which enables global simulation coupling core and scrape-off layer (SOL) across the separatrix. Furthermore, fully kinetic ions are implemented in GTC to treat magnetic-null point in FRC core. Both global simulation coupling core and SOL regions and independent SOL region simulation have been carried out to study turbulence. In this work, the ``logical sheath boundary condition'' is implemented to study parallel transport in the SOL. This method helps to relax time and spatial steps without resolving electron plasma frequency and Debye length, which enables turbulent transports simulation with sheath effects. We will study collisional and turbulent SOL parallel transport with mirror geometry and sheath boundary condition in C2-W divertor.

  15. Saturation of energetic-particle-driven geodesic acoustic modes due to wave-particle nonlinearity

    NASA Astrophysics Data System (ADS)

    Biancalani, A.; Chavdarovski, I.; Qiu, Z.; Bottino, A.; Del Sarto, D.; Ghizzo, A.; Gürcan, Ö.; Morel, P.; Novikau, I.

    2017-12-01

    The nonlinear dynamics of energetic-particle (EP) driven geodesic acoustic modes (EGAM) is investigated here. A numerical analysis with the global gyrokinetic particle-in-cell code ORB5 is performed, and the results are interpreted with the analytical theory, in close comparison with the theory of the beam-plasma instability. Only axisymmetric modes are considered, with a nonlinear dynamics determined by wave-particle interaction. Quadratic scalings of the saturated electric field with respect to the linear growth rate are found for the case of interest. As a main result, the formula for the saturation level is provided. Near the saturation, we observe a transition from adiabatic to non-adiabatic dynamics, i.e. the frequency chirping rate becomes comparable to the resonant EP bounce frequency. The numerical analysis is performed here with electrostatic simulations with circular flux surfaces, and kinetic effects of the electrons are neglected.

  16. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE PAGES

    Hager, Robert; Yoon, E. S.; Ku, S.; ...

    2016-04-04

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less

  17. Suppressing electron turbulence and triggering internal transport barriers with reversed magnetic shear in the National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Peterson, J. L.; Bell, R.; Candy, J.; Guttenfelder, W.; Hammett, G. W.; Kaye, S. M.; LeBlanc, B.; Mikkelsen, D. R.; Smith, D. R.; Yuh, H. Y.

    2012-05-01

    The National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] can achieve high electron plasma confinement regimes that are super-critically unstable to the electron temperature gradient driven (ETG) instability. These plasmas, dubbed electron internal transport barriers (e-ITBs), occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the first nonlinear ETG simulations of NSTX e-ITB plasmas reinforce this observation. Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show e-ITB formation can occur when the magnetic shear becomes strongly negative. While the ETG-driven thermal flux at the outer edge of the barrier is large enough to be experimentally relevant, the turbulence cannot propagate past the barrier into the plasma interior.

  18. Continuum limit of electrostatic gyrokinetic absolute equilibrium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2012-06-01

    Electrostatic gyrokinetic absolute equilibria with continuum velocity field are obtained through the partition function and through the Green function of the functional integral. The new results justify and explain the prescription for quantization/discretization or taking the continuum limit of velocity. The mistakes in the Appendix D of our earlier work [J.-Z. Zhu and G. W. Hammett, Phys. Plasmas 17, 122307 (2010)] are explained and corrected. If the lattice spacing for discretizing velocity is big enough, all the invariants could concentrate at the lowest Fourier modes in a negative-temperature state, which might indicate a possible variation of the dual cascade picture in 2D plasma turbulence.

  19. Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.; Wang, Lu; Madsen, J.

    2009-02-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E ×B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Generalized ordering takes ρi≪ρθi˜LE˜Lp≪R [here ρi is the thermal ion Larmor radius and ρθi=B /(Bθρi)], as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. k⊥ρi˜1 is assumed for generality, and the relative fluctuation amplitudes eδϕ /Ti˜δB/B are kept up to the second order. Extending the electrostatic theory in the presence of high E ×B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pullback transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.

  20. Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2016-10-01

    Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.

  1. Quasilinear diffusion operator for wave-particle interactions in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Catto, P. J.; Lee, J.; Ram, A. K.

    2017-10-01

    The Kennel-Engelmann quasilinear diffusion operator for wave-particle interactions is for plasmas in a uniform magnetic field. The operator is not suitable for fusion devices with inhomogeneous magnetic fields. Using drift kinetic and high frequency gyrokinetic equations for the particle distribution function, we have derived a quasilinear operator which includes magnetic drifts. The operator applies to RF waves in any frequency range and is particularly relevant for minority ion heating. In order to obtain a physically meaningful operator, the first order correction to the particle's magnetic moment has to be retained. Consequently, the gyrokinetic change of variables has to be retained to a higher order than usual. We then determine the perturbed distribution function from the gyrokinetic equation using a novel technique that solves the kinetic equation explicitly for certain parts of the function. The final form of the diffusion operator is compact and completely expressed in terms of the drift kinetic variables. It is not transit averaged and retains the full poloidal angle variation without any Fourier decomposition. The quasilinear diffusion operator reduces to the Kennel-Engelmann operator for uniform magnetic fields. Supported by DoE Grant DE-FG02-91ER-54109.

  2. Fast Low-to-High Confinement Mode Bifurcation Dynamics in a Tokamak Edge Plasma Gyrokinetic Simulation.

    PubMed

    Chang, C S; Ku, S; Tynan, G R; Hager, R; Churchill, R M; Cziegler, I; Greenwald, M; Hubbard, A E; Hughes, J W

    2017-04-28

    Transport barrier formation and its relation to sheared flows in fluids and plasmas are of fundamental interest in various natural and laboratory observations and of critical importance in achieving an economical energy production in a magnetic fusion device. Here we report the first observation of an edge transport barrier formation event in an electrostatic gyrokinetic simulation carried out in a realistic diverted tokamak edge geometry under strong forcing by a high rate of heat deposition. The results show that turbulent Reynolds-stress-driven sheared E×B flows act in concert with neoclassical orbit loss to quench turbulent transport and form a transport barrier just inside the last closed magnetic flux surface.

  3. Finite-β Split-weight Gyrokinetic Particle Simulation of Microinstabilities

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Lee, W. W.; Lewandowski, J. L. V.

    2003-10-01

    The finite-β split-weight gyrokinetic particle simulation scheme [1] has been implemented in two-dimensional slab geometry for the purpose of studying the effects of high temperature electrons on microinstabilities. Drift wave instabilities and ion temperature gradient modes are studied in both shearless slab and sheared slab geometries. The linear and nonlinear evolution of these modes, as well as the physics of microtearing, is compared with the results of Reynders [2] and Cummings [3]. [1] W. W. Lee, J. L. V. Lewandowski, T. S. Hahm, and Z. Lin, Phys. Plasmas 8, 4435 (2001). [2] J. V. W. Reynders, Ph.D. thesis, Princeton University (1992). [3] J. C. Cummings, Ph.D. thesis, Princeton University (1995).

  4. Dimits shift in realistic gyrokinetic plasma-turbulence simulations.

    PubMed

    Mikkelsen, D R; Dorland, W

    2008-09-26

    In simulations of turbulent plasma transport due to long wavelength (k perpendicular rhoi < or = 1) electrostatic drift-type instabilities, we find a persistent nonlinear up-shift of the effective threshold. Next-generation tokamaks will likely benefit from the higher effective threshold for turbulent transport, and transport models should incorporate suitable corrections to linear thresholds. The gyrokinetic simulations reported here are more realistic than previous reports of a Dimits shift because they include nonadiabatic electron dynamics, strong collisional damping of zonal flows, and finite electron and ion collisionality together with realistic shaped magnetic geometry. Reversing previously reported results based on idealized adiabatic electrons, we find that increasing collisionality reduces the heat flux because collisionality reduces the nonadiabatic electron microinstability drive.

  5. Direct identification of predator-prey dynamics in gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D; Diamond, Patrick H.

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varyingmore » level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.« less

  6. A conservative scheme for electromagnetic simulation of magnetized plasmas with kinetic electrons

    NASA Astrophysics Data System (ADS)

    Bao, J.; Lin, Z.; Lu, Z. X.

    2018-02-01

    A conservative scheme has been formulated and verified for gyrokinetic particle simulations of electromagnetic waves and instabilities in magnetized plasmas. An electron continuity equation derived from the drift kinetic equation is used to time advance the electron density perturbation by using the perturbed mechanical flow calculated from the parallel vector potential, and the parallel vector potential is solved by using the perturbed canonical flow from the perturbed distribution function. In gyrokinetic particle simulations using this new scheme, the shear Alfvén wave dispersion relation in the shearless slab and continuum damping in the sheared cylinder have been recovered. The new scheme overcomes the stringent requirement in the conventional perturbative simulation method that perpendicular grid size needs to be as small as electron collisionless skin depth even for the long wavelength Alfvén waves. The new scheme also avoids the problem in the conventional method that an unphysically large parallel electric field arises due to the inconsistency between electrostatic potential calculated from the perturbed density and vector potential calculated from the perturbed canonical flow. Finally, the gyrokinetic particle simulations of the Alfvén waves in sheared cylinder have superior numerical properties compared with the fluid simulations, which suffer from numerical difficulties associated with singular mode structures.

  7. Resolving the Mystery of Transport Within Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.

    2013-10-01

    The Trapped Gyro-Landau Fluid (TGLF) quasilinear model, which is calibrated to approximate non-linear gyro-kinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges in excellent agreement with data from the DIII-D tokamak. This is a strong validation of gyro-kinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. Inside the ITB, the ion energy transport is observed to be reduced to the neoclassical level which is consistent with the theory of turbulence suppression by E × B velocity shear acting on low wavenumber turbulence. The electron energy transport is observed to be far above the neoclassical level which is consistent with electron energy transport due to high wavenumber electron temperature gradient (ETG) modes. Since the ETG modes do not produce particle and ion momentum transport, and low wavenumber modes are suppressed, these channels are expected to be reduced to the neoclassical level in striking disagreement with experimental measurements. A possible resolution of this conundrum was found in 2005 when gyro-kinetic turbulence simulations showed that the parallel velocity shear driven Kelvin-Helmholtz (KH) mode can arrest the suppression of transport by the shear in the E × B velocity Doppler shift at high toroidal flow shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E × B shear and to recent improvements to TGLF that allow the KH mode to be faithfully modeled. The resolution of this long-standing mystery of the missing particle and momentum transport in an ITB is the result of the steady advances in gyro-kinetic simulations and quasilinear modeling. Supported by the US Department of Energy under DE-FG02-95ER54309.

  8. Total fluid pressure imbalance in the scrape-off layer of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Canik, J. M.; Chang, C. S.; Hager, R.; Leonard, A. W.; Maingi, R.; Nazikian, R.; Stotler, D. P.

    2017-04-01

    Simulations using the fully kinetic neoclassical code XGCa (X-point included guiding- center axisymmetric) were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number  ˜ 0.5), skewed ion distributions near the sheath entrance leading to subsonic flow there, and elevated sheath potentials (Churchill 2016 Nucl. Mater. Energy 1-6). In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.

  9. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    DOE PAGES

    Waltz, Ronald E.; Bass, Eric M.; Heidbrink, William W.; ...

    2015-10-30

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code, used tomore » validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a < 0.5 and the central density is about half the slowing down density. Lastly, these results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.« less

  10. Numerical simulation support to the ESA/THOR mission

    NASA Astrophysics Data System (ADS)

    Valentini, F.; Servidio, S.; Perri, S.; Perrone, D.; De Marco, R.; Marcucci, M. F.; Daniele, B.; Bruno, R.; Camporeale, E.

    2016-12-01

    THOR is a spacecraft concept currently undergoing study phase as acandidate for the next ESA medium size mission M4. THOR has been designedto solve the longstanding physical problems of particle heating andenergization in turbulent plasmas. It will provide high resolutionmeasurements of electromagnetic fields and particle distribution functionswith unprecedented resolution, with the aim of exploring the so-calledkinetic scales. We present the numerical simulation framework which is supporting the THOR mission during the study phase. The THOR teamincludes many scientists developing and running different simulation codes(Eulerian-Vlasov, Particle-In-Cell, Gyrokinetics, Two-fluid, MHD, etc.),addressing the physics of plasma turbulence, shocks, magnetic reconnectionand so on.These numerical codes are being used during the study phase, mainly withthe aim of addressing the following points:(i) to simulate the response of real particle instruments on board THOR, byemploying an electrostatic analyser simulator which mimics the response ofthe CSW, IMS and TEA instruments to the particle velocity distributions ofprotons, alpha particle and electrons, as obtained from kinetic numericalsimulations of plasma turbulence.(ii) to compare multi-spacecraft with single-spacecraft configurations inmeasuring current density, by making use of both numerical models ofsynthetic turbulence and real data from MMS spacecraft.(iii) to investigate the validity of the Taylor hypothesis indifferent configurations of plasma turbulence

  11. Minimizing stellarator turbulent transport by geometric optimization

    NASA Astrophysics Data System (ADS)

    Mynick, H. E.

    2010-11-01

    Up to now, a transport optimized stellarator has meant one optimized to minimize neoclassical transport,ootnotetextH.E. Mynick, Phys. Plasmas 13, 058102 (2006). while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. However, with the advent of gyrokinetic codes valid for 3D geometries such as GENE,ootnotetextF. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000). and stellarator optimization codes such as STELLOPT,ootnotetextA. Reiman, G. Fu, S. Hirshman, L. Ku, et al, Plasma Phys. Control. Fusion 41 B273 (1999). designing stellarators to also reduce turbulent transport has become a realistic possibility. We have been using GENE to characterize the dependence of turbulent transport on stellarator geometry,ootnotetextH.E Mynick, P.A. Xanthopoulos, A.H. Boozer, Phys.Plasmas 16 110702 (2009). and to identify key geometric quantities which control the transport level. From the information obtained from these GENE studies, we are developing proxy functions which approximate the level of turbulent transport one may expect in a machine of a given geometry, and have extended STELLOPT to use these in its cost function, obtaining stellarator configurations with turbulent transport levels substantially lower than those in the original designs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchill, Randy M.; Canik, John M.; Chang, C. S.

    Simulations using the fully kinetic neoclassical code XGCa (X-point included guiding-center axisymmetric) were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number similar to 0.5), skewed ion distributions near the sheath entrance leading to subsonic flowmore » there, and elevated sheath potentials (Churchill 2016 Nucl. Mater. Energy 1-6). In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.« less

  13. Fast low-to-high confinement mode bifurcation dynamics in a tokamak edge plasma gyrokinetic simulation

    DOE PAGES

    Chang, C. S.; Ku, S.; Tynan, G. R.; ...

    2017-04-25

    Transport barrier formation and its relation to sheared flows in fluids and plasmas are of fundamental interest in various natural and laboratory observations and of critical importance in achieving an economical energy production in a magnetic fusion device. Here we report the first observation of an edge transport barrier formation event in an electrostatic gyrokinetic simulation carried out in a realistic diverted tokamak edge geometry under strong forcing by a high rate of heat deposition. Here, the results show that turbulent Reynolds-stress-driven sheared E x B flows act in concert with neoclassical orbit loss to quench turbulent transport and formmore » a transport barrier just inside the last closed magnetic flux surface.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grierson, B. A.; Wang, W. X.; Ethier, S.

    Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. Finally, the prediction of the velocity profile by integrating the momentum balance equation produces amore » rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.« less

  15. Gyrokinetic studies on turbulence-driven and neoclassical nondiffusive toroidal-momentum transport and the effect of residual fluctuations in strong E x B shear.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Rewoldt, G; Lee, W W; Tang, W M; Kaye, S M; Diamond, P H

    2009-01-23

    A significant inward flux of toroidal momentum is found in global gyrokinetic simulations of ion temperature gradient turbulence, leading to core plasma rotation spin-up. The underlying mechanism is identified to be the generation of residual stress due to the k parallel symmetry breaking induced by global quasistationary zonal flow shear. Simulations also show a significant off-diagonal element associated with the ion temperature gradient in the neoclassical momentum flux, while the overall neoclassical flux is small. In addition, the residual turbulence found in the presence of strong E x B flow shear may account for neoclassical-level ion heat and anomalous momentum transport widely observed in experiments.

  16. Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H

    2011-02-25

    Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. © 2011 American Physical Society

  17. A progressive data compression scheme based upon adaptive transform coding: Mixture block coding of natural images

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1991-01-01

    A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.

  18. Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit

    NASA Astrophysics Data System (ADS)

    Verniero, J. L.; Howes, G. G.; Klein, K. G.

    2018-02-01

    In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.

  19. Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra

    DOE PAGES

    Hatch, D. R.; Jenko, F.; Navarro, A. Banon; ...

    2016-07-26

    A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest inmore » the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.« less

  20. Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.

    2015-01-15

    Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less

  1. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  2. ITG-TEM turbulence simulation with bounce-averaged kinetic electrons in tokamak geometry

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Min; Qi, Lei; Yi, S.; Hahm, T. S.

    2017-06-01

    We develop a novel numerical scheme to simulate electrostatic turbulence with kinetic electron responses in magnetically confined toroidal plasmas. Focusing on ion gyro-radius scale turbulences with slower frequencies than the time scales for electron parallel motions, we employ and adapt the bounce-averaged kinetic equation to model trapped electrons for nonlinear turbulence simulation with Coulomb collisions. Ions are modeled by employing the gyrokinetic equation. The newly developed scheme is implemented on a global δf particle in cell code gKPSP. By performing linear and nonlinear simulations, it is demonstrated that the new scheme can reproduce key physical properties of Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabilities, and resulting turbulent transport. The overall computational cost of kinetic electrons using this novel scheme is limited to 200%-300% of the cost for simulations with adiabatic electrons. Therefore the new scheme allows us to perform kinetic simulations with trapped electrons very efficiently in magnetized plasmas.

  3. A finite volume Fokker-Planck collision operator in constants-of-motion coordinates

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Xu, X. Q.; Cohen, B. I.; Cohen, R.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G.; Nevins, W. M.; Rognlien, T.

    2006-04-01

    TEMPEST is a 5D gyrokinetic continuum code for edge plasmas. Constants of motion, namely, the total energy E and the magnetic moment μ, are chosen as coordinate s because of their advantage in minimizing numerical diffusion in advection operato rs. Most existing collision operators are written in other coordinates; using them by interpolating is shown to be less satisfactory in maintaining overall numerical accuracy and conservation. Here we develop a Fokker-Planck collision operator directly in (E,μ) space usin g a finite volume approach. The (E, μ) grid is Cartesian, and the turning point boundary represents a straight line cutting through the grid that separates the ph ysical and non-physical zones. The resulting cut-cells are treated by a cell-mergin g technique to ensure a complete particle conservation. A two dimensional fourth or der reconstruction scheme is devised to achieve good numerical accuracy with modest number of grid points. The new collision operator will be benchmarked by numerical examples.

  4. Microstability Properties of the Local Minimum | B | Regime in Pegasus

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rhodes, A. T.

    2017-10-01

    A local minimum | B | region, or ``magnetic well,'' was recently observed in the low-aspect-ratio Pegasus device in high- β scenarios with strong edge current peaking. The ∇B reversal within the magnetic well alters particle drifts, orbits, fast ion losses, and instability drives. Here, we report on the microstability properties of the magnetic well region with calculations from the GENE gyrokinetic code. In particular, we explore the dependence on magnetic well depth and the role of electromagnetic effects. Preliminary results from local electromagnetic calculations indicate unstable electron modes exist in the magnetic well region. Connections to NSTX-U and MAST-U operational scenarios are also discussed. Finally, probe measurements of electrostatic and magnetic fluctuations in the Pegasus magnetic well region are presented in Ref. 3. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-SC0001288 and DE-FG02-96ER54375.

  5. Light impurity transport in JET ILW L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET

    2018-03-01

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  6. Modern gyrokinetic formulation of collisional and turbulent transport in toroidally rotating plasmas

    NASA Astrophysics Data System (ADS)

    Sugama, H.

    2017-12-01

    Collisional and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity are formulated based on the modern gyrokinetic theory. Governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions are derived from the Lagrangian variational principle with effects of collisions and external sources taken into account. Noether's theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms which are desirable properties for long-time global transport simulation. The resultant balance equations are shown to include the classical, neoclassical, and turbulent transport fluxes which agree with those obtained from the conventional recursive formulations.

  7. Impact of the Level of State Tax Code Progressivity on Children's Health Outcomes

    ERIC Educational Resources Information Center

    Granruth, Laura Brierton; Shields, Joseph J.

    2011-01-01

    This research study examines the impact of the level of state tax code progressivity on selected children's health outcomes. Specifically, it examines the degree to which a state's tax code ranking along the progressive-regressive continuum relates to percentage of low birthweight babies, infant and child mortality rates, and percentage of…

  8. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey; Lodestro, Lynda; Told, Daniel; Merlo, Gabriele; Ricketson, Lee; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey

    2017-10-01

    Predictive whole-device simulation models will play an increasingly important role in ensuring the success of fusion experiments and accelerating the development of fusion energy. In the core of tokamak plasmas, a separation of timescales between turbulence and transport makes a single direct simulation of both processes computationally expensive. We present the first demonstration of a multiple-timescale method coupling global gyrokinetic simulations with a transport solver to calculate the self-consistent, steady-state temperature profile. Initial results are highly encouraging, with the coupling method appearing robust to the difficult problem of turbulent fluctuations. The method holds potential for integrating first-principles turbulence simulations into whole-device models and advancing the understanding of global plasma behavior. Work supported by US DOE under Contract DE-AC52-07NA27344 and the Exascale Computing Project (17-SC-20-SC).

  9. Understanding rotation profile structures in ECH-heated plasmas using nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.

    2015-11-01

    A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  10. Total fluid pressure imbalance in the scrape-off layer of tokamak plasmas

    DOE PAGES

    Churchill, Randy M.; Canik, John M.; Chang, C. S.; ...

    2017-03-10

    Simulations using the fully kinetic neoclassical code XGCa (X-point included guiding-center axisymmetric) were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number similar to 0.5), skewed ion distributions near the sheath entrance leading to subsonic flowmore » there, and elevated sheath potentials (Churchill 2016 Nucl. Mater. Energy 1-6). In this paper, we explore in detail the question of pressure balance in the SOL, as it was observed in the simulation that there was a large deviation from a simple total pressure balance (the sum of ion and electron static pressure plus ion inertia). It will be shown that both the contributions from the ion viscosity (driven by ion temperature anisotropy) and neutral source terms can be substantial, and should be retained in the parallel momentum equation in the SOL, but still falls short of accounting for the observed fluid pressure imbalance in the XGCa simulation results.« less

  11. Gyrokinetic simulations of turbulent transport in a ring dipole plasma.

    PubMed

    Kobayashi, Sumire; Rogers, Barrett N; Dorland, William

    2009-07-31

    Gyrokinetic flux-tube simulations of turbulent transport due to small-scale entropy modes are presented in a ring-dipole magnetic geometry relevant to the Columbia-MIT levitated dipole experiment (LDX) [J. Kesner, Plasma Phys. J. 23, 742 (1997)]. Far from the current ring, the dipolar magnetic field leads to strong parallel variations, while close to the ring the system becomes nearly uniform along circular magnetic field lines. The transport in these two limits are found to be quantitatively similar given an appropriate normalization based on the local out-board parameters. The transport increases strongly with the density gradient, and for small eta=L(n)/L(T)<1, T(i) approximately T(e), and typical LDX parameters, can reach large levels. Consistent with linear theory, temperature gradients are stabilizing, and for T(i) approximately T(e) can completely cut off the transport when eta greater or similar to 0.6.

  12. Gyrokinetic particle simulation of beta-induced Alfven-acoustic eigenmode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H. S., E-mail: zhang.huasen@gmail.com; Institute of Applied Physics and Computational Mathematics, Beijing 100088; Liu, Y. Q.

    2016-04-15

    The beta-induced Alfven-acoustic eigenmode (BAAE) in toroidal plasmas is verified and studied by global gyrokinetic particle simulations. When ion temperature is much lower than electron temperature, the existence of the weakly damped BAAE is verified in the simulations using initial perturbation, antenna excitation, and energetic particle excitation, respectively. When the ion temperature is comparable to the electron temperature, the unstable BAAE can be excited by realistic energetic particle density gradient, even though the stable BAAE (in the absence of energetic particles) is heavily damped by the thermal ions. In the simulations with reversed magnetic shear, BAAE frequency sweeping is observedmore » and poloidal mode structure has a triangle shape with a poloidal direction similar to that observed in tokamak experiments. The triangle shape changes the poloidal direction, and no frequency sweeping is found in the simulations with normal magnetic shear.« less

  13. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gurcan, Ozgur D., E-mail: ozgur.gurcan@lpp.polytechnique.fr

    2015-05-15

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistentmore » zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.« less

  14. Main-ion intrinsic toroidal rotation profile driven by residual stress torque from ion temperature gradient turbulence in the DIII-D tokamak

    DOE PAGES

    Grierson, B. A.; Wang, W. X.; Ethier, S.; ...

    2017-01-06

    Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. Finally, the prediction of the velocity profile by integrating the momentum balance equation produces amore » rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.« less

  15. Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling

    NASA Astrophysics Data System (ADS)

    Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.

    2018-02-01

    A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.

  16. Generalized fluid theory including non-Maxwellian kinetic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izacard, Olivier

    The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closuresmore » from the nonlinear Landau Fokker–Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function. One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. Here, the results shown here could provide the insights to break some of the unsolved puzzles of turbulence.« less

  17. Generalized fluid theory including non-Maxwellian kinetic effects

    DOE PAGES

    Izacard, Olivier

    2017-03-29

    The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closuresmore » from the nonlinear Landau Fokker–Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function. One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. Here, the results shown here could provide the insights to break some of the unsolved puzzles of turbulence.« less

  18. Kinetic simulations of scrape-off layer physics in the DIII-D tokamak

    DOE PAGES

    Churchill, Randy M.; Canik, John M.; Chang, C. S.; ...

    2016-12-27

    Simulations using the fully kinetic code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total- f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Fluid simulations are normally used to simulate the SOL, due to its high collisionality. However, depending on plasma conditions, a number of discrepancies have been observed between experiment and leading SOL fluid codes (e.g. SOLPS), including underestimating outer target temperatures, radial electric field in the SOL, parallel ion SOL flowsmore » at the low field side, and impurity radiation. Many of these discrepancies may be linked to the fluid treatment, and might be resolved by including kinetic effects in SOL simulations. The XGCa simulation of the DIII-D tokamak in a nominally sheath-limited regime show many noteworthy features in the SOL. The density and ion temperature are higher at the low-field side, indicative of ion orbit loss. The SOL ion Mach flows are at experimentally relevant levels ( Mi ~0.5), with similar shapes and poloidal variation as observed in various tokamaks. Surprisingly, the ion Mach flows close to the sheath edge remain subsonic, in contrast to the typical fluid Bohm criterion requiring ion flows to be above sonic at the sheath edge. Related to this are the presence of elevated sheath potentials, eΔΦ/T e ~ 3–4, over most of the SOL, with regions in the near-SOL close to the separatrix having eΔΦ/Te > 4. Finally, these two results at the sheath edge are a consequence of non-Maxwellian features in the ions and electrons there.« less

  19. Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...

    2013-05-08

    Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in goodmore » qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.« less

  20. Towards a better understanding of critical gradients and near-marginal turbulence in burning plasma conditions

    NASA Astrophysics Data System (ADS)

    Holland, C.; Candy, J.; Howard, N. T.

    2017-10-01

    Developing accurate predictive transport models of burning plasma conditions is essential for confident prediction and optimization of next step experiments such as ITER and DEMO. Core transport in these plasmas is expected to be very small in gyroBohm-normalized units, such that the plasma should lie close to the critical gradients for onset of microturbulence instabilities. We present recent results investigating the scaling of linear critical gradients of ITG, TEM, and ETG modes as a function of parameters such as safety factor, magnetic shear, and collisionality for nominal conditions and geometry expected in ITER H-mode plasmas. A subset of these results is then compared against predictions from nonlinear gyrokinetic simulations, to quantify differences between linear and nonlinear thresholds. As part of this study, linear and nonlinear results from both GYRO and CGYRO codes will be compared against each other, as well as to predictions from the quasilinear TGLF model. Challenges arising from near-marginal turbulence dynamics are addressed. This work was supported by the US Department of Energy under US DE-SC0006957.

  1. GYROKINETIC PARTICLE SIMULATION OF TURBULENT TRANSPORT IN BURNING PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, Claude Wendell

    2014-06-10

    The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of themore » turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, “Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).« less

  2. Evidence of a New Instability in Gyrokinetic Simulations of LAPD Plasmas

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Pueschel, M. J.; Rossi, G.; Jenko, F.; Told, D.; Carter, T. A.

    2015-11-01

    Recent experiments at the LArge Plasma Device (LAPD) have focused on structure formation driven by density and temperature gradients. A central difference relative to typical, tokamak-like plasmas stems from the linear geometry and absence of background magnetic shear. At sufficiently high β, strong excitation of parallel (compressional) magnetic fluctuations was observed. Here, linear and nonlinear simulations with the Gene code are used to demonstrate that these findings can be explained through the linear excitation of a Gradient-driven Drift Coupling mode (GDC). This recently-discovered instability, unlike other drift waves, relies on the grad-B drift due to parallel magnetic fluctuations in lieu of a parallel electron response, and can be driven by density or temperature gradients. The linear properties of the GDC for LAPD parameters are studied in detail, and the corresponding turbulence is investigated. It is found that, despite the very large collisionality in the experiment, many properties are recovered fairly well in the simulations. In addition to confirming the existence of the GDC, this opens up interesting questions regarding GDC activity in astrophysical and space plasmas. Supported by USDOE.

  3. Experimental determination of the correlation properties of plasma turbulence using 2D BES systems

    NASA Astrophysics Data System (ADS)

    Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team

    2017-04-01

    A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.

  4. Calculation of ion distribution functions and neoclassical transport in the edge of single-null divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Cohen, R. H.; Xu, X. Q.

    2007-11-01

    The ion distribution function in the H-mode pedestal region and outward across the magnetic separatrix is expected to have a substantial non-Maxwellian character owing to the large banana orbits and steep gradients in temperature and density. The 4D (2r,2v) version of the TEMPEST continuum gyrokinetic code is used with a Coulomb collision model to calculate the ion distribution in a single-null tokamak geometry throughout the pedestal/scrape-off-layer regions. The mean density, parallel velocity, and energy radial profiles are shown at various poloidal locations. The collisions cause neoclassical energy transport through the pedestal that is then lost to the divertor plates along the open field lines outside the separatrix. The resulting heat flux profiles at the inner and outer divertor plates are presented and discussed, including asymmetries that depend on the B-field direction. Of particular focus is the effect on ion profiles and fluxes of a radial electric field exhibiting a deep well just inside the separatrix, which reduces the width of the banana orbits by the well-known squeezing effect.

  5. Toroidal Alfvénic Eigenmodes Driven by Energetic Particles with Maxwell and Slowing-down Distributions

    NASA Astrophysics Data System (ADS)

    Hou, Yawei; Zhu, Ping; Zou, Zhihui; Kim, Charlson C.; Hu, Zhaoqing; Wang, Zhengxiong

    2016-10-01

    The energetic-particle (EP) driven toroidal Alfvén eigenmodes (TAEs) in a circular-shaped large aspect ratio tokamak are studied using the hybrid kinetic-MHD model in the NIMROD code, where the EPs are advanced using the δf particle-in-cell (PIC) method and their kinetic effects are coupled to the bulk plasma through moment closures. Two initial distributions of EPs, Maxwell and slowing-down, are considered. The influence of EP parameters, including density, temperature and density gradient, on the frequency and the growth rate of TAEs are obtained and benchmarked with theory and gyrokinetic simulations for the Maxwell distribution with good agreement. When the density and temperature of EPs are above certain thresholds, the transition from TAE to energetic particle modes (EPM) occurs and the mode structure also changes. Comparisons between Maxwell and slowing-down distributions in terms of EP-driven TAEs and EPMs will also be presented and discussed. Supported by the National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002 and 2015GB101004, and the Natural Science Foundation of China Grant No. 11205194.

  6. Impact of the level of state tax code progressivity on children's health outcomes.

    PubMed

    Granruth, Laura Brierton; Shields, Joseph J

    2011-08-01

    This research study examines the impact of the level of state tax code progressivity on selected children's health outcomes. Specifically, it examines the degree to which a state's tax code ranking along the progressive-regressive continuum relates to percentage of low birthweight babies, infant and child mortality rates, and percentage of uninsured children. Using data merged from a number of public data sets, the authors find that the level of state tax code progressivity is a factor in state rates of infant and child mortality. States with lower median incomes and regressive tax policies have the highest rates of infant and child mortality.With regard to the percentage of children 17 years of age and below who lack health insurance, it is found that larger states with regressive tax policies have the largest percentage of uninsured children. In general, more heavily populated states with more progressive tax codes have healthier children. The implications of these findings are discussed in terms of tax policy and the well-being of children as well as for social work education, social work practice, and social work research.

  7. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, P.H.; Lin, Z.; Wang, W.

    2011-09-21

    The three-year project GPS-TTBP resulted in over 152 publications and 135 presentations. This summary focuses on the scientific progress made by the project team. A major focus of the project was on the physics intrinsic rotation in tokamaks. Progress included the first ever flux driven study of net intrinsic spin-up, mediated by boundary effects (in collaboration with CPES), detailed studies of the microphysics origins of the Rice scaling, comparative studies of symmetry breaking mechanisms, a pioneering study of intrinsic torque driven by trapped electron modes, and studies of intrinsic rotation generation as a thermodynamic engine. Validation studies were performed withmore » C-Mod, DIII-D and CSDX. This work resulted in very successful completion of the FY2010 Theory Milestone Activity for OFES, and several prominent papers of the 2008 and 2010 IAEA Conferences. A second major focus was on the relation between zonal flow formation and transport non-locality. This culminated in the discovery of the ExB staircase - a conceptually new phenomenon. This also makes useful interdisciplinary contact with the physics of the PV staircase, well-known in oceans and atmospheres. A third topic where progress was made was in the simulation and theory of turbulence spreading. This work, now well cited, is important for understanding the dynamics of non-locality in turbulent transport. Progress was made in studies of conjectured non-diffusive transport in trapped electron turbulence. Pioneering studies of ITB formation, coupling to intrinsic rotation and hysteresis were completed. These results may be especially significant for future ITER operation. All told, the physics per dollar performance of this project was quite good. The intense focus was beneficial and SciDAC resources were essential to its success.« less

  8. Progressive fracture of fiber composites

    NASA Technical Reports Server (NTRS)

    Irvin, T. B.; Ginty, C. A.

    1983-01-01

    Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.

  9. Progressive video coding for noisy channels

    NASA Astrophysics Data System (ADS)

    Kim, Beong-Jo; Xiong, Zixiang; Pearlman, William A.

    1998-10-01

    We extend the work of Sherwood and Zeger to progressive video coding for noisy channels. By utilizing a 3D extension of the set partitioning in hierarchical trees (SPIHT) algorithm, we cascade the resulting 3D SPIHT video coder with a rate-compatible punctured convolutional channel coder for transmission of video over a binary symmetric channel. Progressive coding is achieved by increasing the target rate of the 3D embedded SPIHT video coder as the channel condition improves. The performance of our proposed coding system is acceptable at low transmission rate and bad channel conditions. Its low complexity makes it suitable for emerging applications such as video over wireless channels.

  10. Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Bass, E. M.; Heidbrink, W. W.; VanZeeland, M. A.

    2015-11-01

    Recent experiments with the DIII-D tilted neutral beam injection (NBI) varying the beam energetic particle (EP) source profiles have provided strong evidence that unstable Alfven eigenmodes (AE) drive stiff EP transport at a critical EP density gradient [Heidbrink et al 2013 Nucl. Fusion 53 093006]. Here the critical gradient is identified by the local AE growth rate being equal to the local ITG/TEM growth rate at the same low toroidal mode number. The growth rates are taken from the gyrokinetic code GYRO. Simulation show that the slowing down beam-like EP distribution has a slightly lower critical gradient than the Maxwellian. The ALPHA EP density transport code [Waltz and Bass 2014 Nucl. Fusion 54 104006], used to validate the model, combines the low-n stiff EP critical density gradient AE mid-core transport with the Angioni et al (2009 Nucl. Fusion 49 055013) energy independent high-n ITG/TEM density transport model controling the central core EP density profile. For the on-axis NBI heated DIII-D shot 146102, while the net loss to the edge is small, about half the birth fast ions are transported from the central core r/a  <  0.5 and the central density is about half the slowing down density. These results are in good agreement with experimental fast ion pressure profiles inferred from MSE constrained EFIT equilibria.

  11. Long-wavelength microinstabilities in toroidal plasmas*

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Rewoldt, G.

    1993-07-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities.

  12. On the tertiary instability formalism of zonal flows in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.

    2018-05-01

    This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZF

  13. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less

  14. Nonlinear gyrokinetics: a powerful tool for the description of microturbulence in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Krommes, John A.

    2010-12-01

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and difficulties) of deriving nonlinear gyrofluid equations suitable for rapid numerical solution—although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  15. Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Snyder, Philip Benjamin

    1999-11-01

    Turbulence and transport in toroidal plasmas is studied via the development of an electromagnetic gyrofluid model, and its implementation in realistic nonlinear simulations. This work extends earlier electrostatic gyrofluid models to include magnetic fluctuations and non-adiabatic passing electron dynamics. A new set of electron fluid equations is derived from the drift kinetic equation, via an expansion in the electron-ion mass ratio. These electron equations include descriptions of linear and nonlinear drift motion, Landau damping, and electron-ion collisions. Ion moment equations are derived from the electromagnetic gyrokinetic equation, and the gyrokinetic Poisson's Equation and Ampere's Law close the system. The model is benchmarked with linear gyrokinetic calculations, and good agreement is found for both the finite-β ion temperature gradient (ITG) and kinetic Alfvén ballooning (KBM) instabilities. Nonlinear simulations of ITG and KBM-driven turbulence are performed in toroidal flux tube geometry at a range of values of plasma β, and electromagnetic effects are found to significantly impact turbulent heat and particle transport. At low values of β, transport is reduced, as expected due to the finite-β stabilization of the ITG mode. However, as β approaches the Ideal-MHD stability threshold, transport can increase. In the presence of dissipation provided by a model of electron Landau damping and electron-ion collisions, this transport increase can be quite dramatic. Finally, the results of the simulations are compared to tokamak experiments, and encouraging agreement is found with measured density and temperature fluctuation spectra. Direct comparisons of transport fluxes reveal that electromagnetic effects are important at characteristic edge parameters, bringing predicted fluxes more closely in line with observations.

  16. Combining image-processing and image compression schemes

    NASA Technical Reports Server (NTRS)

    Greenspan, H.; Lee, M.-C.

    1995-01-01

    An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.

  17. Computational simulation of progressive fracture in fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    Computational methods for simulating and predicting progressive fracture in fiber composite structures are presented. These methods are integrated into a computer code of modular form. The modules include composite mechanics, finite element analysis, and fracture criteria. The code is used to computationally simulate progressive fracture in composite laminates with and without defects. The simulation tracks the fracture progression in terms of modes initiating fracture, damage growth, and imminent global (catastrophic) laminate fracture.

  18. Gyrokinetic water-bag modeling of a plasma column: Magnetic moment distribution and finite Larmor radius effects

    NASA Astrophysics Data System (ADS)

    Klein, R.; Gravier, E.; Morel, P.; Besse, N.; Bertrand, P.

    2009-08-01

    Describing turbulent transport in fusion plasmas is a major concern in magnetic confinement fusion. It is now widely known that kinetic and fluid descriptions can lead to significantly different properties. Although more accurate, the kinetic calculation of turbulent transport is much more demanding of computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamics equations while keeping its kinetic character [P. Morel, E. Gravier, N. Besse et al., Phys. Plasmas 14, 112109 (2007)]. In this paper, the water-bag concept is used in a gyrokinetic context to study finite Larmor radius effects with the possibility of using the full Larmor radius distribution instead of an averaged Larmor radius. The resulting model is used to study the ion temperature gradient (ITG) instability.

  19. Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lu, WANG; Shuitao, PENG; P, H. DIAMOND

    2018-07-01

    Understanding the generation of intrinsic rotation in tokamak plasmas is crucial for future fusion reactors such as ITER. We proposed a new mechanism named turbulent acceleration for the origin of the intrinsic parallel rotation based on gyrokinetic theory. The turbulent acceleration acts as a local source or sink of parallel rotation, i.e., volume force, which is different from the divergence of residual stress, i.e., surface force. However, the order of magnitude of turbulent acceleration can be comparable to that of the divergence of residual stress for electrostatic ion temperature gradient (ITG) turbulence. A possible theoretical explanation for the experimental observation of electron cyclotron heating induced decrease of co-current rotation was also proposed via comparison between the turbulent acceleration driven by ITG turbulence and that driven by collisionless trapped electron mode turbulence. We also extended this theory to electromagnetic ITG turbulence and investigated the electromagnetic effects on intrinsic parallel rotation drive. Finally, we demonstrated that the presence of turbulent acceleration does not conflict with momentum conservation.

  20. Discussion on LDPC Codes and Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  1. Foreword to Special Issue: Papers from the 54th Annual Meeting of the APS Division of Plasma Physics, Providence, Rhode Island, USA, 2012

    NASA Astrophysics Data System (ADS)

    Skiff, Fred; Davidson, Ronald C.

    2013-05-01

    Each year, the annual meeting of the APS Division of Plasma Physics (DPP) brings together a broad representation of the many active subfields of plasma physics and enjoys an audience that is equally diverse. The meeting was well attended and largely went as planned despite the interventions of hurricane Sandy which caused the city of Providence to shut-down during the first day of the conference. The meeting began on Monday morning with a review of the physics of cosmic rays, 2012 being the 100th year since their discovery, which illustrated the central importance of plasma physics to astrophysical problems. Subsequent reviews covered the importance of tokamak plasma boundaries, progress towards ignition on the National Ignition Facility (NIF), and magnetized plasma turbulence. The Maxwell prize address, by Professor Liu Chen, covered the field of nonlinear Alfvén wave physics. Tutorial lectures were presented on the verification of gyrokinetics, new capabilities in laboratory astrophysics, magnetic flux compression, and tokamak plasma start-up.

  2. [Comparative review of the Senegalese and French deontology codes].

    PubMed

    Soumah, M; Mbaye, I; Bah, H; Gaye Fall, M C; Sow, M L

    2005-01-01

    The medical deontology regroups duties of the physicians and regulate the exercise of medicine. The code of medical deontology of Senegal inspired of the French medical deontology code, has not been revised since its institution whereas the French deontology code knew three revisions. Comparing the two codes of deontology titles by title and article by article, this work beyond a parallel between the two codes puts in inscription the progress in bioethics that are to the basis of the revisions of the French medical deontology code. This article will permit an advocacy of the health professionals, in favor of a setting to level of the of Senegalese medical deontology code. Because legal litigation, that is important in the developed countries, intensify in our developing countries. It is inherent to the technological progress and to the awareness of the patients of their rights.

  3. Effect of anomalous transport on kinetic simulations of the H-mode pedestal

    NASA Astrophysics Data System (ADS)

    Bateman, G.; Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.

    2009-11-01

    The MMM08 and MMM95 Multi-Mode transport models [1,2], are used to investigate the effect of anomalous transport in XGC0 gyrokinetic simulations [3] of tokamak H-mode pedestal growth. Transport models are implemented in XGC0 using the Framework for Modernization and Componentization of Fusion Modules (FMCFM). Anomalous transport is driven by steep temperature and density gradients and is suppressed by high values of flow shear in the pedestal. The radial electric field, used to calculate the flow shear rate, is computed self-consistently in the XGC0 code with the anomalous transport, Lagrangian charged particle dynamics and neutral particle effects. XGC0 simulations are used to provide insight into how thermal and particle transport, together with the sources of heat and charged particles, determine the shape and growth rate of the temperature and density profiles. [1] F.D. Halpern et al., Phys. Plasmas 15 (2008) 065033; J.Weiland et al., Nucl. Fusion 49 (2009) 965933; A.Kritz et al., EPS (2009) [2] G. Bateman, et al, Phys. Plasmas 5 (1998) 1793 [3] C.S. Chang, S. Ku, H. Weitzner, Phys. Plasmas 11 (2004) 2649

  4. Ion temperature gradient driven transport in tokamaks with square shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less

  5. Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.

    2017-06-01

    The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.

  6. Study of Second Stability for Global ITG Modes in MHD-stable Equilibria

    NASA Astrophysics Data System (ADS)

    Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan

    1997-11-01

    We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219

  7. Investigation of energetic particle induced geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  8. Electron Profile Stiffness and Critical Gradient Length Studies in the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Hatch, David R.; Liao, Kenneth T.; Zhao, Bingzhe; Phillips, Perry E.; Rowan, William L.; Cao, Norman; Ernst, Darin R.; Rice, John E.

    2017-10-01

    Electron temperature profile stiffness was investigated at Alcator C-Mod L-mode discharges. Electrons were heated by ion cyclotron range of frequencies (ICRF) through minority heating. The intent of the heating mechanism was to vary the heat flux and simultaneously, gradually change the local gradient. The electron temperature gradient scale length (LTe- 1 = | ∇Te |/Te) was accurately measured through a novel technique, using the high-resolution radiometer ECE diagnostic. The TRANSP power balance analysis (Q/QGB) and the measured scale length (a/LTe) result in critical scale length measurements at all major radius locations. These measurements suggest that the profiles are already at the critical values. Furthermore, the dependence of the stiffness on plasma rotation and magnetic shear will be discussed. In order to understand the underlying mechanism of turbulence for these discharges, simulations using the gyrokinetic code, GENE, were carried out. For linear runs at electron scales, it was found that the largest growth rates are very sensitive to a/LTe variation, which suggests the presence of ETG modes, while the sensitivity studies in the ion scales indicate ITG/TEM modes. Supported by USDoE awards DE-FG03-96ER54373 and DE-FC02-99ER54512.

  9. Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal

    DOE PAGES

    Holod, I.; Lin, Z.; Taimourzadeh, S.; ...

    2016-10-03

    Vacuum resonant magnetic perturbations (RMP) applied to otherwise axisymmetric tokamak plasmas produce in general a combination of non-resonant effects that preserve closed flux surfaces (kink response) and resonant effects that introduce magnetic islands and/or stochasticity (tearing response). The effect of the plasma kink response on the linear stability and nonlinear transport of edge turbulence is studied using the gyrokinetic toroidal code GTC for a DIII-D plasma with applied n = 2 vacuum RMP. GTC simulations use the 3D equilibrium of DIII-D discharge 158103 (Nazikian et al 2015 Phys. Rev. Lett. 114 105002), which is provided by nonlinear ideal MHD VMECmore » equilibrium solver in order to include the effect of the plasma kink response to the external field but to exclude island formation at rational surfaces. Analysis using the GTC simulation results reveal no increase of growth rates for the electrostatic drift wave instability and for the electromagnetic kinetic-ballooning mode in the presence of the plasma kink response to the RMP. Moreover, nonlinear electrostatic simulations show that the effect of the 3D equilibrium on zonal flow damping is very weak and found to be insufficient to modify turbulent transport in the electrostatic turbulence.« less

  10. Linear instabilities near the DIII-D edge simulated in fluid models

    NASA Astrophysics Data System (ADS)

    Bass, Eric; Holland, Christopher

    2017-10-01

    The linear instability spectrum is reported near the DIII-D edge (within the separatrix) for L-mode and H-mode shots using the new eigenvalue solver FluTES (Fluid Toroidal Eigenvalue Solver). FluTES circumvents difficulties with convergence to clean linear eigenmodes (required for diagnosis of nonlinear simulations in codes such as BOUT++) often encountered with fluid initial-value solvers. FluTES is well-verified in analytic cases and against a BOUT++/ELITE benchmark toroidal case. We report results for both a 3-field, one-fluid model (the well-known ``elm-pb'' model) and a 5-field, two-fluid model. For the peeling-ballooning-dominated H-mode, the two solutions are qualitatively the same. In the driftwave-dominated L-mode edge, only the two-fluid solution gives robust instabilities which occur primarily at n > 50 . FluTES is optimized for this regime (near-flutelike limit, toroidally spectral). Cross-separatrix, coupled fluid and drift instabilities may play a role in explaining the gyrokinetic L-mode edge transport shortfall. Extension of FluTES into the open-field-line region is underway. Prepared by UCSD under Contract Number DE-FG02-06ER54871.

  11. Investigations of Turbulent Transport Channels in Gyrokinetic Simulations

    NASA Astrophysics Data System (ADS)

    Dimits, A. M.; Candy, J.; Guttenfelder, W.; Holland, C.; Howard, N.; Nevins, W. M.; Wang, E.

    2014-10-01

    Magnetic-field stochasticity arises due to microtearing perturbations, which can be driven linearly or nonlinearly (in cases where they are linearly stable), even at very modest values of the plasma beta. The resulting magnetic-flutter contribution may or may not be a significant component of the overall electron (particle and thermal) transport. Investigations of the effect of ExB flow shear on electron-drift magnetic-flutter diffusion coefficient Dedr (r ,v||) using perturbed magnetic fields from simulations, using the GYRO code, of ITG turbulence show a significant effect for electrons with parallel velocities v|| surprisingly far from the resonant velocity. We further examine changes in the radial dependence of this diffusion coefficient vs. v|| and which resonant magnetic-field perturbations are important to the values and radial structure of Dedr. The resulting electron transport fluxes are compared with the simulation results. Improvements over in treating the ambipolar field in the relationship between the magnetic (or drift) diffusion coefficients and the transport have been made in these comparisons. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344, by GA under Contract DE-FG03-95ER54309, and by PPPL under Contract DE-AC02-09CH11466.

  12. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizard, Alain J

    Final Technical Report for U.S. Department of Energy Grant No. DE-FG02-09ER55005 Nonlinear FLR Effects in Reduced Fluid Models Alain J. Brizard, Saint Michael's College The above-mentioned DoE grant was used to support research activities by the PI during a sabbatical leave from Saint Michael's College in 2009. The major focus of the work was the role played by guiding-center and gyrocenter (linear and nonlinear) polarization and magnetization effects in understanding transport processes in turbulent magnetized plasmas. The theoretical tools used for this work include Lie-transform perturbation methods and Lagrangian (variational) methods developed by the PI in previous work. The presentmore » final technical report lists (I) the peer-reviewed publications that were written based on work funded by the Grant; (II) invited and contributed conference presentations during the period funded by the Grant; and (III) seminars presented during the period funded by the Grant. I. Peer-reviewed Publications A.J. Brizard and N. Tronko, 2011, Exact momentum conservation for the gyrokinetic Vlasov- Poisson equations, Physics of Plasmas 18 , 082307:1-14 [http://dx.doi.org/10.1063/1.3625554 ]. J. Decker, Y. Peysson, A.J. Brizard, and F.-X. Duthoit, 2010, Orbit-averaged guiding-center Fokker-Planck operator for numerical applications, Physics of Plasmas 17, 112513:1-12 [http://dx.doi.org/10.1063/1.3519514]. A.J. Brizard, 2010, Noether derivation of exact conservation laws for dissipationless reduced fluid models, Physics of Plasmas 17, 112503:1-8 [http://dx.doi.org/10.1063/1.3515303]. F.-X. Duthoit, A.J. Brizard, Y. Peysson, and J. Decker, 2010, Perturbation analysis of trapped particle dynamics in axisymmetric dipole geometry, Physics of Plasmas 17, 102903:1-9 [http://dx.doi.org/10.1063/1.3486554]. A.J. Brizard, 2010, Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations, Physics of Plasmas 17, 042303:1-11 [http://dx.doi.org/10.1063/1.3374428]. A.J. Brizard, J. Decker, Y. Peysson, and F.-X. Duthoit, 2009, Orbit-averaged guiding-center Fokker-Planck operator, Physics of Plasmas 16, 102304:1-9[http://dx.doi.org/10.1063/1.3249627]. A.J. Brizard, 2009, Variational Principles for Reduced Plasma Physics, Journal of Physics: Conference Series 169, 012003 [http://dx.doi.org/10.1088/1742-6596/169/1/012003]. II. Invited and Contributed Conference Presentations A.J. Brizard and N. Tronko, Momentum conservation law for the gyrokinetic Vlasov-Poisson equations, 53rd Annual Meeting of the APS Division of Plasma Physics, Salt Lake City (Utah), November 14-18, 2011. A.J. Brizard, P.J. Morrison, C. Chandre, and E. Tassi, On the road to the Hamiltonian formulation of gyrokinetic theory, 52nd Annual Meeting of the APS Division of Plasma Physics, Chicago (Illinois), November 8-12, 2010. F.-X. Duthoit, A.J. Brizard, Y. Peysson, and J. Decker, Lie-transform perturbation analysis of trapped-particle dynamics in axisymmetric dipole geometry, 2010 International Sherwood Fusion Theory Conference, Seattle (Washington), April 19-21, 2010. N. Tronko and A.J. Brizard, Gyrokinetic momentum conservation law, 2010 International Sherwood Fusion Theory Conference, Seattle (Washington), April 19-21, 2010. C. Chandre and A.J. Brizard, Hamiltonian formulation of reduced Vlasov-Maxwell equations, 50th Annual Meeting of the APS Division of Plasma Physics, Dallas (Texas), November 17-21, 2008. A.J. Brizard, Nonlinear FLR effects in reduced fluid models, Invited Presentation at 11th Easter Plasma Meeting, Torino (Italy), April 15-17, 2009. III. Seminars Reduced Fokker-Planck operators for advanced plasma simulations, seminar given at CEA Cadarache (France), May 25, 2009. Ray phase-space methods in linear mode conversion, seminar given at CPT Luminy (France), April 1, 2009. Old and new methods in gyrokinetic theory, seminar given at CEA Cadarache (France), March 20, 2009. Hamiltonian theory of adiabatic motion of relativistic charged particles, seminar given at CPT Luminy (France), March 11, 2009. Noether method for fluids and plasmas, seminar given at CEA Cadarache (France), February 5, 2009. Nonlinear FLR effects in reduced fluid models, invited speaker at the Journee de la Dynamique Non Lineaire, Centre de Physique Theorique, CNRS Luminy (Marseille, France), June 3, 2008.« less

  13. Inclusion of pressure and flow in a new 3D MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel; Fukuyama, Atsushi

    2012-10-01

    Flow and nonsymmetric effects can play a large role in plasma equilibria and energy confinement. A concept for such a 3D equilibrium code was developed and presented in 2011. The code is called the Kyoto ITerative Equilibrium Solver (KITES) [1], and the concept is based largely on the PIES code [2]. More recently, the work-in-progress KITES code was used to calculate force-free equilibria. Here, progress and results on the inclusion of pressure and flow in the code are presented. [4pt] [1] Daniel Raburn and Atsushi Fukuyama, Plasma and Fusion Research: Regular Articles, 7:240381 (2012).[0pt] [2] H. S. Greenside, A. H. Reiman, and A. Salas, J. Comput. Phys, 81(1):102-136 (1989).

  14. The Role of Plasma Rotation in C-Mod Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Rice, J. E.; Podpaly, Y.; Reinke, M. L.; Greenwald, M. J.; Hughes, J. W.; Ma, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2010-11-01

    ITBs in Alcator C-Mod featuring highly peaked density and pressure profiles are induced by injecting ICRF power with the second harmonic of the resonant frequency for minority hydrogen off-axis at the plasma half radius. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin < 1. In C-Mod a strong co-current toroidal rotation, peaked on axis, develops after the transition to H-mode. If an ITB forms, this rotation decreases in the center of the plasma and forms a well, and often reverses direction in the core. This indicates that there is a strong EXB shearing rate in the region where the foot in the ITB density profile is observed. Preliminary gyrokinetic analyses indicate that this shearing rate is comparable to the ion temperature gradient mode (ITG) growth rate at this location and may be responsible for stabilizing the turbulence. Gyrokinetic analyses of recent experimental data obtained from a complete scan of the ICRF resonance position across the entire C-Mod plasma will be presented.

  15. Magnetic shear effects on plasma transport and turbulence at high electron to ion temperature ratio in DIII-D and JT-60U plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; McKee, G. R.; Murakami, M.; Grierson, B. A.; Nakata, M.; Davis, E. M.; Marinoni, A.; Ono, M.; Rhodes, T. L.; Sung, C.; Schmitz, L.; Petty, C. C.; Ferron, J. R.; Turco, F.; Garofalo, A. M.; Holcomb, C. T.; Collins, C. M.; Solomon, W. M.

    2017-05-01

    Negative magnetic shear has been demonstrated in DIII-D and JT-60U to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T e/T i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q min) remained almost constant and modestly increased in the region outside of q min compared to the positive shear (PS) case, when T e/T i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of q min can be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T e/T i with NCS plasmas was commonly observed in DIII-D and JT-60U. The mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T e/T i compared with the PS case. This is consistent with gyrokinetic simulations, which show a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T e/T i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.

  16. Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond

    NASA Astrophysics Data System (ADS)

    Kunz, M. W.; Abel, I. G.; Klein, K. G.

    2018-04-01

    We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.

  17. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    DOE PAGES

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-05-08

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k yρ s < 1) and short wavelength electron-scale (k yρ s > 1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. We observe significant nonlinear cross-scale couplings in the multiscalemore » simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E x B shearing rate γ E x B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. And while the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Though computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.« less

  18. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    NASA Astrophysics Data System (ADS)

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-06-01

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k y ρ s  <  1) and short wavelength electron-scale (k y ρ s  >  1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. Significant nonlinear cross-scale couplings are observed in the multiscale simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E  ×  B shearing rate γ E×B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. While the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Although computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.

  19. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding of free energy flow in drift-kinetic turbulence, and, moreover, explain previously observed spectra.

  20. Magnetic shear effects on plasma transport and turbulence at high electron to ion temperature ratio in DIII-D and JT-60U plasmas

    DOE PAGES

    Yoshida, Maiko; McKee, George R.; Murakami, Masanori; ...

    2017-03-30

    We demonstrated negative magnetic shear in DIII-D and JT-60U in order to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T-e/T-i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q(min)) remained almost constant and modestly increased in the region outside of q(min) compared to the positive shear (PS) case, when T-e/T-i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of qmin canmore » be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T-e/T-i with NCS plasmas was commonly observed in DIII-D and JT-60U. Furthermore, the mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T-e/T-i compared with the PS case. This is consistent with gyrokinetic simulations, and this shows a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T-e/T-i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.« less

  1. Spatial correlation-based side information refinement for distributed video coding

    NASA Astrophysics Data System (ADS)

    Taieb, Mohamed Haj; Chouinard, Jean-Yves; Wang, Demin

    2013-12-01

    Distributed video coding (DVC) architecture designs, based on distributed source coding principles, have benefitted from significant progresses lately, notably in terms of achievable rate-distortion performances. However, a significant performance gap still remains when compared to prediction-based video coding schemes such as H.264/AVC. This is mainly due to the non-ideal exploitation of the video sequence temporal correlation properties during the generation of side information (SI). In fact, the decoder side motion estimation provides only an approximation of the true motion. In this paper, a progressive DVC architecture is proposed, which exploits the spatial correlation of the video frames to improve the motion-compensated temporal interpolation (MCTI). Specifically, Wyner-Ziv (WZ) frames are divided into several spatially correlated groups that are then sent progressively to the receiver. SI refinement (SIR) is performed as long as these groups are being decoded, thus providing more accurate SI for the next groups. It is shown that the proposed progressive SIR method leads to significant improvements over the Discover DVC codec as well as other SIR schemes recently introduced in the literature.

  2. The CASC15 long intergenic non-coding RNA locus is involved in melanoma progression and phenotype-switching

    PubMed Central

    Lessard, Laurent; Liu, Michelle; Marzese, Diego M.; Wang, Hongwei; Chong, Kelly; Kawas, Neal; Donovan, Nicholas C; Kiyohara, Eiji; Hsu, Sandy; Nelson, Nellie; Izraely, Sivan; Sagi-Assif, Orit; Witz, Isaac P; Ma, Xiao-Jun; Luo, Yuling; Hoon, Dave SB

    2015-01-01

    In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long non-coding RNAs in melanoma progression. We hypothesized that copy number alterations of intergenic non-protein coding domains could help identify long intergenic non-coding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and up-regulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC stage III lymph node metastasis. Moreover, siRNA knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma. PMID:26016895

  3. Subband coding for image data archiving

    NASA Technical Reports Server (NTRS)

    Glover, Daniel; Kwatra, S. C.

    1993-01-01

    The use of subband coding on image data is discussed. An overview of subband coding is given. Advantages of subbanding for browsing and progressive resolution are presented. Implementations for lossless and lossy coding are discussed. Algorithm considerations and simple implementations of subband systems are given.

  4. Subband coding for image data archiving

    NASA Technical Reports Server (NTRS)

    Glover, D.; Kwatra, S. C.

    1992-01-01

    The use of subband coding on image data is discussed. An overview of subband coding is given. Advantages of subbanding for browsing and progressive resolution are presented. Implementations for lossless and lossy coding are discussed. Algorithm considerations and simple implementations of subband are given.

  5. Error-correction coding

    NASA Technical Reports Server (NTRS)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  6. Progressive changes in non-coding RNA profile in leucocytes with age

    PubMed Central

    Muñoz-Culla, Maider; Irizar, Haritz; Gorostidi, Ana; Alberro, Ainhoa; Osorio-Querejeta, Iñaki; Ruiz-Martínez, Javier; Olascoaga, Javier; de Munain, Adolfo López; Otaegui, David

    2017-01-01

    It has been observed that immune cell deterioration occurs in the elderly, as well as a chronic low-grade inflammation called inflammaging. These cellular changes must be driven by numerous changes in gene expression and in fact, both protein-coding and non-coding RNA expression alterations have been observed in peripheral blood mononuclear cells from elder people. In the present work we have studied the expression of small non-coding RNA (microRNA and small nucleolar RNA -snoRNA-) from healthy individuals from 24 to 79 years old. We have observed that the expression of 69 non-coding RNAs (56 microRNAs and 13 snoRNAs) changes progressively with chronological age. According to our results, the age range from 47 to 54 is critical given that it is the period when the expression trend (increasing or decreasing) of age-related small non-coding RNAs is more pronounced. Furthermore, age-related miRNAs regulate genes that are involved in immune, cell cycle and cancer-related processes, which had already been associated to human aging. Therefore, human aging could be studied as a result of progressive molecular changes, and different age ranges should be analysed to cover the whole aging process. PMID:28448962

  7. 2-Step scalar deadzone quantization for bitplane image coding.

    PubMed

    Auli-Llinas, Francesc

    2013-12-01

    Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.

  8. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers

    PubMed Central

    Pan, Yangyang; Mao, Yuyan; Jin, Rong; Jiang, Lei

    2018-01-01

    The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells. PMID:29285185

  9. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  10. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.

    2016-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority. Programmable power supplies (PPS) are being developed to maximize inductive capability. Well-controlled flattops with current as low as 0.02 MA are produced with an existing PPS, and Ip <= 0.8 MA is anticipated with a second PPS under construction. The Lundquist number spans S =10(4 - 9) for 0.02-0.8 MA, allowing nonlinear MHD validation using NIMROD and DEBS at low S to be connected to highest S experiments. The PPS also enables MST tokamak operation for studying transients and runaway electron suppression with RMPs. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement plasmas. Fluctuations are measured with TEM properties including a density-gradient threshold larger than for tokamak plasmas. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. New diagnostics are being developed to measure the energetic ion profile and transport from EP instabilities with NBI. Supported by US DoE and NSF.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaita, Robert; Boyle, Dennis; Gray, Timothy

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating themore » shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________« less

  12. A program for undergraduate research into the mechanisms of sensory coding and memory decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calin-Jageman, R J

    This is the final technical report for this DOE project, entitltled "A program for undergraduate research into the mechanisms of sensory coding and memory decay". The report summarizes progress on the three research aims: 1) to identify phyisological and genetic correlates of long-term habituation, 2) to understand mechanisms of olfactory coding, and 3) to foster a world-class undergraduate neuroscience program. Progress on the first aim has enabled comparison of learning-regulated transcripts across closely related learning paradigms and species, and results suggest that only a small core of transcripts serve truly general roles in long-term memory. Progress on the second aimmore » has enabled testing of several mutant phenotypes for olfactory behaviors, and results show that responses are not fully consistent with the combinitoral coding hypothesis. Finally, 14 undergraduate students participated in this research, the neuroscience program attracted extramural funding, and we completed a successful summer program to enhance transitions for community-college students into 4-year colleges to persue STEM fields.« less

  13. Gyrokinetic simulation study of magnetic island effects on neoclassical physics and micro-instabilities in a realistic KSTAR plasma

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Min; Ku, S.; Choi, M. J.; Chang, C. S.; Hager, R.; Yoon, E. S.; Lee, H. H.; Kim, H. S.

    2018-05-01

    We perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E × B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Te -driven trapped electron modes. This implies that the enhanced E × B flow can sustain a quasi-internal transport barrier for Te in an inner region neighboring the magnetic island. The enhanced E × B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.

  14. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent,more » sub-ion-Larmor-scale fluctuations. Also, the observed velocity-space cascade is anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.« less

  15. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    DOE PAGES

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    2018-03-23

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent,more » sub-ion-Larmor-scale fluctuations. Also, the observed velocity-space cascade is anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.« less

  16. Gyrokinetic simulation study of magnetic island effects on neoclassical physics and micro-instabilities in a realistic KSTAR plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jae-Min; Ku, S.; Choi, M. J.

    Here, we perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E x B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Tmore » e-driven trapped electron modes. This implies that the enhanced E x B flow can sustain a quasi-internal transport barrier for T e in an inner region neighboring the magnetic island. The enhanced E x B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.« less

  17. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  18. Gyrokinetic simulation study of magnetic island effects on neoclassical physics and micro-instabilities in a realistic KSTAR plasma

    DOE PAGES

    Kwon, Jae-Min; Ku, S.; Choi, M. J.; ...

    2018-05-01

    Here, we perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E x B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Tmore » e-driven trapped electron modes. This implies that the enhanced E x B flow can sustain a quasi-internal transport barrier for T e in an inner region neighboring the magnetic island. The enhanced E x B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.« less

  19. Multiscale modelling for tokamak pedestals

    NASA Astrophysics Data System (ADS)

    Abel, I. G.

    2018-04-01

    Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.

  20. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    NASA Astrophysics Data System (ADS)

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    2018-03-01

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time, we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent, sub-ion-Larmor-scale fluctuations. The observed velocity-space cascade is also anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.

  1. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrystal, C.; Grierson, B. A.; Staebler, G. M.

    Here, experiments at the DIII-D tokamak have used dimensionless parameter scans to investigate the dependencies of intrinsic torque and momentum transport in order to inform a prediction of the rotation profile in ITER. Measurements of intrinsic torque profiles and momentum confinement time in dimensionless parameter scans of normalized gyroradius and collisionality are used to predict the amount of intrinsic rotation in the pedestal of ITER. Additional scans of T e/T i and safety factor are used to determine the accuracy of momentum flux predictions of the quasi-linear gyrokinetic code TGLF. In these scans, applications of modulated torque are used tomore » measure the incremental momentum diffusivity, and results are consistent with the E x B shear suppression of turbulent transport. These incremental transport measurements are also compared with the TGLF results. In order to form a prediction of the rotation profile for ITER, the pedestal prediction is used as a boundary condition to a simulation that uses TGLF to determine the transport in the core of the plasma. The predicted rotation is ≈20 krad/s in the core, lower than in many current tokamak operating scenarios. TGLF predictions show that this rotation is still significant enough to have a strong effect on confinement via E x B shear.« less

  3. Predicting rotation for ITER via studies of intrinsic torque and momentum transport in DIII-D

    DOE PAGES

    Chrystal, C.; Grierson, B. A.; Staebler, G. M.; ...

    2017-03-30

    Here, experiments at the DIII-D tokamak have used dimensionless parameter scans to investigate the dependencies of intrinsic torque and momentum transport in order to inform a prediction of the rotation profile in ITER. Measurements of intrinsic torque profiles and momentum confinement time in dimensionless parameter scans of normalized gyroradius and collisionality are used to predict the amount of intrinsic rotation in the pedestal of ITER. Additional scans of T e/T i and safety factor are used to determine the accuracy of momentum flux predictions of the quasi-linear gyrokinetic code TGLF. In these scans, applications of modulated torque are used tomore » measure the incremental momentum diffusivity, and results are consistent with the E x B shear suppression of turbulent transport. These incremental transport measurements are also compared with the TGLF results. In order to form a prediction of the rotation profile for ITER, the pedestal prediction is used as a boundary condition to a simulation that uses TGLF to determine the transport in the core of the plasma. The predicted rotation is ≈20 krad/s in the core, lower than in many current tokamak operating scenarios. TGLF predictions show that this rotation is still significant enough to have a strong effect on confinement via E x B shear.« less

  4. A Survey of Progress in Coding Theory in the Soviet Union. Final Report.

    ERIC Educational Resources Information Center

    Kautz, William H.; Levitt, Karl N.

    The results of a comprehensive technical survey of all published Soviet literature in coding theory and its applications--over 400 papers and books appearing before March 1967--are described in this report. Noteworthy Soviet contributions are discussed, including codes for the noiseless channel, codes that correct asymetric errors, decoding for…

  5. Progressive Dictionary Learning with Hierarchical Predictive Structure for Scalable Video Coding.

    PubMed

    Dai, Wenrui; Shen, Yangmei; Xiong, Hongkai; Jiang, Xiaoqian; Zou, Junni; Taubman, David

    2017-04-12

    Dictionary learning has emerged as a promising alternative to the conventional hybrid coding framework. However, the rigid structure of sequential training and prediction degrades its performance in scalable video coding. This paper proposes a progressive dictionary learning framework with hierarchical predictive structure for scalable video coding, especially in low bitrate region. For pyramidal layers, sparse representation based on spatio-temporal dictionary is adopted to improve the coding efficiency of enhancement layers (ELs) with a guarantee of reconstruction performance. The overcomplete dictionary is trained to adaptively capture local structures along motion trajectories as well as exploit the correlations between neighboring layers of resolutions. Furthermore, progressive dictionary learning is developed to enable the scalability in temporal domain and restrict the error propagation in a close-loop predictor. Under the hierarchical predictive structure, online learning is leveraged to guarantee the training and prediction performance with an improved convergence rate. To accommodate with the stateof- the-art scalable extension of H.264/AVC and latest HEVC, standardized codec cores are utilized to encode the base and enhancement layers. Experimental results show that the proposed method outperforms the latest SHVC and HEVC simulcast over extensive test sequences with various resolutions.

  6. Transformation of two and three-dimensional regions by elliptic systems

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1993-01-01

    During this contract period, our work has focused on improvements to elliptic grid generation methods. There are two principle objectives in this project. One objective is to make the elliptic methods more reliable and efficient, and the other is to construct a modular code that can be incorporated into the National Grid Project (NGP), or any other grid generation code. Progress has been made in meeting both of these objectives. The two objectives are actually complementary. As the code development for the NGP progresses, we see many areas where improvements in algorithms can be made.

  7. The association between patient-therapist MATRIX congruence and treatment outcome.

    PubMed

    Mendlovic, Shlomo; Saad, Amit; Roll, Uri; Ben Yehuda, Ariel; Tuval-Mashiah, Rivka; Atzil-Slonim, Dana

    2018-03-14

    The present study aimed to examine the association between patient-therapist micro-level congruence/incongruence ratio and psychotherapeutic outcome. Nine good- and nine poor-outcome psychodynamic treatments (segregated by comparing pre- and post-treatment BDI-II) were analyzed (N = 18) moment by moment using the MATRIX (total number of MATRIX codes analyzed = 11,125). MATRIX congruence was defined as similar adjacent MATRIX codes. the congruence/incongruence ratio tended to increase as the treatment progressed only in good-outcome treatments. Progression of MATRIX codes' congruence/incongruence ratio is associated with good outcome of psychotherapy.

  8. General Relativistic Smoothed Particle Hydrodynamics code developments: A progress report

    NASA Astrophysics Data System (ADS)

    Faber, Joshua; Silberman, Zachary; Rizzo, Monica

    2017-01-01

    We report on our progress in developing a new general relativistic Smoothed Particle Hydrodynamics (SPH) code, which will be appropriate for studying the properties of accretion disks around black holes as well as compact object binary mergers and their ejecta. We will discuss in turn the relativistic formalisms being used to handle the evolution, our techniques for dealing with conservative and primitive variables, as well as those used to ensure proper conservation of various physical quantities. Code tests and performance metrics will be discussed, as will the prospects for including smoothed particle hydrodynamics codes within other numerical relativity codebases, particularly the publicly available Einstein Toolkit. We acknowledge support from NSF award ACI-1550436 and an internal RIT D-RIG grant.

  9. Defining acute aortic syndrome after trauma: Are Abbreviated Injury Scale codes a useful surrogate descriptor?

    PubMed

    Leach, R; McNally, Donal; Bashir, Mohamad; Sastry, Priya; Cuerden, Richard; Richens, David; Field, Mark

    2012-10-01

    The severity and location of injuries resulting from vehicular collisions are normally recorded in Abbreviated Injury Scale (AIS) code; we propose a system to link AIS code to a description of acute aortic syndrome (AAS), thus allowing the hypothesis that aortic injury is progressive with collision kinematics to be tested. Standard AIS codes were matched with a clinical description of AAS. A total of 199 collisions that resulted in aortic injury were extracted from a national automotive collision database and the outcomes mapped onto AAS descriptions. The severity of aortic injury (AIS severity score) and stage of AAS progression were compared with collision kinematics and occupant demographics. Post hoc power analyses were used to estimate maximum effect size. The general demographic distribution of the sample represented that of the UK population in regard to sex and age. No significant relationship was observed between estimated test speed, collision direction, occupant location or seat belt use and clinical progression of aortic injury (once initiated). Power analysis confirmed that a suitable sample size was used to observe a medium effect in most of the cases. Similarly, no association was observed between injury severity and collision kinematics. There is sufficient information on AIS severity and location codes to map onto the clinical AAS spectrum. It was not possible, with this data set, to consider the influence of collision kinematics on aortic injury initiation. However, it was demonstrated that after initiation, further progression along the AAS pathway was not influenced by collision kinematics. This might be because the injury is not progressive, because the vehicle kinematics studied do not fully represent the kinematics of the occupants, or because an unknown factor, such as stage of cardiac cycle, dominates. Epidemiologic/prognostic study, level IV.

  10. Proceedings of the US-Japan Workshop on Advanced Plasma Modeling II Held in Nagoya, Japan on March 23-27, 1987

    DTIC Science & Technology

    1988-03-01

    Ogino : An MHD Simulation Of the Solar Wind and romer -, Piasma (Nagoya Univ.) (An MHD Model with Plasma Production) C.Z.Cheng( PPPL ) : NOVA-2: A Kinetic...and Massless Fluid Electrons W.W. Lee( PPPL ) : Gyrokinetic Particle Simulation of Finite-Beta Plasma Coffee Break (10:50-11:00) Morning Session D (11

  11. Recent Progress in the Development of a Multi-Layer Green's Function Code for Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Tweed, John; Walker, Steven A.; Wilson, John W.; Tripathi, Ram K.

    2008-01-01

    To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiation is needed. To address this need, a new Green's function code capable of simulating high charge and energy ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.

  12. Mixture block coding with progressive transmission in packet video. Appendix 1: Item 2. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung

    1989-01-01

    Video transmission will become an important part of future multimedia communication because of dramatically increasing user demand for video, and rapid evolution of coding algorithm and VLSI technology. Video transmission will be part of the broadband-integrated services digital network (B-ISDN). Asynchronous transfer mode (ATM) is a viable candidate for implementation of B-ISDN due to its inherent flexibility, service independency, and high performance. According to the characteristics of ATM, the information has to be coded into discrete cells which travel independently in the packet switching network. A practical realization of an ATM video codec called Mixture Block Coding with Progressive Transmission (MBCPT) is presented. This variable bit rate coding algorithm shows how a constant quality performance can be obtained according to user demand. Interactions between codec and network are emphasized including packetization, service synchronization, flow control, and error recovery. Finally, some simulation results based on MBCPT coding with error recovery are presented.

  13. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    PubMed

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating and the equilibration of interspecies temperature differences. This equilibration is found to include both turbulent and collisional contributions. Finally, this framework is condensed, in the low-Mach-number limit, to a more concise set of equations suitable for numerical implementation.

  14. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W. Hughes, M. Landreman, B. Li, Y. Ma, P. Phillips, M. Porkolab, W. Rowan, S. Wolfe, and S. Wukitch.[4pt] [1] D. R. Ernst et al., Proc. 21st IAEA Fusion Energy Conference, Chengdu, China, paper IAEA-CN-149/TH/1-3 (2006). http://www-pub.iaea.org/MTCD/Meetings/FEC200/th1-3.pdf[0pt] [2] B. Li and D.R. Ernst, Phys. Rev. Lett. 106, 195002 (2011).

  15. Bring out your codes! Bring out your codes! (Increasing Software Visibility and Re-use)

    NASA Astrophysics Data System (ADS)

    Allen, A.; Berriman, B.; Brunner, R.; Burger, D.; DuPrie, K.; Hanisch, R. J.; Mann, R.; Mink, J.; Sandin, C.; Shortridge, K.; Teuben, P.

    2013-10-01

    Progress is being made in code discoverability and preservation, but as discussed at ADASS XXI, many codes still remain hidden from public view. With the Astrophysics Source Code Library (ASCL) now indexed by the SAO/NASA Astrophysics Data System (ADS), the introduction of a new journal, Astronomy & Computing, focused on astrophysics software, and the increasing success of education efforts such as Software Carpentry and SciCoder, the community has the opportunity to set a higher standard for its science by encouraging the release of software for examination and possible reuse. We assembled representatives of the community to present issues inhibiting code release and sought suggestions for tackling these factors. The session began with brief statements by panelists; the floor was then opened for discussion and ideas. Comments covered a diverse range of related topics and points of view, with apparent support for the propositions that algorithms should be readily available, code used to produce published scientific results should be made available, and there should be discovery mechanisms to allow these to be found easily. With increased use of resources such as GitHub (for code availability), ASCL (for code discovery), and a stated strong preference from the new journal Astronomy & Computing for code release, we expect to see additional progress over the next few years.

  16. Comparison of Damage Path Predictions for Composite Laminates by Explicit and Standard Finite Element Analysis Tools

    NASA Technical Reports Server (NTRS)

    Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.

    2006-01-01

    Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.

  17. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunsman, David Marvin; Aldemir, Tunc; Rutt, Benjamin

    2008-05-01

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accidentmore » progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other such codes.) The results of this demonstration indicate that the approach can significantly reduce the resources required for Level 2 PRAs. From the phenomenological viewpoint, ADAPT can also treat the associated epistemic and aleatory uncertainties. This methodology can also be used for analyses of other complex systems. Any complex system can be analyzed using ADAPT if the workings of that system can be displayed as an event tree, there is a computer code that simulates how those events could progress, and that simulator code has switches to turn on and off system events, phenomena, etc. Using and applying ADAPT to particular problems is not human independent. While the human resources for the creation and analysis of the accident progression are significantly decreased, knowledgeable analysts are still necessary for a given project to apply ADAPT successfully. This research and development effort has met its original goals and then exceeded them.« less

  18. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1988-01-01

    During the period December 1, 1987 through May 31, 1988, progress was made in the following areas: construction of Multi-Dimensional Bandwidth Efficient Trellis Codes with MPSK modulation; performance analysis of Bandwidth Efficient Trellis Coded Modulation schemes; and performance analysis of Bandwidth Efficient Trellis Codes on Fading Channels.

  19. An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images

    PubMed Central

    Lo, Jen-Lung; Sanei, Saeid; Nazarpour, Kianoush

    2009-01-01

    A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design. PMID:19190770

  20. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  1. Nonlinear growth of zonal flows by secondary instability in general magnetic geometry

    DOE PAGES

    Plunk, G. G.; Navarro, A. Banon

    2017-02-23

    Here we present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.

  2. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    NASA Astrophysics Data System (ADS)

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-10-01

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  3. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavridis, M.; Isliker, H.; Vlahos, L.

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties ofmore » radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.« less

  4. Local gyrokinetic study of electrostatic microinstabilities in dipole plasmas

    NASA Astrophysics Data System (ADS)

    Xie, Hua-sheng; Zhang, Yi; Huang, Zi-cong; Ou, Wei-ke; Li, Bo

    2017-12-01

    A linear gyrokinetic particle-in-cell scheme, which is valid for an arbitrary perpendicular wavelength k⊥ρi and includes the parallel dynamic along the field line, is developed to study the local electrostatic drift modes in point and ring dipole plasmas. We find that the most unstable mode in this system can be either the electron mode or the ion mode. The properties and relations of these modes are studied in detail as a function of k⊥ρi , the density gradient κn, the temperature gradient κT, electron to ion temperature ratio τ=Te/Ti , and mass ratio mi/me . For conventional weak gradient parameters, the mode is on the ground state (with eigenstate number l = 0) and especially k∥˜0 for small k⊥ρi . Thus, the bounce averaged dispersion relation is also derived for comparison. For strong gradient and large k⊥ρi , most interestingly, higher order eigenstate modes with even (e.g., l = 2, 4) or odd (e.g., l = 1) parity can be most unstable, which is not expected in the previous studies. High order eigenstate can also easily be most unstable at weak gradient when τ>10 . This work can be particularly important to understand the turbulent transport in laboratory and space magnetosphere.

  5. Fractional calculus phenomenology in two-dimensional plasma models

    NASA Astrophysics Data System (ADS)

    Gustafson, Kyle; Del Castillo Negrete, Diego; Dorland, Bill

    2006-10-01

    Transport processes in confined plasmas for fusion experiments, such as ITER, are not well-understood at the basic level of fully nonlinear, three-dimensional kinetic physics. Turbulent transport is invoked to describe the observed levels in tokamaks, which are orders of magnitude greater than the theoretical predictions. Recent results show the ability of a non-diffusive transport model to describe numerical observations of turbulent transport. For example, resistive MHD modeling of tracer particle transport in pressure-gradient driven turbulence for a three-dimensional plasma reveals that the superdiffusive (2̂˜t^α where α> 1) radial transport in this system is described quantitatively by a fractional diffusion equation Fractional calculus is a generalization involving integro-differential operators, which naturally describe non-local behaviors. Our previous work showed the quantitative agreement of special fractional diffusion equation solutions with numerical tracer particle flows in time-dependent linearized dynamics of the Hasegawa-Mima equation (for poloidal transport in a two-dimensional cold-ion plasma). In pursuit of a fractional diffusion model for transport in a gyrokinetic plasma, we now present numerical results from tracer particle transport in the nonlinear Hasegawa-Mima equation and a planar gyrokinetic model. Finite Larmor radius effects will be discussed. D. del Castillo Negrete, et al, Phys. Rev. Lett. 94, 065003 (2005).

  6. Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Chang, C. S.; Ku, S.; Dominski, J.

    2017-10-01

    Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value of δ {n}e/{\\bar{n}}e˜ 0.18. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s-1. Strong poloidal motion of the blobs is also present, near 20 km s-1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of ‘holes’, followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Qualitative comparisons will be made to experimental observations.

  7. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  8. Long non-coding RNAs in hepatocellular carcinoma: Potential roles and clinical implications

    PubMed Central

    Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong

    2017-01-01

    Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNA transcripts greater than 200 nucleotides in length with little or no protein-coding potential. Emerging evidence indicates that lncRNAs may play important regulatory roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). Certain lncRNAs may be used as diagnostic or prognostic markers for HCC, a serious malignancy with increasing morbidity and high mortality rates worldwide. Therefore, elucidating the functional roles of lncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and may help in developing novel therapeutic targets. In this review, we summarize the recent progress regarding the functional roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC. PMID:28932078

  9. Dynamics of Turbulence-generated E × B Flows: Simulation and Theory

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.

    1998-11-01

    Many magnetic confinement experiments have indicated that E × B shear can suppress turbulence and consequently lead to significant reduction of plasma transport.^1 It has been observed in flux-tube gyrofluid^2,3 and gyrokinetic^4 simulations that small radial scale fluctuating E × B flows driven by turbulence (often called radial modes,^3 or zonal flows) play a dominant role in regulating toroidal ITG (ion temperature gradient) turbulence. Furthermore, the radial modes with similar characteristics and significant impact on transport have been also observed in the recent global gyrokinetic simulations with improved numerical capabilities^5 as well as in edge turbulence simulations with a collisional poloidal flow damping.^6 In this work, we analyze turbulence and flow statistics from gyrofluid and gyrokinetic simulations and compare to various theoretical predictions. The observed radial modes contain significant components with radial scales and frequencies comparable to those of turbulence. While the fast time varying components (including Geodesic Acoustic Modes) contribute the most to the instantaneous E × B shearing rate, they are less influential in suppressing turbulence. The effective E × B shearing rate capturing this important physics is analytically derived and evaluated from the recent nonlinear simulation results. Its magnitude is much smaller than the instantaneous E × B shearing rate, but typically of the order of the decorrelation rate of the ambient turbulence. This is consistent with the reduced, not completely stabilized level of turbulence with broadened kr spectrum observed in simulations. Zonal flows are linearly stable, but can be generated either by incoherent emission of turbulence or by inverse cascade of spectrum yielding negative turbulent viscosity which is related to the Reynolds' stress.^7 Various analytical calculations and proposed mechanisms for zonal flow generation and saturation^7,8 will be tested numerically. Finally, the collisional damping of flows and its effect on transport will be studied via gyrokinetic simulations with momentum and energy conserving Fokker-Planck operator.^5 renewcommandthempfootnotefnsymbolmpfootnote footnotetext[1]This work supported by DOE contract DE-AC02-76-CHO-3073. footnotetext[2]In collaboration with M. A. BEER, Z. LIN, G. W. HAMMETT, W. W. LEE, and W. M. TANG. renewcommandthempfootnotearabicmpfootnote setcountermpfootnote0 footnotetext[1]K. H. Burrell, Phys. Plasmas 4, 1499 (1997); E. J. Synakowski, Plasma Phys. Control. Fusion, 40, 581 (1998). footnotetext[2]M. A. Beer, Ph.D. Thesis, Princeton University, 1995; G. W. Hammett et al., Plasma Phys. Control. Fusion, 35, 973 (1993) footnotetext[3]R. E. Waltz, G. D. Kerbel, and J. Milovich, Phys. Plasmas 1, 2229 (1994). footnotetext[4]A. M. Dimits et al., Phys. Rev. Lett. 77, 71 (1996). footnotetext[5]Z. Lin et al., To be submitted to Phys. Plasmas (1998). footnotetext[6]B. N. Rogers, J. F. Drake, and A. Zeiler, Submitted to Phys. Rev. Lett.(1998). footnotetext[7]P. H. Diamond and Y. B. Kim, Phys. Fluids B 3, 1626 (1991); P. H. Diamond, J. Fleischer, and F. L. Hinton, Presented at Transport Task Force Meeting (1998). footnotetext[8]M. N. Rosenbluth and F.L. Hinton, Phys. Rev. Lett. 80, 724 (1998).

  10. Terrestrial solar spectral modeling. [SOLTRAN, BRITE, and FLASH codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, R.E.

    The utility of accurate computer codes for calculating the solar spectral irradiance under various atmospheric conditions was recognized. New absorption and extraterrestrial spectral data are introduced. Progress is made in radiative transfer modeling outside of the solar community, especially for space and military applications. Three rigorous radiative transfer codes SOLTRAN, BRITE, and FLASH are employed. The SOLTRAN and BRITE codes are described and results from their use are presented.

  11. Development of 3D electromagnetic modeling tools for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1992-01-01

    The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region between the target and the outer mesh termination boundary (ATB). This boundary is placed in conformity with the target's outer surface, thus resulting in additional reduction of the unknown count.

  12. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Chapman, B. E.

    2017-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority, which is enhanced by programmable power supplies (PPS) to maximize inductive capability. The existing PPS enables access to very low plasma current, down to Ip =0.02 MA. This greatly expands the Lundquist number range S =104 -108 and allows nonlinear, 3D MHD computation using NIMROD and DEBS with dimensionless parameters that overlap those of MST plasmas. A new, second PPS will allow simultaneous PPS control of the Bp and Bt circuits. The PPS also enables MST tokamak operation, thus far focused on disruptions and RMP suppression of runaway electrons. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement RFP plasmas. Measured fluctuations have TEM properties including a density-gradient threshold larger than for tokamak plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Exploration of basic plasma science frontiers in MST RFP and tokamak plasmas is proposed as part of WiPPL, a basic science user facility. Work supported by USDoE.

  13. Plasma rotation and transport in MAST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Field, A. R.; Michael, C.; Akers, R. J.; Candy, J.; Colyer, G.; Guttenfelder, W.; Ghim, Y.-c.; Roach, C. M.; Saarelma, S.; MAST Team

    2011-06-01

    The formation of internal transport barriers (ITBs) is investigated in MAST spherical tokamak plasmas. The relative importance of equilibrium flow shear and magnetic shear in their formation and evolution is investigated using data from high-resolution kinetic- and q-profile diagnostics. In L-mode plasmas, with co-current directed NBI heating, ITBs in the momentum and ion thermal channels form in the negative shear region just inside qmin. In the ITB region the anomalous ion thermal transport is suppressed, with ion thermal transport close to the neo-classical level, although the electron transport remains anomalous. Linear stability analysis with the gyro-kinetic code GS2 shows that all electrostatic micro-instabilities are stable in the negative magnetic shear region in the core, both with and without flow shear. Outside the ITB, in the region of positive magnetic shear and relatively weak flow shear, electrostatic micro-instabilities become unstable over a wide range of wave numbers. Flow shear reduces the linear growth rates of low-k modes but suppression of ITG modes is incomplete, which is consistent with the observed anomalous ion transport in this region; however, flow shear has little impact on growth rates of high-k, electron-scale modes. With counter-NBI ITBs of greater radial extent form outside qmin due to the broader profile of E × B flow shear produced by the greater prompt fast-ion loss torque.

  14. H-mode pedestal stability and ELMs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mossessian, Dmitri

    2002-11-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity accumulation. The major relaxation mechanism seen on most of the existing tokamaks - large type I ELMs - drive high particle and energy fluxes that present a significant power load on the divertor plates. On Alcator C-Mod, however, type I ELMs are not observed. Instead, more benign mechanisms - EDA and small grassy ELMs - appear to drive enhanced particle transport at the edge of H-mode plasmas. Both have good energy confinement, no impurity accumulation, and are steady state. In EDA the edge relaxation mechanism is provided by a quasicoherent electromagnetic mode localized in the outer part of the pedestal. Non-linear gyrofluid and linear gyrokinetic simulations, as well as real geometry fluctuation modeling based on fluid equations show the presence of a coherent mode. Based on those results the observed mode is tentatively identified as resistive ballooning. At higher edge pressure gradient the mode is replaced by broadband fluctuations and small irregular ELMs are observed. Based on ideal MHD calculations that include effects of bootstrap current, these ELMs are identified as medium n coupled ideal peeling/ballooning modes. The stability threshold and modes structure of these modes are studied with recently developed linear MHD stability code ELITE and the results are compared with the observed dependence of the ELMs' character on pedestal parameters and plasma shape.

  15. Bit-Wise Arithmetic Coding For Compression Of Data

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron

    1996-01-01

    Bit-wise arithmetic coding is data-compression scheme intended especially for use with uniformly quantized data from source with Gaussian, Laplacian, or similar probability distribution function. Code words of fixed length, and bits treated as being independent. Scheme serves as means of progressive transmission or of overcoming buffer-overflow or rate constraint limitations sometimes arising when data compression used.

  16. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.

  17. UCLA Final Technical Report for the "Community Petascale Project for Accelerator Science and Simulation”.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Warren

    The UCLA Plasma Simulation Group is a major partner of the “Community Petascale Project for Accelerator Science and Simulation”. This is the final technical report. We include an overall summary, a list of publications, progress for the most recent year, and individual progress reports for each year. We have made tremendous progress during the three years. SciDAC funds have contributed to the development of a large number of skeleton codes that illustrate how to write PIC codes with a hierarchy of parallelism. These codes cover 2D and 3D as well as electrostatic solvers (which are used in beam dynamics codesmore » and quasi-static codes) and electromagnetic solvers (which are used in plasma based accelerator codes). We also used these ideas to develop a GPU enabled version of OSIRIS. SciDAC funds were also contributed to the development of strategies to eliminate the Numerical Cerenkov Instability (NCI) which is an issue when carrying laser wakefield accelerator (LWFA) simulations in a boosted frame and when quantifying the emittance and energy spread of self-injected electron beams. This work included the development of a new code called UPIC-EMMA which is an FFT based electromagnetic PIC code and to new hybrid algorithms in OSIRIS. A new hybrid (PIC in r-z and gridless in φ) algorithm was implemented into OSIRIS. In this algorithm the fields and current are expanded into azimuthal harmonics and the complex amplitude for each harmonic is calculated separately. The contributions from each harmonic are summed and then used to push the particles. This algorithm permits modeling plasma based acceleration with some 3D effects but with the computational load of an 2D r-z PIC code. We developed a rigorously charge conserving current deposit for this algorithm. Very recently, we made progress in combining the speed up from the quasi-3D algorithm with that from the Lorentz boosted frame. SciDAC funds also contributed to the improvement and speed up of the quasi-static PIC code QuickPIC. We have also used our suite of PIC codes to make scientific discovery. Highlights include supporting FACET experiments which achieved the milestones of showing high beam loading and energy transfer efficiency from a drive electron beam to a witness electron beam and the discovery of a self-loading regime a for high gradient acceleration of a positron beam. Both of these experimental milestones were published in Nature together with supporting QuickPIC simulation results. Simulation results from QuickPIC were used on the cover of Nature in one case. We are also making progress on using highly resolved QuickPIC simulations to show that ion motion may not lead to catastrophic emittance growth for tightly focused electron bunches loaded into nonlinear wakefields. This could mean that fully self-consistent beam loading scenarios are possible. This work remains in progress. OSIRIS simulations were used to discover how 200 MeV electron rings are formed in LWFA experiments, on how to generate electrons that have a series of bunches on nanometer scale, and how to transport electron beams from (into) plasma sections into (from) conventional beam optic sections.« less

  18. Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013) Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013)

    NASA Astrophysics Data System (ADS)

    Lin, Z.

    2014-10-01

    In magnetic fusion plasmas, a significant fraction of the kinetic pressure is contributed by superthermal charged particles produced by auxiliary heating (fast ions and electrons) and fusion reactions (a-particles). Since these energetic particles are often far away from thermal equilibrium due to their non-Maxwellian distribution and steep pressure gradients, the free energy can excite electromagnetic instabilities to intensity levels well above the thermal fluctuations. The resultant electromagnetic turbulence could induce large transport of energetic particles, which could reduce heating efficiency, degrade overall plasma confinement, and damage fusion devices. Therefore, understanding and predicting energetic particle confinement properties are critical to the success of burning plasma experiments such as ITER since the ignition relies on plasma self-heating by a-particles. To promote international exchanges and collaborations on energetic particle physics, the biannual conference series under the auspices of the International Atomic Energy Agency (IAEA) were help in Kyiv (1989), Aspenas (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007), Kyiv (2009), and Austin (2011). The papers in this special section were presented at the most recent meeting, the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was hosted by the Fusion Simulation Center, Peking University, Beijing, China (17-20 September 2013). The program of the meeting consisted of 71 presentations, including 13 invited talks, 26 oral contributed talks, 30 posters, and 2 summary talks, which were selected by the International Advisory Committee (IAC). The IAC members include H. Berk, L.G. Eriksson, A. Fasoli, W. Heidbrink, Ya. Kolesnichenko, Ph. Lauber, Z. Lin, R. Nazikian, S. Pinches, S. Sharapov, K. Shinohara, K. Toi, G. Vlad, and X.T. Ding. The conference program, abstracts of all papers, and slides of oral presentations are available at the conference website:www.phy.pku.edu.cn/fsc/w18419.jsp As a measure of the breadth in current research activities, a wide range of topics in energetic particle physics were covered in the meeting program, including dynamics of various Alfvén eigenmodes and energetic particle modes, energetic particle transport, energetic particle effects on magnetohydrodynamic (MHD) modes, runaway electrons, and diagnostics of energetic particles and neutrons. Energetic particle experiments were reported on tokamaks, stellarators, spherical tori, reversed field pinches, and linear devices. Most of the papers have direct comparisons between experimental data and simulation results, a very healthy trend in the research of energetic particle physics. As an indication for the depth in current research activities and possible future directions in energetic particle physics, some exciting progress reported at the meeting is highlighted here. The 3D fields of resonant magnetic perturbations (RMP) for controlling edge localized modes (ELM) are found to drive significant ripple loss of fast ions in DIII-D and ASDEX-U experiments. Similar loss is predicted for ITER RMP fields in the vacuum approximation. Fortunately, plasma response to RMP fields is found by the simulation to reduce the loss of fast ions and α-particles to a benign level. These results call for more accurate measurements and more reliable modeling of the plasma response to RMP fields in existing tokamak experiments and in future ITER experiments. Interesting progress on energetic particle transport by Alfvén eigenmodes was made in reduced 1D models based on the critical gradients model, in which energetic particle pressure gradients are relaxed to the local threshold of Alfvén eigenmode stability. Some experimental support for the critical gradient model was reported in DIII-D off-axis neutral beam injection (NBI) experiments, in which the fast-ion density relaxes to similar profiles for all injection angles. Further verification and validation of these reduced models by existing tokamak experiments and nonlinear simulations are needed. Impressive progress in first-principles simulations of Alfvén eigenmodes and energetic particle transport was prominently featured at the meeting. Rigorous verification and validation have been successfully carried out for global gyrokinetic simulations of Alfvén eigenmodes with kinetic effects of thermal plasmas and non-perturbative contributions by energetic particles. The gyrokinetic turbulence simulation provides an indispensable new capability for studying the nonlinear physics of energetic particles and Alfvén eigenmodes by incorporating important physics of radial variations and toroidal mode coupling. For example, gyrokinetic simulations have found nonlinear oscillations of Alfvén eigenmode amplitude and frequency consistent with experimental observations. With better understanding of linear and nonlinear properties of Alfvén eigenmodes, a fruitful future direction is the self-consistent simulation of energetic particle transport, which requires long time simulations of nonlinear interactions between multiple Alfvén eigenmodes. A significant step in this direction has been taken by MHD-gyrokinetic hybrid simulations, which have demonstrated that fast ion profile is flattened by enhanced transport due to resonance overlaps in multiple interacting Alfvén eigenmodes with realistic amplitudes. A very interesting physics here is that the re-distribution of the energetic particle profile by an initially dominant Alfvén eigenmode leads to the excitation of other Alfvén eigenmodes. The broaden phase space volume for the extraction of free energy can then drive large fluctuation amplitudes and enhanced energetic particle transport. Some experimental evidences of such indirect interaction of multiple modes through energetic particles were observed in JT-60U and ASDEX-U experiments. Thirteen papers presented at the meeting were reviewed to the usual high standard of Nuclear Fusion and published in this special section. On behalf of the IAC, I would like to thank all participants for their contributions to this conference and to thank Nuclear Fusion for publishing this special section. The next meeting of this series will be organized by Simon Pinches and will be held at the IAEA headquarters in Vienna, in the fall of 2015.

  19. A robust coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Y. C.; Sayood, Khalid; Nelson, D. J.

    1991-01-01

    We present a layered packet video coding algorithm based on a progressive transmission scheme. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.

  20. A robust coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung; Sayood, Khalid; Nelson, Don J.

    1992-01-01

    A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.

  1. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma.

    PubMed

    Cătană, Cristina- Sorina; Pichler, Martin; Giannelli, Gianluigi; Mader, Robert M; Berindan-Neagoe, Ioana

    2017-04-25

    In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.

  2. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma

    PubMed Central

    Cătană, Cristina- Sorina; Pichler, Martin; Giannelli, Gianluigi; Mader, Robert M.; Berindan-Neagoe, Ioana

    2017-01-01

    In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs. PMID:28392501

  3. Recent Progress and Future Plans for Fusion Plasma Synthetic Diagnostics Platform

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Kramer, Gerrit; Tang, William; Tobias, Benjamin; Valeo, Ernest; Churchill, Randy; Hausammann, Loic

    2015-11-01

    The Fusion Plasma Synthetic Diagnostics Platform (FPSDP) is a Python package developed at the Princeton Plasma Physics Laboratory. It is dedicated to providing an integrated programmable environment for applying a modern ensemble of synthetic diagnostics to the experimental validation of fusion plasma simulation codes. The FPSDP will allow physicists to directly compare key laboratory measurements to simulation results. This enables deeper understanding of experimental data, more realistic validation of simulation codes, quantitative assessment of existing diagnostics, and new capabilities for the design and optimization of future diagnostics. The Fusion Plasma Synthetic Diagnostics Platform now has data interfaces for the GTS and XGC-1 global particle-in-cell simulation codes with synthetic diagnostic modules including: (i) 2D and 3D Reflectometry; (ii) Beam Emission Spectroscopy; and (iii) 1D Electron Cyclotron Emission. Results will be reported on the delivery of interfaces for the global electromagnetic PIC code GTC, the extended MHD M3D-C1 code, and the electromagnetic hybrid NOVAK eigenmode code. Progress toward development of a more comprehensive 2D Electron Cyclotron Emission module will also be discussed. This work is supported by DOE contract #DEAC02-09CH11466.

  4. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1986-01-01

    A multiyear program is performed with the objective to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts. Progress of the first year's effort includes completion of a sufficient portion of each task -- probabilistic models, code development, validation, and an initial operational code. This code has from its inception an expert system philosophy that could be added to throughout the program and in the future. The initial operational code is only applicable to turbine blade type loadings. The probabilistic model included in the operational code has fitting routines for loads that utilize a modified Discrete Probabilistic Distribution termed RASCAL, a barrier crossing method and a Monte Carlo method. An initial load model was developed by Battelle that is currently used for the slowly varying duty cycle type loading. The intent is to use the model and related codes essentially in the current form for all loads that are based on measured or calculated data that have followed a slowly varying profile.

  5. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  6. Modulational instability of beat waves in a transversely magnetized plasma: Ion effects

    NASA Astrophysics Data System (ADS)

    Ferdous, T.; Amin, M. R.; Salimullah, M.

    1996-05-01

    The effect of ion dynamics on the modulational instability of the electrostatic beat wave at the difference frequency of two incident laser beams in a hot, collisionless, and transversely magnetized plasma has been studied theoretically. The full Vlasov equation in terms of gyrokinetic variables is employed to obtain the nonlinear response of ions and electrons. It is found that the growth rate of modulational instability is about two orders higher when ion motions are included.

  7. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

  8. Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation

    DOE PAGES

    Churchill, R. M.; Chang, C. S.; Ku, S.; ...

    2017-08-30

    Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value ofmore » $$\\delta {n}_{e}/{\\bar{n}}_{e}\\sim 0.18$$. Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s –1. Strong poloidal motion of the blobs is also present, near 20 km s –1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of 'holes', followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Lastly, qualitative comparisons will be made to experimental observations.« less

  9. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predictedmore » wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.« less

  10. A Study of Electron Modes in Off-axis Heated Alcator C-Mod Plasmas

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Mikkelsen, D.; Ennever, P. C.; Howard, N. T.; Gao, C.; Reinke, M. L.; Rice, J. E.; Hughes, J. W.; Walk, J. R.

    2013-10-01

    Understanding the underlying physics and stability of the peaked density internal transport barriers (ITB) that have been observed during off-axis ICRF heating of Alcator C-Mod plasmas is the goal of recent gyro-kinetic simulations. Two scenarios are examined: an ITB plasma formed with maximal (4.5 MW) off-axis heating power; also the use of off-axis heating in an I-mode plasma as a target in the hopes of establishing an ITB. In the former, it is expected that evidence of trapped electron mode instabilities could be found if a sufficiently high electron temperature is achieved in the core. Linear simulations show unstable modes are present across the plasma core from r/a = 0.2 and greater. In the latter case, despite establishing similar conditions to those in which ITBS were formed, none developed in the I-mode plasmas. Linear gyrokinetic analyses show no unstable ion modes at r/a < 0.55 in these I-mode plasmas, with both ITG and ETG modes present beyond r/a = 0.65. The details of the experimental results will be presented. Linear and non-linear simulations of both of these cases will attempt to explore the underlying role of electron and ion gradient driven instabilities to explain the observations. This work was supported by US-DoE DE-FC02-99ER54512 and DE-AC02-09CH11466.

  11. Non-perturbative measurement of cross-field thermal diffusivity reduction at the O-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.

    2016-05-15

    Neoclassical tearing modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross-field transport at the O-point of the islands, which in turn affects the NTM dynamics. In this paper, a heat transport model of magnetic islands employing spatially non-uniform cross-field thermal diffusivity (χ{sub ⊥}) is presented. This model is used to derive χ{sub ⊥} at the O-point from electron temperature data measured across 2/1 NTM islands inmore » DIII-D. It was found that χ{sub ⊥} at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport, in qualitative agreement with gyrokinetic predictions. As the anomalously large values of χ{sub ⊥} are often attributed to turbulence driven transport, the reduction of the O-point χ{sub ⊥} is consistent with turbulence reduction found in recent experiments. Finally, the implication of reduced χ{sub ⊥} at the O-point on NTM dynamics was investigated using the modified Rutherford equation that predicts a significant effect of reduced χ{sub ⊥} at the O-point on NTM saturation.« less

  12. Multi-scale gyrokinetic simulations: Comparison with experiment and implications for predicting turbulence and transport

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.; Creely, A. J.

    2016-05-01

    To better understand the role of cross-scale coupling in experimental conditions, a series of multi-scale gyrokinetic simulations were performed on Alcator C-Mod, L-mode plasmas. These simulations, performed using all experimental inputs and realistic ion to electron mass ratio ((mi/me)1/2 = 60.0), simultaneously capture turbulence at the ion ( kθρs˜O (1.0 ) ) and electron-scales ( kθρe˜O (1.0 ) ). Direct comparison with experimental heat fluxes and electron profile stiffness indicates that Electron Temperature Gradient (ETG) streamers and strong cross-scale turbulence coupling likely exist in both of the experimental conditions studied. The coupling between ion and electron-scales exists in the form of energy cascades, modification of zonal flow dynamics, and the effective shearing of ETG turbulence by long wavelength, Ion Temperature Gradient (ITG) turbulence. The tightly coupled nature of ITG and ETG turbulence in these realistic plasma conditions is shown to have significant implications for the interpretation of experimental transport and fluctuations. Initial attempts are made to develop a "rule of thumb" based on linear physics, to help predict when cross-scale coupling plays an important role and to inform future modeling of experimental discharges. The details of the simulations, comparisons with experimental measurements, and implications for both modeling and experimental interpretation are discussed.

  13. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    DOE PAGES

    Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.; ...

    2017-03-02

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

  14. Gyrokinetic turbulence: between idealized estimates and a detailed analysis of nonlinear energy transfers

    NASA Astrophysics Data System (ADS)

    Teaca, Bogdan; Jenko, Frank; Told, Daniel

    2017-04-01

    Using large resolution numerical simulations of gyrokinetic (GK) turbulence, spanning an interval ranging from the end of the fluid scales to the electron gyroradius, we study the energy transfers in the perpendicular direction for a proton-electron plasma in a slab equilibrium magnetic geometry. The plasma parameters employed here are relevant to kinetic Alfvén wave turbulence in solar wind conditions. In addition, we use an idealized test representation for the energy transfers between two scales, to aid our understanding of the diagnostics applicable to the nonlinear cascade in an infinite inertial range. For GK turbulence, a detailed analysis of nonlinear energy transfers that account for the separation of energy exchanging scales is performed. Starting from the study of the energy cascade and the scale locality problem, we show that the general nonlocal nature of GK turbulence, captured via locality functions, contains a subset of interactions that are deemed local, are scale invariant (i.e. a sign of asymptotic locality) and possess a locality exponent that can be recovered directly from measurements on the energy cascade. It is the first time that GK turbulence is shown to possess an asymptotic local component, even if the overall locality of interactions is nonlocal. The results presented here and their implications are discussed from the perspective of previous findings reported in the literature and the idea of universality of GK turbulence.

  15. Non-perturbative measurement of cross-field thermal diffusivity reduction at the O-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak

    DOE PAGES

    Bardóczi, Laszlo; Rhodes, Terry L.; Carter, Troy A.; ...

    2016-05-09

    Neoclassical Tearing Modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross- eld transport at the O-point of the islands, which in turn affects the NTM dynamics. In this paper a heat transport model of magnetic islands employing spatially non-uniform cross-field thermal diffusivity (χ more » $$\\perp$$) is presented. This model is used to derive χ $$\\perp$$ at the O-point from electron temperature data measured across 2/1 NTM islands in DIII-D. It was found that χ $$\\perp$$ at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport, in qualitative agreement with gyrokinetic predictions. As the anomalously large values of χ $$\\perp$$ are often attributed to turbulence driven transport, the reduction of the O-point χ $$\\perp$$ is consistent with turbulence reduction found in recent experiments. Lastly, the implication of reduced χ $$\\perp$$ at the O-point on NTM dynamics was investigated using the modi ed Rutherford equation that predicts a significant effect of reduced χ $$\\perp$$ at the O-point on NTM saturation.« less

  16. Comparison of MELCOR and SCDAP/RELAP5 results for a low-pressure, short-term station blackout at Browns Ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, J.J.

    1995-12-31

    This study compares results obtained with two U.S. Nuclear Regulatory Commission (NRC)-sponsored codes, MELCOR version 1.8.3 (1.8PQ) and SCDAP/RELAP5 Mod3.1 release C, for the same transient - a low-pressure, short-term station blackout accident at the Browns Ferry nuclear plant. This work is part of MELCOR assessment activities to compare core damage progression calculations of MELCOR against SCDAP/RELAP5 since the two codes model core damage progression very differently.

  17. High compression image and image sequence coding

    NASA Technical Reports Server (NTRS)

    Kunt, Murat

    1989-01-01

    The digital representation of an image requires a very large number of bits. This number is even larger for an image sequence. The goal of image coding is to reduce this number, as much as possible, and reconstruct a faithful duplicate of the original picture or image sequence. Early efforts in image coding, solely guided by information theory, led to a plethora of methods. The compression ratio reached a plateau around 10:1 a couple of years ago. Recent progress in the study of the brain mechanism of vision and scene analysis has opened new vistas in picture coding. Directional sensitivity of the neurones in the visual pathway combined with the separate processing of contours and textures has led to a new class of coding methods capable of achieving compression ratios as high as 100:1 for images and around 300:1 for image sequences. Recent progress on some of the main avenues of object-based methods is presented. These second generation techniques make use of contour-texture modeling, new results in neurophysiology and psychophysics and scene analysis.

  18. Progressive Failure And Life Prediction of Ceramic and Textile Composites

    NASA Technical Reports Server (NTRS)

    Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.

    1998-01-01

    An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.

  19. Subgroup A : nuclear model codes report to the Sixteenth Meeting of the WPEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talou, P.; Chadwick, M. B.; Dietrich, F. S.

    2004-01-01

    The Subgroup A activities focus on the development of nuclear reaction models and codes, used in evaluation work for nuclear reactions from the unresolved energy region up to the pion threshold production limit, and for target nuclides from the low teens and heavier. Much of the efforts are devoted by each participant to the continuing development of their own Institution codes. Progresses in this arena are reported in detail for each code in the present document. EMPIRE-II is of public access. The release of the TALYS code has been announced for the ND2004 Conference in Santa Fe, NM, October 2004.more » McGNASH is still under development and is not expected to be released in the very near future. In addition, Subgroup A members have demonstrated a growing interest in working on common modeling and codes capabilities, which would significantly reduce the amount of duplicate work, help manage efficiently the growing lines of existing codes, and render codes inter-comparison much easier. A recent and important activity of the Subgroup A has therefore been to develop the framework and the first bricks of the ModLib library, which is constituted of mostly independent pieces of codes written in Fortran 90 (and above) to be used in existing and future nuclear reaction codes. Significant progresses in the development of ModLib have been made during the past year. Several physics modules have been added to the library, and a few more have been planned in detail for the coming year.« less

  20. A Method to Reveal Fine-Grained and Diverse Conceptual Progressions during Learning

    ERIC Educational Resources Information Center

    Lombard, François; Merminod, Marie; Widmer, Vincent; Schneider, Daniel K.

    2018-01-01

    Empirical data on learners' conceptual progression is required to design curricula and guide students. In this paper, we present the Reference Map Change Coding (RMCC) method for revealing students' progression at a fine-grained level. The method has been developed and tested through the analysis of successive versions of the productions of eight…

  1. Guidelines for VCCT-Based Interlaminar Fatigue and Progressive Failure Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Deobald, Lyle R.; Mabson, Gerald E.; Engelstad, Steve; Prabhakar, M.; Gurvich, Mark; Seneviratne, Waruna; Perera, Shenal; O'Brien, T. Kevin; Murri, Gretchen; Ratcliffe, James; hide

    2017-01-01

    This document is intended to detail the theoretical basis, equations, references and data that are necessary to enhance the functionality of commercially available Finite Element codes, with the objective of having functionality better suited for the aerospace industry in the area of composite structural analysis. The specific area of focus will be improvements to composite interlaminar fatigue and progressive interlaminar failure. Suggestions are biased towards codes that perform interlaminar Linear Elastic Fracture Mechanics (LEFM) using Virtual Crack Closure Technique (VCCT)-based algorithms [1,2]. All aspects of the science associated with composite interlaminar crack growth are not fully developed and the codes developed to predict this mode of failure must be programmed with sufficient flexibility to accommodate new functional relationships as the science matures.

  2. Atomic-scale Modeling of the Structure and Dynamics of Dislocations in Complex Alloys at High Temperatures

    NASA Technical Reports Server (NTRS)

    Daw, Murray S.; Mills, Michael J.

    2003-01-01

    We report on the progress made during the first year of the project. Most of the progress at this point has been on the theoretical and computational side. Here are the highlights: (1) A new code, tailored for high-end desktop computing, now combines modern Accelerated Dynamics (AD) with the well-tested Embedded Atom Method (EAM); (2) The new Accelerated Dynamics allows the study of relatively slow, thermally-activated processes, such as diffusion, which are much too slow for traditional Molecular Dynamics; (3) We have benchmarked the new AD code on a rather simple and well-known process: vacancy diffusion in copper; and (4) We have begun application of the AD code to the diffusion of vacancies in ordered intermetallics.

  3. EVALUATION OF AN INDIVIDUALLY PACED COURSE FOR AIRBORNE RADIO CODE OPERATORS. FINAL REPORT.

    ERIC Educational Resources Information Center

    BALDWIN, ROBERT O.; JOHNSON, KIRK A.

    IN THIS STUDY COMPARISONS WERE MADE BETWEEN AN INDIVIDUALLY PACED VERSION OF THE AIRBORNE RADIO CODE OPERATOR (ARCO) COURSE AND TWO VERSIONS OF THE COURSE IN WHICH THE STUDENTS PROGRESSED AT A FIXED PACE. THE ARCO COURSE IS A CLASS C SCHOOL IN WHICH THE STUDENT LEARNS TO SEND AND RECEIVE MILITARY MESSAGES USING THE INTERNATIONAL MORSE CODE. THE…

  4. Progress in The Semantic Analysis of Scientific Code

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  5. Characteristic Evolution and Matching

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey

    2012-01-01

    I review the development of numerical evolution codes for general relativity based upon the characteristic initial-value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D-axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black-hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black-hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.

  6. Comment on ``Nonlinear gyrokinetic theory with polarization drift'' [Phys. Plasmas 17, 082304 (2010)

    NASA Astrophysics Data System (ADS)

    Leerink, S.; Parra, F. I.; Heikkinen, J. A.

    2010-12-01

    In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating E ×B velocity do not explicitly appear in the Poisson equation and the [Sosenko et al., Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko et al. and the work presented by [Wang et al., Phys. Plasmas 17, 082304 (2010)].

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.

    We report the first observation of localized modulation of turbulent density uctuations en (via Beam Emission Spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that en could be dominantly driven by the ion temperature gradient (ITG) instability.

  8. Effect of electron-to-ion mass ratio on radial electric field generation in tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao

    Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.

  9. Effect of electron-to-ion mass ratio on radial electric field generation in tokamak

    DOE PAGES

    Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao; ...

    2017-11-21

    Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.

  10. Zonal flow dynamics and control of turbulent transport in stellarators.

    PubMed

    Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H

    2011-12-09

    The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.

  11. Nonlinear Electromagnetic Stabilization of Plasma Microturbulence

    NASA Astrophysics Data System (ADS)

    Whelan, G. G.; Pueschel, M. J.; Terry, P. W.

    2018-04-01

    The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.

  12. Molecular interplay of pro-inflammatory transcription factors and non-coding RNAs in esophageal squamous cell carcinoma.

    PubMed

    Sundaram, Gopinath M; Veera Bramhachari, Pallaval

    2017-06-01

    Esophageal squamous cell carcinoma is the sixth most common cancer in the developing world. The aggressive nature of esophageal squamous cell carcinoma, its tendency for relapse, and the poor survival prospects of patients diagnosed at advanced stages, represent a pressing need for the development of new therapies for this disease. Chronic inflammation is known to have a causal link to cancer pre-disposition. Nuclear factor kappa B and signal transducer and activator of transcription 3 are transcription factors which regulate immunity and inflammation and are emerging as key regulators of tumor initiation, progression, and metastasis. Although these pro-inflammatory factors in esophageal squamous cell carcinoma have been well-characterized with reference to protein-coding targets, their functional interactions with non-coding RNAs have only recently been gaining attention. Non-coding RNAs, especially microRNAs and long non-coding RNAs demonstrate potential as biomarkers and alternative therapeutic targets. In this review, we summarize the recent literature and concepts on non-coding RNAs that are regulated by/regulate nuclear factor kappa B and signal transducer and activator of transcription 3 in esophageal cancer progression. We also discuss how these recent discoveries can pave way for future therapeutic options to treat esophageal squamous cell carcinoma.

  13. Architecture and implementation considerations of a high-speed Viterbi decoder for a Reed-Muller subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu (Principal Investigator); Uehara, Gregory T.; Nakamura, Eric; Chu, Cecilia W. P.

    1996-01-01

    The (64, 40, 8) subcode of the third-order Reed-Muller (RM) code for high-speed satellite communications is proposed. The RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. The progress made toward achieving the goal of implementing a decoder system based upon this code is summarized. The development of the integrated circuit prototype sub-trellis IC, particularly focusing on the design methodology, is addressed.

  14. Short-term memory coding in children with intellectual disabilities.

    PubMed

    Henry, Lucy

    2008-05-01

    To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and word length effects). Neither the intellectual disabilities nor MA groups showed evidence for memory coding strategies. However, children in these groups with MAs above 6 years showed significant visual similarity and word length effects, broadly consistent with an intermediate stage of dual visual and verbal coding. These results suggest that developmental progressions in memory coding strategies are independent of intellectual disabilities status and consistent with MA.

  15. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism.

    PubMed

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-12-04

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.

  16. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism

    PubMed Central

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-01-01

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed. PMID:26690121

  17. Observation of Trapped-Electron Mode Microturbulence in Improved Confinement Reversed-Field Pinch Plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James R.

    This is a dissertation for the completion of a Doctorate of Philosophy in Physics degree granted at the University of Wisconsin-Madison. Density fluctuations in the large-density-gradient region of improved confinement Madison Sym- metric Torus (MST) RFP plasmas exhibit multiple features that are characteristic of the trapped- electron mode (TEM). In fusion relevant plasmas, thermal transport is a key avenue of research in order to achieve a burning plasma. In the reversed field pinch (RFP) magnetic geometry, the dy- namics of conventional plasma discharges are primarily governed by magnetic stochasticity stem- ming from multiple long-wavelength tearing modes, that sustain the RFP discharge but have an adverse effect on the plasma confinement. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasma. Under these conditions with certain plasma equilibria, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at frequencies f 50 kHz that have normalized perpendicular wavenumbers k⊥rhos ≤ 0.2, and propagate in the electron diamagnetic drift direction. By adjusting the plasma current or the inductive suppression, there are observable variations in the spectral features. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with a local density gradient dependent parameter. These characteristics are consistent with the predictions of unstable TEMs based on gyrokinetic analysis using the GENE code. This thesis represents the first observation and description of TEM-like instabilities in the RFP geometry.

  18. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Guozhang; Xiang, Nong; Huang, Yueheng

    2016-01-15

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparablemore » to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.« less

  19. A quasilinear operator retaining magnetic drift effects in tokamak geometry

    NASA Astrophysics Data System (ADS)

    Catto, Peter J.; Lee, Jungpyo; Ram, Abhay K.

    2017-12-01

    The interaction of radio frequency waves with charged particles in a magnetized plasma is usually described by the quasilinear operator that was originally formulated by Kennel & Engelmann (Phys. Fluids, vol. 9, 1966, pp. 2377-2388). In their formulation the plasma is assumed to be homogenous and embedded in a uniform magnetic field. In tokamak plasmas the Kennel-Engelmann operator does not capture the magnetic drifts of the particles that are inherent to the non-uniform magnetic field. To overcome this deficiency a combined drift and gyrokinetic derivation is employed to derive the quasilinear operator for radio frequency heating and current drive in a tokamak with magnetic drifts retained. The derivation requires retaining the magnetic moment to higher order in both the unperturbed and perturbed kinetic equations. The formal prescription for determining the perturbed distribution function then follows a novel procedure in which two non-resonant terms must be evaluated explicitly. The systematic analysis leads to a diffusion equation that is compact and completely expressed in terms of the drift kinetic variables. The equation is not transit averaged, and satisfies the entropy principle, while retaining the full poloidal angle variation without resorting to Fourier decomposition. As the diffusion equation is in physical variables, it can be implemented in any computational code. In the Kennel-Engelmann formalism, the wave-particle resonant delta function is either for the Landau resonance or the Doppler shifted cyclotron resonance. In the combined gyro and drift kinetic approach, a term related to the magnetic drift modifies the resonance condition.

  20. Progress towards understanding and predicting convection heat transfer in the turbine gas path

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Simon, Frederick F.

    1992-01-01

    A new era is drawing in the ability to predict convection heat transfer in the turbine gas path. We feel that the technical community now has the capability to mount a major assault on this problem, which has eluded significant progress for a long time. We hope to make a case for this bold statement by reviewing the state of the art in three major heat transfer, configuration-specific experiments, whose data have provided the big picture and guided both the fundamental modeling research and the code development. Following that, we review progress and directions in the development of computer codes to predict turbine gas path heat transfer. Finally, we cite examples and make observations on the more recent efforts to do all this work in a simultaneous, interactive, and more synergistic manner. We conclude with an assessment of progress, suggestions for how to use the current state of the art, and recommendations for the future.

  1. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio m i/m e. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic m i/m e. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying m i/m e, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  2. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE PAGES

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; ...

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio m i/m e. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic m i/m e. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying m i/m e, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  3. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  4. Protecting breastfeeding in West and Central Africa: over 25 years of implementation of the International Code of Marketing of Breastmilk Substitutes.

    PubMed

    Sokol, Ellen; Clark, David; Aguayo, Victor M

    2008-09-01

    In 1981 the World Health Assembly (WHA) adopted the International Code of Marketing of Breastmilk Substitutes out of concern that inappropriate marketing of breastmilk substitutes was contributing to the alarming decline in breastfeeding worldwide and the increase in child malnutrition and mortality, particularly in developing countries. To document progress, challenges, and lessons learned in the implementation of the International Code in West and Central Africa. Data were obtained by literature review and interviews with key informants. Twelve of the 24 countries have laws, decrees, or regulations that implement all or most of the provisions of the Code, 6 countries have a draft law or decree that is awaiting government approval or have a government committee that is studying how best to implement the Code, 3 countries have a legal instrument that enacts a few provisions of the Code, and 3 countries have not taken any action to implement the Code. International declarations and initiatives for child nutrition and survival have provided impetus for national implementation of the Code. National action to regulate the marketing of breastmilk substitutes needs to be linked to national priorities for nutrition and child survival. A clearly defined scope is essential for effective implementation of national legislation. Leadership and support by health professionals is essential to endorse and enforce national legislation. Training on Code implementation is instrumental for national action; national implementation of the Code requires provisions and capacity to monitor and enforce the legislative framework and needs to be part of a multipronged strategy to advance national child nutrition and survival goals. Nations in West and Central Africa have made important progress in implementing the International Code. More than 25 years after its adoption by the WHA, the Code remains as important as ever for child survival and development in West and Central Africa.

  5. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer

    PubMed Central

    Ren, Zhipeng; Zhang, Guoliang

    2017-01-01

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer. PMID:28388588

  7. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer.

    PubMed

    Hou, Xiaobin; Wen, Jiaxin; Ren, Zhipeng; Zhang, Guoliang

    2017-06-27

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.

  8. Status of the Space Radiation Monte Carlos Simulation Based on FLUKA and ROOT

    NASA Technical Reports Server (NTRS)

    Andersen, Victor; Carminati, Federico; Empl, Anton; Ferrari, Alfredo; Pinsky, Lawrence; Sala, Paola; Wilson, Thomas L.

    2002-01-01

    The NASA-funded project reported on at the first IWSSRR in Arona to develop a Monte-Carlo simulation program for use in simulating the space radiation environment based on the FLUKA and ROOT codes is well into its second year of development, and considerable progress has been made. The general tasks required to achieve the final goals include the addition of heavy-ion interactions into the FLUKA code and the provision of a ROOT-based interface to FLUKA. The most significant progress to date includes the incorporation of the DPMJET event generator code within FLUKA to handle heavy-ion interactions for incident projectile energies greater than 3GeV/A. The ongoing effort intends to extend the treatment of these interactions down to 10 MeV, and at present two alternative approaches are being explored. The ROOT interface is being pursued in conjunction with the CERN LHC ALICE software team through an adaptation of their existing AliROOT software. As a check on the validity of the code, a simulation of the recent data taken by the ATIC experiment is underway.

  9. Image Transmission via Spread Spectrum Techniques. Part A

    DTIC Science & Technology

    1976-01-01

    Code 408 DR. EDWIN H. WRENCH (714-225-6871) Code 408 and HARPER J. WHITEHOUSE (714:225-6315), Code 4002 Naval Undersea Center San Diego. California...progress report appears in two parts. Part A is a summary of work done in support of this program at the Naval Undersea Center. Part B contains final...a technical description of the bandwidth compression system developed at the Naval Undersea Center. This paper is an excerpt from the specifications

  10. Decoding the function of nuclear long non-coding RNAs.

    PubMed

    Chen, Ling-Ling; Carmichael, Gordon G

    2010-06-01

    Long non-coding RNAs (lncRNAs) are mRNA-like, non-protein-coding RNAs that are pervasively transcribed throughout eukaryotic genomes. Rather than silently accumulating in the nucleus, many of these are now known or suspected to play important roles in nuclear architecture or in the regulation of gene expression. In this review, we highlight some recent progress in how lncRNAs regulate these important nuclear processes at the molecular level. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  12. Background and Recent Progress in Anomalous Transport Simulation

    DTIC Science & Technology

    2017-07-19

    NUMBER (Include area code) 19 July 2017 Briefing Charts 14 June 2017 - 19 July 2017 Background and Recent Progress in Anomalous Transport Simulation ...and Recent Progress in Anomalous Transport Simulation 19 Jul 2017 Justin Koo AFRL/RQRS Edwards AFB, CA 2DISTRIBUTION A: Approved for public release...Baalrud, S.D. and Chabert, P., “Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations

  13. Attributional styles in boys with severe behaviour problems: a possible reason for lack of progress on a positive behaviour programme.

    PubMed

    Eslea, M

    1999-03-01

    The number of exclusions from British schools has been increasing in recent years: the vast majority are because of disruptive behaviour. Increasing the effectiveness of behaviour control is therefore a priority for educators. This study tests the hypothesis that children who do not respond well to a behaviour modification regime exhibit a depressed attributional style. The sample comprised 26 boys aged 7-11 in a special day school for children with behaviour problems. Participants were interviewed about positive and negative aspects of school life: responses were coded using the Leeds Attributional Coding System (Stratton et al., 1988). School records were then used to identify children making good progress through the Positive Behaviour Programme (N = 13) and those making little or no progress (N = 8). Mean proportions of stable, global, internal, personal and controllable attributions were compared by progress group (high/low) and outcome (positive/negative) using mixed-design ANOVA. High progress children made significantly more global and internal attributions for positive than for negative events, while low progress children made more personal attributions for negative than for positive events. A depressed attributional style may act as a barrier which hinders the generalisation and internalisation of traditional behaviour modification methods. Increased teacher-awareness of attribution could increase the effectiveness of remedial programmes.

  14. MELCOR/CONTAIN LMR Implementation Report-Progress FY15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, Larry L.; Louie, David L.Y.

    2016-01-01

    This report describes the progress of the CONTAIN-LMR sodium physics and chemistry models to be implemented in to MELCOR 2.1. It also describes the progress to implement these models into CONT AIN 2 as well. In the past two years, the implementation included the addition of sodium equations of state and sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laborat ory by modifying MELCOR to include liquid lithium equation of state as a working fluid to mode l the nuclear fusion safety research. The second source uses properties generatedmore » for the SIMMER code. Testing and results from this implementation of sodium pr operties are given. In addition, the CONTAIN-LMR code was derived from an early version of C ONTAIN code. Many physical models that were developed sin ce this early version of CONTAIN are not captured by this early code version. Therefore, CONTAIN 2 is being updated with the sodium models in CONTAIN-LMR in or der to facilitate verification of these models with the MELCOR code. Although CONTAIN 2, which represents the latest development of CONTAIN, now contains ma ny of the sodium specific models, this work is not complete due to challenges from the lower cell architecture in CONTAIN 2, which is different from CONTAIN- LMR. This implementation should be completed in the coming year, while sodi um models from C ONTAIN-LMR are being integrated into MELCOR. For testing, CONTAIN decks have been developed for verification and validation use. In terms of implementing the sodium m odels into MELCOR, a separate sodium model branch was created for this document . Because of massive development in the main stream MELCOR 2.1 code and the require ment to merge the latest code version into this branch, the integration of the s odium models were re-directed to implement the sodium chemistry models first. This change led to delays of the actual implementation. For aid in the future implementation of sodium models, a new sodium chemistry package was created. Thus reporting for the implementation of the sodium chemistry is discussed in this report.« less

  15. Interleaved concatenated codes: new perspectives on approaching the Shannon limit.

    PubMed

    Viterbi, A J; Viterbi, A M; Sindhushayana, N T

    1997-09-02

    The last few years have witnessed a significant decrease in the gap between the Shannon channel capacity limit and what is practically achievable. Progress has resulted from novel extensions of previously known coding techniques involving interleaved concatenated codes. A considerable body of simulation results is now available, supported by an important but limited theoretical basis. This paper presents a computational technique which further ties simulation results to the known theory and reveals a considerable reduction in the complexity required to approach the Shannon limit.

  16. Modified Mean-Pyramid Coding Scheme

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Romer, Richard

    1996-01-01

    Modified mean-pyramid coding scheme requires transmission of slightly fewer data. Data-expansion factor reduced from 1/3 to 1/12. Schemes for progressive transmission of image data transmitted in sequence of frames in such way coarse version of image reconstructed after receipt of first frame and increasingly refined version of image reconstructed after receipt of each subsequent frame.

  17. DEBLICOM: Deaf-Blind Communication & Control Systems: First Quarterly Progress Report.

    ERIC Educational Resources Information Center

    Kafafian, Haig

    Reported on is the first phase of development of DEBLICOM, a code for a two-way communication system for deaf-blind individuals who may be speech-impaired. Brief sections cover the following topics: alternatives to and considerations for the development of cutaneous codes for deaf-blind people; the DEBLICOM system which provides a means of…

  18. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  19. Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.

    1997-01-01

    A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.

  20. Neural code alterations and abnormal time patterns in Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo

    2015-04-01

    Objective. The neural code used by the basal ganglia is a current question in neuroscience, relevant for the understanding of the pathophysiology of Parkinson’s disease. While a rate code is known to participate in the communication between the basal ganglia and the motor thalamus/cortex, different lines of evidence have also favored the presence of complex time patterns in the discharge of the basal ganglia. To gain insight into the way the basal ganglia code information, we studied the activity of the globus pallidus pars interna (GPi), an output node of the circuit. Approach. We implemented the 6-hydroxydopamine model of Parkinsonism in Sprague-Dawley rats, and recorded the spontaneous discharge of single GPi neurons, in head-restrained conditions at full alertness. Analyzing the temporal structure function, we looked for characteristic scales in the neuronal discharge of the GPi. Main results. At a low-scale, we observed the presence of dynamic processes, which allow the transmission of time patterns. Conversely, at a middle-scale, stochastic processes force the use of a rate code. Regarding the time patterns transmitted, we measured the word length and found that it is increased in Parkinson’s disease. Furthermore, it showed a positive correlation with the frequency of discharge, indicating that an exacerbation of this abnormal time pattern length can be expected, as the dopamine depletion progresses. Significance. We conclude that a rate code and a time pattern code can co-exist in the basal ganglia at different temporal scales. However, their normal balance is progressively altered and replaced by pathological time patterns in Parkinson’s disease.

  1. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in NSTX

    DOE Data Explorer

    Guttenfelder, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kaye, S. M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ren, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Solomon, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Candy, J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Yuh, H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio NSTX H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.

  2. The development of magnetic field line wander in gyrokinetic plasma turbulence: dependence on amplitude of turbulence

    NASA Astrophysics Data System (ADS)

    Bourouaine, Sofiane; Howes, Gregory G.

    2017-06-01

    The dynamics of a turbulent plasma not only manifests the transport of energy from large to small scales, but also can lead to a tangling of the magnetic field that threads through the plasma. The resulting magnetic field line wander can have a large impact on a number of other important processes, such as the propagation of energetic particles through the turbulent plasma. Here we explore the saturation of the turbulent cascade, the development of stochasticity due to turbulent tangling of the magnetic field lines and the separation of field lines through the turbulent dynamics using nonlinear gyrokinetic simulations of weakly collisional plasma turbulence, relevant to many turbulent space and astrophysical plasma environments. We determine the characteristic time 2$ for the saturation of the turbulent perpendicular magnetic energy spectrum. We find that the turbulent magnetic field becomes completely stochastic at time 2$ for strong turbulence, and at 2$ for weak turbulence. However, when the nonlinearity parameter of the turbulence, a dimensionless measure of the amplitude of the turbulence, reaches a threshold value (within the regime of weak turbulence) the magnetic field stochasticity does not fully develop, at least within the evolution time interval 22$ . Finally, we quantify the mean square displacement of magnetic field lines in the turbulent magnetic field with a functional form 2\\rangle =A(z/L\\Vert )p$ ( \\Vert $ is the correlation length parallel to the magnetic background field \\mathbf{0}$ , is the distance along \\mathbf{0}$ direction), providing functional forms of the amplitude coefficient and power-law exponent as a function of the nonlinearity parameter.

  3. A new fast two-color interferometer at Alcator C-Mod for turbulence measurements and comparison with phase contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten, C. P., E-mail: ckasten@alum.mit.edu; White, A. E.; Irby, J. H.

    2014-04-15

    Accurately predicting the turbulent transport properties of magnetically confined plasmas is a major challenge of fusion energy research. Validation of transport models is typically done by applying so-called “synthetic diagnostics” to the output of nonlinear gyrokinetic simulations, and the results are compared to experimental data. As part of the validation process, comparing two independent turbulence measurements to each other provides the opportunity to test the synthetic diagnostics themselves; a step which is rarely possible due to limited availability of redundant fluctuation measurements on magnetic confinement experiments. At Alcator C-Mod, phase-contrast imaging (PCI) is a commonly used turbulence diagnostic. PCI measuresmore » line-integrated electron density fluctuations with high sensitivity and wavenumber resolution (1.6 cm{sup −1}≲|k{sub R}|≲11 cm{sup −1}). A new fast two-color interferometry (FTCI) diagnostic on the Alcator C-Mod tokamak measures long-wavelength (|k{sub R}|≲3.0 cm{sup −1}) line-integrated electron density fluctuations. Measurements of coherent and broadband fluctuations made by PCI and FTCI are compared here for the first time. Good quantitative agreement is found between the two measurements. This provides experimental validation of the low-wavenumber region of the PCI calibration, and also helps validate the low-wavenumber portions of the synthetic PCI diagnostic that has been used in gyrokinetic model validation work in the past. We discuss possibilities to upgrade FTCI, so that a similar comparison could be done at higher wavenumbers in the future.« less

  4. Distributed Joint Source-Channel Coding in Wireless Sensor Networks

    PubMed Central

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560

  5. Complete analysis of steady and transient missile aerodynamic/propulsive/plume flowfield interactions

    NASA Astrophysics Data System (ADS)

    York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.

    1992-07-01

    The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.

  6. Turbulence modeling for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1992-01-01

    The objective of the present work is to develop, verify, and incorporate two equation turbulence models which account for the effect of compressibility at high speeds into a three dimensional Reynolds averaged Navier-Stokes code and to provide documented model descriptions and numerical procedures so that they can be implemented into the National Aerospace Plane (NASP) codes. A summary of accomplishments is listed: (1) Four codes have been tested and evaluated against a flat plate boundary layer flow and an external supersonic flow; (2) a code named RANS was chosen because of its speed, accuracy, and versatility; (3) the code was extended from thin boundary layer to full Navier-Stokes; (4) the K-omega two equation turbulence model has been implemented into the base code; (5) a 24 degree laminar compression corner flow has been simulated and compared to other numerical simulations; and (6) work is in progress in writing the numerical method of the base code including the turbulence model.

  7. CFD Modeling of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  8. Progressive Fracture of Fiber Composite Build-Up Structures

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, C. C.; Minnetyan, Levon

    1997-01-01

    Damage progression and fracture of built-up composite structures is evaluated by using computational simulation. The objective is to examine the behavior and response of a stiffened composite (0/ +/- 45/90)(sub s6) laminate panel by simulating the damage initiation, growth, accumulation, progression and propagation to structural collapse. An integrated computer code, CODSTRAN, was augmented for the simulation of the progressive damage and fracture of built-up composite structures under mechanical loading. Results show that damage initiation and progression have significant effect on the structural response. Influence of the type of loading is investigated on the damage initiation, propagation and final fracture of the build-up composite panel.

  9. Progressive Fracture of Fiber Composite Build-Up Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Gotsis, Pascal K.; Chamis, C. C.

    1997-01-01

    Damage progression and fracture of built-up composite structures is evaluated by using computational simulation. The objective is to examine the behavior and response of a stiffened composite (0 +/-45/90)(sub s6) laminate panel by simulating the damage initiation, growth, accumulation, progression and propagation to structural collapse. An integrated computer code CODSTRAN was augmented for the simulation of the progressive damage and fracture of built-up composite structures under mechanical loading. Results show that damage initiation and progression to have significant effect on the structural response. Influence of the type of loading is investigated on the damage initiation, propagation and final fracture of the build-up composite panel.

  10. Coding in Senior School Mathematics with Live Editing

    ERIC Educational Resources Information Center

    Thompson, Ian

    2017-01-01

    In this paper, an example is offered of a problem-solving task for senior secondary school students which was given in the context of a story. As the story unfolds, the task requires progressively more complex forms of linear programming to be applied. Coding in MATLAB is used throughout the task in such a way that it supports the increasing…

  11. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  12. MATHEMATICS PANEL PROGRESS REPORT FOR PERIOD MARCH 1, 1957 TO AUGUST 31, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Householder, A.S.

    1959-03-24

    ORACLE operation and programming are summarized, and progress is indicated on various current problems. Work is reviewed on numerical analysis, programming, basic mathematics, biometrics and statistics, ORACLE operations and special codes, and training. Publications and lectures for the report period are listed. (For preceding period see ORNL-2283.) (W.D.M.)

  13. Tax Cut Legislation: What's Fair? Lesson Plan.

    ERIC Educational Resources Information Center

    Foundation for Teaching Economics, Davis, CA.

    Front and center in 2001 domestic policy debates is President George W. Bush's proposed tax relief plan. The U.S. federal tax is a progressive tax code, predicated on the assumption that "people who are most able to pay should pay the most." A progressive tax system makes an individual's tax bill increase faster than his/her income. The…

  14. "Metropolis," The Lights Fantastic: Semiotic Analysis of Lighting Codes in Relation to Character and Theme.

    ERIC Educational Resources Information Center

    Roth, Lane

    Fritz Lang's "Metropolis" (1927) is a seminal film because of its concern, now generic, with the profound impact technological progress has on mankind's social and spiritual progress. As in many later science fiction films, the ascendancy of artifact over nature is depicted not as liberating human beings, but as subjecting and corrupting…

  15. The long non-coding RNA LSINCT5 promotes malignancy in non-small cell lung cancer by stabilizing HMGA2.

    PubMed

    Tian, Yuheng; Zhang, Lina; Chen, Shuwen; Ma, Yuan; Liu, Yanyan

    2018-06-08

    Long non-coding RNAs (lncRNAs) can actively participate in tumorigenesis in various cancers. However, the involvement of lncRNA long stress induced non-coding transcripts 5 (LSINCT5) in non-small cell lung cancer (NSCLC) remains largely unknown. Here we showed a novel lncRNA signature in NSCLC through lncRNA profiling. Increased LSINCT5 expression positively correlates with malignant clinicopathological features and poor survival. LSINCT5 can promote migration and viability of various NSCLC cells in vitro and also enhance lung cancer progression in vivo. RNA immunoprecipitation followed by mass spectrometry has identified that LSINCT5 interacts with HMGA2. This physical interaction can increase the stability of HMGA2 by inhibiting proteasome-mediated degradation. Therefore, LSINCT5 may possibly contribute to NSCLC tumorigenesis by stabilizing the oncogenic factor of HMGA2. This novel LSINCT5/HMGA2 axis can modulate lung cancer progression and might be a promising target for pharmacological intervention.

  16. Nonlinear ship waves and computational fluid dynamics

    PubMed Central

    MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei

    2014-01-01

    Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139

  17. Predictions of the near edge transport shortfall in DIII-D L-mode plasmas using the trapped gyro-Landau-fluid model [Predictions of the near edge transport shortfall in DIII-D L-mode plasmas using the TGLF model

    DOE PAGES

    Kinsey, Jon E.; Staebler, Gary M.; Candy, Jefferey M.; ...

    2015-01-14

    Previous studies of DIII-D L-mode plasmas have shown that a transport shortfall exists in that our current models of turbulent transport can significantly underestimate the energy transport in the near edge region. In this paper, the Trapped Gyro-Landau-Fluid (TGLF) drift wave transport model is used to simulate the near edge transport in a DIII-D L-mode experiment designed to explore the impact of varying the safety factor on the shortfall. We find that the shortfall systematically increases with increasing safety factor and is more pronounced for the electrons than for the ions. Within the shortfall dataset, a single high current casemore » has been found where no transport shortfall is predicted. Reduced neutral beam injection power has been identified as the key parameter separating this discharge from other discharges exhibiting a shortfall. Further analysis shows that the energy transport in the L-mode near edge region is not stiff according to TGLF. Unlike the H-mode core region, the predicted temperature profiles are relatively more responsive to changes in auxiliary heating power. In testing the fidelity of TGLF for the near edge region, we find that a recalibration of the collision model is warranted. A recalibration improves agreement between TGLF and nonlinear gyrokinetic simulations performed using the GYRO code with electron-ion collisions. As a result, the recalibration only slightly impacts the predicted shortfall.« less

  18. Generalised ballooning theory of two-dimensional tokamak modes

    NASA Astrophysics Data System (ADS)

    Abdoul, P. A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.

    2018-02-01

    In this work, using solutions from a local gyrokinetic flux-tube code combined with higher order ballooning theory, a new analytical approach is developed to reconstruct the global linear mode structure with associated global mode frequency. In addition to the isolated mode (IM), which usually peaks on the outboard mid-plane, the higher order ballooning theory has also captured other types of less unstable global modes: (a) the weakly asymmetric ballooning theory (WABT) predicts a mixed mode (MM) that undergoes a small poloidal shift away from the outboard mid-plane, (b) a relatively more stable general mode (GM) balloons on the top (or bottom) of the tokamak plasma. In this paper, an analytic approach is developed to combine these disconnected analytical limits into a single generalised ballooning theory. This is used to investigate how an IM behaves under the effect of sheared toroidal flow. For small values of flow an IM initially converts into a MM where the results of WABT are recaptured, and eventually, as the flow increases, the mode asymptotically becomes a GM on the top (or bottom) of the plasma. This may be an ingredient in models for understanding why in some experimental scenarios, instead of large edge localised modes (ELMs), small ELMs are observed. Finally, our theory can have other important consequences, especially for calculations involving Reynolds stress driven intrinsic rotation through the radial asymmetry in the global mode structures. Understanding the intrinsic rotation is significant because external torque in a plasma the size of ITER is expected to be relatively low.

  19. The application of CFD for military aircraft design at transonic speeds

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Braymen, W. W.; Bhateley, I. C.; Londenberg, W. K.

    1989-01-01

    Numerous computational fluid dynamics (CFD) codes are available that solve any of several variations of the transonic flow equations from small disturbance to full Navier-Stokes. The design philosophy at General Dynamics Fort Worth Division involves use of all these levels of codes, depending on the stage of configuration development. Throughout this process, drag calculation is a central issue. An overview is provided for several transonic codes and representative test-to-theory comparisons for fighter-type configurations are presented. Correlations are shown for lift, drag, pitching moment, and pressure distributions. The future of applied CFD is also discussed, including the important task of code validation. With the progress being made in code development and the continued evolution in computer hardware, the routine application of these codes for increasingly more complex geometries and flow conditions seems apparent.

  20. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.

    2014-08-01

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as β e , νe ∗ , the MHD α parameter, and the gradient scale lengths of Te, Ti, and ne were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and νe ∗ were relatively low, ballooning parity modes were dominant. As time progressed and both βe and νe ∗ increased, microtearing became the dominant low-kθ mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-kθ, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

Top