Sample records for gyrotron development program

  1. ECH Technology Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated themore » options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.« less

  2. Instrumentation and control system architecture of ECRH SST1

    NASA Astrophysics Data System (ADS)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  3. Recent Trends in Fusion Gyrotron Development at KIT

    NASA Astrophysics Data System (ADS)

    Gantenbein, G.; Avramidis, K.; Franck, J.; Illy, S.; Ioannidis, Z. C.; Jin, J.; Jelonnek, J.; Kalaria, P.; Pagonakis, I. Gr.; Ruess, S.; Rzesnicki, T.; Thumm, M.; Wu, C.

    2017-10-01

    ECRH&CD is one of the favorite heating system for magnetically confined nuclear fusion plasmas. KIT is strongly involved in the development of high power gyrotrons for use in ECRH systems for nuclear fusion. KIT is upgrading the sub-components of the existing 2 MW, 170 GHz coaxial-cavity short-pulse gyrotron to support long-pulse operation up to 1 s, all components will be equipped with a specific active cooling system. Two important developments for future high power, highly efficient gyrotrons will be discussed: design of gyrotrons with high operating frequency (˜ 240 GHz) and efficiency enhancement by using advanced collector designs with multi-staged voltage depression.

  4. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  5. High-Power Microwave Transmission and Mode Conversion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less

  6. Numerical Simulation of Single-anode and Double-anode Magnetron Injection Guns for 127.5 GHz 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Purohit, Laxmi Prasad; Sinha, Ashok Kumar

    2011-07-01

    This paper presents the design of two types of magnetron injection guns (MIG's) for 1 MW, 127.5 GHz gyrotron. TE24,8 mode has been chosen as the operating mode. In-house developed code MIGSYN has been used to estimate the initial gun parameters. The electron trajectory tracing program EGUN and in-house developed code MIGANS have been used to optimize the single-anode and the double-anode design for 80 kV, 40 A MIG. The parametric analysis of MIG has also been presented. The advantages and the disadvantages of each kind of configuration have been critically examined.

  7. The NRL (Naval Research Laboratory) Phase-Locked Gyrotron Oscillator Program for SDIO/IST

    DTIC Science & Technology

    1988-07-11

    are neglected as are space - charge effects . The cold cavity eigenfrequency for the TE6 2 1 mode is 35.08 GHz. The calculated efficiency, output power...improved beam quality on the gyrotron operation, and to eliminate the unknown space charge effects present in the original experiment, in which a...substantial fraction of the diode current is reflected before reaching the gyrotron cavity and may cause space charge problems before being collected on

  8. Final Report Advanced Quasioptical Launcher System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality tomore » SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.« less

  9. Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Nizhny Novgorod State University, 603950, gagarin av., 23, Nizhny Novgorod; Sergeev, A. S.

    2015-03-15

    A time-domain theory of frequency-locking gyrotron oscillators with low-Q resonators has been developed. The presented theory is based on the description of wave propagation by a parabolic equation taking into account the external signal by modification of boundary conditions. We show that the developed model can be effectively used for simulations of both single- and multi-mode operation regimes in gyrotrons driven by an external signal. For the case of low-Q resonators typical for powerful gyrotrons, the external signal can influence the axial field profile inside the interaction space significantly and, correspondingly, the value of the electron orbital efficiency.

  10. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate inmore » available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.« less

  11. Present developments and status of electron sources for high power gyrotron tubes and free electron masers

    NASA Astrophysics Data System (ADS)

    Thumm, M.

    1997-02-01

    Gyrotron oscillators are mainly used as high power mm-wave sources for start-up, electron cyclotron heating (ECH) and diagnostics of magnetically confined plasmas for controlled thermonuclear fusion research. 140 GHz (110 GHz) gyrotrons with output power Pout = 0.55 MW (0.93 MW), pulse length τ = 3.0 s (2.0 s) and efficiency η = 40% (38%) are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver Pout = 40 kW with τ = 40 μs at frequencies up to 650 GHz ( η≥4%). Recently, gyrotron oscillators have also been successfully used in materials processing, for example sintering of high performance, structural and functional ceramics. Such technological applications require gyrotrons with f≥24 GHz, Pout = 10-100 kW, CW, η≥30%. This paper reports on recent achievements in the development of very high power mm-wave gyrotron oscillators for long pulse or CW operation. In addition a short overview of the present development status of gyrotrons for technological applications, gyroklystron amplifiers, gyro-TWT amplifiers, cyclotron autoresonance masers (CARMs) and free electron masers (FEMs) is given. The most impressive FEM output parameters are: Pout = 2GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and Pout = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). In gyro-devices, magnetron injection guns (MIGs) operating in the temperature limited current regime have thus far been used most successfully. Diode guns as well as triode guns with a modulating anode are employed. Tests of a MIG operated under space-charge limited conditions have been not very successful. Electrostatic CW FEMs are driven by thermionic Pierce guns whereas pulsed high power devices employ many types of accelerators as drivers for example pulse-line accelerators, microtrons and induction or rf linacs, using field and photo emission cathodes.

  12. Recent Progress on ECH Technology for ITER

    NASA Astrophysics Data System (ADS)

    Sirigiri, Jagadishwar

    2005-10-01

    The Electron Cyclotron Heating and Current Drive (ECH&CD) system for ITER is a critical ITER system that must be available for use on Day 1 of the ITER experimental program. The applications of the system include plasma start-up, plasma heating and suppression of Neoclassical Tearing Modes (NTMs). These applications are accomplished using 27 one megawatt continuous wave gyrotrons: 24 at a frequency of 170 GHz and 3 at a frequency of 120 GHz. There are DC power supplies for the gyrotrons, a transmission line system, one launcher at the equatorial plane and three upper port launchers. The US will play a major role in delivering parts of the ECH&CD system to ITER. The present state-of-the-art includes major advances in all areas of ECH technology. In the US, a major effort is underway to supply gyrotrons of up to 1.5 MW power level at 110 GHz to General Atomics for use in heating the DIII-D tokamak. This presentation will include a brief review of the state-of-the-art, worldwide, in ECH technology. The requirements for the ITER ECH&CD system will then be reviewed. ITER calls for gyrotrons capable of operating from a 50 kV power supply, after potential depression, with a minimum of 50% overall efficiency. This is a very significant challenge and some approaches to meeting this goal will be presented. Recent experimental results at MIT showing improved efficiency of high frequency, 1.5 MW gyrotrons will be described. These results will be incorporated into the planned development of gyrotrons for ITER. The ITER ECH&CD system will also be a challenge to the transmission lines, which must operate at high average power at up to 1000 seconds and with high efficiency. The technology challenges and efforts in the US and other ITER parties to solve these problems will be reviewed. *In collaboration with E. Choi, C. Marchewka, I. Mastovosky, M. A. Shapiro and R. J. Temkin. This work is supported by the Office of Fusion Energy Sciences of the U. S. Department of Energy.

  13. Further Development of the Gyrotron- Powered Pellet Accelerator

    NASA Astrophysics Data System (ADS)

    Perkins, Francis

    2007-11-01

    The Gyrotron-Powered Pellet Accelerator provides an enabling technology to efficiently fuel ITER with fast pellets launched from the High Field Side (HFS) separatrix. Pellet experiments have repeatedly found that fuel efficiently is high - consistent with 100%. In contrast, Low Field Side (LFS) launch experiments find efficiencies of 50% or less. This report addresses what experimental program and what material choices can be made to retain program momentum. An initial program seeks to establish that our heterogeneous approach to conductivity works, maintaining s 1 mho/m. A demonstration of acceleration can be carried out in a very simple laboratory when the pusher material D2[Be] is replaced by LiH[C] which is a room temperature solid with a graphite particle suspension. No cryogenics or hazard chemicals. The mm-wave mirror will be graphite, the tamper is sapphire, and the payload LiD. The payload has a pellet has diameter = 3mm and a mass M = 4.4x10-4 kg which is 220 joules at V=1000 m/s. A barrel length of 15 cm completes the design specification.

  14. The 140 GHZ, 1 MW Gyrotron - Status and Recent Results

    NASA Astrophysics Data System (ADS)

    Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Piosczyk, B.; Schmid, M.; Thumm, M.; Braune, H.; Erckmann, V.; Laqua, H. P.; Michel, G.; Kasparek, W.; Lechte, C.; Legrand, F.; Lievin, C.; Prinz, O.

    2009-04-01

    A 10 MW ECRH system is currently under construction for the stellarator W7-X which will be built up and operated by IPP in Greifswald, Germany. The present status of the complete system is reported in [1]. The RF power will be provided by 10 gyrotrons. A European collaboration has been established to develop and build the 10 gyrotrons each with an output power of 1 MW for continuous wave (CW) operation [2]. Nine gyrotrons are being manufactured by Thales Electron Devices (TED), Vélizy, France, one gyrotron was produced by CPI, Palo Alto, CA and passed the acceptance tests at IPP. The acceptance tests of the TED gyrotrons are performed at the test stand at FZK and on site at IPP. The first series tube yielded a total output power of 0.98 MW, with an efficiency of 31 % (without a single stage depressed collector) in short pulse operation and of 0.92 MW in pulses of 1800 s (efficiency of almost 45 % at a depression voltage of 29 kV) [3], The Gaussian mode output power was 0.91 MW. The RF power, measured in a calorimetric load at the end of a 25 m long quasi-optical transmission line with seven mirrors, was 0.87 MW. In this contribution typical results of the next series gyrotrons will be reported.

  15. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Singh, T. P.; Sinha, A. K.

    2011-02-01

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  16. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    NASA Astrophysics Data System (ADS)

    Braunmueller, F.; Tran, T. M.; Vuillemin, Q.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.

    2015-06-01

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.

  17. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunmueller, F., E-mail: falk.braunmueller@epfl.ch; Tran, T. M.; Alberti, S.

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is themore » case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.« less

  18. Nonstationary oscillations in gyrotrons revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrajs, O., E-mail: olgerts.dumbrajs@lu.lv; Kalis, H., E-mail: harijs.kalis@lu.lv

    2015-05-15

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction qualitymore » resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper.« less

  19. Subterahertz gyrotron developments for collective Thomson scattering in LHDa)

    NASA Astrophysics Data System (ADS)

    Notake, T.; Saito, T.; Tatematsu, Y.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.; Fujii, A.; Agusu, La; Ogawa, I.; Idehara, T.

    2008-10-01

    Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted.

  20. Initial results for a 170 GHz high power ITER waveguide component test stand

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  1. Integrated Design of Undepressed Collector for Low Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  2. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Shenyong, E-mail: houshenyong@sohu.com; Yu, Sheng; Li, Hongfu

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  3. Soviet Development of Gyrotrons

    DTIC Science & Technology

    1986-05-01

    Relationship Type of Device Remarks V, - Vc, anomalous Doppler Capable of 100 percent efficiency, CRM but more cumbersome than Cheren- kov devices V...authors; and discusses inlividual Soviet reseaLc- groups, the basic organizational units responAiLle for the CRM and gyrotron research and development. The...maintained a cCnEistEnt iecord of significant achievements; it has managed to overcome the systenic yeaxness of the Soviet R&C systeg in teimg atle to

  4. Recent progress in the upgrade of the TCV EC-system with two 1MW/2s dual-frequency (84/126GHz) gyrotrons

    NASA Astrophysics Data System (ADS)

    Alberti, Stefano; Genoud, Jérémy; Goodman, Timothy; Hogge, Jean-Philippe; Porte, Laurie; Silva, Miguel; Tran, Trach-Minh; Tran, Minh-Quang; Avramidis, Konstantinos; Pagonakis, Ioannis; Jin, Jianbo; Illy, Stefan; Gantenbein, Gerd; Jelonnek, John; Thumm, Manfred; Bin, William; Bruschi, Alex; Garavaglia, Saul; Moro, Alessandro; Kasparek, Walter; Legrand, François; Perial, Etienne; Rozier, Yoan; Cismondi, Fabio; Doelman, Niek

    2017-10-01

    The upgrade of the EC-system of the TCV tokamak has entered in its realization phase and is part of a broader upgrade of TCV. The MW-class dual-frequency gyrotrons (84 or 126GHz/2s/1MW) are presently being manufactured by Thales Electron Devices with the first gyrotron foreseen to be delivered at SPC by the end of 2017. In parallel to the gyrotron development, for extending the level of operational flexibility of the TCV EC-system the integration of the dual-frequency gyrotrons adds a significant complexity in the evacuated 63.5mm-diameter HE11 transmission line system connected to the various TCV low-field side and top launchers. As discussed in [1], an important part of the present TCV-upgrade consists in inserting a modular closed divertor chamber. This will have an impact on the X3 top-launcher which will have to be reduced in size. For using the new compact launcher we are considering employing a Fast Directional Switch (FADIS), combining the two 1MW/126GHz/2s rf-beams into a single 2MW rf-beam.

  5. Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls

    NASA Astrophysics Data System (ADS)

    Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra

    2017-08-01

    The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.

  6. Self-consistent non-stationary theory of the gyrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrajs, Olgierd; Nusinovich, Gregory S.

    2016-08-15

    For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theorymore » free from the assumption about constant amplitude of microwave oscillations during the electron transit time should be developed. The present paper contains some results obtained in the framework of such theory. The main attention is paid to modification of the boundary between the regions of oscillations with constant amplitude and automodulation in the plane of normalized parameters characterizing the external magnetic field and the beam current. It is shown that the theory free from the assumption about the frozen wave amplitude during the electron transit time predicts some widening of the region of automodulation.« less

  7. The design of a multi-harmonic step-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun

    2017-03-01

    The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.

  8. Design of the ITER Electron Cyclotron Heating and Current Drive Waveguide Transmission Line

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Rasmussen, D. A.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.; Grunloh, H.; Koliner, J.

    2007-11-01

    The ITER ECH transmission line system is designed to deliver the power, from twenty-four 1 MW 170 GHz gyrotrons and three 1 MW 127.5 GHz gyrotrons, to the equatorial and upper launchers. The performance requirements, initial design of components and layout between the gyrotrons and the launchers is underway. Similar 63.5 mm ID corrugated waveguide systems have been built and installed on several fusion experiments; however, none have operated at the high frequency and long-pulse required for ITER. Prototype components are being tested at low power to estimate ohmic and mode conversion losses. In order to develop and qualify the ITER components prior to procurement of the full set of 24 transmission lines, a 170 GHz high power test of a complete prototype transmission line is planned. Testing of the transmission line at 1-2 MW can be performed with a modest power (˜0.5 MW) tube with a low loss (10-20%) resonant ring configuration. A 140 GHz long pulse, 400 kW gyrotron will be used in the initial tests and a 170 GHz gyrotron will be used when it becomes available. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.

  9. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    PubMed Central

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-01-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247

  10. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron.

    PubMed

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-09

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  11. To the theory of high-power gyrotrons with uptapered resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrajs, O.; Nusinovich, G. S.

    In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimizationmore » of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.« less

  12. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Nizhny Novgorod State University, Gagarin Ave., 23, 603950 Nizhny Novgorod; Sergeev, A. S.

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  13. Theory and Modeling of High-Power Gyrotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, Gregory Semeon

    2016-04-29

    This report summarized results of the work performed at the Institute for Research in Electronics and Applied Physics of the University of Maryland (College Park, MD) in the framework of the DOE Grant “Theory and Modeling of High-Power Gyrotrons”. The report covers the work performed in 2011-2014. The research work was performed in three directions: - possibilities of stable gyrotron operation in very high-order modes offering the output power exceeding 1 MW level in long-pulse/continuous-wave regimes, - effect of small imperfections in gyrotron fabrication and alignment on the gyrotron efficiency and operation, - some issues in physics of beam-wave interactionmore » in gyrotrons.« less

  14. The Compact Ignition Tokamak and electron cyclotron heating: Description of need; assessment of prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignat, D.W.; Cohn, D.R.; Woskov, P.P.

    1989-01-01

    The CIT will benefit from auxiliary heating of 10 to 40 MW. The schedules of both the CIT construction project and the operating plan contain adequate time to develop and implement ECH systems based on the gyrotron and the induction free electron laser (IFEL). Each approach has advantages and is the object of R and D at the level of many millions of dollars per year. While the gyrotron is further advanced in terms of power and pulse length achieved, rapid progress is scheduled for the IFEL, including experiments on tokamaks. Plans of CIT, gyrotron, and IFEL make 1992 anmore » appropriate time frame to commit to one or both systems. 12 refs., 8 figs., 2 tabs.« less

  15. Conceptual design of the EU DEMO EC-system: main developments and R&D achievements

    NASA Astrophysics Data System (ADS)

    Granucci, G.; Aiello, G.; Alberti, S.; Avramidis, K. A.; Braunmüller, F.; Bruschi, A.; Chelis, J.; Franck, J.; Figini, L.; Gantenbein, G.; Garavaglia, S.; Grossetti, G.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Kalaria, P.; Latsas, G.; Moro, A.; Pagonakis, I. Gr.; Peponis, D.; Poli, E.; Rispoli, N.; Rzesnicki, T.; Scherer, T.; Strauss, D.; Thumm, M.; Tigelis, I.; Tsironis, C.; Wu, C.; Franke, T.; Tran, M. Q.

    2017-11-01

    For the development of a DEMOnstration Fusion Power Plant the design of auxiliary heating systems is a key activity in order to achieve controlled burning plasma. The present heating mix considers electron cyclotron resonance heating (ECRH), neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH) with a target power to the plasma of about 50 MW for each system. The main tasks assigned to the EC system are plasma breakdown and assisted start-up, heating to L-H transition and plasma current ramp up to burn, MHD stability control and assistance in plasma current ramp down. The consequent requirements are used for the conceptual design of the EC system, from the RF source to the launcher, with an extensive R&D program focused on relevant technologies to be developed. Gyrotron: the R&D and Advanced Developments on EC RF sources are targeting for gyrotrons operating at 240 GHz, considered as optimum EC Current Drive frequency in case of higher magnetic field than for the 2015 EU DEMO1 baseline. Multi-purpose (multi-frequency) and frequency step-tunable gyrotrons are under investigation to increase the flexibility of the system. As main targets an output power of significantly above 1 MW (target: 2 MW) and a total efficiency higher than 60% are set. The principle feasibility at limits of a 236 GHz, conventional-cavity and, alternatively, of a 238 GHz coaxial-cavity gyrotron are under investigation together with the development of a synthetic diamond Brewster-angle window technology. Advanced developments are on-going in the field of multi-stage depressed collector technologies. Transmission line (TL): different TL options are under investigation and a preliminary study of an evacuated quasi-optical multiple-beam TL, considered for a hybrid solution, is presented and discussed in terms of layout, dimensions and theoretical losses. Launcher: remote steering antennas have been considered as a possible launcher solution especially under the constraints to avoid movable mirrors close to the plasma. With dedicated beam tracing calculations, the deposition locations coverage and the wave absorption efficiency have been investigated, considering a selection of frequencies, injection angles and launching points. An option for the EC system structure is proposed in clusters, in order to allow the necessary redundancy and flexibility to guarantee the required EC power in the different phases of the plasma pulse. Number and composition of the clusters are analysed to have high availability and therefore maximum reliability with a minimum number of components.

  16. Operations Studies of the Gyrotrons on DIII-D

    NASA Astrophysics Data System (ADS)

    Storment, Stephen; Lohr, John; Cengher, Mirela; Gorelov, Yuri; Ponce, Dan; Torrezan, Antonio

    2017-10-01

    The gyrotrons are high power vacuum tubes used in fusion research to provide high power density heating and current drive in precisely localized areas of the plasma. Despite the increasing experience with both the manufacture and operation of these devices, individual gyrotrons with similar design and manufacturing processes can exhibit important operational differences in terms of generated rf power, efficiency and lifetime. This report discusses differences in the performance of several gyrotrons in operation at DIII-D and presents the results of a series of measurements that could lead to improved the performance of single units based on a better understanding of the causes of these differences. The rf power generation efficiency can be different from gyrotron to gyrotron. In addition, the power loading of the collector can feature localized hot spots, where the collector can locally be close to the power deposition limits. Measurements of collector power loading provide maps of the power deposition and can provide understanding of the effect of modulation of the output rf beam on the total loading, leading to improved operational rules increasing the safety margins for the gyrotrons under different operational scenarios. Work supported by US DOE under DE-FC02-04ER54698.

  17. Frequency pulling in a low-voltage medium-power gyrotron

    NASA Astrophysics Data System (ADS)

    Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun

    2018-04-01

    Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.

  18. Modelling, simulation and computer-aided design (CAD) of gyrotrons for novel applications in the high-power terahertz science and technologies

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.

    2018-03-01

    Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.

  19. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  20. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  1. Development of Quasi-Optical Gyrotrons for Fusion Plasma Heating

    DTIC Science & Technology

    1988-07-11

    for Laser Ablated Plasmas," W. M. Manheimer and D. G. Colombant, Phys. Fluids 27, 1927 (1984). 112. "Acceleration of an Electron Ring in a Modified...for the Department of Energy (AEC at the time) September 1978 - March 1979 - Review of the LINUS program at NRL for NRL February 1979 - Review of the...Orzechowski, B. R. S4 Anderson, J. C. Clark, W. M. Fawley, A. C. Paul , D. Prosnitz, E. T. Scharlemann, S. M. Yarema, D. B. Hopkins, A. M. Sessler and J. S

  2. Towards a 1 MW, 170 GHz gyrotron design for fusion application

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Kumar, Nitin; Singh, Udaybir; Bhattacharya, Ranajoy; Yadav, Vivek; Sinha, A. K.

    2013-03-01

    The electrical design of different components of 1 MW, 170 GHz gyrotron such as, magnetron injection gun, cylindrical interaction cavity and collector and RF window is presented in this article. Recently, a new project related to the development of 170 GHz, 1 MW gyrotron has been started for the Indian Tokamak. TE34,10 mode is selected as the operating mode after studied the problem of mode competition. The triode type geometry is selected for the design of magnetron injection gun (MIG) to achieve the required beam parameters. The maximum transverse velocity spread of 3.28% at the velocity ratio of 1.34 is obtained in simulations for a 40 A, 80 kV electron beam. The RF output power of more than 1 MW with 36.5% interaction efficiency without depressed collector is predicted by simulation in single-mode operation at 170 GHz frequency. The simulated single-stage depressed collector of the gyrotron predicted the overall device efficiencies >55%. Due to the very good thermal conductivity and very weak dependency of the dielectric parameters on temperature, PACVD diamond is selected for window design for the transmission of RF power. The in-house developed code MIGSYN and GCOMS are used for initial geometry design of MIG and mode selection respectively. Commercially available simulation tools MAGIC and ANSYS are used for beam-wave interaction and mechanical analysis respectively.

  3. The Multiple Gyrotron System on the DIII-D Tokamak

    DOE PAGES

    Lohr, J.; Anderson, J.; Brambila, R.; ...

    2015-08-28

    A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less

  4. Interrupting an Imminent Body Current Fault and Restoring Full Power in Milliseconds on a DIII-D National Fusion Facility Gyrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, Dan; Brambila, Rigo E.; Cengher, Mirela

    The ECH Group at DIII-D has installed in-house engineered, FPGA-based, high voltage reference waveform generators on its gyrotron control systems to enhance the capabilities of the systems and replace obsolete equipment. The new hardware, named D-Wavegen, outputs 16-bit signals every microsecond and can respond to events and anomalies in real-time. These generators have been reliably pausing gyrotron rf output during periods of DIII-D plasma density that exceed the fault density trip level and restarting the rf output if the density falls below the trip level. While tightly monitoring gyrotron body current and internal pressure, D-Wavegen has also been reliably restarting,more » in a little over 10ms, gyrotrons that spontaneously ceased rf generation.« less

  5. Interrupting an Imminent Body Current Fault and Restoring Full Power in Milliseconds on a DIII-D National Fusion Facility Gyrotron

    DOE PAGES

    Ponce, Dan; Brambila, Rigo E.; Cengher, Mirela; ...

    2017-10-19

    The ECH Group at DIII-D has installed in-house engineered, FPGA-based, high voltage reference waveform generators on its gyrotron control systems to enhance the capabilities of the systems and replace obsolete equipment. The new hardware, named D-Wavegen, outputs 16-bit signals every microsecond and can respond to events and anomalies in real-time. These generators have been reliably pausing gyrotron rf output during periods of DIII-D plasma density that exceed the fault density trip level and restarting the rf output if the density falls below the trip level. While tightly monitoring gyrotron body current and internal pressure, D-Wavegen has also been reliably restarting,more » in a little over 10ms, gyrotrons that spontaneously ceased rf generation.« less

  6. The W7-X ECRH Plant: Recent Achievements

    NASA Astrophysics Data System (ADS)

    Erckmann, V.; Brand, P.; Braune, H.; Dammertz, G.; Gantenbein, G.; Kasparek, W.; Laqua, H. P.; Michel, G.; Schmid, M.; Thumm, M.; Weissgerber, M.

    2007-09-01

    The 10 MW, 140 GHz, CW ECRH-plant for W7-X is in an advanced state of commissioning and the installation was used to investigate advanced applications for extended heating- and current drive scenarios. The operation of the TED gyrotrons was recently extended to a 2nd frequency of 103.6 GHz at reduced output power and first results are presented. An improved collector sweep system for the W7-X gyrotrons with enhanced power capability and smooth power distribution was developed, results are reported.

  7. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  8. Operation of a sub-terahertz CW gyrotron with an extremely low voltage

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Fedotov, A. E.; Fokin, A. P.; Glyavin, M. Yu.; Manuilov, V. N.; Osharin, I. V.

    2017-11-01

    Decreasing the operating voltage for medium-power sub-terahertz gyrotrons aimed at industrial and scientific applications is highly attractive, since it allows size and cost reduction of the tubes and power supply units. In this paper, we examine such an opportunity both numerically and experimentally for the fundamental cyclotron resonance operation of an existing gyrotron initially designed for operation at the second cyclotron harmonic with a relatively high voltage. Simulations predict that output power higher than 10 W can be produced at the fundamental harmonic at voltages less than 2 kV. To form a low-voltage helical electron beam with a sufficiently large pitch-factor, a positive voltage was applied to the first anode of the gyrotron three-electrode magnetron-injection gun with a negative voltage at the cathode. CW gyrotron operation at voltages down to 1.5 kV has been demonstrated at a frequency about of 256 GHz.

  9. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  10. Theoretical analysis and Vsim simulation of a low-voltage high-efficiency 250 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    An, Chenxiang; Zhang, Dian; Zhang, Jun; Zhong, Huihuang

    2018-02-01

    Low-voltage, high-frequency gyrotrons with hundreds of watts of power are useful in radar, magnetic resonance spectroscopy and plasma diagnostic applications. In this paper, a 10 kV, 478 W, 250 GHz gyrotron with an efficiency of nearly 40% and a pitch ratio of 1.5 was designed through linear and nonlinear numerical analyses and Vsim particle-in-cell (PIC) simulation. Vsim is a highly efficient parallel PIC code, but it has seldom been used to carry out electron beam wave interaction simulations of gyro-devices. The setting up of the parameters required for the Vsim simulations of the gyrotron is presented. The results of Vsim simulations agree well with that of nonlinear numerical calculation. The commercial software Vsim7.2 completed the 3D gyrotron simulation in 80 h using a 20 core, 2.2 GHz personal computer with 256 GBytes of memory.

  11. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered complex cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qixiang, E-mail: zxqi1105@gmail.com; Yu, Sheng; Zhang, Tianzhong

    2015-10-15

    In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing themore » mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.« less

  12. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low 12 mA) at frequencies between 320–365 GHz, suggesting an efficient route for the generation of even higher frequency radiation. The low starting currents were attributed to an elevated cavity Q, which is confirmed by cavity thermal load measurements. We conclude with an appendix containing a detailed description of the control system that safely automates all aspects of the gyrotron operation. PMID:17942352

  13. Analyses of advanced concepts in multi-stage gyro-amplifiers and startup in high power gyro-oscillators

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr V.

    Gyrotrons are well recognized sources of high-power coherent electromagnetic radiation. The power that gyrotrons can radiate in the millimeter- and submillimeter-wavelength regions exceeds the power of classical microwave tubes by many orders of magnitude. In this work, the author considers some problems related to the operation of gyro-devices and methods of their solution. In particular, the self-excitation conditions for parasitic backward waves and effect of distributed losses on the small-signal gain of gyro-TWTs are analyzed. The corresponding small-signal theory describing two-stage gyro-traveling-wave tubes (gyro-TWTs) with the first stage having distributed losses is presented. The theory is illustrated by using it for the description of operation of a Ka-band gyro-TWT designed at the Naval Research Laboratory. Also, the results of nonlinear studies of this tube are presented and compared with the ones obtained by the use of MAGY, a multi-frequency, self-consistent code developed at the University of Maryland. An attempt to build a large signal theory of gyro-TWTs with tapered geometry and magnetic field profile is made and first results are obtained for a 250 GHz gyro-TWT. A comparative small-signal analysis of conventional four-cavity and three-stage clustered-cavity gyroklystrons is performed. The corresponding point-gap models for these devices are presented. The efficiency, gain, bandwidth and gain-bandwidth product are analyzed for each scheme. Advantages of the clustered-cavity over the conventional design are discussed. The startup scenarios in high-power gyrotrons and the most important physical effects associated with them are considered. The work presents the results of startup simulations for a 140 GHz, MW-class gyrotron developed by Communications and Power Industries (CPI) for electron-cyclotron resonance heating (ECRH) and current drive experiments on the "Wendelstein 7-X" stellarator plasma. Also presented are the results for a 110 GHz, 1.5 MW gyrotron currently being developed at CPI. The simulations are carried out for six competing modes and with the effects of electron velocity spread and voltage depression taken into account. Also, the slow stage of the startup in long-pulse gyrotrons is analyzed and attention is paid to the effects of ion compensation of the beam space charge, frequency deviation due to the cavity wall heating and beam current decrease due to cathode cooling. These effects are modeled with a simple nonlinear theory and the code MAGY.

  14. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.

    PubMed

    Hornstein, Melissa K; Bajaj, Vikram S; Griffin, Robert G; Temkin, Richard J

    2007-02-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

  15. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  16. Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.

    2006-03-01

    Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.

  17. Electron Beam Misalignment Study of MIG for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Udaybir; Kumar, Nitin; Sahu, Naveen; Shekhawat, Narendra; Srivastava, Deepak; Alaria, M. K.; Bera, A.; Jain, P. K.; Sinha, A. K.

    2017-10-01

    This paper presents the electron beam misalignment study with respect to cathode position and cathode magnetic field of 42 GHz, 200 kW gyrotron. The performance of gyrotron is affected with the misalignment of cathode position. The simulation results confirm the tolerance of cathode misalignment with respect to the design parameters such as the transverse-to-axial velocity ratio, the maximum transverse velocity spread, etc.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in; Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology; Jain, P. K.

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typicalmore » PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.« less

  19. Cusp-Gun Sixth-Harmonic Slotted Gyrotron

    NASA Astrophysics Data System (ADS)

    Stutzman, R. C.; McDermott, D. B.; Hirata Luhmann, Y., Jr.; Gallagher, D. A.; Spencer, T. A.

    2000-10-01

    A high-harmonic slotted gyrotron has been constructed at UC Davis to be driven by a 70 kV, 3.5 A, axis-encircling electron beam from a Northrop Grumman Cusp gun. The 94 GHz, slotted sixth-harmonic gyrotron is predicted to generate 50 kW with an efficiency of 20%. Using the profile of the adiabatic field reversal from the UC Davis superconducting test-magnet, EGUN simulations predict that an axis-encircling electron beam will be generated with an axial velocity spread of Δ v_z/v_z=10% for the desired velocity ratio of α =v_z/v_z=1.5. The design will also be presented for an 8th-harmonic W-band gyrotron whose magnetic field can be supplied by a lightweight permanent magnet.

  20. Numerical Simulation of a Double-anode Magnetron Injection Gun for 110 GHz, 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, Ashok K.

    2010-07-01

    A 40 A double-anode magnetron injection gun for a 1 MW, 110 GHz gyrotron has been designed. The preliminary design has been obtained by using some trade-off equations. The electron beam analysis has been performed by using the commercially available code EGUN and the in-house developed code MIGANS. The operating mode of the gyrotron is TE22,6 and it is operated in the fundamental harmonic. The electron beam with a low transverse velocity spread ( δ {β_{ bot max }} = 2.26% ) and the transverse-to-axial velocity ratio of the electron beam (α) = 1.37 is obtained. The simulated results of the MIG obtained with the EGUN code have been validated with another trajectory code TRAK. The results on the design output parameters obtained by both the codes are in good agreement. The sensitivity analysis has been carried out by changing the different gun parameters to decide the fabrication tolerance.

  1. Mutual synchronization of weakly coupled gyrotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  2. Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE0,6,1 mode near 460 GHz. The gyrotron also operates in the second harmonic TE2,6,1 mode at 456 GHz and in the TE2,3,1 fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE0,6,1 mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T. PMID:17710187

  3. Design of 28 GHz, 200 kW Gyrotron for ECRH Applications

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.

    2013-01-01

    This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.

  4. Theoretical Study on the 1.185-THz Third Harmonic Gyrotron

    NASA Astrophysics Data System (ADS)

    Dumbrajs, O.; Idehara, T.

    2018-02-01

    We discuss how the existing University of Fukui (FIR UF) second harmonic double-beam gyrotron with the operating frequency 0.79 THz can be adopted for operation at the third harmonic. The new gyrotron will operate at the frequency 1.185 THz and will significantly increase the frequency of the dynamic nuclear polarization-nuclear magnetic resonance (DNP-NMR) spectrometer. This will allow one to study new bio-molecules.A special attention is payed to the mode competition between the operating {TE}_{3,11}+ mode at the third harmonic and the parasitic modes at the second and fundamental harmonics. The operating parameters of the modified gyrotron are U = 20 kV, α = 1.3, I = 0.35 A, and B = 14.60 T and the expected output power about 100W.

  5. Theory of Gyrotron Traveling Wave Amplifiers at Harmonics of the Gyration Frequency

    NASA Astrophysics Data System (ADS)

    Li, Qiangfa

    In developing gyrotrons at millimeter and submillimeter wavelengths, a means of operation at lower applied magnetic fields is desirable because of the size and weight of convetional magnets, and the expense and complexity of cryogenic magnets. This requirement can be met by operating the devices at higher harmonics of the electron gyration frequency. In the present work, a unified theory is developed for the gyrotron traveling wave amplifers (gyro-TWA) at harmonics of the gyration frequency, both in the nonlinear regime and in the linear regime. This theory can be applied to a wide class of waveguide cross sections, arbitrary harmonic number, any waveguide mode, and generalized electron beam model. The fields in the beam-field interaction region in the waveguide are expressed in the form of an infinite series of multipoles expanded around the guiding center of the electrons. A set of equations governing the nonlinear behavior of the gyro-TWA is derived. A general dispersion equation is derived both from that set of nonlinear equations by an iteration method and from plasma kinetic theory. The latter is employed to analyze gyro-TWA devices in a systematic and generalized manner. The Laplace transformation is introduced to allow inclusion of the initial values at the input end of the waveguide. From the linear theory it is found that for a gyrotron working at s-th gyration harmonic the electrons can interact only with the 2s-th order multipole field component. It is also found that a higher order waveguide mode is not always better than a lower order mode for the gyro-TWA working at higher harmonics. A novel out-ridged waveguide is proposed and analyzed for the use in gyrotrons. The prominent features of this new waveguide include simplicity of manufacture, freedom from local modes, good separation of lower order modes, high power handling ability, and high gain per unit length at higher gyration harmonics. A comparison of the gyro-TWAs with several different waveguide structures, such as the out-ridged, magnetron-type, rectangular and circular waveguides, is made through numerical examples of the gain-frequency curves computed from the linear kinetic theory.

  6. Numerical Simulation of MIG for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Bera, Anirban; Kumar, Narendra; Purohit, L. P.; Sinha, Ashok K.

    2010-06-01

    A triode type magnetron injection gun (MIG) of a 42 GHz, 200 kW gyrotron for an Indian TOKAMAK system is designed by using the commercially available code EGUN. The operating voltages of the modulating anode and the accelerating anode are 29 kV and 65 kV respectively. The operating mode of the gyrotron is TE03 and it is operated in fundamental harmonic. The simulated results of MIG obtained with the EGUN code are validated with another trajectory code TRAK.

  7. Gyrotron collector systems: Types and capabilities

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Morozkin, M. V.; Luksha, O. I.; Glyavin, M. Yu

    2018-06-01

    A classification and a comparative analysis of the collector systems of gyrotrons of different frequency ranges and power levels are presented. Both the classical schemes of gyrotron collectors with an adiabatic magnetic field and new ones, including the systems with dynamic scanning of the electron beam, collectors with a highly nonuniform field, as well as multistage recovery schemes, are considered. Recommendations on the use of this or that type of collectors, depending on the output power of the device and the pulse width, are given.

  8. Broadband terahertz-power extracting by using electron cyclotron maser.

    PubMed

    Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun

    2017-08-04

    Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.

  9. Gyrotron cavity resonator with an improved value of Q

    DOEpatents

    Stone, David S.; Shively, James F.

    1982-10-26

    A gyrotron cavity resonator is connected smoothly and directly to an output waveguide with a very gradually tapered wall so that values of external Q lower than twice the diffraction limit are obtainable.

  10. Nonadiabatic Electron-Optical System of a Technological Gyrotron

    NASA Astrophysics Data System (ADS)

    Goldenberg, A. L.; Glyavin, M. Yu.; Leshcheva, K. A.; Manuilov, V. N.

    2017-10-01

    We consider a new version of the nonadiabatic system for the formation of a helical electron beam in a gyrotron, in which electrons acquire initial oscillatory velocities when a rectilinear beam is injected at an angle to the magnetic field. In such an electron gun, the influence of thermal electron velocities and roughness of the emitting surface can be decreased, as compared with the conventional electron-optical systems of gyrotrons. This makes it possible to increase significantly the system efficiency. The main factors affecting the quality of the formed beam are considered.

  11. Experimental Results of the EU ITER Prototype Gyrotrons

    NASA Astrophysics Data System (ADS)

    Gantenbein, G.; Albajar, F.; Alberti, S.; Avramidis, K.; Bin, W.; Bonicelli, T.; Bruschi, A.; Chelis, J.; Fanale, F.; Legrand, F.; Hermann, V.; Hogge, J.-P.; Illy, S.; Ioannidis, Z. C.; Jin, J.; Jelonnek, J.; Kasparek, W.; Latsas, G. P.; Lechte, C.; Lontano, M.; Pagonakis, I. G.; Rzesnicki, T.; Schlatter, C.; Schmid, M.; Tigelis, I. G.; Thumm, M.; Tran, M. Q.; Vomvoridis, J. L.; Zein, A.; Zisis, A.

    2017-10-01

    The European 1 MW, 170 GHz CW industrial prototype gyrotron for ECRH&CD on ITER was under test at the KIT test facility during 2016. In order to optimize the gyrotron operation, the tube was thoroughly tested in the short-pulse regime, with pulse lengths below 10 ms, for a wide range of operational parameters. The operation was extended to longer pulses with a duration of up to 180 s. In this work we present in detail the achievements and the challenges that were faced during the long-pulse experimental campaign.

  12. High power test of a wideband diplexer with short-slotted metal half mirrors for electron cyclotron current drive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saigusa, M.; Atsumi, K.; Yamaguchi, T.

    2014-02-12

    The wideband high power diplexer has been developed for combining and fast switching of high power millimeter waves generated by a dual frequency gyrotron. The actual diplexer was tested at the frequency band of 170 GHz in low power. After adjusting a resonant frequency of diplexer for the gyrotron frequency, the evacuated wideband diplexer with short-slotted metal half mirrors was tested at an incident power of about 150 kW, a pulse duration of 30 ms and a frequency band of 170.2–170.3 GHz. Any discharge damage was not observed in the diplexer.

  13. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

    NASA Astrophysics Data System (ADS)

    Louksha, O. I.; Trofimov, P. A.

    2018-04-01

    New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

  14. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  15. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  16. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  17. Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.

    2013-05-01

    The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.

  18. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  19. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  20. Real-time, T-ray imaging using a sub-terahertz gyrotron

    NASA Astrophysics Data System (ADS)

    Han, Seong-Tae; Torrezan, Antonio C.; Sirigiri, Jagadishwar R.; Shapiro, Michael A.; Temkin, Richard J.

    2012-06-01

    We demonstrated real-time, active, T-ray imaging using a 0.46 THz gyrotron capable of producing 16 W in continuous wave operation and a pyroelectric array camera with 124-by-124 pixels. An expanded Gaussian beam from the gyrotron was used to maintain the power density above the detection level of the pyroelectric array over the area of the irradiated object. Real-time imaging at a video rate of 48 Hz was achieved through the use of the built-in chopper of the camera. Potential applications include fast scanning for security purposes and for quality control of dry or frozen foods.

  1. The 113 GHz ECRH system for JET

    NASA Astrophysics Data System (ADS)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kamp, J. J.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-02-01

    An ECRH (Electron Cyclotron Resonance Heating) system has been designed for JET in the framework of the JET Enhanced-Performance project (JET-EP) under the European Fusion Development Agreement (EFDA). Due to financial constraints it has recently been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g., for ITER. The ECRH system was foreseen to comprise 6 gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma [1]. The main aim was to enable the control of neo-classical tearing modes (NTM). The paper will concentrate on: • The power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilise the gyrotron output power and to enable fast modulations up to 10 kHz. • A plug-in launcher, that is steerable in both toroidal and poloidal angle, and able to handle 8 separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER relevant feature.

  2. Mode suppression means for gyrotron cavities

    DOEpatents

    Chodorow, Marvin; Symons, Robert S.

    1983-08-09

    In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.

  3. Photonic-band-gap gyrotron amplifier with picosecond pulses.

    PubMed

    Nanni, Emilio A; Jawla, Sudheer; Lewis, Samantha M; Shapiro, Michael A; Temkin, Richard J

    2017-12-04

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03 -like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  4. Electron-Optical System of the Gyrotron Designed for Operation in the DNP-NMR Spectrometer Cryomagnet ("Gyrotrino")

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Fedotov, A. E.; Kalynov, Yu. K.; Manuilov, V. N.

    2017-08-01

    The formation and utilization of a helical electron beam are studied theoretically for a gyrotron with a very low operating voltage in a range 1.5-1.8 kV. Such a gyrotron ("gyrotrino") was earlier proposed for operation inside a magnetic system of an NMR spectrometer with a dynamic nuclear polarization upgrade. Despite the very low voltage, the optimization of the electrode shape can provide velocity and positional electron spreads not exceeding these values for conventional high-voltage gyrotrons. A very small cathode-anode separation makes the gyrotrino very sensitive to thermal expansion of the gun elements that should be compensated by movement of the cathode. Estimations for long-pulse and CW regimes of the gyrotrino operation show that the ion background significantly decreases the reduction of the beam potential and leads to an acceptable drift of the electron cyclotron frequency at the voltage front. A satisfactory thermal load on the waste-beam collector located in a strong uniform magnetic field can be achieved due to the omnidirectional heat flow regime occurring in the case of thin beam footprint.

  5. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  6. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE PAGES

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; ...

    2017-12-05

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  7. Electron Cyclotron Heating system status and upgrades on DIII-D

    DOE PAGES

    Cengher, Mirela; Lohr, John; Gorelov, Yuri; ...

    2016-06-02

    The Electron Cyclotron Heating (ECH) system on the DIII-D tokamak consists of six 110 GHz gyrotrons with corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. The system has been gradually updated, leading to increased experimental flexibility and a high system reliability of 91% in the past year. Operationally, the gyrotrons can generate up to a total of 4.8 MW of rf power for pulses up to 5 seconds in length. The maximum ECH energy injected into the DIII-D has been 16.6 MJ. The HE11 mode content is over 85% for all the lines, and the transmission coefficientmore » is better than -1.1 dB for all the transmission lines, close to the theoretical value. A new depressed collector gyrotron was recently installed and was injecting up to 640 kW of power into the plasma during 2014-2015 tokamak operations. Three dual waveguide launchers, which can steer the RF beams ±20 degrees poloidally and toroidally, were used for real-time neoclassical tearing mode control and suppression. The launchers now have increased poloidal scanning speed and beam positioning accuracy of ~±2 mm at the plasma center. A new method of in-situ calibration of the mirror angle was used in conjunction with the upgrading of the encoders and motors for the launchers. Two more gyrotrons are expected to be installed and operational in 2015-2016. The first is a repaired 110 GHz, 1 MW gyrotron that had a gun failure after more than 11 years of operation at DIII-D. The second is a newly designed depressed collector tube in the 1.5 MW class, operating at 117.5 GHz, manufactured by Communications and Power Industries (CPI). It operates in the TE20,9 mode and has achieved 1.8 MW for short pulses during factory testing. Furthermore, this gyrotron is undergoing rework to address a high voltage standoff problem.« less

  8. Design and simulation of a ~390 GHz seventh harmonic gyrotron using a large orbit electron beam

    NASA Astrophysics Data System (ADS)

    Li, Fengping; He, Wenlong; Cross, Adrian W.; Donaldson, Craig R.; Zhang, Liang; Phelps, Alan D. R.; Ronald, Kevin

    2010-04-01

    A ~390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE71 waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio α of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations ~600 W of output power at the design frequency has been demonstrated.

  9. DIII-D Electron Cyclotron Heating System Status and Upgrades

    DOE PAGES

    Cengher, Mirela; Lohr, John; Gorelov, Yuri; ...

    2016-06-23

    The DIII-D Electron Cyclotron Heating (ECH) system consists of six 110 GHz gyrotrons with corrugated coaxial 31.75 mm waveguide transmission lines and steerable launching mirrors. The system has been gradually updated, leading to increased experimental flexibility and a high system reliability of 91% in the past year. Operationally, the gyrotrons can generate up to a total of 4.8 MW of rf power for pulses up to 5 seconds. The maximum ECH energy injected into the DIII-D is 16.6 MJ. The HE1,1 mode content is over 85% for all the lines, and the transmission coefficient is better than -1.1 dB formore » all the transmission lines, close to the theoretical value. A new depressed collector gyrotron was recently installed and was injecting up to 640 kW of power into the plasma during 2014-2015 tokamak operations. Four dual waveguide launchers, which can steer the RF beams ±20 degrees poloidally and toroidally, are used for real-time neoclassical tearing mode control and suppression. The launchers now have increased poloidal scanning speed and beam positioning accuracy of ~±2 mm at the plasma center. Two more gyrotrons are expected to be installed and operational in 2015- 2016. The first is a repaired 110 GHz, 1 MW gyrotron that had a gun failure after more than 11 years of operation at DIII-D. The second is a newly designed depressed collector tube in the 1.5 MW class, operating at 117.5 GHz, manufactured by Communications and Power Industries (CPI).« less

  10. Laboratory Plasma Studies

    DTIC Science & Technology

    1989-05-23

    Intense Rela- tivistic Electron Beams S . A Compact Accelerator Powercd by the Relativistic Klystron Amplifier T. Numerical and Experimental Studies of...Research Laboratory Washingto, IX 2075.6000 NRL Memorandum Report 6419 Megavolt, Multi-Kiloamp K - Band Gyrotron Oscillator Experiment W. M. BLACK,* S . H...Ka- Band Gyrotron Oscillator Experiments with Slotted and Unslotted Cavities S . H. GOLD, MEMBER, IEEE. A. W. FLIFLET, MEMBER, IEEE, W. M. MANHEIMER

  11. Performance history and upgrades for the DIII-D gyrotron complex

    DOE PAGES

    Lohr, J.; Anderson, J. P.; Cengher, M.; ...

    2015-03-12

    The gyrotron installation on the DIII-D tokamak has been in operation at the second harmonic of the electron cyclotron resonance since the mid-1990s. Prior to that a large installation of ten 60 GHz tubes was operated at the fundamental resonance. The system has been upgraded regularly and is an everyday tool for experiments on DIII-D.

  12. Gyrotron multistage depressed collector based on E × B drift concept using azimuthal electric field. I. Basic design

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2018-03-01

    Multistage Depressed Collectors (MDCs) are widely used in vacuum tubes to regain energy from the depleted electron beam. However, the design of an MDC for gyrotrons, especially for those deployed in fusion experiments and future power plants, is not trivial. Since gyrotrons require relatively high magnetic fields, their hollow annular electron beam is magnetically confined in the collector. In such a moderate magnetic field, the MDC concept based on E × B drift is very promising. Several concrete design approaches based on the E × B concept have been proposed. This paper presents a realizable design of a two-stage depressed collector based on the E × B concept. A collector efficiency of 77% is achievable, which will be able to increase the total gyrotron efficiency from currently 50% to more than 60%. Secondary electrons reduce the efficiency only by 1%. Moreover, the collector efficiency is resilient to the change of beam current (i.e., space charge repulsion) and beam misalignment as well as magnetic field perturbations. Therefore, compared to other E × B conceptual designs, this design approach is promising and fairly feasible.

  13. Using phase locking for improving frequency stability and tunability of THz-band gyrotrons

    NASA Astrophysics Data System (ADS)

    Adilova, Asel B.; Gerasimova, Svetlana A.; Melnikova, Maria M.; Tyshkun, Alexandra V.; Rozhnev, Andrey G.; Ryskin, Nikita M.

    2018-04-01

    Medium-power (10-100 W) THz-band gyrotrons operating in a continuous-wave (CW) mode are of great importance for many applications such as NMR spectroscopy with dynamic nuclear polarization (DNP/NMR), plasma diagnostics, nondestructive inspection, stand-off detection of radioactive materials, biomedical applications, etc. For all these applications, high frequency stability and tunability within 1-2 GHz frequency range is typically required. Apart from different existing techniques for frequency stabilization, phase locking has recently attracted strong interest. In this paper, we present the results of theoretical analysis and numerical simulation for several phase locking techniques: (a) phase locking by injection of the external driving signal; (b) mutual phase locking of two coupled gyrotrons; and (c) selfinjection locking by a wave reflected from the remote load.

  14. Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J.

    2012-12-15

    Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotationalmore » temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, Michael; Ives, Robert Lawrence; Marsden, David

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range ofmore » advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.« less

  16. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneitymore » of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.« less

  17. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  18. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  19. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy.

    PubMed

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400MHz 1 H NMR, ⩾9.4T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B 1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaria, P. C., E-mail: parth.kalaria@partner.kit.edu; Avramidis, K. A.; Franck, J.

    High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power withmore » an interaction efficiency of 36% including the considerations of realistic beam parameters.« less

  1. Wide Band Gyrotron Traveling Wave Amplifier Analysis.

    DTIC Science & Technology

    1987-12-01

    phase versus frequency characteristics. It is in these aspects that the gyrotron amplifier effort has been less than successful. A C-band gyro- TWT ...proposals were made several years ago, no experimental results have yet been reported. Another concept for increasing the bandwidth of the gyro- TWT is to...including dielectric loading of the waveguide [24], helix loaded waveguide (25]-[26], and disc-loaded waveguide [26]-(27). No experimental results on

  2. Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Narendra Kumar; Singh, Udaybir; Khatun, Hasina; Kumar, Nitin; Alaria, M. K.; Raju, R. S.; Jain, P. K.; Sinha, A. K.

    2014-09-01

    In this paper, the evaluation of cathode-heater assembly of magnetron injection gun (MIG) for 42 GHz, 200 kW gyrotron is presented. The cathode-heater assembly is purchased from M/S SEMICON.The cathode-heater assembly is experimentally studied in three different conditions; in a belljar system, during vacuum processing of MIG and during MIG testing to ensure the required rise of cathode surface temperature for pre-set heater power.

  3. Startup and mode competition in a 420 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Qixiang Zhao, A.; Sheng Yu, B.; Tianzhong Zhang, C.

    2017-09-01

    In the experiments of a 420 GHz second-harmonic gyrotron, it is found that the electron beam voltage and current ranges for single mode operation of TE17.4 are slightly narrower than those in the simulation. To explain this phenomenon, the startup scenario has been investigated with special emphasis on mode competition. The calculations indicate that the decreases of the operating ranges are caused by the voltage overshoot in the startup scenario.

  4. The Use of a 28 GHz Gyrotron for EBW Startup Experiments on MAST

    NASA Astrophysics Data System (ADS)

    Caughman, J. B.; Bigelow, T. S.; Diem, S. J.; Peng, Y. K. M.; Rasmussen, D. A.; Shevchenko, V.; Hawes, J.; Lloyd, B.

    2009-11-01

    The use of electron Bernstein waves for non-inductive plasma current startup in MAST has recently been demonstrated [1]. The injection of 100 kW at 28 GHz generated plasma currents of up to 33 kA without the use of solenoid flux, and limited solenoid assist resulted in up to 55 kA of plasma current. A higher power 28 GHz gyrotron, with power levels of up to 300 kW for 0.5 seconds, is currently being commissioned. It is being used to investigate the scaling of startup current with microwave power and power profile as a function of time. Power modulation experiments are also being explored. Gyrotron performance and experimental results will be presented. [4pt] [1] V. Shevchenko, et al., Proceedings of the 15^th Joint Workshop on ECE and ECRH, Yosimite, USA, p. 68 (2009)

  5. RF Behavior of Cylindrical Cavity Based 240 GHz, 1 MW Gyrotron for Future Tokamak System

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2017-11-01

    In this paper, we present the RF behavior of conventional cylindrical interaction cavity for 240 GHz, 1 MW gyrotron for futuristic plasma fusion reactors. Very high-order TE mode is searched for this gyrotron to minimize the Ohmic wall loading at the interaction cavity. The mode selection process is carried out rigorously to analyze the mode competition and design feasibility. The cold cavity analysis and beam-wave interaction computation are carried out to finalize the cavity design. The detail parametric analyses for interaction cavity are performed in terms of mode stability, interaction efficiency and frequency. In addition, the design of triode type magnetron injection gun is also discussed. The electron beam parameters such as velocity ratio and velocity spread are optimized as per the requirement at interaction cavity. The design studies presented here confirm the realization of CW, 1 MW power at 240 GHz frequency at TE46,17 mode.

  6. Experimental results for a 1.5 MW, 110 GHz gyrotron oscillator with reduced mode competition

    NASA Astrophysics Data System (ADS)

    Choi, E. M.; Marchewka, C. D.; Mastovsky, I.; Sirigiri, J. R.; Shapiro, M. A.; Temkin, R. J.

    2006-02-01

    A new result from a 110GHz gyrotron at MIT is reported with an output power of 1.67MW and an efficiency of 42% when operated at 97kV and 41A for 3μs pulses in the TE22,6 mode. These results are a major improvement over results obtained with an earlier cavity design, which produced 1.43MW of power at 37% efficiency. These new results were obtained using a cavity with a reduced output taper angle and a lower ohmic loss when compared with the earlier cavity. The improved operation is shown experimentally to be the result of reduced mode competition from the nearby TE19,7 mode. The reduced mode competition agrees well with an analysis of the startup scenario based on starting current simulations. The present results should prove useful in planning long pulse and CW versions of the 110GHz gyrotron.

  7. Engineering and Technical Efforts to Design and Construct a 10 MW gyrotron Laboratory

    DTIC Science & Technology

    1989-01-18

    coupling coefficients are proptional to the square of the effective electric field at the beam. The effective electric field, Es, is given in...develop- ed to alleviate shorts in the body current beam diagnostic and baking constraints that previous o-ring designs have experienced. The prototype

  8. Three-dimensional simulation of triode-type MIG for 1 MW, 120 GHz gyrotron for ECRH applications

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Kumar, Narendra; Kumar, Anil; Sinha, A. K.

    2012-01-01

    In this paper, the three-dimensional simulation of triode-type magnetron injection gun (MIG) for 120 GHz, 1 MW gyrotron is presented. The operating voltages of the modulating anode and the accelerating anode are 57 kV and 80 kV respectively. The high order TE 22,6 mode is selected as the operating mode and the electron beam is launched at the first radial maxima for the fundamental beam-mode operation. The initial design is obtained by using the in-house developed code MIGSYN. The numerical simulation is performed by using the commercially available code CST-Particle Studio (PS). The simulated results of MIG obtained by using CST-PS are validated with other simulation codes EGUN and TRAK, respectively. The results on the design output parameters obtained by using these three codes are found to be in close agreement.

  9. FY92 Progress Report for the Gyrotron Backward-Wave-Oscillator Experiment

    DTIC Science & Technology

    1993-07-01

    C. SAMPLE CABLE CALIBRATION 23 D. ASYST CHANNEL SETUPS 26 E. SAMPLE MAGNET INPUT DATA DECK FOR THE GYRO-BWO 32 F. SAMPLE EGUN INPUT DATA DECK FOR THE...of the first coil of the Helmholtz pair; zero also corresponds to the diode end of the experiment). Another computer code used was the EGUN code (Ref...a short computer program was written to superimpose the two magnetic fields; DC and Helmholtz). An example of an EGUN input data file is included in

  10. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  11. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y. J.; Chu, K. R., E-mail: krchu@yahoo.com.tw; Thumm, M.

    The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at opticalmore » frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.« less

  12. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  13. Recent Upgrades and Extensions of the ASDEX Upgrade ECRH System

    NASA Astrophysics Data System (ADS)

    Wagner, Dietmar; Stober, Jörg; Leuterer, Fritz; Monaco, Francesco; Münich, Max; Schmid-Lorch, Dominik; Schütz, Harald; Zohm, Hartmut; Thumm, Manfred; Scherer, Theo; Meier, Andreas; Gantenbein, Gerd; Flamm, Jens; Kasparek, Walter; Höhnle, Hendrik; Lechte, Carsten; Litvak, Alexander G.; Denisov, Gregory G.; Chirkov, Alexey; Popov, Leonid G.; Nichiporenko, Vadim O.; Myasnikov, Vadim E.; Tai, Evgeny M.; Solyanova, Elena A.; Malygin, Sergey A.

    2011-03-01

    The multi-frequency Electron Cyclotron Heating (ECRH) system at the ASDEX Upgrade tokamak employs depressed collector gyrotrons, step-tunable in the range 105-140 GHz. The system is equipped with a fast steerable launcher allowing for remote steering of the ECRH RF beam during the plasma discharge. The gyrotrons and the mirrors are fully integrated in the discharge control system. The polarization can be controlled in a feed-forward mode. 3 Sniffer probes for millimeter wave stray radiation detection have been installed.

  14. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  15. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. D.; Chang, P. C.; Chiang, W. Y.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin withmore » a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.« less

  16. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization.

    PubMed

    Scott, Faith J; Saliba, Edward P; Albert, Brice J; Alaniva, Nicholas; Sesti, Erika L; Gao, Chukun; Golota, Natalie C; Choi, Eric J; Jagtap, Anil P; Wittmann, Johannes J; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th Sigurdsson, Snorri; Barnes, Alexander B

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources. Copyright © 2018. Published by Elsevier Inc.

  17. Overmoded W-Band Traveling Wave Tube Amplifier

    DTIC Science & Technology

    2014-11-24

    developing high power tubes for use in that frequency range. In addition , there is a window at 220 GHz which is also an area of large development for...equipment. operation. Figure 1-4 shows electronic warfare applications, which involve disrupting electronic systems with high power microwave and millimeter...requiring gyrotrons to power the high -energy beam and a large transport vehicle. In addition to being difficult to transport, it is currently incapable

  18. Naval Research Laboratory 1986 Review

    DTIC Science & Technology

    1986-01-01

    Behavior and Properties of Materials 84 Constrained- Layer Damping of Structure-Borne Sound 85 Computer-Controlled Emissivity Measurement System 87...Epitaxial Layers 128 Phase-Controlltd Gyrotron Oscillators 130 -SiC Transistor Development 133 Kinetic Inductance Microstrip Lines 136 Energetic...experiments in --- the areas of upper atmospheric, solar , and astro- ., ._ .nomical research aboard NASA, DoD, and foreign space projects. Division

  19. The anode power supply for the ECRH system on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Donghui, XIA; Fangtai, CUI; Changhai, LIU; Zhenxiong, YU; Yikun, JIN; Zhijiang, WANG; J-TEXT, Team1

    2018-01-01

    The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. The results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.

  20. Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam

    DOEpatents

    Stallard, Barry W.; Makowski, Michael A.; Byers, Jack A.

    1992-01-01

    An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k.sub..phi. component of the propagation vector of the gyrotron output beam. The second mirror has a twist reflector to linearly polarize the beam. The third mirror has a constant phase surface so the converter output is in phase.

  1. Transmission Line for 258 GHz Gyrotron DNP Spectrometry

    NASA Astrophysics Data System (ADS)

    Bogdashov, Alexandr A.; Belousov, Vladimir I.; Chirkov, Alexey V.; Denisov, Gregory G.; Korchagin, Vyacheslav V.; Kornishin, Sergey Yu.; Tai, Evgeny M.

    2011-06-01

    We describe the design and test results of the transmission line for liquid-state (LS) and solid-state (SS) DNP spectrometers with the second-harmonic 258.6 GHz gyrotron at the Institute of the Biophysical Chemistry Center of Goethe University (Frankfurt). The 13-meter line includes a mode converter, HE11 waveguides, 4 mitre bends, a variable polarizer-attenuator, directional couplers, a water-flow calorimeter and a mechanical switch. A microwave power of about 15 W was obtained in the pure HE11 mode at the spectrometer inputs.

  2. Safety and protection of 8T NbTi gyrotron magnet in persistent mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usak, P.; Kokavec, J.; Chovanec, F.

    1993-09-01

    Successful series of 5T cryomagnetic systems for additional high frequency plasma heating in Tokamaks T10 and T15, produced in Czechoslovakia during the last decade with the authors participation in magnet design and testing encouraged them to continue in further development of gyrotron magnets for further generation with operational field B[sub 0] = 8T. Approximately of the size and dimensions as was the case of previous 5T series, the 8T gyrotron magnet was designed as a part of preliminary work with preparations for ITER project. To achieve high mechanical stability of the superconducting winding, numerical stress-strain analyzes of winding structure andmore » appropriate technology of epoxy impregnation were applied. To improve winding mechanical stability, initially round [phi]1 mm varnish insulated conductor was flattened to race track'' cross section (1.25 [times] 0.75 mm[sup 2] for inner section, respectively, 1.31 [times] 0.65 mm[sup 2] for the rest of magnet). Stainless steel road ([phi]1mm) of the bandage was flattened in the same way too (up to 1.14 [times] 0.77 mm[sup 2]). Danger of creating a hot spot region has been limited by radial magnet sectioning and sections shunting by low ohmic shunts. Superconducting switch was protected by couple of antiparallel silicon diodes mounted between magnet flanges in parallel to it. High threshold voltages of diodes at 4.2K allow to run up system with relatively high speed without any limitation on sign of magnet field polarity.« less

  3. The design of an ECRH system for JET-EP

    NASA Astrophysics Data System (ADS)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-11-01

    An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g. for ITER. The ECRH system was foreseen to comprise six gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma (Verhoeven A.G.A. et al 2001 The ECRH system for JET 26th Int. Conf. on Infrared and Millimeter Waves (Toulouse, 10 14 September 2001) p 83; Verhoeven A.G.A. et al 2003 The 113 GHz ECRH system for JET Proc. 12th Joint Workshop on ECE and ECRH (13 16 May 2002) ed G. Giruzzi (Aix-en-Provence: World Scientific) pp 511 16). The main aim was to enable the control of neo-classical tearing modes. The paper will concentrate on: the power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilize the gyrotron output power and to enable fast modulations up to 10 kHz and a plug-in launcher that is steerable in both toroidal and poloidal angles and able to handle eight separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER-relevant feature.

  4. The ECRH/ECCD system on Tore Supra, a major step towards continuous operation

    NASA Astrophysics Data System (ADS)

    Lennholm, M.; Agarici, G.; Berger-By, G.; Bosia, P.; Bouquey, F.; Cellier, E.; Clary, J.; Clapit, M.; Darbos, C.; Giruzzi, G.; Jung, M.; Magne, R.; Roux, D.; Segui, J. L.; Traisnel, E.; Zou, X.

    2003-11-01

    The 118 GHz electron cyclotron heating and current drive (ECRH/ECCD) system under development in Cadarache, France, for use on the Tore Supra tokamak (Pain M. et al 1994 Proc. 18th SOFT (Karlsruhe) pp 481 4: Darbos C. et al 2000 Proc. 21st SOFT (Madrid) pp 605 9), is designed to launch 2.4 MW of power for up to 10 min into the plasma. At present two out of six gyrotrons are installed and available for injection of up to 800 kW. This paper concentrates on the generation and transmission of the ECRH/ECCD power for very long pulse operation. The power is injected into the plasma as Gaussian beams by an antenna which, using actively cooled mirrors inside the Tore Supra vacuum vessel, allows extensive control of both the poloidal and toroidal injection angles. The toroidal field on Tore Supra is normally in the range of 3.8 4 T, which for 118 GHz gives almost central deposition at the fundamental electron cyclotron resonance. A pair of actively cooled corrugated mirrors is installed in each matching optics unit at the output of each gyrotron allowing complete control of the polarization of the wave transmitted to the antenna, with the result that pure O-mode—or pure X-mode—power injection can be achieved for all injection angles. In tokamak experiments, a world record energy of 17.8 MJ has been injected into the plasma. New upgraded gyrotrons specified to produce 400 kW for up to 10 min will be introduced over the next 3 4 years.

  5. Scattering volume in the collective Thomson scattering measurement using high power gyrotron in the LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Moseev, D.; Ogasawara, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.

    2016-06-01

    High-power gyrotrons prepared for the electron cyclotron heating at 77 GHz has been used for a collective Thomson scattering (CTS) study in LHD. Due to the difficulty in removing fundamental and/or second harmonic resonance in the viewing line of sight, the subtraction of the background ECE from measured signal was performed by modulating the probe beam power from a gyrotron. The separation of the scattering component from the background has been performed successfully taking into account the response time difference between both high-energy and bulk components. The other separation was attempted by fast scanning the viewing beam across the probing beam. It is found that the intensity of the scattered spectrum corresponding to the bulk and high energy components were almost proportional to the calculated scattering volume in the relatively low density region, while appreciable background scattered component remains even in the off volume in some high density cases. The ray-trace code TRAVIS is used to estimate the change in the scattering volume due to probing and receiving beam deflection effect.

  6. Improved Design of Beam Tunnel for 42 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In gyrotron, there is the chance of generation and excitation of unwanted RF modes (parasite oscillations). These modes may interact with electron beam and consequently degrade the beam quality. This paper presents the improved design of the beam tunnel to reduce the parasite oscillations and the effect of beam tunnel geometry on the electron beam parameters. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio and the effect of beam tunnel geometry on the electron beam parameters has been analyzed by EGUN code.

  7. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  8. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu.; Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of themore » incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.« less

  9. The K{sub a}-band 10-kW continuous wave gyrotron with wide-band fast frequency sweep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glyavin, M.; Luchinin, A.; Morozkin, M.

    2012-07-15

    The dual-frequency gyrotron with fast 2% frequency sweep at about 28 GHz is designed to power an electron cyclotron resonance ion source (ECRIS). Operation with an output power of up to 10 kW in CW mode and efficiency of 20% was demonstrated at both frequencies. Frequency manipulation has a characteristic time of about 1 ms and is based on magnetic field variation with an additional low-power coil. Fast frequency sweep will supposedly increase the ion current and the average ion charge of ECRIS. The possibility of 100% power modulation is demonstrated using the same control method.

  10. Conceptual designs of E × B multistage depressed collectors for gyrotrons

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2017-04-01

    Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.

  11. ITER Baseline Scenario with ECCD Applied to Neoclassical Tearing Modes in DIII-D

    NASA Astrophysics Data System (ADS)

    Welander, A. G.; La Haye, R. J.; Lohr, J. M.; Humphreys, D. A.; Prater, R.; Paz-Soldan, C.; Kolemen, E.; Turco, F.; Olofsson, E.

    2015-11-01

    The neoclassical tearing mode (NTM) is a magnetic island that can occur on flux surfaces where the safety factor q is a rational number. Both m/n=3/2 and 2/1 NTM's degrade confinement, and the 2/1 mode often locks to the wall and disrupts the plasma. An NTM can be suppressed by depositing electron cyclotron current drive (ECCD) on the q-surface by injecting microwave beams into the plasma from gyrotrons. Recent DIII-D experiments have studied the application of ECCD/ECRH in the ITER Baseline Scenario. The power required from the gyrotrons can be significant enough to impact the fusion gain, Q in ITER. However, if gyrotron power could be minimized or turned off in ITER when not needed, this impact would be small. In fact, tearing-stable operation at low torque has been achieved previously in DIII-D without EC power. A vision for NTM control in ITER will be described together with results obtained from simulations and experiments in DIII-D under ITER like conditions. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54761.

  12. Effect of ion compensation of the beam space charge on gyrotron operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ionmore » compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.« less

  13. Status of Europe's contribution to the ITER EC system

    NASA Astrophysics Data System (ADS)

    Albajar, F.; Aiello, G.; Alberti, S.; Arnold, F.; Avramidis, K.; Bader, M.; Batista, R.; Bertizzolo, R.; Bonicelli, T.; Braunmueller, F.; Brescan, C.; Bruschi, A.; von Burg, B.; Camino, K.; Carannante, G.; Casarin, V.; Castillo, A.; Cauvard, F.; Cavalieri, C.; Cavinato, M.; Chavan, R.; Chelis, J.; Cismondi, F.; Combescure, D.; Darbos, C.; Farina, D.; Fasel, D.; Figini, L.; Gagliardi, M.; Gandini, F.; Gantenbein, G.; Gassmann, T.; Gessner, R.; Goodman, T. P.; Gracia, V.; Grossetti, G.; Heemskerk, C.; Henderson, M.; Hermann, V.; Hogge, J. P.; Illy, S.; Ioannidis, Z.; Jelonnek, J.; Jin, J.; Kasparek, W.; Koning, J.; Krause, A. S.; Landis, J. D.; Latsas, G.; Li, F.; Mazzocchi, F.; Meier, A.; Moro, A.; Nousiainen, R.; Purohit, D.; Nowak, S.; Omori, T.; van Oosterhout, J.; Pacheco, J.; Pagonakis, I.; Platania, P.; Poli, E.; Preis, A. K.; Ronden, D.; Rozier, Y.; Rzesnicki, T.; Saibene, G.; Sanchez, F.; Sartori, F.; Sauter, O.; Scherer, T.; Schlatter, C.; Schreck, S.; Serikov, A.; Siravo, U.; Sozzi, C.; Spaeh, P.; Spichiger, A.; Strauss, D.; Takahashi, K.; Thumm, M.; Tigelis, I.; Vaccaro, A.; Vomvoridis, J.; Tran, M. Q.; Weinhorst, B.

    2015-03-01

    The electron cyclotron (EC) system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter) non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO). F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS), 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows) for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europe's contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems.

  14. Injection locking of an electronic maser in the hard excitation mode

    NASA Astrophysics Data System (ADS)

    Yakunina, K. A.; Kuznetsov, A. P.; Ryskin, N. M.

    2015-11-01

    The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulations of a gyrotron with fixed Gaussian structure of the RF field.

  15. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOEpatents

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  16. High Power Microwave Tubes: Basics and Trends, Volume 2

    NASA Astrophysics Data System (ADS)

    Kesari, Vishal; Basu, B. N.

    2018-01-01

    Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.

  17. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio, from which the beam velocity spreads are estimated. A preliminary test of the mode converter shows that the radiation from the dimpled wall launcher is a Gaussian-like beam. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139- 4307. Ph. 617-253-5668; Fax 617-253-1690.)

  18. 154 GHz collective Thomson scattering in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.; Moseev, D.; Abramovic, I.

    2018-01-01

    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic.

  19. Analysis of parasitic oscillations in 42 GHz gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Singh, U.; Singh, T. P.; Sinha, A. K.

    2011-02-01

    Parasitic oscillation excitation analysis has been carried out for the 42 GHz gyrotron beam tunnel. This article presents a systematic approach for the analysis of parasitic oscillation excitation. The electron trajectory code EGUN has been used for the estimation of the electron beam parameters in the beam tunnel. The electromagnetic simulation code CST-MS has been used for the eigenmode and Q value analysis. The analysis of the parasitic oscillations has been performed for the symmetric TE modes and the first three cavity side copper rings. Four different approaches- the Q value study, the mode maxima-electron beam radius mismatching, the electron cyclotron frequency-mode excitation frequency mismatching and the backward wave interaction analysis- have been used for the parasitic oscillation analysis.

  20. Injection locking of an electronic maser in the hard excitation mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakunina, K. A.; Kuznetsov, A. P.; Ryskin, N. M.

    2015-11-15

    The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulationsmore » of a gyrotron with fixed Gaussian structure of the RF field.« less

  1. A high fusion power gain tandem mirror

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Moir, R. W.; Simonen, T. C.

    2017-10-01

    Utilizing advances in high field superconducting magnet technology and microwave gyrotrons we illustrate the possibility of a high power gain (Q = 10-20) tandem mirror fusion reactor. Inspired by recent Gas Dynamic Trap (GDT) achievements we employ a simple axisymmetric mirror magnet configuration. We consider both DT and cat. DD fuel options that utilize existing as well as future technology development. We identify subjects requiring further study such as hot electron physics, trapped particle modes and plasma startup.

  2. Simplified THz Instrumentation for High-Field DNP-NMR Spectroscopy

    PubMed Central

    Sirigiri, Jagadishwar R.

    2012-01-01

    We present an alternate simplified concept to irradiate a nuclear magnetic resonance sample with terahertz (THz) radiation for dynamic nuclear polarization (DNP) experiments using the TE01 circular waveguide mode for transmission of the THz power and the illumination of the DNP sample by either the TE01 or TE11 mode. Using finite element method and 3D electromagnetic simulations we demonstrate that the average value of the transverse magnetic field induced by the THz radiation and responsible for the DNP effect using the TE11 or the TE01 mode are comparable to that generated by the HE11 mode and a corrugated waveguide. The choice of the TE11/TE01 mode allows the use of a smooth-walled, oversized waveguide that is easier to fabricate and less expensive than a corrugated waveguide required for transmission of the HE11 mode. Also, the choice of the TE01 mode can lead to a simplification of gyrotron oscillators that operate in the TE0n mode, by employing an on-axis rippled-wall mode converter to convert the TE0n mode into the TE01 mode either inside or outside of the gyrotron tube. These novel concepts will lead to a significant simplification of the gyrotron, the transmission line and the THz coupler, which are the three main components of a DNP system. PMID:22977293

  3. Development of Theoretical and Numerical Techniques for Achieving Stability in Gyrotron Traveling-Wave Amplifiers.

    DTIC Science & Technology

    1989-02-01

    analysis methods diverge significantly. The electron current density found in Eq. 2.106 may be evaluated" as I J ...S..Y.v Yvt r t) (2.107) 0 ZO where 10...will be specified by the geometry and mode under consider- ation. It was noted earlier that the point of divergence between the two principle...techniques lies in the methods used to calculate the current density. Actually, the divergence is present only in theory. Theoreti- cally and numerically, Eq

  4. Gyrotron whispering gallery mode coupler with a mode conversion reflector for exciting a circular symmetric uniform phase RF beam in a corrugated waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Jeffrey M.

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less

  5. Design of a double-anode magnetron-injection gun for the W-band gyrotron

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho

    2015-07-01

    A double-anode magnetron-injection gun (MIG) was designed. The MIG is for a W-band 10-kW gyrotron. Analytic equations based on adiabatic theory and angular momentum conservation were used to examine the initial design parameters such as the cathode angle, and the radius of the beam emitting surface. The MIG's performances were predicted by using an electron trajectory code, the EGUN code. The beam spread of the axial velocity, Δvz/vz, obtained from the EGUN code was observed to be 1.34% at α = 1.3. The cathode edge emission and the thermal effect were modeled. The cathode edge emission was found to have a major effect on the velocity spread. The electron beam's quality was significantly improved by affixing non-emissive cylinders to the cathode.

  6. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-07-01

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio (α) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant α will be discussed in depth.

  8. Design of the high voltage isolation transmission module with low delay for ECRH system on J-TEXT

    NASA Astrophysics Data System (ADS)

    Haiyan, MA; Donghui, XIA; Zhijiang, WANG; Fangtai, CUI; Zhenxiong, YU; Yikun, JIN; Changhai, LIU

    2018-02-01

    As a flexible auxiliary heating method, the electron cyclotron resonance heating (ECRH) has been widely used in many tokamaks and also will be applied for the J-TEXT tokamak. To meet requirements of protection and fault analysis for the ECRH system on J-TEXT, signals of gyrotrons such as the cathode voltage and current, the anode voltage and current, etc should be transmitted to the control and data acquisition system. Considering the high voltage environment of gyrotrons, isolation transmission module based on FPGA and optical fiber communication has been designed and tested. The test results indicate that the designed module has strong anti-noise ability, low error rate and high transmission speed. The delay of the module is no more than 5 μs which can fulfill the requirements.

  9. NTM stabilization by alternating O-point EC current drive using a high-power diplexer

    NASA Astrophysics Data System (ADS)

    Kasparek, W.; Doelman, N.; Stober, J.; Maraschek, M.; Zohm, H.; Monaco, F.; Eixenberger, H.; Klop, W.; Wagner, D.; Schubert, M.; Schütz, H.; Grünwald, G.; Plaum, B.; Munk, R.; Schlüter, K. H.; ASDEX Upgrade Team

    2016-12-01

    At the tokamak ASDEX Upgrade, experiments to stabilize neoclassical tearing modes (NTMs) by electron cyclotron (EC) heating and current drive in the O-points of the magnetic islands were performed. For the first time, injection into the O-points of the revolving islands was performed via a fast directional switch, which toggled the EC power between two launchers synchronously to the island rotation. The switching was performed by a resonant diplexer employing a sharp resonance in the transfer function, and a small frequency modulation of the feeding gyrotron around the slope of the resonance. Thus, toggling of the power between the two outputs of the diplexer connected to two articulating launchers was possible. Phasing and control of the modulation were performed via a set of Mirnov coils and appropriate signal processing. In the paper, technological issues, the design of the diplexer, the tracking of the diplexer resonance to the gyrotron frequency, the generation and processing of control signals for the gyrotron, and the typical performance concerning switching contrast and efficiency are discussed. The plasma scenario is described, and plasma experiments are presented, where the launchers scanned the region of the resonant surface continuously and also where the launchers were at a fixed position near to the q  =  1.5-surface. In the second case, complete stabilization of a 3/2 NTM could be reached. These experiments are also seen as a technical demonstration for the applicability of diplexers in large-scale ECRH systems.

  10. Numerical Design of Megawatt Gyrotron with 120 GHz Frequency and 50% Efficiency for Plasma Fusion Application

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Kumar, Anil; Bhattacharya, Ranajoy; Singh, T. P.; Sinha, A. K.

    2013-02-01

    The design of 120 GHz, 1 MW gyrotron for plasma fusion application is presented in this paper. The mode selection is carried out considering the aim of minimum mode competition, minimum cavity wall heating, etc. On the basis of the selected operating mode, the interaction cavity design and beam-wave interaction computation are carried out by using the PIC code. The design of triode type Magnetron Injection Gun (MIG) is also presented. Trajectory code EGUN, synthesis code MIGSYN and data analysis code MIGANS are used in the MIG designing. Further, the design of MIG is also validated by using the another trajectory code TRAK. The design results of beam dumping system (collector) and RF window are also presented. Depressed collector is designed to enhance the overall tube efficiency. The design study confirms >1 MW output power with tube efficiency around 50% (with collector efficiency).

  11. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    PubMed

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

  12. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260GHz.

    PubMed

    Yoon, Dongyoung; Soundararajan, Murari; Cuanillon, Philippe; Braunmueller, Falk; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-01-01

    An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260GHz at power levels less than 1W. The sweep rate of frequency modulation can reach 14kHz, and its amplitude is fixed at 50MHz. In water/glycerol glassy ice doped with 40mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15K, thus giving a DNP enhancement of about 80. By employing λ/4 and λ/8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.

  14. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  15. Study on the Before Cavity Interaction in a Second Harmonic Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on before cavity interaction (BCI) in a 28 GHz second harmonic (SH) gryotron for industrial applications has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. On the contrary to the after cavity interaction (ACI), i.e. beam wave interaction in the non-linear uptaper after the cavity, which has been widely investigated, the BCI, i.e. beam wave interaction in the non-linear downtaper before the cavity connected to the beam tunnel with an entrance, is less noticed and discussed. Usually the BCI might be considered easy to be eliminated. However, this is not always the case. As the SH gyrotron had been designed for SH TE12 mode operation, the first harmonic (FH) plays the main competition. In the 3-D CFDTD PIC simulations, a port boundary has been employed for the gyro-beam entrance of the gyrotron cavity instead of a metallic short one which is not reflecting a realistic situation as an FH backward wave oscillation (BWO) is competing with the desired SH generation. A numerical instability has been found and identified as a failure of the entrance port boundary caused by an evanescent wave or mode conversion. This indicates the entrance and downtaper are not fully cut-off for some oscillations. A further study shows that the undesired oscillation is the FH TE11 BWO mode concentrated around the beam tunnel entrance and downtaper. A mitigation strategy has been found to suppress this undesired BCI and avoid possible damage to the gun region.

  16. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology, STTR Fast Track Project, Phase I Final Report-Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This report covers the technical work in Phase I of this DOE-Nuclear Program STTR Fast Track project. All key tasks were successfully performed, new tasks were added to utilize DOD-AFRL’s 95 GigaHertz (GHz) gyrotron in Phase II, while other lesser tasks were left for Phase II efforts or were requested to be made optional. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future testing in Phase II. This work built upon a prior DOE project DE-EE0005504 that developed the basic waveguide setup, process and instruments. Inmore » this project we were investigating the use of MMW to form rock melt and steel plugs in deep wells to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This technology also has potential for deep well drilling for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled. This allows for higher levels of safety and protection of the environment during deep drilling operations. The larger purpose of this project was to find answers to key questions in progressing MMW technology for these applications. Phase I of this project continued bench testing using the MIT 10 kilo-Watt (kW), 28 GHz frequency laboratory gyrotron, literature searches, planning and design of equipment for Phase II efforts. Furnace melting and rock testing (Tasks 4 and 5) were deferred to Phase II due to lack of concurrent availability of the furnace and personnel at MIT. That delay and lower temperature furnace (limited to 1650oC) caused rethinking of Task 4 to utilize coordinated rock selection with the DOD testing in Phase II. The high pressure and high power window design work (moved to Phase I Task 3 from Phase II Task 20) and Additive materials and methods (Tasks 7 & 8) performed in Phase I may become patentable and thus little detail can be provided in this public report. A version of that new high pressure, high MMW power window may be built for possible Phase II testing at the DOD site. Most significantly, additional tasks were added for planning the use of the Department of Defense, Air Force Research Laboratory’s (DOD-AFRL’s) System 0 gyrotron in Phase II. Specifically added and accomplished were multiple discussions on DOD and DOE-MIT-Impact goals, timing between ongoing DOD testing, outlining the required equipment and instruments for rock testing, and terms for an agreement. That addition required a visit to Kirtland AFB in Albuquerque, New Mexico to talk to key DOD-AFRL personnel and management. A DOD-Impact-MIT charter (i.e., contract) is now being circulated for signatures. Also added task to Phase I, MIT designed the critical path reflected power isolator screen for Phase II testing. To ensure compatibility, that design was computer simulated for the expected heat load distribution and the resulting temperature increase. Advancing the MMW testing up to the optimum 95 GHz and 100kW (5X higher) power levels was stated in the original proposal to be a key required development step for this technology to achieve prototype drilling, lining, and rock melting/ vaporization for creating sealing plugs.« less

  17. Experimental results of the 140 GHz, 1 MW long-pulse gyrotron for W7-X

    NASA Astrophysics Data System (ADS)

    Koppenburg, K.; Arnold, A.; Borie, E.; Dammertz, G.; Giguet, E.; Heidinger, R.; Illy, S.; Kuntze, M.; Le Cloarec, G.; Legrand, F.; Leonhardt, W.; Lievin, C.; Neffe, G.; Piosczyk, B.; Schmid, M.; Thumm, M.

    2003-02-01

    Gyrotrons at high frequency with high output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X now under construction at IPP Greifswald, Germany, a 10 MW ECRH system is foreseen. A 1 MW, 140 GHz long-pulse gyrotron has been designed and a pre-prototype (Maquette) has been constructed and tested in an European collaboration between FZK Karlsruhe, CRPP Lausanne, IPF Suttgart, IPP Greifswald, CEA Cadarache and TED Vélizy [1]. The cylindrical cavity is designed for operating in the TE28,8 mode. It is a standard tapered cavity with linear input downtaper and a non-linear uptaper. The diameter of the cylindrical part is 40.96 mm. The transitions between tapers and straight section are smoothly rounded to avoid mode conversion. The TE28,8-cavity mode is transformed to a Gaussian TEM0,0 output mode by a mode converter consisting of a rippled-wall waveguide launcher followed by a three mirror system. The output window uses a single, edge cooled CVD-diamond disk with an outer diameter of 106 mm, a window aperture of 88 mm and a thickness of 1.8 mm corresponding to four half wavelengths. The collector is at ground potential, and a depression voltage for energy recovery can be applied to the cavity and to the first two mirrors. Additional normal-conducting coils are employed to the collector in order to produce an axial magnetic field for sweeping the electron beam with a frequency of 7 Hz. A temperature limited magnetron injection gun without intermediate anode ( diode type ) is used. In short pulse operation at the design current of 40 A an output power of 1 MW could be achieved for an accelerating voltage of 82 kV without depression voltage and with a depression voltage of 25 kV an output power of 1.15 MW at an accelerating voltage of 84 kV has been measured. For these values an efficiency of 49% was obtained. At constant accelerating voltages, the output power did not change up to depression voltages of 33 kV. The output beam of the gyrotron is injected into an RF-tight microwave chamber which is equipped with two water-cooled mirrors directing the beam towards the 1 MW water load. The second mirror inside the microwave chamber contains a directional output coupler formed by a row of holes in the mirror surface. A diode detector is connected to the directional coupler and the forward power can be determined once the signal has been calibrated. This was performed by calorimetric measurement of the RF wave in short-pulse measurements. The mode purity of the Gaussian beam was measured by an IR camera and a thin dielectric target plate placed at different positions across the RF beam. The measured beam distribution agrees very well with the theoretical predictions. After some problems with the RF load, long-pulse operation was performed: The power measurements were done by the signal of the diode detector placed at the second mirror. The measured output power of the calorimetric RF-load normally shows values reduced by about 20%. Output powers of 1 MW could be achieved for 10 s, and an energy as high as 90 MJ per pulse has been produced with an output power of 0.64 MW. The pulse lengths were mainly determined by the preset values, and due to lack of experimental time no attempt was made to increase the pulse length. Only for a 100 s pulse with 0.74 MW output power, a limitation was found due to a pressure increase beyond about 10-7mbar. The gyrotron was sent back to the manufacturer Thales Electron Devices for a visual inspection, and an improved prototype was built and delivered to Forschungszentrum Karlsruhe in the middle of April 2002.

  18. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplifymore » the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.« less

  19. Silicon Oil DC200(R)5CST as AN Alternative Coolant for Cvd Diamond Windows

    NASA Astrophysics Data System (ADS)

    Vaccaro, A.; Aiello, G.; Meier, A.; Schere, T.; Schreck, S.; Spaeh, P.; Strauss, D.; Gantenbein, G.

    2011-02-01

    The production of high power mm-wave radiation is a key technology in large fusion devices, since it is required for localized plasma heating and current drive. Transmission windows are necessary to keep the vacuum in the gyrotron system and also act as tritium barriers. With its excellent optical, thermal and mechanical properties, synthetic CVD (Chemical Vapor Deposition) diamond is the state of the art material for the cw transmission of the mm-wave beams produced by high power gyrotrons. The gyrotrons foreseen for the W7-X stellarator are designed for cw operation with 1 MW output power at 140 GHz. The output window unit is designed by TED (Thales Electron Devices, France) using a single edge circumferentially cooled CVD-diamond disc with an aperture of 88 mm. The window unit is cooled by de-ionized water which is considered as chemical aggressive and might cause corrosion in particular at the brazing. The use of a different coolant such as silicon oil could prevent this issue. The cooling circuit has been simulated by steady-state CFD analysis. A total power generation of 1 kW (RF transmission losses) with pure Gaussian distribution has been assumed for the diamond disc. The performance of both water and the industrial silicon oil DC200(R) have been investigated and compared with a focus on the temperature distribution on the disc, the pressure drop across the cooling path and the heat flux distribution. Although the silicon oil has a higher viscosity (~x5), lower heat capacity (~x1/2) and lower thermal conductivity (~x1/3), it has proven to be a good candidate as alternative to water.

  20. International Conference on Infrared and Millimeter Waves, 18th, Univ. of Essex, Colchester, United Kingdom, Sept. 6-10, 1993, Conference Digest

    NASA Astrophysics Data System (ADS)

    Birch, James R.; Parker, Terence J.

    Papers presented in these proceedings are grouped under the topics of FEL, detectors and sources, gas lasers, spectroscopy, windows for high-power applications, scattering, plasma diagnostics, waveguides, gyrotron, quasi-optical components, biological effects of IR and millimeter waves, and astronomical and atmospheric systems. Particular attention is given to the ENEA compact millimeter wave FEL, excitonic detectors of IR and submm waves, identification of submm CD2O lines, a two-frequency quasi-optical radiospectrometer for substance investigations, the effect of window tolerances on gyrotron performance, and analysis of scattering of the open resonator field from the cavity-backed aperture. Other papers are on submm laser interferometer-polarimeter for plasma diagnostics, the characteristics of the closed circular groove guide, a kW sixth-harmonic gyrofrequency multiplier, rugged FIR bandpass filters, millimeter waves and quantum medicines, and a horizontal atmospheric temperature sounder based on the 60-GHz oxygen absorptions.

  1. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, C. L.; Lian, Y. H.; Cheng, N. H.

    2012-11-15

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less

  2. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation.

    PubMed

    Razin, S; Zorin, V; Izotov, I; Sidorov, A; Skalyga, V

    2014-02-01

    We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80-100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2-1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.

  3. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razin, S., E-mail: sevraz@appl.sci-nnov.ru; Zorin, V.; Izotov, I.

    2014-02-15

    We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80–100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2–1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded thatmore » the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.« less

  4. Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam

    DOEpatents

    Stallard, B.W.; Makowski, M.A.; Byers, J.A.

    1992-05-19

    An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam is described. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k[sub [phi

  5. High Peak Power Ka-Band Gyrotron Oscillator Experiments with Slotted and Unslotted Cavities.

    DTIC Science & Technology

    1987-11-10

    cylindrical graphite cathode by explosive plasma formation. (In order to optimize the compression ratio for these experiments, a graphite cathode was employed...48106 Attn: S.B. Segall I copy Lawrence Livermore National Laboratory P.O. Box 808 Livermore, California 94550 Attn: Dr. D. Prosnitz 1 copy Dr. T.J

  6. Megavolt, Multi-Kiloamp Ka-Band Gyrotron Oscillator Experiment

    DTIC Science & Technology

    1989-03-15

    pulseline accelerator with 20 K2 output impedance and 55 nsec voltage pulse was used to generate a multi-kiloamp annular electron beam by explosive plasma...Lawrence Livermore National Laboratory P.O. Box 808 Livermore, California 94550 Attn: Dr. D. Prosnitz 1 copy Dr. T.J. Orzechowski 1 copy Dr. J. Chase 1

  7. Non-Uniform Cathode Emission Studies of a MIG Gun

    NASA Astrophysics Data System (ADS)

    Marchewka, C. D.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.

    2004-11-01

    We present the initial results of the modeling of the effect of emission non-uniformity in 96 kV, 40 A Magnetron Injection Gun (MIG) of a 1.5 MW 110 GHz gyrotron using a 3D gun simulation code. The azimuthal emission nonuniformity can lead to increased mode competition and an overall decreased efficiency of the device [1]. The electron beam is modeled from the cathode to a downstream position where the velocity spread saturates using the AMAZE 3D suite of codes. After bench marking the results of the 3D code with 2D codes such as TRAK2D and EGUN, the emitter was modified to simulate asymmetric emission from the cathode to gain an understanding into the effects of inhomogeneous beam current density on the velocity spread and pitch factor of the electron beam. [1] G. S. Nusinovich, A.N. Vlasov, M. Botton, T. M. Antonsen, Jr., S. Cauffman, K. Felch, ``Effect of the azimuthal inhomogeneity of electron emission on gyrotron operation,'' Phys. Plasmas, vol. 8, no. 7, pp. 3473-3479, 2001

  8. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-09-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  9. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    NASA Astrophysics Data System (ADS)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  10. Advanced ECCD based NTM control in closed-loop operation at ASDEX Upgrade (AUG)

    NASA Astrophysics Data System (ADS)

    Reich, Matthias; Barrera-Orte, Laura; Behler, Karl; Bock, Alexander; Giannone, Louis; Maraschek, Marc; Poli, Emanuele; Rapson, Chris; Stober, Jörg; Treutterer, Wolfgang

    2012-10-01

    In high performance plasmas, Neoclassical Tearing Modes (NTMs) are regularly observed at reactor-grade beta-values. They limit the achievable normalized beta, which is undesirable because fusion performance scales as beta squared. The method of choice for controlling and avoiding NTMs at AUG is the deposition of ECCD inside the magnetic island for stabilization in real-time (rt). Our approach to tackling such complex control problems using real-time diagnostics allows rigorous optimization of all subsystems. Recent progress in rt-equilibrium reconstruction (< 3.5 ms), rt-localization of NTMs (< 8 ms) and rt beam tracing (< 25 ms) allows closed-loop feedback operation using multiple movable mirrors as the ECCD deposition actuator. The rt-equilibrium uses function parametrization or a fast Grad-Shafranov solver with an option to include rt-MSE measurements. The island localization is based on a correlation of ECE and filtered Mirnov signals. The rt beam-tracing module provides deposition locations and their derivative versus actuator position of multiple gyrotrons. The ``MHD controller'' finally drives the actuators. Results utilizing closed-loop operation with multiple gyrotrons and their effect on NTMs are shown.

  11. A Dual-Beam Irradiation Facility for a Novel Hybrid Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Sabchevski, Svilen Petrov; Idehara, Toshitaka; Ishiyama, Shintaro; Miyoshi, Norio; Tatsukawa, Toshiaki

    2013-01-01

    In this paper we present the main ideas and discuss both the feasibility and the conceptual design of a novel hybrid technique and equipment for an experimental cancer therapy based on the simultaneous and/or sequential application of two beams, namely a beam of neutrons and a CW (continuous wave) or intermittent sub-terahertz wave beam produced by a gyrotron for treatment of cancerous tumors. The main simulation tools for the development of the computer aided design (CAD) of the prospective experimental facility for clinical trials and study of such new medical technology are briefly reviewed. Some tasks for a further continuation of this feasibility analysis are formulated as well.

  12. Technology for satellite power conversion

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Summers, C.; Gallagher, J. J.

    1984-01-01

    Techniques for satellite electromagnetic energy transfer and power conversion at millimeter and infrared wavelengths are discussed. The design requirements for rectenna receiving elements are reviewed for both coherent radiation sources and Earth thermal infrared emission. Potential power transmitters including gyrotrons, free electron lasers, and CO2 lasers are assessed along with the rectification properties of metal-oxide metal diode power converters.

  13. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOEpatents

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  14. High Peak Power Ka-Band Gyrotron Oscillator Experiment.

    DTIC Science & Technology

    1987-09-21

    edge of a 3.44-cm- diam. cylindrical carbon cathode by means of explosive plasma formation. The diode is immersed in the field of the main solenoidal... Prosnitz Dr. T.J. Orzechowski C ’ ’ Dr. J. Thase 56 ’V Los Alamos Scientific Laboratory P.O. Box 1663, AT5-827 Los Alamos, New Mexico 87545 Attn

  15. Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caplan, M.; Olstad, R.; Jory, H.

    2017-09-08

    This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this projectmore » uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)« less

  16. International Conference on Infrared and Millimeter Waves, 16th, Ecole Polytechnique Federale de Lausanne, Switzerland, Aug. 26-30, 1991, Conference Digest

    NASA Astrophysics Data System (ADS)

    Siegrist, M. R.; Tran, T. M.; Tran, M. Q.

    1991-10-01

    Consideration is given to millimeter waves (MMW), submillimeter waves, materials properties, and gyrotrons/FEL. Particular attention is given to MMW sources, detectors and mixers; MMW systems, devices and antennas; guided propagation; high Tc superconductors; semiconductors; MMW astronomy and atmospheric physics; lasers, submillimeter devices, and plasma diagnostics; and submillimeter detectors.

  17. Synthesis of oxide and nitride ceramics in high-power gyrotron discharge

    NASA Astrophysics Data System (ADS)

    Akhmadullina, N. S.; Skvortsova, N. N.; Obraztsova, E. A.; Stepakhin, V. D.; Konchekov, E. M.; Kargin, Yu F.; Shishilov, O. N.

    2017-12-01

    Synthesis of oxides, nitrides, and oxynitrides of silicon and aluminium by a pulsed microwave discharge in the mixtures of metal and dielectric powders is described. The microwave pulses were generated by high-power gyrotron (frequency 75 GHz, power up to 550 kW, pulse duration from 0.1 to 15ms). SiO2 + β-Si3N4 (1:1 by molar) and α-Al2O3 + AlN (2:1 by molar) mixtures with Mg (1 and 5wt%) were treated in air with microwave pulses with power of 250÷400 kW and duration of 2÷8 ms. It was found that the discharge cannot be initiated for both mixtures in absence of Mg at any pulse power and duration. When 1% of Mg was added, the discharge was observed for both mixtures under 8 ms pulses of 400 kW; however, the amounts of materials produced were not enough for analysis. With 5% of Mg the discharge was observed for both mixtures under 8 ms pulses of 350 kW, and products of the plasma-chemical processes in the Al2O3 + AlN mixture were analyzed.

  18. Investigation on heat transfer analysis and its effect on a multi-mode, beam-wave interaction for a 140 GHz, MW-class gyrotron

    NASA Astrophysics Data System (ADS)

    Liu, Qiao; Liu, Yinghui; Chen, Zhaowei; Niu, Xinjian; Li, Hongfu; Xu, Jianhua

    2018-04-01

    The interaction cavity of a 140 GHz, 1 MW continuous wave gyrotron developed in UESTC will be loaded with a very large heat load in the inner surface during operation. In order to reduce the heat, the axial wedge grooves of the outside surface of the cavity are considered and employed as the heat radiation structure. Thermoanalysis and structural analysis were discussed in detail to obtain the effects of heat on the cavity. In thermoanalysis, the external coolant-flow rates ranging from 20 L/min to 50 L/min were considered, and the distribution of wall loading was loaded as the heat flux source. In structural analysis, the cavity's deformation caused by the loads of heat and pressure was calculated. Compared with a non-deformed cavity, the effects of deformation on the performance of a cavity were discussed. For a cold-cavity, the results show that the quality factor would be reduced by 72, 89, 99 and 171 at the flow rates of 50 L/min, 40 L/min, 30 L/min and 20 L/min, respectively. Correspondingly, the cold-cavity frequencies would be decreased by 0.13 GHz, 0.15 GHz, 0.19 GHz and 0.38 GHz, respectively. For a hot-cavity, the results demonstrate that the output port frequencies would be dropped down, but the offset would be gradually decreased with increasing coolant-flow rate. Meanwhile, the output powers would be reduced dramatically with decreasing coolant-flow rate. In addition, when the coolant-flow rate reaches 40 L/min, the output power and the frequency are just reduced by 30 kW and 0.151 GHz, respectively.

  19. Overview of KSTAR initial operation

    NASA Astrophysics Data System (ADS)

    Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Ahn, J. W.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chang, C. S.; Chang, D. H.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Cho, M. H.; Choe, W.; Choi, J. H.; Chu, Y.; Chung, K. S.; Diamond, P.; Do, H. J.; Eidietis, N.; England, A. C.; Grisham, L.; Hahm, T. S.; Hahn, S. H.; Han, W. S.; Hatae, T.; Hillis, D.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Humphrey, D.; Hwang, Y. S.; Hyatt, A.; In, Y. K.; Jackson, G. L.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jeong, S. H.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kawahata, K.; Kim, C. H.; Kim, D. H.; Kim, Hee-Su; Kim, H. S.; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. M.; Kim, K. P.; Kim, M. K.; Kim, S. H.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. K.; Kim, Y. O.; Ko, W. H.; Kogi, Y.; Kong, J. D.; Kubo, S.; Kumazawa, R.; Kwak, S. W.; Kwon, J. M.; Kwon, O. J.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. H.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. C.; Lee, W. L.; Leur, J.; Lim, D. S.; Lohr, J.; Mase, A.; Mueller, D.; Moon, K. M.; Mutoh, T.; Na, Y. S.; Nagayama, Y.; Nam, Y. U.; Namkung, W.; Oh, B. H.; Oh, S. G.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H.; Park, H. T.; Park, J. K.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Park, Y. S.; Patterson, B.; Sabbagh, S.; Saito, K.; Sajjad, S.; Sakamoto, K.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Shi, Y.; Song, N. H.; Sun, H. J.; Terzolo, L.; Walker, M.; Wang, S. J.; Watanabe, K.; Welander, A. S.; Woo, H. J.; Woo, I. S.; Yagi, M.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, G. S.; Yoon, S. W.; KSTAR Team

    2011-09-01

    Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.

  20. Research on long pulse ECRH system of EAST in support of ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaojie, E-mail: xjiew@ipp.ac.cn; Liu, Fukun; Shan, Jiafang

    2015-12-10

    Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions ofmore » the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam’s launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER devices, the installation and experience of EAST ECRH system may provide valuable data for the ITER.« less

  1. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, Amarjit; Ives, R. Lawrence; Schumacher, Richard V.; Mizuhara, Yosuke M.

    1998-01-01

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting.

  2. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, A.; Ives, R.L.; Schumacher, R.V.; Mizuhara, Y.M.

    1998-07-14

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting. 9 figs.

  3. Research on Gyrotrons.

    DTIC Science & Technology

    1985-04-15

    pace. The advent of the intense pulsed relativistic electron beam renewed the interest in the cyclotron maser mechanism as a source of high power...Acknowledgement The author would like to express his gratitude to his advisor , Professor Jay L. Hirshfield, for the indefatigable scientific discussion which...YALE UNIVERSIT N FINAL REPORT To The Office of Naval Research [! Lf For Contract N00014-80-C-0075 y b IApplied Physics Section Yale University, New

  4. Free-Space Power Transmission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA Lewis Research Center organized a workshop on technology availability for free-space power transmission (beam power). This document contains a collection of viewgraph presentations that describes the effort by academia, industry, and the national laboratories in the area of high-frequency, high-power technology applicable to free-space power transmission systems. The areas covered were rectenna technology, high-frequency, high-power generation (gyrotrons, solar pumped lasers, and free electron lasers), and antenna technology.

  5. Gyrotron Gun Study Report,

    DTIC Science & Technology

    1981-09-18

    of bern current to space-charge limited Langmuir current - Cathode surface current density S 2 a Cylindrical diode geometry function (tabulated in...design factor . t -13- " r =J... .. ::!, qm ! . ... ... - . , m- d nc- Cd (3) lsically, this equation arises from the recognition that the gap...S. Beam Current as a Fraction of the Limiting Langmuir Current (o/IL) Equation 5 in Table I is basically intended to provide a measure of the C

  6. Design of a 10 GHz, 10 MW Gyrotron.

    DTIC Science & Technology

    1985-11-27

    beam, which can be located close to the cavity wall, reducing space charge effects . In addition, high current density beams can be generated (6) with the...calculates electron trajectories within potential boundaries, including the effects of beam space charge , and is fully relativistic. Modeling the... space charge would cause the bottom electrons to have too little perpendicular energy, and vice versa, as illustrated in Figures 11 and 12. The

  7. Super-radiant effects in electron oscillators with near-cutoff operating waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandurkin, I. V.; Savilov, A. V.; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod

    2015-06-15

    Super-radiant regimes in electron oscillators can be attractive for applications requiring powerful and relatively short pulses of microwave radiation, since the peak power of the super-radiant pulse can exceed the power of the operating electron beam. In this paper, possibilities for realization of the super-radiant regimes are studied in various schemes of electron oscillators based on excitation of near-cutoff operating waves (gyrotron and orotron)

  8. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system. © 2011 American Institute of Physics

  9. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  10. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Guo, Y. W.; Kao, B. H.

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competingmore » modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.« less

  11. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. High current proton beams production at Simple Mirror Ion Source 37.

    PubMed

    Skalyga, V; Izotov, I; Razin, S; Sidorov, A; Golubev, S; Kalvas, T; Koivisto, H; Tarvainen, O

    2014-02-01

    This paper presents the latest results of high current proton beam production at Simple Mirror Ion Source (SMIS) 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup, the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. Latest experiments at SMIS 37 were performed using a single-aperture two-electrode extraction system. Proton beams with currents up to 450 mA at high voltages below 45 kV were obtained. The maximum beam current density was measured to be 600 mA/cm(2). A possibility of further improvement through the development of an advanced extraction system is discussed.

  13. Mode Competition in the Quasioptical Gyrotron

    DTIC Science & Technology

    1990-05-30

    dvid Jd n J C nH ]d. v1 dCl v-1 J dC4 vm M Jd ;v M_ &(vl- v1 ) 6(vn - vn °) & r- vm ). (B18) It is clear from (B16)-( BI8 ) that r, G and D depend...AZ 85721 Attn: Dr. Willis E. Lamb, Jr. 1 copy Physical Sciences, Inc. 635 Slaters Lane #G101 Alexandria, VA 22314-1112 ATTN: Dr. M.E. Read 1 copy

  14. A Submillimeter Wavelength Space-Based Imaging Radar.

    DTIC Science & Technology

    1988-05-31

    4th Intl. Symposium on Gyrotrons and FEL’s; Bejing , China . June 1987. 10. K. Kreischer and R. Temkin, Phvs. Rev. Lett. 59, 547 (1987). 11. S. Spira...a concern exists about space-based opera - S tion. In the space environment, these voltages could cause breakdown and arcing unless the system is...emission. This experiment will operaic in a TE 61 mode, will use a Bragg resonator to provide longitudinal mode selectivity, and is designed to

  15. Design and Implementation of a 200kW, 28GHz gyrotron system for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Knowlton, S. F.; Ennis, D. A.; Maurer, D. A.; Bigelow, T.

    2016-10-01

    The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T). It can generate its highly configurable confining magnetic fields solely with external coils, but typically operates with up to 80 kA of ohmically-generated plasma current for heating. New studies of edge plasma transport in stellarator geometries will benefit from CTH operating as a pure torsatron with a high temperature edge plasma. Accordingly, a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH is being installed to supplement the existing 15 kW klystron system operating at the fundamental frequency; the latter will be used to initially generate the plasma. Ray-tracing calculations that guide the selection of launching position, antenna focal length, and beam-steering characteristics of the ECRH have been performed with the TRAVIS code [ 1 ] . The calculated absorption is up to 95.7% for vertically propagating rays, however, the absorption is more sensitive to magnetic field variations than for a side launch where the field gradient is tokamak-like. The design of the waveguide path and components for the top-launch scenario will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  16. Commissioning a Megawatt-class Gyrotron with Collector Potential Depression

    NASA Astrophysics Data System (ADS)

    Lohr, J.; Cengher, M.; Gorelov, Y. A.; Ponce, D.; Prater, R.

    2013-10-01

    A 110 GHz depressed collector gyrotron has been installed on the DIII-D tokamak. The commissioning process rapidly achieved operation at full parameters, 45 A and 94 kV total voltage, with 29 kV depression. Although short pulse, 2 ms, factory testing demonstrated 1.2 MW at 41% electrical efficiency, long pulse testing at DIII-D achieved only 33% efficiency at full power parameters, for pulse lengths up to 10 s. Maximum generated power was ~950 kW, considerably below the 1.2 MW target. During attempts to increase the power at 5 s pulse length, it was noted that the collector cooling water was boiling. This led to the discovery that 14 of the 160 cooling channels in the collector had been blocked by braze material during manufacture of the tube. The locations of blocked channels were identified using infrared imaging of the outside of the collector during rapid changes in the cooling water temperature. Despite these difficulties, the rf beam itself was of very high quality and the stray rf found calorimetrically in the Matching Optics Unit, which couples the Gaussian rf beam to the waveguide, was only 2% of the generated power, about half that of our previous best quality high power beam. Details of the power measurements and collector observations will be presented. Work supported by the US DOE under DE-FC02-04ER54698.

  17. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  18. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  19. Competition Between Electromagnetic Modes in a Free-Electron Maser

    DTIC Science & Technology

    1994-02-28

    electron perpendicular momentum familiar from gyrotron theory 111). The electron mass is me, initial electron velocity perpendicular and parallel to the...are Q Q2 of zeroth order (-1). Similarly, 48 Y tqfia IIOP --T-V I V s_*/ U- s sI J(93~+ I(*JQL4 8aq 5 Using matrix notation, we can write (i) = (C...disks were in turn electron beam welded to stainless steel flanges. While Kovar was needed to provide a good brazing interface, the mass of the material

  20. Optimization of a triode-type cusp electron gun for a W-band gyro-TWA

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Donaldson, Craig R.; He, Wenlong

    2018-04-01

    A triode-type cusp electron gun was optimized through numerical simulations for a W-band gyrotron traveling wave amplifier. An additional electrode in front of the cathode could switch the electron beam on and off instantly when its electric potential is properly biased. An optimal electron beam of current 1.7 A and a velocity ratio (alpha) of 1.12 with an alpha spread of ˜10.7% was achieved when the triode gun was operated at 40 kV.

  1. Self-Consistent Nonlinear Slow-Time Scale Formulation and Simulation of Overmoded Gyrotron Oscillators and Amplifiers.

    DTIC Science & Technology

    1981-02-13

    where - e and me are the electron charge and rest mass, respectively, while c is the speed of light . An electron beam is continuously injected into...where -ri(t) and v(t) are the instantaneous position and velocity vectors of the i-th particle, obtained from its equations of motion in terms of its...Department Stanford University Columbia University Stanford, CA 94305 New York, NY 10027 Dr. Richard M. Patrick Mr. John Meson AVCO Everett Research Lab

  2. Status of the ITER Electron Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji

    2016-01-01

    The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.

  3. Design and measurement of a TE{sub 13} input converter for high order mode gyrotron travelling wave amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Liu, Guo, E-mail: liuguo@uestc.edu.cn; Shu, Guoxiang

    2016-03-15

    A technique to launch a circular TE{sub 13} mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE{sub 13} mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE{sub 32} and TE{sub 71} modes are suppressed to allow the transmission of the dominant TE{sub 13} mode. The converter performancemore » for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ∼−1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5–98.7 GHz) and port reflection is less than −15 dB. The conversion efficiency to the TE{sub 32} and TE{sub 71} modes are, respectively, under −15 dB and −24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.« less

  4. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA.more » An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.« less

  5. International Conference on Infrared and Millimeter Waves, 13th, Honolulu, HI, Dec. 5-9, 1988, Conference Digest

    NASA Astrophysics Data System (ADS)

    Temkin, Richard J.

    Recent advances in IR and mm-wave (MMW) physics, astrophysics, devices, and applications are examined in reviews and reports. Sections are devoted to MMW sources, MMW modulation of light, MMW antennas, FELs, MMW optical technology, astronomy, MMW systems, microwave-optical interactions, MMW waveguides, MMW detectors and mixers, plasma diagnostics, and atmospheric physics. Also considered are gyrotrons, guided propagation, high-Tc superconductors, sub-MMW detectors and related devices, ICs, near-MMW measurements and techniques, lasers, material characterization, semiconductors, and atmospheric propagation.

  6. International Conference on Infrared and Millimeter Waves, 15th, Orlando, FL, Dec. 10-14, 1990, Conference Digest

    NASA Astrophysics Data System (ADS)

    Temkin, Richard J.

    Recent advances in IR and mm-wave (MMW) technology and applications are discussed in reviews and reports. Sections are devoted to MMW sources, high-Tc superconductors, atmospheric physics, FEL technology, astronomical instrumentation, MMW systems, measurement techniques, MMW guides, and MMW detectors and mixers. Also discussed are material properties, gyrotrons, guided propagation, semiconductors, submm detectors and devices, material characterization methods, ICs, MMW guides and plasma diagnostics, lasers, and MMW antennas. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  7. High Voltage K sub a -Band Gyrotron Experiment.

    DTIC Science & Technology

    1985-11-20

    3.8-cm-diam disk-shaped carbon cathode in a foilless diode configuration. Initially, as pointed out by Voronkov et al. (7], the tranverse velocity is...Xmn is the nth zero of dJm(x)/dx, R is the electron orbit guiding center radius, R.w is the cavity wall radius, and kmn=Xmn/Rw is the tranverse wave...possible competing mode. StartingC currents for the TE 6 ,2, TE1 0 ,1 and TE_3 ,3 modes for the experimentally observed e-beam radius of 1.16 cm are

  8. Extension of electron cyclotron heating at ASDEX Upgrade with respect to high density operation

    NASA Astrophysics Data System (ADS)

    Schubert, Martin; Stober, Jörg; Herrmann, Albrecht; Kasparek, Walter; Leuterer, Fritz; Monaco, Francesco; Petzold, Bernhard; Plaum, Burkhard; Vorbrugg, Stefan; Wagner, Dietmar; Zohm, Hartmut

    2017-10-01

    The ASDEX Upgrade electron cyclotron resonance heating operates at 105 GHz and 140 GHz with flexible launching geometry and polarization. In 2016 four Gyrotrons with 10 sec pulse length and output power close to 1 MW per unit were available. The system is presently being extended to eight similar units in total. High heating power and high plasma density operation will be a part of the future ASDEX Upgrade experiment program. For the electron cyclotron resonance heating, an O-2 mode scheme is proposed, which is compatible with the expected high plasma densities. It may, however, suffer from incomplete single-pass absorption. The situation can be improved significantly by installing holographic mirrors on the inner column, which allow for a second pass of the unabsorbed fraction of the millimetre wave beam. Since the beam path in the plasma is subject to refraction, the beam position on the holographic mirror has to be controlled. Thermocouples built into the mirror surface are used for this purpose. As a protective measure, the tiles of the heat shield on the inner column were modified in order to increase the shielding against unabsorbed millimetre wave power.

  9. Development of robust and multi-mode control of tearing in DIII-D

    DOE PAGES

    Welander, A. S.; La Haye, R.J.; Humphreys, D. A.; ...

    2016-06-02

    Neoclassical tearing modes (NTMs) are instabilities that can produce undesirable magnetic islands in tokamak plasmas. They can be stabilized by applying electron cyclotron current drive (ECCD) at the island. The NTM control system on DIII-D can now control multiple modes. Each of 6 mirrors that reflect ECCD beams into the plasma can be assigned to different surfaces in the plasma where NTMs are unstable. The control system then steers the mirrors to keep the beams aimed at the surfaces. The system routinely stabilizes one NTM preemptively and has now also been used to control two modes in the same discharge.more » With the “catch-and-subdue” function, ECCD-generating gyrotrons can be turned on when NTMs appear and off after suppression. Newly triggered NTMs can be promptly suppressed if mode onset is detected early and ECCD immediately applied. Early mode detection is achieved in this paper by spectral analysis of Mirnov probes with a band-pass filter for the expected mode frequency. Targeted surfaces are tracked by equilibrium reconstructions (that include measurements of the motional Stark effect). The ECCD position is tracked by ray-tracing using the TORBEAM code. Several techniques are being explored for fine-tuning alignment when NTMs occur. One method adjusts ECCD alignment in steps until the island decays fast enough. A second method sweeps the alignment to find the optimum. A third method pulses gyrotrons and uses electron cyclotron emission to compare where the resulting temperature pulses are relative to temperature fluctuations from a rotating NTM. NTM control in ITER is expected to use active profile regulation to maximize controllability, followed by repeated catch-and-subdue actions if modes are retriggered, in order to maintain island size below the disruptive threshold while maximizing confinement and fusion gain. Between events, real-time tracking will be performed to maintain alignment and readiness for subsequent catch-andsubdue actions. Methods for active probing of stability boundaries will be studied as possible diagnostics for the profile regulation. Finally, selected elements of this ITER NTM control vision will be discussed and assessed.« less

  10. Time-dependent, multimode interaction analysis of the gyroklystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swati, M. V., E-mail: swati.mv.ece10@iitbhu.ac.in; Chauhan, M. S.; Jain, P. K.

    2016-08-15

    In this paper, a time-dependent multimode nonlinear analysis for the gyroklystron amplifier has been developed by extending the analysis of gyrotron oscillators by employing the self-consistent approach. The nonlinear analysis developed here has been validated by taking into account the reported experimental results for a 32.3 GHz, three cavity, second harmonic gyroklystron operating in the TE{sub 02} mode. The analysis has been used to estimate the temporal RF growth in the operating mode as well as the nearby competing modes. Device gain and bandwidth have been computed for different drive powers and frequencies. The effect of various beam parameters, such asmore » beam voltage, beam current, and pitch factor, has also been studied. The computational results have estimated the gyroklystron saturated RF power ∼319 kW at 32.3 GHz with efficiency ∼23% and gain ∼26.3 dB with device bandwidth ∼0.027% (8 MHz) for a 70 kV, 20 A electron beam. The computed results are found to be in agreement with the experimental values within 10%.« less

  11. Imaging of spatial distributions of the millimeter wave intensity by using the Visible Continuum Radiation from a discharge in a Cs-Xe mixture. Part II: Demonstration of application capabilities of the technique

    NASA Astrophysics Data System (ADS)

    Gitlin, M. S.; Glyavin, M. Yu.; Fedotov, A. E.; Tsvetkov, A. I.

    2017-07-01

    The paper presents the second part of the review on a high-sensitive technique for time-resolved imaging and measurements of the 2D intensity profiles of millimeter-wave radiation by means of Visible Continuum Radiation emitted by the positive column of a medium-pressure Cs-Xe DC Discharge (VCRD method). The first part of the review was focused on the operating principles and fundamentals of this new technique [Plasma Phys. Rep. 43, 253 (2017)]. The second part of the review focuses on experiments demonstrating application of this imaging technique to measure the parameters of radiation at the output of moderate-power millimeter-wave sources. In particular, the output waveguide mode of a moderate-power W-band gyrotron with a pulsed magnetic field was identified and the relative powers of some spurious modes at the outputs of this gyrotron and a pulsed D-band orotron were evaluated. The paper also reviews applications of the VCRD technique for real-time imaging and nondestructive testing with a frame rate of higher than 10 fps by using millimeter waves. Shadow projection images of objects opaque and transparent for millimeter waves have been obtained using pulsed watt-scale millimeter waves for object illumination. Near video frame rate millimeter-wave shadowgraphy has been demonstrated. It is shown that this technique can be used for single-shot screening (including detection of concealed objects) and time-resolved imaging of time-dependent processes.

  12. Effect of the transverse nonuniformity of the radiofrequency field on the start current and efficiency of gyrodevices with confocal mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, Gregory S.; Chainani, Samir; Granatstein, Victor L.

    The theory is developed for analyzing the effect of transverse nonuniformity of the radiofrequency (rf) field on the starting conditions and efficiency of such gyrotron oscillators as gyromonotrons and gyro-backward-wave oscillators (gyro-BWO). The formalism allows one to study this effect in oscillators operating in the regimes of soft and hard self-excitation. Results obtained for a device with a confocal waveguide (or resonator) are compared with the results for conventional gyrodevices where the rf field acting on electrons with different guiding centers is the same. It is shown how to use results of the classical small-signal theory of backward-wave oscillators drivenmore » by linear electron beams for calculating the start currents in gyro-BWOs. The effect of the wave attenuation in waveguide walls on the start current is analyzed, which is important for the design of frequency-tunable gyro-backward-wave oscillators in the THz (and sub THz) frequency range.« less

  13. Design studies of the Ku-band, wide-band Gyro-TWT amplifier

    NASA Astrophysics Data System (ADS)

    Jung, Sang Wook; Lee, Han Seul; Jang, Kwong Ho; Choi, Jin Joo; Hong, Yong Jun; Shin, Jin Woo; So, Jun Ho; Won, Jong Hyo

    2014-02-01

    This paper reports a Ku-band, wide band Gyrotron-Traveling-wave-tube(Gyro-TWT) that is currently being developed at Kwangwoon University. The Gyro-TWT has a two stage linear tapered interaction circuit to obtain a wide operating bandwidth. The linearly-tapered interaction circuit and nonlinearly-tapered magnetic field gives the Gyro-TWT a wide operating bandwidth. The Gyro-TWT bandwidth is 23%. The 2d-Particle-in-cell(PIC) and MAGIC2d code simulation results are 17.3 dB and 24.34 kW, respectively for the maximum saturated output power. A double anode MIG was simulated with E-Gun code. The results were 0.7 for the transvers to the axial beam velocity ratio (=alpha) and a 2.3% axial velocity spread at 50 kV and 4 A. A magnetic field profile simulation was performed by using the Poisson code to obtain the grazing magnetic field of the entire interaction circuit with Poisson code.

  14. Investigation of the role of electron cyclotron resonance heating and magnetic configuration on the suprathermal ion population in the stellarator TJ-II using a luminescent probe

    NASA Astrophysics Data System (ADS)

    Martínez, M.; Zurro, B.; Baciero, A.; Jiménez-Rey, D.; Tribaldos, V.

    2018-02-01

    Numerous observation exist of a population of high energetic ions with energies well above the corresponding thermal values in plasmas generated by electron cyclotron resonance (ECR) heating in TJ-II stellarator and in other magnetically confined plasmas devices. In this work we study the impact of ECR heating different conditions (positions and powers) on fast ions escaping from plasmas in the TJ-II stellarator. For this study, an ion luminescent probe operated in counting mode is used to measure the energy distribution of suprathermal ions, in the range from 1 to 30 keV. It is observed that some suprathermal ions characteristics (such as temperature, particle and energy fluxes) are related directly with the gyrotron power and focus position of the heating beam in the plasma. Moreover, it is found that suprathermal ion characteristics vary during a magnetic configuration scan (performed along a single discharge). By investigating the suprathermal ions escaping from plasmas generated using two gyrotrons, one with fixed power and the other modulated (on/off) at low frequency (10 Hz), the de-confinement time of the suprathermal ions can be measured, which is of the order of a few milliseconds (<4 ms). A model that uses a zero-dimensional power balance is used to understand the de-confinement times in terms of the interaction of suprathermal ions and plasma components. This model also can be used to interpret experimental results of energy loss due to suprathermal ions. Finally, observations of increases (peaks) in the population of escaping suprathermal ions, which are well localized at discrete energies, is documented, these peaks being observed in the energy distributions along a discharge.

  15. The Electron Bernstein Waves Heating Project In The TJ-II Stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, A.; Cappa, A.; Castejon, F.

    2007-09-28

    TJ-II is a middle sized flexible Heliac operating in Madrid, whose plasmas are created and heated by ECRH via two 300 kW gyrotrons at second harmonic X-mode (53.2 GHz). Neutral beam injection is used for second phase heating. Since the cut off density for the 2nd harmonic X-mode (n{sub c} = 1.7x10 {sup 19} m{sup -3}) is reached during NBI, EBWs are considered both for providing additional heating after NBI switch on and to perform kinetic studies in high-density plasmas. Previous work has shown that the most suitable scheme for launching EBWs in TJ-II is O-X-B mode conversion, which hasmore » acceptable heating efficiency for central densities above 1.2x10{sup 19} m{sup -3}, with an operating frequency of 28 GHz. In this work, the most relevant theoretical calculations are presented, including the relativistic effects both in ray trajectory and absorption, as well as the results of the optimization of the beam parameters that provide the maximum O-X conversion efficiency at the critical layer. A system based on a 28 GHz-100 ms diode gyrotron will be used to deliver 300 kW through a corrugated waveguide. The microwave beam is directed and focused by a steerable mirror located inside the vacuum vessel. A diagnostic for measuring the EBW emission has been designed and tested on the bench. It uses a section of corrugated waveguide and a glass lens to focus the emission from the plasma into the aperture of a dual polarized quad-ridged horn. It will allow us to determine the EBW mode conversion efficiency, and also provides an indication of the electron temperature evolution in overdense plasmas.« less

  16. Upgrades and Real Time Ntm Control Application of the Ece Radiometer on Asdex Upgrade

    NASA Astrophysics Data System (ADS)

    Hicks, N. K.; Suttrop, W.; Behler, K.; Giannone, L.; Manini, A.; Maraschek, M.; Raupp, G.; Reich, M.; Sips, A. C. C.; Stober, J.; Treutterer, W.; ASDEX Upgrade Team; Cirant, S.

    2009-04-01

    The 60-channel electron cyclotron emission (ECE) radiometer diagnostic on the ASDEX Upgrade tokamak is presently being upgraded to include a 1 MHz sampling rate data acquisition system. This expanded capability allows electron temperature measurements up to 500 kHz (anti-aliasing filter cut-off) with spatial resolution ~1 cm, and will thus provide measurement of plasma phenomena on the MHD timescale, such as neoclassical tearing modes (NTMs). The upgraded and existing systems may be run in parallel for comparison, and some of the first plasma measurements using the two systems together are presented. A particular planned application of the upgraded radiometer is integration into a real-time NTM stabilization loop using targeted deposition of electron cyclotron resonance heating (ECRH). For this loop, it is necessary to determine the locations of the NTM and ECRH deposition using ECE measurements. As the magnetic island of the NTM repeatedly rotates through the ECE line of sight, electron temperature fluctuations at the NTM frequency are observed. The magnetic perturbation caused by the NTM is independently measured using Mirnov coils, and a correlation profile between these magnetic measurements and the ECE data is constructed. The phase difference between ECE oscillations on opposite sides of the island manifests as a zero-crossing of the correlation profile, which determines the NTM location in ECE channel space. To determine the location of ECRH power deposition, the power from a given gyrotron may be modulated at a particular frequency. Correlation analysis of this modulated signal and the ECE data identifies a particular ECE channel associated with the deposition of that gyrotron. Real time equilibrium reconstruction allows the ECE channels to be translated into flux surface and spatial coordinates for use in the feedback loop.

  17. Advances/applications of MAGIC and SOS

    NASA Astrophysics Data System (ADS)

    Warren, Gary; Ludeking, Larry; Nguyen, Khanh; Smithe, David; Goplen, Bruce

    1993-12-01

    MAGIC and SOS have been applied to investigate a variety of accelerator-related devices. Examples include high brightness electron guns, beam-RF interactions in klystrons, cold-test modes in an RFQ and in RF sources, and a high-quality, flexible, electron gun with operating modes appropriate for gyrotrons, peniotrons, and other RF sources. Algorithmic improvements for PIC have been developed and added to MAGIC and SOS to facilitate these modeling efforts. Two new field algorithms allow improved control of computational numerical noise and selective control of harmonic modes in RF cavities. An axial filter in SOS accelerates simulations in cylindrical coordinates. The recent addition of an export/import feature now allows long devices to be modeled in sections. Interfaces have been added to receive electromagnetic field information from the Poisson group of codes and from EGUN and to send beam information to PARMELA for subsequent tracing of bunches through beam optics. Post-processors compute and display beam properties including geometric, normalized, and slice emittances, and phase-space parameters, and video. VMS, UNIX, and DOS versions are supported, with migration underway toward windows environments.

  18. 140 GHz EC waves propagation and absorption for normal/oblique injection on FTU tokamak

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Airoldi, A.; Bruschi, A.; Buratti, P.; Cirant, S.; Gandini, F.; Granucci, G.; Lazzaro, E.; Panaccione, L.; Ramponi, G.; Simonetto, A.; Sozzi, C.; Tudisco, O.; Zerbini, M.

    1999-09-01

    Most of the interest in ECRH experiments is linked to the high localization of EC waves absorption in well known portions of the plasma volume. In order to take full advantage of this capability a reliable code has been developed for beam tracing and absorption calculations. The code is particularly important for oblique (poloidal and toroidal) injection, when the absorbing layer is not simply dependent on the position of the EC resonance only. An experimental estimate of the local heating power density is given by the jump in the time derivative of the local electron pressure at the switching ON of the gyrotron power. The evolution of the temperature profile increase (from ECE polychromator) during the nearly adiabatic phase is also considered for ECRH profile reconstruction. An indirect estimate of optical thickness and of the overall absorption coefficient is given by the measure of the residual e.m. power at the tokamak walls. Beam tracing code predictions of the power deposition profile are compared with experimental estimates. The impact of the finite spatial resolution of the temperature diagnostic on profile reconstruction is also discussed.

  19. Feedback-controlled NTM stabilization on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Stober, J.; Barrera, L.; Behler, K.; Bock, A.; Buhler, A.; Eixenberger, H.; Giannone, L.; Kasparek, W.; Maraschek, M.; Mlynek, A.; Monaco, F.; Poli, E.; Rapson, C. J.; Reich, M.; Schubert, M.; Treutterer, W.; Wagner, D.; Zohm, H.

    2015-03-01

    On ASDEX Upgrade a concept for real-time stabilization of NTMs has been realized and successfully applied to (3,2)- and (2,1)-NTMs. Since most of the work has meanwhile been published elsewhere, a short summary with the appropriate references is given. Limitations, deficits and future extensions of the system are discussed. In a second part the recent work on using modulated ECCD for NTM stabilisation is described in some detail. In these experiments ECCD power is modulated according to a magnetic footprint of the rotating NTM. In agreement with earlier results it could be shown that O-point heating reduces the necessary average power for stabilisation whereas X-point heating hampers stabilisation. Although this modulated scheme is not relevant for routine NTM stabilisation on ASDEX Upgrade it may be mandatory for ITER or DEMO. On ASDEX Upgrade it has been re-developed to demonstrate the usage of a FAst DIrectional Switch to continously heat the O-point of the rotating island with only one gyrotron switching between two launchers which target the mode at locations separated in phase by 180 degrees as described in [1].

  20. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  1. Formation of Ion Beam from High Density Plasma of ECR Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izotov, I.; Razin, S.; Sidorov, A.

    2005-03-15

    One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less

  2. ECRH and W7-X: An intriguing pair

    NASA Astrophysics Data System (ADS)

    Erckmann, V.; Braune, H.; Gantenbein, G.; Jelonnek, J.; Kasparek, W.; Laqua, H. P.; Lechte, C.; Marushchenko, N. B.; Michel, G.; Plaum, B.; Thumm, M.; Weissgerber, M.; Wolf, R.; W7-X ECRH Teams

    2014-02-01

    The construction of the W7-X basic machine is almost completed and the device is approaching the commissioning phase. W7-X operation will be supported by ECRH working at 140 GHz in 2nd harmonic X- or O-mode with 10 MW cw power. Presently the activities at W7-X concentrate on the implementation of wall-armour, in-vessel components and diagnostics. The ECRH-system is in stand by with 5 out of 10 gyrotrons operational. The status of both, the W7-X device and the ECRH system is reported. Further R&D activities concentrate on extending the launching capability for sophisticated confinement investigations with remote steering launchers in a poloidal plane with weak magnetic field gradient.

  3. Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, Dmitry; Laqua, Heinrich; Marsen, Stefan; Stange, Torsten; Braune, Harald; Erckmann, Volker; Gellert, Florian; Oosterbeek, Johann Wilhelm; Wenzel, Uwe

    2017-07-01

    Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes.

  4. Study on statistical breakdown delay time in argon gas using a W-band millimeter-wave gyrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongsung; Yu, Dongho; Choe, MunSeok

    2016-04-15

    In this study, we investigated plasma initiation delay times for argon volume breakdown at the W-band frequency regime. The threshold electric field is defined as the minimum electric field amplitude needed for plasma breakdown at various pressures. The measured statistical delay time showed an excellent agreement with the theoretical Gaussian distribution and the theoretically estimated formative delay time. Also, we demonstrated that the normalized effective electric field as a function of the product of pressure and formative time shows an outstanding agreement to that of 1D particle-in-cell simulation coupled with a Monte Carlo collision model [H. C. Kim and J.more » P. Verboncoeur, Phys. Plasmas 13, 123506 (2006)].« less

  5. Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films.

    PubMed

    Rath, Patrik; Khasminskaya, Svetlana; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram Hp

    2013-01-01

    Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical components remains largely unexplored. Here we demonstrate that CVD diamond provides a high-quality template for realizing nanophotonic integrated optical circuits. Using efficient grating coupling devices prepared from partially etched diamond thin films, we investigate millimetre-sized optical circuits and achieve single-mode waveguiding at telecoms wavelengths. Our results pave the way towards broadband optical applications for sensing in harsh environments and visible photonic devices.

  6. A Case Study of Modern PLC and LabVIEW Controls: Power Supply Controls for the ORNL ITER ECH Test Stand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Alan M; Killough, Stephen M; Bigelow, Tim S

    2011-01-01

    Power Supply Controls are being developed at Oak Ridge National Laboratory (ORNL) to test transmission line components of the Electron Cyclotron Heating (ECH) system, with a focus on gyrotrons and waveguides, in support of the International Thermonuclear Experimental Reactor (ITER). The control is performed by several Programmable Logic Controllers (PLC s) located near the different equipment. A technique of Supervisory Control and Data Acquisition (SCADA) is presented to monitor, control, and log actions of the PLC s on a PC through use of Allen Bradley s Remote I/O communication interface coupled with an Open Process Control/Object Linking and Embedding [OLE]more » for Process Control (OPC) Server/Client architecture. The OPC data is then linked to a National Instruments (NI) LabVIEW system for monitoring and control. Details of the architecture and insight into applicability to other systems are presented in the rest of this paper. Future integration with an EPICS (Experimental Physics Industrial Control System) based mini-CODAC (Control, Data Access and Communication) SCADA system is under consideration, and integration considerations will be briefly introduced.« less

  7. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region

    NASA Astrophysics Data System (ADS)

    He, W.; Donaldson, C. R.; Zhang, L.; Ronald, K.; Phelps, A. D. R.; Cross, A. W.

    2017-11-01

    Experimental results are presented of a broadband, high power, gyrotron traveling wave amplifier (gyro-TWA) operating in the (75-110)-GHz frequency band and based on a helically corrugated interaction region. The second harmonic cyclotron mode of a 55-keV, 1.5-A, axis-encircling electron beam is used to resonantly interact with a traveling TE21 -like eigenwave achieving broadband amplification. The gyro-TWA demonstrates a 3-dB gain bandwidth of at least 5.5 GHz in the experimental measurement with 9 GHz predicted for a wideband drive source with a measured unsaturated output power of 3.4 kW and gain of 36-38 dB. The approach may allow a gyro-TWA to operate at 1 THz.

  8. Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2018-05-01

    High efficiency and broadband operation of a gyrotron traveling wave amplifier (gyro-TWA) require a high-quality electron beam with low-velocity spreads. The beam velocity spreads are mainly due to the differences of the electric and magnetic fields that the electrons withstand the electron gun. This paper investigates the possibility to decouple the design of electron gun geometry and the magnet system while still achieving optimal results, through a case study of designing a cusp electron gun for a W-band gyro-TWA. A global multiple-objective optimization routing was used to optimize the electron gun geometry for different predefined magnetic field profiles individually. Their results were compared and the properties of the required magnetic field profile are summarized.

  9. Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser

    NASA Astrophysics Data System (ADS)

    Chang, T. H.; Huang, W. C.; Yao, H. Y.; Hung, C. L.; Chen, W. C.; Su, B. Y.

    2017-02-01

    This study examines the transverse magnetic (TM) waveguide modes, which have long been considered as the unsuitable ones for the operation of the electron cyclotron maser. The beam-wave coupling strength of the TM modes, as expected, is found to be relatively weak as compared with that of the transverse electric (TE) waveguide modes. Unlike TE modes, surprisingly, the linear behavior of the TM modes depends on the sign of the wave number kz. The negative kz has a much stronger linear efficiency than that of the positive kz. The bunching mechanism analysis further exhibits that the azimuthal bunching and axial bunching do not compete but cooperate with each other for the backward-wave operation (negative kz). The current findings are encouraging and imply that TM modes might be advantageous to the gyrotron backward-wave oscillators.

  10. Electron beam gun with kinematic coupling for high power RF vacuum devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borchard, Philipp

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composedmore » of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.« less

  11. Plasma heating and current drive using intense, pulsed microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less

  12. Design of a Double Anode Magnetron Injection Gun for Q-band Gyro-TWT Using Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Li, Zhiliang; Feng, Jinjun; Liu, Bentian

    2018-04-01

    This paper presents a novel design code for double anode magnetron injection guns (MIGs) in gyro-devices based on boundary element method (BEM). The physical and mathematical models were constructed, and then the code using BEM for MIG's calculation was developed. Using the code, a double anode MIG for a Q-band gyrotron traveling-wave tube (gyro-TWT) amplifier operating in the circular TE01 mode at the fundamental cyclotron harmonic was designed. In order to verify the reliability of this code, velocity spread and guiding center radius of the MIG simulated by the BEM code were compared with these from the commonly used EGUN code, showing a reasonable agreement. Then, a Q-band gyro-TWT was fabricated and tested. The testing results show that the device has achieved an average power of 5kW and peak power ≥ 150 kW at a 3% duty cycle within bandwidth of 2 GHz, and maximum output peak power of 220 kW, with a corresponding saturated gain of 50.9 dB and efficiency of 39.8%. This paper demonstrates that the BEM code can be used as an effective approach for analysis of electron optics system in gyro-devices.

  13. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  14. Status of the ITER Electron Cyclotron Heating and Current Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio

    2015-10-07

    We present that the electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasmamore » start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.The development of the EC system is facing significant challenges, which includes not only an advanced microwave system but also compliance with stringent requirements associated with nuclear safety as ITER became the first fusion device licensed as basic nuclear installations as of 9 November 2012. Finally, since the conceptual design of the EC system was established in 2007, the EC system has progressed to a preliminary design stage in 2012 and is now moving forward toward a final design.« less

  15. Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector.

    PubMed

    Han, Sang-Pil; Ko, Hyunsung; Kim, Namje; Lee, Won-Hui; Moon, Kiwon; Lee, Il-Min; Lee, Eui Su; Lee, Dong Hun; Lee, Wangjoo; Han, Seong-Tae; Choi, Sung-Wook; Park, Kyung Hyun

    2014-11-17

    We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced.

  16. Thrust generation experiments on microwave rocket with a beam concentrator for long distance wireless power feeding

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi

    2018-04-01

    Experiments using a 1 MW-class gyrotron were conducted to examine a beamed energy propulsion rocket, a microwave rocket with a beam concentrator for long-distance wireless power feeding. The incident beam is transmitted from a beam transmission mirror system. The beam transmission mirror system expands the incident beam diameter to 240 mm to extend the Rayleigh length. The beam concentrator receives the beam and guides it into a 56-mm-diameter cylindrical thruster tube. Plasma ignition and ionization front propagation in the thruster were observed through an acrylic window using a fast-framing camera. Atmospheric air was used as a propellant. Thrust generation was achieved with the beam concentrator. The maximum thrust impulse was estimated as 71 mN s/pulse from a pressure history at the thrust wall at the input energy of 638 J/pulse. The corresponding momentum coupling coefficient, Cm was inferred as 204 N/MW.

  17. Characterization of Novel Materials with Very Low Secondary Electron Emission Yield for Use in High-Power Microwave Devices

    NASA Astrophysics Data System (ADS)

    Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan

    2004-11-01

    Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.

  18. New evidence and impact of electron transport non-linearities based on new perturbative inter-modulation analysis

    NASA Astrophysics Data System (ADS)

    van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group

    2017-12-01

    A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.

  19. Development of DNP-Enhanced High-Resolution Solid-State NMR System for the Characterization of the Surface Structure of Polymer Materials

    NASA Astrophysics Data System (ADS)

    Horii, Fumitaka; Idehara, Toshitaka; Fujii, Yutaka; Ogawa, Isamu; Horii, Akifumi; Entzminger, George; Doty, F. David

    2012-07-01

    A dynamic nuclear polarization (DNP)-enhanced cross-polarization/magic-angle spinning (DNP/CP/MAS) NMR system has been developed by combining a 200 MHz Chemagnetics CMX-200 spectrometer operating at 4.7 T with a high-power 131.5 GHz Gyrotron FU CW IV. The 30 W sub-THz wave generated in a long pulse TE _{{41}}^{{(1)}} mode with a frequency of 5 Hz was successfully transmitted to the modified Doty Scientific low-temperature CP/MAS probe through copper smooth-wall circular waveguides. Since serious RF noises on NMR signals by arcing in the electric circuit of the probe and undesired sample heating were induced by the continuous sub-THz wave pulse irradiation with higher powers, the on-off sub-THz wave pulse irradiation synchronized with the NMR detection was developed and the appropriate setting of the irradiation time and the cooling time corresponding to the non-irradiation time was found to be very effective for the suppression of the arcing and the sample heating. The attainable maximum DNP enhancement was more than 30 folds for C1 13 C-enriched D-glucose dissolved in the frozen medium containing mono-radical 4-amino-TEMPO. The first DNP/CP/MAS 13 C NMR spectra of poly(methyl methacrylate) (PMMA) sub-micron particles were obtained at the dispersed state in the same frozen medium, indicating that DNP-enhanced 1H spins effectively diffuse from the medium to the PMMA particles through their surface and are detected as high-resolution 13 C spectra in the surficial region to which the 1H spins reach. On the basis of these results, the possibility of the DNP/CP/MAS NMR characterization of the surface structure of nanomaterials including polymer materials was discussed.

  20. Progress of long pulse discharges by ECH in LHD

    NASA Astrophysics Data System (ADS)

    Yoshimura, Y.; Kasahara, H.; Tokitani, M.; Sakamoto, R.; Ueda, Y.; Ito, S.; Okada, K.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.; Kobayashi, S.; Mizuno, Y.; Akiyama, T.; Ashikawa, N.; Masuzaki, S.; Motojima, G.; Shoji, M.; Suzuki, C.; Tanaka, H.; Tanaka, K.; Tokuzawa, T.; Tsuchiya, H.; Yamada, I.; Goto, Y.; Yamada, H.; Mutoh, T.; Komori, A.; Takeiri, Y.; the LHD Experiment Group

    2016-04-01

    Using ion cyclotron heating and electron cyclotron heating (ECH), or solo ECH, trials of steady state plasma sustainment have been conducted in the superconducting helical/stellarator, large helical device (LHD) (Ida K et al 2015 Nucl. Fusion 55 104018). In recent years, the ECH system has been upgraded by applying newly developed 77 and 154 GHz gyrotrons. A new gas fueling system applied to the steady state operations in the LHD realized precise feedback control of the line average electron density even when the wall condition varied during long pulse discharges. Owing to these improvements in the ECH and the gas fueling systems, a stable 39 min discharge with a line average electron density n e_ave of 1.1  ×  1019 m-3, a central electron temperature T e0 of over 2.5 keV, and a central ion temperature T i0 of 1.0 keV was successfully performed with ~350 kW EC-waves. The parameters are much improved from the previous 65 min discharge with n e_ave of 0.15  ×  1019 m-3 and T e0 of 1.7 keV, and the 30 min discharge with n e_ave of 0.7  ×  1019 m-3 and T e0 of 1.7 keV.

  1. Development of helium electron cyclotron wall conditioning on TCV

    NASA Astrophysics Data System (ADS)

    Douai, D.; Goodman, T.; Isayama, A.; Fukumoto, M.; Wauters, T.; Sozzi, C.; Coda, S.; Blanchard, P.; Figini, L.; Garavaglia, S.; Miyata, Y.; Moro, A.; Ricci, D.; Silva, M.; Theiler, C.; Vartanian, S.; Verhaegh, K.; the EUROfusion MST1 Team; the TCV Team

    2018-02-01

    JT-60SA envisions electron cyclotron wall conditioning (ECWC), as wall conditioning method in the presence of the toroidal field to control fuel and impurity recycling and to improve plasma performance and reproducibility. This paper reports on Helium ECWC experiments on TCV in support of JT-60SA operation. Nearly sixty Helium conditioning discharges have been successfully produced in TCV, at a toroidal field B T  =  1.3 or 1.54 T, with gyrotrons at 82.7 GHz in X2 mode, mimicking ECWC operation in JT-60SA at the second harmonic of the EC wave. Discharge parameters were tuned in order to (i) minimize the time for the onset of ECWC plasmas, thus minimizing absorption of stray radiation by in-vessel components, (ii) improve discharge homogeneity by extending the discharge vertically and radially, and wall coverage, in particular of inboard surfaces where JT-60SA plasmas will be initiated, (iii) assess the efficiency of He-ECWC to deplete carbon walls from fuel. An optimized combination of vertical and radial magnetic fields, with amplitudes typically 0.1 to 0.6% of that of B T, has been determined, which resulted in lowest breakdown time, improved wall coverage and enhanced fuel removal. A standard ohmic D 2-plasma could be then sustained, whereas it would not have been possible without He-ECWC.

  2. Ecrh on Asdex Upgrade - System Extension, New Modes of Operation, Plasma Physics Results

    NASA Astrophysics Data System (ADS)

    Stober, J.; Wagner, D.; Giannone, L.; Leuterer, F.; Marascheck, M.; Mlynek, A.; Monaco, F.; Münich, M.; Poli, E.; Reich, M.; Schmid-Lorch, D.; Schütz, H.; Schweinzer, J.; Treutterer, W.; Zohm, H.; Meier, A.; Scherer, Th.; Flamm, J.; Thumm, M.; Höhnle, H.; Kasparek, W.; Stroth, U.; Chirkov, A. V.; Denisov, G. G.; Litvak, A.; Malygin, S. A.; Myasnikov, V. E.; Nichiporenko, V. O.; Popov, L. G.; Soluyanova, E. A.; Tai, E. M.

    2011-02-01

    The ECRH system at ASDEX Upgrade is currently extended from 1.6 MW to 5 MW. The extension so far consists of 2-frequency units, which use single diamond-disk vacuum-windows to transmit power at the natural resonances of these disks (105 & 140 GHz). For the last unit of this extension two additional intermediate non-resonant frequencies are foreseen, requiring new window concepts. For the torus a polarisation-independent double-disk window has been developed. For the gyrotron a grooved diamond disk is actually favoured, for which the grooved surfaces act as anti-reflective coating. Since ASDEX Upgrade operates with completely W-covered plasma facing components, central ECRH is often applied to suppresses W-accumulation in the plasma center. In order to extend the operational range for central ECRH, X3- and O2-heating schemes were developed. Both are characterized by incomplete single-path absorption. For X3 heating, the X2 resonance at the pedestal on the high field side is used as a 'beam-dump', for the O2 scheme a specific reflector tile on the inner heat shield enforces a second path through the plasma center. The geometry for NTM control had to be modified to allow simultaneous central heating. In real-time the ECRH position can be determined either by ray-tracing based on real-time equilibria and density profiles or from ECE for modulated ECRH power. Fast real-time ECE also allows to determine the NTM position. Further major physics applications of the system are summarized.

  3. Effects of detuning of electron beam quality for annular beam Cyclotron Autoresonance Accelerator (CARA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.; Hirshfield, J.L.; Ganguly, K.

    1995-04-01

    For high frequency gyrotrons or high gyroharmonic conversion, an axis encircling beam of high voltage is required to allow coupling to whispering gallery fields near the walls. Lower voltage is required for an annular beam of similar velocity ratio {alpha}. Here the authors present simulation results using a modified CARA for preparation of a 320 kV, 20 A, {alpha} = 1.5 annular beam driven at 11.424 GHz with an rf power of 5 MW and an injection voltage of 75 kV. It is shown that the beam quality can be considerably improved by so-called {open_quotes}detuning{close_quotes}, where the tapered axial magneticmore » field profiles in the CARA are caused to deviate a small amount from exact resonance. Under typical operating conditions, beams with axial velocity spreads of the order of 1% are predicted. This approach could be used to provide a high quality annular gyrating beam for multi-megawatt millimeter wave sources in the 100-200 GHz range.« less

  4. On the Geometrical Optics Approach in the Theory of Freely-Localized Microwave Gas Breakdown

    NASA Astrophysics Data System (ADS)

    Shapiro, Michael; Schaub, Samuel; Hummelt, Jason; Temkin, Richard; Semenov, Vladimir

    2015-11-01

    Large filamentary arrays of high pressure gas microwave breakdown have been experimentally studied at MIT using a 110 GHz, 1.5 MW pulsed gyrotron. The experiments have been modeled by other groups using numerical codes. The plasma density distribution in the filaments can be as well analytically calculated using the geometrical optics approach neglecting plasma diffusion. The field outside the filament is a solution of an inverse electromagnetic problem. The solutions are found for the cylindrical and spherical filaments and for the multi-layered planar filaments with a finite plasma density at the boundaries. We present new results of this theory showing a variety of filaments with complex shapes. The solutions for plasma density distribution are found with a zero plasma density at the boundary of the filament. Therefore, to solve the inverse problem within the geometrical optics approximation, it can be assumed that there is no reflection from the filament. The results of this research are useful for modeling future MIT experiments.

  5. Reflection and backscattering of microwaves under doubling of the plasma density and displacement of the gyroresonance region during electron cyclotron resonance heating of plasma in the l-2M stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batanov, G. M.; Borzosekov, V. D.; Vasilkov, D. G.

    Reflection and backscattering of high-power (400 kW) gyrotron radiation creating and heating plasma at the second harmonic of the electronic cyclotron frequency in the L-2M stellarator have been investigated experimentally. The effect of the displacement of the gyroresonance region from the axis of the plasma column under doubling of the plasma density on the processes of reflection and backscattering of microwave radiation has been examined. A near doubling of short-wavelength (k{sub ⊥} ≈ 30 cm{sup –1}) turbulent density fluctuations squared is observed. The change in the energy confinement time under variations of plasma parameters and characteristics of short-wavelength turbulence ismore » discussed. A discrepancy between the measured values of the reflection coefficient from the electron cyclotron resonance heating region and predictions of the one-dimensional model is revealed.« less

  6. Power measurement system of ECRH on HL-2A

    NASA Astrophysics Data System (ADS)

    Wang, He; Lu, Zhihong; Kubo, Shin; Chen, Gangyu; Wang, Chao; Zhou, Jun; Huang, Mei; Rao, Jun

    2015-03-01

    Electron Cyclotron Resonance Heating (ECRH) is one of the main auxiliary heating systems for HL-2A tokamak. The ECRH system with total output power 5MW has been equipped on HL-2A which include 6 sets of 0.5MW/1.0s at a frequency of 68GHz and 2 sets of 1MW/3s at a frequency of 140GHz. The power is one of important parameters in ECRH system. In this paper, the method for measuring the power of ECRH system on HL-2A is introduced which include calorimetric techniques and directional coupler. Calorimetric techniques is an existing method, which is used successfully in ECRH commissioning and experiment, and the transmission efficiency of ECRH system is achieved by measuring the absorbed microwave power in the Match Optical Unit (MOU), gyrotron output window and tours window of the EC system use this method. Now base on the theory of electromagnetic coupling through apertures, directional couplers are being designed, which is a new way for us.

  7. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D.

    PubMed

    Brookman, M W; Austin, M E; McLean, A G; Carlstrom, T N; Hyatt, A W; Lohr, J

    2016-11-01

    Thomson scattering produces n e profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n e ∝ I TS , which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n e calibration is adjusted against an absolute n e from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n e from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  8. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†

    PubMed Central

    Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.

    2015-01-01

    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524

  9. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Haye, R. J., E-mail: lahaye@fusion.gat.com

    2015-12-10

    ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after whichmore » assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.« less

  10. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    NASA Astrophysics Data System (ADS)

    La Haye, R. J.

    2015-12-01

    ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.

  11. New progress of high current gasdynamic ion source (invited).

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  12. Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Stange, Torsten; Laqua, Heinrich Peter; Beurskens, Marc; Bosch, Hans-Stephan; Bozhenkov, Sergey; Brakel, Rudolf; Braune, Harald; Brunner, Kai Jakob; Cappa, Alvaro; Dinklage, Andreas; Erckmann, Volker; Fuchert, Golo; Gantenbein, Gerd; Gellert, Florian; Grulke, Olaf; Hartmann, Dirk; Hirsch, Matthias; Höfel, Udo; Kasparek, Walter; Knauer, Jens; Langenberg, Andreas; Marsen, Stefan; Marushchenko, Nikolai; Moseev, Dmitry; Pablant, Novomir; Pasch, Ekkehard; Rahbarnia, Kian; Mora, Humberto Trimino; Tsujimura, Toru; Turkin, Yuriy; Wauters, Tom; Wolf, Robert

    2017-10-01

    During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2.

  13. Evolution of the radial electric field in high-Te ECH heated plasmas on LHD

    NASA Astrophysics Data System (ADS)

    Pablant, Novimir; Bitter, Manfred; Delgado Aparicio, Luis F.; Dinklage, Andreas; Gates, David; Goto, Motoshi; Ido, Takeshi; Hill, Kenneth H.; Kubo, Shin; Morita, Shigeru; Nagaoka, Kenichi; Oishi, Tetsutarou; Satake, Shinsuke; Takahashi, Hiromi; Yokoyama, Masayuki; LHD Experiment Group Team

    2014-10-01

    A detailed study is presented on the evolution of the radial electric field (Er) under a range of densities and injected ECH powers on the Large Helical Device (LHD). These plasmas focused on high-electron temperature ECH heated plasmas which exhibit a transition of Er from the ion-root to the electron-root when either the density is reduced or the ECH power is increased. Measurements of poloidal rotation were achieved using the X-Ray Imaging Crystal Spectrometer (XICS) and are compared with neo-classical predictions of the radial electric field using the GSRAKE and FORTEC-3D codes. This study is based on a series of experiments on LHD which used fast modulation of the gyrotrons on LHD to produce a detailed power scan with a constant power deposition profile. This is a novel application of this technique to LHD, and has provided the most detailed study to date on dependence of the radial electric field on the injected power. Detailed scans of the density at constant injected power were also made, allowing a separation of the power and density dependence.

  14. Prototyping high-gradient mm-wave accelerating structures

    DOE PAGES

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; ...

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value ofmore » 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.« less

  15. A new simpler way to obtain high fusion power gain in tandem mirrors

    NASA Astrophysics Data System (ADS)

    Fowler, T. K.; Moir, R. W.; Simonen, T. C.

    2017-05-01

    From the earliest days of fusion research, Richard F. Post and other advocates of magnetic mirror confinement recognized that mirrors favor high ion temperatures where nuclear reaction rates < σ v> begin to peak for all fusion fuels. In this paper we review why high ion temperatures are favored, using Post’s axisymmetric Kinetically Stabilized Tandem Mirror as the example; and we offer a new idea that appears to greatly improve reactor prospects at high ion temperatures. The idea is, first, to take advantage of recent advances in superconducting magnet technology to minimize the size and cost of End Plugs; and secondly, to utilize parallel advances in gyrotrons that would enable intense electron cyclotron heating (ECH) in these high field End Plugs. The yin-yang magnets and thermal barriers that complicated earlier tandem mirror designs are not required. We find that, concerning end losses, intense ECH in symmetric End Plugs could increase the fusion power gain Q, for both DT and Catalyzed DD fuel cycles, to levels competitive with steady-state tokamaks burning DT fuel. Radial losses remain an issue that will ultimately determine reactor viability.

  16. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    NASA Astrophysics Data System (ADS)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  17. Millimeter wave experiment of ITER equatorial EC launcher mock-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Oda, Y.; Kajiwara, K.

    2014-02-12

    The full-scale mock-up of the equatorial launcher was fabricated in basis of the baseline design to investigate the mm-wave propagation properties of the launcher, the manufacturability, the cooling line management, how to assemble the components and so on. The mock-up consists of one of three mm-wave transmission sets and one of eight waveguide lines can deliver the mm-wave power. The mock-up was connected to the ITER compatible transmission line and the 170GHz gyrotron and the high power experiment was carried out. The measured radiation pattern of the beam at the location of 2.5m away from the EL mock-up shows themore » successful steering capability of 20°∼40°. It was also revealed that the radiated profile at both steering and fixed focusing mirror agreed with the calculation. The result also suggests that some unwanted modes are included in the radiated beam. Transmission of 0.5MW-0.4sec and of 0.12MW-50sec were also demonstrated.« less

  18. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E.; McLean, A. G.

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoffmore » and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.« less

  19. Novel aspects of plasma control in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, D.; Jackson, G.; Walker, M.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less

  20. New progress of high current gasdynamic ion source (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A.

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma withmore » significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.« less

  1. Novel aspects of plasma control in ITER

    DOE PAGES

    Humphreys, David; Ambrosino, G.; de Vries, Peter; ...

    2015-02-12

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g. current profile regulation, tearing mode suppression (TM)), control mathematics (e.g. algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g. methods for management of highly-subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Finally, issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less

  2. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.; Choi, W.; Hahn, S. H.; Humphreys, D. A.; Sammuli, B. S.; Walker, M. L.

    2018-05-01

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiple events and actuator prioritization. The finite-state logic is implemented in Matlab®/Stateflow® to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies ‘catch and subdue’ electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.

  3. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eidietis, N. W.; Choi, W.; Hahn, S. H.

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiplemore » events and actuator prioritization. The finite-state logic is implemented in Matlab*/Stateflow* to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies “catch and subdue” electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.« less

  4. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    DOE PAGES

    Eidietis, N. W.; Choi, W.; Hahn, S. H.; ...

    2018-03-29

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiplemore » events and actuator prioritization. The finite-state logic is implemented in Matlab*/Stateflow* to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies “catch and subdue” electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.« less

  5. Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade.

    PubMed

    Furtula, V; Salewski, M; Leipold, F; Michelsen, P K; Korsholm, S B; Meo, F; Moseev, D; Nielsen, S K; Stejner, M; Johansen, T

    2012-01-01

    Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background on the order of 100 eV under presence of gyrotron stray radiation that is several orders of magnitude stronger than the signal to be detected. The receiver down converts the frequencies of scattered radiation (100-110 GHz) to intermediate frequencies (IF) (4.5-14.5 GHz) by heterodyning. The IF signal is divided into 50 IF channels tightly spaced in frequency space. The channels are terminated by square-law detector diodes that convert the signal power into DC voltages. We present measurements of the transmission characteristics and performance of the main receiver components operating at mm-wave frequencies (notch, bandpass, and lowpass filters, a voltage-controlled variable attenuator, and an isolator), the down-converter unit, and the IF components (amplifiers, bandpass filters, and detector diodes). Furthermore, we determine the performance of the receiver as a unit through spectral response measurements and find reasonable agreement with the expectation based on the individual component measurements.

  6. Solid effect in magic angle spinning dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  7. Development and application of a ray-tracing code integrating with 3D equilibrium mapping in LHD ECH experiments

    NASA Astrophysics Data System (ADS)

    Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.

    2015-11-01

    The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.

  8. On the Mechanism of Microwave Flash Sintering of Ceramics

    PubMed Central

    Bykov, Yury V.; Egorov, Sergei V.; Eremeev, Anatoly G.; Kholoptsev, Vladislav V.; Plotnikov, Ivan V.; Rybakov, Kirill I.; Sorokin, Andrei A.

    2016-01-01

    The results of a study of ultra-rapid (flash) sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3) are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO)2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates) along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-)liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample. PMID:28773807

  9. High Frequency Dynamic Nuclear Polarization

    PubMed Central

    Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V.; Markhasin, Evgeny; Jawla, Sudheer K.; Swager, Timothy M.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.

    2013-01-01

    Conspectus During the three decades 1980–2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = ½ species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, like 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime — roughly 150–660 GHz — and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low temperature MAS probes were developed that permit in-situ microwave irradiation of the samples. And, finally, biradical polarizing agents were developed that increased the efficiency of DNP experiments by factors of ~4 at considerably lower paramagnet concentrations. Collectively these developments have made it possible to apply DNP on a routine basis to a number of different scientific endeavors, most prominently in the biological and material sciences. This Account reviews these developments, including the primary mechanisms used to transfer polarization in high frequency DNP, and the current choice of microwave sources and biradical polarizing agents. In addition, we illustrate the utility of the technique with a description of applications to membrane and amyloid proteins that emphasizes the unique structural information that is available in these two cases. PMID:23597038

  10. A device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, H.D. Jr.

    1987-07-24

    A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.

  11. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Feng, Y. C.; Zhang, W. H.

    2014-02-15

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R and D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe{sup 27+}, 236 eμA Xe{sup 30+}, andmore » 64 eμA Xe{sup 35+}. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi{sup 30+} and 202 eμA U{sup 33+} have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.« less

  12. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    PubMed

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  13. Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2009-05-01

    A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

  14. Theory, Design and Operation of a High-Power Second - Gyro-Twt Amplifier.

    NASA Astrophysics Data System (ADS)

    Wang, Qinsong

    1995-01-01

    Based on the cyclotron resonance maser (CRM) instability, the gyrotron traveling wave tube (gyro-TWT) amplifier is an efficient high power microwave and millimeter wave coherent radiation source. As evidenced in previous experiments, gyro-TWTs, however, can be very susceptible to spontaneous oscillations, and their output powers have thus been limited to relatively low levels. In this dissertation work, thorough theoretical and experimental studies have been conducted to demonstrate and confirm a novel "marginal stability design" (MSD) concept that a harmonic gyro-TWT amplifier is more stable to spontaneous oscillation than a fundamental harmonic gyro-TWT amplifier. Since their interactions are, in general, weaker and allow higher levels of electron beam current, harmonic gyro-TWTs can yield, in principle, a significantly higher RF output power than a fundamental gyro-TWT. The study results also show that a magnetron injection gun (MIG) type electron beam is applicable to harmonic gyro-TWTs. A complete analytic linear theory employing Laplace transforms and a three dimensional nonlinear theory using a slow time-scale formalism are developed in Chapt. 2 for the general CRM interaction to address the issue of stability. Two designs were developed to demonstrate the MSD procedure. The design and development of the proof -of-principle experiment are discussed in Chapt. 3. The accompanying cold test results indicate that all the components have met their respective design goals. The RF diagnostic circuit employed to characterize the gyro-TWT amplifier is also described. Chapter 4 presents the hot-test results of the second-harmonic TE_{21} gyro-TWT amplifier experiment in which an 80 kV, 20 A MIG beam with alpha(equivupsilon _|/upsilon_|) = 1 was used to generate a peak RF output power of 207 kW in Ku-band with an efficiency of 12.9%. In addition, the saturated gain is 16 dB, the small signal gain is 22 dB, the measured bandwidth is 2.1%, and the amplifier was zero-drive stable. As pointed out in Chapt. 5, the theoretical and experimental studies conducted in this work have successfully realized their objectives. Further improvements to the current proof-of-principle experiment and an increase in the operating frequency by operating at an even higher cyclotron harmonic are promising and worthy of future efforts.

  15. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end ofmore » ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations.« less

  16. Method and device for microwave sintering large ceramic articles

    DOEpatents

    Kimrey, Jr., Harold D.

    1990-01-01

    A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.

  17. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  18. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, P. J.; Ennis, D. A.; Hartwell, G. J.; Kring, J. D.; Maurer, D. A.

    2017-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two-color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YAG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and routed via a fiber bundle through a Holospec f/1.8 spectrograph. The red-shifted scattered light from 533-563 nm will be collected by an array of Hamamatsu H11706-40 PMTs. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Stray light and calibration data for a single wavelength channel will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  19. High power plasma heating experiments on the Proto-MPEX facility

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.

    2017-10-01

    Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  20. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  1. Micromachined TWTs for THz Radiation Sources

    NASA Technical Reports Server (NTRS)

    Booske, John H.; vanderWeide, Daniel W.; Kory, Carol L.; Limbach, S.; Downey, Alan (Technical Monitor)

    2001-01-01

    The Terahertz (THz) region of the electromagnetic spectrum (about 300 - 3000 GHz in frequency or about 0.1 - 1 mm free space wavelength) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. It has been characterized as the most scientifically rich, yet under-utilized, region of the electromagnetic spectrum. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.001 - 1.0 W continuous wave), efficient (> 1%), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and comparatively inexpensive. To develop vacuum electron device (VED) radiation sources satisfying these requirements, fabrication and packaging approaches must be heavily considered to minimize costs, in addition to the basic interaction physics and circuit design. To minimize size of the prime power supply, beam voltage must be minimized, preferably 10 kV. Solid state sources satisfy the low voltage requirement, but are many orders of magnitude below power, efficiency, and bandwidth requirements. On the other hand, typical fast-wave VED sources in this regime (e.g., gyrotrons, FELs) tend to be large, expensive, high voltage and very high power devices unsuitable for most of the applications cited above. VEDs based on grating or inter-digital (ID) circuits have been researched and developed. However, achieving forward-wave amplifier operation with instantaneous fractional bandwidths > 1% is problematic for these devices with low-energy (< 15 kV) electron beams. Moreover, the interaction impedance is quite low unless the beam-circuit spacing is kept particularly narrow, often leading to significant beam interception. One solution to satisfy the THz source requirements mentioned above is to develop micromachined VEDs, or "micro-VEDs". Among other benefits, micro-machining technologies provide superior high frequency wall conductivity as a result of superior surface smoothness compared with conventional mechanical or electric discharge machining approaches. Micro-VED technologies are already being applied to the development of millimeter-wave klystrons at Stanford Linear Accelerator Center and submillimeter-wave klystrons at the University of Leeds. We are investigating the use of micro-machining technologies to develop THz regime TWTs, with emphasis on folded-waveguide TWTs. The folded-waveguide TWT (FW-TWT) has several features that make it attractive for THz-regime micro-VED applications. It is a relatively simple circuit to design and fabricate, it is amenable to precision pattern replication by micro-machining, and it is has been demonstrated capable of forward-wave amplification with appreciable bandwidth. We are conducting experimental and computational studies of micro-VED FW-TWTs to examine their feasibility for applications at frequencies from 200 - 1000 GHz.

  2. High density operation with Lower Hybrid waves in FTU tokamak

    NASA Astrophysics Data System (ADS)

    Pericoli Ridolfini, V.; Mirizzi, F.; Panaccione, L.; Podda, S.

    2001-10-01

    Since April 2001 the lower hybrid (LH) radiofrequency system in FTU (6 gyrotrons @ f=8 GHz) can deliver to the plasma about 2 MW through two equal launchers with a reflection coefficient = 10%. This value is close to the target value of 2.2 MW (net power density of 6.2 kW/cm2 on the waveguides mouth) which could be reached after further conditioning of the grill and of the transmission lines. In high density plasmas (line density *1*1020 m-3), high magnetic field (BT=7.2 T), with PLH=2 MW we drive about 75% of the total current (Ip=500 kA) and stabilise fully the sawteeth activity. The central electron temperature Te0 increases from 1.6 to 3.3 keV (steady), and the neutron rate by about 10 times. Analysis of these pulses with effective electronic heating will be presented. In post-pellet plasmas ( *6*1020 m-3), good coupling of the LH is achieved with the launcher almost flush to the walls, due to the very dense scrape off-layer. The perturbation here induced by the pellet imposes a delay to the LH of only 20 ms. The exact location of the launcher is critical in these regimes, because the high N|| (parallel index of refraction) requested (N||>2.3) for a good penetration of the waves makes more problematic a good coupling all along the poloidal extension of the grill.

  3. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    NASA Astrophysics Data System (ADS)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  4. Electron Bernstein Wave Emission Studies on the TJ-II Stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caughman, John B; Fernandez, A.; Cappa, A.

    2009-01-01

    Electron Bernstein Wave (EBW) heating is important for high-beta plasma experiments and will be used for heating over-dense plasmas on TJ-II. TJ-II is a medium sized Heliac operating at CIEMAT in Madrid, whose plasmas are created and heated by ECH via two 300 kW gyrotrons at second harmonic X-mode (53.2 GHz), with additional heating provided by two neutral beam injectors. Theoretical work has shown that the most suitable scheme for launching EBWs in TJ-II is O-X-B mode conversion, which has acceptable heating efficiency for central densities above 1.2 x 1019 m-3.[1] A system based on a 28 GHz-100ms diode gyrotronmore » will be used to deliver 300 kW through a corrugated waveguide. The microwave heating beam will be directed and focused by a steering mirror located inside the vacuum vessel. Prior to the heating experiments, measurement of the thermal EBW emission (EBE) from the plasma is being made to help determine the optimum launch angle for EBW mode conversion, and also to provide an indication of the electron temperature evolution in over-dense plasmas. A dual-polarized quad-ridged broadband horn is used to measure the EBW emission and polarization at 28 GHz. Initial measurements indicate that the emission in under-dense plasmas corresponds to oblique electron cyclotron emission (ECE) and then converts to EBE when the plasma becomes over-dense during neutral beam injection.« less

  5. The MSFC Program Control Development Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    It is the policy of the Marshall Space Flight Center (MSFC) that employees be given the opportunity to develop their individual skills and realize their full potential consistent with their selected career path and with the overall Center's needs and objectives. The MSFC Program Control Development Program has been designed to assist individuals who have selected Program Control or Program Analyst Program Control as a career path to achieve their ultimate career goals. Individuals selected to participate in the MSFC Program Control Development Program will be provided with development training in the various Program Control functional areas identified in the NASA Program Control Model. The purpose of the MSFC Program Control Development Program is to develop individual skills in the various Program Control functions by on-the-job and classroom instructional training on the various systems, tools, techniques, and processes utilized in these areas.

  6. 25 CFR 39.132 - Can a school integrate Language Development programs into its regular instructional program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can a school integrate Language Development programs into... Language Development Programs § 39.132 Can a school integrate Language Development programs into its regular instructional program? A school may offer Language Development programs to students as part of its...

  7. 25 CFR 39.132 - Can a school integrate Language Development programs into its regular instructional program?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Can a school integrate Language Development programs into... Language Development Programs § 39.132 Can a school integrate Language Development programs into its regular instructional program? A school may offer Language Development programs to students as part of its...

  8. Superconducting ECR ion source: From 24-28 GHz SECRAL to 45 GHz fourth generation ECR

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Zhang, W. H.; Lu, W.; Wu, W.; Wu, B. M.; Sabbi, G.; Juchno, M.; Hafalia, A.; Ravaioli, E.; Xie, D. Z.

    2018-05-01

    The development of superconducting ECR source with higher magnetic fields and higher microwave frequency is the most straight forward path to achieve higher beam intensity and higher charge state performance. SECRAL, a superconducting third generation ECR ion source, is designed for 24-28 GHz microwave frequency operation with an innovative magnet configuration of sextupole coils located outside the three solenoids. SECRAL at 24 GHz has already produced a number of record beam intensities, such as 40Ar12+ 1.4 emA, 129Xe26+ 1.1 emA, 129Xe30+ 0.36 emA, and 209Bi31+ 0.68 emA. SECRAL-II, an upgraded version of SECRAL, was built successfully in less than 3 years and has recently been commissioned at full power of a 28 GHz gyrotron and three-frequency heating (28 + 45 + 18 GHz). New record beam intensities for highly charged ion production have been achieved, such as 620 eμA 40Ar16+, 15 eμA 40Ar18+, 146 eμA 86Kr28+, 0.5 eμA 86Kr33+, 53 eμA 129Xe38+, and 17 eμA 129Xe42+. Recent beam test results at SECRAL and SECRAL II have demonstrated that the production of more intense highly charged heavy ion beams needs higher microwave power and higher frequency, as the scaling law predicted. A 45 GHz superconducting ECR ion source FECR (a first fourth generation ECR ion source) is being built at IMP. FECR will be the world's first Nb3Sn superconducting-magnet-based ECR ion source with 6.5 T axial mirror field, 3.5 T sextupole field on the plasma chamber inner wall, and 20 kW at a 45 GHz microwave coupling system. This paper will focus on SECRAL performance studies at 24-28 GHz and technical design of 45 GHz FECR, which demonstrates a technical path for highly charged ion beam production from 24 to 28 GHz SECRAL to 45 GHz FECR.

  9. 25 CFR 39.136 - What is the WSU for Language Development programs?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What is the WSU for Language Development programs? 39.136... EQUALIZATION PROGRAM Indian School Equalization Formula Language Development Programs § 39.136 What is the WSU for Language Development programs? Language Development programs are funded at 0.13 WSUs per student. ...

  10. Characteristics of Sports-Based Youth Development Programs

    ERIC Educational Resources Information Center

    Perkins, Daniel F.; Noam, Gil G.

    2007-01-01

    The term "sports-based youth development programs" is coined and defined in the context of the community youth development framework. Sports-based youth development programs are out-of-school-time programs that use a particular sport to facilitate learning and life skill development in youth. Community youth development programs use a community…

  11. 34 CFR 263.1 - What is the Professional Development program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false What is the Professional Development program? 263.1... Development Program § 263.1 What is the Professional Development program? (a) The Professional Development... Professional Development program requires individuals who receive training to— (1) Perform work related to the...

  12. 25 CFR 39.131 - What is a Language Development Program?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... EQUALIZATION PROGRAM Indian School Equalization Formula Language Development Programs § 39.131 What is a Language Development Program? A Language Development program is one that serves students who either: (a...

  13. 25 CFR 39.131 - What is a Language Development Program?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... EQUALIZATION PROGRAM Indian School Equalization Formula Language Development Programs § 39.131 What is a Language Development Program? A Language Development program is one that serves students who either: (a...

  14. 25 CFR 39.131 - What is a Language Development Program?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... EQUALIZATION PROGRAM Indian School Equalization Formula Language Development Programs § 39.131 What is a Language Development Program? A Language Development program is one that serves students who either: (a...

  15. 7 CFR 371.9 - Policy and Program Development.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Policy and Program Development. 371.9 Section 371.9... and Program Development. (a) General statement. Policy and Program Development (PPD) provides... development; and policy, risk, and economic analysis for APHIS programs. (3) Analyzing the environmental...

  16. 34 CFR 263.4 - What training costs may a Professional Development program include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false What training costs may a Professional Development... GRANT PROGRAMS Professional Development Program § 263.4 What training costs may a Professional Development program include? (a) A Professional Development program may include, as training costs, assistance...

  17. 34 CFR 263.4 - What training costs may a Professional Development program include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false What training costs may a Professional Development... GRANT PROGRAMS Professional Development Program § 263.4 What training costs may a Professional Development program include? (a) A Professional Development program may include, as training costs, assistance...

  18. Comparison of international guideline programs to evaluate and update the Dutch program for clinical guideline development in physical therapy

    PubMed Central

    Van der Wees, Philip J; Hendriks, Erik JM; Custers, Jan WH; Burgers, Jako S; Dekker, Joost; de Bie, Rob A

    2007-01-01

    Background Clinical guidelines are considered important instruments to improve quality in health care. Since 1998 the Royal Dutch Society for Physical Therapy (KNGF) produced evidence-based clinical guidelines, based on a standardized program. New developments in the field of guideline research raised the need to evaluate and update the KNGF guideline program. Purpose of this study is to compare different guideline development programs and review the KNGF guideline program for physical therapy in the Netherlands, in order to update the program. Method Six international guideline development programs were selected, and the 23 criteria of the AGREE Instrument were used to evaluate the guideline programs. Information about the programs was retrieved from published handbooks of the organizations. Also, the Dutch program for guideline development in physical therapy was evaluated using the AGREE criteria. Further comparison the six guideline programs was carried out using the following elements of the guideline development processes: Structure and organization; Preparation and initiation; Development; Validation; Dissemination and implementation; Evaluation and update. Results Compliance with the AGREE criteria of the guideline programs was high. Four programs addressed 22 AGREE criteria, and two programs addressed 20 AGREE criteria. The previous Dutch program for guideline development in physical therapy lacked in compliance with the AGREE criteria, meeting only 13 criteria. Further comparison showed that all guideline programs perform systematic literature searches to identify the available evidence. Recommendations are formulated and graded, based on evidence and other relevant factors. It is not clear how decisions in the development process are made. In particular, the process of translating evidence into practice recommendations can be improved. Conclusion As a result of international developments and consensus, the described processes for developing clinical practice guidelines have much in common. The AGREE criteria are common basis for the development of guidelines, although it is not clear how final decisions are made. Detailed comparison of the different guideline programs was used for updating the Dutch program. As a result the updated KNGF program complied with 22 AGREE criteria. International discussion is continuing and will be used for further improvement of the program. PMID:18036215

  19. Comparison of international guideline programs to evaluate and update the Dutch program for clinical guideline development in physical therapy.

    PubMed

    Van der Wees, Philip J; Hendriks, Erik J M; Custers, Jan W H; Burgers, Jako S; Dekker, Joost; de Bie, Rob A

    2007-11-23

    Clinical guidelines are considered important instruments to improve quality in health care. Since 1998 the Royal Dutch Society for Physical Therapy (KNGF) produced evidence-based clinical guidelines, based on a standardized program. New developments in the field of guideline research raised the need to evaluate and update the KNGF guideline program. Purpose of this study is to compare different guideline development programs and review the KNGF guideline program for physical therapy in the Netherlands, in order to update the program. Six international guideline development programs were selected, and the 23 criteria of the AGREE Instrument were used to evaluate the guideline programs. Information about the programs was retrieved from published handbooks of the organizations. Also, the Dutch program for guideline development in physical therapy was evaluated using the AGREE criteria. Further comparison the six guideline programs was carried out using the following elements of the guideline development processes: Structure and organization; Preparation and initiation; Development; Validation; Dissemination and implementation; Evaluation and update. Compliance with the AGREE criteria of the guideline programs was high. Four programs addressed 22 AGREE criteria, and two programs addressed 20 AGREE criteria. The previous Dutch program for guideline development in physical therapy lacked in compliance with the AGREE criteria, meeting only 13 criteria. Further comparison showed that all guideline programs perform systematic literature searches to identify the available evidence. Recommendations are formulated and graded, based on evidence and other relevant factors. It is not clear how decisions in the development process are made. In particular, the process of translating evidence into practice recommendations can be improved. As a result of international developments and consensus, the described processes for developing clinical practice guidelines have much in common. The AGREE criteria are common basis for the development of guidelines, although it is not clear how final decisions are made. Detailed comparison of the different guideline programs was used for updating the Dutch program. As a result the updated KNGF program complied with 22 AGREE criteria. International discussion is continuing and will be used for further improvement of the program.

  20. 25 CFR 39.137 - May schools operate a language development program without a specific appropriation from Congress?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false May schools operate a language development program... Formula Language Development Programs § 39.137 May schools operate a language development program without a specific appropriation from Congress? Yes, a school may operate a language development program...

  1. Logic models as a tool for sexual violence prevention program development.

    PubMed

    Hawkins, Stephanie R; Clinton-Sherrod, A Monique; Irvin, Neil; Hart, Laurie; Russell, Sarah Jane

    2009-01-01

    Sexual violence is a growing public health problem, and there is an urgent need to develop sexual violence prevention programs. Logic models have emerged as a vital tool in program development. The Centers for Disease Control and Prevention funded an empowerment evaluation designed to work with programs focused on the prevention of first-time male perpetration of sexual violence, and it included as one of its goals, the development of program logic models. Two case studies are presented that describe how significant positive changes can be made to programs as a result of their developing logic models that accurately describe desired outcomes. The first case study describes how the logic model development process made an organization aware of the importance of a program's environmental context for program success; the second case study demonstrates how developing a program logic model can elucidate gaps in organizational programming and suggest ways to close those gaps.

  2. An Investigation of Teaching and Learning Programs in Pharmacy Education

    PubMed Central

    Baia, Patricia

    2016-01-01

    Objective. To investigate published, peer-reviewed literature on pharmacy teaching and learning development programs and to synthesize existing data, examine reported efficacy and identify future areas for research. Methods. Medline and ERIC databases were searched for studies on teaching development programs published between 2001 and 2015. Results. Nineteen publications were included, representing 21 programs. Twenty programs were resident teaching programs, one program described faculty development. The majority of programs spanned one year and delivered instruction on teaching methodologies and assessment measures. All except one program included experiential components. Thirteen publications presented outcomes data; most measured satisfaction and self-perceived improvement. Conclusion. Published literature on teacher development in pharmacy is focused more on training residents than on developing faculty members. Although programs are considered important and highly valued by program directors and participants, little data substantiates that these programs improve teaching. Future research could focus on measurement of program outcomes and documentation of teaching development for existing faculty members. PMID:27293226

  3. An Investigation of Teaching and Learning Programs in Pharmacy Education.

    PubMed

    Strang, Aimee F; Baia, Patricia

    2016-05-25

    Objective. To investigate published, peer-reviewed literature on pharmacy teaching and learning development programs and to synthesize existing data, examine reported efficacy and identify future areas for research. Methods. Medline and ERIC databases were searched for studies on teaching development programs published between 2001 and 2015. Results. Nineteen publications were included, representing 21 programs. Twenty programs were resident teaching programs, one program described faculty development. The majority of programs spanned one year and delivered instruction on teaching methodologies and assessment measures. All except one program included experiential components. Thirteen publications presented outcomes data; most measured satisfaction and self-perceived improvement. Conclusion. Published literature on teacher development in pharmacy is focused more on training residents than on developing faculty members. Although programs are considered important and highly valued by program directors and participants, little data substantiates that these programs improve teaching. Future research could focus on measurement of program outcomes and documentation of teaching development for existing faculty members.

  4. 24 CFR 984.301 - Program implementation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT SECTION 8 AND PUBLIC HOUSING FAMILY SELF-SUFFICIENCY PROGRAM Program Operation § 984.301 Program... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Program implementation. 984.301 Section 984.301 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  5. Crucial issues of multi-beam feed-back control with ECH/ECCD in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Cirant, S.; Berrino, J.; Gandini, F.; Granucci, G.; Iannone, F.; Lazzaro, E.; D'Antona, G.; Farina, D.; Koppenburg, K.; Nowak, S.; Ramponi, G.

    2005-01-01

    Proof of principle of feed-back controlled Electron Cyclotron Heating and Current Drive (ECH/ECCD), aiming at automatic limitation (or suppression) of Neoclassical Tearing Modes amplitude, has been achieved in a number of present machines. In addition to Neoclassical Tearing Mode stabilization, more applications of well-localized ECH/ECCD can be envisaged (saw-tooth crash control, current profile control, thermal barrier control, disruption mitigation). However, in order to be able to take a step forward towards the application of these techniques to burning plasmas, some crucial issues should be more deeply analyzed: multi-beam simultaneous action, control of deposition radii rdep, diagnostic of plasma reaction. So far the Electron Cyclotron Emission has been the most important tool to get localized information on plasma response, essential for both rdep and risland recognition, but its use in very hot burning plasmas within automatic control loops should be carefully verified. Assuming that plasma response is appropriately diagnosed, the next matter to be discussed concerns how to control rdep, since all techniques so far used, or proposed (plasma position, toroidal field, mechanical beam steering, gyrotron frequency tuning) have limitations or drawbacks. Finally, simultaneous multiple actions on many actuators (EC beams), concurring to automatic control of one single parameter (e.g. NTM amplitude) might be a challenging task for the controller, particularly in view of the fact that any effect of each beam becomes visible only when it is positioned very close to the right radius. All these interlinked aspects are discussed in the paper.

  6. Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller

    NASA Astrophysics Data System (ADS)

    Maljaars, E.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J. M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A. A.; Vu, N. M. T.; The EUROfusion MST1-team; The TCV-team

    2017-12-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety factor profile (q-profile) and kinetic plasma parameters such as the plasma beta. This demands to establish reliable profile control routines in presently operational tokamaks. We present a model predictive profile controller that controls the q-profile and plasma beta using power requests to two clusters of gyrotrons and the plasma current request. The performance of the controller is analyzed in both simulation and TCV L-mode discharges where successful tracking of the estimated inverse q-profile as well as plasma beta is demonstrated under uncertain plasma conditions and the presence of disturbances. The controller exploits the knowledge of the time-varying actuator limits in the actuator input calculation itself such that fast transitions between targets are achieved without overshoot. A software environment is employed to prepare and test this and three other profile controllers in parallel in simulations and experiments on TCV. This set of tools includes the rapid plasma transport simulator RAPTOR and various algorithms to reconstruct the plasma equilibrium and plasma profiles by merging the available measurements with model-based predictions. In this work the estimated q-profile is merely based on RAPTOR model predictions due to the absence of internal current density measurements in TCV. These results encourage to further exploit model predictive profile control in experiments on TCV and other (future) tokamaks.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materialsmore » by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.« less

  8. High-Field Liquid-State Dynamic Nuclear Polarization in Microliter Samples.

    PubMed

    Yoon, Dongyoung; Dimitriadis, Alexandros I; Soundararajan, Murari; Caspers, Christian; Genoud, Jeremy; Alberti, Stefano; de Rijk, Emile; Ansermet, Jean-Philippe

    2018-05-01

    Nuclear hyperpolarization in the liquid state by dynamic nuclear polarization (DNP) has been of great interest because of its potential use in NMR spectroscopy of small samples of biological and chemical compounds in aqueous media. Liquid state DNP generally requires microwave resonators in order to generate an alternating magnetic field strong enough to saturate electron spins in the solution. As a consequence, the sample size is limited to dimensions of the order of the wavelength, and this restricts the sample volume to less than 100 nL for DNP at 9 T (∼260 GHz). We show here a new approach that overcomes this sample size limitation. Large saturation of electron spins was obtained with a high-power (∼150 W) gyrotron without microwave resonators. Since high power microwaves can cause serious dielectric heating in polar solutions, we designed a planar probe which effectively alleviates dielectric heating. A thin liquid sample of 100 μm of thickness is placed on a block of high thermal conductivity aluminum nitride, with a gold coating that serves both as a ground plane and as a heat sink. A meander or a coil were used for NMR. We performed 1 H DNP at 9.2 T (∼260 GHz) and at room temperature with 10 μL of water, a volume that is more than 100× larger than reported so far. The 1 H NMR signal is enhanced by a factor of about -10 with 70 W of microwave power. We also demonstrated the liquid state of 31 P DNP in fluorobenzene containing triphenylphosphine and obtained an enhancement of ∼200.

  9. Development of a multihospital pharmacy quality assurance program.

    PubMed

    Hoffmann, R P; Ravin, R; Colaluca, D M; Gifford, R; Grimes, D; Grzegorczyk, R; Keown, F; Kuhr, F; McKay, R; Peyser, J; Ryan, R; Zalewski, C

    1980-07-01

    Seven community hospitals have worked cooperatively for 18 months to develop an initial hospital pharmacy quality assurance program. Auditing criteria were developed for nine service areas corresponding to the model program developed by the American Society of Hospital Pharmacists. Current plans are to implement and modify this program as required at each participating hospital. Follow-up programs will also be essential to a functional, ongoing program, and these will be developed in the future.

  10. Developing a Family-Centered, Hospital-Based Perinatal Education Program

    PubMed Central

    Westmoreland, Marcia Haskins; Zwelling, Elaine

    2000-01-01

    The development of a family-centered, comprehensive perinatal education program for a large, urban hospital system is described. This program was developed in conjunction with the building of a new women's center and, although the authors were fortunate that several opportunities for educational program development were linked to this project, many of the steps taken and the lessons learned can be helpful to anyone desiring to develop a similar program. This article relates perinatal education to the principles of family-centered maternity care, outlines the criteria for a quality educational program, gives rationale for this type of program development, and offers practical suggestions for starting or enhancing a perinatal education program within a hospital system. PMID:17273228

  11. Evaluating Youth Development Programs: Progress and Promise

    PubMed Central

    Brooks-Gunn, Jeanne

    2016-01-01

    Advances in theories of adolescent development and positive youth development have greatly increased our understanding of how programs and practices with adolescents can impede or enhance their development. In this paper the authors reflect on the progress in research on youth development programs in the last two decades, since possibly the first review of empirical evaluations by Roth, Brooks-Gunn, Murray, and Foster (1998). The authors use the terms Version 1.0, 2.0 and 3.0 to refer to changes in youth development research and programs over time. They argue that advances in theory and descriptive accounts of youth development programs (Version 2.0) need to be coupled with progress in definitions of youth development programs, measurement of inputs and outputs that incorporate an understanding of programs as contexts for development, and stronger design and evaluation of programs (Version 3.0). The authors also advocate for an integration of prevention and promotion research, and for use of the term youth development rather than positive youth development. PMID:28077922

  12. Characteristics of sports-based youth development programs.

    PubMed

    Perkins, Daniel F; Noam, Gil G

    2007-01-01

    The term "sports-based youth development programs" is coined and defined in the context of the community youth development framework. Sports-based youth development programs are out-of-school-time programs that use a particular sport to facilitate learning and life skill development in youth. Community youth development programs use a community youth development approach to create opportunities for youth to connect to others, develop skills, and use those skills to contribute to their communities. This, in turn, increases their ability to succeed. The authors describe how sports-based youth development programs can be contexts that promote positive youth development. The features of positive developmental settings for youth from the work of the National Research Council and the Institute of Medicine, as well as the features identified by other researchers, are presented in the context of sports-based youth development programs. For example, a sports program that provides appropriate structure has delineated clear rules, expectations, and responsibilities for youth, parents, coaches, officials, and other organizers.

  13. Examples of Sports-Based Youth Development Programs

    ERIC Educational Resources Information Center

    Berlin, Richard A.; Dworkin, Aaron; Eames, Ned; Menconi, Arn; Perkins, Daniel F.

    2007-01-01

    The authors provide examples of sports-based youth development programs and offer information about program mission and vision, program design and content, evaluation results, and program sustainability. The four sports-based youth development programs presented are Harlem RBI, Tenacity, Snowsports Outreach Society, and Hoops & Leaders…

  14. Creation and Implementation of a Workforce Development Pipeline Program at MSFC

    NASA Technical Reports Server (NTRS)

    Hix, Billy

    2003-01-01

    Within the context of NASA's Education Programs, this Workforce Development Pipeline guide describes the goals and objectives of MSFC's Workforce Development Pipeline Program as well as the principles and strategies for guiding implementation. It is designed to support the initiatives described in the NASA Implementation Plan for Education, 1999-2003 (EP-1998-12-383-HQ) and represents the vision of the members of the Education Programs office at MSFC. This document: 1) Outlines NASA s Contribution to National Priorities; 2) Sets the context for the Workforce Development Pipeline Program; 3) Describes Workforce Development Pipeline Program Strategies; 4) Articulates the Workforce Development Pipeline Program Goals and Aims; 5) List the actions to build a unified approach; 6) Outlines the Workforce Development Pipeline Programs guiding Principles; and 7) The results of implementation.

  15. 25 CFR 39.130 - Can ISEF funds be used for Language Development Programs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... INDIAN SCHOOL EQUALIZATION PROGRAM Indian School Equalization Formula Language Development Programs § 39.130 Can ISEF funds be used for Language Development Programs? Yes, schools can use ISEF funds to... 25 Indians 1 2010-04-01 2010-04-01 false Can ISEF funds be used for Language Development Programs...

  16. 25 CFR 39.130 - Can ISEF funds be used for Language Development Programs?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Can ISEF funds be used for Language Development Programs... INDIAN SCHOOL EQUALIZATION PROGRAM Indian School Equalization Formula Language Development Programs § 39.130 Can ISEF funds be used for Language Development Programs? Yes, schools can use ISEF funds to...

  17. Systems Engineering Education Development(SEED)Case Study

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.

    2003-01-01

    The Systems Engineering Development Program (SEED) was initiated to help Goddard resolve a Systems Engineering skill shortage. The chronology of events and the experiences of the pilot program are outlined to describe the development of the present program. The program goals are included in order to give a focus on what the developers saw as the program drivers. Lessons learned from a pilot program were incorporated into the present program. This program is constantly learning from its past efforts and looks for continuous improvement. We list several future ideas for improvement and change.

  18. DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM

    EPA Science Inventory

    The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...

  19. 34 CFR 263.3 - What definitions apply to the Professional Development program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false What definitions apply to the Professional Development... Professional Development Program § 263.3 What definitions apply to the Professional Development program? The following definitions apply to the Professional Development program: Bureau-funded school means a Bureau...

  20. Overview of Faculty Development Programs for Interprofessional Education.

    PubMed

    Ratka, Anna; Zorek, Joseph A; Meyer, Susan M

    2017-06-01

    Objectives. To describe characteristics of faculty development programs designed to facilitate interprofessional education, and to compile recommendations for development, delivery, and assessment of such faculty development programs. Methods. MEDLINE, CINAHL, ERIC, and Web of Science databases were searched using three keywords: faculty development, interprofessional education, and health professions. Articles meeting inclusion criteria were analyzed for emergent themes, including program design, delivery, participants, resources, and assessment. Results. Seventeen articles were identified for inclusion, yielding five characteristics of a successful program: institutional support; objectives and outcomes based on interprofessional competencies; focus on consensus-building and group facilitation skills; flexibility based on institution- and participant-specific characteristics; and incorporation of an assessment strategy. Conclusion. The themes and characteristics identified in this literature overview may support development of faculty development programs for interprofessional education. An advanced evidence base for interprofessional education faculty development programs is needed.

  1. 7 CFR 23.9 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... development programs and policies. (d) Regional Programs will be consonant with all rural development... Secretary of Agriculture STATE AND REGIONAL ANNUAL PLANS OF WORK Regional Program § 23.9 General. (a... “Regional Programs.” (b) The Regional Programs shall develop and provide knowledge essential to assist and...

  2. 48 CFR 719.273 - The U.S. Agency for International Development (USAID) Mentor-Protégé Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... International Development (USAID) Mentor-Protégé Program. 719.273 Section 719.273 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS The U.S. Agency for International Development (USAID) Mentor-Protégé Program 719.273 The U.S. Agency for...

  3. Early Careerist Interest and Participation in Health Care Leadership Development Programs.

    PubMed

    Thompson, Jon M; Temple, April

    2015-01-01

    Health care organizations are increasingly embracing leadership development programs. These programs include a variety of specific activities, such as formally structured leadership development, as well as mentoring, personal development and coaching, 360-degree feedback, and job enlargement, in order to increase the leadership skills of managers and high-potential staff. However, there is a lack of information on how early careerists in health care management view these programs and the degree to which they participate. This article reports on a study undertaken to determine how early careerists working in health care organizations view leadership development programs and their participation in such programs offered by their employers. Study findings are based on a survey of 126 early careerists who are graduates of an undergraduate health services administration program. We found varying levels of interest and participation in specific leadership development activities. In addition, we found that respondents with graduate degrees and those with higher compensation were more likely to participate in selected leadership development program activities. Implications of study findings for health care organizations and early careerists in the offering of, and participation in, leadership development programs are discussed.

  4. Educator's Guide to Program Development in Natural Resources: Program Development Summary.

    ERIC Educational Resources Information Center

    Yoder, Jon; Maine, Neal

    2001-01-01

    Distinguishes between natural resource programs and natural resource projects and provides a project planning outline. Addresses critical elements and concerns in the development of natural resource programs. (DDR)

  5. Programming Support Library (PSL). Users Manual.

    DTIC Science & Technology

    1978-05-01

    which provides the tools to organize, implement, and control computer program develop- ment. This involves the support of the actual programming process...provides the tools toorganize, implement, and control computer program development. The system is designed specifically to support top-down development...Structured Programming are finding increasing application in the computing community. Structured programs are, however, difficult to write in

  6. Aquatic Exercise for the Aged.

    ERIC Educational Resources Information Center

    Daniel, Michael; And Others

    The development and implementation of aquatic exercise programs for the aged are discussed in this paper. Program development includes a discussion of training principles, exercise leadership and the setting up of safe water exercise programs for the participants. The advantages of developing water exercise programs and not swimming programs are…

  7. Developing parenting programs to prevent child health risk behaviors: a practice model

    PubMed Central

    Jackson, Christine; Dickinson, Denise M.

    2009-01-01

    Research indicates that developing public health programs to modify parenting behaviors could lead to multiple beneficial health outcomes for children. Developing feasible effective parenting programs requires an approach that applies a theory-based model of parenting to a specific domain of child health and engages participant representatives in intervention development. This article describes this approach to intervention development in detail. Our presentation emphasizes three points that provide key insights into the goals and procedures of parenting program development. These are a generalized theoretical model of parenting derived from the child development literature, an established eight-step parenting intervention development process and an approach to integrating experiential learning methods into interventions for parents and children. By disseminating this framework for a systematic theory-based approach to developing parenting programs, we aim to support the program development efforts of public health researchers and practitioners who recognize the potential of parenting programs to achieve primary prevention of health risk behaviors in children. PMID:19661165

  8. Overview of Faculty Development Programs for Interprofessional Education

    PubMed Central

    Zorek, Joseph A.; Meyer, Susan M.

    2017-01-01

    Objectives. To describe characteristics of faculty development programs designed to facilitate interprofessional education, and to compile recommendations for development, delivery, and assessment of such faculty development programs. Methods. MEDLINE, CINAHL, ERIC, and Web of Science databases were searched using three keywords: faculty development, interprofessional education, and health professions. Articles meeting inclusion criteria were analyzed for emergent themes, including program design, delivery, participants, resources, and assessment. Results. Seventeen articles were identified for inclusion, yielding five characteristics of a successful program: institutional support; objectives and outcomes based on interprofessional competencies; focus on consensus-building and group facilitation skills; flexibility based on institution- and participant-specific characteristics; and incorporation of an assessment strategy. Conclusion. The themes and characteristics identified in this literature overview may support development of faculty development programs for interprofessional education. An advanced evidence base for interprofessional education faculty development programs is needed. PMID:28720924

  9. Creating an institutional resource for research education and career development: a novel model from Oregon Clinical and Translational Research Institute.

    PubMed

    Morris, Cynthia D; McCracken, Karen; Samuels, Mary; Orwoll, Eric

    2014-06-01

    We have created an education and career development program within the CTSA structure at OHSU that serves the entire institution. We believe that this is unusual in scope among CTSA programs and has contributed to an increase in career development funding and research skills among fellows and faculty. While the key element is the institutional scope, important elements include: Tailoring programs of emphasis to points of inflection on the career pathway. Minimizing barriers to education by creating a flexible, tuition-free program. An integrated one-stop education and career development approach. An institutional program for career development award applicants as well as recipients. This career development program was developed within the context of a midsize health science university but the overall strategy may be applied to other CTSAs to simplify and reduce costs of education program development.

  10. 77 FR 26537 - Notice of Commissioners and Staff Attendance at FERC Leadership Development Program Graduation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Attendance at FERC Leadership Development Program Graduation/Induction Ceremony The Federal Energy Regulatory... may attend the following event: FERC Leadership Development Program Graduation/Induction Ceremony: 888... and welcome 17 employees selected for the 2012 Leadership Development Program and graduate 15...

  11. 24 CFR 984.105 - Minimum program size.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT SECTION 8 AND PUBLIC HOUSING FAMILY SELF-SUFFICIENCY PROGRAM General § 984.105 Minimum program... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Minimum program size. 984.105 Section 984.105 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  12. 24 CFR 984.202 - Program Coordinating Committee (PCC).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... URBAN DEVELOPMENT SECTION 8 AND PUBLIC HOUSING FAMILY SELF-SUFFICIENCY PROGRAM Program Development and... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Program Coordinating Committee (PCC). 984.202 Section 984.202 Housing and Urban Development Regulations Relating to Housing and Urban...

  13. Do less effective teachers choose professional development does it matter?

    PubMed

    Barrett, Nathan; Butler, J S; Toma, Eugenia F

    2012-10-01

    In an ongoing effort to improve teacher quality, most states require continuing education or professional development for their in-service teachers. Studies evaluating the effectiveness of various professional development programs have assumed a normal distribution of quality of teachers participating in the programs. Because participation in many professional development programs is either targeted or voluntary, this article suggests past evaluations of the effectiveness of professional development may be subject to selection bias and policy recommendations may be premature. This article presents an empirical framework for evaluating professional development programs where treatment is potentially nonrandom, and explicitly accounts for the teacher's prior effectiveness in the classroom as a factor that may influence participation in professional development. This article controls for the influence of selection bias on professional development outcomes by generating a matched sample based on propensity scores and then estimating the program's effect. In applying this framework to the professional development program examined in this article, less effective teachers are found to be more likely to participate in the program, and correcting for this selection leads to different conclusions regarding the program's effectiveness than when ignoring teacher selection patterns.

  14. 75 FR 20269 - Regulatory Reporting Requirements for the Indian Community Development Block Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ...-AC79 Regulatory Reporting Requirements for the Indian Community Development Block Grant Program AGENCY... final rule revises the reporting requirements for the Indian Community Development Block Grants (ICDBG... Indian Community Development Block Grant (ICDBG) program. The purpose of the ICDBG program is the...

  15. 34 CFR 606.1 - What is the Developing Hispanic-Serving Institutions Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INSTITUTIONS PROGRAM General § 606.1 What is the Developing Hispanic-Serving Institutions Program? The purpose of the Developing Hispanic-Serving Institutions Program is to provide grants to eligible institutions... 34 Education 3 2011-07-01 2011-07-01 false What is the Developing Hispanic-Serving Institutions...

  16. 76 FR 5799 - Notice of Commissioners and Staff Attendance at FERC Leadership Development Program Induction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... Attendance at FERC Leadership Development Program Induction Ceremony January 26, 2011. The Federal Energy... Commission staff may attend the following event: FERC Leadership Development Program Induction Ceremony: 888... welcome 16 employees selected for the 2011 Leadership Development Program. Kimberly D. Bose, Secretary...

  17. 34 CFR 675.34 - Multi-Institutional job location and development programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false Multi-Institutional job location and development... (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL WORK-STUDY PROGRAMS Job Location and Development Program § 675.34 Multi-Institutional job location and development programs. (a) An...

  18. 34 CFR 675.34 - Multi-Institutional job location and development programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false Multi-Institutional job location and development... (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL WORK-STUDY PROGRAMS Job Location and Development Program § 675.34 Multi-Institutional job location and development programs. (a) An...

  19. 34 CFR 675.34 - Multi-Institutional job location and development programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Multi-Institutional job location and development... (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL WORK-STUDY PROGRAMS Job Location and Development Program § 675.34 Multi-Institutional job location and development programs. (a) An...

  20. 34 CFR 675.34 - Multi-Institutional job location and development programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false Multi-Institutional job location and development... (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL WORK-STUDY PROGRAMS Job Location and Development Program § 675.34 Multi-Institutional job location and development programs. (a) An...

  1. 34 CFR 675.34 - Multi-Institutional job location and development programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Multi-Institutional job location and development... (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL WORK-STUDY PROGRAMS Job Location and Development Program § 675.34 Multi-Institutional job location and development programs. (a) An...

  2. 24 CFR 570.415 - Community Development Work Study Program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Community Development Work Study... Grants § 570.415 Community Development Work Study Program. (a) Applicability and objectives. HUD makes... students who participate in a work study program while enrolled in full-time graduate programs in community...

  3. Design of a continuous quality improvement program to prevent falls among community-dwelling older adults in an integrated healthcare system.

    PubMed

    Ganz, David A; Yano, Elizabeth M; Saliba, Debra; Shekelle, Paul G

    2009-11-16

    Implementing quality improvement programs that require behavior change on the part of health care professionals and patients has proven difficult in routine care. Significant randomized trial evidence supports creating fall prevention programs for community-dwelling older adults, but adoption in routine care has been limited. Nationally-collected data indicated that our local facility could improve its performance on fall prevention in community-dwelling older people. We sought to develop a sustainable local fall prevention program, using theory to guide program development. We planned program development to include important stakeholders within our organization. The theory-derived plan consisted of 1) an initial leadership meeting to agree on whether creating a fall prevention program was a priority for the organization, 2) focus groups with patients and health care professionals to develop ideas for the program, 3) monthly workgroup meetings with representatives from key departments to develop a blueprint for the program, 4) a second leadership meeting to confirm that the blueprint developed by the workgroup was satisfactory, and also to solicit feedback on ideas for program refinement. The leadership and workgroup meetings occurred as planned and led to the development of a functional program. The focus groups did not occur as planned, mainly due to the complexity of obtaining research approval for focus groups. The fall prevention program uses an existing telephonic nurse advice line to 1) place outgoing calls to patients at high fall risk, 2) assess these patients' risk factors for falls, and 3) triage these patients to the appropriate services. The workgroup continues to meet monthly to monitor the progress of the program and improve it. A theory-driven program development process has resulted in the successful initial implementation of a fall prevention program.

  4. From professional development for science teachers to student learning in science

    NASA Astrophysics Data System (ADS)

    Tinoca, Luis Fonseca

    This study investigates the effects of professional development for science teachers on student learning. It is usually expected that professional development programs positively impact student learning, however this dimension is not commonly incorporated in the programs evaluation. It is simply assumed that students will be indirectly impacted through their participating teachers in the work with their students. Two main research questions are addressed: (1) Are professional development programs effective in enhancing student learning in science? (2) What are the characteristics of the most and least effective programs? To answer these questions a meta-analysis of 37 professional development programs reporting their impact on student learning was performed. Program characteristics have been defined according to the categories defined by Loucks-Horsley et al (1998), the National Science Education Standards (NRC, 1996), as well as new categories developed by us analyzing other variables such as the programs length. A significant impact of professional development for science teachers on student learning has been found in the form of an overall correlation effect size of r = 0.22 (p < 0.001). Moreover, a Fixed Effects Model was used to differentiate between the impacts of the different characteristics of professional development programs for science teachers. In particular, programs emphasizing work on curriculum development, replacement, or implementation, scientific inquiry, pedagogical content knowledge, lasting over 6 month and with a total duration of at least 100 hours have been identified as having a larger impact on student learning. To enhance the findings vignettes have been developed based on the attained effect sizes describing possible professional development programs. Recommendations for present and future professional development programs are made based on what works best in order to maximize their impact on student learning.

  5. Developing a longitudinal cancer nursing education program in Honduras.

    PubMed

    Sheldon, Lisa Kennedy; Wise, Barbara; Carlson, Julie R; Dowds, Cynthia; Sarchet, Vanessa; Sanchez, Jose Angel

    2013-12-01

    The present paper is a longitudinal study which aims to develop and deliver cancer nursing education conferences in Honduras using volunteer nurse educators. This program intends to (1) perform site assessments of work environments and resources for cancer care in Honduras, (2) develop cancer nursing education programs, (3) survey conference participants continuing education needs, (4) deliver cancer nursing education conferences, and (5) share data with local and global partners for future cancer programs. The study draws on a longitudinal program development with site assessments, data collection, and educational conferences at two time points. Assessments and surveys were used for conference development and delivery by volunteer nurse educators. Site assessments and conferences were delivered twice. Data were collected regarding assessments and surveys to inform program development. Survey data revealed that <4 % had formal training in cancer care and >65 % had internet access. Participants desired more information about handling of chemotherapy, symptom management, and palliative care. Volunteer nurse educators perform site assessments and develop educational programming for cancer nurses. Local and global partners should explore internet-based programs between site visits to create sustainable education programs.

  6. Development of a multilayer interference simulation program for MSS systems

    NASA Technical Reports Server (NTRS)

    Izadian, Jamal S.

    1993-01-01

    This paper discusses the development of a multilayer interference analysis and simulation program which is used to evaluate interference between non-geostationary and geostationary satellites. In addition to evaluating interference, this program can be used in the development of sharing criteria and coordination among various Mobile Satellite Services (MSS) systems. A C++/Windows implementation of this program, called Globalstar Interference Simulation Program (GISP), has been developed.

  7. Overview of Advanced Turbine Systems Program

    NASA Astrophysics Data System (ADS)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  8. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  9. Factor Analysis of the HEW National Strategy for Youth Development Model's Community Program Impact Scales.

    ERIC Educational Resources Information Center

    Truckenmiller, James L.

    The former HEW (Health, Education, and Welfare) National Strategy for Youth Development Model proposed a community-based program to promote positive youth development and to prevent delinquency through a sequence of youth needs assessments, needs-targeted programs, and program impact evaluation. HEW Community Program Impact Scales data obtained…

  10. 10 CFR 851.11 - Development and approval of worker safety and health program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Development and approval of worker safety and health program. 851.11 Section 851.11 Energy DEPARTMENT OF ENERGY WORKER SAFETY AND HEALTH PROGRAM Program Requirements § 851.11 Development and approval of worker safety and health program. (a) Preparation and...

  11. ACCP white paper: Essential components of a faculty development program for pharmacy practice faculty.

    PubMed

    Boyce, Eric G; Burkiewicz, Jill S; Haase, Mark R; MacLaughlin, Eric J; Segal, Alissa R; Chung, Eunice P; Chan, Lingtak-Neander; Rospond, Raylene M; Barone, Joseph A; Durst, Stephen W; Wells, Barbara G

    2009-01-01

    Prospective, ongoing faculty development programs are important in the initial orientation and short- and long-term development of faculty in higher education. Pharmacy practice faculty are likely to benefit from a comprehensive faculty development program due to the complex nature of their positions, incomplete training in select areas, and multiple demands on their time. The need for faculty development programs is supported by the increased need for pharmacy practice faculty due to the increased number of colleges and schools of pharmacy, expanding enrollment in existing colleges and schools, and loss of existing senior faculty to retirement or other opportunities within or outside the academy. This White Paper describes a comprehensive faculty development program that is designed to enhance the satisfaction, retention, and productivity of new and existing pharmacy practice faculty. A comprehensive faculty development program will facilitate growth throughout a faculty member's career in pertinent areas. The structure of such a program includes an orientation program to provide an overview of responsibilities and abilities, a mentoring program to provide one-on-one guidance from a mentor, and a sustained faculty development program to provide targeted development based on individual and career needs. The content areas to be covered in each component include the institution (e.g., culture, structure, roles, responsibilities), student-related activities, teaching abilities, scholarship and research abilities, practice abilities and the practice site, and professional abilities (e.g., leadership, career planning, balancing responsibilities). A general framework for a comprehensive pharmacy practice faculty development program is provided to guide each college, school, department, and division in the design and delivery of a program that meets the needs and desires of the institution and its faculty.

  12. Effective Practices for Evaluating Education and Public Outreach Programs

    NASA Astrophysics Data System (ADS)

    Wilkerson, S.

    2013-12-01

    Stephanie Baird Wilkerson, PhD Carol Haden EdD Magnolia Consulting,LLC Education and public outreach (EPO) program developers and providers seeking insights regarding effective practices for evaluating EPO activities programs benefit from understanding why evaluation is critical to the success of EPO activities and programs, what data collection methods are appropriate, and how to effectively communicate and report findings. Based on our extensive experience evaluating EPO programs, we will share lessons learned and examples of how these practices play out in actual evaluation studies. EPO program developers, providers, and evaluators must consider several factors that influence which evaluation designs and data collection methods will be most appropriate, given the nature of EPO programs. Effective evaluation practices of EPO programs take into account a program's phase of development, duration, and budget as well as a program's intended outcomes. EPO programs that are just beginning development will have different evaluation needs and priorities than will well-established programs. Effective evaluation practices consider the 'life' of a program with an evaluation design that supports a program's growth through various phases including development, revision and refinement, and completion. It would be premature and inappropriate to expect the attainment of longer-term outcomes of activities during program development phases or early stages of implementation. During program development, EPO providers should clearly define program outcomes that are feasible and appropriate given a program's scope and expected reach. In many respects, this directly relates to the amount of time, or duration, intended audiences participate in EPO programs. As program duration increases so does the likelihood that the program can achieve longer-term outcomes. When choosing which outcomes are reasonable to impact and measure, program duration should be considered. Effective evaluation practices include selecting appropriate data collection methods given a program's duration and corresponding intended outcomes. Data collection methods for programs of short duration might involve simple evaluation activities, whereas programs of longer duration might involve ongoing data collection measures including longitudinal student surveys, implementation logs, student journals, and student achievement measures. During our presentation, we will share examples from our own experience to illustrate how effective evaluation practices can be applied to various EPO programs based on program duration. Irrespective of duration, we find that EPO program developers and providers want both formative feedback to guide improvements and summative feedback on outcomes. More often than not, evaluation budgets for EPO programs are meager at best, yet come with the same information needs and priorities as programs with larger evaluation budgets. So how do program providers get the information they need given their limited funds for evaluation? We will offer several recommendations for helping EPO program providers work with evaluators to become better-informed consumers of evaluation by maximizing evaluation offerings and minimizing costs. During our presentation we also will share examples of communicating and reporting results for EPO program developers, EPO facilitators and practitioners, and funders.

  13. Undergraduate Course and Curriculum Development Program and Calculus and the Bridge to Calculus Program: 1993 Awards.

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA. Div. of Undergraduate Education.

    The Undergraduate Course and Curriculum Development Program of the National Science Foundation supports the development of courses in all disciplines to improve the quality of undergraduate courses and curricula in science, mathematics, engineering, and technology. The purpose of the program in Curriculum Development in Mathematics: Calculus and…

  14. Developing Strategic Collaborative Partnerships within a Workforce Development Program

    ERIC Educational Resources Information Center

    Hiscano, Lisa Raudelunas

    2010-01-01

    Workforce development programs provide training and education to welfare recipients to prepare them to obtain and retain employment in their communities. Federal, state, and local investments are made to develop and implement programs. But, do these programs have relationships with local employers to obtain their input to provide the education and…

  15. Preparing for High Technology: Robotics Programs. Research & Development Series No. 233.

    ERIC Educational Resources Information Center

    Ashley, William; And Others

    This guide is one of three developed to provide guidelines, information, and resources useful in planning and developing postsecondary technician training programs in high technology. It is specifically intended for program planners and developers in the initial stages of planning a new program or specialized option in robotics. (Two companion…

  16. The Great Outdoors: Comparing Leader Development Programs at the U.S. Naval Academy

    ERIC Educational Resources Information Center

    Huey, Wesley S.; Smith, David G.; Thomas, Joseph J.; Carlson, Charles R.

    2014-01-01

    This study compares outdoor adventure-based leader development programs with a traditional non-outdoor program to test predictions about differential effects on leader development outcomes. Participants were drawn from the population of U.S. Naval Academy midshipmen involved in experiential leader development programs as a component of their…

  17. A potential role of anti-poverty programs in health promotion

    PubMed Central

    Silverman, Kenneth; Holtyn, August F.; Jarvis, Brantley

    2016-01-01

    Poverty is one of the most pervasive risk factors underlying poor health, but is rarely targeted to improve health. Research on the effects of anti-poverty interventions on health has been limited, at least in part because funding for that research has been limited. Anti-poverty programs have been applied on a large scale, frequently by governments, but without systematic development and cumulative programmatic experimental studies. Anti-poverty programs that produce lasting effects on poverty have not been developed. Before evaluating the effect of anti-poverty programs on health, programs must be developed that can reduce poverty consistently. Anti-poverty programs require systematic development and cumulative programmatic scientific evaluation. Research on the therapeutic workplace could provide a model for that research and an adaptation of the therapeutic workplace could serve as a foundation of a comprehensive anti-poverty program. Once effective anti-poverty programs are developed, future research could determine if those programs improve health in addition to increasing income. The potential personal, health and economic benefits of effective anti-poverty programs could be substantial, and could justify the major efforts and expenses that would be required to support systematic research to develop such programs. PMID:27235603

  18. A potential role of anti-poverty programs in health promotion.

    PubMed

    Silverman, Kenneth; Holtyn, August F; Jarvis, Brantley P

    2016-11-01

    Poverty is one of the most pervasive risk factors underlying poor health, but is rarely targeted to improve health. Research on the effects of anti-poverty interventions on health has been limited, at least in part because funding for that research has been limited. Anti-poverty programs have been applied on a large scale, frequently by governments, but without systematic development and cumulative programmatic experimental studies. Anti-poverty programs that produce lasting effects on poverty have not been developed. Before evaluating the effect of anti-poverty programs on health, programs must be developed that can reduce poverty consistently. Anti-poverty programs require systematic development and cumulative programmatic scientific evaluation. Research on the therapeutic workplace could provide a model for that research and an adaptation of the therapeutic workplace could serve as a foundation of a comprehensive anti-poverty program. Once effective anti-poverty programs are developed, future research could determine if those programs improve health in addition to increasing income. The potential personal, health and economic benefits of effective anti-poverty programs could be substantial, and could justify the major efforts and expenses that would be required to support systematic research to develop such programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Leadership development programs for health care middle managers: An exploration of the top management team member perspective.

    PubMed

    Whaley, Alan; Gillis, William E

    Hospitals throughout the United States establish leadership and management programs for their middle managers. Despite their pervasiveness and an increased emphasis on physician leadership, there is limited research regarding the development programs designed for clinical and nonclinical health care middle managers. Using two theoretical lenses, signaling and institutional theory, this exploratory study investigates mid-sized hospital development programs from the perspective of top management team (TMT) members. Our objective is to find out what types of programs hospitals have, how they are developed, and how they are evaluated. We conducted semistructured interviews with 13 TMT members in six purposefully selected hospitals and matched these interviews with program curricula. Careful coding of the data allowed us not only to show our data in a meaningful visual representation but also to show the progression of the data from raw form to aggregate themes in the qualitative research process. We identified four types of development programs used in the selected hospitals: (a) ongoing series, (b) curriculum-based, (c) management orientation, and (d) mentoring. Challenges existed in aligning the need for the program with program content. Communication occurred both through direct messaging regarding policies and procedures and through hidden signals. TMT members referenced other programs for guidance but were not always clear about what it is they wanted the programs to accomplish. Finally, there was limited program outcome measurement. Our small sample indicates that specific, structured, and comprehensive programs perform best. The better programs were always trying to improve but that most needed better accountability of tracking outcomes. In setting up a program, a collaborative approach among TMT members to establish what the needs are and how to measure outcomes worked well. Successful programs also tied in their leadership development with overall employee development.

  20. 1980 ASEAN programme roundup: a model in the making.

    PubMed

    1981-01-01

    Association of Southeast Asian Nations (ASEAN) experts and heads of national population programs held their 4th meeting in Singapore from November 24-28, 1980. Program heads resolved to take steps to link their national activities in the population field with those of the ASEAN Population Program and carry out studies and a joint programming exercise in 1981. Progress reports on the following Phase 1 projects were given: 1) integration of population and rural development policies and programs in ASEAN countries including Indonesia, Malaysia, Philippines, Singapore, and Thailand; 2) development of an inter-country modular training program for personnel in population and rural development; 3) multi-media support for population programs in the context of rural development in ASEAN countries; 4) utilization of research findings in population and family planning for policy formulation and program management in ASEAN countries; and 5) migration in relation to rural development. Phase 2 projects approved by ASEAN country participants were also discussed: 1) institutional development and exchange of personnel, 2) women in development, 3) developing and strengthening national population information systems and networks in ASEAN countries, 4) population and development dynamics and the man/resource balance, 5) studies on health and family planning in ASEAN countries, 6) population migration movement and development, and 7) development of ASEAN social indicators.

  1. Promoting Success: A Professional Development Coaching Program for Interns in Medicine.

    PubMed

    Palamara, Kerri; Kauffman, Carol; Stone, Valerie E; Bazari, Hasan; Donelan, Karen

    2015-12-01

    Residency is an intense period. Challenges, including burnout, arise as new physicians develop their professional identities. Residency programs provide remediation, but emotional support for interns is often limited. Professional development coaching of interns, regardless of their performance, has not been reported. Design, implement, and evaluate a program to support intern professional development through positive psychology coaching. We implemented a professional development coaching program in a large residency program. The program included curriculum development, coach-intern interactions, and evaluative metrics. A total of 72 internal medicine interns and 26 internal medicine faculty participated in the first year. Interns and coaches were expected to meet quarterly; expected time commitments per year were 9 hours (per individual coached) for coaches, 5 1/2 hours for each individual coachee, and 70 hours for the director of the coaching program. Coaches and interns were asked to complete 2 surveys in the first year and to participate in qualitative interviews. Eighty-two percent of interns met with their coaches 3 or more times. Coaches and their interns assessed the program in multiple dimensions (participation, program and professional activities, burnout, coping, and coach-intern communication). Most of the interns (94%) rated the coaching program as good or excellent, and 96% would recommend this program to other residency programs. The experience of burnout was lower in this cohort compared with a prior cohort. There is early evidence that a coaching program of interactions with faculty trained in positive psychology may advance intern development and partially address burnout.

  2. Developing and Pretesting a Text Messaging Program for Health Behavior Change: Recommended Steps.

    PubMed

    Abroms, Lorien C; Whittaker, Robyn; Free, Caroline; Mendel Van Alstyne, Judith; Schindler-Ruwisch, Jennifer M

    2015-12-21

    A growing body of evidence demonstrates that text messaging-based programs (short message service [SMS]) on mobile phones can help people modify health behaviors. Most of these programs have consisted of automated and sometimes interactive text messages that guide a person through the process of behavior change. This paper provides guidance on how to develop text messaging programs aimed at changing health behaviors. Based on their collective experience in designing, developing, and evaluating text messaging programs and a review of the literature, the authors drafted the guide. One author initially drafted the guide and the others provided input and review. Steps for developing a text messaging program include conducting formative research for insights into the target audience and health behavior, designing the text messaging program, pretesting the text messaging program concept and messages, and revising the text messaging program. The steps outlined in this guide may help in the development of SMS-based behavior change programs.

  3. Astronomy for a Better World: IAU OAD Task Force-1 Programs for Advancing Astronomy Education and Research in Universities in Developing Countries

    NASA Astrophysics Data System (ADS)

    Guinan, Edward; Kolenberg, Katrien

    2015-03-01

    We discuss the IAU Commission 46 and Office for Astronomy Development (OAD) programs that support advancing Astronomy education and research primarily in universities in developing countries. The bulk of these operational activities will be coordinated through the OAD's newly installed Task Force 1. We outline current (and future) IAU/OAD Task Force-1 programs that promote the development of University-level Astronomy at both undergraduate and graduate levels. Among current programs discussed are the past and future expanded activities of the International School for Young Astronomers (ISYA) and the Teaching Astronomy for Development (TAD) programs. The primary role of the ISYA program is the organization of a three week School for students for typically M.Sc. and Ph.D students. The ISYA is a very successful program that will now be offered more frequently through the generous support of the Kavli Foundation. The IAU/TAD program provides aid and resources for the development of teaching, education and research in Astronomy. The TAD program is dedicated to assist countries that have little or no astronomical activity, but that wish to develop or enhance Astronomy education. Over the last ten years, the ISYA and TAD programs have supported programs in Africa, Asia, Central America and the Caribbean, the Middle East, South East and West Asia, and South America. Several examples are given. Several new programs being considered by OAD Task Force-1 are also discussed. Other possible programs being considered are the introduction of modular Astronomy courses into the university curricula (or improve present courses) as well as providing access to ``remote learning`` courses and Virtual Astronomy labs in developing countries. Another possible new program would support visits of astronomers from technically advanced countries to spend their sabbatical leaves teaching and advising University Astronomy programs in developing countries. Suggestions for new Task Force -1 programs are also welcomed. Useful information about the participation of IAU members and volunteers in these programs will be discussed and practical information will be provided.

  4. Faculty development activities in family medicine: in search of innovation.

    PubMed

    Lawrence, Elizabeth A; Oyama, Oliver N

    2013-01-01

    To describe the Accreditation Council for Graduate Medical Education's (ACGME) faculty development requirements, explore the range of faculty development activities and support currently used by family medicine residencies to meet these requirements, and describe one innovative approach to satisfy this need. An electronic survey of faculty development activities and support offered to faculty by residency programs was sent to a random sample of 40 medical school and community based family medicine residency programs across the United States. Data were examined using t-tests, Fisher's exact tests, and Analysis of Variance. Faculty development, beyond traditional clinical CME, was strongly encouraged or required by a large proportion of the sample (73%). Only 58% of programs reported having discussed the ACGME's faculty development component areas (clinical, educational, administrative, leadership, research, and behavioral). In each component area except the "clinical" area, the absence of discussing the ACGME component areas with residency faculty was associated with fewer faculty development activities and support being offered by the program. These results, although preliminary, suggest that family medicine residency programs may value and encourage faculty development. The majority of programs use traditional activities and strategies such as CME, faculty meetings, faculty conferences and workshops; and a smaller number of programs are exploring the utility of mentoring programs, faculty discussion groups, and technology based learning systems. The challenge is to develop faculty development activities tailored to individual program and faculty needs and resources.

  5. Research-Practice Linkages in Extension Leadership Development Programs: Focus on Community Leadership Development Programs. A Report.

    ERIC Educational Resources Information Center

    Vandenberg, Lela; And Others

    The Research-Practice Linkages Project sought to identify the knowledge base supporting community leadership development (CLD) programs of the Cooperative Extension Service and to determine linkages between Extension programs and CLD research. A mail questionnaire was completed by 492 Extension staff involved in CLD programs in 18 states and 42…

  6. Staff Development Program Evaluation.

    ERIC Educational Resources Information Center

    Ashur, Nina E.; And Others

    An evaluation of the staff development program at College of the Canyons (California) was conducted in 1991 to provide information applicable to program improvement. Questionnaires were distributed to all faculty, classified staff, and flexible calendar program committee and staff development advisory committee members, resulting in response rates…

  7. Counseling Faculty Development Program.

    ERIC Educational Resources Information Center

    Santa Rita, Emilio

    Designed for use as a development activity for counselors at Bronx Community College in New York, this program provides discussion materials, questionnaires, and worksheets from the college's Counseling Faculty Development Program. A brief introduction indicates that the program encompasses three components, empowering counselors in the teaching…

  8. Evaluating Faculty Development and Clinical Training Programs in Substance Abuse: A Guide Book.

    ERIC Educational Resources Information Center

    Klitzner, Michael; Stewart, Kathryn

    Intended to provide an overview of program evaluation as it applies to the evaluation of faculty development and clinical training programs in substance abuse for health and mental health professional schools, this guide enables program developers and other faculty to work as partners with evaluators in the development of evaluation designs that…

  9. 48 CFR 719.273 - The U.S. Agency for International Development (USAID) Mentor-Protégé Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... International Development (USAID) Mentor-Protégé Program. 719.273 Section 719.273 Federal Acquisition.... Agency for International Development (USAID) Mentor-Protégé Program 719.273 The U.S. Agency for International Development (USAID) Mentor-Protégé Program. ...

  10. A Systematic Review of Life Skill Development through Sports Programs Serving Socially Vulnerable Youth

    ERIC Educational Resources Information Center

    Hermens, Niels; Super, Sabina; Verkooijen, Kirsten T.; Koelen, Maria A.

    2017-01-01

    Purpose: Despite the strong belief in sports programs as a setting in which socially vulnerable youth can develop life skills, no overview exists of life skill development in sports programs serving this youth group. Therefore, the present systematic review provides an overview of the evidence on life skill development in sports programs serving…

  11. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2013-04-01 2013-04-01 false What are the requirements for research, development, and...

  12. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2010-04-01 2010-04-01 false What are the requirements for research, development, and...

  13. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2014-04-01 2014-04-01 false What are the requirements for research, development, and...

  14. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2012-04-01 2012-04-01 false What are the requirements for research, development, and...

  15. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2011-04-01 2011-04-01 false What are the requirements for research, development, and...

  16. Florida's Student Development Program. A Framework for Developing Comprehensive Guidance and Counseling Programs for a School-to-Work System.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Applied Tech. and Adult Education.

    This guide proposes a model comprehensive student development program that complements Florida schools of tomorrow as envisioned in "Blueprint 2000." The proposed program shows how school guidance and counseling plays an integral role in facilitating the development of the knowledge, competencies, skills, and personal habits that will…

  17. The Development and Application of a STEAM Program Based on Traditional Korean Culture

    ERIC Educational Resources Information Center

    Kim, Hyoungbum; Chae, Dong-Hyun

    2016-01-01

    The purpose of this research was to develop a STEAM program in the context of teaching and learning a traditional Korean instrument and implement it in a high school class to determine the program's effectiveness. The STEAM program was developed through a continuous consultation process between a development team and external experts, including an…

  18. Final Report on the Development of the Long Beach Fire Department Company Officer Orientation Program.

    ERIC Educational Resources Information Center

    Rupe, Marvin L.; And Others

    The Long Beach Fire Department (California), developed a program to foster and improve the development of future fire department managers who are promoted from within the department. A 10-day orientation program was developed. The competency-based program featured a mix of management-leadership training (the nature of leadership, personnel…

  19. Guidelines for Creating, Implementing, and Evaluating Mind-Body Programs in a Military Healthcare Setting.

    PubMed

    Smith, Katherine; Firth, Kimberly; Smeeding, Sandra; Wolever, Ruth; Kaufman, Joanna; Delgado, Roxana; Bellanti, Dawn; Xenakis, Lea

    2016-01-01

    Research suggests that the development of mind-body skills can improve individual and family resilience, particularly related to the stresses of illness, trauma, and caregiving. To operationalize the research evidence that mind-body skills help with health and recovery, Samueli Institute, in partnership with experts in mind-body programming, created a set of guidelines for developing and evaluating mind-body programs for service members, veterans, and their families. The Guidelines for Creating, Implementing, and Evaluating Mind-Body Programs in a Military Healthcare Setting outline key strategies and issues to consider when developing, implementing, and evaluating a mind-body focused family empowerment approach in a military healthcare setting. Although these guidelines were developed specifically for a military setting, most of the same principles can be applied to the development of programs in the civilian setting as well. The guidelines particularly address issues unique to mind-body programs, such as choosing evidence-based modalities, licensure and credentialing, safety and contraindications, and choosing evaluation measures that capture the holistic nature of these types of programs. The guidelines are practical, practice-based guidelines, developed by experts in the fields of program development and evaluation, mind-body therapies, patient- and family-centered care, as well as, experts in military and veteran's health systems. They provide a flexible framework to create mind-body family empowerment programs and describe important issues that program developers and evaluators are encouraged to address to ensure the development of the most impactful, successful, evidence-supported programs possible. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [Development and effect of a web-based child health care program for the staff at child daycare centers].

    PubMed

    Kim, Ji Soo

    2010-04-01

    The purpose of the study is to develop a web-based program on child health care, and to identify the effect of the program on knowledge of, attitudes towards child health care, and health care practice in staff of daycare centers. The program was developed through the processes of needs analysis, contents construction, design, development, and evaluation. After the program was developed, it was revised through feedback from 30 experts. To identify the effect of developed program, onegroup pretest-posttest design study was conducted with 64 staff members from 12 daycare centers in Korea. The program was developed based on users' needs and consisted of five parts: health promotion, disease and symptoms management, oral health, injury and safety, sheets and forms. This study showed that the total score of staff who used the program was significantly higher in terms of knowledge, attitudes, and their health care practice compared with pretest score (p<.05). These results suggest that this Web-based program can contribute to the child health promotion as well as can provide the staff with the insightful child health information. Therefore, it is expected that this program will be applied to staff of other child care settings for children's health.

  1. Narratives of Participants in National Career Development Programs for Women in Academic Medicine: Identifying the Opportunities for Strategic Investment.

    PubMed

    Helitzer, Deborah L; Newbill, Sharon L; Cardinali, Gina; Morahan, Page S; Chang, Shine; Magrane, Diane

    2016-04-01

    Academic medicine has initiated changes in policy, practice, and programs over the past several decades to address persistent gender disparity and other issues pertinent to its sociocultural context. Three career development programs were implemented to prepare women faculty to succeed in academic medicine: two sponsored by the Association of American Medical Colleges, which began a professional development program for early career women faculty in 1988. By 1995, it had evolved into two programs one for early career women and another for mid-career women. By 2012, more than 4000 women faculty from medical schools across the U.S and Canada had participated in these intensive 3-day programs. The third national program, the Hedwig van Ameringen Executive Leadership in Academic Medicine(®) (ELAM) program for women, was developed in 1995 at the Drexel University College of Medicine. Narratives from telephone interviews representing reflections on 78 career development seminars between 1988 and 2010 describe the dynamic relationships between individual, institutional, and sociocultural influences on participants' career advancement. The narratives illuminate the pathway from participating in a career development program to self-defined success in academic medicine in revealing a host of influences that promoted and/or hindered program attendance and participants' ability to benefit after the program in both individual and institutional systems. The context for understanding the importance of these career development programs to women's advancement is nestled in the sociocultural environment, which includes both the gender-related influences and the current status of institutional practices that support women faculty. The findings contribute to the growing evidence that career development programs, concurrent with strategic, intentional support of institutional leaders, are necessary to achieve gender equity and diversity inclusion.

  2. Narratives of Participants in National Career Development Programs for Women in Academic Medicine: Identifying the Opportunities for Strategic Investment

    PubMed Central

    Newbill, Sharon L.; Cardinali, Gina; Morahan, Page S.; Chang, Shine; Magrane, Diane

    2016-01-01

    Abstract Background: Academic medicine has initiated changes in policy, practice, and programs over the past several decades to address persistent gender disparity and other issues pertinent to its sociocultural context. Three career development programs were implemented to prepare women faculty to succeed in academic medicine: two sponsored by the Association of American Medical Colleges, which began a professional development program for early career women faculty in 1988. By 1995, it had evolved into two programs one for early career women and another for mid-career women. By 2012, more than 4000 women faculty from medical schools across the U.S and Canada had participated in these intensive 3-day programs. The third national program, the Hedwig van Ameringen Executive Leadership in Academic Medicine® (ELAM) program for women, was developed in 1995 at the Drexel University College of Medicine. Methods: Narratives from telephone interviews representing reflections on 78 career development seminars between 1988 and 2010 describe the dynamic relationships between individual, institutional, and sociocultural influences on participants' career advancement. Results: The narratives illuminate the pathway from participating in a career development program to self-defined success in academic medicine in revealing a host of influences that promoted and/or hindered program attendance and participants' ability to benefit after the program in both individual and institutional systems. The context for understanding the importance of these career development programs to women's advancement is nestled in the sociocultural environment, which includes both the gender-related influences and the current status of institutional practices that support women faculty. Conclusions: The findings contribute to the growing evidence that career development programs, concurrent with strategic, intentional support of institutional leaders, are necessary to achieve gender equity and diversity inclusion. PMID:26982007

  3. MBTA Green Line Tests - Riverside Line, December 1972 : Volume 1. Description.

    DOT National Transportation Integrated Search

    1973-09-01

    The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...

  4. Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects

    PubMed Central

    Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R.; Meda-Campaña, M. E.

    2012-01-01

    Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment. PMID:23226305

  5. 7 CFR 23.9 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... responsive to rural development needs and activities. (c) The Regional Programs will concentrate on the high... development programs and policies. (d) Regional Programs will be consonant with all rural development... Secretary of Agriculture STATE AND REGIONAL ANNUAL PLANS OF WORK Regional Program § 23.9 General. (a...

  6. 24 CFR 92.610 - Program requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Program requirements. 92.610 Section 92.610 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.610 Program...

  7. 24 CFR 92.616 - Program administration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Program administration. 92.616 Section 92.616 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.616 Program...

  8. 24 CFR 92.610 - Program requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Program requirements. 92.610 Section 92.610 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.610 Program...

  9. 24 CFR 92.616 - Program administration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Program administration. 92.616 Section 92.616 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.616 Program...

  10. 24 CFR 92.610 - Program requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Program requirements. 92.610 Section 92.610 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.610 Program...

  11. 24 CFR 92.610 - Program requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Program requirements. 92.610 Section 92.610 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.610 Program...

  12. 24 CFR 92.616 - Program administration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Program administration. 92.616 Section 92.616 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.616 Program...

  13. 24 CFR 92.610 - Program requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Program requirements. 92.610 Section 92.610 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.610 Program...

  14. 24 CFR 92.616 - Program administration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Program administration. 92.616 Section 92.616 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.616 Program...

  15. 24 CFR 92.616 - Program administration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Program administration. 92.616 Section 92.616 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.616 Program...

  16. Building for the Future: Community College Leadership Development Program Evaluation

    ERIC Educational Resources Information Center

    Bresso, Michele

    2012-01-01

    This qualitative descriptive study examines and evaluates an internal, grow-your-own, community college leadership development program. Participants in a community college leadership development program self-reported their leadership knowledge, attitudes, and practices (KAP) before, during, and after participation in the program. Study…

  17. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  18. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  19. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  20. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  1. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  2. Critical Care Nurses' Reasons for Poor Attendance at a Continuous Professional Development Program.

    PubMed

    Viljoen, Myra; Coetzee, Isabel; Heyns, Tanya

    2016-12-01

    Society demands competent and safe health care, which obligates professionals to deliver quality patient care using current knowledge and skills. Participation in continuous professional development programs is a way to ensure quality nursing care. Despite the importance of continuous professional development, however, critical care nurse practitioners' attendance rates at these programs is low. To explore critical care nurses' reasons for their unsatisfactory attendance at a continuous professional development program. A nominal group technique was used as a consensus method to involve the critical care nurses and provide them the opportunity to reflect on their experiences and challenges related to the current continuous professional development program for the critical care units. Participants were 14 critical care nurses from 3 critical care units in 1 private hospital. The consensus was that the central theme relating to the unsatisfactory attendance at the continuous professional development program was attitude. In order of importance, the 4 contributing priorities influencing attitude were communication, continuous professional development, time constraints, and financial implications. Attitude relating to attending a continuous professional development program can be changed if critical care nurses are aware of the program's importance and are involved in the planning and implementation of a program that focuses on the nurses' individual learning needs. ©2016 American Association of Critical-Care Nurses.

  3. Designing an orientation program for new faculty.

    PubMed

    Holyfield, Lavern J; Berry, Charles W

    2008-12-01

    The Faculty Development Committee (FDC) at Baylor College of Dentistry (BCD) is charged with providing programs and activities that facilitate the success of existing faculty in the constantly changing environment of academia. In response to concerns regarding the challenges wrought by current and projected shortages of dental faculty across the nation, the FDC was prompted to assess development opportunities available to BCD faculty. A professional development resource that we found deficient was a formal, comprehensive orientation program for newly hired faculty. To guide the efforts of the committee in developing this program, a survey was designed and administered during an annual faculty retreat. Respondents were new and junior faculty, senior faculty, and some administrators. The results of the survey to determine requirements for new faculty orientation became the basis for formalizing BCD's new faculty orientation program. This article provides an overview of the new faculty orientation process from design to program implementation and describes the development and use of a faculty survey to determine the fundamental elements of a faculty development program, identification of essential individuals for designing/implementing the program, and implementation of a new faculty orientation program at BCD.

  4. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers

    PubMed Central

    Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen

    2018-01-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (~100 μL, i.e. 3 mm diameter NMR tubes). PMID:29459343

  5. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).

  6. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers.

    PubMed

    Dubroca, Thierry; Smith, Adam N; Pike, Kevin J; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T ( 1 H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13 C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31 P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T ( 1 H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes). Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showedmore » its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.« less

  8. Intervention mapping: a process for developing theory- and evidence-based health education programs.

    PubMed

    Bartholomew, L K; Parcel, G S; Kok, G

    1998-10-01

    The practice of health education involves three major program-planning activities: needs assessment, program development, and evaluation. Over the past 20 years, significant enhancements have been made to the conceptual base and practice of health education. Models that outline explicit procedures and detailed conceptualization of community assessment and evaluation have been developed. Other advancements include the application of theory to health education and promotion program development and implementation. However, there remains a need for more explicit specification of the processes by which one uses theory and empirical findings to develop interventions. This article presents the origins, purpose, and description of Intervention Mapping, a framework for health education intervention development. Intervention Mapping is composed of five steps: (1) creating a matrix of proximal program objectives, (2) selecting theory-based intervention methods and practical strategies, (3) designing and organizing a program, (4) specifying adoption and implementation plans, and (5) generating program evaluation plans.

  9. Promoting Success: A Professional Development Coaching Program for Interns in Medicine

    PubMed Central

    Palamara, Kerri; Kauffman, Carol; Stone, Valerie E.; Bazari, Hasan; Donelan, Karen

    2015-01-01

    Background Residency is an intense period. Challenges, including burnout, arise as new physicians develop their professional identities. Residency programs provide remediation, but emotional support for interns is often limited. Professional development coaching of interns, regardless of their performance, has not been reported. Objective Design, implement, and evaluate a program to support intern professional development through positive psychology coaching. Methods We implemented a professional development coaching program in a large residency program. The program included curriculum development, coach-intern interactions, and evaluative metrics. A total of 72 internal medicine interns and 26 internal medicine faculty participated in the first year. Interns and coaches were expected to meet quarterly; expected time commitments per year were 9 hours (per individual coached) for coaches, 5 1/2 hours for each individual coachee, and 70 hours for the director of the coaching program. Coaches and interns were asked to complete 2 surveys in the first year and to participate in qualitative interviews. Results Eighty-two percent of interns met with their coaches 3 or more times. Coaches and their interns assessed the program in multiple dimensions (participation, program and professional activities, burnout, coping, and coach-intern communication). Most of the interns (94%) rated the coaching program as good or excellent, and 96% would recommend this program to other residency programs. The experience of burnout was lower in this cohort compared with a prior cohort. Conclusions There is early evidence that a coaching program of interactions with faculty trained in positive psychology may advance intern development and partially address burnout. PMID:26692977

  10. Determining the Individual, Organizational, and Community Level Outcomes of a Community Leadership Development Program as Perceived by the Program Alumni

    ERIC Educational Resources Information Center

    Bush, Susan Johnston

    2012-01-01

    The need for community leaders is increasing while the supply of community leaders is decreasing, leaving a gap in community leadership. Community leadership development programs (CLDP) are the most common approach to leadership development, yet the effects of CLDPs are rarely determined. In order to sustain programs that develop potential…

  11. Development of C++ Application Program for Solving Quadratic Equation in Elementary School in Nigeria

    ERIC Educational Resources Information Center

    Bandele, Samuel Oye; Adekunle, Adeyemi Suraju

    2015-01-01

    The study was conducted to design, develop and test a c++ application program CAP-QUAD for solving quadratic equation in elementary school in Nigeria. The package was developed in c++ using object-oriented programming language, other computer program that were also utilized during the development process is DevC++ compiler, it was used for…

  12. 23 CFR 1205.3 - Identification of National Priority Program Areas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... countermeasures have been identified. Programs developed in such areas are eligible for Federal funding, pursuant... which effective countermeasures have been identified. The program developed in this area is eligible for... national concern, and for which effective countermeasures have been identified. Programs developed in such...

  13. Farmers' Functional Literacy Program in India.

    ERIC Educational Resources Information Center

    Chauhan, Malikhan S.

    The Farmers' Functional Literacy Program has been conducted in conjunction with an intensive agricultural development program in the villages of India since 1968. A recent innovation of significance to developing countries, the program incorporates the concept of linking education to development. This joint venture of three governmental ministries…

  14. Program Development and External Assessment.

    ERIC Educational Resources Information Center

    Minnis, D. L.

    Although the development of new models is essential to the improvement of teacher preparation programs, the California system of accreditation of teacher education programs seems to hinder innovative program development and evaluation. External assessment in California is based on a discrepancy model which works best when applied to static…

  15. MBTA Green Line Tests - Riverside Line, December 1972 : Volume 5. Gage Computer Printout.

    DOT National Transportation Integrated Search

    1973-01-01

    The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...

  16. MBTA Green Line Tests - Riverside Line, December 1972 : Volume 4. Westbound Track Profile.

    DOT National Transportation Integrated Search

    1973-01-01

    The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...

  17. MBTA Green Line Tests - Riverside Line, December 1972 : Volume 3. Eastbound Track Profile.

    DOT National Transportation Integrated Search

    1973-01-01

    The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...

  18. The ALIVE program: developing a web-based professional development program for nursing leaders in the home healthcare sector.

    PubMed

    Lankshear, Sara; Huckstep, Sherri; Lefebre, Nancy; Leiterman, Janis; Simon, Deborah

    2010-05-01

    Home healthcare nurses often work in isolation and rarely have the opportunity to meet or congregate in one location. As a result, nurse leaders must possess unique leadership skills to supervise and manage a dispersed employee base from a distance. The nature of this dispersed workforce creates an additional challenge in the ability to identify future leaders, facilitate leadership capacity, and enhance skill development to prepare them for future leadership positions. The ALIVE (Actively Leading In Virtual Environments) web-based program was developed to meet the needs of leaders working in virtual environments such as the home healthcare sector. The program, developed through a partnership of three home healthcare agencies, used nursing leaders as content experts to guide program development and as participants in the pilot. Evaluation findings include the identification of key competencies for nursing leaders in the home healthcare sector, development of program learning objectives and participant feedback regarding program content and delivery.

  19. Development of the United States Leave No Trace programme: A historical perspective

    USGS Publications Warehouse

    Marion, J.L.; Reid, S.; Usher, M.B.

    2001-01-01

    This paper describes the historical development of the U.S. Leave No Trace (LNT) educational program. It begins with a review of the need for the program and traces it?s conception and early development in the 1970`s, revitalization in 1991, creation of Leave No Trace, Inc., and the current status. The paper concludes with a discussion of the program?s elements that have made it successful and recommendations for the development of similar educational programs.

  20. Exploratory technology research program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1992-06-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in FY 1991.

  1. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  2. "Initiate-build-operate-transfer" - a strategy for establishing sustainable telemedicine programs not only in the developing countries.

    PubMed

    Latifi, Rifat

    2011-01-01

    Establishing sustainable telemedicine has become a goal of many developing countries around the world. Yet, despite initiatives from a select few individuals and on occasion from various governments, often these initiatives never mature to become sustainable programs. The introduction of telemedicine and e-learning in the Balkans has been a pivotal step in advancing the quality and availability of medical services in a region whose infrastructure and resources have been decimated by wars, neglect, lack of funding, and poor management. The concept and establishment of the International Virtual e-Hospital (IVeH) has significantly impacted telemedicine and e-health services in Kosova. The success of the IVeH in Kosova has led to the development of similar programs in other Balkan countries and other developing countries in the hope of modernizing and improving their healthcare infrastructure. A comprehensive, four-pronged strategy developed by IVeH "Initiate-Build-Operate-Transfer" (IBOT), may be a useful approach in establishing telemedicine and e-health educational services not only in developing countries, but in developed countries. The development strategy, IBOT, used by the IVeH to establish and develop telemedicine programs is described. IBOT includes assessment of healthcare needs of each country, the development of a curriculum and education program, the establishment of a nationwide telemedicine network, and the integration of the telemedicine program into the very core of healthcare infrastructure. The end point is the transfer of a sustainable telehealth program to the nation involved. By applying IBOT, a sustainable telemedicine program of Kosova and Albania has been established as an effective prototype for telemedicine in the Balkans. Once fully matured, the program is transitioned to the Ministry of Health, which ensures the sustainability and ownership of the program. Similar programs are being established in Macedonia, Montenegro and other countries around the world. The IBOT model has been effective in creating sustainable telemedicine and e-health integrated programs in the Balkans and may be a good model for establishing such programs in developing countries.

  3. Department of Energy: Nuclear S&T workforce development programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, Michelle; Bala, Marsha; Beierschmitt, Kelly

    The U.S. Department of Energy (DOE) national laboratories use their expertise in nuclear science and technology (S&T) to support a robust national nuclear S&T enterprise from the ground up. Traditional academic programs do not provide all the elements necessary to develop this expertise, so the DOE has initiated a number of supplemental programs to develop and support the nuclear S&T workforce pipeline. This document catalogs existing workforce development programs that are supported by a number of DOE offices (such as the Offices of Nuclear Energy, Science, Energy Efficiency, and Environmental Management), and by the National Nuclear Security Administration (NNSA) andmore » the Naval Reactor Program. Workforce development programs in nuclear S&T administered through the Department of Homeland Security, the Nuclear Regulatory Commission, and the Department of Defense are also included. The information about these programs, which is cataloged below, is drawn from the program websites. Some programs, such as the Minority Serving Institutes Partnership Programs (MSIPPs) are available through more than one DOE office, so they appear in more than one section of this document.« less

  4. Development of a Teen-Friendly Health Education Program on Facebook: Lessons Learned.

    PubMed

    Park, Bu Kyung; Nahm, Eun-Shim; Rogers, Valerie E

    2016-01-01

    Facebook is the most popular online platform among adolescents and can be an effective medium to deliver health education. Although Korean American (KA) adolescents are at risk of obesity, a culturally tailored health education program is not available for them. Thus, our research team developed a health education program for KA adolescents on Facebook called "Healthy Teens." The aim of this study was to discuss important lessons learned through the program development process. This program includes culturally tailored learning modules about healthy eating and physical activity. The program was developed on the basis of the social cognitive theory, and the online program was developed by applying Web usability principles for adolescents. Upon completion, the usability of the program was assessed using heuristic evaluation. The findings from the heuristic evaluation showed that the Healthy Teens program was usable for KA adolescents. The findings from this study will assist researchers who are planning to build similar Facebook-based health education programs. Copyright © 2016 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  5. "Initiate-build-operate-transfer"--a strategy for establishing sustainable telemedicine programs in developing countries: initial lessons from the balkans.

    PubMed

    Latifi, Rifat; Merrell, Ronald C; Doarn, Charles R; Hadeed, George J; Bekteshi, Flamur; Lecaj, Ismet; Boucha, Kathe; Hajdari, Fatmir; Hoxha, Astrit; Koshi, Dashurije; de Leonni Stanonik, Mateja; Berisha, Blerim; Novoberdaliu, Kadri; Imeri, Arben; Weinstein, Ronald S

    2009-12-01

    Establishing sustainable telemedicine has become a goal of many developing countries around the world. Yet, despite initiatives from a select few individuals and on occasion from various governments, often these initiatives never mature to become sustainable programs. The introduction of telemedicine and e-learning in Kosova has been a pivotal step in advancing the quality and availability of medical services in a region whose infrastructure and resources have been decimated by wars, neglect, lack of funding, and poor management. The concept and establishment of the International Virtual e-Hospital (IVeH) has significantly impacted telemedicine and e-health services in the Balkans. The success of the IVeH in Kosova has led to the development of similar programs in other Balkan countries and other developing countries in the hope of modernizing and improving their healthcare infrastructure. A comprehensive, four-pronged strategy, "Initiate-Build-Operate-Transfer" (IBOT), may be a useful approach in establishing telemedicine and e-health educational services in developing countries. The development strategy, IBOT, used by the IVeH to establish and develop telemedicine programs, was discussed. IBOT includes assessment of healthcare needs of each country, the development of a curriculum and education program, the establishment of a nationwide telemedicine network, and the integration of the telemedicine program into the healthcare infrastructure. The endpoint is the transfer of a sustainable telehealth program to the nation involved. By applying IBOT, a sustainable telemedicine program of Kosova has been established as an effective prototype for telemedicine in the Balkans. Once fully matured, the program will be transitioned to the national Ministry of Health, which ensures the sustainability and ownership of the program. Similar programs are being established in Albania, Macedonia, and other countries around the world. The IBOT model has been effective in creating sustainable telemedicine and e-health integrated programs in the Balkans and may be a good model for establishing such programs in developing countries.

  6. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 3: Computer program listings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.

  7. Developing Childhood Injury Prevention Programs: An Administrative Guide for State Maternal and Child Health (Title V) Programs.

    ERIC Educational Resources Information Center

    Birch & Davis Associates, Inc., Silver Spring, MD.

    Based primarily on the experience of three childhood injury prevention demonstration projects, this manual provides state Title V program directors with an action guide for developing targeted childhood injury prevention programs. The manual is divided into four sections: background; program planning; program design; and program implementation and…

  8. 7 CFR 371.9 - Policy and Program Development.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Program Development. (a) General statement. Policy and Program Development (PPD) provides analytical support for agency decisions and plans. (b) Director of PPD. The Director of PPD is responsible...

  9. 25 CFR 39.131 - What is a Language Development Program?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is a Language Development Program? 39.131 Section 39.131 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION THE INDIAN SCHOOL EQUALIZATION PROGRAM Indian School Equalization Formula Language Development Programs § 39.131 What is a...

  10. Programs of Study and Support Services Guide. Workforce Development Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    This document was developed to assist local school systems in North Carolina in planning effective and comprehensive workforce development education programs. It contains information about planning, required resources, instructional guidelines, and program area offerings. The guide is organized in three parts. Part I provides a program description…

  11. Specifications for Developing Secondary Program Proposals.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore. Div. of Career Technology and Adult Learning.

    This document, which is designed for individuals developing local career and technology education (CTE) program proposals and/or designing new CTE facilities in Maryland, presents the CTE program specifications that were developed to ensure the quality of CTE programs in public schools in Maryland. The document is divided into four sections. The…

  12. From "Hesitant" to "Environmental Leader": The Influence of a Professional Development Program on the Environmental Citizenship of Preschool Teachers

    ERIC Educational Resources Information Center

    Spektor-Levy, Ornit; Abramovich, Anat

    2017-01-01

    This study investigated the influence that the "Environmental Leadership Professional Development" program had on preschool teachers. The program's aim is to enhance environmental awareness, thus developing environmental citizenship and leadership. The program offered experiential and reflective learning, meetings with environmental…

  13. 24 CFR 570.421 - New York Small Cities Program design.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false New York Small Cities Program... HOUSING AND URBAN DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Small Cities, Non-Entitlement CDBG Grants in Hawaii and Insular Areas Programs § 570.421 New York Small Cities Program design...

  14. Developing Individualized IEP Goals in the Age of Technology: Quality Challenges and Solutions

    ERIC Educational Resources Information Center

    More, Cori M.; Hart Barnett, Juliet E.

    2014-01-01

    Many school districts have adopted commercially available software or templates for electronic Individualized Education Program (IEP) development. These programs have useful features that allow Individualized Education Programs to be electronically developed and reliably stored for each student. Although the program features are designed to…

  15. Evaluating Youth Development Programs: Progress and Promise

    ERIC Educational Resources Information Center

    Roth, Jodie L.; Brooks-Gunn, Jeanne

    2016-01-01

    Advances in theories of adolescent development and positive youth development have greatly increased our understanding of how programs and practices with adolescents can impede or enhance their development. In this article the authors reflect on the progress in research on youth development programs in the last two decades, since possibly the…

  16. A New Jersey Comprehensive Career Development Program Model.

    ERIC Educational Resources Information Center

    Walling, Russell; And Others

    This manual is a guide to developing a comprehensive career development program in a local school district. It is based on the experience of program development in Neptune Township, New Jersey, following the National Career Development Guidelines of the National Occupational Information Coordinating Committee and the subsequent Comprehensive…

  17. MBTA Green Line Tests - Riverside Line, December 1972 : Volume 2. Track Geometry Data Plots.

    DOT National Transportation Integrated Search

    1973-09-01

    The Urban Rail Supporting Technology Program emphasizes three major task areas; facilities development, technology development, and test program development. The test program development is composed of three sub-areas; vehicle testing, ways and struc...

  18. A Model for Developing a Continuous Progress Program, April 1977. A Manual for Teachers and Administrators Concerned with Improving Reading.

    ERIC Educational Resources Information Center

    Goldman, Rosalie; And Others

    The focus of this manual is on the step-by-step development and implementation of a continuous-progress reading program--a system that permits instruction at each student's diagnosed level of ability. Analysis of program development includes advice on choosing a committee, writing the program, and presenting the program to others. The implications…

  19. The Dawn of Ultrafast Nonlinear Optics in the Terahertz Regime

    NASA Astrophysics Data System (ADS)

    Blanchard, F.; Razzari, L.; Su, F. H.; Sharma, G.; Morandotti, Roberto; Ozaki, T.; Reid, M.; Hegmann, F. A.

    The terahertz (THz) frequency range is a specific region of the electromagnetic spectrum also known as the far-infrared (FIR) region. More precisely, THz waves cover the region from 100 GHz to 20 THz, thus bridging the gap between microwaves and infrared light. Physically, 1 THz is equivalent to a wavelength of 300 μm in vacuum, to 33.3 cm-1 in terms of wave numbers, to a photon energy of 4 meV, or to a temperature of 48 K. THz waves have the ability to penetrate various materials including non-metallic compounds (papers and plastics), organics, gases, and liquids, thus being a powerful tool for spectroscopic sensing [1]. This portion of the electromagnetic spectrum has been accessible for some time by various means including molecular gas lasers, gyrotrons, and free-electron lasers [2]. Due to complexity, cost, and limited frequencies of operation, these sources have traditionally made it difficult to gain full access to the terahertz frequency range. Nevertheless, there were several pioneering works in nonlinear FIR spectroscopy already in the early 1970s, about one decade after the advent of the laser (readers may find a review in [3]). In particular, saturated absorption in the FIR region was first studied in 1970, which led to the optically pumped FIR gas laser [4]. In the 1980s, the first demonstration of THz radiation coherently generated and detected was made. This result coincided with the development of ultrafast lasers and was obtained using a photoconductive antenna emitter [5], where photoexcited carriers induced by an ultrafast laser pulse are accelerated by a biasing electric field. The resulting time varying current J(t) radiates an electromagnetic transient, E ∝ partial J/partial t , whose amplitude and phase depend on various parameters such as carrier mobility, carrier lifetime, bias field, and on the impurity doping concentration [6]. This allowed the birth of coherent time-domain THz spectroscopy (TDTS) [1], which provided unprecedented insights into the nature of molecular vibrations, carrier dynamics in semiconductors, and protein kinetics [7-12]. Even with 30 years of rapid advances in the study of light-matter interactions at THz frequencies, lack of efficient emitters and sensitive detectors in this frequency range has for long time slowed down THz linear and nonlinear spectroscopy.

  20. United Nations Development Program solicits funds from corporations.

    PubMed

    Karliner, J; Srivastava, A; Bruno, K

    1999-01-01

    The Global Sustainable Development Facility (GSDF) project, a collaboration between the U.N. Development Program and a variety of global corporate sponsors, some with poor human rights, labor, and environmental records, has come under criticism from prestigious nongovernmental organizations around the world. A letter to James Gustave Speth, Administrator of the U.N. Development Program, expresses concern about the threat posed by the GSDF project to the independence and credibility of the U.N. Development Program.

  1. Enablers and barriers in delivery of a cancer exercise program: the Canadian experience

    PubMed Central

    Mina, D. Santa; Petrella, A.; Currie, K.L.; Bietola, K.; Alibhai, S.M.H.; Trachtenberg, J.; Ritvo, P.; Matthew, A.G.

    2015-01-01

    Background Exercise is an important therapy to improve well-being after a cancer diagnosis. Accordingly, cancer-exercise programs have been developed to enhance clinical care; however, few programs exist in Canada. Expansion of cancer-exercise programming depends on an understanding of the process of program implementation, as well as enablers and barriers to program success. Gaining knowledge from current professionals in cancer-exercise programs could serve to facilitate the necessary understanding. Methods Key personnel from Canadian cancer-exercise programs (n = 14) participated in semistructured interviews about program development and delivery. Results Content analysis revealed 13 categories and 15 subcategories, which were grouped by three organizing domains: Program Implementation, Program Enablers, and Program Barriers. ■ Program Implementation (5 categories, 8 subcategories) included Program Initiation (clinical care extension, research project expansion, program champion), Funding, Participant Intake (avenues of awareness, health and safety assessment), Active Programming (monitoring patient exercise progress, health care practitioner involvement, program composition), and Discharge and Follow-up Plan.■ Program Enablers (4 categories, 4 subcategories) included Patient Participation (personalized care, supportive network, personal control, awareness of benefits), Partnerships, Advocacy and Support, and Program Characteristics.■ Program Barriers (4 categories, 3 subcategories) included Lack of Funding, Lack of Physician Support, Deterrents to Participation (fear and shame, program location, competing interests), and Disease Progression and Treatment. Conclusions Interview results provided insight into the development and delivery of cancer-exercise programs in Canada and could be used to guide future program development and expansion in Canada. PMID:26715869

  2. Developing Programs of Supervised Agricultural Experience. Developing an SAE Program Using the Missouri Agricultural Record Book for Secondary Students. Analyzing the SAE Program Using the Missouri Farm Business Record Book. Instructor's Guide. Volume 21, Number 9.

    ERIC Educational Resources Information Center

    Admire, Myron

    This curriculum guide to the Supervised Agricultural Experience (SAE) program contains four units of insturctor's materials as follows: Unit 1: Developing an SAE Program; Unit 2: Using the Missouri Agricultural Record Book for Secondary Students; Unit 3: Analyzing the SAE Program; and Unit 4: Using the Missouri Farm Business Record Book. The…

  3. Procedures for Trade and Industrial Program Development.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    The instructional systems development (ISD) approach for the development and accomplishment of vocational training programs provides a methodology for gathering and analyzing job information, developing instructional materials in a variety of media, conducting instruction, and evaluating and improving the effectiveness of training programs. This…

  4. DORMAN computer program (study 2.5). Volume 2: User's guide and programmer's guide. [development of data bank for computerized information storage of NASA programs

    NASA Technical Reports Server (NTRS)

    Wray, S. T., Jr.

    1973-01-01

    The DORMAN program was developed to create and modify a data bank containing data decks which serve as input to the DORCA Computer Program. Via a remote terminal a user can access the bank, extract any data deck, modify that deck, output the modified deck to be input to the DORCA program, and save the modified deck in the data bank. This computer program is an assist in the utilization of the DORCA program. The program is dimensionless and operates almost entirely in integer mode. The program was developed on the CDC 6400/7600 complex for implementation on a UNIVAC 1108 computer.

  5. Intervention mapping protocol for developing a theory-based diabetes self-management education program.

    PubMed

    Song, Misoon; Choi, Suyoung; Kim, Se-An; Seo, Kyoungsan; Lee, Soo Jin

    2015-01-01

    Development of behavior theory-based health promotion programs is encouraged with the paradigm shift from contents to behavior outcomes. This article describes the development process of the diabetes self-management program for older Koreans (DSME-OK) using intervention mapping (IM) protocol. The IM protocol includes needs assessment, defining goals and objectives, identifying theory and determinants, developing a matrix to form change objectives, selecting strategies and methods, structuring the program, and planning for evaluation and pilot testing. The DSME-OK adopted seven behavior objectives developed by the American Association of Diabetes Educators as behavioral outcomes. The program applied an information-motivation-behavioral skills model, and interventions were targeted to 3 determinants to change health behaviors. Specific methods were selected to achieve each objective guided by IM protocol. As the final step, program evaluation was planned including a pilot test. The DSME-OK was structured as the 3 determinants of the IMB model were intervened to achieve behavior objectives in each session. The program has 12 weekly 90-min sessions tailored for older adults. Using the IM protocol in developing a theory-based self-management program was beneficial in terms of providing a systematic guide to developing theory-based and behavior outcome-focused health education programs.

  6. Transportation Education Demonstration Pilot Program UVM Transportation Research Center

    DOT National Transportation Integrated Search

    2012-06-30

    The Transportation Education Development Pilot Program (TEDPP) develops innovative workforce development programs to attract and retain skilled workers in the transportation sector of Vermont, New Hampshire and Maine and encourages statewide economic...

  7. Characteristics of effective summer learning programs in practice.

    PubMed

    Bell, Susanne R; Carrillo, Natalie

    2007-01-01

    The Center for Summer Learning examined various summer program models and found that there are nine characteristics that provide a framework for effective summer programs. In this chapter, the authors demonstrate how effective practices lead to positive results for young people. The nine characteristics of effective summer learning programs are (1) accelerating learning, (2) youth development, (3) proactive approach to summer learning, (4) leadership, (5) advanced planning, (6) staff development, (7) strategic partnerships, (8) evaluation and commitment to program improvement, and (9) sustainability and cost-effectiveness. These characteristics are divided into two sections. The first three characteristics address a program's approach to learning. Summer instructional techniques are most effective when academic learning is woven into enrichment activities and youth development. The second section covers program infrastructure to ensure the organization achieves and maintains quality programming. The nine characteristics complement each other to ensure a strong program that works to prevent summer learning loss and narrow the achievement gap. To demonstrate the variety of high-quality programs that include the nine characteristics, thirteen program profiles at the conclusion of the chapter each highlight one of the characteristics. These profiles show the various approaches that different summer programs have developed to accelerate academic achievement and promote positive development for young people in their communities.

  8. 20 CFR 1010.210 - In which Department job training programs do covered persons receive priority of service?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Any such program or service that uses technology to assist individuals to access workforce development programs (such as job and training opportunities, labor market information, career assessment tools, and... program; any workforce development program targeted to specific groups; and those programs implemented by...

  9. 20 CFR 1010.210 - In which Department job training programs do covered persons receive priority of service?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Any such program or service that uses technology to assist individuals to access workforce development programs (such as job and training opportunities, labor market information, career assessment tools, and... program; any workforce development program targeted to specific groups; and those programs implemented by...

  10. Development of a sustainable community-based dental education program.

    PubMed

    Piskorowski, Wilhelm A; Fitzgerald, Mark; Mastey, Jerry; Krell, Rachel E

    2011-08-01

    Increasing the use of community-based programs is an important trend in improving dental education to meet the needs of students and the public. To support this trend, understanding the history of programs that have established successful models for community-based education is valuable for the creation and development of new programs. The community-based education model of the University of Michigan School of Dentistry (UMSOD) offers a useful guide for understanding the essential steps and challenges involved in developing a successful program. Initial steps in program development were as follows: raising funds, selecting an outreach clinical model, and recruiting clinics to become partners. As the program developed, the challenges of creating a sustainable financial model with the highest educational value required the inclusion of new clinical settings and the creation of a unique revenue-sharing model. Since the beginning of the community-based program at UMSOD in 2000, the number of community partners has increased to twenty-seven clinics, and students have treated thousands of patients in need. Fourth-year students now spend a minimum of ten weeks in community-based clinical education. The community-based program at UMSOD demonstrates the value of service-based education and offers a sustainable model for the development of future programs.

  11. Designing and Developing Programs for Gifted Students.

    ERIC Educational Resources Information Center

    Smutny, Joan Franklin, Ed.

    The 13 readings in this book offer guidelines for designing and developing programs for gifted students. An introductory chapter by the editor considers the benefits of special programs for gifted students and the challenges of their development. The following chapters are: (1) "From Needs and Goals to Program Organization: A Nuts-and-Bolts Guide"…

  12. Learning to Write Programs with Others: Collaborative Quadruple Programming

    ERIC Educational Resources Information Center

    Arora, Ritu; Goel, Sanjay

    2012-01-01

    Most software development is carried out by teams of software engineers working collaboratively to achieve the desired goal. Consequently software development education not only needs to develop a student's ability to write programs that can be easily comprehended by others and be able to comprehend programs written by others, but also the ability…

  13. A Faculty Development Program for Nurse Educators Learning to Teach Online

    ERIC Educational Resources Information Center

    Lee, Debra; Paulus, Trena M.; Loboda, Iryna; Phipps, Gina; Wyatt, Tami H.; Myers, Carole R.; Mixer, Sandra J.

    2010-01-01

    As the College of Nursing at the University of Tennessee, Knoxville prepared to move their graduate programs online, a nursing faculty grass-roots movement led to the implementation of a faculty development program. This instructional design portfolio describes the design, development, implementation, and evaluation of this program, with the goal…

  14. 24 CFR 570.421 - New York Small Cities Program design.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true New York Small Cities Program design... HOUSING AND URBAN DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Small Cities, Non-Entitlement CDBG Grants in Hawaii and Insular Areas Programs § 570.421 New York Small Cities Program design...

  15. The Development and Experimental Analysis of a Self-Instructional Program in Graphical Kinematics.

    ERIC Educational Resources Information Center

    Nee, John G.

    A project to help vocational-technical teachers in the development and experimental analysis of self-instructional programs is presented. The emphasis in developing the program was on maximizing effectiveness and efficiency of program-learner interaction as measured by criterion items. These items emphasized cognitive content dealing with the…

  16. Environmental Quality Research and Development. A Review and Analysis of Federal Programs.

    ERIC Educational Resources Information Center

    Executive Office of the President, Washington, DC.

    This is the first interagency report on Federal environmental quality research and development programs that presents program descriptions, levels of funding, and analyses. Undertaken at the request of the Federal Council for Science and Technology, the study may be useful in identifying environmental quality research and development programs in…

  17. NASA Goddard Thermal Technology Overview 2018

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2018-01-01

    This presentation summarizes the current plans and efforts at NASA/Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the NASA Technology Development Program. The effects of the recently submitted NASA budget will also be addressed. While funding for basic technology development is still tight, significant efforts are being made in direct support of flight programs. Thermal technology Implementation on current flight programs will be reviewed, and the recent push for Cube-sat mission development will also be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program and the Small Business Innovative Research (SBIR) program are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of thermal control coatings, Atomic Layer Deposition (ALD), Micro-scale Heat Transfer, and various other research activities.

  18. Exploratory Technology Research Program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  19. Exploratory Technology Research Program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  20. Design for Effective Staff Development.

    ERIC Educational Resources Information Center

    Seagren, Alan T.

    This paper presents a model for designing an effective staff development program. The rationale, philosophy, and instructional design utilized in the instructional Staff Development (ISD) program provides the basis for the design presented. The ISD program was conceptualized, developed, pilot tested, and field tested as a cooperative research…

  1. Workforce and Economic Development Annual Report, 2011-2012

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2013

    2013-01-01

    The California Community Colleges Workforce and Economic Development program (WED program) helps students, incumbent workers, business partners and industries develop skilled competencies in critical industry sectors. As a source for developing and implementing training and curriculum, the WED program is instrumental in helping the community…

  2. 36 CFR 801.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRESERVATION REQUIREMENTS OF THE URBAN DEVELOPMENT ACTION GRANT PROGRAM § 801.2 Definitions. The terms defined... regulations: (a) Urban Development Action Grant (UDAG) Program means the program of the Department of Housing and Urban Development (HUD) authorized by title I of the Housing and Community Development Act (HCDA...

  3. Developing Program Management Leadership for Acquisition Reform

    DTIC Science & Technology

    2011-04-30

    mêçÅÉÉÇáåÖë= çÑ=íÜÉ= bfdeqe=^kkr^i=^`nrfpfqflk== obpb^o`e=pvjmlpfrj== qeropa^v=pbppflkp== slirjb ff Developing Program Management Leadership for...4. TITLE AND SUBTITLE Developing Program Management Leadership for Acquisition Reform 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Developing Program  Management   Leadership   for Acquisition Reform    The 8th Annual Acquisition Research Symposium Panel #20: Investing in People

  4. F-35 Joint Strike Fighter: Continued Oversight Needed as Program Plans to Begin Development of New Capabilities

    DTIC Science & Technology

    2016-04-01

    3Concurrency is broadly defined as the overlap between technology development and product development or between product development and...reported extensively on the F-35 program’s cost, schedule, and performance problems. The program plans to begin increasing production rates over the...internal DOD program analyses. GAO also collected and analyzed production and supply chain performance data, and interviewed DOD, program, and

  5. How development programs can affect fertility: the case of Bangladesh.

    PubMed

    Robey, B

    1988-09-01

    Improving living standards and increasing productivity in developing countries may result in fertility reduction. In Bangladesh, government policy stresses rural development and fertility reduction. Programs that raise women's status reduce fertility. Educational level is inversely correlated to childbearing. Women aged 25-29 with a Secondary School Certificate have 2.4 children, versus 4.0 for those with no education. Employment also decreases fertility. Thus, improving the educational and employment status of women could have major effects on fertility. Studying the Bangladesh Rural Social Services program revealed that community organization efforts and self-help programs for economic and social improvement also decrease fertility. Rural electrification programs, which have been emphasized in development planning, contribute to changing attitudes and behavior of residents of these regions. In addition to electrification, improved transportation and communications should enhance the spread of information to rural areas. Agricultural development programs, such as the Comilla development program, have not affected fertility. This is attributed to the concentration of benefits to a few farms, with the majority becoming poorer. Unless agricultural development benefits are widely distributed, there will probably be little effect on fertility. Thus, the development programs most likely to affect fertility are those which emphasize female education and employment, open rural areas to information and ideas, and are open to a whole community.

  6. NASA's Microgravity Technology Report, 1996: Summary of Activities

    NASA Technical Reports Server (NTRS)

    Kierk, Isabella

    1996-01-01

    This report covers technology development and technology transfer activities within the Microgravity Science Research Programs during FY 1996. It also describes the recent major tasks under the Advanced Technology Development (ATD) Program and identifies current technology requirements. This document is consistent with NASA,s Enteprise for the Human Exploration and development of Space (HEDS) Strategic Plan. This annual update reflects changes in the Microgravity Science Research Program's new technology activities and requirements. Appendix A. FY 1996 Advanced Technology Development. Program and Project Descriptions. Appendix B. Technology Development.

  7. Programming Language Software For Graphics Applications

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1993-01-01

    New approach reduces repetitive development of features common to different applications. High-level programming language and interactive environment with access to graphical hardware and software created by adding graphical commands and other constructs to standardized, general-purpose programming language, "Scheme". Designed for use in developing other software incorporating interactive computer-graphics capabilities into application programs. Provides alternative to programming entire applications in C or FORTRAN, specifically ameliorating design and implementation of complex control and data structures typifying applications with interactive graphics. Enables experimental programming and rapid development of prototype software, and yields high-level programs serving as executable versions of software-design documentation.

  8. LISP as an Environment for Software Design: Powerful and Perspicuous

    PubMed Central

    Blum, Robert L.; Walker, Michael G.

    1986-01-01

    The LISP language provides a useful set of features for prototyping knowledge-intensive, clinical applications software that is not found In most other programing environments. Medical computer programs that need large medical knowledge bases, such as programs for diagnosis, therapeutic consultation, education, simulation, and peer review, are hard to design, evolve continually, and often require major revisions. They necessitate an efficient and flexible program development environment. The LISP language and programming environments bullt around it are well suited for program prototyping. The lingua franca of artifical intelligence researchers, LISP facllitates bullding complex systems because it is simple yet powerful. Because of its simplicity, LISP programs can read, execute, modify and even compose other LISP programs at run time. Hence, it has been easy for system developers to create programming tools that greatly speed the program development process, and that may be easily extended by users. This has resulted in the creation of many useful graphical interfaces, editors, and debuggers, which facllitate the development of knowledge-intensive medical applications.

  9. The Mars Technology Program

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.

    2002-01-01

    Future Mars missions require new capabilities that currently are not available. The Mars Technology Program (MTP) is an integral part of the Mars Exploration Program (MEP). Its sole purpose is to assure that required technologies are developed in time to enable the baselined and future missions. The MTP is a NASA-wide technology development program managed by JPL. It is divided into a Focused Program and a Base Program. The Focused Program is tightly tied to the proposed Mars Program mission milestones. It involves time-critical deliverables that must be developed in time for infusion into the proposed Mars 2005, and, 2009 missions. In addition a technology demonstration mission by AFRL will test a LIDAR as part of a joint NASNAFRL experiment. This program bridges the gap between technology and projects by vertically integrating the technology work with pre-project development in a project-like environment with critical dates for technology infusion. A Base Technology Program attacks higher riskhigher payoff technologies not in the critical path of missions.

  10. Development and Evaluation of Innovative Peer-Led Physical Activity Programs for Mental Health Service Users

    PubMed Central

    Graham, Candida R.; Larstone, Roseann; Griffiths, Brenda; de Leeuw, Sarah; Anderson, Lesley; Powell-Hellyer, Stephanie; Long, Nansi

    2017-01-01

    Abstract Mental health service users (MHSUs) have elevated rates of cardiometabolic disturbance. Improvements occur with physical activity (PA) programs. We report the development and evaluation of three innovative peer-developed and peer-led PA programs: 1) walking; 2) fitness; and 3) yoga. Qualitative evaluation with 33 MHSUs in British Columbia, Canada, occurred. These programs yielded improvements for participants, highlighted by powerful narratives of health improvement, and improved social connections. The feasibility and acceptability of innovative peer-developed and peer-led programs were shown. Analyses revealed concepts related to engagement and change. Relating core categories, we theorize effective engagement of MHSUs requires accessibility on three levels (geographic, cost, and program flexibility) and health behavior change occurs within co-constituent relationships (to self, to peers, and to the wider community). This study highlights the benefits of peer involvement in developing and implementing PA programs and provides a theoretical framework of understanding engagement and behavior change in health programs for MHSUs. PMID:28953007

  11. TRU Waste Management Program. Cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, taskmore » guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  12. Capitalizing on App Development Tools and Technologies

    ERIC Educational Resources Information Center

    Luterbach, Kenneth J.; Hubbell, Kenneth R.

    2015-01-01

    Instructional developers and others creating apps must choose from a wide variety of app development tools and technologies. Some app development tools have incorporated visual programming features, which enable some drag and drop coding and contextual programming. While those features help novices begin programming with greater ease, questions…

  13. 24 CFR 91.10 - Consolidated program year.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Consolidated program year. 91.10 Section 91.10 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development CONSOLIDATED SUBMISSIONS FOR COMMUNITY PLANNING AND DEVELOPMENT PROGRAMS General § 91.10...

  14. Developing a videocassette program for pharmacy education.

    PubMed

    Klamerus, K J; Belsheim, D J

    1988-03-01

    The development of a videocassette program to educate pharmacists about congestive heart failure (CHF) is described. The CHF videocassette program was developed to provide the equivalent of four hours of instruction to pharmacists in continuing-education programs or Pharm.D. degree programs. CHF was chosen as the topic because it is a common medical problem that pharmacists likely would encounter, and the material would lend itself well to visual illustration. A program-development team consisting of a pharmacist-author, an educational-design specialist, and a writer-producer was established. The group dealt first with treatment of ideas, or discussions of ways in which the educational material could best be illustrated. The pharmacist-author developed the text for the program, and the writer-producer converted the text into a script with numbered scenes. Information that could be presented more appropriately in written format was gathered into a supplemental guidebook. A storyboard script that linked the text with the audio and visual elements was developed with the help of a professional director and medical illustrator, and the program was filmed using volunteer and professional actors as well as simple animation. The program comprises two videocassettes that are 40 and 44 minutes long, respectively. The estimated cost of the production was +28,000, which includes estimates of the value of time volunteered by the pharmacist-author, educational-design specialist, nonprofessional talent, and secretaries. The program has been used for six continuing-education programs and two classes of Pharm.D. students; subjective evaluations of the program have been favorable. Videocassette technology can be applied successfully to educational programs for pharmacists.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Interprofessional development and implementation of a pharmacist professional advancement and recognition program.

    PubMed

    Hager, David; Chmielewski, Eric; Porter, Andrea L; Brzozowski, Sarah; Rough, Steve S; Trapskin, Philip J

    2017-11-15

    The interprofessional development, implementation, and outcomes of a pharmacist professional advancement and recognition program (PARP) at an academic medical center are described. Limitations of the legacy advancement program, in combination with low rates of employee engagement in peer recognition and professional development, at the UW Health department of pharmacy led to the creation of a task force comprising pharmacists from all practice areas to develop a new pharmacist PARP. Senior leadership within the organization expanded the scope of the project to include an interprofessional work group tasked to develop guidelines and core principles that other professional staff could use to reduce variation across advancement and recognition programs. Key program design elements included a triennial review of performance against advancement standards and the use of peer review to supplement advancement decisions. The primary objective was to meaningfully improve pharmacists' engagement as measured through employee engagement surveys. Secondary outcomes of interest included the results of pharmacist and management satisfaction surveys and the program's impact on the volume and mix of pharmacist professional development activities. Of the 126 eligible pharmacists, 93 participated in the new program. The majority of pharmacists was satisfied with the program. For pharmacists who were advanced as part of the program, meaningful increases in employee engagement scores were observed, and a mean of 95 hours of professional development and quality-improvement activities was documented. Implementation of a PARP helped increase pharmacist engagement through participation in quality-improvement and professional development activities. The program also led to the creation of organizationwide interprofessional guidelines for advancement programs within various healthcare disciplines. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  16. A Component-based Programming Model for Composite, Distributed Applications

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  17. Tai Chi: moving for better balance -- development of a community-based falls prevention program.

    PubMed

    Li, Fuzhong; Harmer, Peter; Mack, Karin A; Sleet, David; Fisher, K John; Kohn, Melvin A; Millet, Lisa M; Xu, Junheng; Yang, Tingzhong; Sutton, Beth; Tompkins, Yvaughn

    2008-05-01

    This study was designed to develop an evidence- and community based falls prevention program -- Tai Chi: Moving for Better Balance. A mixed qualitative and quantitative approach was used to develop a package of materials for program implementation and evaluation. The developmental work was conducted in 2 communities in the Pacific Northwest. Participants included a panel of experts, senior service program managers or activity coordinators, and older adults. Outcome measures involved program feasibility and satisfaction. Through an iterative process, a program package was developed. The package contained an implementation plan and class training materials (ie, instructor's manual, videotape, and user's guidebook). Pilot testing of program materials showed that the content was appropriate for the targeted users (community-living older adults) and providers (local senior service organizations). A feasibility survey indicated interest and support from users and providers for program implementation. A 2-week pilot evaluation showed that the program implementation was feasible and evidenced good class attendance, high participant satisfaction, and interest in continuing Tai Chi. The package of materials developed in this study provides a solid foundation for larger scale implementation and evaluation of the program in community settings.

  18. Cost Estimates by Program Mechanism, Appendix K. Vol. II, A Plan for Managing the Development, Implementation and Operation of a Model Elementary Teacher Education Program.

    ERIC Educational Resources Information Center

    Cole, R. D.; Hamreus, D. G.

    This appendix presents the following tables of program component cost estimates: 1) instructional design and development; 2) instructional operations; 3) program management--policy creation and adoption, and policy and program execution; 4) program coordination--instructional objectives, adaptation, accommodation, and dissemination; 5) general…

  19. Design of training programs for a positive youth development program: Project P.A.T.H.S. in Hong Kong.

    PubMed

    Shek, Daniel T L; Chak, Yammy L Y

    2010-01-01

    To facilitate the implementation of the Secondary 1 to Secondary 3 program of the Project P.A.T.H.S. in Hong Kong, systematic training programs are designed for the potential program implementers. The rationales, objectives and design of the Secondary 1 to Secondary 3 training programs are outlined in this paper. The training programs cover theories of adolescent development, positive youth development, background and curricula of the Project P.A.T.H.S., factors affecting program implementation quality and evaluation of the project. Besides introducing the curriculum units, the training programs also focus on nature of learning and related theories (particularly experiential learning), teaching methods and instructional techniques, motivating students, and classroom management.

  20. NASA's Hall Thruster Program 2002

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.

    2002-01-01

    The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.

  1. 75 FR 11621 - Agency Information Collection Activities: Notice of Request for Extension of Currently Approved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... Awards (TPEA) Program is a biennial awards program developed by the FHWA and the Federal Transit... System Preservation Program Grant Application. Delta Region Transportation Development Program Grant...: Transportation, Community, and System Preservation Program Grant Application: Section 1117 of the Safe...

  2. ASE Program Certification Standards for Automobile Technician Training Programs.

    ERIC Educational Resources Information Center

    National Automotive Technicians Education Foundation, Herndon, VA.

    This document presents and explains the development and application of the National Institute for Automotive Service Excellence (ASE) program certification standards that were developed to improve the quality of secondary- and postsecondary-level automobile technician training by implementing a certification program that certifies programs in…

  3. Status Report on the Virginia Beginning Teacher Assistance Program.

    ERIC Educational Resources Information Center

    Caldwell, Michael

    This report presents a description of the Virgina Beginning Teacher Assistance Program (BTAP), its background and rationale, development, major program assumptions, and major program activities. The Virginia BTAP has three major components: teacher assessment, teacher assistance, and program management. The development and implementation of each…

  4. 24 CFR 583.405 - Program changes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Program changes. 583.405 Section... DEVELOPMENT COMMUNITY FACILITIES SUPPORTIVE HOUSING PROGRAM Administration § 583.405 Program changes. (a) HUD approval. (1) A recipient may not make any significant changes to an approved program without prior HUD...

  5. The Integration of English Language Development and Science Instruction in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Zwiep, Susan Gomez; Straits, William J.; Stone, Kristin R.; Beltran, Dolores D.; Furtado, Leena

    2011-12-01

    This paper explores one district's attempt to implement a blended science and English Language Development (ELD) elementary program, designed to provide English language learners opportunities to develop proficiency in English through participation in inquiry-based science. This process resulted in blended program that utilized a combined science/ELD lesson plan format to structure and guide teachers' efforts to use science as the context for language development. Data, collected throughout the first 2 years of the program, include teacher-generated lesson plans, observation notes, and interviews with teachers and principals. The process by which the blended program was developed, the initial implementation of the program, the resulting science/ELD lesson plan format, and teachers' perceptions about the program and its impact on their students are described.

  6. 25 CFR 39.136 - What is the WSU for Language Development programs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is the WSU for Language Development programs? 39.136 Section 39.136 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION THE INDIAN SCHOOL EQUALIZATION PROGRAM Indian School Equalization Formula Language Development Programs § 39.136 What is the WSU...

  7. The Impact of a "Framework"-Aligned Science Professional Development Program on Literacy and Mathematics Achievement of K-3 Students

    ERIC Educational Resources Information Center

    Paprzycki, Peter; Tuttle, Nicole; Czerniak, Charlene M.; Molitor, Scott; Kadervaek, Joan; Mendenhall, Robert

    2017-01-01

    This study investigates the effect of a Framework-aligned professional development program at the PreK-3 level. The NSF funded program integrated science with literacy and mathematics learning and provided teacher professional development, along with materials and programming for parents to encourage science investigations and discourse around…

  8. The Evolution of Cartography Graduate Programs and the Development of New Graduate Programs in Cartography: An Assessment of Models.

    ERIC Educational Resources Information Center

    Steinke, Theodore R.

    This paper traces the historical development of cartography graduate programs, establishes an evolutionary model, and evaluates the model to determine if it has some utility today for the development of programs capable of producing highly skilled cartographers. Cartography is defined to include traditional cartography, computer cartography,…

  9. Lessons Learned Developing an Extension-Based Training Program for Farm Labor Supervisors

    ERIC Educational Resources Information Center

    Roka, Fritz M.; Thissen, Carlene A.; Monaghan, Paul F.; Morera, Maria C.; Galindo-Gonzalez, Sebastian; Tovar-Aguilar, Jose Antonio

    2017-01-01

    This article outlines a four-step model for developing a training program for farm labor supervisors. The model draws on key lessons learned during the development of the University of Florida Institute of Food and Agricultural Sciences Farm Labor Supervisor Training program. The program is designed to educate farm supervisors on farm labor laws…

  10. Analysis of Java Client/Server and Web Programming Tools for Development of Educational Systems.

    ERIC Educational Resources Information Center

    Muldner, Tomasz

    This paper provides an analysis of old and new programming tools for development of client/server programs, particularly World Wide Web-based programs. The focus is on development of educational systems that use interactive shared workspaces to provide portable and expandable solutions. The paper begins with a short description of relevant terms.…

  11. Handbook for the Development of a Cooperative Adult Basic Education Program in Industry.

    ERIC Educational Resources Information Center

    Felton, Mimi Edge

    Based on experience gained during the development of the Planters Employee Training (PET) program in cooperation with the Suffolk City Schools, Virginia, this handbook provides guidelines for similar cooperative adult basic education (CABE) programs. The table of contents is arranged in the order in which the CABE/PET program was developed and…

  12. The Development of a Comprehensive Student Basic Skills Assessment Program at St. Louis Community College's Florissant Valley Campus.

    ERIC Educational Resources Information Center

    Webb, Mel

    A comprehensive student basic skills assessment program was developed at St. Louis Community College (SLCC) at Florissant Valley to appraise student readiness to take courses, gather information for counseling and advising, diagnose student problems, and evaluate program efficiency and effectiveness. The steps taken in developing the program were:…

  13. 34 CFR 263.2 - Who is eligible to apply under the Professional Development program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GRANT PROGRAMS Professional Development Program § 263.2 Who is eligible to apply under the Professional... 34 Education 1 2010-07-01 2010-07-01 false Who is eligible to apply under the Professional Development program? 263.2 Section 263.2 Education Regulations of the Offices of the Department of Education...

  14. 34 CFR 263.2 - Who is eligible to apply under the Professional Development program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GRANT PROGRAMS Professional Development Program § 263.2 Who is eligible to apply under the Professional... 34 Education 1 2011-07-01 2011-07-01 false Who is eligible to apply under the Professional Development program? 263.2 Section 263.2 Education Regulations of the Offices of the Department of Education...

  15. A theory-informed approach to mental health care capacity building for pharmacists.

    PubMed

    Murphy, Andrea L; Gardner, David M; Kutcher, Stan P; Martin-Misener, Ruth

    2014-01-01

    Pharmacists are knowledgeable, accessible health care professionals who can provide services that improve outcomes in mental health care. Various challenges and opportunities can exist in pharmacy practice to hinder or support pharmacists' efforts. We used a theory-informed approach to development and implementation of a capacity-building program to enhance pharmacists' roles in mental health care. Theories and frameworks including the Consolidated Framework for Implementation Research, the Theoretical Domains Framework, and the Behaviour Change Wheel were used to inform the conceptualization, development, and implementation of a capacity-building program to enhance pharmacists' roles in mental health care. The More Than Meds program was developed and implemented through an iterative process. The main program components included: an education and training day; use of a train-the-trainer approach from partnerships with pharmacists and people with lived experience of mental illness; development of a community of practice through email communications, a website, and a newsletter; and use of educational outreach delivered by pharmacists. Theories and frameworks used throughout the program's development and implementation facilitated a means to conceptualize the component parts of the program as well as its overall presence as a whole from inception through evolution in implementation. Using theoretical foundations for the program enabled critical consideration and understanding of issues related to trialability and adaptability of the program. Theory was essential to the underlying development and implementation of a capacity-building program for enhancing services by pharmacists for people with lived experience of mental illness. Lessons learned from the development and implementation of this program are informing current research and evolution of the program.

  16. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  17. Advancing Systems Engineering Excellence: The Marshall Systems Engineering Leadership Development Program

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Whitfield, Susan

    2011-01-01

    As NASA undertakes increasingly complex projects, the need for expert systems engineers and leaders in systems engineering is becoming more pronounced. As a result of this issue, the Agency has undertaken an initiative to develop more systems engineering leaders through its Systems Engineering Leadership Development Program; however, the NASA Office of the Chief Engineer has also called on the field Centers to develop mechanisms to strengthen their expertise in systems engineering locally. In response to this call, Marshall Space Flight Center (MSFC) has developed a comprehensive development program for aspiring systems engineers and systems engineering leaders. This presentation will summarize the two-level program, which consists of a combination of training courses and on-the-job, developmental training assignments at the Center to help develop stronger expertise in systems engineering and technical leadership. In addition, it will focus on the success the program has had in its pilot year. The program hosted a formal kickoff event for Level I on October 13, 2009. The first class includes 42 participants from across MSFC and Michoud Assembly Facility (MAF). A formal call for Level II is forthcoming. With the new Agency focus on research and development of new technologies, having a strong pool of well-trained systems engineers is becoming increasingly more critical. Programs such as the Marshall Systems Engineering Leadership Development Program, as well as those developed at other Centers, help ensure that there is an upcoming generation of trained systems engineers and systems engineering leaders to meet future design challenges.

  18. 77 FR 24139 - State Community Development Block Grant Program: Administrative Rule Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ...-AC22 State Community Development Block Grant Program: Administrative Rule Changes AGENCY: Office of the... rule makes changes to several sections of the regulations for the Community Development Block Grant... ``Community Development Block Grants''). Under the State CDBG program, states have the opportunity to...

  19. 75 FR 74078 - Information Collection for Tribal Energy Development Capacity Program; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Development Capacity Program; Comment Request AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... Office of Indian Energy and Economic Development (IEED) is seeking comments on a proposed information collection related to funds provided under the Tribal Energy Development Capacity (TEDC) program. Indian...

  20. 76 FR 22412 - Information Collection for Tribal Energy Development Capacity Program; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... Development Capacity Program; Comment Request AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... Office of Indian Energy and Economic Development (IEED) is submitting a proposed information collection related to funds provided under the Tribal Energy Development Capacity (TEDC) program to the Office of...

Top