Sample records for h-bridge-based power converter

  1. Modeling the full-bridge series-resonant power converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1982-01-01

    A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.

  2. Interleaved power converter

    DOEpatents

    Zhu, Lizhi

    2007-11-13

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  3. Cascaded resonant bridge converters

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  4. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  5. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  6. Drive and protection circuit for converter module of cascaded H-bridge STATCOM

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Yuan, Hongliang; Wang, Xiaoxing; Wang, Shuai; Fu, Yongsheng

    2018-04-01

    Drive and protection circuit is an important part of power electronics, which is related to safe and stable operation issues in the power electronics. The drive and protection circuit is designed for the cascaded H-bridge STATCOM. This circuit can realize flexible dead-time setting, operation status self-detection, fault priority protection and detailed fault status uploading. It can help to improve the reliability of STATCOM's operation. Finally, the proposed circuit is tested and analyzed by power electronic simulation software PSPICE (Simulation Program with IC Emphasis) and a series of experiments. Further studies showed that the proposed circuit can realize drive and control of H-bridge circuit, meanwhile it also can realize fast processing faults and have advantage of high reliability.

  7. Design and Comparison of Cascaded H-Bridge, Modular Multilevel Converter, and 5-L Active Neutral Point Clamped Topologies for Motor Drive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzoughi, Alinaghi; Burgos, Rolando; Boroyevich, Dushan

    This paper presents the design procedure and comparison of converters currently used in medium-voltage high-power motor drive applications. For this purpose, the cascaded H-bridge (CHB), modular multilevel converter (MMC), and five-level active neutral point clamped (5-L ANPC) topologies are targeted. The design is performed using 1.7-kV insulated gate bipolar transistors (IGBTs) for CHB and MMC converters, and utilizing 3.3- and 4.5-kV IGBTs for 5-L ANPC topology as normally done in industry. The comparison is done between the designed converter topologies at three different voltage levels (4.16, 6.9, and 13.8 kV, with only the first two voltage levels in case ofmore » the 5-L ANPC) and two different power levels (3 and 5 MVA), in order to elucidate the dependence of different parameters on voltage and power rating. Finally, the comparison is done from several points of view such as efficiency, capacitive energy storage, semiconductor utilization, parts count (for measure of reliability), and power density.« less

  8. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  9. Load-Dependent Soft-Switching Method of Half-Bridge Current Doubler for High-Voltage Point-of-Load Converter in Data Center Power Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yutian; Yang, Fei; Tolbert, Leon M.

    With the increased cloud computing and digital information storage, the energy requirement of data centers keeps increasing. A high-voltage point of load (HV POL) with an input series output parallel structure is proposed to convert 400 to 1 VDC within a single stage to increase the power conversion efficiency. The symmetrical controlled half-bridge current doubler is selected as the converter topology in the HV POL. A load-dependent soft-switching method has been proposed with an auxiliary circuit that includes inductor, diode, and MOSFETs so that the hard-switching issue of typical symmetrical controlled half-bridge converters is resolved. The operation principles of themore » proposed soft-switching half-bridge current doubler have been analyzed in detail. Then, the necessity of adjusting the timing with the loading in the proposed method is analyzed based on losses, and a controller is designed to realize the load-dependent operation. A lossless RCD current sensing method is used to sense the output inductor current value in the proposed load-dependent operation. In conclusion, experimental efficiency of a hardware prototype is provided to show that the proposed method can increase the converter's efficiency in both heavy- and light-load conditions.« less

  10. Load-Dependent Soft-Switching Method of Half-Bridge Current Doubler for High-Voltage Point-of-Load Converter in Data Center Power Supplies

    DOE PAGES

    Cui, Yutian; Yang, Fei; Tolbert, Leon M.; ...

    2016-06-14

    With the increased cloud computing and digital information storage, the energy requirement of data centers keeps increasing. A high-voltage point of load (HV POL) with an input series output parallel structure is proposed to convert 400 to 1 VDC within a single stage to increase the power conversion efficiency. The symmetrical controlled half-bridge current doubler is selected as the converter topology in the HV POL. A load-dependent soft-switching method has been proposed with an auxiliary circuit that includes inductor, diode, and MOSFETs so that the hard-switching issue of typical symmetrical controlled half-bridge converters is resolved. The operation principles of themore » proposed soft-switching half-bridge current doubler have been analyzed in detail. Then, the necessity of adjusting the timing with the loading in the proposed method is analyzed based on losses, and a controller is designed to realize the load-dependent operation. A lossless RCD current sensing method is used to sense the output inductor current value in the proposed load-dependent operation. In conclusion, experimental efficiency of a hardware prototype is provided to show that the proposed method can increase the converter's efficiency in both heavy- and light-load conditions.« less

  11. Cycling firing method for bypass operation of bridge converters

    DOEpatents

    Zabar, Zivan

    1982-01-01

    The bridge converter comprises a number of switching elements and an electronic logic system which regulated the electric power levels by controlling the firing, i.e., the initiation of the conduction period of the switching elements. Cyclic firing of said elements allows the direct current to bypass the alternating current system with high power factor and negligible losses.

  12. Linear beam raster magnet driver based on H-bridge technique

    DOEpatents

    Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William

    2006-06-06

    An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.

  13. A novel power converter for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  14. Cascaded H-bridge multilevel inverter for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi

    2016-04-01

    In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.

  15. High power Raman-converter based on H2-filled inhibited coupling HC-PCF

    NASA Astrophysics Data System (ADS)

    Benoit, A.; Beaudou, B.; Debord, B.; Gerome, F.; Benabid, F.

    2017-02-01

    We report on high power Raman-converter frequency stage based on hydrogen-filled inhibited-coupling hollow-core photonic crystal fibers pumped by an Yb-fiber picosecond laser. This fiber Raman-convertor can operate in two SRS emission regimes by simply controlling the fiber length or the gas pressure. It can set to either generate favorably single laser line or to generate an extremely wide Raman comb. Based on this we demonstrate a pico-second pulse Raman source of 9.3 W average-power at 1.8 μm, and an ultra-wide Raman comb spanning over more than five octaves from UV to mid-infrared, containing around 70 laser lines.

  16. Low Cost Embedded Controlled Full Bridge LC Parallel Resonant Converter

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, P.; Reddy, S.

    2009-01-01

    In this paper the converter requirements for an optimum control of an electrolyser linked with a DC bus are analyzed and discussed. An electrolyser is a part of renewable energy system which generates hydrogen from water electrolysis. The hydrogen generating device is part of a complex system constituted by a supplying photovoltaic plant, the grid and a fuel cell battery. The characterization in several operative conditions of an actual industrial electrolyser is carried out in order to design and optimize the DC/DC converter. A dedicated zero voltage switching DC/DC converter is presented and simulated inside the context of the distributed energy production and storage system. The proposed supplying converter gives a stable output voltage and high circuit efficiency in all the proposed simulated scenarios. The adopted DC/DC converter is realized in a full-bridge topology technique in order to achieve zero voltage switching for the power switches and to regulate the output voltage. This converter has advantages like high power density, low EMI and reduced switching stresses. The simulation results are verified with the experimental results.

  17. A 1 MW, 100 kV, less than 100 kg space based dc-dc power converter

    NASA Technical Reports Server (NTRS)

    Cooper, J. R.; White, C. W.

    1991-01-01

    A 1 MW dc-dc power converter has been designed which has an input voltage of 5 kV +/-3 percent, an output voltage of 100 kV +/- 0.25 percent, and a run time of 1000 s at full power. The estimated system mass is 83.8 kg, giving a power density of 11.9 kW/kg. The system exceeded the weight goal of 10 kW/kg through the use of innovative components and system concepts. The system volume is approximately 0.1 cu m, and the overall system efficiency is estimated to be 87 percent. Some of the unique system features include a 50-kHz H-bridge inverter using MOS-controlled thyristors as the switching devices, a resonance transformer to step up the voltage, open-cycle cryogenic hydrogen gas cooling, and a nonrigid, inflatable housing which provides on-demand pressurization of the power converter local environment. This system scales very well to higher output powers. The weight of the 10-MW system with the same input and output voltage requirements and overall system configuration is estimated to be 575.3 kg. This gives a power density of 17.4 kW/kg, significantly higher than the 11.9 kW/kg estimated at 1 MW.

  18. A 1 MW, 100 kV, less than 100 kg space based dc-dc power converter

    NASA Astrophysics Data System (ADS)

    Cooper, J. R.; White, C. W.

    A 1 MW dc-dc power converter has been designed which has an input voltage of 5 kV +/-3 percent, an output voltage of 100 kV +/- 0.25 percent, and a run time of 1000 s at full power. The estimated system mass is 83.8 kg, giving a power density of 11.9 kW/kg. The system exceeded the weight goal of 10 kW/kg through the use of innovative components and system concepts. The system volume is approximately 0.1 cu m, and the overall system efficiency is estimated to be 87 percent. Some of the unique system features include a 50-kHz H-bridge inverter using MOS-controlled thyristors as the switching devices, a resonance transformer to step up the voltage, open-cycle cryogenic hydrogen gas cooling, and a nonrigid, inflatable housing which provides on-demand pressurization of the power converter local environment. This system scales very well to higher output powers. The weight of the 10-MW system with the same input and output voltage requirements and overall system configuration is estimated to be 575.3 kg. This gives a power density of 17.4 kW/kg, significantly higher than the 11.9 kW/kg estimated at 1 MW.

  19. A normalized model for the half-bridge series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R.; Stuart, T. A.

    1981-01-01

    Closed-form steady-state equations are derived for the half-bridge series resonant converter with a rectified (dc) load. Normalized curves for various currents and voltages are then plotted as a function of the circuit parameters. Experimental results based on a 10-kHz converter are presented for comparison with the calculations.

  20. High power density dc-to-dc converters for aerospace applications

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    Three dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. Of the three circuits, the single-phase and three-phase versions of the dual active bridge topology demonstrate minimal stresses, better utilization of the transformer, bidirectional, and buck-boost modes of operation. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. The power transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. Based on the single-phase dual active bridge topology, a 50 kW, 50 kHz converter operating at an input voltage of 200 Vdc and an output voltage of 1600 Vdc was fabricated. Characteristics of current-fed output make the dual active bridge topologies amenable to paralleling and hence extension to megawatt power levels. Projections to a 1 MW system operating from a 500 Vdc input, at an output voltage of 10 kVdc and a switching frequency of 50 kHz, using MOS-controlled thyristors, coaxially wound transformers operating at three times the present current density with cooling, and multilayer ceramic capacitors, suggests an overall power density of 0.075 to 0.08 kg/kW and an overall efficiency of 96 percent.

  1. Testing Single Phase IGBT H-Bridge Switch Plates for the High Voltage Converter Modulator at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplov, Vladimir V; Anderson, David E; Solley, Dennis J

    2014-01-01

    Three IGBT H-bridge switching networks are used in each High Voltage Converter Modulator (HVCM) system at the Spallation Neutron Source (SNS) to generate drive currents to three boost transformer primaries switching between positive and negative bus voltages at 20 kHz. Every switch plate assembly is tested before installing it into an operational HVCM. A Single Phase Test Stand has been built for this purpose, and it is used for adjustment, measurement and testing of different configurations of switch plates. This paper will present a description of the Test Stand configuration and discuss the results of testing switch plates with twomore » different types of IGBT gate drivers currently in use on the HVCM systems. Comparison of timing characteristics of the original and new drivers and the resulting performance reinforces the necessity to replace the original H-bridge network drivers with the upgraded units.« less

  2. Individual Battery-Power Control for a Battery Energy Storage System Using a Modular Multilevel Cascade Converter

    NASA Astrophysics Data System (ADS)

    Yamagishi, Tsukasa; Maharjan, Laxman; Akagi, Hirofumi

    This paper focuses on a battery energy storage system that can be installed in a 6.6-kV power distribution system. This system comprises a combination of a modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC) and multiple battery modules. Each battery module is connected to the dc side of each bridge-cell, where the battery modules are galvanically isolated from each other. Three-phase multilevel line-to-line voltages with extremely low voltage steps on the ac side of the converter help in solving problems related to line harmonic currents and electromagnetic interference (EMI) issues. This paper proposes a control method that allows each bridge-cell to independently adjust the battery power flowing into or out of each battery module. A three-phase energy storage system using nine nickel-metal-hydride (NiMH) battery modules, each rated at 72V and 5.5Ah, is designed, constructed, and tested to verify the viability and effectiveness of the proposed control method.

  3. Cascaded Converters for Integration and Management of Grid Level Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Alaas, Zuhair

    This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter

  4. Performance testing of a high frequency link converter for Space Station power distribution system

    NASA Technical Reports Server (NTRS)

    Sul, S. K.; Alan, I.; Lipo, T. A.

    1989-01-01

    The testing of a brassboard version of a 20-kHz high-frequency ac voltage link prototype converter dynamics for Space Station application is presented. The converter is based on a three-phase six-pulse bridge concept. The testing includes details of the operation of the converter when it is driving an induction machine source/load. By adapting a field orientation controller (FOC) to the converter, four-quadrant operation of the induction machine from the converter has been achieved. Circuit modifications carried out to improve the performance of the converter are described. The performance of two 400-Hz induction machines powered by the converter with simple V/f regulation mode is reported. The testing and performance results for the converter utilizing the FOC, which provides the capability for rapid torque changes, speed reversal, and four-quadrant operation, are reported.

  5. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  6. Radiation tolerant power converter controls

    NASA Astrophysics Data System (ADS)

    Todd, B.; Dinius, A.; King, Q.; Uznanski, S.

    2012-11-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to significantly increased radiation induced effects in materials close to the accelerator, including the FGC. Recent radiation tests indicate that the current FGC would not be sufficiently reliable. A so-called FGClite is being designed to work reliably in the radiation environment in the post-LS1 era. This paper outlines the concepts of power converter controls for machines such as the LHC, introduces the risks related to radiation and a radiation tolerant project flow. The FGClite is then described, with its key concepts and challenges: aiming for high reliability in a radiation field.

  7. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    PubMed Central

    Tsai, Cheng-Tao; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  8. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  9. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE PAGES

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.; ...

    2017-05-17

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  10. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  11. The 25 kW resonant dc/dc power converter

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  12. Self-powered microthermionic converter

    DOEpatents

    Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-08-10

    A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

  13. Wireless power charging using point of load controlled high frequency power converters

    DOEpatents

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  14. Mutation of the myosin converter domain alters cross-bridge elasticity

    PubMed Central

    Köhler, Jan; Winkler, Gerhard; Schulte, Imke; Scholz, Tim; McKenna, William; Brenner, Bernhard; Kraft, Theresia

    2002-01-01

    Elastic distortion of a structural element of the actomyosin complex is fundamental to the ability of myosin to generate motile forces. An elastic element allows strain to develop within the actomyosin complex (cross-bridge) before movement. Relief of this strain then drives filament sliding, or more generally, movement of a cargo. Even with the known crystal structure of the myosin head, however, the structural element of the actomyosin complex in which elastic distortion occurs remained unclear. To assign functional relevance to various structural elements of the myosin head, e.g., to identify the elastic element within the cross-bridge, we studied mechanical properties of muscle fibers from patients with familial hypertrophic cardiomyopathy with point mutations in the head domain of the β-myosin heavy chain. We found that the Arg-719 → Trp (Arg719Trp) mutation, which is located in the converter domain of the myosin head fragment, causes an increase in force generation and fiber stiffness under isometric conditions by 48–59%. Under rigor and relaxing conditions, fiber stiffness was 45–47% higher than in control fibers. Yet, kinetics of active cross-bridge cycling were unchanged. These findings, especially the increase in fiber stiffness under rigor conditions, indicate that cross-bridges with the Arg719Trp mutation are more resistant to elastic distortion. The data presented here strongly suggest that the converter domain that forms the junction between the catalytic and the light-chain-binding domain of the myosin head is not only essential for elastic distortion of the cross-bridge, but that the main elastic distortion may even occur within the converter domain itself. PMID:11904418

  15. Test and evaluation of load converter topologies used in the Space Station Freedom Power Management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station Freedom dc Electrical Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switchmode converter, and a switching full-bridge forward converter. The topology, operation principles, and tests results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  16. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  17. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  18. High-power converters for space applications

    NASA Technical Reports Server (NTRS)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  19. Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel

    2010-01-01

    This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.

  20. An energy-harvesting power supply for underwater bridge scour monitoring sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yuli; Li, Yingjie; He, Longzhuang; Shamsi, Pourya; Zheng, Yahong R.

    2018-03-01

    The natural force of scouring has become one of the most critical risk endangering the endurance of bridges, thus leading to the necessity of deploying underwater monitoring sensors to actively detect potential scour holes under bridges. Due to the difficulty in re-charging batteries for underwater sensors, super capacitors with energy harvesting (EH) means are exploited to prolong the sustainability of underwater sensors. In this paper, an energy harvesting power supply based on a helical turbine is proposed to power underwater monitoring sensors. A small helical turbine is designed to convert water flow energy to electrical energy with favorable environmental robustness. A 3-inch diameter, 2.5-inch length and 3-bladed helical turbine was designed with two types of waterproof coupling with the sensor housing. Both designs were prototyped and tested under different flow conditions and we get valid voltage around 0.91 V which is enough to power monitoring sensor. The alternating current (AC) electrical energy generated by the helical turbine is then rectified and boosted to drive a DC charger for efficiently charging one super capacitor. The charging circuit was designed, prototyped and tested thoroughly with the helical turbine harvester. The results were promising, that the overall power supply can power an underwater sensor node with wireless transceivers for long-term operations

  1. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  2. Studies of ZVS soft switching of dual-active-bridge isolated bidirectional DC-DC converters

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Zhao, Feng; Shi, Qibiao; Wen, Xuhui

    2018-05-01

    To operate dual-active-bridge isolated bidirectional dc- dc converter (DAB) at high efficiency, the two bridge switches must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. This paper proposes a new perspective on realizing ZVS in dead-time. An exact theoretical analysis and mathematical mode is built to explain the process of ZVS switching in dead-time under Single Phase Shift (SPS) control strategy. In order to assure the two bridge switches operate on soft switching, every SPS switching point is analyzed. Generally, dead-time will be determined when the power electronic devices is selected. The key factor to realizing ZVS is the size of the end time of resonance comparing to dead-time. Through detailed analysis, it can obtain the conditions of all switches achieving ZVS turn-on and turn-off. Finally, simulation validates the theoretical analysis and some advice are given to realize the ZVS soft switching.

  3. Dual Active Bridge based DC Transformer LabVIEW FPGA Control Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The candidate software implements complete control algorithms in LabVIEW FPGA for a DC Transformer (DCX) based onmore » a dual active bridge (DAB). A DCX is an isolated bi-directional DC-DC converter designed to operate at unity conversion ratio, M, defined by where Vin is the primary-side DC bus voltage, Vout is the secondary-side DC bus voltage, and n is the turns ratio of the embedded high frequency transformer (HFX). The DCX based on a DAB incorporates two H-bridges, a resonant inductor, and an HFX to provide this functionality. The candidate software employs phase-shift modulation of the two H-bridges and a feedback loop to regulate the conversion ratio at unity. The software also includes alarm-handling capabilities as well as debugging and tuning tools. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, and user-settable switching frequencies and synchronized control loop update rates of tens of kHz.« less

  4. Cascades of alternating pitchfork and flip bifurcations in H-bridge inverters

    NASA Astrophysics Data System (ADS)

    Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; Mosekilde, Erik

    2017-04-01

    Power electronic DC/AC converters (inverters) play an important role in modern power engineering. These systems are also of considerable theoretical interest because their dynamics is influenced by the presence of two vastly different forcing frequencies. As a consequence, inverter systems may be modeled in terms of piecewise smooth maps with an extremely high number of switching manifolds. We have recently shown that models of this type can demonstrate a complicated bifurcation structure associated with the occurrence of border collisions. Considering the example of a PWM H-bridge single-phase inverter, the present paper discusses a number of unusual phenomena that can occur in piecewise smooth maps with a very large number of switching manifolds. We show in particular how smooth (pitchfork and flip) bifurcations may form a macroscopic pattern that stretches across the overall bifurcation structure. We explain the observed bifurcation phenomena, show under which conditions they occur, and describe them quantitatively by means of an analytic approximation.

  5. A study of DC-DC converters with MCT's for arcjet power supplies

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.

    1994-01-01

    Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.

  6. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  7. An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2014-01-01

    This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.

  8. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    NASA Astrophysics Data System (ADS)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  9. Flexible Power Distribution Based on Point of Load Converters

    NASA Astrophysics Data System (ADS)

    Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.

    2014-08-01

    Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.

  10. Unity Power Factor Operated PFC Converter Based Power Supply for Computers

    NASA Astrophysics Data System (ADS)

    Singh, Shikha; Singh, Bhim; Bhuvaneswari, G.; Bist, Vashist

    2017-11-01

    Power Supplies (PSs) employed in personal computers pollute the single phase ac mains by drawing distorted current at a substandard Power Factor (PF). The harmonic distortion of the supply current in these personal computers are observed 75% to 90% with the Crest Factor (CF) being very high which escalates losses in the distribution system. To find a tangible solution to these issues, a non-isolated PFC converter is employed at the input of isolated converter that is capable of improving the input power quality apart from regulating the dc voltage at its output. This is given to the isolated stage that yields completely isolated and stiffly regulated multiple output voltages which is the prime requirement of computer PS. The operation of the proposed PS is evaluated under various operating conditions and the results show improved performance depicting nearly unity PF and low input current harmonics. The prototype of this PS is developed in laboratory environment and test results are recorded which corroborate the power quality improvement observed in simulation results under various operating conditions.

  11. A 25-kW Series-Resonant Power Converter

    NASA Technical Reports Server (NTRS)

    Frye, R. J.; Robson, R. R.

    1986-01-01

    Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.

  12. Bidirectional dc-to-dc Power Converter

    NASA Technical Reports Server (NTRS)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  13. Control Strategy of Active Power Filter Based on Modular Multilevel Converter

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng

    2018-03-01

    To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.

  14. Impute DC link (IDCL) cell based power converters and control thereof

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  15. H2/H∞ control for grid-feeding converter considering system uncertainty

    NASA Astrophysics Data System (ADS)

    Li, Zhongwen; Zang, Chuanzhi; Zeng, Peng; Yu, Haibin; Li, Shuhui; Fu, Xingang

    2017-05-01

    Three-phase grid-feeding converters are key components to integrate distributed generation and renewable power sources to the power utility. Conventionally, proportional integral and proportional resonant-based control strategies are applied to control the output power or current of a GFC. But, those control strategies have poor transient performance and are not robust against uncertainties and volatilities in the system. This paper proposes a H2/H∞-based control strategy, which can mitigate the above restrictions. The uncertainty and disturbance are included to formulate the GFC system state-space model, making it more accurate to reflect the practical system conditions. The paper uses a convex optimisation method to design the H2/H∞-based optimal controller. Instead of using a guess-and-check method, the paper uses particle swarm optimisation to search a H2/H∞ optimal controller. Several case studies implemented by both simulation and experiment can verify the superiority of the proposed control strategy than the traditional PI control methods especially under dynamic and variable system conditions.

  16. A new digital pulse power supply in heavy ion research facility in Lanzhou

    NASA Astrophysics Data System (ADS)

    Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

    2013-11-01

    To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

  17. A Cryogenic Dc-Dc Power Converter for a 100 kW Synchronous HTS Generator at Liquid Nitrogen Temperatures

    NASA Astrophysics Data System (ADS)

    Bailey, Wendell; Wen, Hauming; Yang, Yifeng; Forsyth, Andrew; Jia, Chungjiang

    A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50 V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the 'cold' rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (∼20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converter's switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation.

  18. Isolated and soft-switched power converter

    DOEpatents

    Peng, Fang Zheng; Adams, Donald Joe

    2002-01-01

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  19. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    DOE PAGES

    Xiao, Bailu; Hang, Lijun; Mei, Jun; ...

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less

  20. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  1. Efficiency limits of laser power converters for optical power transfer applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  2. Power Converters Secure Electronics in Harsh Environments

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In order to harden power converters for the rigors of space, NASA awarded multiple SBIR contracts to Blacksburg, Virginia-based VPT Inc. The resulting hybrid DC-DC converters have proven valuable in aerospace applications, and as a result the company has generated millions in revenue from the product line and created four high-tech jobs to handle production.

  3. A Power Conditioning Stage Based on Analog-Circuit MPPT Control and a Superbuck Converter for Thermoelectric Generators in Spacecraft Power Systems

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Wu, Hongfei; Cai, Yan; Xing, Yan

    2014-06-01

    A thermoelectric generator (TEG) is a very important kind of power supply for spacecraft, especially for deep-space missions, due to its long lifetime and high reliability. To develop a practical TEG power supply for spacecraft, a power conditioning stage is indispensable, being employed to convert the varying output voltage of the TEG modules to a definite voltage for feeding batteries or loads. To enhance the system reliability, a power conditioning stage based on analog-circuit maximum-power-point tracking (MPPT) control and a superbuck converter is proposed in this paper. The input of this power conditioning stage is connected to the output of the TEG modules, and the output of this stage is connected to the battery and loads. The superbuck converter is employed as the main circuit, featuring low input current ripples and high conversion efficiency. Since for spacecraft power systems reliable operation is the key target for control circuits, a reset-set flip-flop-based analog circuit is used as the basic control circuit to implement MPPT, being much simpler than digital control circuits and offering higher reliability. Experiments have verified the feasibility and effectiveness of the proposed power conditioning stage. The results show the advantages of the proposed stage, such as maximum utilization of TEG power, small input ripples, and good stability.

  4. Light weight, high power, high voltage dc/dc converter technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  5. A 2.5 kW cascaded Schwarz converter for 20 kHz power distribution

    NASA Technical Reports Server (NTRS)

    Shetler, Russell E.; Stuart, Thomas A.

    1989-01-01

    Because it avoids the high currents in a parallel loaded capacitor, the cascaded Schwarz converter should offer better component utilization than converters with sinusoidal output voltages. The circuit is relatively easy to protect, and it provides a predictable trapezoidal voltage waveform that should be satisfactory for 20-kHz distribution systems. Analysis of the system is enhanced by plotting curves of normalized variables vs. gamma(1), where gamma(1) is proportional to the variable frequency of the first stage. Light-load operation is greatly improved by the addition of a power recycling rectifier bridge that is back biased at medium to heavy loads. Operation has been verified on a 2.5-kW circuit that uses input and output voltages in the same range as those anticipated for certain future spacecraft power systems.

  6. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  7. Operation of high power converters in parallel

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Inouye, L. Y.

    1993-01-01

    High power converters that are used in space power subsystems are limited in power handling capability due to component and thermal limitations. For applications, such as Space Station Freedom, where multi-kilowatts of power must be delivered to user loads, parallel operation of converters becomes an attractive option when considering overall power subsystem topologies. TRW developed three different unequal power sharing approaches for parallel operation of converters. These approaches, known as droop, master-slave, and proportional adjustment, are discussed and test results are presented.

  8. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  9. Study of a Secondary Power System Based on an Intermediate Bus Converter and POLs

    NASA Astrophysics Data System (ADS)

    Santoja, Almudena; Fernandez, Arturo; Tonicello, Ferdinando

    2014-08-01

    Secondary power systems in satellites are everything but standard nowadays. All sorts of options can be found and, in the end, a new custom design is used in most of the cases. Even though this might be interesting in some specific cases, for most of them it would be more convenient to have a straightforward system based on standard components. One of the options to achieve this is to design the secondary power system with an Intermediate Bus Converter (IBC) and Point of Load converters (POLs). This paper presents a study of this architecture and some experimental verifications to establish some basic rules devoted to achieve an optimum design of this system.

  10. Radiation Effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  11. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOEpatents

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  12. Fuzzy control of power converters based on quasilinear modelling

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Lee, W. L.; Chou, Y. W.

    1995-03-01

    Unlike feedback control by the fuzzy PID method, a new fuzzy control algorithm based on quasilinear modelling of the DC-DC converter is proposed. Investigation is carried out using a buck-boost converter. Simulation results demonstrated that the converter can be regulated with improved performance even when subjected to input disturbance and load variation.

  13. Bi-directional power control system for voltage converter

    DOEpatents

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  14. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  15. Developments in Turbo-Brayton Power Converters

    NASA Astrophysics Data System (ADS)

    Zagarola, Mark V.; Crowley, Christopher J.; Swift, Walter L.

    2003-01-01

    Design studies show that a Brayton cycle power unit is an extremely attractive option for thermal-to-electric power conversion on long-duration, space missions. At low power levels (50 to 100 We), a Brayton system should achieve a conversion efficiency between 20% and 40% depending on the radiative heat sink temperature. The expected mass of the converter for these power levels is about 3 kg. The mass of the complete system consisting of the converter, the electronics, a radiator, and a single general purpose heat source should be about 6 kg. The system is modular and the technology is readily scalable to higher power levels (to greater than 10 kWe) where conversion efficiencies of between 28% and 45% are expected, the exact value depending on sink temperature and power level. During a recently completed project, key physical features of the converter were determined, and key operating characteristics were demonstrated for a system of this size. The key technologies in these converters are derived from those which have been developed and successfully implemented in miniature turbo-Brayton cryogenic refrigerators for space applications. These refrigerators and their components have been demonstrated to meet rigorous requirements for vibration emittance and susceptibility, acoustic susceptibility, electromagnetic interference and susceptibility, environmental cycling, and endurance. Our progress in extending the underlying turbo-Brayton cryocooler technologies to thermal-to-electric power converters is the subject of this paper.

  16. Materials technology for Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Baggenstoss, William; Mittendorf, Donald

    1992-01-01

    This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.

  17. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  18. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    NASA Astrophysics Data System (ADS)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  19. Electrical performance characteristics of high power converters for space power applications

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.

    1989-01-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice.

  20. Design and evaluation of cellular power converter architectures

    NASA Astrophysics Data System (ADS)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  1. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  2. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  3. Real-Time Model and Simulation Architecture for Half- and Full-Bridge Modular Multilevel Converters

    NASA Astrophysics Data System (ADS)

    Ashourloo, Mojtaba

    This work presents an equivalent model and simulation architecture for real-time electromagnetic transient analysis of either half-bridge or full-bridge modular multilevel converter (MMC) with 400 sub-modules (SMs) per arm. The proposed CPU/FPGA-based architecture is optimized for the parallel implementation of the presented MMC model on the FPGA and is beneficiary of a high-throughput floating-point computational engine. The developed real-time simulation architecture is capable of simulating MMCs with 400 SMs per arm at 825 nanoseconds. To address the difficulties of the sorting process implementation, a modified Odd-Even Bubble sorting is presented in this work. The comparison of the results under various test scenarios reveals that the proposed real-time simulator is representing the system responses in the same way of its corresponding off-line counterpart obtained from the PSCAD/EMTDC program.

  4. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  6. Application of digital control techniques for satellite medium power DC-DC converters

    NASA Astrophysics Data System (ADS)

    Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman

    2010-09-01

    The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.

  7. Design and development of repetitive capacitor charging power supply based on series-parallel resonant converter topology.

    PubMed

    Patel, Ankur; Nagesh, K V; Kolge, Tanmay; Chakravarthy, D P

    2011-04-01

    LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications. © 2011 American Institute of Physics

  8. Optimized MPPT-based converter for TEG energy harvester to power wireless sensor and monitoring system in nuclear power plant

    NASA Astrophysics Data System (ADS)

    Xing, Shaoxu; Anakok, Isil; Zuo, Lei

    2017-04-01

    Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.

  9. Power Converters Maximize Outputs Of Solar Cell Strings

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  10. Free-piston Stirling component test power converter

    NASA Technical Reports Server (NTRS)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  11. Method and system for a gas tube-based current source high voltage direct current transmission system

    DOEpatents

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  12. Recovery of inter-row shading losses using differential power-processing submodule DC–DC converters

    DOE PAGES

    Doubleday, Kate; Choi, Beomseok; Maksimovic, Dragan; ...

    2016-06-17

    Large commercial photovoltaic (PV) systems can experience regular and predictable energy loss due to both inter-row shading and reduced diffuse irradiance in tightly spaced arrays. This article investigates the advantages of replacing bypass diodes with submodule-integrated DC-DC converters (subMICs) to mitigate these losses. Yearly simulations of commercial-scale PV systems were conducted considering a range of row-to-row pitches. In the limit case of array spacing (unity ground coverage), subMICs can confer a 7% increase in annual energy output and peak energy density (kW h/m 2). Simulation results are based on efficiency assumptions experimentally confirmed by prototype submodule differential power-processing converters.

  13. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    NASA Technical Reports Server (NTRS)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  14. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeffer, H.; Flora, B.; Wolff, D.

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  15. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    -isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.

  16. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  17. Status of NASA's Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.

    1991-01-01

    An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.

  18. Component technology for stirling power converters

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.

    1991-01-01

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.

  19. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    NASA Astrophysics Data System (ADS)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  20. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Merrill Skeist; Richard H.; Anthony G.P. Marini

    2006-03-21

    relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.« less

  1. A study of Schwarz converters for nuclear powered spacecraft

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  2. An Experimental and Analytical Investigation of Stirling Space Power Converter Heater Head

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Bartolotta, Paul; Tong, Mike; Allen, Gorden

    1995-01-01

    NASA has identified the Stirling power converter as a prime candidate for the next generation power system for space applications requiring 60000 hr of operation. To meet this long-term goal, several critical components of the power converter have been analyzed using advanced structural assessment methods. Perhaps the most critical component, because of its geometric complexity and operating environment, is the power converter's heater head. This report describes the life assessment of the heater head which includes the characterization of a viscoplastic material model, the thermal and structural analyses of the heater head, and the interpolation of fatigue and creep test results of a nickel-base superalloy, Udimet 720 LI (Low Inclusions), at several elevated temperatures for life prediction purposes.

  3. Technologies for converter topologies

    DOEpatents

    Zhou, Yan; Zhang, Haiyu

    2017-02-28

    In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

  4. The myosin converter domain modulates muscle performance.

    PubMed

    Swank, Douglas M; Knowles, Aileen F; Suggs, Jennifer A; Sarsoza, Floyd; Lee, Annie; Maughan, David W; Bernstein, Sanford I

    2002-04-01

    Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands.

  5. Solar power generation system for reducing leakage current

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi

    2018-04-01

    This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.

  6. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  7. Power converters for the 120 V bus supply control

    NASA Astrophysics Data System (ADS)

    Elisabelar, Christian

    1993-03-01

    Power converters for the 120 V bus supply control in such projects as Columbus and Hermes are addressed. Because of the power levels involved and the existing state of the art, several converter modules need to be connected in parallel to supply a single bus. To simplify the study, the power of each converter is set at around 1 kW. Many converter structures which satisfy requirement specifications and several solutions, with or without galvanic insulation, are proposed. The choice and sizing of the converter structure are considered. Stress factors and available technology are selection criteria in determining the most suitable structures. The dimensions of each structure, taking into account the rules of space design enable efficiency to be analytically estimated and it is subsequently verified experimentally. The converter command and its functional performance are then addressed. Numerical simulations with SUCCESS software are run to observe the actual operation of the power part of the converter and to develop the command law with its regulation parameters. The converter is simulated in its entirety and different transients are studied like load variation, no load operating point, short circuit. The response time, stability and behavior under disturbed conditions are thus known. A comparison of the various structures studied enabled the optimal converter to be chosen for some 120 V regulated bus applications.

  8. A soft switching with reduced voltage stress ZVT-PWM full-bridge converter

    NASA Astrophysics Data System (ADS)

    Sahin, Yakup; Ting, Naim Suleyman; Acar, Fatih

    2018-04-01

    This paper introduces a novel active snubber cell for soft switching pulse width modulation DC-DC converters. In the proposed converter, the main switch is turned on under zero voltage transition and turned off under zero voltage switching (ZVS). The auxiliary switch is turned on under zero current switching (ZCS) and turned off under zero current transition. The main diode is turned on under ZVS and turned off under ZCS. All of the other semiconductors in the converter are turned on and off with soft switching. There is no extra voltage stress on the semiconductor devices. Besides, the proposed converter has simple structure and ease of control due to common ground. The detailed theoretical analysis of the proposed converter is presented and also verified with both simulation and experimental study at 100 kHz switching frequency and 600 W output power. Furthermore, the efficiency of the proposed converter is 95.7% at nominal power.

  9. Design optimization of high frequency transformer with controlled leakage inductance for current fed dual active bridge converter

    NASA Astrophysics Data System (ADS)

    Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung

    2018-05-01

    Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.

  10. Multi-megawatt inverter/converter technology for space power applications

    NASA Technical Reports Server (NTRS)

    Myers, Ira T.; Baumann, Eric D.; Kraus, Robert; Hammoud, Ahmad N.

    1992-01-01

    Large power conditioning mass reductions will be required to enable megawatt power systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. Phase 1 of a proposed two phase interagency program has been completed to develop an 0.1 kg/kW DC/DC converter technology base for these future space applications. Three contractors, Hughes, General Electric (GE), and Maxwell were Phase 1 contractors in a competitive program to develop a megawatt lightweight DC/DC converter. Researchers at NASA Lewis Research Center and the University of Wisconsin also investigated technology in topology and control. All three contractors, as well as the University of Wisconsin, concluded at the end of the Phase 1 study, which included some critical laboratory work, that 0.1-kg/kW megawatt DC/DC converters can be built. This is an order of magnitude lower specific weight than is presently available. A brief description of each of the concepts used to meet the ambitious goals of this program are presented.

  11. Power flow controller with a fractionally rated back-to-back converter

    DOEpatents

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  12. Nonlinear program based optimization of boost and buck-boost converter designs

    NASA Astrophysics Data System (ADS)

    Rahman, S.; Lee, F. C.

    The facility of an Augmented Lagrangian (ALAG) multiplier based nonlinear programming technique is demonstrated for minimum-weight design optimizations of boost and buck-boost power converters. Certain important features of ALAG are presented in the framework of a comprehensive design example for buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight and loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  13. Parametric pendulum based wave energy converter

    NASA Astrophysics Data System (ADS)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  14. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.

    PubMed

    Ratzloff, Michael W; Artz, Jacob H; Mulder, David W; Collins, Reuben T; Furtak, Thomas E; King, Paul W

    2018-06-20

    The [FeFe]-hydrogenases ([FeFe] H 2 ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H ) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2 ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox led to formation of H red H + ([4Fe-4S] H 2+ -Fe I -Fe I ) and H red ' ([4Fe-4S] H 1+ -Fe II -Fe I ), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H . Similar μ-CO IR modes were also identified for H red H + of the [FeFe] H 2 ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd . Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H red H + was converted to H hyd . Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of H hyd and appearance of H ox , consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the "H red " states and that H red H + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. These results provide a blueprint for designing small molecule catalytic analogs.

  15. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI

    DOE PAGES

    Ratzloff, Michael W.; Artz, Jacob H.; Mulder, David W.; ...

    2018-05-23

    The [FeFe]-hydrogenases ([FeFe] H 2ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox ledmore » to formation of H redH + ([4Fe-4S] H 2+-Fe I-Fe I) and H red' ([4Fe-4S] H 1+-Fe II-Fe I), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H. Similar μ-CO IR modes were also identified for H redH + of the [FeFe] H 2ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd. Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H redH + was converted to H hyd. Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of Hhyd and appearance of H ox, consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the 'H red' states and that H redH + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. Here, this provides a blueprint for designing small molecule catalytic analogs« less

  16. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratzloff, Michael W.; Artz, Jacob H.; Mulder, David W.

    The [FeFe]-hydrogenases ([FeFe] H 2ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox ledmore » to formation of H redH + ([4Fe-4S] H 2+-Fe I-Fe I) and H red' ([4Fe-4S] H 1+-Fe II-Fe I), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H. Similar μ-CO IR modes were also identified for H redH + of the [FeFe] H 2ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd. Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H redH + was converted to H hyd. Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of Hhyd and appearance of H ox, consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the 'H red' states and that H redH + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. Here, this provides a blueprint for designing small molecule catalytic analogs« less

  17. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    NASA Astrophysics Data System (ADS)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  18. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  19. High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT.

    PubMed

    Pelmenschikov, Vladimir; Gee, Leland B; Wang, Hongxin; MacLeod, K Cory; McWilliams, Sean F; Skubi, Kazimer L; Cramer, Stephen P; Holland, Patrick L

    2018-05-30

    High-spin iron species with bridging hydrides have been detected in species trapped during nitrogenase catalysis, but there are few general methods of evaluating Fe-H bonds in high-spin multinuclear iron systems. An 57 Fe nuclear resonance vibrational spectroscopy (NRVS) study on an Fe(μ-H) 2 Fe model complex reveals Fe-H stretching vibrations for bridging hydrides at frequencies greater than 1200 cm -1 . These isotope-sensitive vibrational bands are not evident in infrared (IR) spectra, showing the power of NRVS for identifying hydrides in this high-spin iron system. Complementary density functional theory (DFT) calculations elucidate the normal modes of the rhomboidal iron hydride core. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Low Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Anglada-Sanchez, Carlos R.; Perez-Feliciano, David; Ray, Biswajit

    1997-01-01

    The low temperature operation of a 48 W, 50 kHz, 36/12 V pulse width modulated (PWM) buck de-de power converter designed with standard commercially available components and devices is reported. The efficiency of the converter increased from 85.6% at room temperature (300 K) to 92.0% at liquid nitrogen temperature (77 K). The variation of power MOSFET, diode rectifier, and output filter inductor loss with temperature is discussed. Relevant current, voltage. and power waveforms are also included.

  1. Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgiamore » Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.« less

  2. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  3. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  4. High power density dc/dc converter: Component selection and design

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  5. Auxiliary quasi-resonant dc tank electrical power converter

    DOEpatents

    Peng, Fang Z.

    2006-10-24

    An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.

  6. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-01-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  7. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  8. The 77 K operation of a multi-resonant power converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.

  9. Series Connected Converter for Control of Multi-Bus Spacecraft Power Utility

    NASA Technical Reports Server (NTRS)

    Beach, Raymond F. (Inventor); Brush, Andy (Inventor)

    1997-01-01

    The invention provides a power system using series connected regulators. Power from a source, such as a solar array, is processed through the regulators and provided to corresponding buses used to charge a battery and supply loads. The regulators employ a bypass loop around a DC-DC converter. The bypass loop connects a hot input of the converter to a return output, preferably though an inductor. Part of the current from the source passes through the bypass loop to the power bus. The converter bucks or boosts the voltage from the source to maintain the desired voltage at the bus. Thus, only part of the power is processed through the converter. The converter can also be used without the bypass loop to provide isolation. All of the converters can be substantially identical.

  10. Monitoring Wind Turbine Loading Using Power Converter Signals

    NASA Astrophysics Data System (ADS)

    Rieg, C. A.; Smith, C. J.; Crabtree, C. J.

    2016-09-01

    The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.

  11. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    NASA Astrophysics Data System (ADS)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  12. Progress update of NASA's free-piston Stirling space power converter technology project

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  13. Isolated step-down DC -DC converter for electric vehicles

    NASA Astrophysics Data System (ADS)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  14. Development of a dual-field heteropoplar power converter

    NASA Technical Reports Server (NTRS)

    Eisenhaure, D. B.; Johnson, B.; Bliamptis, T.; St. George, E.

    1981-01-01

    The design and testing of a 400 watt, dual phase, dual rotor, field modulated inductor alternator is described. The system is designed for use as a flywheel to ac utility line or flywheel to dc bus (electric vehicle) power converter. The machine is unique in that it uses dual rotors and separately controlled fields to produce output current and voltage which are in phase with each other. Having the voltage and current in phase allows the power electronics to be made of simple low cost components. Based on analytical predictions and experimental results, development of a complete 22 kilowatt (30 Hp) power conversion system is recommended. This system would include power electronics and controls and would replace the inductor alternator with an improved electromagnetic conversion system.

  15. Research on design feasibility of high-power light-weight dc-to-dc converters for space power application

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1980-01-01

    The development of 5 kW converters with 100 kHz switching frequencies, consisting of two submodules each capable of 2.5 kW of output power, is discussed. Two semiconductor advances allowed increased power levels. Field effect transistors with ratings of 11 A and 400 V were operated in parallel to provide a converter output power of approximately 2000 W. Secondly, bipolar power switching transistor was operated in conjunction with a turn-off snubber circuit to provide converter output power levels approaching 1000 W. The interrelationships between mass, switching frequency, and efficiency were investigated. Converters were constructed for operation at a maximum output power level of 200 W, and a comparison was made for operation under similar input/output conditions for conversion frequencies of 20 kilohertz and 100 kilohertz. The effects of nondissipative turn-off snubber circuitry were also examined. Finally, a computerized instrumentation system allowing the measurement of pertinent converter operating conditions as well as the recording of converter waveforms is described.

  16. DC to DC power converters and methods of controlling the same

    DOEpatents

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  17. Unity power factor converter

    NASA Technical Reports Server (NTRS)

    Wester, Gene W. (Inventor)

    1980-01-01

    A unity power factor converter capable of effecting either inversion (dc-to-dc) or rectification (ac-to-dc), and capable of providing bilateral power control from a DC source (or load) through an AC transmission line to a DC load (or source) for power flow in either direction, is comprised of comparators for comparing the AC current i with an AC signal i.sub.ref (or its phase inversion) derived from the AC ports to generate control signals to operate a switch control circuit for high speed switching to shape the AC current waveform to a sine waveform, and synchronize it in phase and frequency with the AC voltage at the AC ports, by selectively switching the connections to a series inductor as required to increase or decrease the current i.

  18. A low-power inverter-based CMOS level-crossing analog-to-digital converter for low-frequency biosignal sensing

    NASA Astrophysics Data System (ADS)

    Tanaka, Suiki; Niitsu, Kiichi; Nakazato, Kazuo

    2016-03-01

    Low-power analog-to-digital conversion is a key technique for power-limited biomedical applications such as power-limited continuous glucose monitoring. However, a conventional uniform-sampling analog-to-digital converter (ADC) is not suitable for nonuniform biosignals. A level-crossing ADC (LC-ADC) is a promising candidate for low-power biosignal processing because of its event-driven properties. The LC-ADC acquires data by level-crossing sampling. When an input signal crosses the threshold level, the LC-ADC samples the signal. The conventional LC-ADC employs a power-hungry comparator. In this paper, we present a low-power inverter-based LC-ADC. By adjusting the threshold level of the inverter, it can be used as a threshold-fixed window comparator. By using the inverter as an alternative to a comparator, power consumption can be markedly reduced. As a result, the total power consumption is successfully reduced by 90% of that of previous LC-ADC. The inverter-based LC-ADC was found to be very suitable for use in power-limited biomedical devices.

  19. Inherent overload protection for the series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1983-01-01

    The overload characteristics of the full bridge series resonant power converter are considered. This includes analyses of the two most common control methods presently in use. The first of these uses a current zero crossing detector to synchronize the control signals and is referred to as the alpha controller. The second is driven by a voltage controlled oscillator and is referred to as the gamma controller. It is shown that the gamma controller has certain reliability advantages in that it can be designed with inherent short circuit protection. Experimental results are included for an 86 kHz converter using power metal-oxide-semiconductor field-effect transistors (MOSFETs).

  20. Optimal laser wavelength for efficient laser power converter operation over temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhn, O., E-mail: oliver.hoehn@ise.fraunhofer.de; Walker, A. W.; Bett, A. W.

    2016-06-13

    A temperature dependent modeling study is conducted on a GaAs laser power converter to identify the optimal incident laser wavelength for optical power transmission. Furthermore, the respective temperature dependent maximal conversion efficiencies in the radiative limit as well as in a practically achievable limit are presented. The model is based on the transfer matrix method coupled to a two-diode model, and is calibrated to experimental data of a GaAs photovoltaic device over laser irradiance and temperature. Since the laser wavelength does not strongly influence the open circuit voltage of the laser power converter, the optimal laser wavelength is determined tomore » be in the range where the external quantum efficiency is maximal, but weighted by the photon flux of the laser.« less

  1. Evaluating vehicular-induced bridge vibrations for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Reichenbach, Matthew; Fasl, Jeremiah; Samaras, Vasilis A.; Wood, Sharon; Helwig, Todd; Lindenberg, Richard

    2012-04-01

    Highway bridges are vital links in the transportation network in the United States. Identifying possible safety problems in the approximately 600,000 bridges across the country is generally accomplished through labor-intensive, visual inspections. Ongoing research sponsored by NIST seeks to improve inspection practices by providing real-time, continuous monitoring technology for steel bridges. A wireless sensor network with a service life of ten years that is powered by an integrated energy harvester is targeted. In order to achieve the target ten-year life for the monitoring system, novel approaches to energy harvesting for use in recharging batteries are investigated. Three main sources of energy are evaluated: (a) vibrational energy, (b) solar energy, and (c) wind energy. Assessing the energy produced from vehicular-induced vibrations and converted through electromagnetic induction is the focus of this paper. The goal of the study is to process acceleration data and analyze the vibrational response of steel bridges to moving truck loads. Through spectral analysis and harvester modeling, the feasibility of vibration-based energy harvesting for longterm monitoring can be assessed. The effects of bridge conditions, ambient temperature, truck traffic patterns, and harvester position on the power content of the vibrations are investigated. With sensor nodes continually recharged, the proposed real-time monitoring system will operate off the power grid, thus reducing life cycle costs and enhancing inspection practices for state DOTs. This paper will present the results of estimating the vibration energy of a steel bridge in Texas.

  2. Stability test for power converters in high-powered operations for J-PARC MR main magnets

    NASA Astrophysics Data System (ADS)

    Morita, Yuichi; Kurimoto, Yoshinori; Miura, Kazuki; Sagawa, Ryu; Shimogawa, Tetsushi

    2017-10-01

    The Japan Proton Accelerator Research Complex (J-PARC) aims at achieving a megawatt-class proton accelerator facility. One promising method for increasing the beam power is to shorten the repetition cycle of the main ring from the current cycle of 2.48 s to 1.3 s. In this scheme, however, the increase in the output voltage and the power variation of the electric system are serious concerns for the power supplies of the main magnets. We have been developing a new power supply that provides solutions to these issues. Recently, we proposed a new method for high-powered tests of the converter that does not require a large-scale load and power source. We carried out a high-powered test of ∼100 kVA for the prototype DC/DC converters of the new power supply with this method. This paper introduces the design of the power supply and the results of the high-powered test for the prototype DC/DC converters.

  3. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  4. Elimination of current spikes in buck power converters

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    Current spikes in a buck power converter due to commutating diode turn-off time are eliminated by using a tapped inductor in the converter with the tap connected to the switching transistor. The commutating diode is not in the usual place, but is instead connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistor is not conducting. In the case of a converter having a center-tapped (primary and secondary) transformer between two switching power transistors operated in a push-pull mode and two rectifying diodes in the secondary circuit, current spikes due to transformer saturation are also eliminated by using a tapped inductor in the converter with the tap connected to the rectifying diodes and a diode connected to conduct current from one end of the tapped inductor remote from the load during the interval in which the transistors are not conducting.

  5. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  6. New method for designing serial resonant power converters

    NASA Astrophysics Data System (ADS)

    Hinov, Nikolay

    2017-12-01

    In current work is presented one comprehensive method for design of serial resonant energy converters. The method is based on new simplified approach in analysis of such kind power electronic devices. It is grounded on supposing resonant mode of operation when finding relation between input and output voltage regardless of other operational modes (when controlling frequency is below or above resonant frequency). This approach is named `quasiresonant method of analysis', because it is based on assuming that all operational modes are `sort of' resonant modes. An estimation of error was made because of the a.m. hypothesis and is compared to the classic analysis. The `quasiresonant method' of analysis gains two main advantages: speed and easiness in designing of presented power circuits. Hence it is very useful in practice and in teaching Power Electronics. Its applicability is proven with mathematic modelling and computer simulation.

  7. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Technical Reports Server (NTRS)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  8. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes

  9. DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter

    NASA Astrophysics Data System (ADS)

    Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi

    2013-06-01

    Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.

  10. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  11. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    NASA Astrophysics Data System (ADS)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  12. Active energy recovery clamping circuit to improve the performance of power converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, Bret; Barkley, Adam

    2017-05-09

    A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.

  13. An inductor-based converter with EMI reduction for low-voltage thermoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Chuang; Zhao, Kai; Li, Zunchao

    2017-07-01

    This paper presents a self-powered inductor-based converter which harvests thermoelectric energy and boosts extremely low voltage to a typical voltage level for supplying body sensor nodes. Electromagnetic interference (EMI) of the converter is reduced by spreading spectrum of fundamental frequency and harmonics via pseudo-random modulation, which is obtained via combining the linear feedback shift register and digitally controlled oscillator. Besides, the methods, namely extracting energy near MPP and reducing the power dissipation, are employed to improve the power efficiency. The presented inductor-based converter is designed and verified in CSMC CMOS 0.18-µm 1P6M process. The results reveal that it achieves the high efficiency and EMI reduction at the same time.

  14. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-07-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  15. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-01-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  16. Integrated Power Adapter: Isolated Converter with Integrated Passives and Low Material Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    ADEPT Project: CPES at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, lightweight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into useable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES at Virginia Tech is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materialsmore » also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.« less

  17. Working Gas Selection of the Honeycomb Converter-Based Neutron Detector

    NASA Astrophysics Data System (ADS)

    Fang, Zhujun; Yang, Yigang; Li, Yulan; Wang, Xuewu

    2017-07-01

    To reduce the manufacturing difficulty and improve the robustness of traditional boron-lined detectors that may replace the 3He counter, the honeycomb neutron converter-based gaseous neutron detector has been proposed. A drift electric field is applied to drive electrons ionized by α or 7Li after the 10B(n, α)7Li reaction from their origination positions to the incident surface of the gas electron multiplier (GEM), which multiplies electrons and forms the neutron signal. As the working gas affects the energy deposition of α or 7Li, the transverse diffusion of electrons in the migration process, as well as the multiplication of electrons in the GEM detector, the working gas selection of the honeycomb converter-based detector would be very important. Fourteen different working gases are investigated in detail through simulation research. Four working gases, Ar:iC4H10:CF4 = 90:7:3, Ar:CO2 = 95:5, Ar:CH4 = 90:10, and Ar:DME = 95:5, are experimentally tested. Both the simulation and experimental results demonstrate that working gases of Ar:iC4H10:CF4 = 90:7:3, Ar:CO2 = 95:5, and Ar:DME = 95:5 show good performances benefitting from both the large stopping powers of α or 7Li and the small transverse diffusion coefficients of electrons. The simulation results indicate that the detection efficiency with one of the three gases is 1.33 to 1.48 times the Ar:CH4 = 90:10, while the experimental results demonstrate that there is 1.34-1.49 times of the detection efficiency. The research in this paper helps improve the performance of the honeycomb converter-based neutron detector.

  18. Switching transients in high-frequency high-power converters using power MOSFET's

    NASA Technical Reports Server (NTRS)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  19. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    NASA Astrophysics Data System (ADS)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  20. An Integrated Programmable Wide-range PLL for Switching Synchronization in Isolated DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Fard, Miad

    In this thesis, two Phase-Locked-Loop (PLL) based synchronization schemes are introduced and applied to a bi-directional Dual-Active-Bridge (DAB) dc-dc converter with an input voltage up to 80 V switching in the range of 250 kHz to 1 MHz. The two schemes synchronize gating signals across an isolated boundary without the need for an isolator per transistor. The Power Transformer Sensing (PTS) method utilizes the DAB power transformer to indirectly sense switching on the secondary side of the boundary, while the Digital Isolator Sensing (DIS) method utilizes a miniature transformer for synchronization and communication at up to 100 MHz. The PLL is implemented on-chip, and is used to control an external DAB power-stage. This work will lead to lower cost, high-frequency isolated dc-dc converters needed for a wide variety of emerging low power applications where isolator cost is relatively high and there is a demand for the reduction of parts.

  1. Investigation of a metallic photonic crystal high power microwave mode converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong, E-mail: mr20001@sina.com; Qin, Fen; Xu, Sha

    2015-02-15

    It is demonstrated that an L band metallic photonic crystal TEM-TE{sub 11} mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawattmore » level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO) as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE{sub 11} mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.« less

  2. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  3. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  4. Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb

    2017-02-16

    Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less

  5. AC to DC Bridgeless Boost Converter for Ultra Low Input Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Dawam, A. H. A.; Muhamad, M.

    2018-03-01

    This paper presents design of circuit which converts low input AC voltage to a higher output DC voltage. A buck-boost topology and boost topology are combined to condition cycle of an AC input voltage. the unique integration of a combining circuit of buck-boost and boost circuit have been proposed in order to introduce a new direct ac-dc power converter topology without conventional diode bridge rectifier. The converter achieved to convert a milli-volt scale of input AC voltage into a volt scale of output DC voltages which is from 400mV to 3.3V.

  6. Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing,more » or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)« less

  7. Hybrid switch for resonant power converters

    DOEpatents

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  8. 10. BRIDGE IN CONTEXT OF DAM, THIRD POWER HOUSE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. BRIDGE IN CONTEXT OF DAM, THIRD POWER HOUSE IN FOREGROUND, LOOKING NORTH BY 360 DEGREES - Columbia River Bridge at Grand Coulee Dam, Spanning Columbia River at State Route 155, Coulee Dam, Okanogan County, WA

  9. PV source based high voltage gain current fed converter

    NASA Astrophysics Data System (ADS)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  10. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    NASA Astrophysics Data System (ADS)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  11. Solar fed DC-DC single ended primary inductance converter for low power applications

    NASA Astrophysics Data System (ADS)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  12. Solid state radioisotopic energy converter for space nuclear power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.M.

    1993-01-10

    Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems. Radioisotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, bettermore » efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.« less

  13. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  14. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  15. Lightweight DC-DC Converter with Partial Power Processing and MPPT for a Solar Powered Aircraft

    NASA Astrophysics Data System (ADS)

    Diab-Marzouk, Ahmad

    A lightweight dc-dc partial power processing converter is demonstrated for solar aerospace applications. A system-level model is conceived to determine conformity to payload and target distance objectives, with the Solarship aircraft used as an application example. The concept of partial power processing is utilized to realize a high efficiency lightweight converter that performs Max Peak Power Tracking (MPPT) to transfer power from the aircraft solar array to the high-voltage battery bus. The isolated Cuk is determined to be a suitable converter topology for the application. A small-signal model is derived for control design. The operation of a 400V, 2.7 kW prototype is verified at high frequency (200 kHz), high efficiency (> 98%), small mass (0.604 kg), and uses no electrolytic capacitors. MPPT operation is verified on a 376 V commercial solar installation at The University of Toronto. The prototype serves as an enabling technology for solar aerospace applications.

  16. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  17. Fuel-cell based power generating system having power conditioning apparatus

    DOEpatents

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  18. Tests Of A Stirling-Engine Power Converter

    NASA Technical Reports Server (NTRS)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  19. The advanced thermionic converter with microwave power as an auxiliary ionization source

    NASA Technical Reports Server (NTRS)

    Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.

    1978-01-01

    In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.

  20. Methods to Control EMI Noises Produced in Power Converter Systems

    NASA Astrophysics Data System (ADS)

    Mutoh, Nobuyoshi; Ogata, Mitukatu

    A new method to control EMI noises produced in power converters (rectifier and inverter) composed of IPMs (Intelligent Power Modules) is studied especially focusing on differential mode noises. The differential mode noises are occurred due to switching operations of the PWM control. As they are diffused into the ground through stray capacitors distributed between the ground and the power transmission lines and machine frames, differential mode noises should be confined and suppressed within the smallest area where power converters are laid out. It is impossible to control differential mode noises easily occurring diffusion by the conventional methods like filtering techniques. So, a new EMI noise control method using a multi-power circuit technique is proposed. The proposed method of the effectiveness has been verified through simulations and experiments.

  1. Impact of Converter Interfaced Generation and Load on Grid Performance

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, Deepak

    Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide the advantage of fast control of frequency, voltage, active, and reactive power. However, their ability to provide stability in a large system is yet to be investigated in detail. This is the primary objective of this research. In the future, along with an increase in the percentage of converter interfaced renewable energy sources connected to the transmission network, there exists a possibility of even connecting synchronous machines to the grid through converters. Thus, all sources of energy can be expected to be coupled to the grid through converters. The control and operation of such a grid will be unlike anything that has been encountered till now. In this dissertation, the operation and behavior of such a grid will be investigated. The first step in such an analysis will be to build an accurate and simple mathematical model to represent the corresponding components in commercial software. Once this bridge has been crossed, conventional machines will be replaced with their solid state interfaced counterparts in a phased manner. At each stage, attention will be devoted to the control of these sources and also on the stability performance of the large power system. This dissertation addresses various concerns regarding the control and operation of a futuristic power grid. In addition, this dissertation also aims to address the issue

  2. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  3. Conversion of NO to NO(2) in air by a micro electric NO(x) converter based on a corona discharge process.

    PubMed

    Yoon, Seung-Il; Heo, Sungmoo; Song, Soonho; Kim, Yong-Jun

    2010-06-01

    A micro-electric-NO(x)-converter based on volume treatment is proposed for the evaluation of NO(x) concentrations in air. It can electrically convert NO(x) mixture from variable mixing rates into a fixed-mixing rate of 25% NO(2) and 75% NO using the corona discharge process with stable conversion efficiency and high throughput (space velocity = 6.3 x 10(4) h(-1)). The micro-electric-NO(x)-converter is based on a volume process. Applying high voltage to the electrodes of the micro-electric-NO(x)-converter generates a corona discharge. This discharge creates high-energy electrons, which collide with gas molecules. After these collisions, NO and O(2) are broken into single atoms, and they are re-combined as a balanced form, NO(2) in this case. The fabricated micro-electric-NO(x)-converter converted NO into NO(2) at conversion efficiency of 25.63%, when 5.5 kV (the applied corona power = 0.196 W) was applied to the micro-electric-NO(x)-converter.

  4. Cardiomyopathy mutations reveal variable region of myosin converter as major element of cross-bridge compliance.

    PubMed

    Seebohm, B; Matinmehr, F; Köhler, J; Francino, A; Navarro-Lopéz, F; Perrot, A; Ozcelik, C; McKenna, W J; Brenner, B; Kraft, T

    2009-08-05

    The ability of myosin to generate motile forces is based on elastic distortion of a structural element of the actomyosin complex (cross-bridge) that allows strain to develop before filament sliding. Addressing the question, which part of the actomyosin complex experiences main elastic distortion, we suggested previously that the converter domain might be the most compliant region of the myosin head domain. Here we test this proposal by studying functional effects of naturally occurring missense mutations in the beta-myosin heavy chain, 723Arg --> Gly (R723G) and 736Ile --> Thr (I736T), in comparison to 719Arg --> Trp (R719W). All three mutations are associated with hypertrophic cardiomyopathy and are located in the converter region of the myosin head domain. We determined several mechanical parameters of single skinned slow fibers isolated from Musculus soleus biopsies of hypertrophic cardiomyopathy patients and healthy controls. Major findings of this study for mutation R723G were i), a >40% increase in fiber stiffness in rigor with a 2.9-fold increase in stiffness per myosin head (S( *)(rigor R723G) = 0.84 pN/nm S( *)(rigor WT) = 0.29 pN/nm); and ii), a significant increase in force per head (F( *)(10 degrees C), 1.99 pN vs. 1.49 pN = 1.3-fold increase; F( *)(20 degrees C), 2.56 pN vs. 1.92 pN = 1.3-fold increase) as well as stiffness per head during isometric steady-state contraction (S( *)(active10 degrees C), 0.52 pN/nm vs. 0.28 pN/nm = 1.9-fold increase). Similar changes were found for mutation R719W (2.6-fold increase in S( *)(rigor); 1.8-fold increase in F( *)(10 degrees C), 1.6-fold in F( *)(20 degrees C); twofold increase in S( *)(active10 degrees C)). Changes in active cross-bridge cycling kinetics could not account for the increase in force and active stiffness. For the above estimates the previously determined fraction of mutated myosin in the biopsies was taken into account. Data for wild-type myosin of slow soleus muscle fibers support previous

  5. Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.

    PubMed

    Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine

    2016-06-13

    Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.

  6. Harmonics analysis of the ITER poloidal field converter based on a piecewise method

    NASA Astrophysics Data System (ADS)

    Xudong, WANG; Liuwei, XU; Peng, FU; Ji, LI; Yanan, WU

    2017-12-01

    Poloidal field (PF) converters provide controlled DC voltage and current to PF coils. The many harmonics generated by the PF converter flow into the power grid and seriously affect power systems and electric equipment. Due to the complexity of the system, the traditional integral operation in Fourier analysis is complicated and inaccurate. This paper presents a piecewise method to calculate the harmonics of the ITER PF converter. The relationship between the grid input current and the DC output current of the ITER PF converter is deduced. The grid current is decomposed into the sum of some simple functions. By calculating simple function harmonics based on the piecewise method, the harmonics of the PF converter under different operation modes are obtained. In order to examine the validity of the method, a simulation model is established based on Matlab/Simulink and a relevant experiment is implemented in the ITER PF integration test platform. Comparative results are given. The calculated results are found to be consistent with simulation and experiment. The piecewise method is proved correct and valid for calculating the system harmonics.

  7. Performance analysis of cascaded h-bridge multilevel inverter using mixed switching frequency with various dc-link voltages

    NASA Astrophysics Data System (ADS)

    Citarsa, I. B. F.; Satiawan, I. N. W.; Wiryajati, I. K.; Supriono

    2016-01-01

    Multilevel inverters have been widely used in many applications since the technology is advantageous to increase the converter capability as well as to improve the output voltage quality. According to the applied switching frequency, multilevel modulations can be subdivided into three classes, i.e: fundamental switching frequency, high switching frequency and mixed switching frequency. This paper investigates the performance of cascaded H-bridge (CHB) multilevel inverter that is modulated using mixed switching frequency (MSF) PWM with various dc-link voltage ratios. The simulation results show the nearly sinusoidal load output voltages are successfully achieved. It is revealed that there is improvement in output voltages quality in terms of THD and low-order harmonics content. The CHB inverter that is modulated using MSF PWM with equal dc-link voltage ratio (½ Vdc: ½ Vdc) produces output voltage with the lowest low-order harmonics (less than 1% of fundamental) while the CHB inverter that is modulated using MSF PWM with un-equal dc-link voltage ratio (2/3 Vdc: 1/3 Vdc) produces a 7-level output voltage with the lowest THD (16.31%) compared to the other PWM methods. Improvement of the output voltage quality here is also in line with improvement of the number of available levels provided in the output voltage. Here only 2 cells H-bridge inverter (contain 8 switches) are needed to produce a 7- level output voltage, while in the conventional CHB inverter at least 3 cells of H-bridge inverter (contain 12 switches) are needed to produce a 7-level output voltage. Hence it is valuable in term of saving number of component.

  8. On Application of Model Predictive Control to Power Converter with Switching

    NASA Astrophysics Data System (ADS)

    Zanma, Tadanao; Fukuta, Junichi; Doki, Shinji; Ishida, Muneaki; Okuma, Shigeru; Matsumoto, Takashi; Nishimori, Eiji

    This paper concerns a DC-DC converter control. In DC-DC converters, there exist both continuous components such as inductance, conductance and resistance and discrete ones, IGBT and MOSFET as semiconductor switching elements. Such a system can be regarded as a hybrid dynamical system. Thus, this paper presents a dc-dc control technique based on the model predictive control. Specifically, a case in which the load of the dc-dc converter changes from active to sleep is considered. In the case, a control method which makes the output voltage follow to the reference quickly in transition, and the switching frequency be constant in steady state. In addition, in applying the model predictive control to power electronics circuits, the switching characteristic of the device and the restriction condition for protection are also considered. The effectiveness of the proposed method is illustrated by comparing a conventional method through some simulation results.

  9. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    NASA Astrophysics Data System (ADS)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  10. Free-piston Stirling component test power converter test results and potential Stirling applications

    NASA Technical Reports Server (NTRS)

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  11. Thermoelectric converter for SP-100 space reactor power system

    NASA Technical Reports Server (NTRS)

    Terrill, W. R.; Haley, V. F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.

  12. A proteorhodopsin-based biohybrid light-powering pH sensor.

    PubMed

    Rao, Siyuan; Guo, Zhibin; Liang, Dawei; Chen, Deliang; Wei, Yen; Xiang, Yan

    2013-10-14

    The biohybrid sensor is an emerging technique for multi-functional detection that utilizes the instinctive responses or interactions of biomolecules. We develop a biohybrid pH sensor by taking advantage of the pH-dependent photoelectric characteristics of proteorhodopsin (pR). The transient absorption kinetics study indicates that the photoelectric behavior of pR is attributed to the varying lifetime of the M intermediate at different environmental pH values. This pR-based biohybrid light-powering sensor with microfluidic design can achieve real-time pH detection with quick response and high sensitivity. The results of this work would shed light on pR and its potential applications.

  13. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  14. Voltage source ac-to-dc converters for high-power transmitters

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  15. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  16. An Integrated Gate Driver in 4H-SiC for Power Converter Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, Milton Nance; Frank, Steven Shane; Britton, Charles

    2014-01-01

    A gate driver fabricated in a 2-um 4H silicon carbide (SiC) process is presented. This process was optimized for vertical power MOSFET fabrication but accommodated integration of a few low-voltage device types including N-channel MOSFETs, resistors, and capacitors. The gate driver topology employed incorporates an input level translator, variable power connections, and separate power supply connectivity allowing selection of the output signal drive amplitude. The output stage utilizes a source follower pull-up device that is both overdriven and body source connected to improve rise time behavior. Full characterization of this design driving a SiC power MOSFET is presented including risemore » and fall times, propagation delays, and power consumption. All parameters were measured to elevated temperatures exceeding 300 C. Details of the custom test system hardware and software utilized for gate driver testing are also provided.« less

  17. Two new families of high-gain dc-dc power electronic converters for dc-microgrids

    NASA Astrophysics Data System (ADS)

    Prabhala, Venkata Anand Kishore

    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.

  18. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    PubMed Central

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  19. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    PubMed

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  20. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  1. Utilizing zero-sequence switchings for reversible converters

    DOEpatents

    Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

    2004-12-14

    A method for providing additional dc inputs or outputs (49, 59) from a dc-to-ac inverter (10) for controlling motor loads (60) comprises deriving zero-sequence components (V.sub.ao, V.sub.bo, and V.sub.co) from the inverter (10) through additional circuit branches with power switching devices (23, 44, 46), transforming the voltage between a high voltage and a low voltage using a transformer or motor (42, 50), converting the low voltage between ac and dc using a rectifier (41, 51) or an H-bridge (61), and providing at least one low voltage dc input or output (49, 59). The transformation of the ac voltage may be either single phase or three phase. Where less than a 100% duty cycle is acceptable, a two-phase modulation of the switching signals controlling the inverter (10) reduces switching losses in the inverter (10). A plurality of circuits for carrying out the invention are also disclosed.

  2. Cascaded Quadruple Active Bridge Structures for Multilevel DC to Three-Phase AC Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Achanta, Prasanta K; Maksimovic, Dragan

    This paper introduces a multilevel architecture comprised of interconnected dc to three-phase ac converter units. To enable series connected operation, each converter unit contains a quadruple active bridge (QAB) converter that provides isolation between the dc side and each of the three ac sides. Since each converter unit transfers dc-side power as constant balanced three-phase power on the ac side, this implies instantaneous input-output power balance and allows elimination of bulk capacitive energy storage. In addition to minimizing required capacitance, the proposed approach simultaneously enables simplified dc-link controllers amenable to decentralized implementation, supports bidirectional power transfer, and exhibits a modularmore » structure to enhance scalability. Isolation provided by the QAB allows a wide range of electrical configurations among multiple units in various dc-ac, ac-dc or ac-ac applications. In this paper, the focus is on series connections on the ac side to emphasize multilevel operation, and the approach is experimentally validated in a dc-ac system containing two cascaded converter units.« less

  3. A fault-tolerant strategy based on SMC for current-controlled converters

    NASA Astrophysics Data System (ADS)

    Azer, Peter M.; Marei, Mostafa I.; Sattar, Ahmed A.

    2018-05-01

    The sliding mode control (SMC) is used to control variable structure systems such as power electronics converters. This paper presents a fault-tolerant strategy based on the SMC for current-controlled AC-DC converters. The proposed SMC is based on three sliding surfaces for the three legs of the AC-DC converter. Two sliding surfaces are assigned to control the phase currents since the input three-phase currents are balanced. Hence, the third sliding surface is considered as an extra degree of freedom which is utilised to control the neutral voltage. This action is utilised to enhance the performance of the converter during open-switch faults. The proposed fault-tolerant strategy is based on allocating the sliding surface of the faulty leg to control the neutral voltage. Consequently, the current waveform is improved. The behaviour of the current-controlled converter during different types of open-switch faults is analysed. Double switch faults include three cases: two upper switch fault; upper and lower switch fault at different legs; and two switches of the same leg. The dynamic performance of the proposed system is evaluated during healthy and open-switch fault operations. Simulation results exhibit the various merits of the proposed SMC-based fault-tolerant strategy.

  4. Trimode Power Converter optimizes PV, diesel and battery energy sources

    NASA Astrophysics Data System (ADS)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  5. Integration of planar transformer and/or planar inductor with power switches in power converter

    DOEpatents

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  6. Power converter for raindrop energy harvesting application: Half-wave rectifier

    NASA Astrophysics Data System (ADS)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  7. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  8. InGaAs concentrator cells for laser power converters and tandem cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, S.; Vernon, S.; Gagnon, E.

    1993-01-01

    In(0.53)Ga(0.47)As N-on-P concentrator cells were made as part of an effort to develop 1.315 micron laser power converters. The 1.315 micron laser power conversion efficiency was estimated as 29.4 percent (at 5.57 W/cm(sup 2)) based on an 86 percent measured external quantum efficiency at 1.315 microns, and a measured open circuit voltage (484 mV), and fill-factor (67 percent) at the equivalent AM0 short-circuit photocurrent (5.07 A/cm(sup 2)). A 13.5 percent percent AMO efficiency was achieved at 89 suns and 25 C. Measured one-sun and 100-sun AMO efficiency, log I-V analysis, and quantum efficiency are presented for InGaAs cells with and without InP windows to passivate the front surface. Windowed cells performed better at concentration than windowless cells. Lattice mismatch between InGaAs epilayers and InP substrate was less than 800 ppm. Theoretical efficiency is estimated for 1.315 microns laser power converters versus the bandgap energy. Adding aluminum to InGaAs to form In(x)Al(y)Ga(1-x-y)As is presented as a way to achieve an optimal bandgap for 1.315 microns laser power conversion.

  9. A two-tiered self-powered wireless monitoring system architecture for bridge health management

    NASA Astrophysics Data System (ADS)

    Kurata, Masahiro; Lynch, Jerome P.; Galchev, Tzeno; Flynn, Michael; Hipley, Patrick; Jacob, Vince; van der Linden, Gwendolyn; Mortazawi, Amir; Najafi, Khalil; Peterson, Rebecca L.; Sheng, Li-Hong; Sylvester, Dennis; Thometz, Edward

    2010-04-01

    Bridges are an important societal resource used to carry vehicular traffic within a transportation network. As such, the economic impact of the failure of a bridge is high; the recent failure of the I-35W Bridge in Minnesota (2007) serves as a poignant example. Structural health monitoring (SHM) systems can be adopted to detect and quantify structural degradation and damage in an affordable and real-time manner. This paper presents a detailed overview of a multi-tiered architecture for the design of a low power wireless monitoring system for large and complex infrastructure systems. The monitoring system architecture employs two wireless sensor nodes, each with unique functional features and varying power demand. At the lowest tier of the system architecture is the ultra-low power Phoenix wireless sensor node whose design has been optimized to draw minimal power during standby. These ultra low-power nodes are configured to communicate their measurements to a more functionally-rich wireless sensor node residing on the second-tier of the monitoring system architecture. While the Narada wireless sensor node offers more memory, greater processing power and longer communication ranges, it also consumes more power during operation. Radio frequency (RF) and mechanical vibration power harvesting is integrated with the wireless sensor nodes to allow them to operate freely for long periods of time (e.g., years). Elements of the proposed two-tiered monitoring system architecture are validated upon an operational long-span suspension bridge.

  10. High-speed DNA-based rolling motors powered by RNase H

    PubMed Central

    Yehl, Kevin; Mugler, Andrew; Vivek, Skanda; Liu, Yang; Zhang, Yun; Fan, Mengzhen; Weeks, Eric R.

    2016-01-01

    DNA-based machines that walk by converting chemical energy into controlled motion could be of use in applications such as next generation sensors, drug delivery platforms, and biological computing. Despite their exquisite programmability, DNA-based walkers are, however, challenging to work with due to their low fidelity and slow rates (~1 nm/min). Here, we report DNA-based machines that roll rather than walk, and consequently have a maximum speed and processivity that is three-orders of magnitude greater than conventional DNA motors. The motors are made from DNA-coated spherical particles that hybridise to a surface modified with complementary RNA; motion is achieved through the addition of RNase H, which selectively hydrolyses hybridised RNA. Spherical motors move in a self-avoiding manner, whereas anisotropic particles, such as dimerised particles or rod-shaped particles travel linearly without a track or external force. Finally, we demonstrate detection of single nucleotide polymorphism by measuring particle displacement using a smartphone camera. PMID:26619152

  11. Design and experiment of a cross-shaped mode converter for high-power microwave applications.

    PubMed

    Peng, Shengren; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei

    2013-12-01

    A compact mode converter, which is capable of converting a TM01 mode into a circularly polarized TE11 mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  12. Method of controlling switching of a multiphase inductor-converter bridge

    DOEpatents

    Kustom, Robert L.; Fuja, Raymond E.

    1981-01-01

    In an inductor-convertor circuit for transferring electrical energy between a storage coil and a load coil using a storage thyristor bridge, a load thyristor bridge, and a set of commutating capacitors, operation is improved by a method of changing the rate of delivery of energy in a given direction. The change in rate corresponds to a predetermined change in phase angle between the load bridge and the storage bridge and comprises changing the phase of the bridge by two steps, each equal to half the predetermined change and occurring 180.degree. apart. The method assures commutation and minimizes imbalances that lead otherwise to overvoltages.

  13. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE PAGES

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  14. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    PubMed Central

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-01-01

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/Hz at 50 kHz, which corresponds to 100 μg/Hz. PMID:28042830

  15. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    PubMed

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  16. Step-by-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course

    ERIC Educational Resources Information Center

    Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.

    2011-01-01

    In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…

  17. A study of the high frequency limitations of series resonant converters

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; King, R. J.

    1982-01-01

    A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.

  18. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    NASA Astrophysics Data System (ADS)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  19. Variable frequency iteration MPPT for resonant power converters

    DOEpatents

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  20. High static gain single-phase PFC based on a hybrid boost converter

    NASA Astrophysics Data System (ADS)

    Flores Cortez, Daniel; Maccarini, Marcello C.; Mussa, Samir A.; Barbi, Ivo

    2017-05-01

    In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc-dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.

  1. Lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes under thermal tests

    NASA Astrophysics Data System (ADS)

    Cheng, Wood-Hi; Tsai, Chun-Chin; Wang, Jimmy

    2011-10-01

    The lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes (PC-WLEDs) under accelerated thermal tests at 150°C, 200°C, and 250°C are presented and compared. The glass based PC-WLEDs exhibited better thermal stability than the silicone by 4.8 time reductions in lumen loss 6.8 time reductions in chromaticity shift at 250°C, respectively. The mean-time-to-failure (MTTF) evaluation of glass and silicone based high-power PC-WLEDs in accelerated thermal tests is also presented and compared. The results showed that the glass based PC-WLEDs exhibited higher MTTF than the silicone by 7.53 times in lumen loss and 14.4 times in chromaticity shift at 250°C, respectively. The thermal performance of lumen, chromaticity, and MTTF investigations demonstrated that the thermal stability of the glass based PC-WLEDs were better than the silicone. A better thermal stability phosphor layer of glass as encapsulation material may be beneficial to the many applications where the LED modules with high power and high reliability are demanded.

  2. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  3. Photovoltaic energy converter as a chipscale high efficiency power source for implanted active microelectronic devices.

    PubMed

    Hwang, N-J; Patterson, W R; Song, Y-K; Atay, T; Nurmikko, A V

    2004-01-01

    We report the development of a microscale photovoltaic energy converter which has been designed and implemented to deliver power to CMOS-based microelectronic chips. The design targets the delivery of voltages on the order of 3V with power levels in excess of 10 mW. The geometry of the prototype device, which has been fabricated and tested, is specifically designed for coupling to an optical fiber, to facilitate remote power delivery in implantable component environment.

  4. A vibration powered wireless mote on the Forth Road Bridge

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.

    2015-12-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.

  5. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose

    NASA Astrophysics Data System (ADS)

    Nasution, T. I.; Balyan, M.; Nainggolan, I.

    2018-02-01

    A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.

  6. Four-junction AlGaAs/GaAs laser power converter

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Sun, Yurun; Zhao, Yongming; Yu, Shuzhen; Dong, Jianrong; Xue, Jiping; Xue, Chi; Wang, Jin; Lu, Yunqing; Ding, Yanwen

    2018-04-01

    Four-junction AlGaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-Al0.37Ga0.63As heterostructure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) for converting the power of 808 nm lasers. A maximum conversion efficiency η c of 56.9% ± 4% is obtained for cells with an aperture of 3.14 mm2 at an input laser power of 0.2 W, while dropping to 43.3% at 1.5 W. Measured current–voltage (I–V) characteristics indicate that the performance of the LPC can be further improved by increasing the tunneling current density of TJs and optimizing the thicknesses of sub-cells to achieve current matching in LPC. Project financially supported by the National Natural Science Foundation of China (No. 61376065) and Zhongtian Technology Group Co. Ltd.

  7. Improvement of up-converting phosphor technology-based biosensor

    NASA Astrophysics Data System (ADS)

    Xie, Chengke; Huang, Lihua; Zhang, Youbao; Guo, Xiaoxian; Qu, Jianfeng; Huang, Huijie

    2008-12-01

    A novel biosensor based on up-converting phosphor technology (UPT) was developed several years ago. It is a kind of optical biosensor using up-converting phosphor (UCP) particles as the biological marker. From then on, some improvements have been made for this UPT-based biosensor. The primary aspects of the improvement lie in the control system. On one hand, the hardware of the control system has been optimized, including replacing two single chip microcomputers (SCM) with only one, the optimal design of the keyboard interface circuit and the liquid crystal module (LCM) control circuit et al.. These result in lower power consumption and higher reliability. On the other hand, a novel signal processing algorithm is proposed in this paper, which can improve the automation and operating simplicity of the UPT-based biosensor. It has proved to have high sensitivity (~ng/ml), high stability and good repeatability (CV<5%), which is better than the former system. It can meet the need of some various applications such as rapid immunoassay, chemical and biological detection and so on.

  8. Extreme-value statistics of fractional Brownian motion bridges.

    PubMed

    Delorme, Mathieu; Wiese, Kay Jörg

    2016-11-01

    Fractional Brownian motion is a self-affine, non-Markovian, and translationally invariant generalization of Brownian motion, depending on the Hurst exponent H. Here we investigate fractional Brownian motion where both the starting and the end point are zero, commonly referred to as bridge processes. Observables are the time t_{+} the process is positive, the maximum m it achieves, and the time t_{max} when this maximum is taken. Using a perturbative expansion around Brownian motion (H=1/2), we give the first-order result for the probability distribution of these three variables and the joint distribution of m and t_{max}. Our analytical results are tested and found to be in excellent agreement, with extensive numerical simulations for both H>1/2 and H<1/2. This precision is achieved by sampling processes with a free end point and then converting each realization to a bridge process, in generalization to what is usually done for Brownian motion.

  9. Modulation and control of matrix converter for aerospace application

    NASA Astrophysics Data System (ADS)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix

  10. Efficiency and Regulation of Commercial Low Power DC/DC Converter Modules at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2000-01-01

    DC/DC converters that are capable of operating at cryogenic temperatures are anticipated to play an important role in the power systems of future NASA deep space missions. Design of these converters to survive cryogenic temperatures will improve the power system performance, and reduce development and launch costs. At the NASA Glenn Research Center Low Temperature Electronics Laboratory, several commercial off-the-shelf dc/dc converter modules were evaluated for their low temperature performance. Various parameters were investigated as a function of temperature, in the range of 20 C to -190 C. Data pertaining to the efficiency and voltage regulation of the tested converters is presented and discussed.

  11. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output

    PubMed Central

    Fenwick, Axel J.; Wood, Alexander M.

    2017-01-01

    Muscles produce force and power by utilizing chemical energy through ATP hydrolysis. During concentric contractions (shortening), muscles generate less force compared to isometric contractions, but consume greater amounts of energy as shortening velocity increases. Conversely, more force is generated and less energy is consumed during eccentric muscle contractions (lengthening). This relationship between force, energy use, and the velocity of contraction has important implications for understanding muscle efficiency, but the molecular mechanisms underlying this behavior remain poorly understood. Here we used spatially-explicit, multi-filament models of Ca2+-regulated force production within a half-sarcomere to simulate how force production, energy utilization, and the number of bound cross-bridges are affected by dynamic changes in sarcomere length. These computational simulations show that cross-bridge binding increased during slow-velocity concentric and eccentric contractions, compared to isometric contractions. Over the full ranges of velocities that we simulated, cross-bridge cycling and energy utilization (i.e. ATPase rates) increased during shortening, and decreased during lengthening. These findings are consistent with the Fenn effect, but arise from a complicated relationship between velocity-dependent cross-bridge recruitment and cross-bridge cycling kinetics. We also investigated how force production, power output, and energy utilization varied with cross-bridge and myofilament compliance, which is impossible to address under typical experimental conditions. These important simulations show that increasing cross-bridge compliance resulted in greater cross-bridge binding and ATPase activity, but less force was generated per cross-bridge and throughout the sarcomere. These data indicate that the efficiency of force production decreases in a velocity-dependent manner, and that this behavior is sensitive to cross-bridge compliance. In contrast, significant

  12. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output.

    PubMed

    Fenwick, Axel J; Wood, Alexander M; Tanner, Bertrand C W

    2017-01-01

    Muscles produce force and power by utilizing chemical energy through ATP hydrolysis. During concentric contractions (shortening), muscles generate less force compared to isometric contractions, but consume greater amounts of energy as shortening velocity increases. Conversely, more force is generated and less energy is consumed during eccentric muscle contractions (lengthening). This relationship between force, energy use, and the velocity of contraction has important implications for understanding muscle efficiency, but the molecular mechanisms underlying this behavior remain poorly understood. Here we used spatially-explicit, multi-filament models of Ca2+-regulated force production within a half-sarcomere to simulate how force production, energy utilization, and the number of bound cross-bridges are affected by dynamic changes in sarcomere length. These computational simulations show that cross-bridge binding increased during slow-velocity concentric and eccentric contractions, compared to isometric contractions. Over the full ranges of velocities that we simulated, cross-bridge cycling and energy utilization (i.e. ATPase rates) increased during shortening, and decreased during lengthening. These findings are consistent with the Fenn effect, but arise from a complicated relationship between velocity-dependent cross-bridge recruitment and cross-bridge cycling kinetics. We also investigated how force production, power output, and energy utilization varied with cross-bridge and myofilament compliance, which is impossible to address under typical experimental conditions. These important simulations show that increasing cross-bridge compliance resulted in greater cross-bridge binding and ATPase activity, but less force was generated per cross-bridge and throughout the sarcomere. These data indicate that the efficiency of force production decreases in a velocity-dependent manner, and that this behavior is sensitive to cross-bridge compliance. In contrast, significant

  13. Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1992-01-01

    Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.

  14. CMOS based capacitance to digital converter circuit for MEMS sensor

    NASA Astrophysics Data System (ADS)

    Rotake, D. R.; Darji, A. D.

    2018-02-01

    Most of the MEMS cantilever based system required costly instruments for characterization, processing and also has large experimental setups which led to non-portable device. So there is a need of low cost, highly sensitive, high speed and portable digital system. The proposed Capacitance to Digital Converter (CDC) interfacing circuit converts capacitance to digital domain which can be easily processed. Recent demand microcantilever deflection is part per trillion ranges which change the capacitance in 1-10 femto farad (fF) range. The entire CDC circuit is designed using CMOS 250nm technology. Design of CDC circuit consists of a D-latch and two oscillators, namely Sensor controlled oscillator (SCO) and digitally controlled oscillator (DCO). The D-latch is designed using transmission gate based MUX for power optimization. A CDC design of 7-stage, 9-stage and 11-stage tested for 1-18 fF and simulated using mentor graphics Eldo tool with parasitic. Since the proposed design does not use resistance component, the total power dissipation is reduced to 2.3621 mW for CDC designed using 9-stage SCO and DCO.

  15. Towards radiation hard converter material for SiC-based fast neutron detectors

    NASA Astrophysics Data System (ADS)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    efficiency of a stacked structure concept has been explored by juxtaposing several converter-detector layers to improve the efficiency of LiH-SiC-based FNDs . It is observed that approximately tenfold efficiency improvement has been achieved—0.93% for ten layers stacked configuration vis-à-vis 0.1% of single converter-detector layer configuration. Finally, stacked detectors have also been simulated for different converter thicknesses to attain the efficiency as high as ~ 3.25% with the help of 50 stacked layers.

  16. Power electronics for the flywheel system EMAFER

    NASA Astrophysics Data System (ADS)

    Offringa, Lodewijk J. J.; Sluiters, Hans E.; Smits, Eugenio J.

    1988-10-01

    A novel power electronic converter has been designed for the EMAFER (electromechanical accumulator for energy reuse) flywheel system to meet the requirements of the synchronous permanent magnet three-phase motor/generator drive. A new type of current source inverter with forced commutation by means of a commutation bridge has been developed and tested. This converter is capable of driving and braking the machine at full rated power in an operating range from 8,500 to 17,000 rpm. Test results are presented.

  17. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    NASA Technical Reports Server (NTRS)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  18. Electrical Power Conversion of River and Tidal Power Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less

  19. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  20. Performance analysis of electronic power transformer based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa

    2016-01-01

    In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.

  1. A High Performance H2-Cl2 Fuel Cell for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Anderson, Everett B.; Taylor, E. Jennings; Wilemski, Gerald; Gelb, Alan

    1993-01-01

    NASA has numerous airborne/spaceborne applications for which high power and energy density power sources are needed. The proton exchange membrane fuel cell (PEMFC) is an attractive candidate for such a power source. PEMFC's offer many advantages for airborne/spaceborne applications. They have high power and energy densities, convert fuel to electrical power with high efficiency at both part and full load, and can rapidly startup and shutdown. In addition, PEMFC's are lightweight and operate silently. A significant impediment to the attainment of very high power and energy densities by PEMFC's is their current exclusive reliance on oxygen as the oxidant. Conventional PEMFC's oxidize hydrogen at the anode and reduce oxygen at the cathode. The electrode kinetics of oxygen reduction are known to be highly irreversible, incurring large overpotential losses. In addition, the modest open circuit potential of 1.2V for the H2-O2 fuel cell is unattainable due to mixed potential effects at the oxygen electrode. Because of the high overpotential losses, cells using H2 and O2 are capable of achieving high current densities only at very low cell voltages, greatly curtailing their power output. Based on experimental work on chlorine reduction in a gas diffusion electrode, we believe significant increases in both the energy and power densities of PEMFC systems can be achieved by employing chlorine as an alternative oxidant.

  2. A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.

    PubMed

    Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2016-04-01

    This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.

  3. The 5-kW arcjet power electronics

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.; Gott, R. W.; Haag, T. W.

    1989-01-01

    The initial design and evaluation of a 5 kW arcjet power electronics breadboard which as been integrated with a modified 1 kW design laboratory arcjet is presented. A single stage, 5 kW full bridge, pulse width modulated (PWM), power converter was developed which was phase shift regulated. The converter used metal oxide semiconductor field effect transistor (MOSFET) power switches and incorporated current mode control and an integral arcjet pulse ignition circuit. The unoptimized power efficiency was 93.5 and 93.9 percent at 5 kW and 50A output at input voltages of 130 and 150V, respectively. Line and load current regulation at 50A output was within one percent. The converter provided up to 6.6 kW to the arcjet with simulated ammonia used as a propellant.

  4. A micro-power precision amplifier for converting the output of light sensors to a voltage readable by miniature data loggers.

    PubMed

    Phillips, Nathan; Bond, Barbara J.

    1999-07-01

    To record photosynthetically active radiation (PAR) simultaneously at a number of points throughout a forest canopy, we developed a simple, inexpensive (< $10 US) current-to-voltage converter that processes the current generated by a photodiode radiation sensor to a voltage range that is recordable with a miniature data logger. The converter, which weighs less than 75 g and has a volume of only 100 cm(3), is built around an ultra-low power OP-90 precision operational amplifier, which consumes less than 0.5 mA at 9 V when converting the output of a Li-Cor LI-190SA quantum sensor exposed to photosynthetically active radiation (PAR) of 2500 &mgr;mol m(-2) s(-1) or only 5 &mgr;A in low light. A small 9-V battery thus powers the amplifier for more than 1000 h of continuous operation. Correlations between photometer readings and voltage output from the current-to-voltage converter were high and linear at both high and low PAR. Sixteen Li-Cor LI-190SA quantum sensors each equipped with current-to-voltage converters and connected to a miniature data logger were deployed in the upper branches of a Panamanian tropical rainforest canopy. Each unit performed reliably during a one- or two-week evaluation.

  5. Power inversion design for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Talebani, Anwar N.

    The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.

  6. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters.

    PubMed

    Rodríguez, Juan; Lamar, Diego G; Aller, Daniel G; Miaja, Pablo F; Sebastián, Javier

    2018-04-07

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMC dc-dc ) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMC dc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMC dc-dc are presented: increasing the order of the SMC dc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting.

  7. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters

    PubMed Central

    2018-01-01

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMCdc-dc) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMCdc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMCdc-dc are presented: increasing the order of the SMCdc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting. PMID:29642455

  8. Electric converters of electromagnetic strike machine with battery power

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.

  9. Disrupting the Myosin Converter-Relay Interface Impairs Drosophila Indirect Flight Muscle Performance

    PubMed Central

    Ramanath, Seemanti; Wang, Qian; Bernstein, Sanford I.; Swank, Douglas M.

    2011-01-01

    Structural interactions between the myosin converter and relay domains have been proposed to be critical for the myosin power stroke and muscle power generation. We tested this hypothesis by mutating converter residue 759, which interacts with relay residues I508, N509, and D511, to glutamate (R759E) and determined the effect on Drosophila indirect flight muscle mechanical performance. Work loop analysis of mutant R759E indirect flight muscle fibers revealed a 58% and 31% reduction in maximum power generation (PWL) and the frequency at which maximum power (fWL) is generated, respectively, compared to control fibers at 15°C. Small amplitude sinusoidal analysis revealed a 30%, 36%, and 32% reduction in mutant elastic modulus, viscous modulus, and mechanical rate constant 2πb, respectively. From these results, we infer that the mutation reduces rates of transitions through work-producing cross-bridge states and/or force generation during strongly bound states. The reductions in muscle power output, stiffness, and kinetics were physiologically relevant, as mutant wing beat frequency and flight index decreased about 10% and 45% compared to control flies at both 15°C and 25°C. Thus, interactions between the relay loop and converter domain are critical for lever-arm and catalytic domain coordination, high muscle power generation, and optimal Drosophila flight performance. PMID:21889448

  10. Computer simulations of optimum boost and buck-boost converters

    NASA Technical Reports Server (NTRS)

    Rahman, S.

    1982-01-01

    The development of mathematicl models suitable for minimum weight boost and buck-boost converter designs are presented. The facility of an augumented Lagrangian (ALAG) multiplier-based nonlinear programming technique is demonstrated for minimum weight design optimizations of boost and buck-boost power converters. ALAG-based computer simulation results for those two minimum weight designs are discussed. Certain important features of ALAG are presented in the framework of a comprehensive design example for boost and buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight annd loss profiles of various semiconductor components and magnetics as a function of the switching frequency.

  11. C-14 beta converter

    NASA Astrophysics Data System (ADS)

    Gurskaya, A. V.; Dolgopolov, M. V.; Chepurnov, V. I.

    2017-11-01

    The study discusses the prospects for the development of low-voltage power supply sources. Beta isotope sources present great advantages for autonomous uninterrupted operation of remote devices, which gives an impulse to rapid development of betavoltaics. Silicon carbide homo- and hetero-structures serve as the isotope-based energy converters. We propose a new technology for isotope-based converter fabrication using silicon carbide and carbon-14 heterostructure as the active substance.

  12. Burnout sensitivity of power MOSFETs operating in a switching converter

    NASA Astrophysics Data System (ADS)

    Tastet, P.; Garnier, J.; Constans, H.; Tizon, A. H.

    1994-06-01

    Heavy ion tests of a switching converter using power MOSFETs have allowed us to identify the main parameters which affect the burnout sensitivity of these components. The differences between static and dynamic conditions are clarified in this paper.

  13. Analysis of Operating Modes of Stand-Alone Series Controller of Power Flows for Overhead Power Transmission Lines

    NASA Astrophysics Data System (ADS)

    Astashev, M. G.; Panfilov, D. I.; Seregin, D. A.; Chernyshev, A. A.

    2017-12-01

    The features of using the bridge voltage inverter in small-size stand-alone series controllers of power flows (PFSC) for overhead power transmission lines (OPTL) are examined. The basic processes in the converter during transient and steady state modes were analyzed. The basic relations for calculating the electromagnetic processes taking into account the energy loss in the circuit and without it were received. A simulation model is proposed of a converter that makes it possible to study its operating modes during the formation of reactance introduced into the overhead power transmission line. The results of simulation of operating modes of the PFSC are presented.

  14. A Compact, Soft-Switching DC-DC Converter for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Button, Robert; Redilla, Jack; Ayyanar, Raja

    2003-01-01

    A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.

  15. A rule-based phase control methodology for a slider-crank wave energy converter power take-off system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun

    The slider crank is a proven mechanical linkage system with a long history of successful applications, and the slider-crank ocean wave energy converter (WEC) is a type of WEC that converts linear motion into rotation. This paper presents a control algorithm for a slider-crank WEC. In this study, a time-domain hydrodynamic analysis is adopted, and an AC synchronous machine is used in the power take-off system to achieve relatively high system performance. Also, a rule-based phase control strategy is applied to maximize energy extraction, making the system suitable for not only regular sinusoidal waves but also irregular waves. Simulations aremore » carried out under regular sinusoidal wave and synthetically produced irregular wave conditions; performance validations are also presented with high-precision, real ocean wave surface elevation data. The influences of significant wave height, and peak period upon energy extraction of the system are studied. Energy extraction results using the proposed method are compared to those of the passive loading and complex conjugate control strategies; results show that the level of energy extraction is between those of the passive loading and complex conjugate control strategies, and the suboptimal nature of this control strategy is verified.« less

  16. A control strategy for grid-side converter of DFIG under unbalanced condition based on Dig SILENT/Power Factory

    NASA Astrophysics Data System (ADS)

    Han, Pingping; Zhang, Haitian; Chen, Lingqi; Zhang, Xiaoan

    2018-01-01

    The models of doubly fed induction generator (DFIG) and its grid-side converter (GSC) are established under unbalanced grid condition based on DIgSILENT/PowerFactory. According to the mathematical model, the vector equations of positive and negative sequence voltage and current are deduced in the positive sequence synchronous rotating reference frame d-q-0 when the characteristics of the simulation software are considered adequately. Moreover, the reference value of current component of GSC in the positive sequence frame d-q-0 under unbalanced condition can be obtained to improve the traditional control of GSC when the national issue of unbalanced current limits is combined. The simulated results indicate that the control strategy can restrain negative sequence current and the two times frequency power wave of GSC’s ac side effectively. The voltage of DC bus can be maintained a constant to ensure the uninterrupted operation of DFIG under unbalanced grid condition eventually.

  17. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less

  18. A programmable transformer coupled converter for high-power space applications

    NASA Technical Reports Server (NTRS)

    Kapustka, R. E.; Bush, J. R., Jr.; Graves, J. R.; Lanier, J. R., Jr.

    1986-01-01

    A programmable transformer coupled converter (PTCC) is being developed by NASA/Marshall Space Flight Center for application in future large space power systems. The PTCC uses an internal microprocessor to control the output characteristics of its three Cuk integrated magnetics type power stages which have a combined capability of 5.4 kW (30 V at 180 A). Details of design trade-offs and test results are presented.

  19. Using mathematical software to design power electronic converters

    NASA Astrophysics Data System (ADS)

    Hinov, Nikolay; Hranov, Tsveti

    2017-12-01

    In the paper is presented mathematical software, which was used for design of power electronic devices. Examined to different example, which are applied to designing electronic converters. In this way, it is possible to play different combinations of the circuit elements by simple means, thus optimizing according to certain criteria and limitations. Free software with a simple and intuitive interface is selected. No special user training is required to work with it and no further training is required. The use of mathematical software greatly facilitates the design, assists and makes it attractive and accessible to a wider range of students and specialists in power electronics training.

  20. Predicting performance of power converters operating with switching frequencies in the vicinity of 100 kHZ

    NASA Technical Reports Server (NTRS)

    Bahler, D. D.; Owen, H. A., Jr.; Wilson, T. G.

    1978-01-01

    A model describing the turning-on period of a power switching transistor in an energy storage voltage step-up converter is presented. Comparisons between an experimental layout and the circuit model during the turning-on interval demonstrate the ability of the model to closely predict the effects of circuit topology on the performance of the converter. A phenomenon of particular importance that is observed in the experimental circuits and is predicted by the model is the deleterious feedback effect of the parasitic emitter lead inductance on the base current waveform during the turning-on interval.

  1. Bi-directional four quadrant (BDQ4) power converter development

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1979-01-01

    The feasibility for implementation of a concept for direct ac/dc multikilowatt power conversion with bidirectional transfer of energy was investigated. A 10 kHz current carrier was derived directly from a common 60 Hz three phase power system. This carrier was modulated to remove the 360 Hz ripple, inherent in the three phase power supply and then demodulated and processed by a high frequency filter. The resulting dc power was then supplied to a load. The process was implemented without the use of low frequency transformers and filters. This power conversion processes was reversible and can operate in the four quadrants as viewed from any of the two of the converter's ports. Areas of application include: power systems on air and spacecraft; terrestrial traction; integration of solar and wind powered systems with utility networks; HVDC; asynchronous coupling of polyphase networks; heat treatment; industrial machine drives; and power supplies for any use including instrumentation.

  2. An All-Digital Fast Tracking Switching Converter with a Programmable Order Loop Controller for Envelope Tracking RF Power Amplifiers

    PubMed Central

    Anabtawi, Nijad; Ferzli, Rony; Harmanani, Haidar M.

    2017-01-01

    This paper presents a step down, switched mode power converter for use in multi-standard envelope tracking radio frequency power amplifiers (RFPA). The converter is based on a programmable order sigma delta modulator that can be configured to operate with either 1st, 2nd, 3rd or 4th order loop filters, eliminating the need for a bulky passive output filter. Output ripple, sideband noise and spectral emission requirements of different wireless standards can be met by configuring the modulator’s filter order and converter’s sampling frequency. The proposed converter is entirely digital and is implemented in 14nm bulk CMOS process for post layout verification. For an input voltage of 3.3V, the converter’s output can be regulated to any voltage level from 0.5V to 2.5V, at a nominal switching frequency of 150MHz. It achieves a maximum efficiency of 94% at 1.5 W output power. PMID:28919657

  3. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    PubMed Central

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854

  4. Power quality improvement by unified power quality conditioner based on CSC topology using synchronous reference frame theory.

    PubMed

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  5. Motion of a liquid bridge between nonparallel surfaces.

    PubMed

    Ataei, Mohammadmehdi; Tang, Tian; Amirfazli, Alidad

    2017-04-15

    Bulk motion of a liquid bridge between two nonparallel identical solid surfaces undergoing multiple loading cycles (compressing and stretching) was investigated numerically and experimentally. The effects of the following governing parameters were studied: the dihedral angle between the two surfaces (ψ), the amount of compressing and stretching (Δh), and wettability parameters i.e. the advancing contact angle (θ a ) and Contact Angle Hysteresis (CAH). Experiments were done using various combinations of ψ, Δh and on surfaces with different wettabilities to understand the effect of each parameter individually. Additionally, a numerical model using Surface Evolver software was developed to augment the experimental data and extract information about the shape of the bridge. An empirical function was proposed and validated to calculate the minimum amount of Δh needed to initiate the bulk motion (i.e. to overcome the initial lag of the motion in response to the compressing of the bridge), at a given dihedral angle ψ. The effect of governing parameters on magnitude and precision of the motion was investigated. The magnitude of the motion was found to be increased by increasing ψ and Δh, and/or by decreasing θ a and CAH. We demonstrated the possibility of modulating the precision of the motion with θ a . Additionally, it was shown that the magnitude of the motion (in one loading cycle) increases after each loading cycle, if the contact lines depin only on the narrower side of the bridge during compressing and only on the wider side during stretching (asymmetric depinning). Whereas, depinning on both sides of the bridge (symmetric depinning) reduced the magnitude of bridge motion in each cycle under cyclic loading. A larger ψ was found to convert symmetric depinning into asymmetric depinning. These findings not only enhance the understanding of bridge motion between nonparallel surfaces, but also are beneficial in controlling magnitude, precision, and lag of the

  6. A novel wireless power and data transmission AC to DC converter for an implantable device.

    PubMed

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  7. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    NASA Astrophysics Data System (ADS)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin

  8. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    1982-01-01

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  9. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Astrophysics Data System (ADS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  10. Analysis and Design of Bridgeless Switched Mode Power Supply for Computers

    NASA Astrophysics Data System (ADS)

    Singh, S.; Bhuvaneswari, G.; Singh, B.

    2014-09-01

    Switched mode power supplies (SMPSs) used in computers need multiple isolated and stiffly regulated output dc voltages with different current ratings. These isolated multiple output dc voltages are obtained by using a multi-winding high frequency transformer (HFT). A half-bridge dc-dc converter is used here for obtaining different isolated and well regulated dc voltages. In the front end, non-isolated Single Ended Primary Inductance Converters (SEPICs) are added to improve the power quality in terms of low input current harmonics and high power factor (PF). Two non-isolated SEPICs are connected in a way to completely eliminate the need of single-phase diode-bridge rectifier at the front end. Output dc voltages at both the non-isolated and isolated stages are controlled and regulated separately for power quality improvement. A voltage mode control approach is used in the non-isolated SEPIC stage for simple and effective control whereas average current control is used in the second isolated stage.

  11. All-digital pulse-expansion-based CMOS digital-to-time converter

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μ m Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm2. Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  12. All-digital pulse-expansion-based CMOS digital-to-time converter.

    PubMed

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μm Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm 2 . Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  13. A PWM Buck Converter With Load-Adaptive Power Transistor Scaling Scheme Using Analog-Digital Hybrid Control for High Energy Efficiency in Implantable Biomedical Systems.

    PubMed

    Park, Sung-Yun; Cho, Jihyun; Lee, Kyuseok; Yoon, Euisik

    2015-12-01

    We report a pulse width modulation (PWM) buck converter that is able to achieve a power conversion efficiency (PCE) of > 80% in light loads 100 μA) for implantable biomedical systems. In order to achieve a high PCE for the given light loads, the buck converter adaptively reconfigures the size of power PMOS and NMOS transistors and their gate drivers in accordance with load currents, while operating at a fixed frequency of 1 MHz. The buck converter employs the analog-digital hybrid control scheme for coarse/fine adjustment of power transistors. The coarse digital control generates an approximate duty cycle necessary for driving a given load and selects an appropriate width of power transistors to minimize redundant power dissipation. The fine analog control provides the final tuning of the duty cycle to compensate for the error from the coarse digital control. The mode switching between the analog and digital controls is accomplished by a mode arbiter which estimates the average of duty cycles for the given load condition from limit cycle oscillations (LCO) induced by coarse adjustment. The fabricated buck converter achieved a peak efficiency of 86.3% at 1.4 mA and > 80% efficiency for a wide range of load conditions from 45 μA to 4.1 mA, while generating 1 V output from 2.5-3.3 V supply. The converter occupies 0.375 mm(2) in 0.18 μm CMOS processes and requires two external components: 1.2 μF capacitor and 6.8 μH inductor.

  14. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  15. Study of a control strategy for grid side converter in doubly- fed wind power system

    NASA Astrophysics Data System (ADS)

    Zhu, D. J.; Tan, Z. L.; Yuan, F.; Wang, Q. Y.; Ding, M.

    2016-08-01

    The grid side converter is an important part of the excitation system of doubly-fed asynchronous generator used in wind power system. As a three-phase voltage source PWM converter, it can not only transfer slip power in the form of active power, but also adjust the reactive power of the grid. This paper proposed a control approach for improving its performance. In this control approach, the dc voltage is regulated by a sliding mode variable structure control scheme and current by a variable structure controller based on the input output linearization. The theoretical bases of the sliding mode variable structure control were introduced, and the stability proof was presented. Switching function of the system has been deduced, sliding mode voltage controller model has been established, and the output of the outer voltage loop is the instruction of the inner current loop. Affine nonlinear model of two input two output equations on d-q axis for current has been established its meeting conditions of exact linearization were proved. In order to improve the anti-jamming capability of the system, a variable structure control was added in the current controller, the control law was deduced. The dual-loop control with sliding mode control in outer voltage loop and linearization variable structure control in inner current loop was proposed. Simulation results demonstrate the effectiveness of the proposed control strategy even during the dc reference voltage and system load variation.

  16. A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Li, Jiefang; Viehland, D.; Zhuang, X.

    2018-07-01

    Over the past two decades, magnetoelectric (ME) composites and their devices have been an important topic of research. Potential applications ranging from low-power sensing to high-power converters have been investigated. This review, first begins with a summary of multiferroic materials that work at room temperature. Such ME materials are usually in composites, and their ME effect generated as a product property of magnetostrictive and piezoelectric composite layers. After that, mechanisms, working principles, and applications of ME composites from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters will be discussed. First, the development of ME sensors in terms of materials and structures to enhance their sensitivities and to reduce noise level is reviewed and discussed. Second, the structure of ME-based energy harvesters is discussed and summarized. Third, the development of ME gyrators is summarized for power applications, including current/voltage conversion, power efficiency, power density and figures of merit. Results demonstrate that our ME gyrator has the ability to satisfy the needs of power conversion with superior efficiency (>90%), offering potential uses in power electronic applications.

  17. Method of controlling switching of a multiphase inductor-converter bridge. [Patent application

    DOEpatents

    Kustom, R.L.; Fuja, R.E.

    In an inductor-convertor circuit for transferring electrical energy between a storage coil and a load coil through a storage thyristor bridge, a load thyristor bridge, and a set of commutating capacitors, operation is improved by a method of changing the rate of delivery of energy in a given direction. The change in rate corresponds to a predetermined change in phase angle between the load bridge and the storage bridge, and comprises changing the phase of the bridge by two steps, each equal to half the predetermined change and occurring 180/sup 0/ apart. The method assures commutation and minimizes imbalances that lead otherwise to overvoltages. 11 figures.

  18. 33. View of data converter and power supply for TR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. View of data converter and power supply for TR system in transmitter building no. 102, mezzanine level. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Some results regarding stability of photovoltaic maximum-power-point tracking dc-dc converters

    NASA Astrophysics Data System (ADS)

    Schaefer, John F.

    An analytical investigation of a class of photovoltaic (PV) maximum-power-point tracking dc-dc converters has yielded basic results relative to the stability of such devices. Necessary and sufficient conditions for stable operation are derived, and design tools are given. Specific results have been obtained for arbitrary PV arrays driving converters powering resistive loads and batteries. The analytical techniques are applicable to inverters, also. Portions of the theoretical results have been verified in operational devices: a 1500 watt unit has driven a 1-horsepower, 90-volt dc motor powering a water pump jack for over one year. Prior to modification shortly after initial installation, the unit exhibited instability at low levels of irradiance, as predicted by the theory. Two examples are provided.

  20. Out-of-core Evaluations of Uranium Nitride-fueled Converters

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1972-01-01

    Two uranium nitride fueled converters were tested parametrically for their initial characterization and are currently being life-tested out of core. Test method being employed for the parametric and the diagnostic measurements during the life tests, and test results are presented. One converter with a rhenium emitter had an initial output power density of 6.9 W/ sq cm at the black body emitter temperature of 1900 K. The power density remained unchanged for the first 1000 hr of life test but degraded nearly 50% percent during the following 1000 hr. Electrode work function measurements indicated that the uranium fuel was diffusing out of the emitter clad of 0.635 mm. The other converter with a tungsten emitter had an initial output power density of 2.2 W/ sq cm at 1900 K with a power density of 3.9 W/sq cm at 4300 h. The power density suddenly degraded within 20 hr to practically zero output at 4735 hr.

  1. Current Source Based on H-Bridge Inverter with Output LCL Filter

    NASA Astrophysics Data System (ADS)

    Blahnik, Vojtech; Talla, Jakub; Peroutka, Zdenek

    2015-09-01

    The paper deals with a control of current source with an LCL output filter. The controlled current source is realized as a single-phase inverter and output LCL filter provides low ripple of output current. However, systems incorporating LCL filters require more complex control strategies and there are several interesting approaches to the control of this type of converter. This paper presents the inverter control algorithm, which combines model based control with a direct current control based on resonant controllers and single-phase vector control. The primary goal is to reduce the current ripple and distortion under required limits and provides fast and precise control of output current. The proposed control technique is verified by measurements on the laboratory model.

  2. Wake-up transceivers for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.

    2016-04-01

    In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.

  3. A novel method for predicting the power outputs of wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, Yingguang

    2018-03-01

    This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

  4. Model Predictive Control of A Matrix-Converter Based Solid State Transformer for Utility Grid Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yaosuo

    The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less

  5. Bridgeless SEPIC PFC Converter for Multistring LED Driver

    NASA Astrophysics Data System (ADS)

    Jha, Aman; Singh, Bhim

    2018-05-01

    This paper deals with Power Factor Correction (PFC) in Low Voltage High Current (LVHC) multi-string light emitting diode (LED) using a bridgeless (BL) single ended primary inductance converter (SEPIC). This application is designed for large area LED lighting with illumination control. A multi-mode LED dimming technique is used for the lighting control. The BL-SEPIC PFC converter is used as a load emulator for high power factor. The regulated low voltage from flyback converter is a source power to the synchronous buck converters for multi-string LED driver and forced cooling system for LED junction. The BL-SEPIC PFC converter inductor design is based on Discontinuous Inductor Current Modes (DICM) which provides good PFC at low cost. Test results are found quite satisfactory for universal input AC (90-265 V). There is significant improvement in the power factor and input current Total Harmonic Distortion (THD) with good margin of harmonic limits for lighting IEC 61000-3-2 Class C.

  6. CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control

    NASA Astrophysics Data System (ADS)

    Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah

    2017-06-01

    This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.

  7. Bridge Crack Detection Using Multi-Rotary Uav and Object-Base Image Analysis

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Hsiao, K. W.; Jhan, J. P.; Wang, S. H.; Fang, W. C.; Wang, J. L.

    2017-08-01

    Bridge is an important infrastructure for human life. Thus, the bridge safety monitoring and maintaining is an important issue to the government. Conventionally, bridge inspection were conducted by human in-situ visual examination. This procedure sometimes require under bridge inspection vehicle or climbing under the bridge personally. Thus, its cost and risk is high as well as labor intensive and time consuming. Particularly, its documentation procedure is subjective without 3D spatial information. In order cope with these challenges, this paper propose the use of a multi-rotary UAV that equipped with a SONY A7r2 high resolution digital camera, 50 mm fixed focus length lens, 135 degrees up-down rotating gimbal. The target bridge contains three spans with a total of 60 meters long, 20 meters width and 8 meters height above the water level. In the end, we took about 10,000 images, but some of them were acquired by hand held method taken on the ground using a pole with 2-8 meters long. Those images were processed by Agisoft PhotoscanPro to obtain exterior and interior orientation parameters. A local coordinate system was defined by using 12 ground control points measured by a total station. After triangulation and camera self-calibration, the RMS of control points is less than 3 cm. A 3D CAD model that describe the bridge surface geometry was manually measured by PhotoscanPro. They were composed of planar polygons and will be used for searching related UAV images. Additionally, a photorealistic 3D model can be produced for 3D visualization. In order to detect cracks on the bridge surface, we utilize object-based image analysis (OBIA) technique to segment the image into objects. Later, we derive several object features, such as density, area/bounding box ratio, length/width ratio, length, etc. Then, we can setup a classification rule set to distinguish cracks. Further, we apply semi-global-matching (SGM) to obtain 3D crack information and based on image

  8. Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)

    1991-01-01

    A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.

  9. Ground-Based High Energy Power Beaming in Support of Spacecraft Power Requirements

    DTIC Science & Technology

    2006-06-01

    provide 900 W/m2. As more of the arriving energy is converted to space bus power and less goes into the production of heat , more solar cell output...similar control of peak power levels. Efficiency of power transfer may easily be about 50% as the solar cell experiences less heating effects as the...investigates the feasibility of projecting ground-based laser power to energize a spacecraft electrical bus via the solar panels. The energy is projected

  10. Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging

    NASA Astrophysics Data System (ADS)

    Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib

    2017-11-01

    This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.

  11. Gallium phosphide energy converters

    NASA Astrophysics Data System (ADS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  12. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  13. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  14. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  15. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF program design and development phases, a system Power Management and Distribution (PMAD) dc test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  16. The BepiColombo Laser Altimeter (BeLA) power converter module (PCM): Concept and characterisation.

    PubMed

    Rodrigo, J; Gasquet, E; Castro, J-M; Herranz, M; Lara, L-M; Muñoz, M; Simon, A; Behnke, T; Thomas, N

    2017-03-01

    This paper presents the principal considerations when designing DC-DC converters for space instruments, in particular for the power converter module as part of the first European space laser altimeter: "BepiColombo Laser Altimeter" on board the European Space Agency-Japan Aerospace Exploration Agency (JAXA) mission BepiColombo. The main factors which determine the design of the DC-DC modules in space applications are printed circuit board occupation, mass, DC-DC converter efficiency, and environmental-survivability constraints. Topics included in the appropriated DC-DC converter design flow are hereby described. The topology and technology for the primary and secondary stages, input filters, transformer design, and peripheral components are discussed. Component selection and design trade-offs are described. Grounding, load and line regulation, and secondary protection circuitry (under-voltage, over-voltage, and over-current) are then introduced. Lastly, test results and characterization of the final flight design are also presented. Testing of the inrush current, the regulated output start-up, and the switching function of the power supply indicate that these performances are fully compliant with the requirements.

  17. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  18. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    PubMed

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  19. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    PubMed Central

    Rohini, G.; Jamuna, V.

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  20. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  1. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2017-12-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  2. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments.

    PubMed

    Boudreau, Beth A; Hron, Daniel R; Qin, Liang; van der Valk, Ramon A; Kotlajich, Matthew V; Dame, Remus T; Landick, Robert

    2018-06-20

    In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.

  3. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  4. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  5. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  6. Analysis of series resonant converter with series-parallel connection

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  7. Control Strategies for the DAB Based PV Interface System

    PubMed Central

    El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  8. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.

    PubMed

    Knuth, S T; Dave, H; Peters, J R; Fitts, R H

    2006-09-15

    Historically, an increase in intracellular H(+) (decrease in cell pH) was thought to contribute to muscle fatigue by direct inhibition of the cross-bridge leading to a reduction in velocity and force. More recently, due to the observation that the effects were less at temperatures closer to those observed in vivo, the importance of H(+) as a fatigue agent has been questioned. The purpose of this work was to re-evaluate the role of H(+) in muscle fatigue by studying the effect of low pH (6.2) on force, velocity and peak power in rat fast- and slow-twitch muscle fibres at 15 degrees C and 30 degrees C. Skinned fast type IIa and slow type I fibres were prepared from the gastrocnemius and soleus, respectively, mounted between a force transducer and position motor, and studied at 15 degrees C and 30 degrees C and pH 7.0 and 6.2, and fibre force (P(0)), unloaded shortening velocity (V(0)), force-velocity, and force-power relationships determined. Consistent with previous observations, low pH depressed the P(0) of both fast and slow fibres, less at 30 degrees C (4-12%) than at 15 degrees C (30%). However, the low pH-induced depressions in slow type I fibre V(0) and peak power were both significantly greater at 30 degrees C (25% versus 9% for V(0) and 34% versus 17% for peak power). For the fast type IIa fibre type, the inhibitory effect of low pH on V(0) was unaltered by temperature, while for peak power the inhibition was reduced at 30 degrees C (37% versus 18%). The curvature of the force-velocity relationship was temperature sensitive, and showed a higher a/P(0) ratio (less curvature) at 30 degrees C. Importantly, at 30 degrees C low pH significantly depressed the ratio of the slow type I fibre, leading to less force and velocity at peak power. These data demonstrate that the direct effect of low pH on peak power in both slow- and fast-twitch fibres at near-in vivo temperatures (30 degrees C) is greater than would be predicted based on changes in P(0), and that the

  9. Design of an Integrated Thermoelectric Generator Power Converter for Ultra-Low Power and Low Voltage Body Energy Harvesters aimed at EEG/ECG Active Electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2014-11-01

    This paper describes a design procedure for an efficient body thermal energy harvesting integrated power converter. This procedure is based on loss examination for a selfpowered medical device. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. It is found that it is possible to optimize converter's working frequency with proper design of its pulse generator circuit. At selected frequency, it has been demonstrated that wide area voltage doubler can be eliminated at the expense of wider switches. With this method, more than 60% efficiency is achieved in simulation for just 20mV transducer output voltage and 30% of entire chip area is saved.

  10. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    ERIC Educational Resources Information Center

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  11. P/N In(Al) GaAs multijunction laser power converters

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Parados, Themis; Walker, Gilbert

    1994-01-01

    Eight In(AI)GaAs PN junctions grown epitaxially on the semi-insulating wafer were monolithically integrated in series to boost the approximately 0.4V photovoltage per typical In(Al)GaAs junction to over 3 volts for the 1 sq cm laser power converted (LPC) chip. Advantages of multijunction LCP designs include the need for less circuitry for power reconditioning and the potential for lower I(sup 2)R power loss. As an example, these LPC's have a responsivity of approximately 1 amp/watt. With a single junction LPC, 100 watts/sq cm incident power would lead to about 100 A/sq cm short-circuit current at approximately 0.4V open-cicuit voltage. One disadvantage is the large current would lead to a large I(sup 2)R loss which would lower the fill factor so that 40 watts/sq cm output would not be obtained. Another is that few circuits are designed to work at 0.4 volts, so DC-DC power conversion circuitry would be necessary to raise the voltage to a reasonable level. The multijunction LPC being developed in this program is a step toward solving these problems. In the above example, an eight-junction LPC would have eight times the voltage, approximately 3V, so that DC-DC power conversion may not be needed in many instances. In addition, the multijunction LPC would have 1/8 the current of a single-junction LPC, for only 1/64 the I(sup 2)R loss if the series resistance is the same. Working monolithic multijunction laser power converters (LPC's) were made in two different compositions of the In(x)Al(y)Ga(1-x-y)As semiconductor alloy, In(0.53)Ga(0.47)As (0.74 eV) and In(0.5)Al(0.1)Ga(0.4)As (0.87 eV). The final 0.8 sq cm LPC's had output voltages of about 3 volts and output currents up to about one-half amp. Maximum 1.3 micron power conversion efficiencies were approximately 22 percent. One key advantage of multijunction LPC's is that they have higher output voltages, so that less DC-DC power conversion circuitry is needed in applications.

  12. Design of 1 MHz Solid State High Frequency Power Supply

    NASA Astrophysics Data System (ADS)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  13. Highly-Efficient and Modular Medium-Voltage Converters

    DTIC Science & Technology

    2015-09-28

    HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction," IEEE Trans. Ind...Electron., vol. 29, pp. 77-88, Jan 2014. [10] M. Guan and Z. Xu, "Modeling and control of a modular multilevel converter -based HVDC system under...34 Modular multilevel converter design for VSC HVDC applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, pp.

  14. Analysis and development of fourth order LCLC resonant based capacitor charging power supply for pulse power applications.

    PubMed

    Naresh, P; Hitesh, C; Patel, A; Kolge, T; Sharma, Archana; Mittal, K C

    2013-08-01

    A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 μF capacitor to 200 V.

  15. Gallium phosphide energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, P.E.; Dinetta, L.C.; Goetz, M.A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured andmore » the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.« less

  16. The application of the analog signal to discrete time interval converter to the signal conditioner power supplies

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    The Analog Signal to Discrete Time Interval Converter microminiaturized module was utilized to control the signal conditioner power supplies. The multi-loop control provides outstanding static and dynamic performance characteristics, exceeding those generally associated with single-loop regulators. Eight converter boards, each containing three independent dc to dc converter, were built, tested, and delivered.

  17. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  18. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  19. Air-bridged Ohmic contact on vertically aligned si nanowire arrays: application to molecule sensors.

    PubMed

    Han, Hee; Kim, Jungkil; Shin, Ho Sun; Song, Jae Yong; Lee, Woo

    2012-05-02

    A simple, cost-effective, and highly reliable method for constructing an air-bridged electrical contact on large arrays of vertically aligned nanowires was developed. The present method may open up new opportunities for developing advanced nanowire-based devices for energy harvest and storage, power generation, and sensing applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  1. Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Maruccio, Claudio; Quaranta, Giuseppe; De Lorenzis, Laura; Monti, Giorgio

    2016-08-01

    Wireless monitoring could greatly impact the fields of structural health assessment and infrastructure asset management. A common problem to be tackled in wireless networks is the electric power supply, which is typically provided by batteries replaced periodically. A promising remedy for this issue would be to harvest ambient energy. Within this framework, the present paper proposes to harvest ambient-induced vibrations of bridge structures using a new class of piezoelectric textiles. The considered case study is an existing cable-stayed bridge located in Italy along a high-speed road that connects Rome and Naples, for which a recent monitoring campaign has allowed to record the dynamic responses of deck and cables. Vibration measurements have been first elaborated to provide a comprehensive dynamic assessment of this infrastructure. In order to enhance the electric energy that can be converted from ambient vibrations, the considered energy harvester exploits a power generator built using arrays of electrospun piezoelectric nanofibers. A finite element analysis is performed to demonstrate that such power generator is able to provide higher energy levels from recorded dynamic loading time histories than a standard piezoelectric energy harvester. Its feasibility for bridge health monitoring applications is finally discussed.

  2. Novel self-powered pH indicator using ionic polymeric gel muscles

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen

    1994-05-01

    A novel design for a torsional spring-loaded pH indicator using ionic polymeric gel fibrous muscles is presented. The essential parts of the proposed self-powered pH indicator are a pair of co-axial and concentric cylinders, an assembly of fibrous polyacrylonitrile (PAN) muscles, a torsional spring, and a dial indicator. The two co-axial cylinders are such that the inner cylinder may pivotally rotate about the central rotation axis that is fixed to the inner bottom or side of the outer cylinder. The outer cylinder also serves as a reservoir for any liquid whose pH is to be determined either statically or dynamically. The internal cylindrical drum is further equipped with a dial indicator on one of its outer end caps such that when a pH environment is present the contraction or expansion of the PAN fibers cause the inner drum to rotate and thus give a reading of the dial indicator. The motion of the dial indicator may also be converted to an electrical signal (voltage) for digital electronics display and computer control. A mathematical model is also presented for the dynamic response of the self-powered pH indicator made with contractile PAN fiber bundle assemblies.

  3. Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter.

    PubMed

    Lin, Chia-Chi; Kuo, Hao-Chung; Peng, Peng-Chun; Lin, Gong-Ru

    2008-03-31

    Optically injection-locked single-wavelength gain-switching VCSEL based all-optical converter is demonstrated to generate RZ data at 2.5 Gbit/s with bit-error-rate of 10(-9) under receiving power of -29.3 dBm. A modified rate equation model is established to elucidate the optical injection induced gain-switching and NRZ-to-RZ data conversion in the VCSEL. The peak-to-peak frequency chirp of the VCSEL based NRZ-to-RZ is 4.5 GHz associated with a reduced frequency chirp rate of 178 MHz/ps at input optical NRZ power of -21 dBm, which is almost decreasing by a factor of 1/3 comparing with chirp on the SOA based NRZ-to-RZ converter reported previously. The power penalty of the BER measured back-to-back is about 2 dB from 1 Gbit/s to 2.5 Gbit/s.

  4. Optimization of paper bridge loading for 2-DE analysis in the basic pH region: application to the mitochondrial subproteome.

    PubMed

    Kane, Lesley A; Yung, Christina K; Agnetti, Giulio; Neverova, Irina; Van Eyk, Jennifer E

    2006-11-01

    Separation of basic proteins with 2-DE presents technical challenges involving protein precipitation, load limitations, and streaking. Cardiac mitochondria are enriched in basic proteins and difficult to resolve by 2-DE. We investigated two methods, cup and paper bridge, for sample loading of this subproteome into the basic range (pH 6-11) gels. Paper bridge loading consistently produced improved resolution of both analytical and preparative protein loads. A unique benefit of this technique is that proteins retained in the paper bridge after loading basic gels can be reloaded onto lower pH gradients (pH 4-7), allowing valued samples to be analyzed on multiple pH ranges.

  5. Conceptual Trade Study of General Purpose Heat Source Powered Stirling Converter Configurations

    NASA Technical Reports Server (NTRS)

    Turpin, J. B.

    2007-01-01

    This Technical Manual describes a parametric study of general purpose heat source (GPHS) powered Stirling converter configurations. This study was performed in support of MSFC s efforts to establish the capability to perform non-nuclear system level testing and integration of radioisotope power systems. Six different GPHS stack configurations at a total of three different power levels (80, 250, and 500 W(sub e) were analyzed. The thermal profiles of the integrated GPHS modules (for each configuration) were calculated to determine maximum temperatures for comparison to allowable material limits. Temperature profiles for off-nominal power conditions were also assessed in order to better understand how power demands from the Stirling engine impact the performance of a given configuration.

  6. Control method of Three-phase Four-leg converter based on repetitive control

    NASA Astrophysics Data System (ADS)

    Hui, Wang

    2018-03-01

    The research chose the magnetic levitation force of wind power generation system as the object. In order to improve the power quality problem caused by unbalanced load in power supply system, we combined the characteristics and repetitive control principle of magnetic levitation wind power generation system, and then an independent control strategy for three-phase four-leg converter was proposed. In this paper, based on the symmetric component method, the second order generalized integrator was used to generate the positive and negative sequence of signals, and the decoupling control was carried out under the synchronous rotating reference frame, in which the positive and negative sequence voltage is PI double closed loop, and a PI regulator with repetitive control was introduced to eliminate the static error regarding the fundamental frequency fluctuation characteristic of zero sequence component. The simulation results based on Matlab/Simulink show that the proposed control project can effectively suppress the disturbance caused by unbalanced loads and maintain the load voltage balance. The project is easy to be achieved and remarkably improves the quality of the independent power supply system.

  7. Design and performance of radioisotope space power systems based on OSC multitube AMTEC converter designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schock, A.; Noravian, H.; Or, C.

    1997-12-31

    This paper extends the analytical procedure described in another paper in these proceedings to analyze a variety of compact and light-weight OSC-designed radioisotope-heated generators. Those generators employed General Purpose Heat Source (GPHS) modules and a converter containing sixteen AMTEC cells of OSC`s revised five-tube design with enhanced cell wall reflectivity described in a companion paper in these proceedings. OSC found that the performance of the generator is primarily a function of the thermal insulation between the outside of the generator`s 16 cells and the inside of its wall. After examining a variety of insulation options, it was found that themore » generator`s performance is optimized by employing a hybrid insulation system, in which the space between the cells is filled with fibrous Min-K insulation, and the generator walls are lined with tapered (i.e., graded-length) multifoil insulation. The OSC design results in a very compact generator, with eight AMTEC cells on each end of the heat source stack. The choice of the five-tube cells makes it possible to expand the BASE tube diameter without increasing the cell diameter. This is important because the eight cells mate well with the stacked GPHS modules. The OSC generator design includes a compliant heat source support and preload arrangement, to hold the heat source modules together during launch, and to maintain thermal contact conductance at the generator`s interfaces despite creep relaxation of its housing. The BOM and EOM (up to 15 years) performances of the revised generators were analyzed for two and three GPHS modules, both for fresh fuel and for aged fuel left over from a spare RTG (Radioisotope Thermoelectric Generator) fueled in 1982. The resulting power outputs were compared with JPL`s latest EOM power demand goals for the Pluto Express and Europa Orbiter missions, and with the generic goals of DOE`s Advanced Radioisotope Power System (ARPS) study. The OSC AMTEC designs yielded

  8. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  9. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  10. Real-time and wearable functional electrical stimulation system for volitional hand motor function control using the electromyography bridge method

    PubMed Central

    Wang, Hai-peng; Bi, Zheng-yang; Zhou, Yang; Zhou, Yu-xuan; Wang, Zhi-gong; Lv, Xiao-ying

    2017-01-01

    Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training. PMID:28250759

  11. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  12. Chaos control in solar fed DC-DC boost converter by optimal parameters using nelder-mead algorithm powered enhanced BFOA

    NASA Astrophysics Data System (ADS)

    Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.

    2017-11-01

    The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.

  13. Thermal modeling of wide bandgap semiconductor devices for high frequency power converters

    NASA Astrophysics Data System (ADS)

    Sharath Sundar Ram, S.; Vijayakumari, A.

    2018-02-01

    The emergence of wide bandgap semiconductors has led to development of new generation semiconductor switches that are highly efficient and scalable. To exploit the advantages of GaNFETs in power converters, in terms of reduction in the size of heat sinks and filters, a thorough understanding of the thermal behavior of the device is essential. This paper aims to establish a thermal model for wideband gap semiconductor GaNFETs commercially available, which will enable power electronic designers to obtain the thermal characteristics of the device more effectively. The model parameters is obtained from the manufacturer’s data sheet by adopting an exponential curve fitting technique and the thermal model is validated using PSPICE simulations. The model was developed based on the parametric equivalence that exists between the thermal and electrical components, such that it responds for transient thermal stresses. A suitable power profile has been generated to evaluate the GaNFET model under different power dissipation scenarios. The results were compared with a Silicon MOSFETs to further highlight the advantages of the GaN devices. The proposed modeling approach can be extended for other GaN devices and can provide a platform for the thermal study and heat sink optimization.

  14. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    NASA Astrophysics Data System (ADS)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  15. Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology

    PubMed Central

    Zhao, Xuefeng; Liu, Hao; Yu, Yan; Xu, Xiaodong; Hu, Weitong; Li, Mingchu; Ou, Jingping

    2015-01-01

    Bridge displacement is the most basic evaluation index of the health status of a bridge structure. The existing measurement methods for bridge displacement basically fail to realize long-term and real-time dynamic monitoring of bridge structures, because of the low degree of automation and the insufficient precision, causing bottlenecks and restriction. To solve this problem, we proposed a bridge displacement monitoring system based on laser projection-sensing technology. First, the laser spot recognition method was studied. Second, the software for the displacement monitoring system was developed. Finally, a series of experiments using this system were conducted, and the results show that such a system has high measurement accuracy and speed. We aim to develop a low-cost, high-accuracy and long-term monitoring method for bridge displacement based on these preliminary efforts. PMID:25871716

  16. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    NASA Astrophysics Data System (ADS)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  17. Error Sources in Proccessing LIDAR Based Bridge Inspection

    NASA Astrophysics Data System (ADS)

    Bian, H.; Chen, S. E.; Liu, W.

    2017-09-01

    Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.

  18. An ocean kinetic energy converter for low-power applications using piezoelectric disk elements

    NASA Astrophysics Data System (ADS)

    Viñolo, C.; Toma, D.; Mànuel, A.; del Rio, J.

    2013-09-01

    The main problem facing long-term electronic system deployments in the sea, is to find a feasible way to supply them with the power they require. Harvesting mechanical energy from the ocean wave oscillations and converting it into electrical energy, provides an alternative method for creating self-contained power sources. However, the very low and varying frequency of ocean waves, which generally varies from 0.1 Hz to 2 Hz, presents a hurdle which has to be overcome if this mechanical energy is to be harvested. In this paper, a new sea wave kinetic energy converter is described using low-cost disk piezoelectric elements, which has no dependence on their excitement frequency, to feed low-consumption maritime-deployed electronic devices. The operating principles of the piezoelectric device technique are presented, including analytical formulations describing the transfer of energy. Finally, a prototypical design, which generates electrical energy from the motion of a buoy, is introduced. The paper concludes with the the behavior study of the piezoelectric prototype device as a power generator.

  19. Single-stage three-phase boost power factor correction circuit for AC-DC converter

    NASA Astrophysics Data System (ADS)

    Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.

    2018-01-01

    This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.

  20. RF-DC converter for HF RFID sensing applications powered by a near-field loop antenna

    NASA Astrophysics Data System (ADS)

    Colella, R.; Pasca, M.; Catarinucci, L.; Tarricone, L.; D'Amico, S.

    2016-07-01

    In this paper, an RF-DC converter operating at 13.56 MHz (HF radio frequency identification (RFID) frequency band) is presented. Its architecture provides RF to load isolation, reducing the losses due to the reverse saturation current and improving the sensitivity. Fed by a loop antenna, the RF-DC converter is made by a Dickson's RF-DC rectifier and an additional Pelliconi's charge pump driven by a fully integrated 50 kHz ring oscillator realized using an application-specific integrated circuit (ASIC). The input RF signal from the reader is converted to DC supply voltage and stored on a 1 μF capacitor. Mathematical model of the converter is developed and verified through measurements. Silicon prototypes of the ASIC have been realized in 350 nm complementary metal-oxide semiconductor technology. Measurements have been done on 10 different samples showing an output voltage in the range of 0.5 V-3.11 V in correspondence of an RF input signal power in the range of -19 dBm-0 dBm. These output voltage levels are suitable to power HF RFID sensing platforms and sensor nodes of body sensor networks.

  1. Power Converter Control Algorithm Design and Simulation for the NREL Next-Generation Drivetrain: July 8, 2013 - January 7, 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blodgett, Douglas; Behnke, Michael; Erdman, William

    The National Renewable Energy Laboratory (NREL) and NREL Next-Generation Drivetrain Partners are developing a next-generation drivetrain (NGD) design as part of a Funding Opportunity Announcement award from the U.S. Department of Energy. The proposed NGD includes comprehensive innovations to the gearbox, generator, and power converter that increase the gearbox reliability and drivetrain capacity, while lowering deployment and operation and maintenance costs. A key task within this development effort is the power converter fault control algorithm design and associated computer simulations using an integrated electromechanical model of the drivetrain. The results of this task will be used in generating the embeddedmore » control software to be utilized in the power converter during testing of the NGD in the National Wind Technology Center 2.5-MW dynamometer. A list of issues to be addressed with these algorithms was developed by review of the grid interconnection requirements of various North American transmission system operators, and those requirements that presented the greatest impact to the wind turbine drivetrain design were then selected for mitigation via power converter control algorithms.« less

  2. Natural Bridges National Monument photovoltaic power plant operations manual

    NASA Astrophysics Data System (ADS)

    Coleman, S. D.

    1982-02-01

    After a basic introduction and overview of the photovoltaic system at the Natural Bridges National Monument, a history of the project and a description of the installation, safety procedures essential for all operators and maintenance personnel are discussed. Locations and detailed descriptions of the equipment are provided to permit operators to identify the system controls and equipment. Step by step system operation procedures are described, including diesel generator start up and photovoltaic power system turn on. Information is provided about routine monitoring and maintenance of the system.

  3. Noise exposure in convertible automobiles.

    PubMed

    Mikulec, A A; Lukens, S B; Jackson, L E; Deyoung, M N

    2011-02-01

    To quantify the noise exposure received while driving a convertible automobile with the top open, compared with the top closed. Five different convertible automobiles were driven, with the top both closed and open, and noise levels measured. The cars were tested at speeds of 88.5, 104.6 and 120.7 km/h. When driving with the convertible top open, the mean noise exposure ranged from 85.3 dB at 88.5 km/h to 89.9 dB at 120.7 km/h. At the tested speeds, noise exposure increased by an average of 12.4-14.6 dB after opening the convertible top. Driving convertible automobiles at speeds exceeding 88.5 km/h, with the top open, may result in noise exposure levels exceeding recommended limits, especially when driving with the convertible top open for prolonged periods.

  4. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  5. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter

    PubMed Central

    Zhao, Yongming; Sun, Yurun; He, Yang; Yu, Shuzhen; Dong, Jianrong

    2016-01-01

    A six-volt vertically-stacked, high current GaAs photovoltaic power converter (PPC) has been designed and fabricated to produce output power over 1 W under monochromatic illumination. An N++-GaAs/P++-AlGaAs tunnel junctions (TJs) structure has been used for connecting each sub-cell in this vertically-stacked PPC device. The thickness of the each GaAs sub-cell has been derived based on the calculation of absorption depth of photons with a wavelength of 808 nm using absorption coefficient obtained from ellipsometry measurements. The devices were characterized under non-uniform CW laser illumination at 808 nm with incident power up to 4.1 W. A maximum conversion efficiency of 50.2% was achieved at 0.3 W under non-uniform (coupled in optical fiber) monochromatic illumination, dropping to 42.5% at 4.1 W. The operating voltage at the maximum power point is 5.5–6.0 V, depending on the incident laser power, and an output electrical power output of 1.3 W can be extracted at a laser power of 2.9 W and the maximum electrical power output amounts to 1.72 W. The external quantum efficiency (EQE) measurement indicates that the performance of PPC can be further improved by refining the design of the thickness of sub-cells and improving TJs. PMID:27901079

  6. Oscillations in a Sunspot with Light Bridges

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Nakariakov, Valery M.; Huang, Zhenghua; Li, Bo; Su, Jiangtao; Yan, Yihua; Tan, Baolin

    2014-09-01

    The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minute oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.

  7. Oscillations in a sunspot with light bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Su, Jiangtao; Yan, Yihua

    2014-09-01

    The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minutemore » oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.« less

  8. Switch failure diagnosis based on inductor current observation for boost converters

    NASA Astrophysics Data System (ADS)

    Jamshidpour, E.; Poure, P.; Saadate, S.

    2016-09-01

    Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.

  9. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Model-Based Dead Time Optimization for Voltage-Source Converters Utilizing Silicon Carbide Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zheyu; Lu, Haifeng; Costinett, Daniel J.

    Dead time significantly affects the reliability, power quality, and efficiency of voltage-source converters. For silicon carbide (SiC) devices, considering the high sensitivity of turn-off time to the operating conditions (> 5× difference between light load and full load) and characteristics of inductive loads (> 2× difference between motor load and inductor), as well as large additional energy loss induced by the freewheeling diode conduction during the superfluous dead time (~15% of the switching loss), then the traditional fixed dead time setting becomes inappropriate. This paper introduces an approach to adaptively regulate the dead time considering the current operating condition andmore » load characteristics via synthesizing online monitored turn-off switching parameters in the microcontroller with an embedded preset optimization model. Here, based on a buck converter built with 1200-V SiC MOSFETs, the experimental results show that the proposed method is able to ensure reliability and reduce power loss by 12% at full load and 18.2% at light load (8% of the full load in this case study).« less

  11. Model-Based Dead Time Optimization for Voltage-Source Converters Utilizing Silicon Carbide Semiconductors

    DOE PAGES

    Zhang, Zheyu; Lu, Haifeng; Costinett, Daniel J.; ...

    2016-12-29

    Dead time significantly affects the reliability, power quality, and efficiency of voltage-source converters. For silicon carbide (SiC) devices, considering the high sensitivity of turn-off time to the operating conditions (> 5× difference between light load and full load) and characteristics of inductive loads (> 2× difference between motor load and inductor), as well as large additional energy loss induced by the freewheeling diode conduction during the superfluous dead time (~15% of the switching loss), then the traditional fixed dead time setting becomes inappropriate. This paper introduces an approach to adaptively regulate the dead time considering the current operating condition andmore » load characteristics via synthesizing online monitored turn-off switching parameters in the microcontroller with an embedded preset optimization model. Here, based on a buck converter built with 1200-V SiC MOSFETs, the experimental results show that the proposed method is able to ensure reliability and reduce power loss by 12% at full load and 18.2% at light load (8% of the full load in this case study).« less

  12. Early Oscillation Detection Technique for Hybrid DC/DC Converters

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s

  13. Converter topologies and control

    DOEpatents

    Rodriguez, Fernando; Qin, Hengsi; Chapman, Patrick

    2018-05-01

    An inverter includes a transformer that includes a first winding, a second winding, and a third winding, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid.

  14. Synthesis, crystal structure and redox properties of dihydropyrazole-bridged ferrocene-based derivatives

    NASA Astrophysics Data System (ADS)

    Li, Heng-Dong; Ma, Zai-He; Yang, Kun; Xie, Li-Li; Yuan, Yao-Feng

    2012-09-01

    Dihydropyrazole-bridged ferrocene-based derivatives were prepared by corresponding chalcones with hydrazine hydrate, then acylation with 3-(ethoxycarbonyl)propionyl chloride directly in high yields and purity. All of these compounds were characterized by MS, IR, 1H NMR, 13C NMR and elemental analysis. The relationship between the structure and redox properties was investigated based on the results of single crystal X-ray structure determinations and cyclic voltammetry. The mechanism of the electron transfer for representative compound 4b was verified by density functional theory (DFT) calculations.

  15. Multi-Hazard Assessment of Scour Damaged Bridges with UAS-Based Measurements

    NASA Astrophysics Data System (ADS)

    Özcan, O.; Ozcan, O.

    2017-12-01

    Flood and stream induced scour occurring in bridge piers constructed on rivers is one of the mostly observed failure reasons in bridges. Scour induced failure risk in bridges and determination of the alterations in bridge safety under seismic effects has the ultimate importance. Thus, for the determination of bridge safety under the scour effects, the scour amount under bridge piers should be designated realistically and should be tracked and updated continuously. Hereby, the scour induced failures in bridge foundation systems will be prevented and bridge substructure design will be conducted safely. In this study, in order to measure the amount of scour in bridge load bearing system (pile foundations and pile abutments) and to attain very high definition 3 dimensional models of river flood plain for the flood analysis, unmanned aircraft system (UAS) based measurement methods were implemented. UAS based measurement systems provide new and practical approach and bring high precision and reliable solutions considering recent measurement systems. For this purpose, the reinforced concrete (RC) bridge that is located on Antalya Boğaçayı River, Turkey and that failed in 2003 due to flood-induced scour was selected as the case study. The amount of scour occurred in bridge piers and piles was determined realistically and the behavior of bridge piers under scour effects was investigated. Future flood effects and the resultant amount of scour was determined with HEC-RAS software by using digital surface models that were obtained at regular intervals using UAS for the riverbed. In the light of the attained scour measurements and expected scour after a probable flood event, the behavior of scour damaged RC bridge was investigated by pushover and time history analyses under lateral and vertical seismic loadings. In the analyses, the load and displacement capacity of bridge was observed to diminish significantly under expected scour. Thus, the deterioration in multi hazard

  16. Nonlinear Cross-Bridge Elasticity and Post-Power-Stroke Events in Fast Skeletal Muscle Actomyosin

    PubMed Central

    Persson, Malin; Bengtsson, Elina; ten Siethoff, Lasse; Månsson, Alf

    2013-01-01

    Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28–29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle. PMID:24138863

  17. BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges

    NASA Astrophysics Data System (ADS)

    Dang, N. S.; Shim, C. S.

    2018-04-01

    Infrastructure nowadays is increasingly become the main backbone for the metropolitan development in general. Along with the rise of new facilities, the demand in term of maintenance for the existing bridges is indispensable. Recently, the terminology of “preventive maintenance” is not unfamiliar with the engineer, literally is the use of a bridge maintenance system (BMS) based on a BIM-oriented model. In this paper, the process of generating a BMS based on BIM model is introduced in detail. Data management for this BMS is separated into two modules: site inspection system and information management system. The noteworthy aspect of this model lays on the closed and automatic process of “capture image, generate the technical damage report, and upload/feedback to the BMS” in real-time. A pilot BMS system for a cable-supported bridge is presented which showed a good performance and potential to further development of preventive maintenance.

  18. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C

    2012-01-01

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storagemore » device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.« less

  19. The APA Style Converter: a Web-based interface for converting articles to APA style for publication.

    PubMed

    Li, Ping; Cunningham, Krystal

    2005-05-01

    The APA Style Converter is a Web-based tool with which authors may prepare their articles in APA style according to the APA Publication Manual (5th ed.). The Converter provides a user-friendly interface that allows authors to copy and paste text and upload figures through the Web, and it automatically converts all texts, references, and figures to a structured article in APA style. The output is saved in PDF or RTF format, ready for either electronic submission or hardcopy printing.

  20. Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors.

    PubMed

    Bo, Zheng; Zhu, Weiguang; Ma, Wei; Wen, Zhenhai; Shuai, Xiaorui; Chen, Junhong; Yan, Jianhua; Wang, Zhihua; Cen, Kefa; Feng, Xinliang

    2013-10-25

    Dense networks of graphene nanosheets standing vertically on a current collector can work as numerous electrically conductive bridges to facilitate charge transport and mitigate the constriction/spreading resistance at the interface between the active material and the current collector. The vertically oriented graphene-bridged supercapacitors present excellent rate and power capabilities. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A cloud-based information repository for bridge monitoring applications

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Zhang, Yilan; Hou, Rui; Lynch, Jerome P.; Sohn, Hoon; Law, Kincho H.

    2016-04-01

    This paper describes an information repository to support bridge monitoring applications on a cloud computing platform. Bridge monitoring, with instrumentation of sensors in particular, collects significant amount of data. In addition to sensor data, a wide variety of information such as bridge geometry, analysis model and sensor description need to be stored. Data management plays an important role to facilitate data utilization and data sharing. While bridge information modeling (BrIM) technologies and standards have been proposed and they provide a means to enable integration and facilitate interoperability, current BrIM standards support mostly the information about bridge geometry. In this study, we extend the BrIM schema to include analysis models and sensor information. Specifically, using the OpenBrIM standards as the base, we draw on CSI Bridge, a commercial software widely used for bridge analysis and design, and SensorML, a standard schema for sensor definition, to define the data entities necessary for bridge monitoring applications. NoSQL database systems are employed for data repository. Cloud service infrastructure is deployed to enhance scalability, flexibility and accessibility of the data management system. The data model and systems are tested using the bridge model and the sensor data collected at the Telegraph Road Bridge, Monroe, Michigan.

  2. A 1.5-to-5 V converter for a battery-powered activity-dependent intracortical microstimulation SoC.

    PubMed

    Azin, Meysam; Mohseni, Pedram

    2012-01-01

    This paper reports on the design, analysis, implementation, and testing of a 1.5-to-5 V converter as part of a battery-powered activity-dependent intracortical microstimulation (ICMS) system-on-chip (SoC) that converts extracellular neural spikes recorded from one cortical area to electrical stimuli delivered to another cortical area in real time. The highly integrated voltage converter is intended to generate a 5-V supply for the stimulating back-end on the SoC from a miniature primary battery that powers the entire system. It is implemented in AMS 0.35 µm two-poly four-metal (2P/4M) complementary metal-oxide-semiconductor (CMOS) technology, employs only one external capacitor (1 µF) for storage, and delivers a maximum dc load current of ~88 µA with power efficiency of 31% with its output voltage adjusted to 5.05 V. This current drive capability affords simultaneous stimulation on all eight channels of the SoC with current amplitude up to ~100 µA and average stimulus rate >500 Hz, which is comfortably higher than firing rate of cortical neurons (<150 spikes per second). The measurement results also agree favorably with theoretical derivations from the analysis of converter operation.

  3. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    NASA Astrophysics Data System (ADS)

    Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.

    2016-09-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.

  4. Bridge condition assessment based on long-term strain monitoring

    NASA Astrophysics Data System (ADS)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  5. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  6. An Ultra-Low Power Charge Redistribution Successive Approximation Register A/D Converter for Biomedical Applications.

    PubMed

    Koppa, Santosh; Mohandesi, Manouchehr; John, Eugene

    2016-12-01

    Power consumption is one of the key design constraints in biomedical devices such as pacemakers that are powered by small non rechargeable batteries over their entire life time. In these systems, Analog to Digital Convertors (ADCs) are used as interface between analog world and digital domain and play a key role. In this paper we present the design of an 8-bit Charge Redistribution Successive Approximation Register (CR-SAR) analog to digital converter in standard TSMC 0.18μm CMOS technology for low power and low data rate devices such as pacemakers. The 8-bit optimized CR-SAR ADC achieves low power of less than 250nW with conversion rate of 1KB/s. This ADC achieves integral nonlinearity (INL) and differential nonlinearity (DNL) less than 0.22 least significant bit (LSB) and less than 0.04 LSB respectively as compared to the standard requirement for the INL and DNL errors to be less than 0.5 LSB. The designed ADC operates at 1V supply voltage converting input ranging from 0V to 250mV.

  7. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  8. Comparison of control structures for a bidirectional high-frequency dc-dc converter

    NASA Astrophysics Data System (ADS)

    Himmelstoss, Felix A.; Kolar, Johann W.; Zach, Franz C.

    1989-08-01

    A system for dc-dc power conversion based on a buck-boost converter topology is presented. It makes power flow in both directions possible. The possibility of bidirectional power flow is useful for certain applications, such as uninterruptable power supplies. Starting from a structural diagram the transfer function of the system is derived. The controller for the converter is then designed. It is made up of a simple voltage controller, a voltage controller with an inner loop current controller (cascade control) and with two kinds of state space control. The transfer functions of the different system parts are derived and dimensioning guidelines for the controller sections are presented. The closed loop behavior of the bidirectional converter for the different control structures is analyzed based on simulation using duty cycle averaging. Bodediagrams and step responses are shown.

  9. Performances achieved to the Grid by a Full Power Converter Used in a Variable Speed Pumped Storage Plant

    NASA Astrophysics Data System (ADS)

    Claude, Jean-Michel

    2017-04-01

    The growth of renewable energies likes wind and solar requires pumped-storage plants to increase their performances to stabilize grid frequency and voltage. The introduction of a full-power converter constitutes the ultimate step forward to meet the requirement in a safe, reliable and sustainable manner. This article quickly introduces the converter topology and technology before describing the performances it aims to deliver to the grid. Finally, converter bypass is discussed.

  10. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  11. Stability of large DC power systems using switching converters, with application to the international space station

    NASA Technical Reports Server (NTRS)

    Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1996-01-01

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin

  12. Power maximization of a point absorber wave energy converter using improved model predictive control

    NASA Astrophysics Data System (ADS)

    Milani, Farideh; Moghaddam, Reihaneh Kardehi

    2017-08-01

    This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.

  13. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  14. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  15. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE PAGES

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.; ...

    2017-04-18

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  16. Pseudo-spectral control of a novel oscillating surge wave energy converter in regular waves for power optimization including load reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi -Hsiang; Wright, Alan D.

    The aim of this study is to describe a procedure to maximize the power-to-load ratio of a novel wave energy converter (WEC) that combines an oscillating surge wave energy converter with variable structural components. The control of the power-take-off torque will be on a wave-to-wave timescale, whereas the structure will be controlled statically such that the geometry remains the same throughout the wave period. Linear hydrodynamic theory is used to calculate the upper and lower bounds for the time-averaged absorbed power and surge foundation loads while assuming that the WEC motion remains sinusoidal. Previous work using pseudo-spectral techniques to solvemore » the optimal control problem focused solely on maximizing absorbed energy. This work extends the optimal control problem to include a measure of the surge foundation force in the optimization. The objective function includes two competing terms that force the optimizer to maximize power capture while minimizing structural loads. A penalty weight was included with the surge foundation force that allows control of the optimizer performance based on whether emphasis should be placed on power absorption or load shedding. Results from pseudo-spectral optimal control indicate that a unit reduction in time-averaged power can be accompanied by a greater reduction in surge-foundation force.« less

  17. Two binuclear cyanide-bridged Cr(III)-Mn(III) complexes based-on [Cr(2,2'-bipy)(CN)4]- building block: synthesis, crystal structures and magnetic properties.

    PubMed

    Zhanga, Daopeng; Kong, Lingqian; Zhang, Hongyan

    2015-01-01

    Tetracyanide building block [Cr(2,2'-bipy)(CN)(4)]- and two bicompartimental Schiff-base based manganese(III) compounds have been employed to assemble cyanide-bridged heterometallic complexes, resulting in two cyanide-bridged CrIII-MnIII complexes: [Mn(L(1))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·2.5H(2)O (1) and [Mn(L(2))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·(3)H(2)O (2) (L1 = N,N'-(1,3-propylene)-bis(3-methoxysalicylideneiminate), L2 = N,N'-ethylene-bis(3-ethoxysalicylideneiminate)). Single X-ray diffraction analysis shows their similar cyanide-bridged binuclear structures, in which the cyanide precursor acting as monodentate ligand connects the manganese(III) ion. The binuclear complexes are self-complementary through coordinated aqua ligand and the free O4 compartment from the neighboring complex, giving H-bond linking dimer structure. Investigation over magnetic properties reveals the antiferromagnetic magnetic coupling between the cyanide-bridged Cr(III) and Mn(III) ions. A best-fit to the magnetic susceptibilities of these two complexes leads to the magnetic coupling constants J = -5.95 cm(-1), j = -0.61 cm(-1) (1) and J = -4.15 cm(-1), j = -0.57 cm(-1) (2), respectively.

  18. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    PubMed

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  19. A Generalized Precharging Strategy for Soft Startup Process of the Modular Multilevel Converter-Based HVDC Systems

    DOE PAGES

    Zhang, Lei; Qin, Jiangchao; Wu, Xiajie; ...

    2017-01-01

    The modular multilevel converter (MMC) has become one of the most promising converter technologies for medium/high-power applications, specifically for highvoltage direct current (HVDC) transmission systems. One of the technical challenges associated with the operation and control of the MMC-based system is to precharge the submodule (SM) capacitors to their nominal voltage during the startup process. In this paper, considering various SM circuits, a generalized precharging strategy is proposed for the MMC-based systems, which can implement soft stratup from dc or ac side. Furthermore, the proposed precharging strategy can be applicabe for various SM circuits and MMC configurations. The proposed startupmore » strategy does not require extra measurements and/or auxiliary power supplies. The charging current is controlled by adjusting the changing rate of the number of blocked and bypassed SM capacitors. Based on the proposed startup strategy, the startup processes of MMC/MMC-HVDC systems based on various SM circuits are analyzed and a generalized startup procedure for various MMC-HVDC systems is proposed. In addition, the uncontrollable steady-state SM capacitor voltages of various MMC-based systems are analyzed and determined, potentially useful in SM design. Our performance of the proposed strategy for various MMC-HVDC systems is evaluated based on time-domain simulation studies in the PSCAD/EMTDC software environment and experimental results based on a scaled-down prototype.« less

  20. A Generalized Precharging Strategy for Soft Startup Process of the Modular Multilevel Converter-Based HVDC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Qin, Jiangchao; Wu, Xiajie

    The modular multilevel converter (MMC) has become one of the most promising converter technologies for medium/high-power applications, specifically for highvoltage direct current (HVDC) transmission systems. One of the technical challenges associated with the operation and control of the MMC-based system is to precharge the submodule (SM) capacitors to their nominal voltage during the startup process. In this paper, considering various SM circuits, a generalized precharging strategy is proposed for the MMC-based systems, which can implement soft stratup from dc or ac side. Furthermore, the proposed precharging strategy can be applicabe for various SM circuits and MMC configurations. The proposed startupmore » strategy does not require extra measurements and/or auxiliary power supplies. The charging current is controlled by adjusting the changing rate of the number of blocked and bypassed SM capacitors. Based on the proposed startup strategy, the startup processes of MMC/MMC-HVDC systems based on various SM circuits are analyzed and a generalized startup procedure for various MMC-HVDC systems is proposed. In addition, the uncontrollable steady-state SM capacitor voltages of various MMC-based systems are analyzed and determined, potentially useful in SM design. Our performance of the proposed strategy for various MMC-HVDC systems is evaluated based on time-domain simulation studies in the PSCAD/EMTDC software environment and experimental results based on a scaled-down prototype.« less

  1. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    NASA Technical Reports Server (NTRS)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  2. Multiphase power supply when inverting currents for group of Peltier elements

    NASA Astrophysics Data System (ADS)

    Osintsev, A. V.; Sobko, A. A.; Komnatnov, M. E.

    2018-05-01

    The use of multiphase power supply of a group of Peltier elements (PE) is considered to reduce the load on the power source. Schemes and a control layout with the use of the H-bridge, allowing the invert of the current through the PE, are given. The analysis of the operation of the used H-bridges and PE in the frequency range of the control PWM signal from 30 Hz to 32 kHz is performed. The algorithm for monitoring the current sensors is presented and the time diagrams of the currents are represented through the PE and H-bridges using a two-phase and four-phase control PWM signal for one, two and four phases of the supply. The results showed stable heating and cooling of the PE at frequencies from 30 Hz to 1 kHz. The use of multiphase power supply of PE made it possible to significantly reduce the load on the power source.

  3. Transformerless dc-Isolated Converter

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1987-01-01

    Efficient voltage converter employs capacitive instead of transformer coupling to provide dc isolation. Offers buck/boost operation, minimal filtering, and low parts count, with possible application in photovoltaic power inverters, power supplies and battery charges. In photovoltaic inverter circuit with transformerless converter, Q2, Q3, Q4, and Q5 form line-commutated inverter. Switching losses and stresses nil because switching performed when current is zero.

  4. An Investigation of DC-DC Converter Power Density Using Si and SiC MOSFETS

    DTIC Science & Technology

    2010-05-07

    submarine or small surface combatant, volumetric constraints quickly become extremely prohibitive. Dedicating generators for high power loads takes...thermal compounds were applied to the MOSFET-heat sink interface. For the Si APT26F120B2, MG Chemicals TC-450ML thermal epoxy was used to connect the... submarines , bus converter modules must be made optimally power dense in order to decrease volumetric requirements of the modules for a rated throughput

  5. Integrating modal-based NDE techniques and bridge management systems using quality management

    NASA Astrophysics Data System (ADS)

    Sikorsky, Charles S.

    1997-05-01

    The intent of bridge management systems is to help engineers and managers determine when and where to spend bridge funds such that commerce and the motoring public needs are satisfied. A major shortcoming which states are experiencing is the NBIS data available is insufficient to perform certain functions required by new bridge management systems, such as modeling bridge deterioration and predicting costs. This paper will investigate how modal based nondestructive damage evaluation techniques can be integrated into bridge management using quality management principles. First, quality from the manufacturing perspective will be summarized. Next, the implementation of quality management in design and construction will be reinterpreted for bridge management. Based on this, a theory of approach will be formulated to improve the productivity of a highway transportation system.

  6. Fuzzy Based Decision Support System for Condition Assessment and Rating of Bridges

    NASA Astrophysics Data System (ADS)

    Srinivas, Voggu; Sasmal, Saptarshi; Karusala, Ramanjaneyulu

    2016-09-01

    In this work, a knowledge based decision support system has been developed to efficiently handle the issues such as distress diagnosis, assessment of damages and condition rating of existing bridges towards developing an exclusive and robust Bridge Management System (BMS) for sustainable bridges. The Knowledge Based Expert System (KBES) diagnoses the distresses and finds the cause of distress in the bridge by processing the data which are heuristic and combined with site inspection results, laboratory test results etc. The coupling of symbolic and numeric type of data has been successfully implemented in the expert system to strengthen its decision making process. Finally, the condition rating of the bridge is carried out using the assessment results obtained from the KBES and the information received from the bridge inspector. A systematic procedure has been developed using fuzzy mathematics for condition rating of bridges by combining the fuzzy weighted average and resolution identity technique. The proposed methodologies and the decision support system will facilitate in developing a robust and exclusive BMS for a network of bridges across the country and allow the bridge engineers and decision makers to carry out maintenance of bridges in a rational and systematic way.

  7. Study on bridge checking evaluation based on deformation-Stress data

    NASA Astrophysics Data System (ADS)

    Shi, Jing Xian; Cheng, Ying Jie

    2018-06-01

    Bridge structure plays a very important role in human traffic. The evaluation of bridge structure after a certain period of operation has always been the focus of the bridge. Based on the data collected from the health inspection system of a continuous rigid frame bridge on a highway in Yunnan, China, it is found that there is a certain linear relationship between the deformation and stress of the bridge structure. In view of a specific section of the structure, the stress value of this section can be derived according to its deformation value. The coefficient K can be calculated by comparing the estimated value to the actual measured value. According to the range of the K value, the structural state of the bridge can be evaluated to a certain extent.

  8. A Novel Multilevel DC - AC Converter from Green Energy Power Generators Using Step-Square Waving and PWM Technique

    NASA Astrophysics Data System (ADS)

    Fajingbesi, F. E.; Midi, N. S.; Khan, S.

    2017-06-01

    Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.

  9. Energy-converting [NiFe] hydrogenases: more than just H2 activation.

    PubMed

    Hedderich, Reiner; Forzi, Lucia

    2005-01-01

    The well-characterized [NiFe] hydrogenases have a key function in the H2 metabolism of various microorganisms. A subfamily of the [NiFe] hydrogenases with unique properties has recently been identified. The six conserved subunits that build the core of these membrane-bound hydrogenases share sequence similarity with subunits that form the catalytic core of energy-conserving NADH:quinone oxidoreductases (complex I). The physiological role of some of these hydrogenases is to catalyze the reduction of H+ with electrons derived from reduced ferredoxins or polyferredoxins. This exergonic reaction is coupled to energy conservation by means of electron-transport phosphorylation. Other members of this hydrogenase subfamily mainly function in providing the cell with reduced ferredoxin using H2 as electron donor in a reaction driven by reverse electron transport. These hydrogenases have therefore been designated as energy-converting [NiFe] hydrogenases. Copyright 2005 S. Karger AG, Basel.

  10. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Jayaweera, H. M. P. C.; Muhtaroğlu, Ali

    2016-11-01

    A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.

  11. A 10-kW series resonant converter design, transistor characterization, and base-drive optimization

    NASA Technical Reports Server (NTRS)

    Robson, R. R.; Hancock, D. J.

    1982-01-01

    The development, components, and performance of a transistor-based 10 kW series resonant converter for use in resonant circuits in space applications is described. The transistors serve to switch on the converter current, which has a half-sinusoid waveform when the transistor is in saturation. The goal of the program was to handle an input-output voltage range of 230-270 Vdc, an output voltage range of 200-500 Vdc, and a current limit range of 0-20 A. Testing procedures for the D60T and D7ST transistors are outlined and base drive waveforms are presented. The total device dissipation was minimized and found to be independent of the regenerative feedback ratio at lower current levels. Dissipation was set at within 10% and rise times were found to be acceptable. The finished unit displayed a 91% efficiency at full power levels of 500 V and 20 A and 93.7% at 500 V and 10 A.

  12. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  13. Power-to-load balancing for asymmetric heave wave energy converters with nonideal power take-off

    DOE PAGES

    Tom, Nathan M.; Madhi, Farshad; Yeung, Ronald W.

    2017-12-11

    The aim of this study is to maximize the power-to-load ratio for asymmetric heave wave energy converters. Linear hydrodynamic theory was used to calculate bounds of the expected time-averaged power (TAP) and corresponding surge-restraining force, pitch-restraining torque, and power take-off (PTO) control force with the assumption of sinusoidal displacement. This paper formulates an optimal control problem to handle an objective function with competing terms in an attempt to maximize power capture while minimizing structural and actuator loads in regular and irregular waves. Penalty weights are placed on the surge-restraining force, pitch-restraining torque, and PTO actuation force, thereby allowing the controlmore » focus to concentrate on either power absorption or load mitigation. The penalty weights are used to control peak structural and actuator loads that were found to curb the additional losses in power absorption associated with a nonideal PTO. Thus, in achieving these goals, a per-unit gain in TAP would not lead to a greater per-unit demand in structural strength, hence yielding a favorable benefit-to-cost ratio. Demonstrative results for 'The Berkeley Wedge' in the form of output TAP, reactive TAP needed to drive WEC motion, and the amplitudes of the surge-restraining force, pitch-restraining torque, and PTO control force are shown.« less

  14. Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism

    NASA Astrophysics Data System (ADS)

    Na, Tae-Won; Choi, Jun-Ho; Jung, Jin-Young; Kim, Hyeong-Geon; Han, Jae-Hung; Park, Kwang-Chun; Oh, Il-Kwon

    2016-09-01

    We report a hierarchical piezoelectric tripod manipulator based on a reverse bridge-type displacement amplifier. The reverse bridge-type amplification mechanism is pre-strained by each piezo-stack actuator up to 60 μm and is cross-stacked in a series arrangement to make a compact and high-stroke manipulator having load-bearing characteristics. The designed manipulator with three degrees of freedom is compact with a height of 56.0 mm, a diameter of 48.6 mm and total weight of 115 g. It achieves a translational stroke of up to 880 μm in heaving motion and a tilting angle of up to 2.0° in rotational motion within the operating voltage and power range of the piezoelectric stack actuator. A key feature of the present design is built-in and pre-strained displacement amplification mechanisms integrated with piezoelectric stacked actuators, resulting in a compact tripod manipulator having exceptionally high stroke and load-bearing capacity.

  15. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of themore » controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.« less

  16. A high-efficiency tunable TEM-TE11 mode converter for high-power microwave applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Yu; Fan, Yu-Wei; Shu, Ting; Yuan, Cheng-wei; Zhang, Qiang

    2017-03-01

    The tunable high power microwave source (HPM's) is considered to be an important research direction. However, the corresponding mode converter has been researched little. In this paper, a high-efficiency tunable mode converter (HETMC) is investigated for high-power microwave applications. The HETMC that is consisted of coaxial inner and outer conductors, with four metal plates arranged radially, at 90° in the coaxial gap, and matching rods can transform coaxial transverse electromagnetic (TEM) mode to TE11 coaxial waveguide mode. The results show that adjusting the length of the downstream plate, and the distance between the rods installed upstream and the closest edges of the plates, can improve the conversion efficiency and bandwidth remarkably. Moreover, when the frequency ranges from 1.63 GHz to 2.12 GHz, the conversion efficiency is above 95% between 1.63 GHz and 2.12 GHz with a bandwidth of 26.1%. Besides, the unwished reflection and transmission can be eliminated effectively in the HETMC.

  17. Analysis of self-oscillating dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Burger, P.

    1974-01-01

    The basic operational characteristics of dc-to-dc converters are analyzed along with the basic physical characteristics of power converters. A simple class of dc-to-dc power converters are chosen which could satisfy any set of operating requirements, and three different controlling methods in this class are described in detail. Necessary conditions for the stability of these converters are measured through analog computer simulation whose curves are related to other operational characteristics, such as ripple and regulation. Further research is suggested for the solution of absolute stability and efficient physical design of this class of power converters.

  18. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications.

    PubMed

    Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard

    2017-06-07

    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm², which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply.

  19. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications

    PubMed Central

    Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard

    2017-01-01

    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm2, which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply. PMID:28590425

  20. Ferromagnetic coupling in the three-dimensional malonato-bridged gadoliniumIII complex [Gd2(mal)3(H2O)6] (H2mal = malonic acid).

    PubMed

    Hernández-Molina, María; Ruiz-Pérez, Catalina; López, Trinidad; Lloret, Francesc; Julve, Miguel

    2003-09-08

    The novel gadolinium(III) complex of formula [Gd(2)(mal)(3)(H(2)O)(6)] (1) (H(2)mal = 1,3-propanedioic acid) has been prepared and characterized by X-ray diffraction analysis. Crystal data for 1: monoclinic, space group I2/a, a = 11.1064(10) A, b = 12.2524(10) A, c =13.6098(2) A, beta = 92.925(10) degrees, U = 1849.5(3) A(3), Z = 4. Compound 1 is a three-dimensional network made up of malonate-bridged gadolinium(III) ions where the malonate exhibits two bridging modes, eta(5)-bidentate + unidentate and eta(3):eta(3) + bis(unidentate). The gadolinium atom is nine-coordinate with three water molecules and six malonate oxygen atoms from three malonate ligands forming a distorted monocapped square antiprism. The shortest metal-metal separations are 4.2763(3) A [through the oxo-carboxylate bridge] and 6.541(3) A [through the carboxylate in the anti-syn coordination mode]. The value of the angle at the oxo-carboxylate atom is 116.8(2) degrees. Variable-temperature magnetic susceptibility measurements reveal the occurrence of a significant ferromagnetic interaction through the oxo-carboxylate pathway (J = +0.048(1) cm(-1), H = -JS(Gd(1)) x S(Gd(1a))).

  1. Experimental Discussion on a 6-kW, 2-kWh Battery Energy Storage System Using a Bidirectional Isolated DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Abe, Takahiro; Tan, Nadia Mei Lin; Akagi, Hirofumi

    This paper presents an experimental discussion on a 6-kW, full-bridge, zero-voltage switching bidirectional isolated dc/dc converter for a 53.2-V, 2-kWh Li-ion battery energy storage system. The combination of high-frequency switching devices, 600-V/200-A IGBTs and 100-V/500-A MOSFETs with a high-frequency transformer reduces the weight and physical size of the bidirectional isolated dc/dc converter. The dc voltage on the high-voltage side of the converter is controlled in a range of 300V to 355V as the battery voltage on the low-voltage side varies from 50V to 59V. Experimental verification of bidirectional power flow into (battery charging) or out of (battery discharging) the Li-ion battery bank is also presented. The maximal efficiency of the dc/dc converter is measured to be 98.1% during charging and 98.2% during discharging, excluding the gate drive loss and control circuit loss.

  2. Big data and high-performance analytics in structural health monitoring for bridge management

    NASA Astrophysics Data System (ADS)

    Alampalli, Sharada; Alampalli, Sandeep; Ettouney, Mohammed

    2016-04-01

    Structural Health Monitoring (SHM) can be a vital tool for effective bridge management. Combining large data sets from multiple sources to create a data-driven decision-making framework is crucial for the success of SHM. This paper presents a big data analytics framework that combines multiple data sets correlated with functional relatedness to convert data into actionable information that empowers risk-based decision-making. The integrated data environment incorporates near real-time streams of semi-structured data from remote sensors, historical visual inspection data, and observations from structural analysis models to monitor, assess, and manage risks associated with the aging bridge inventories. Accelerated processing of dataset is made possible by four technologies: cloud computing, relational database processing, support from NOSQL database, and in-memory analytics. The framework is being validated on a railroad corridor that can be subjected to multiple hazards. The framework enables to compute reliability indices for critical bridge components and individual bridge spans. In addition, framework includes a risk-based decision-making process that enumerate costs and consequences of poor bridge performance at span- and network-levels when rail networks are exposed to natural hazard events such as floods and earthquakes. Big data and high-performance analytics enable insights to assist bridge owners to address problems faster.

  3. A distributed cloud-based cyberinfrastructure framework for integrated bridge monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seongwoon; Hou, Rui; Lynch, Jerome P.; Sohn, Hoon; Law, Kincho H.

    2017-04-01

    This paper describes a cloud-based cyberinfrastructure framework for the management of the diverse data involved in bridge monitoring. Bridge monitoring involves various hardware systems, software tools and laborious activities that include, for examples, a structural health monitoring (SHM), sensor network, engineering analysis programs and visual inspection. Very often, these monitoring systems, tools and activities are not coordinated, and the collected information are not shared. A well-designed integrated data management framework can support the effective use of the data and, thereby, enhance bridge management and maintenance operations. The cloud-based cyberinfrastructure framework presented herein is designed to manage not only sensor measurement data acquired from the SHM system, but also other relevant information, such as bridge engineering model and traffic videos, in an integrated manner. For the scalability and flexibility, cloud computing services and distributed database systems are employed. The information stored can be accessed through standard web interfaces. For demonstration, the cyberinfrastructure system is implemented for the monitoring of the bridges located along the I-275 Corridor in the state of Michigan.

  4. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths.

    PubMed

    Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan

    2015-10-28

    The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p(+)-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I-V) curves combined with the temperature dependence of the I-V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole-Frenkel (P-F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM.

  5. RF digital-to-analog converter

    DOEpatents

    Conway, Patrick H.; Yu, David U. L.

    1995-01-01

    A digital-to analogue converter for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration.

  6. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  7. Salt bridge as a gatekeeper against partial unfolding.

    PubMed

    Hinzman, Mark W; Essex, Morgan E; Park, Chiwook

    2016-05-01

    Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. © 2016 The Protein Society.

  8. Research on Damage Identification of Bridge Based on Digital Image Measurement

    NASA Astrophysics Data System (ADS)

    Liang, Yingjing; Huan, Shi; Tao, Weijun

    2017-12-01

    In recent years, the number of the damage bridge due to excessive deformation gradually increased, which caused significant property damage and casualties. Hence health monitoring and the damage detection of the bridge structure based on the deflection measurement are particularly important. The current conventional deflection measurement methods, such as total station, connected pipe, GPS, etc., have many shortcomings as low efficiency, heavy workload, low degree of automation, operating frequency and working time constrained. GPS has a low accuracy in the vertical displacement measurement and cannot meet the dynamic measured requirements of the current bridge engineering. This paper presents a bridge health monitoring and damage detection technology based on digital image measurement method in which the measurement accuracy is sub-millimeter level and can achieve the 24-hour automatic non-destructive monitoring for the deflection. It can be concluded from this paper that it is feasible to use digital image measurement method for identification of the damage in the bridge structure, because it has been validated by the theoretical analysis, the laboratory model and the application of the real bridge.

  9. A Measurement and Power Line Communication System Design for Renewable Smart Grids

    NASA Astrophysics Data System (ADS)

    Kabalci, E.; Kabalci, Y.

    2013-10-01

    The data communication over the electric power lines can be managed easily and economically since the grid connections are already spread around all over the world. This paper investigates the applicability of Power Line Communication (PLC) in an energy generation system that is based on photovoltaic (PV) panels with the modeling study in Matlab/Simulink. The Simulink model covers the designed PV panels, boost converter with Perturb and Observe (P&O) control algorithm, full bridge inverter, and the binary phase shift keying (BPSK) modem that is utilized to transfer the measured data over the power lines. This study proposes a novel method to use the electrical power lines not only for carrying the line voltage but also to transmit the measurements of the renewable energy generation plants. Hence, it is aimed at minimizing the additional monitoring costs such as SCADA, Ethernet-based or GSM based systems by using the proposed technique. Although this study is performed with solar power plants, the proposed model can be applied to other renewable generation systems. Consequently, the usage of the proposed technique instead of SCADA or Ethernet-based systems eliminates additional monitoring costs.

  10. An Integrated Multilevel Converter with Sigma Delta Control for LED Lighting

    NASA Astrophysics Data System (ADS)

    Gerber, Daniel L.

    High brightness LEDs have become a mainstream lighting technology due to their efficiency, life span, and environmental benefits. As such, the lighting industry values LED drivers with low cost, small form factor, and long life span. Additional specifications that define a high quality LED driver are high efficiency, high power factor, wide-range dimming, minimal flicker, and a galvanically isolated output. The flyback LED driver is a popular topology that satisfies all these specifications, but it requires a bulky and costly flyback transformer. In addition, its passive methods for cancelling AC power ripple require electrolytic capacitors, which have been known to have life span issues. This dissertation details the design, construction, and verification of a novel LED driver that satisfies all the specifications. In addition, it does not require a flyback transformer or electrolytic capacitors, thus marking an improvement over the flyback driver on size, cost, and life span. This dissertation presents an integrated circuit (IC) LED driver, which features a pair of generalized multilevel converters that are controlled via sigma-delta modulation. The first is a multilevel rectifier responsible for power factor correction (PFC) and dimming. The PFC rectifier employs a second order sigma-delta loop to precisely control the input current harmonics and amplitude. The second is a bidirectional multilevel inverter used to cancel AC power ripple from the DC bus. This ripple-cancellation module transfers energy to and from a storage capacitor. It uses a first order sigma-delta loop with a preprogrammed waveform to swing the storage capacitor voltage. The system also contains an output stage that powers the LEDs with DC and provides for galvanic isolation. The output stage consists of an H-bridge stack that connects to the output through a small toroid transformer. The IC LED driver was simulated and prototyped on an ABCD silicon test chip. Testing and verification

  11. A SAR-ADC using unit bridge capacitor and with calibration for the front-end electronics of PET imaging

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Yang, Lifeng; Xue, Feifei; Hu, Yongcai

    2016-05-01

    This paper presents a 12-bit 1 MS/s successive approximation register-analog to digital converter (SAR-ADC) for the 32-channel front-end electronics of CZT-based PET imaging system. To reduce the capacitance mismatch, instead of the fractional capacitor, the unit capacitor is used as the bridge capacitor in the split-capacitor digital to analog converter (DAC) circuit. In addition, in order to eliminate the periodical DNL errors of -1 LSB which often exists in the SAR-ADC using the charge-redistributed DAC, a calibration algorithm is proposed and verified by the experiments. The proposed 12-bit 1 MS/s SAR-ADC is designed and implemented using a 0.35 μm CMOS technology, it occupies only an active area of 986×956 μm2. The measurement results show that, at the power supply of 3.3/5.0 V and the sampling rate of 1 MS/s, the ADC with calibration has a signal-to-noise-and-distortion ratio (SINAD) of 67.98 dB, the power dissipation of 5 mW, and a figure of merit (FOM) of 2.44 pJ/conv.-step. This ADC is with the features of high accuracy, low power and small layout area, it is especially suitable to the one-chip integration of the front-end readout electronics.

  12. Study of the properties of silicon-based semiconductor converters for betavoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polikarpov, M. A.; Yakimov, E. B., E-mail: yakimov@iptm.ru

    2015-06-15

    Silicon p-i-n diodes are studied in a scanning electron microscope under conditions simulating the β-radiation from a radioactive Ni{sup 63} source with an activity of 10 mCi/cm{sup 2}. The attainable parameters of β-voltaic cells with a source of this kind and a silicon-based converter of β-particle energy to electric current are estimated. It is shown that the power of elements of this kind can reach values of ∼10 nW/cm{sup 2} even for a cell with an area of one centimeter, which is rather close to the calculated value.

  13. An out-of-core thermionic-converter system for nuclear space power

    NASA Technical Reports Server (NTRS)

    Breitwieser, R.

    1972-01-01

    Design of the nuclear thermionic space power system, 40 50 70 Kw(e) power range, are given. The design configuration (1) meets the constraints of readily available launch vehicles; (2) allows for off-design operation including startup, shutdown, and possible emergency conditions; (3) provides tolerance of failure by extensive use of modular, redundant elements; (4) incorporates and uses heat pipes in a fashion that reduces the need for extensive in-pile testing of system components; and (5) uses thermionic converters, nuclear fuel elements, and heat transfer devices in a geometrical form adapted from existing incore thermionic system designs. Designs and in some cases performance data for elements and groups of the elements of the system are included. Benefits of the highly modular system approach to reliability, safety, economy of development, and flexibility are discussed.

  14. RF digital-to-analog converter

    DOEpatents

    Conway, P.H.; Yu, D.U.L.

    1995-02-28

    A digital-to-analog converter is disclosed for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration. 18 figs.

  15. COOH-terminal truncation of flightin decreases myofilament lattice organization, cross-bridge binding, and power output in Drosophila indirect flight muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Bertrand C.W.; Miller, Mark S.; Miller, Becky M.

    2011-08-26

    The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln{sup {Delta}C44}). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln{sup {Delta}C44} line compared with control, a transgenic flightin-nullmore » rescued line (fln{sup +}). fln{sup {Delta}C44} fibers produced roughly 1/3 the oscillatory work and power of fln{sup +}, with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln{sup {Delta}C44} fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln{sup {Delta}C44} flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.« less

  16. A multioutput LLC-type parallel resonant converter

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Lee, C. Q.; Upadhyay, Anand K.

    1992-07-01

    When an LLC-type parallel resonant converter (LLC-PRC) operates above resonant frequency, the switching transistors can be turned off at zero voltage. Further study reveals that the LLC-PRC possesses the advantage of lower converter voltage gain as compared with the conventional PRC. Based on analytic results, a complete set of design curves is obtained, from which a systematic design procedure is developed. Experimental results from a 150 W 150 kHz multioutput LLC-type PRC power supply are presented.

  17. Research on Battery Energy Storage System Based on User Side

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  18. Making Socialists: Mary Bridges Adams and the Fight for Knowledge and Power, 1855-1939

    ERIC Educational Resources Information Center

    Weiler, Kathleen

    2012-01-01

    This article presents a review of "Making socialists: Mary Bridges Adams and the fight for knowledge and power, 1855-1939," by Jane Martin. Jane Martin has explored the history of late-nineteenth-century and early-twentieth century-British women educational activists in numerous publications over the past two decades. Her first book,…

  19. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths

    PubMed Central

    Jiang, Xiaofan; Ma, Zhongyuan; Xu, Jun; Chen, Kunji; Xu, Ling; Li, Wei; Huang, Xinfan; Feng, Duan

    2015-01-01

    The realization of ultra-low power Si-based resistive switching memory technology will be a milestone in the development of next generation non-volatile memory. Here we show that a high performance and ultra-low power resistive random access memory (RRAM) based on an Al/a-SiNx:H/p+-Si structure can be achieved by tuning the Si dangling bond conduction paths. We reveal the intrinsic relationship between the Si dangling bonds and the N/Si ratio x for the a-SiNx:H films, which ensures that the programming current can be reduced to less than 1 μA by increasing the value of x. Theoretically calculated current-voltage (I–V ) curves combined with the temperature dependence of the I–V characteristics confirm that, for the low-resistance state (LRS), the Si dangling bond conduction paths obey the trap-assisted tunneling model. In the high-resistance state (HRS), conduction is dominated by either hopping or Poole–Frenkel (P–F) processes. Our introduction of hydrogen in the a-SiNx:H layer provides a new way to control the Si dangling bond conduction paths, and thus opens up a research field for ultra-low power Si-based RRAM. PMID:26508086

  20. Power consumption analysis of pump station control systems based on fuzzy controllers with discrete terms in iThink software

    NASA Astrophysics Data System (ADS)

    Muravyova, E. A.; Bondarev, A. V.; Sharipov, M. I.; Galiaskarova, G. R.; Kubryak, A. I.

    2018-03-01

    In this article, power consumption of pumping station control systems is discussed. To study the issue, two simulation models of oil level control in the iThink software have been developed, using a frequency converter only and using a frequency converter and a fuzzy controller. A simulation of the oil-level control was carried out in a graphic form, and plots of pumps power consumption were obtained. Based on the initial and obtained data, the efficiency of the considered control systems has been compared, and also the power consumption of the systems was shown graphically using a frequency converter only and using a frequency converter and a fuzzy controller. The models analysis has shown that it is more economical and safe to use a control circuit with a frequency converter and a fuzzy controller.

  1. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, Daniel A.; Moss, William C.; Valk, Theodore C.; Conder, Alan D.

    1995-01-01

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch.

  2. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wu, D. J.

    2013-09-01

    The use of concrete bridges in urban rail transit systems has raised many concerns regarding low-frequency (20-200 Hz) structure-borne noise due to the vibration of bridges when subjected to moving trains. Understanding the mechanism that determines the dominant frequencies of bridge vibrations is essential for both vibration and noise reduction. This paper presents a general procedure based on the force method to obtain the power flows within a coupled vehicle-track-bridge system, the point mobility of the system and the dynamic interaction forces connecting various components. The general coupling system consists of multi-rigid-bodies for the vehicles, infinite Euler beams representing the rails, two-dimensional or three-dimensional elements of the concrete bridges, and spring-dashpot pairs to model the wheel-rail contacts, the vehicle suspensions, the rail pads and the bridge bearings. The dynamic interaction of the coupled system is solved in the frequency domain by assuming the combined wheel-rail roughness moves forward relative to the stationary vehicles. The proposed procedure is first applied to a rail on discrete supports and then to a real urban rail transit U-shaped concrete bridge. The computed results show that the wheel-rail contact forces, the power flows to the rail/bridge subsystem and the accelerations of the bridge are primarily dominated by the contents around the natural frequency of a single wheel adhered to the elastically supported rail. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same rigid body, then δmnab(ω) can be expressed as δmnab(ω)=-{(}/{Mlω}, where Ml is the mass of the lth rigid body. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same infinite rail, δmnab(ω) can be expressed as [8] δmnab(ω)=-j{((e-je)}/{4EIk}, where xm and xn are the x-coordinates of the mth and nth spring

  3. Balancing Power Absorption and Structural Loading for a Novel Fixed-Bottom Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D

    In this work, the net power delivered to the grid from a nonideal power take-off (PTO) is introduced followed by a review of the pseudo-spectral control theory. A power-to-load ratio, used to evaluate the pseudo-spectral controller performance, is discussed, and the results obtained from optimizing a multiterm objective function are compared against results obtained from maximizing the net output power to the grid. Simulation results are then presented for four different oscillating wave energy converter geometries to highlight the potential of combing both geometry and PTO control to maximize power while minimizing loads.

  4. Balancing the Power-to-Load Ratio for a Novel Variable Geometry Wave Energy Converter with Nonideal Power Take-Off in Regular Waves: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Yu, Yi-Hsiang; Wright, Alan D

    This work attempts to balance power absorption against structural loading for a novel variable geometry wave energy converter. The variable geometry consists of four identical flaps that will be opened in ascending order starting with the flap closest to the seafloor and moving to the free surface. The influence of a pitch motion constraint on power absorption when utilizing a nonideal power take-off (PTO) is examined and found to reduce the losses associated with bidirectional energy flow. The power-to-load ratio is evaluated using pseudo-spectral control to determine the optimum PTO torque based on a multiterm objective function. The pseudo-spectral optimalmore » control problem is extended to include load metrics in the objective function, which may now consist of competing terms. Separate penalty weights are attached to the surge-foundation force and PTO control torque to tune the optimizer performance to emphasize either power absorption or load shedding. PTO efficiency is not included in the objective function, but the penalty weights are utilized to limit the force and torque amplitudes, thereby reducing losses associated with bidirectional energy flow. Results from pseudo-spectral control demonstrate that shedding a portion of the available wave energy can provide greater reductions in structural loads and reactive power.« less

  5. The Electromagnetic Compatibility (EMC) Design Challenge for Scientific Spacecraft Powered by a Stirling Power Converter

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.

    2001-01-01

    A 55 We free-piston Stirling Technology Demonstration Convertor (TDC) has been tested as part of an evaluation to determine its feasibility as a means for significantly reducing the amount of radioactive material required compared to Radioisotope Thermoelectric Generators (RTGs) to support long-term space science missions. Measurements were made to quantify the low frequency magnetic and electric fields radiated from the Stirling's 80 Hertz (Hz) linear alternator and control electronics in order to determine the magnitude of reduction that will be required to protect sensitive field sensors aboard some science missions. One identified "Solar Probe" mission requires a 100 dB reduction in the low frequency magnetic field over typical military standard design limits, to protect its plasma wave sensor. This paper discusses the electromagnetic interference (EMI) control options relative to the physical design impacts for this power system, composed of 3 basic electrical elements. They are (1) the Stirling Power Convertor with its linear alternator, (2) the power switching and control electronics to convert the 90 V, 80 Hz alternator output to DC for the use of the spacecraft, and (3) the interconnecting wiring including any instrumentation to monitor and control items 1 and 2.

  6. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Curwen, Peter W.; Rao, Dantam K.; Wilson, Donald R.

    1992-01-01

    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long

  7. GaN Microwave DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Ramos Franco, Ignacio

    Increasing the operating frequency of switching converters can have a direct impact in the miniaturization and integration of power converters. The size of energy-storage passive components and the difficulty to integrate them with the rest of the circuitry is a major challenge in the development of a fully integrated power supply on a chip. The work presented in this thesis attempts to address some of the difficulties encountered in the design of high-frequency converters by applying concepts and techniques usually used in the design of high-efficiency power amplifiers and high-efficiency rectifiers at microwave frequencies. The main focus is in the analysis, design, and characterization of dc-dc converters operating at microwave frequencies in the low gigahertz range. The concept of PA-rectifier duality, where a high-efficiency power amplifier operates as a high-efficiency rectifier is investigated through non-linear simulations and experimentally validated. Additionally, the concept of a self-synchronous rectifier, where a transistor rectifier operates synchronously without the need of a RF source or driver is demonstrated. A theoretical analysis of a class-E self-synchronous rectifier is presented and validated through non-linear simulations and experiments. Two GaN class-E2 dc-dc converters operating at a switching frequency of 1 and 1.2 GHz are demonstrated. The converters achieve 80 % and 75 % dc-dc efficiency respectively and are among the highest-frequency and highest-efficiency reported in the literature. The application of the concepts established in the analysis of a self-synchronous rectifier to a power amplifier culminated in the development of an oscillating, self-synchronous class-E 2 dc-dc converter. Finally, a proof-of-concept fully integrated GaN MMIC class-E 2 dc-dc converter switching at 4.6 GHz is demonstrated for the first time to the best of our knowledge. The 3.8 mm x 2.6 mm chip contains distributed inductors and does not require any

  8. An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters

    PubMed Central

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061

  9. Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

    NASA Astrophysics Data System (ADS)

    Agarwal, Ruchi; Singh, Sanjeev

    2017-12-01

    The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.

  10. Terahertz broadband polarization converter based on metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  11. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, D.A.; Moss, W.C.; Valk, T.C.; Conder, A.D.

    1995-11-21

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch. 13 figs.

  12. SSP Technology Investigation of a High-Voltage DC-DC Converter

    NASA Technical Reports Server (NTRS)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  13. Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Narayan, Sri R.

    2009-01-01

    Two hydrogen generators based on reactions involving magnesium and steam have been proposed as means for generating the fuel (hydrogen gas) for such fuel-cell power systems as those to be used in the drive systems of advanced motor vehicles. The hydrogen generators would make it unnecessary to rely on any of the hydrogen storage systems developed thus far that are, variously, too expensive, too heavy, too bulky, and/or too unsafe to be practical. The two proposed hydrogen generators are denoted basic and advanced, respectively. In the basic hydrogen generator (see figure), steam at a temperature greater than or equals 330 C would be fed into a reactor charged with magnesium, wherein hydrogen would be released in the exothermic reaction Mg + H2O yields MgO + H2. The steam would be made in a flash boiler. To initiate the reaction, the boiler could be heated electrically by energy borrowed from a storage battery that would be recharged during normal operation of the associated fuel-cell subsystem. Once the reaction was underway, heat from the reaction would be fed to the boiler. If the boiler were made an integral part of the hydrogen-generator reactor vessel, then the problem of transfer of heat from the reactor to the boiler would be greatly simplified. A pump would be used to feed water from a storage tank to the boiler.

  14. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  15. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  16. Pressure response of three-dimensional cyanide-bridged bimetallic magnets.

    PubMed

    Ohba, Masaaki; Kaneko, Wakako; Kitagawa, Susumu; Maeda, Takuho; Mito, Masaki

    2008-04-02

    Effects of pressure on the structures and magnetic properties of three types of 3-D cyanide-bridged bimetallic coordination polymer magnets, MnIICrIII ferrimagnet [Mn(en)]3[Cr(CN)6]2.4H2O (1; en = ethylenediamine), NiIICrIII ferromagnet [Ni(dipn)]3[Cr(CN)6]2.3H2O (2; dipn = N,N-di(3-aminopropyl)amine), and NiIIFeIII ferromagnet [Ni(dipn)]2[Ni(dipn)(H2O)][Fe(CN)6]2.11H2O (3), were systematically examined under hydrostatic pressure up to 19.8 GPa using a piston-cylinder-type pressure cell and a diamond anvil cell. The ferrimagnet 1 showed the reversible crystalline-to-amorphous-like phase change, and the magnetic phase transition temperature (TC) was reversibly changed from 69 K at 0 GPa to 126 K at 4.7 GPa. At higher pressure, the net magnetization was suppressed with increasing pressure, and the magnetic state at 19.8 GPa was assumed to be paramagnetic. The initial ferrimagnetic phase of 1 was not recovered after releasing the pressure from 19.8 GPa. The magnetic phase of 2 was reversibly converted between ferromagnetic and paramagnetic-like phase in the range 0 bridged magnetic frameworks demonstrate well the pressure response as a reflection of differences in the magnetic structure and the framework strength in the GPa range.

  17. An improved bridge safety index for narrow bridges.

    DOT National Transportation Integrated Search

    1983-08-01

    In this report, a new bridge safety index is developed based upon an extensive : statistical study of accident data on 78 bridges. A total of 655 accidents : were recorded at these bridges over the six-year period between 1974 and 1979. : Cluster ana...

  18. Field test of a new procedure for removing lead-based paint from bridges.

    DOT National Transportation Integrated Search

    2000-01-01

    According to the National Bridge Inventory, of the more than 200,000 steel bridges listed, between 80 and 90 percent were painted with lead-based paint. Of the approximately 7,000 bridges in Virginia with steel superstructures, well over half were pa...

  19. Improvement in Titanium Complexes Bearing Schiff Base Ligands in the Ring-Opening Polymerization of L-Lactide: A Dinuclear System with Hydrazine-Bridging Schiff Base Ligands.

    PubMed

    Tseng, Hsi-Ching; Chen, Hsing-Yin; Huang, Yen-Tzu; Lu, Wei-Yi; Chang, Yu-Lun; Chiang, Michael Y; Lai, Yi-Chun; Chen, Hsuan-Ying

    2016-02-15

    A series of titanium (Ti) complexes bearing hydrazine-bridging Schiff base ligands were synthesized and investigated as catalysts for the ring-opening polymerization (ROP) of L-lactide (LA). Complexes with electron withdrawing or steric bulky groups reduced the catalytic activity. In addition, the steric bulky substituent on the imine groups reduced the space around the Ti atom and then reduced LA coordination with Ti atom, thereby reducing catalytic activity. All the dinuclear Ti complexes exhibited higher catalytic activity (approximately 10-60-fold) than mononuclear L(Cl-H)-TiOPr2 did. The strategy of bridging dinuclear Ti complexes with isopropoxide groups in the ROP of LA was successful, and adjusting the crowded heptacoordinated transition state by the bridging isopropoxide groups may be the key to our successful strategy.

  20. Nondestructive assessment of timber bridges using a vibration-based method

    Treesearch

    Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw

    2005-01-01

    This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...

  1. High-frequency AC/DC converter with unity power factor and minimum harmonic distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wernekinch, E.R.

    1987-01-01

    The power factor is controlled by adjusting the relative position of the fundamental component of an optimized PWM-type voltage with respect to the supply voltage. Current harmonic distortion is minimized by the use of optimized firing angles for the converter at a frequency where GTO's can be used. This feature makes this approach very attractive at power levels of 100 to 600 kW. To obtain the optimized PWM pattern, a steepest descent digital computer algorithm is used. Digital-computer simulations are performed and a low-power model is constructed and tested to verify the concepts and the behavior of the model. Experimentalmore » results show that unity power factor is achieved and that the distortion in the phase currents is 10.4% at 90% of full load. This is less than achievable with sinusoidal PWM, harmonic elimination, hysteresis control, and deadbeat control for the same switching frequency.« less

  2. Research on Parallel Three Phase PWM Converters base on RTDS

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun

    2018-01-01

    Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.

  3. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  4. Sliding-mode control of single input multiple output DC-DC converter.

    PubMed

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  5. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  6. Modeling of power control schemes in induction cooking devices

    NASA Astrophysics Data System (ADS)

    Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone

    2005-06-01

    In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.

  7. A Consideration of Stable Operating Power Limits of HVDC System Composed of Voltage Source Converters

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroo; Takahashi, Choei; Kishibe, Hideto; Sato, Hiromichi

    The stable operating power limits of a small scale HVDC system composed of voltage source converters (VSC-HVDC system) are analyzed with a simple model. The VSC-HVDC system could operate where the AC system must be somewhat larger in capacity than the VSC-HVDC system capacity. The stable operating power limits were between one and two times the SCR (short circuit ratio). When the inverter of the VSC-HVDC system was operated with lead reactive (capacitive) power control conditions, the stable operating limits were increased through AC voltage stabilization. When the inverter was a STATCOM operation, it could operate regardless of the SCR but regions within allowable AC voltage variations.

  8. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  9. Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Guthrie, W. Spencer

    2018-04-01

    A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use

  10. Polymer electrolyte fuel cell mini power unit for portable application

    NASA Astrophysics Data System (ADS)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E.; Zerbinati, O.

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H 2 supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm 2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.

  11. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    PubMed

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  12. Overview of Silicon Carbide Technology: Device, Converter, System, and Application

    DOE PAGES

    Wang, Fei; Zhang, Zheyu

    2016-12-28

    This article overviews the silicon carbide (SiC) technology. The focus is on the benefits of SiC based power electronics for converters and systems, as well as their ability in enabling new applications. The challenges and research trends on the design and application of SiC power electronics are also discussed.

  13. Toward a fully integrated neurostimulator with inductive power recovery front-end.

    PubMed

    Mounaïm, Fayçal; Sawan, Mohamad

    2012-08-01

    In order to investigate new neurostimulation strategies for micturition recovery in spinal cord injured patients, custom implantable stimulators are required to carry-on chronic animal experiments. However, higher integration of the neurostimulator becomes increasingly necessary for miniaturization purposes, power consumption reduction, and for increasing the number of stimulation channels. As a first step towards total integration, we present in this paper the design of a highly-integrated neurostimulator that can be assembled on a 21-mm diameter printed circuit board. The prototype is based on three custom integrated circuits fabricated in High-Voltage (HV) CMOS technology, and a low-power small-scale commercially available FPGA. Using a step-down approach where the inductive voltage is left free up to 20 V, the inductive power and data recovery front-end is fully integrated. In particular, the front-end includes a bridge rectifier, a 20-V voltage limiter, an adjustable series regulator (5 to 12 V), a switched-capacitor step-down DC/DC converter (1:3, 1:2, or 2:3 ratio), as well as data recovery. Measurements show that the DC/DC converter achieves more than 86% power efficiency while providing around 3.9-V from a 12-V input at 1-mA load, 1:3 conversion ratio, and 50-kHz switching frequency. With such efficiency, the proposed step-down inductive power recovery topology is more advantageous than its conventional step-up counterpart. Experimental results confirm good overall functionality of the system.

  14. Load insensitive electrical device. [power converters for supplying direct current at one voltage from a source at another voltage

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C. (Inventor)

    1974-01-01

    A class of power converters is described for supplying direct current at one voltage from a source at another voltage. It includes a simple passive circuit arrangement of solid-state switches, inductors, and capacitors by which the output voltage of the converter tends to remain constant in spite of changes in load. The switches are sensitive to the current flowing in the circuit and are employed to permit the charging of capacitance devices in accordance with the load requirements. Because solid-state switches (such as SCR's) may be used with relatively high voltage and because of the inherent efficiency of the invention that permits relatively high switching frequencies, power supplies built in accordance with the invention, together with their associated cabling, can be substantially lighter in weight for a given output power level and efficiency of operation than systems of the prior art.

  15. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter

    NASA Astrophysics Data System (ADS)

    Akimchenko, Alina; Chepurnov, Victor; Dolgopolov, Mikhail; Gurskaya, Albina; Kuznetsov, Oleg; Mashnin, Alikhan; Radenko, Vitaliy; Radenko, Alexander; Surnin, Oleg; Zanin, George

    2017-10-01

    The miniature and low-power devices with long service life in hard operating conditions like the Carbon-14 beta-decay energy converters indeed as eternal resource for integrated MEMS and NEMS are considered. Authors discuss how to create the power supply for MEMS/NEMS devices, based on porous SiC/Si structure, which are tested to be used as the beta-decay energy converters of radioactive C-14 into electrical energy. This is based on the silicon carbide obtaining by self-organizing mono 3C-SiC endotaxy on the Si substrate. The new idea is the C-14 atoms including in molecules in the silicon carbide porous structure by this technology, which will increase the efficiency of the converter due to the greater intensity of electron-hole pairs generation rate in the space charge region. The synthesis of C-14 can be also performed by using the electronically controlled magneto-optic chamber.

  16. High power pulsed sources based on fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  17. Active-bridge oscillator

    DOEpatents

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  18. Strengthening of rural bridges using rapid-installation FRP technology : route 63 bridge no. H356, Phelps County.

    DOT National Transportation Integrated Search

    2009-10-01

    This report presents the use of externally bonded fiber reinforced polymers (FRP) laminates for the flexural strengthening of a : concrete bridge. The bridge selected for this project is a two-span simply supported reinforced concrete slab with no tr...

  19. Experimental test of a dynamically tuned wave energy converter based on inflatable dielectric elastomer generators (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moretti, Giacomo; Vertechy, Rocco; Fontana, Marco

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are very promising systems that are able to directly convert oscillating mechanical energy into direct electricity. Their nature and main attributes make them particularly interesting for harvesting energy form ocean waves. In this context, several efforts have been made in the last years to develop effective Wave Energy Converters based on DEG [1-4]. In this contribution, we present a novel Wave Energy Converter (WEC) based on the Oscillating Water Column principle. The device features an inflatable DEG as Power Take Off (PTO) system and collector - i.e. the part of the device that is directly interacting with waves - that possesses a coaxial-ducted shape as described in [5]. Models of the coupled behavior that consider the electro-hyperelastic response of the DEG and the hydrodynamics are presented. It is shown that the dynamic response and the effectiveness of the system can be largely improved through an appropriate dimensioning of the geometry of the device. Specifically, the dynamic response of the system can be designed to match the corresponding harmonic content of water waves achieving an effective conversion of the incoming mechanical energy. A small/intermediate scale prototype of the system is built and tested in a wave tank facility - i.e. a basin in which artificially controlled waves can be generated - available at Flowave (UK). Mathematical models are validated against experimental results for monochromatic and panchromatic tests. During the experiments, we obtained peak of estimated power output in the range of 1 W to 4 W with an energy density for the dielectric material of approximately 80-120W/kg. The achieved results represent a milestone in the study of WEC based on DEG, paving the path toward scaling up of this technology.

  20. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate

    NASA Astrophysics Data System (ADS)

    Bin, Niu; Jifang, Qiu; Daibing, Zhou; Can, Zhang; Song, Liang; Dan, Lu; Lingjuan, Zhao; Jian, Wu; Wei, Wang

    2014-09-01

    A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented.

  1. New 5 Kilowatt Free-Piston Stirling Space Converter Developments

    NASA Astrophysics Data System (ADS)

    Brandhorst, Henry W.

    2007-01-01

    NASA has recently funded development of a 5 kW (or greater) free-piston Stirling conversion system for reactor power systems. A nominal 5 kW converter allows two of these units to be dynamically balanced. A group of three dual-convertor combinations would yield the desired 30 kW. The status of this program will be presented. Goals include a specific power in excess of 140 W/kg at the converter level, lifetime in excess of five years and AC output. The initial step is the design and development of a nominal 5 kW per cylinder Stirling converter assembly (SCA) which will serve as a prototype of one or more SCAs that will make up the final 30 kW Stirling Converter Power System. Assumed requirements for this new converter for lunar fission power systems will be presented. The primary objective of this development effort will be to demonstrate a 5 kW SCA that can be tested to validate the viability of Stirling technology for space fission surface power systems.

  2. Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases.

    PubMed

    Singh, Atresh Kumar; Singh, Alok Kumar

    2012-10-01

    Some novel trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes of the general formula [Fe(3)O(OOCR)(3)(SB)(3)L(3)] (where R=C(13)H(27), C(15)H(31) or C(17)H(35,) HSB=Schiff bases and L=Ethanol) have been synthesized by the stepwise substitutions of acetate ions from μ(3)-oxo-hexa(acetato)tri(aqua)iron(II)diiron(III), first with straight chain carboxylic acids and then with Schiff bases. The complexes were characterized by elemental analyses, molecular weight determinations and spectral (electronic, infrared, FAB mass, Mössbauer and powder XRD) studies. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bridging nature of carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Mössbauer spectroscopic studies indicated two quadrupole-split doublets due to Fe(II) and Fe(III) ions at 80, 200 and 295K, confirming the complexes are mixed-valence species. This was also supported by the observed electronic spectra of the complexes. Magnetic susceptibility measurements displayed octahedral geometry around iron in mixed-valence state and a net antiferromagnetic exchange coupling via μ-oxo atom. Trinuclear nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. A plausible structure for these complexes has been established on the basis of spectral and magnetic moment data. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Series resonant converter with auxiliary winding turns: analysis, design and implementation

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren

    2018-05-01

    Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.

  4. Introduction of a Current Waveform, Waveshaping Technique to Limit Conduction Loss in High-Frequency DC-DC Converters Suitable for Space Power

    DTIC Science & Technology

    1990-06-01

    resonant Buck converter 19 ABSTRACT (Continue on reverse if necessary and identify by block number) Space power supply manufacturers have tried to...increase power density and construct smaller, highly efficient power supplies by increasing switching frequency. Incorporation of a power MOSFET as a...Michael, Second Reader \\’-. ohn P. Powers , Chairman Department of Electrical Engineering iii ABSTRACT Space power supply manufacturers have tried to

  5. Probabilistic Fatigue Life Updating for Railway Bridges Based on Local Inspection and Repair.

    PubMed

    Lee, Young-Joo; Kim, Robin E; Suh, Wonho; Park, Kiwon

    2017-04-24

    Railway bridges are exposed to repeated train loads, which may cause fatigue failure. As critical links in a transportation network, railway bridges are expected to survive for a target period of time, but sometimes they fail earlier than expected. To guarantee the target bridge life, bridge maintenance activities such as local inspection and repair should be undertaken properly. However, this is a challenging task because there are various sources of uncertainty associated with aging bridges, train loads, environmental conditions, and maintenance work. Therefore, to perform optimal risk-based maintenance of railway bridges, it is essential to estimate the probabilistic fatigue life of a railway bridge and update the life information based on the results of local inspections and repair. Recently, a system reliability approach was proposed to evaluate the fatigue failure risk of structural systems and update the prior risk information in various inspection scenarios. However, this approach can handle only a constant-amplitude load and has limitations in considering a cyclic load with varying amplitude levels, which is the major loading pattern generated by train traffic. In addition, it is not feasible to update the prior risk information after bridges are repaired. In this research, the system reliability approach is further developed so that it can handle a varying-amplitude load and update the system-level risk of fatigue failure for railway bridges after inspection and repair. The proposed method is applied to a numerical example of an in-service railway bridge, and the effects of inspection and repair on the probabilistic fatigue life are discussed.

  6. Probabilistic Fatigue Life Updating for Railway Bridges Based on Local Inspection and Repair

    PubMed Central

    Lee, Young-Joo; Kim, Robin E.; Suh, Wonho; Park, Kiwon

    2017-01-01

    Railway bridges are exposed to repeated train loads, which may cause fatigue failure. As critical links in a transportation network, railway bridges are expected to survive for a target period of time, but sometimes they fail earlier than expected. To guarantee the target bridge life, bridge maintenance activities such as local inspection and repair should be undertaken properly. However, this is a challenging task because there are various sources of uncertainty associated with aging bridges, train loads, environmental conditions, and maintenance work. Therefore, to perform optimal risk-based maintenance of railway bridges, it is essential to estimate the probabilistic fatigue life of a railway bridge and update the life information based on the results of local inspections and repair. Recently, a system reliability approach was proposed to evaluate the fatigue failure risk of structural systems and update the prior risk information in various inspection scenarios. However, this approach can handle only a constant-amplitude load and has limitations in considering a cyclic load with varying amplitude levels, which is the major loading pattern generated by train traffic. In addition, it is not feasible to update the prior risk information after bridges are repaired. In this research, the system reliability approach is further developed so that it can handle a varying-amplitude load and update the system-level risk of fatigue failure for railway bridges after inspection and repair. The proposed method is applied to a numerical example of an in-service railway bridge, and the effects of inspection and repair on the probabilistic fatigue life are discussed. PMID:28441768

  7. Evaluation of performance based concrete for bridge decks.

    DOT National Transportation Integrated Search

    2015-06-01

    The Washington State Department of Transportation (WSDOT) revised the concrete : specification for bridge decks in 2011 to be more performance based with the desired effect of : having less early-age shrinkage cracking. This report evaluates a sample...

  8. A Particle-In-Cell Gun Code for Surface-Converter H- Ion Source Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon-Golcher, Edwin; Bowers, Kevin J.

    2007-08-10

    We present the current status of a particle-in-cell with Monte Carlo collisions (PIC-MCC) gun code under development at Los Alamos for the study of surface-converter H- ion sources. The program preserves a first-principles approach to a significant extent and simulates the production processes without ad hoc models within the plasma region. Some of its features include: solution of arbitrary electrostatic and magnetostatic fields in an axisymmetric (r,z) geometry to describe the self-consistent time evolution of a plasma; simulation of a multi-species (e-,H+,H{sub 2}{sup +},H{sub 3}{sup +},H-) plasma discharge from a neutral hydrogen gas and filament-originated seed electrons; full 2-dimensional (r,z)more » 3-velocity (vr,vz,v{phi}) dynamics for all species with exact conservation of the canonical angular momentum p{phi}; detailed collision physics between charged particles and neutrals and the ability to represent multiple smooth (not stair-stepped) electrodes of arbitrary shape and voltage whose surfaces may be secondary-particle emitters (H- and e-). The status of this development is discussed in terms of its physics content and current implementation details.« less

  9. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  10. Smart measurement system for resistive (bridge) or capacitive sensors

    NASA Astrophysics Data System (ADS)

    Wang, Guijie; Meijer, Gerard C. M.

    1998-07-01

    A low-cost smart measurement system for resistive (bridge) and capacitive sensors is presented and demonstrated. The measurement system consists of three main parts: the sensor element, a universal transducer interface (UTI) and a microcontroller. The UTI is a sensor-signal-to-time converter, based on a period-modulated oscillator, which is equipped with front-ends for many types of resistive (bridge) and capacitive sensors, and which generates a microcontroller-compatible output signal. The microcontroller performs data acquisition of the output signals from the interface UTI, controls the working status of the UTI for a specified application and communicates with a personal computer. Continuous auto-calibration of the offset and the gain of the complete system is applied to eliminate many nonidealities. Experimental results show that the accuracy and resolution are 14 bits and 16 bits, respectively, for a measurement time of about 100 ms.

  11. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    NASA Technical Reports Server (NTRS)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  12. Power Block Geometry Applied to the Building of Power Electronics Converters

    ERIC Educational Resources Information Center

    dos Santos, E. C., Jr.; da Silva, E. R. C.

    2013-01-01

    This paper proposes a new methodology, Power Block Geometry (PBG), for the presentation of power electronics topologies that process ac voltage. PBG's strategy uses formal methods based on a geometrical representation with particular rules and defines a universe with axioms and conjectures to establish a formation law. It allows power…

  13. Direct-current converter for gas-discharge lamps

    NASA Technical Reports Server (NTRS)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  14. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  15. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System.

    PubMed

    Shen, Chih-Lung; Liou, Heng

    2017-11-15

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%.

  16. Magnetic Material Assessment of a Novel Ultra-High Step-Up Converter with Single Semiconductor Switch and Galvanic Isolation for Fuel-Cell Power System

    PubMed Central

    Shen, Chih-Lung; Liou, Heng

    2017-01-01

    In this paper, a novel step-up converter is proposed, which has the particular features of single semiconductor switch, ultra-high conversion ratio, galvanic isolation, and easy control. Therefore, the proposed converter is suitable for the applications of fuel-cell power system. Coupled inductors and switched capacitors are incorporated in the converter to obtain an ultra-high voltage ratio that is much higher than that of a conventional high step-up converter. Even if the turns ratio of coupled inductor and duty ratio are only to be 1 and 0.5, respectively, the converter can readily achieve a voltage gain of up to 18. Owing to this outstanding performance, it can also be applied to any other low voltage source for voltage boosting. In the power stage, only one active switch is used to handle the converter operation. In addition, the leakage energy of the two couple inductors can be totally recycled without any snubber, which simplifies the control mechanism and improves the conversion efficiency. Magnetic material dominates the conversion performance of the converter. Different types of iron cores are discussed for the possibility to serve as a coupled inductor. A 200 W prototype with 400 V output voltage is built to validate the proposed converter. In measurement, it indicates that the highest efficiency can be up to 94%. PMID:29140282

  17. Photovoltaic conversion of laser power to electrical power

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1986-01-01

    Photovoltaic laser to electric converters are attractive for use with a space-based laser power station. This paper presents the results of modeling studies for a silicon vertical junction converter used with a Nd laser. A computer code was developed for the model and this code was used to conduct a parametric study for a Si vertical junction converter consisting of one p-n junction irradiated with a Nd laser. These calculations predict an efficiency over 50 percent for an optimized converter.

  18. Multidisciplinary approach to converting power chair into motorized prone cart.

    PubMed

    Brose, Steven W; Wali, Eisha

    2014-01-01

    Pressure ulcers remain a major source of morbidity and mortality in veterans with neurologic impairment. Management of pressure ulcers typically involves pressure relief over skin regions containing wounds, but this can lead to loss of mobility and independence when the wounds are located in regions that receive pressure from sitting. An innovative, low-cost, multidisciplinary effort was undertaken to maximize quality of life in a veteran with a thoracic-4 level complete spinal cord injury and a stage 4 ischial wound. The person's power wheelchair was converted into a motorized prone cart, allowing navigation of the Department of Veterans Affairs spinal cord injury hospital ward and improved socialization while relieving pressure on the wound. Physical and occupational therapy assisted with the reconfiguration of the power chair and verified safe transfers into the chair and driving of the device. Psychology verified positive psychosocial benefit, while nursing and physician services verified an absence of unwanted pain or skin injury resulting from use of the device. Further investigation of ways to apply this technique is warranted to improve the quality of life of persons with pressure ulcers.

  19. Low Head, Vortex Induced Vibrations River Energy Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernitsas, Michael B.; Dritz, Tad

    2006-06-30

    Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing andmore » utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.« less

  20. Particle-In-Cell Simulations of a Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2017-12-01

    Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.

  1. Particle-In-Cell Simulations of a Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Clark, Stephen

    2017-10-01

    Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.

  2. Advanced thermionic converter developments with microwave external pumping

    NASA Technical Reports Server (NTRS)

    Chiu, H. S.; Shaw, D. T.; Manikopulos, C. N.; Lee, C. H.

    1977-01-01

    This work reports ion generation in a cesium thermionic converter as part of advanced-model thermionic converter development research. A microwave with frequency in the range between 1-2 GHz is used to externally pump a thermionic converter as part of our effort in the verification of Lam's theory. It is found that the motive peak as predicted in the theory disappears whenever microwave power is used to excite the cesium plasma of the converter. The electron temperature is effectively heated by the microwave and the experimental data agrees with theory in the low-power output region.

  3. Novel bidirectional DC-DC converters based on the three-state switching cell

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, José Carlos; Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando

    2016-05-01

    It is well known that there is an increasing demand for bidirectional DC-DC converters for applications that range from renewable energy sources to electric vehicles. Within this context, this work proposes novel DC-DC converter topologies that use the three-state switching cell (3SSC), whose well-known advantages over conventional existing structures are ability to operate at high current levels, while current sharing is maintained by a high frequency transformer; reduction of cost and dimensions of magnetics; improved distribution of losses, with consequent increase of global efficiency and reduction of cost associated to the need of semiconductors with lower current ratings. Three distinct topologies can be derived from the 3SSC: one DC-DC converter with reversible current characteristic able to operate in the first and second quadrants; one DC-DC converter with reversible voltage characteristic able to operate in the first and third quadrants and one DC-DC converter with reversible current and voltage characteristics able to operate in four quadrants. Only the topology with bidirectional current characteristic is analysed in detail in terms of the operating stages in both nonoverlapping and overlapping modes, while the design procedure of the power stage elements is obtained. In order to validate the theoretical assumptions, an experimental prototype is also implemented, so that relevant issues can be properly discussed.

  4. A 10 kW dc-dc converter using IGBTs with active snubbers. [Insulated Gate Bipolar Transistor

    NASA Technical Reports Server (NTRS)

    Masserant, Brian J.; Shriver, Jeffrey L.; Stuart, Thomas A.

    1993-01-01

    This full bridge dc-dc converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low IGBT switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10 kW, 20 kHz converter.

  5. A Theory of Control for a Class of Electronic Power Processing Systems: Energy-Storage DC-To-DC Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III

    1977-01-01

    An analytically derived approach to the control of energy-storage dc-to-dc converters, which enables improved system performance and an extensive understanding of the manner in which this improved performance is accomplished, is presented. The control approach is derived from a state-plane analysis of dc-to-dc converter power stages which enables a graphical visualization of the movement of the system state during both steady state and transient operation. This graphical representation of the behavior of dc-to-dc converter systems yields considerable qualitative insight into the cause and effect relationships which exist between various commonly used converter control functions and the system performance which results from them.

  6. Conductance of three-terminal molecular bridge based on tight-binding theory

    NASA Astrophysics Data System (ADS)

    Wang, Li-Guang; Li, Yong; Yu, Ding-Wen; Katsunori, Tagami; Masaru, Tsukada

    2005-05-01

    The quantum transmission characteristic of three-benzene ring nano-molecular bridge is investigated theoretically by using Green's function approach based on tight-binding theory with only a π orbital per carbon atom at the site. The transmission probabilities that electrons transport through the molecular bridge from one terminal to the other two terminals are obtained. The electronic current distributions inside the molecular bridge are calculated and shown in graphical analogy by the current density method based on Fisher-Lee formula at the energy points E = ±0.42, ±1.06 and ±1.5, respectively, where the transmission spectra appear peaks. We find that the transmission spectra are related to the incident electronic energy and the molecular levels strongly and the current distributions agree well with Kirchhoff quantum current momentum conservation law.

  7. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  8. Modeling, Analysis and Mitigation of Sub-Synchronous Interactions between Full- and Partial-Scale Voltage-Source Converters and Power Networks

    NASA Astrophysics Data System (ADS)

    Alawasa, Khaled Mohammad

    Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy

  9. Design, Control, and Modeling of a New Voltage Source Converter for HVDC System

    NASA Astrophysics Data System (ADS)

    Mohan, Madhan; Singh, Bhim; Ketan Panigrahi, Bijaya

    2013-05-01

    Abstract: A New Voltage Source Converter (VSC) based on neutral clamped three-level circuit is proposed for High Voltage DC (HVDC) system. The proposed VSC is designed in a multipulse configuration. The converter is operated by Fundamental Frequency Switching (FFS). A new control method is developed for achieving all the necessary control aspects of HVDC system such as independent real and reactive power control, bidirectional real and reactive power control. The basic of the control method is varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive power control. Total number of transformers used in this system are reduced to half in comparison with the two-level VSCs for both active and reactive power control. The performance of the HVDC system is improved in terms of reduced harmonics level even at fundamental frequency switching. The harmonic performance of the designed converter is also studied for different value of the dead angle (β), and the optimized range of the dead angle is achieved for varying reactive power requirement. Simulation results are presented for the designed three level multipulse voltage source converters with the proposed control algorithm.

  10. Fabrication and life testing of thermionic converters

    NASA Technical Reports Server (NTRS)

    Yang, L.; Bruce, R.

    1973-01-01

    An unfueled converter containing a chloride-fluoride duplex tungsten emitter of 4.78 eV vacuum work function was tested for 46,647 hours at an emitter temperature of 1973 K and an electrode power output of about 8 watts/sq cm. The test demonstrated the superior and stable performance of the (110) oriented tungsten emitter at high temperatures. Three 90 UC-10 ZrC(C/U = 1.04, tungsten additive = 4 wt %) fueled converters were fabricated and tested at an emitter temperature of 1873 K. Converter containing chloride-arc-cast duplex tungsten cladding showed temperature thermionic performance and slower rate of performance drop than converter containing chloride-fluoride duplex tungsten cladding. This is believed to be due to the superior fuel component diffusion resistance of the arc-cast tungsten substrate used in the fuel cladding. It was shown that a converter containing a carbide fueled chloride-arc-cast duplex tungsten emitter with an initial electrode power output of 6.80 watts/sq cm could still deliver an electrode power output of 6.16 watts/sq cm after 18,632 hours of operation at an emitter temperature of 1873 K.

  11. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds

    NASA Astrophysics Data System (ADS)

    Sadia, Yatir; Ohaion-Raz, Tsion; Ben-Yehuda, Ohad; Korngold, Meidad; Gelbstein, Yaniv

    2016-09-01

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological "valley of death", including among others, transport properties' degradation, due to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410-430 °C range for GeTe rich alloys and to 510-530 °C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter.

  12. Feasibility of large-scale power plants based on thermoelectric effects

    NASA Astrophysics Data System (ADS)

    Liu, Liping

    2014-12-01

    Heat resources of small temperature difference are easily accessible, free and enormous on the Earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs for electricity generators based on thermoelectric effects that utilize heat resources of small temperature difference, e.g., ocean water at different depths and geothermal resources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power generators based on thermoelectric effects, if validated, will have the advantages of the scalability, renewability, and free supply of heat resources of small temperature difference on the Earth.

  13. 21. VIEW OF MIANUS RIVER RAILROAD BRIDGE LOOKING NORTHEAST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF MIANUS RIVER RAILROAD BRIDGE LOOKING NORTHEAST FROM THE REMAINS OF THE COS COB POWER PLANT COALING DOCK. THE BRIDGE IS A ROLLING LIFT BASCULE TYPE BUILT IN 1894-1895. NOTE THE ABSENCE OF CATENARY OVER THE CHANNEL AND THE METHOD OF CARRYING POWER FEED OVER THE RIVER ON THE HIGH TOWERS ADJACENT TO THE LIFT SECTION OF THE BRIDGE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  14. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  15. A collimator-converter system for IEC propulsion

    NASA Astrophysics Data System (ADS)

    Momota, Hiromu; Miley, George H.

    2002-01-01

    The collimator-converter system extracts fusion power from D-3He fueled IEC devices and provides electricity needed to operate ionic thrusters and other-power components. The whole system is linear and consists of a series of collimator units at the center, magnetic expander units at both sides of the fusion units, followed by direct energy converters at both ends. This system is enclosed in a vacuum chamber with a magnetic channel provided by magnetic solenoids out of respective chambers. The fusion unit consists of an IEC fusion core, a pair of coils anti-parallel to the solenoid coils, and a stabilization coil that stabilizes the position of coil pair coils. The IEC fusion core is installed at the center of the pair coils. After the magnetic expander, velocities of fusion particles from D-3He fueled IEC units are directed to the magnetic channel, which guides energetic fusion particles as well as leaking unburned fuel components to a high-efficiency traveling wave direct energy converter (TWDEC). Leaking unburned fuel components are separated with a magnetic separator at the entrance of a direct energy converter and pumped out for further refueling. A TWDEC is made of an array of metallic meshed grids, each of which is connected to every terminal with an external transmission circuit. The transmission line couples to the direct energy converter. Substations for electricity, a cryogenic plant, and various power control systems are outside of the vacuum chamber. The length of the cylindrical system is essentially determined by the proton energy of 14.8 MeV and the radius should be large so as to reduce power flow density. The present system provides 250 MWf fusion power and converting it to 150 MWc electricity. Its size is 150 m(length)×6.6 m(diameter) in size and 185 tons in weight. .

  16. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model

    PubMed Central

    Li, Xiaoqing; Wang, Yu

    2018-01-01

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing

  17. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.

    PubMed

    Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu

    2018-01-19

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing

  18. Transient liquid phase diffusion bonding of Udimet 720 for Stirling power converter applications

    NASA Technical Reports Server (NTRS)

    Mittendorf, Donald L.; Baggenstoss, William G.

    1992-01-01

    Udimet 720 has been selected for use on Stirling power converters for space applications. Because Udimet 720 is generally considered susceptible to strain age cracking if traditional fusion welding is used, other joining methods are being considered. A process for transient liquid phase diffusion bonding of Udimet 720 has been theoretically developed in an effort to eliminate the strain age crack concern. This development has taken into account such variables as final grain size, joint homogenization, joint efficiency related to bonding aid material, bonding aid material application method, and thermal cycle.

  19. Method and apparatus to provide power conversion with high power factor

    DOEpatents

    Perreault, David J.; Lim, Seungbum; Otten, David M.

    2017-05-23

    A power converter circuit rectifies a line voltage and applies the rectified voltage to a stack of capacitors. Voltages on the capacitors are coupled to a plurality of regulating converters to be converted to regulated output signals. The regulated output signals are combined and converted to a desired DC output voltage of the power converter. Input currents of the regulating converters are modulated in a manner that enhances the power factor of the power converter.

  20. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Wong, Chin Hong; Dahari, Zuraini

    2017-03-01

    The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.