Sample records for h-canyon general purpose

  1. Why SRS Matters - H Canyon

    ScienceCinema

    Hunt, Paul; Lewczyk, Mike; Swain, Mike

    2018-06-22

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features H Canyon's mission and operations. H Canyon and its adjoining H B Line facility represent the last full-scale radio chemical processing capabilities left in the United States.

  2. Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-07-01

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare

  3. CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-01-09

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare

  4. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at themore » labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a

  5. H-Canyon Recovery Crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler.more » PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections

  6. Analysis of maximum allowable fragment heights during dissolution of high flux isotope reactor fuel in an h-canyon dissolver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, G.; Rudisill, T.

    2017-07-17

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U 3O 8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H 2. The HFIR fuel cores will be dissolved using a flowsheet developed by the Savannahmore » River National Laboratory (SRNL) in either the 6.4D or 6.1D dissolver using a unique insert. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The recovered U will be down-blended into low-enriched U for subsequent use as commercial reactor fuel. During the development of the HFIR fuel dissolution flowsheet, the cycle time for the initial core was estimated at 28 to 40 h. Once the cycle is complete, H-Canyon personnel will open the dissolver and probe the HFIR insert wells to determine the height of any fuel fragments which did not dissolve. Before the next core can be charged to the dissolver, an analysis of the potential for H 2 gas generation must show that the combined surface area of the fuel fragments and the subsequent core will not generate H 2 concentrations in the dissolver offgas which exceeds 60% of the lower flammability limit (LFL) of H 2 at 200 °C. The objective of this study is to identify the maximum fuel fragment height as a function of the Al concentration in the dissolving solution which will provide criteria for charging successive HFIR cores to an H-Canyon dissolver.« less

  7. 76 FR 66034 - Proposed Foreign-Trade Zone-Ada and Canyon Counties, ID, Under Alternative Site Framework...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 65-2011] Proposed Foreign-Trade Zone--Ada... establish a general-purpose foreign-trade zone at sites in Ada and Canyon Counties, Idaho, adjacent to the... proposed service area under the ASF would be Ada and Canyon Counties, Idaho. If approved, the applicant...

  8. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  9. Mineral resources of the Fish Creek Canyon, Road Canyon, and Mule Canyon Wilderness Study Areas, San Juan County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bove, D.J.; Shawe, D.R.; Lee, G.K.

    1989-01-01

    This book reports the Fish Creek Canyon (UT-060-204), Road Canyon(UT-060-201), and Mule Canyon (UT-060-205B) Wilderness Study Areas, which comprise 40,160 acres, 52,420 acres, and 5,990 acres, respectively, studied for their mineral endowment. A search of federal, state, and county records showed no current or previous mining-claim activity. No mineral resources were identified during field examination of the study areas. Sandstone and sand and gravel have no unique qualities but could have limited local use for road metal or other construction purposes. However, similar materials are abundant outside the study areas. The three study areas have moderate resource potential for undiscoveredmore » oil and gas and low resource potential for undiscovered metals, including uranium and thorium, coal, and geothermal energy.« less

  10. Strategic guidelines for street canyon geometry to achieve sustainable street air quality

    NASA Astrophysics Data System (ADS)

    Chan, Andy T.; So, Ellen S. P.; Samad, Subash C.

    This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes "isolated roughness flow", "skimming flow" and "wake interference flow" (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height ( h2/ h1), canyon height to width ratio ( h/ w) and canyon length to height ratio ( l/ h). A field-size canyon has been analyzed through numerical simulations using the standard k- ɛ turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.

  11. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  12. Wintertime Boundary Layer Structure in the Grand Canyon.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  13. Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia

    PubMed Central

    Dittmann, Sabine; Sorokin, Shirley J.; Hendrycks, Ed

    2015-01-01

    Two South Australian canyons, one shelf-incising (du Couedic) and one slope-limited (Bonney) were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1) significantly differ by water mass, (H2) show significant regional differences and (H3) differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01) among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water) (H1). Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2), over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3). However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m), suggestive of heightened currents within the canyons that influence community composition there. At 1000–1500 m, the canyon interiors were

  14. 4. DARK CANYON SIPHON VIEW ACROSS DARK CANYON AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DARK CANYON SIPHON - VIEW ACROSS DARK CANYON AT LOCATION OF SIPHON. VIEW TO NORTHWEST - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  15. Chapter 12. Canyons microbiology studies

    USGS Publications Warehouse

    Kellogg, Christina A.; Lawler, Stephanie N.

    2017-01-01

    Off the eastern coast of the United States, several deep canyons cut through the continental shelf, acting like funnels to move sediment from the shelf out to the deep seafloor. Exposed rock outcrops and ledges along the walls of these canyons provide important habitat for deepsea corals and sponges. Although a few scientific expeditions have visited these canyons in the 1970s (Hecker and Blechschmidt 1979, Hecker et al. 1980), their purpose was mainly to map the contours and capture photographs of the bottom using manned submersibles and towed cameras. Our knowledge of the biodiversity in these complex ecosystems is limited; we know little about the macrofauna (e.g., fishes, crabs, sponges, and deepsea corals) and even less about the microbiota.The research described in this report was conducted from 2011 to 2015 as part of the Bureau of Ocean Energy Management (BOEM) study, entitled “Atlantic Deepwater Canyons” study. This work used molecular and microbiological techniques to examine the microbial ecology and diversity associated with Baltimore and Norfolk canyons. Specifically, this work focused on the microbial ecology of four species of octocorals (Acanthogorgia aspera, Anthothela grandiflora, Paramuricea placomus, and Primnoa resedaeformis), the microbial diversity in sediments within and outside the canyons, and a settling plate experiment designed to characterize microbial biofilm formation on a variety of hard substrates.

  16. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.« less

  17. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, themore » DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.« less

  18. Environmental assessment: Davis Canyon site, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.« less

  19. Influence of roadside hedgerows on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Jamarkattel, Nabaraj; Ruck, Bodo

    2016-08-01

    Understanding pollutant dispersion in the urban environment is an important aspect of providing solutions to reduce personal exposure to vehicle emissions. To this end, the dispersion of gaseous traffic pollutants in urban street canyons with roadside hedges was investigated. The study was performed in an atmospheric boundary layer wind tunnel using a reduced-scale (M = 1:150) canyon model with a street-width-to-building-height ratio of W/H = 2 and a street-length-to-building-height ratio of L/H = 10. Various hedge configurations of differing height, permeability and longitudinal segmentation (continuous over street length L or discontinuous with clearings) were investigated. Two arrangements were examined: (i) two eccentric hedgerows sidewise of the main traffic lanes and (ii) one central hedgerow between the main traffic lanes. In addition, selected configurations of low boundary walls, i.e. solid barriers, were examined. For a perpendicular approach wind and in the presence of continuous hedgerows, improvements in air quality in the center area of the street canyon were found in comparison to the hedge-free reference scenario. The pollutant reductions were greater for the central hedge arrangements than for the sidewise arrangements. Area-averaged reductions between 46 and 61% were observed at pedestrian head height level on the leeward side in front of the building for the centrally arranged hedges and between 18 and 39% for the two hedges arranged sidewise. Corresponding area-averaged reductions ranging from 39 to 55% and from 1 to 20% were found at the bottom of the building facades on the leeward side. Improvements were also found in the areas at the lateral canyon ends next to the crossings for the central hedge arrangements. For the sidewise arrangements, increases in traffic pollutants were generally observed. However, since the concentrations in the end areas were considerably lower compared to those in the center area, an overall improvement remained

  20. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences ofmore » uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas.« less

  1. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection with...

  2. Trees as environmental modifier to improve street canyon for pedestrian activities in Muscat

    NASA Astrophysics Data System (ADS)

    Khudhayer, Wael A.; Shaaban, Awni K.; Sukor, Nur Sabahiah Abdul

    2017-10-01

    Street shading efficiency is a function of orientation and profile proportion of its height to width. Under high sun altitude conditions, minimization of solar irradiance within the urban environment may often be a significant criterion in urban design. This reduction in solar irradiance achieved when the obstruction angle is large (high H/W ratio, H=height, W=width). High H/W values often lessen the solar access to streets. The horizontal sprawl of Muscat region is an example of low H/W ratio represented the remarkable challenge that causes the lack of shading rates in the urban street. This characteristic proliferates the negative impact on the pedestrian activities in the urban street. This research aims to improve the morphology of the street to promote the pedestrian behavior. The amendment based on suggesting different configurations of trees to increase effective shading of the urban street in Muscat. The street canyon abstracted into a virtual elongated channel formed of floor and walls of equal heights on both sides. Four street orientations (E/W, N/S, NE/SW, NW/SE) and three H/W ratio (0.5,1 and 2) are considered sufficient representative of street typologies. A mathematical model developed for calculation of shading efficiency of each street canyon. The trees assumed in this study as canyon's modifier to adjust the low H/W ratio of a street canyon to a higher one. Local trees and other plants in Muscat were studied concerning their morphology. The analysis selected two case study in Muscat to investigate the shading performance of their street canyons subsequently propose the modifications to improve it. The research concluded that the suggested changes of the street canyon by using a particular type of trees could increase the H/W ratio of street canyon significantly.

  3. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  4. General purpose force doctrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weltman, J.J.

    In contemporary American strategic parlance, the general purpose forces have come to mean those forces intended for conflict situations other than nuclear war with the Soviet Union. As with all military forces, the general purpose forces are powerfully determined by prevailing conceptions of the problems they must meet and by institutional biases as to the proper way to deal with those problems. This paper deals with the strategic problems these forces are intended to meet, the various and often conflicting doctrines and organizational structures which have been generated in order to meet those problems, and the factors which will influencemore » general purpose doctrine and structure in the future. This paper does not attempt to prescribe technological solutions to the needs of the general purpose forces. Rather, it attempts to display the doctrinal and institutional context within which new technologies must operate, and which will largely determine whether these technologies are accepted into the force structure or not.« less

  5. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  6. Re-collection of Fish Canyon Tuff for fission-track standardization

    USGS Publications Warehouse

    Naeser, C.W.; Cebula, G.T.

    1984-01-01

    The PURPOSE of this note is to announce the availability of apatite and zircon from a third collection of the Oligocene Fish Canyon Tuff (FC-3). Apatite and zircon separated from the Fish Canyon Tuff have prove to be a useful standard for fission-track dating, both for interlaboratory comparisons and for checking procedures within a laboratory. In May 1981, about 540 kg of Fish Canyon Tuff were collected for mineral separation. Approximately 7. 5 g of apatite, 6. 5 g of zircon, and 89 g of sphene were recovered from this collection. This new material is now ready for distribution.

  7. A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Kim, J.

    2014-12-01

    In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.

  8. Regional economic impacts of Grand Canyon river runners.

    PubMed

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  9. Fast response modeling of a two building urban street canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardyjak, E. R.; Brown, M. J.

    2002-01-01

    QWIC-URB is a fast response model designed to generate high resolution, 3-dimensional wind fields around buildings. The wind fields are produced using a mass consistent diagnostic wind model based on the work of Roeckle (1990, 1998) and Kaplan & Dinar (1996). QWIC-URB has been used for producing wind fields around single buildings with various incident wind angles (Pardyjak and Brown 2001). Recently, the model has been expanded to consider two-building, 3D canyon flow. That is, two rectangular parallelepipeds of height H, crosswind width W, and length L separated by a distance S. The purpose of this work is to continuemore » to evaluate the Roeckle (1990) model and develop improvements. In this paper, the model is compared to the twin high-rise building data set of Ohba et al. (1993, hereafter OSL93). Although the model qualitatively predicts the flow field fairly well for simple canyon flow, it over predicts the strength of vortex circulation and fails to reproduce the upstream rotor.« less

  10. Origin of Florida Canyon and the role of spring sapping on the formation of submarine box canyons

    USGS Publications Warehouse

    Paull, Charles K.; Spiess, Fred N.; Curray, Joseph R.; Twichell, David C.

    1990-01-01

    Florida Canyon, one of a series of major submarine canyons on the southwestern edge of the Florida Platform, was surveyed using GLORIA, SeaBeam, and Deep-Tow technologies, and it was directly observed during three DSRV Alvin dives. Florida Canyon exhibits two distinct morphologies: a broad V-shaped upper canyon and a deeply entrenched, flat-floored, U-shaped lower canyon. The flat- floored lower canyon extends 20 km into the Florida Platform from the abyssal Gulf. The lower canyon ends abruptly at an ∼3 km in diameter semicircular headwall that rises 750 m with a >60° slope angle to the foot of the upper canyon. The sides of the lower canyon are less steep than its headwall and are characterized by straight faces that occur along preferred orientations and indicate a strong joint control. The upper canyon is characterized by a gently sloping, straight V-shaped central valley cut into a broad terrace. The flat floor of the upper canyon continues as terraces along the upper walls of the lower canyon. On the flanks of the upper canyon, there are five >50-m-deep, >0.5-km-wide, closed sink-hole-like depressions which indicate subsurface dissolution within the platform. The origin of the lower canyon is difficult to explain with traditional models of submarine canyon formation by external physical processes. The movement of ground water, probably with high salinities and reduced compounds along regional joints, may have focused the corrosive force of submarine spring sapping at the head of the lower canyon to produce the canyon's present shape.

  11. Canyons and gorges as potential geotourism destinations in Serbia: comparative analysis from two perspectives - general geotourists' and pure geotourists'

    NASA Astrophysics Data System (ADS)

    Božić, Sanja; Tomić, Nemanja

    2015-10-01

    Serbia represents one of those countries which have not yet differentiated themselves on the world tourism map. However, it has an immense but still unrevealed potential for geotourism development. In this paper we analyzed several remarkable canyons and gorges of great scientific importance and geotourism potential. These sites include the Djerdap Gorge and Lazar River Canyon, located in Eastern Serbia and the Ovcar-Kablar Gorge and Uvac Canyon located in Western Serbia. One of the main goals of this paper was to analyze and compare the current state and tourism potential of these geosites by using the M-GAM model for geosite assessment. However, the principal aim of the paper is to analyze how important is each subindicator in the assessment process for different market segments. In this paper, we also analyzed how giving different importance to subindicators can influence the position of the geosites in the matrix indicating different assessment done by two chosen market segments. The research showed that general geotourists appreciate considerably different values when assessing a geosite in comparison to pure geotourists. The paper can be used as framework for developing the tourism management strategy of geosites taking into consideration the needs and preferences of the target market segments.

  12. 22 CFR 309.1 - General purpose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-tax debts owed to Peace Corps and to the United States. ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true General purpose. 309.1 Section 309.1 Foreign Relations PEACE CORPS DEBT COLLECTION General Provisions § 309.1 General purpose. This part prescribes the...

  13. Side-scan sonar imaging of the Colorado River, Grand Canyon

    USGS Publications Warehouse

    Anima, Roberto; Wong, Florence L.; Hogg, David; Galanis, Peter

    2007-01-01

    This paper presents data collection methods and side-scan sonar data collected along the Colorado River in Grand Canyon in August and September of 2000. The purpose of the data collection effort was to image the distribution of sand between Glen Canyon Dam and river mile 87.4 before and after the 31,600 cfs flow of September 6-8. The side-scan sonar imaging focused on pools between rapids but included smaller rapids where possible.

  14. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    PubMed

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  16. Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon.

    PubMed

    Huang, Yuan-Dong; He, Wen-Rong; Kim, Chang-Nyung

    2015-02-01

    A two-dimensional numerical model for simulating flow and pollutant dispersion in an urban street canyon is firstly developed using the FLUENT code and then validated against the wind tunnel results. After this, the flow field and pollutant dispersion inside an urban street canyon with aspect ratio W/H = 1 are examined numerically considering five different shapes (vaulted, trapezoidal, slanted, upward wedged, and downward wedged roofs) as well as three different roof height to building height ratios (Z H /H = 1/6, 1/3, and 1/2) for the upstream building roof. The results obtained reveal that the shape and height of an upstream roof have significant influences on flow pattern and pollutant distribution in an urban canyon. A large single clockwise vortex is generated in the canyon for the vaulted upstream roof at Z H /H = 1/6, 1/3, and 1/2, the trapezoidal and downward wedged roofs at Z H /H = 1/6 and 1/3, and the slanted and upward wedged roofs at Z H /H = 1/6, while a main clockwise vortex and a secondary counterclockwise vortex are established for the trapezoidal and downward wedged roofs at Z H /H = 1/2 and the slanted and upward wedged roofs at Z H /H = 1/3 and 1/2. In the one-vortex flow regime, the clockwise vortex moves upward and grows in size with increasing upstream roof height for the vaulted, trapezoidal, and downward wedged roofs. In the two-vortex flow regime, the size and rotational velocity of both upper clockwise and lower counterclockwise vortices increase with the upstream roof height for the slanted and upward wedged roofs. At Z H /H = 1/6, the pollution levels in the canyon are close among all the upstream roof shapes studied. At Z H /H = 1/3, the pollution levels in the canyon for the upward wedged roof and slanted roof are much higher than those for the vaulted, trapezoidal, and downward wedged roofs. At Z H /H = 1/2, the lowest pollution level appears in the canyon for the vaulted upstream roof, while

  17. Water-quality data for Walnut Canyon and Wupatki National Monuments, Arizona, 2001-02

    USGS Publications Warehouse

    Thomas, Blakemore E.

    2003-01-01

    Water-quality data are provided for four sites in Walnut Canyon and Wupatki National Monuments in north-central Arizona. These data describe the current water quality and provide baseline water-quality information for monitoring future trends. Water samples were collected from a ground-water seep and well in Walnut Canyon and from a spring and a river in Wupatki during September 2001 to September 2002. Water from the four sites is from four different sources. In Walnut Canyon, Cherry Canyon seep is in a shallow local aquifer, and the Little Colorado River contains ground-water discharge from several aquifers and runoff from a 22,000 square-mile drainage area. Concentrations of dissolved solids were similar within the two monuments; the range for water samples from Walnut Canyon was 203 to 248 milligrams per liter, and the range for water samples from Wupatki was 503 to 614 milligrams per liter. Concentrations of trace elements were generally low in water samples from the three ground-water sites--Cherry Canyon seep, Walnut Canyon headquarters well, and Heiser Spring. The water sample collected from the Little Colorado River, however, had high concentrations of aluminum (4,020 micrograms per liter), antimony (54 micrograms per liter), arsenic (14.3 micrograms per liter), and iron (749 micrograms per liter) relative to U.S. Environmental Protection Agency Primary and Secondary Maximum Contaminant Levels. Concentrations of nitrate (as nitrogen) in water samples from the four sites were generally low (0.11 to 1.8 milligrams per liter) and are within the upper 25 percent of nitrate concentrations measured in the regional aquifer near Flagstaff in 1996 and 1997. Water samples from Cherry Canyon seep, Heiser Spring, and the Little Colorado River contained total coliform bacteria. Fecal coliform and Escherichia coli bacteria were found in water samples from Cherry Canyon seep and the Little Colorado River.

  18. 1. 'SANTA ANA RIVER IN SANTA ANA CANYON. ORANGE COUNTY.' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. 'SANTA ANA RIVER IN SANTA ANA CANYON. ORANGE COUNTY.' This is an oblique aerial view to the northeast taken from the northeast extremity of the canyon, showing, in the middle distance, the confluence of Chino Creek and the Santa Ana River, site of the future Prado Dam. File number written on negative: R & H 80 026. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  19. 24. VIEW OF CANYON TAKEN FROM NORTH CANYON RIM AROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF CANYON TAKEN FROM NORTH CANYON RIM AROUND 1920. CAMERA FACES SOUTH. VILLAGE IS TREE-COVERED AREA TO LEFT OF DAM AND POWERHOUSE. SUPERINTENDENT SAM GLASS'S ORCHARD IS DOWNSTREAM OF DAM ABOUT A QUARTER OF A MILE. - Swan Falls Village, Snake River, Kuna, Ada County, ID

  20. General purpose bioamplifier study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Based on known inputs and outputs, a set of specifications were developed for the major characteristics of a general purpose amplifier for use in the Integrated Medical, Behaviorial, and Laboratory Measurement System.

  1. Dispersion and photochemical evolution of reactive pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon

    2013-05-01

    Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.

  2. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    USGS Publications Warehouse

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  3. Analysis of In-Canyon Flow Characterisitcs in step-up street canyons

    NASA Astrophysics Data System (ADS)

    PARK, S.; Kim, J.; Choi, W.; Pardyjak, E.

    2017-12-01

    Flow characteristics in strep-up street canyons were investigated focusing on in-canyon region. To see the effects of the building geometry, two building height ratios [ratio of the upwind (Hu) to downwind building heights (Hd) = 0.33, 0.6] were considered and eight building length ratios [ratio of the cross-wind building length (L) to street-canyon width (S) from 0.5 to 4 with the increment of 0.5] were systematically changed. For the model validation, the simulated results were compared with the wind- tunnel data measured for Hu/Hd = 0.33, 0.6 and L/S = 1, 2, 3, and 4. In the CFD model simulations, the corner vortices at the downwind side near the ground level and the recirculation zones above the downwind buildings had the relatively small extents, compared with those in the wind-tunnel experiments. However, the CFD model reproduced the main flow features such as the street-canyon vortices, circulations above the building roof, and the positions of the stagnation points on the downwind building walls in the wind-tunnel experiments reasonably well. By further analyzing the three-dimensional flow structures based on the numerical results simulated in the step-up street canyons, we schematically suggested the flow characteristics with different building-height and building-length ratios.

  4. Standardized methods for Grand Canyon fisheries research 2015

    USGS Publications Warehouse

    Persons, William R.; Ward, David L.; Avery, Luke A.

    2013-01-01

    This document presents protocols and guidelines to persons sampling fishes in the Grand Canyon, to help ensure consistency in fish handling, fish tagging, and data collection among different projects and organizations. Most such research and monitoring projects are conducted under the general umbrella of the Glen Canyon Dam Adaptive Management Program and include studies by the U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), the Arizona Game and Fish Department (AGFD), various universities, and private contractors. This document is intended to provide guidance to fieldworkers regarding protocols that may vary from year to year depending on specific projects and objectives. We also provide herein documentation of standard methods used in the Grand Canyon that can be cited in scientific publications, as well as a summary of changes in protocols since the document was first created in 2002.

  5. The Jurassic section along McElmo Canyon in southwestern Colorado

    USGS Publications Warehouse

    O'Sullivan, Robert B.

    1997-01-01

    In McElmo Canyon, Jurassic rocks are 1500-1600 ft thick. Lower Jurassic rocks of the Glen Canyon Group include (in ascending order) Wingate Sandstone, Kayenta Formation and Navajo Sandstone. Middle Jurassic rocks are represented by the San Rafael Group, which includes the Entrada Sandstone and overlying Wanakah Formation. Upper Jurassic rocks comprise the Junction Creek Sandstone overlain by the Morrison Formation. The Burro Canyon Formation, generally considered to be Lower Cretaceous, may be Late Jurassic in the McElmo Canyon area and is discussed with the Jurassic. The Upper Triassic Chinle Formation in the subsurface underlies, and the Upper Cretaceous Dakota Sandstone overlies, the Jurassic section. An unconformity is present at the base of the Glen Canyon Group (J-0), at the base of the San Rafael Group (J-2), and at the base of the Junction Creek Sandstone (J-5). Another unconformity of Cretaceous age is at the base of the Dakota Sandstone. Most of the Jurassic rocks consist of fluviatile, lacustrine and eolian deposits. The basal part of the Entrada Sandstone and the Wanakah Formation may be of marginal marine origin.

  6. Carbon transport in Monterey Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  7. Strategic guidelines for street canyon geometry to achieve sustainable street air quality—part II: multiple canopies and canyons

    NASA Astrophysics Data System (ADS)

    Chan, Andy T.; Au, William T. W.; So, Ellen S. P.

    The flow field and pollutant dispersion characteristics in a three-dimensional urban street canyon are investigated for various building array geometries. The street canyon in consideration is located in a multi-canopy building array that is similar to realistic estate situations. The pollutant dispersion characteristics are studied for various canopy aspect ratios, namely: the canyon height to width ratio, canyon length to height ratio, canyon breadth ratio and crossroad locations are studied. A three-dimensional field-size canyon has been analysed through numerical simulations using k- ɛ turbulence model. As expected, the wind flow and mode of pollutant dispersion is strongly dependent on the various flow geometric configurations and that the results can be different from that of a single canyon system. For example, it is found that the pollutant retention value is minimum when the canyon height-to-width ratio is approximately 0.8, or that the building height ratio is 0.5. Various rules of thumbs on urban canyon geometry have been established for good pollutant dispersion.

  8. POTENTIAL IMPACT OF TANK F FLUSH SOLUTION ON H-CANYON EVAPORATOR OPERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.; Fondeur, F.; Fink, S.

    2010-09-13

    Previous chemical analysis of a sample from the liquid heel found in Tank F of the High Activity Drain (HAD) system in F/H laboratory revealed the presence of n-paraffin, tributyl phosphate (TBP), Modifier from the Modular Caustic-Side Solvent Extraction Unit (MCU) process and a vinyl ester resin that is very similar to the protective lining on Tank F. Subsequent analyses detected the presence of a small amount of diisopropylnaphthalene (DIN) (major component of Ultima Gold{trademark} AB liquid scintillation cocktail). Indications are that both vinyl ester resin and DIN are present in small amounts in the flush solution. The flush solutionmore » currently in the LR-56S trailer likely has an emulsion which is believed to contain a mixture of the reported organic species dominated by TBP. An acid treatment similar to that proposed to clear the HAD tank heel in F/H laboratory was found to allow separation of an organic phase from the cloudy sample tested by SRNL. Mixing of that clear sample did re-introduce some cloudiness that did not immediately clear but that cloudiness is attributed to the DIN in the matrix. An organic phase does quickly separate from the cloudy matrix allowing separation by a box decanter in H-Canyon prior to transfer to the evaporator feed tank. This separation should proceed normally as long as the emulsion is broken-up by acidification.« less

  9. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  10. Ecological Functioning in Two Mid-Atlantic Bight Submarine Canyons: Macrofauna Community Trends and the Role of Canyon Specific Processes

    NASA Astrophysics Data System (ADS)

    Robertson, C.; Bourque, J. R.; Davies, A. J.; Duineveld, G.; Mienis, F.; Brooke, S.; Ross, S. W.; Demopoulos, A. W.

    2016-02-01

    Submarine canyons are complex systems, acting as major conduits of organic matter along continental shelves and promoting gradients in food resources, turbidity flows, habitat heterogeneity, and areas of sediment resuspension and deposition. In the western North Atlantic, a large multidisciplinary program was conducted in two major Mid-Atlantic Bight (MAB) canyons (Baltimore and Norfolk canyons). This Atlantic Deepwater Canyons project was funded by BOEM, NOAA, and USGS. Here we investigate the `canyon effect' on benthic ecosystem ecology and functioning of two canyon systems by defining canyon specific processes influencing MAB shelf benthic community trends. Sediment cores were collected in 2012 and 2013 with a NIOZ box corer along the main axes ( 180-1200m) of Baltimore and Norfolk Canyon and at comparable depths on the adjacent continental slope. Whole community macrofaunal (>300 μm) abundance and biomass data provided insight into community trends across depth and biogeochemical gradients by coupling diversity metrics and biological trait analyses with sediment biogeochemistry and hydrodynamic data. The canyons exhibited clear differences in sediment profiles, hydrodynamic regimes and enrichment depocenters as well as significantly distinct infauna communities. Interestingly, both canyons showed bimodal distributions in abundances and diversity of infauna and a shallowing of species maxima which was not present on adjacent slopes. We hypothesize that physical canyon processes are important regulators in the depth of observed species maxima and community functioning on the MAB shelf, on local and regional scales. Unique sediment dynamics, organic enrichment, and hydrographic conditions were significant factors in structuring benthic community differences in MAB canyons The study provides a complete benthic infaunal appraisal of two canyon systems in the western Atlantic, incorporating biogeochemistry and oceanography to increase our understanding of canyon

  11. Formative flow in bedrock canyons

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted

  12. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  13. Grand Canyon Monitoring and Research Center

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  14. 7 CFR 2902.48 - General purpose household cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROCUREMENT Designated Items § 2902.48 General purpose household cleaners. (a) Definition. Products designed... procurement preference for qualifying biobased general purpose household cleaners. By that date, Federal... 7 Agriculture 15 2010-01-01 2010-01-01 false General purpose household cleaners. 2902.48 Section...

  15. Sediment Dating With 210Pb and 137Cs In Monterey Canyon, California Reveal the extent of recent sediment movement down canyon

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Maier, K. L.; Gwiazda, R.; Paull, C. K.; McGann, M.

    2017-12-01

    Submarine canyons are major vectors of sediment transport off the continent into the deep sea. Recent results from the Monterey Coordinated Canyon Experiment document fifteen sediment transport events occurred during an 18-month period from 2015 to 2017, and three of them reached at least to 1850m. In an attempt to constrain the timing and rate in which sediments were transported down canyons in these and earlier events we have collected sediment cores and measured the sedimentation rates using 210Pb and 137Cs dating techniques along the axis of Monterey Canyon. We employed transects of precisely located ROV collected push cores and vibracores collected at water depths ranging from 300m to 2900m perpendicular to the canyon axis using a remotely operated vehicle (ROV). Some cores were taken in 2013 and compared with those taken in 2017. We focused on cores from terraces that are between 60m and 75m above the canyon thalweg in water depths between 300 and 1500 m and in cores collected form the canyon's axial channel between 1800 and 2900 m water depths where the canyon widens considerably. Generally sedimentation rates vary with depth, with the highest sedimentation rate closest to land, but vary substantially across successive terraces. Sawtooth-shaped excess 210Pb and 137Cs profiles with depth at almost all sites at least to 1500m imply several episodes of deposition and reworking of sediment on the terraces suggesting multiple sediment transport events. The excess 210Pb in many cores reach depths of up to 1m implying sedimentation rates greater than 10mm per year. At the deepest site (2900m) about 10 cm of fine hemipelagic sediment overlies sand indicating a high-energy sediment flow event. In 2014 the measured 210Pb sedimentation rate of 0.6 to 0.8mm per year indicates that the last 10 cm of sediment have been deposited and undisturbed since about the year 1910 showing that recent events have not reached this depth. Measurements are on going to determine if the

  16. Investigation Of In-Line Monitoring Options At H Canyon/HB Line For Plutonium Oxide Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, L.

    2015-10-14

    H Canyon and HB Line have a production goal of 1 MT per year of plutonium oxide feedstock for the MOX facility by FY17 (AFS-2 mission). In order to meet this goal, steps will need to be taken to improve processing efficiency. One concept for achieving this goal is to implement in-line process monitoring at key measurement points within the facilities. In-line monitoring during operations has the potential to increase throughput and efficiency while reducing costs associated with laboratory sample analysis. In the work reported here, we mapped the plutonium oxide process, identified key measurement points, investigated alternate technologies thatmore » could be used for in-line analysis, and initiated a throughput benefit analysis.« less

  17. 47 CFR 32.2124 - General purpose computers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false General purpose computers. 32.2124 Section 32.2124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... General purpose computers. (a) This account shall include the original cost of computers and peripheral...

  18. 47 CFR 32.2124 - General purpose computers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false General purpose computers. 32.2124 Section 32.2124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... General purpose computers. (a) This account shall include the original cost of computers and peripheral...

  19. 47 CFR 32.2124 - General purpose computers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false General purpose computers. 32.2124 Section 32.2124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... General purpose computers. (a) This account shall include the original cost of computers and peripheral...

  20. 47 CFR 32.2124 - General purpose computers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false General purpose computers. 32.2124 Section 32.2124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... General purpose computers. (a) This account shall include the original cost of computers and peripheral...

  1. 47 CFR 32.2124 - General purpose computers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false General purpose computers. 32.2124 Section 32.2124 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM... General purpose computers. (a) This account shall include the original cost of computers and peripheral...

  2. 78 FR 48670 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... States Department of Energy, Western Area Power Administration, Boulder Canyon Project, 133 FERC ] 62,229...

  3. Westernmost Grand Canyon incision: Testing thermochronometric resolution

    NASA Astrophysics Data System (ADS)

    Fox, M.; Tripathy-Lang, A.; Shuster, D. L.; Winn, C.; Karlstrom, K.; Kelley, S.

    2017-09-01

    The timing of carving of Grand Canyon has been debated for over 100 years with competing endmember hypotheses advocating for either a 70 Ma ("old") or <6 Ma ("young") Grand Canyon. Several geological constraints appear to support a "young" canyon model, but thermochronometric measures of cooling history and corresponding estimates of landscape evolution have been in debate. In particular, 4He/3He thermochronometric data record the distribution of radiogenic 4He (from the 238U, 235U and 232Th decay series) within an individual apatite crystal and thus are highly sensitive to the thermal history corresponding to landscape evolution. However, there are several complicating factors that make interpreting such data challenging in geologic scenarios involving reheating. Here, we analyze new data that provide measures of the cooling of basement rocks at the base of westernmost Grand Canyon, and use these data as a testbed for exploring the resolving power and limitations of 4He/3He data in general. We explore a range of thermal histories and find that these data are most consistent with a "young" Grand Canyon. A problem with the recovered thermal history, however, is that burial temperatures are under predicted based on sedimentological evidence. A solution to this problem is to increase the resistance of alpha recoil damage to annealing, thus modifying He diffusion kinetics, allowing for higher temperatures throughout the thermal history. This limitation in quantifying radiation damage (and hence crystal retentivity) introduces non-uniqueness to interpreting time-temperature paths in rocks that resided in the apatite helium partial retention zone for long durations. Another source of non-uniqueness, is due to unknown U and Th distributions within crystals. We show that for highly zoned with a decrease in effective U of 20 ppm over the outer 80% of the radius of the crystal, the 4He/3He data could be consistent with an "old" canyon model. To reduce this non-uniqueness, we

  4. Feasibility of processing the experimental breeder reactor-II driver fuel from the Idaho National Laboratory through Savannah River Site's H-Canyon facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, V. E.

    Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium,more » and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.« less

  5. Street canyon aerosol pollutant transport measurements.

    PubMed

    Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D

    2004-12-01

    Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.

  6. 77 FR 48151 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  7. Draft environmental assessment: Lavender Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites h

  8. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false General purpose reagent. 864.4010 Section 864.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4010 General purpose...

  9. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false General purpose reagent. 864.4010 Section 864.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4010 General purpose...

  10. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false General purpose reagent. 864.4010 Section 864.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4010 General purpose...

  11. An In Situ Radiological Survey of Three Canyons at the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.J. Maurer

    1999-06-01

    An in situ radiological survey of Mortandad, Ten Site, and DP Canyons at the Los Alamos National Laboratory was conducted during August 19-30, 1996. The purpose of this survey was to measure the quantities of radionuclides that remain in the canyons from past laboratory operations. A total of 65 in situ measurements were conducted using high-resolution gamma radiation detectors at 1 meter above the ground. The measurements were obtained in the streambeds of the canyons beginning near the water-release points at the laboratories and extending to the ends of the canyons. Three man-made gamma-emitting radionuclides were detected in the canyons:more » americium-241 ({sup 241}Am), cesium-137 ({sup 137}Cs), and cobalt-60 ({sup 60}Co). Estimated contamination levels ranged from 13.3-290.4 picocuries per gram (pCi/g)for {sup 241}Am, 4.4-327.8 pCi/g for {sup 137}Cs, and 0.4-2.6 pCi/g for {sup 60}Co.« less

  12. Effects of building roof greening on air quality in street canyons

    NASA Astrophysics Data System (ADS)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  13. Durable terrestrial bedrock predicts submarine canyon formation

    USGS Publications Warehouse

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  14. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Hudson arid Baltimore Canyons

    NASA Astrophysics Data System (ADS)

    Twichell, David C.; Roberts, David G.

    1982-08-01

    The distribution and morphology of submarine canyons off the eastern United States between Hudson and Baltimore Canyons have been mapped by long-range sidescan sonar. In this area canyons are numerous, and their spacing correlates with overall slope gradient; they are absent where the gradient is less than 3°, are 2 to 10 km apart where the gradient is 3° to 5°, and are 1.5 to 4 km apart where the gradient exceeds 6°. Canyons range from straight to sinuous; those having sinuous axes indent the edge of the continental shelf and appear to be older than those that head on the upper slope and have straighter axes. A difference in canyon age would suggest that canyons are initiated on the continental slope and only with greater age erode headward to indent the shelf. Shallow gullies on the middle and upper slope parts of the canyon walls suggest that submarine erosion has been a major process in a recent phase of canyon development. *Present address: British Petroleum, Moorgate, London EC2Y 9BU, England

  15. Variability of CO2 concentrations and fluxes in and above an urban street canyon

    NASA Astrophysics Data System (ADS)

    Lietzke, Björn; Vogt, Roland

    2013-08-01

    The variability of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally variable anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on wind direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic density expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic density for east wind conditions while, for west wind situations, a change toward source areas with lower emissions leads to a reduced flux.

  16. Research Furthers Conservation of Grand Canyon Sandbars

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Rubin, David M.; Wright, Scott A.

    2007-01-01

    Grand Canyon National Park lies approximately 25 km (15 mi) down-river from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border in Glen Canyon National Recreation Area. Before the dam began to regulate the Colorado River in 1963, the river carried such large quantities of red sediment, for which the Southwest is famous, that the Spanish named the river the Rio Colorado, or 'red river'. Today, the Colorado River usually runs clear below Glen Canyon Dam because the dam nearly eliminates the main-channel sand supply. The daily and seasonal flows of the river were also altered by the dam. These changes have disrupted the sedimentary processes that create and maintain Grand Canyon sandbars. Throughout Grand Canyon, sandbars create habitat for native plants and animals, supply camping beaches for river runners and hikers, and provide sediment needed to protect archaeological resources from weathering and erosion. Maintenance of sandbars in the Colorado River ecosystem, the river corridor that stretches from the dam to the western boundary of Grand Canyon National Park, is a goal of the Glen Canyon Dam Adaptive Management Program. The program is a federally authorized initiative to ensure that the mandates of the Grand Canyon Protection Act of 1992 are met through advances in information and resource management. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center has responsibility for scientific monitoring and research efforts for the program. Extensive research and monitoring during the past decade have resulted in the identification of possible alternatives for operating Glen Canyon Dam that hold new potential for the conservation of sand resources.

  17. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin

    2012-11-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.

  18. Hydraulics of outburst floods spilling over a steep-walled canyon: Implications for paleo-discharges on Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu; Lamb, Michael

    2013-04-01

    Canyons carved by outburst floods are common landforms on Earth and Mars. These canyons are generally found in fractured basalts and jointed sedimentary rocks. Flood-carved canyons commonly have steep headwalls and a roughly constant width, and are often thought to have formed from upstream headwall propagation due to waterfall erosion. Because morphology is readily available from satellite imagery, these canyons offer a unique opportunity to quantify the discharge of rare, catastrophic paleo-floods on Earth and Mars. However, mechanistic relationships that relate canyon size to flood discharge have yet to be developed. We propose that the width of a canyon headwall in fractured rock is set by the spatial distribution of erosion around the rim of the canyon, which is controlled by the distribution of shear stresses induced by the overflowing water as it is focused into the canyon head. We test this hypothesis by performing a series of numerical simulations of flood-water focusing using ANUGA Hydro, a 2D-depth averaged, fully turbulent, hydraulic numerical modeling suite allowing for Froude-number transitions. The numerical simulations were designed to explore five dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width to flood-water width ratio, the canyon width to normal-flow depth ratio, the Froude number, and the topographic gradient upstream of the canyon. Preliminary results show that flow focusing leads to increased shear stresses at the canyon head compared to the sides of the canyon for subcritical floods and higher canyon aspect ratios. This suggests that proto-canyons start growing from a topographic defect in all directions until they reach a critical length for the side walls to dry. Once this critical length is attained, canyons focus most of the flood waters into their heads, and propagate upstream only, maintaining roughly constant widths. Preliminary results suggest that canyon width may be used to

  19. 24 CFR 902.1 - Purpose and general description.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... URBAN DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM General Provisions § 902.1 Purpose and general description. (a) Purpose. The purpose of the Public Housing Assessment System (PHAS) is to improve the delivery of services in public housing and enhance trust in the public housing system among public housing...

  20. 47 CFR 32.6124 - General purpose computers expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... is the physical operation of general purpose computers and the maintenance of operating systems. This... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6124... application systems and databases for general purpose computers. (See also § 32.6720, General and...

  1. 47 CFR 32.6124 - General purpose computers expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is the physical operation of general purpose computers and the maintenance of operating systems. This... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6124... application systems and databases for general purpose computers. (See also § 32.6720, General and...

  2. 47 CFR 32.6124 - General purpose computers expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is the physical operation of general purpose computers and the maintenance of operating systems. This... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6124... application systems and databases for general purpose computers. (See also § 32.6720, General and...

  3. 47 CFR 32.6124 - General purpose computers expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... is the physical operation of general purpose computers and the maintenance of operating systems. This... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6124... application systems and databases for general purpose computers. (See also § 32.6720, General and...

  4. 47 CFR 32.6124 - General purpose computers expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is the physical operation of general purpose computers and the maintenance of operating systems. This... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6124... application systems and databases for general purpose computers. (See also § 32.6720, General and...

  5. Mars Canyon with Los Angeles for Scale

    NASA Image and Video Library

    2006-03-13

    A Grand Canyon of Mars slices across the Red Planet near its equator. This canyon -- Valles Marineris, or the Mariner Valley -- is 10 times longer and deeper than Arizona Grand Canyon, and 20 times wider

  6. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  7. Hydrogeology of Middle Canyon, Oquirrh Mountains, Tooele County, Utah

    USGS Publications Warehouse

    Gates, Joseph Spencer

    1963-01-01

    Geology and climate are the principal influences affecting the hydrology of Middle Canyon, Tooele County, Utah. Reconnaissance in the canyon indicated that the geologic influences on the hydrology may be localized; water may be leaking through fault and fracture zones or joints in sandstone and through solution openings in limestone of the Oquirrh formation of Pennsylvanian and Permian age. Surficial deposits of Quaternary age serve as the main storage material for ground water in the canyon and transmit water from the upper canyon to springs and drains at the canyon mouth. The upper canyon is a more important storage area than the lower canyon because the surficial deposits are thicker, and any zones of leakage in the underlying bedrock of the upper canyon probably would result in greater leakage than would similar outlets in the lower canyon.The total annual discharge from Middle Canyon, per unit of precipitation, decreased between 1910 and 1939. Similar decreases occurred in Parleys Canyon in the nearby Wasatch Range and in other drainage basins in Utah, and it is likely that most of the decrease in discharge from Middle Canyon and other canyons in Utah is due to a change in climate.Chemical analyses of water showed that the high content of sulfate and other constituents in the water from the Utah Metals tunnel, which drains into Middle Canyon, does not have a significant effect on water quality at the canyon mouth. This suggests that much of the tunnel water is lost from the channel by leakage, probably in the upper canyon, during the dry part of the year.Comparison of the 150 acre-feet of water per square mile of drainage area discharged by Middle Canyon in 1947 with the 623 and 543 acre-feet per square mile discharged in 1948 by City Creek and Mill Creek Canyons, two comparable drainage basins in the nearby Wasatch Range, also suggests that there is leakage in Middle Canyon.A hydrologic budget of the drainage basin results in an estimate that about 3,000 acre

  8. 7 CFR 254.1 - General purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS AND POLICIES-FOOD DISTRIBUTION ADMINISTRATION OF THE FOOD DISTRIBUTION PROGRAM FOR INDIAN HOUSEHOLDS IN OKLAHOMA § 254.1 General purpose. This part sets the requirement under which...

  9. 7 CFR 254.1 - General purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS AND POLICIES-FOOD DISTRIBUTION ADMINISTRATION OF THE FOOD DISTRIBUTION PROGRAM FOR INDIAN HOUSEHOLDS IN OKLAHOMA § 254.1 General purpose. This part sets the requirement under which...

  10. Late Holocene earthquake history of the Brigham City segment of the Wasatch fault zone at the Hansen Canyon, Kotter Canyon, and Pearsons Canyon trench sites, Box Elder County, Utah

    USGS Publications Warehouse

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.

    2012-01-01

    Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our

  11. 7 CFR 226.1 - General purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false General purpose and scope. 226.1 Section 226.1 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS CHILD AND ADULT CARE FOOD PROGRAM General § 226.1 General purpose and scope. This part announces the...

  12. 7 CFR 225.1 - General purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false General purpose and scope. 225.1 Section 225.1 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SUMMER FOOD SERVICE PROGRAM General § 225.1 General purpose and scope. This part establishes the regulations...

  13. Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.

    2017-01-26

    In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgasmore » composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.« less

  14. Demersal fish distribution and habitat use within and near Baltimore and Norfolk Canyons, U.S. Middle Atlantic Slope

    USGS Publications Warehouse

    Ross, Steve W.; Rhode, Mike; Quattrini, Andrea M.

    2015-01-01

    Numerous submarine canyons along the United States middle Atlantic continental margin support enhanced productivity, diverse and unique habitats, active fisheries, and are vulnerable to various anthropogenic disturbances. During two cruises (15 Aug–2 Oct 2012 and 30 Apr–27 May 2013), Baltimore and Norfolk canyons and nearby areas (including two cold seeps) were intensively surveyed to determine demersal fish distributions and habitat associations. Overall, 34 ROV dives (234–1612 m) resulted in 295 h of bottom video observations and numerous collections. These data were supplemented by 40, 30-min bottom trawl samples. Fish observations were assigned to five general habitat designations: 1) sand-mud (flat), 2) sloping sand-mud with burrows, 3) low profile gravel, rock, boulder, 4) high profile, canyon walls, rocks or ridges, and 5) seep-mixed hard and soft substrata, the later subdivided into seven habitats based on amounts of dead mussel and rock cover. The influence of corals, sponges and live mussels (seeps only) on fish distributions was also investigated. Both canyon areas supported abundant and diverse fish communities and exhibited a wide range of habitats, including extensive areas of deep-sea corals and sponges and two nearby methane seeps (380–430 m, 1455–1610 m). All methods combined yielded a total of 123 species of fishes, 12 of which are either new records for this region or have new range data. Depth was a major factor that separated the fish faunas into two zones with a boundary around 1400 m. Fishes defining the deeper zone included Lycodes sp.,Dicrolene introniger, Gaidropsaurus ensis, Hydrolagus affinis, Antimora rostrata, andAldrovandia sp. Fishes in the deep zone did not exhibit strong habitat affinities, despite the presence of a quite rugged, extensive methane seep. We propose that habitat specificity decreases with increasing depth. Fishes in the shallower zone, characterized by Laemonema sp., Phycis chesteri, Nezumia bairdii, Brosme

  15. Submarine sand dunes and sedimentary environments in Oceanographer Canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Cooper, R.A.; Uzmann, J.R.

    1984-01-01

    Observations from research submersibles in the northern part of Oceanographer Canyon reveal the presence of an extensive field of large sand dunes on the canyon floor. The dunes are medium to coarse sand, are oriented across the axis, and the largest of them are as high as 3 m and have wavelengths up to 15 m. Their asymmetry, grain size, and height suggest that they are formed by axial currents flowing up- and downcanyon and that the largest dunes require flows of at least 70 cm/sec. Shelf sand, low in silt and clay content, is transported by currents down and along the canyon walls onto the canyon floor. As the sand enters the canyon, it is mixed with immobile gravel deposits on the canyon rim; lower on the walls, the sand is mixed with silt and clay burrowed by organisms from the semiconsolidated sandy silt that underlies the canyon walls and floor. Upon reaching the canyon floor, the sand is sculpted into bed forms by currents, and the fines are winnowed out and transported out of the canyon. At present, the shelf and canyon walls are being eroded by bottom currents and burrowing organisms, whereas the canyon floor is covered by mobile sand that moves both up and down the axis in this part of the canyon.

  16. The Black Canyon of the Gunnison: Today and Yesterday

    USGS Publications Warehouse

    Hansen, Wallace R.

    1965-01-01

    Since the early visit of Captain John William Gunnison in the middle of the last century, the Black Canyon of the Gunnison has stirred mixed apprehension and wonder in the hearts of its viewers. It ranks high among the more awesome gorges of North America. Many great western canyons are as well remembered for their brightly colored walls as for their airy depths. Not so the Black Canyon. Though it is assuredly not black, the dark-gray tones of its walls and the hazy shadows of its gloomy depths join together to make its name well deserved. Its name conveys an impression, not a picture. After the first emotional impact of the canyon, the same questions come to the minds of most reflective viewers and in about the following order: How deep is the Black Canyon, how wide, how does it compare with other canyons, what are the rocks, how did it form, and how long did it take? Several western canyons exceed the Black Canyon in overall size. Some are longer; some are deeper; some are narrower; and a few have walls as steep. But no other canyon in North American combines the depth, narrowness, sheerness, and somber countenance of the Black Canyon. In many places the Black Canyon is as deep as it is wide. Between The Narrows and Chasm View in the Black Canyon of the Gunnison National Monument (fig. 15) it is much deeper than wide. Average depth in the monument is about 2,000 feet, ranging from a maximum of about 2,700 feet, north of Warner Point (which also is the greatest depth anywhere in the canyon), to a minimum of about 1,750 feet at The Narrows. The stretch of canyon between Pulpit Rock and Chasm View, including The Narrows, though the shallowest in the monument, is also the narrowest, has some of the steepest walls, and is, therefore, among the most impressive segments of the canyon (fig. 3). Profiles of several well-known western canyons are shown in figure 1. Deepest of these by far is Hells Canyon of the Snake, on the Idaho-Oregon border. Clearly, it dwarfs the

  17. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    NASA Astrophysics Data System (ADS)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  18. The Morpho-Acoustic Structure of Sakarya Canyon, Southwestern Black Sea

    NASA Astrophysics Data System (ADS)

    Nasıf, Aslıhan; Dondurur, Derman

    2017-04-01

    In this study, Black Sea outlet of Sakarya River in the western Black Sea continental margin is analyzed using a total of 1400 km multichannel seismics, Chirp sub-bottom profiler and multibeam bathymetric datasets. Three scientific cruises between 2012 and 2016 have been conducted in the area to map and reveal the morphological structure of the Sakarya Canyon along the southwestern Black Sea margin. The Western Black Sea Turkey coastal area is also home to many active canyons. These canyons extend from deep shallow shelf areas of about 100 m to deep water depths of 1800-2000 m. The largest and most active of the Western Black Sea canyons is the Sakarya Canyon, which is located at the exit of the Sakarya River. Research on submarine canyons are important for military submarine operations, positioning of marine engineering structures and understanding the sedimentology, ecological and oceanographic functions of canyons. The canyon systems observed on continental slopes lead to the most convenient sedimentary transportation from the shelf platform. The dataset from study area was analyzed to identify the acoustic structure of Sakarya Canyon, the morphology of which is not widely known. Bathymetric data shows that the canyon consists of two separate canyon heads in the shallow continental shelf to the south, both of which coalesce at 867 m water depth. This meandering canyon then deepens along the continental slope towards to north. Another wide canyon from west, named as Kefken Canyon, then conjoins this main canyon at approximately 1000 m water depths to form the deeper structure of the modern Sakarya Canyon. In the distal parts, canyon gets wider and wider, and its thalweg becomes significantly flat eroded by the present day activity of small scale turbidity channels. Multichannel seismic data indicate that the Sakarya Canyon was formed by the activity of hyperphycnal flows and also clearly show the extensive sediment erosion along the canyon.

  19. Morphology of Submarine Canyons in the Palomares Margin (East of Alboran Sea, western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Perez-Hernandez, S.; Comas, M. C.; Escutia, C.

    2009-04-01

    Morphological analysis on the Palomares Margin has been done using high-resolution swath bathymetry data collected during the MARSIBAL-06 (2006) cruise on board of the R/V BIO Hespérides. Complemented with data from GEBCO 2000 and Ifremer (Medimap Group, 2007) the data-set provides the first complete bathymetric mosaic of the Palomares Margin. The bathymetric mosaic allows to study the physiographic provinces of the Palomares Margin and to conduct, for the first time, a detailed morphological analysis of the two main sediment-transfer conduits: the Gata and the Alias-Almanzora Canyons. The Gata Canyon extends for 64km from the outer shelf to the base of the slope with a general W-E direction. A tributary system of canyons originates at the shelf break and continues on the slope until they merge at 1230m water depth. The walls of the canyons are characterized by repeated slides. Perpendicular profiles to the Canyon pathway reveal gentle transversal "V" asymmetrical shapes with a marked axial incision on the canyon floor (highs between 65 to 103m in the southern flank, and between 30-90m in the northern flank ). The transition from an erosional canyon to a deposition channel is located at 2100m water depth, and is characterized by trapezoidal shapes on transversal profiles accompanied of lower relieves (40-65m). At the mouth of the canyon-channel system no sedimentary lobes are observed. The Alias-Almanzora canyon (73km long and preferential direction W-E) is located North of the Gata Canyon and extends from the continental shelf to the base of the slope. A tributary system to the Alias- Almanzora canyon-head locates less than 150m from the coast, facing a fluvial drainage system onland. Proximal tributary canyons and gullies feed the main canyon until it merges in the continental slope at 1516m water depth. The tributary system exhibits a marked "V" shape in transverse profiles and marked axial incisions. Down slope, transversal profiles have trapezoidal shapes

  20. 7 CFR 227.1 - General purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NUTRITION EDUCATION AND TRAINING PROGRAM General § 227.1 General purpose and scope. The purpose of these regulations is to implement section 19 of the Child Nutrition Act...

  1. 7 CFR 227.1 - General purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NUTRITION EDUCATION AND TRAINING PROGRAM General § 227.1 General purpose and scope. The purpose of these regulations is to implement section 19 of the Child Nutrition Act...

  2. 7 CFR 227.1 - General purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NUTRITION EDUCATION AND TRAINING PROGRAM General § 227.1 General purpose and scope. The purpose of these regulations is to implement section 19 of the Child Nutrition Act...

  3. 7 CFR 227.1 - General purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NUTRITION EDUCATION AND TRAINING PROGRAM General § 227.1 General purpose and scope. The purpose of these regulations is to implement section 19 of the Child Nutrition Act...

  4. 7 CFR 227.1 - General purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NUTRITION EDUCATION AND TRAINING PROGRAM General § 227.1 General purpose and scope. The purpose of these regulations is to implement section 19 of the Child Nutrition Act...

  5. The State of the Colorado River Ecosystem in Grand Canyon: A Report of the Grand Canyon Monitoring and Research Center 1991-2004

    USGS Publications Warehouse

    Gloss, Steven P.; Lovich, Jeffrey E.; Melis, Theodore S.

    2005-01-01

    This report is an important milestone in the effort by the Secretary of the Interior to implement the Grand Canyon Protection Act of 1992 (GCPA; title XVIII, secs. 1801-1809, of Public Law 102-575), the most recent authorizing legislation for Federal efforts to protect resources downstream from Glen Canyon Dam. The chapters that follow are intended to provide decision makers and the American public with relevant scientific information about the status and recent trends of the natural, cultural, and recreational resources of those portions of Grand Canyon National Park and Glen Canyon National Recreation Area affected by Glen Canyon Dam operations. Glen Canyon Dam is one of the last major dams that was built on the Colorado River and is located just south of the Arizona-Utah border in the lower reaches of Glen Canyon National Recreation Area, approximately 15 mi (24 km) upriver from Grand Canyon National Park (fig. 1). The information presented here is a product of the Glen Canyon Dam Adaptive Management Program (GCDAMP), a federally authorized initiative to ensure that the primary mandate of the GCPA is met through advances in information and resource management. The U.S. Geological Survey`s (USGS) Grand Canyon Monitoring and Research Center (GCMRC) has responsibility for the scientific monitoring and research efforts for the program, including the preparation of reports such as this one.

  6. Describing the development of submarine canyons using stream-power erosion laws

    NASA Astrophysics Data System (ADS)

    Mitchell, N. C.

    2004-12-01

    -432, 2004. Soh, W., and H. Tokuyama, Rejuvination of submarine canyon associated with ridge subduction, Tenryu Canyon, off Tokai, central Japan, Mar. Geol., 187, 203-230, 2002.

  7. Ventilation Processes in a Three-Dimensional Street Canyon

    NASA Astrophysics Data System (ADS)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  8. Geology and biology of Oceanographer submarine canyon.

    USGS Publications Warehouse

    Valentine, P.C.; Uzmann, J.R.; Cooper, R.A.

    1980-01-01

    Santonian beds more than 100 m thick are the oldest rocks collected from the canyon. Quaternary silty clay veneers the canyon walls in many places and is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100-1300 m) inhabited by the crabs Geryon and Cancer. Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis. Shelf sediments are transported from Georges Bank over the E rim and in the Canyon by the SW drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis.- from Authors

  9. Discovery of two new large submarine canyons in the Bering Sea

    USGS Publications Warehouse

    Carlson, P.R.; Karl, Herman A.

    1984-01-01

    The Beringian continental margin is incised by some of the world's largest submarine canyons. Two newly discovered canyons, St. Matthew and Middle, are hereby added to the roster of Bering Sea canyons. Although these canyons are smaller and not cut back into the Bering shelf like the five very large canyons, they are nonetheless comparable in size to most of the canyons that have been cut into the U.S. eastern continental margin and much larger than the well-known southern California canyons. Both igneous and sedimentary rocks of Eocene to Pliocene age have been dredged from the walls of St. Matthew and Middle Canyons as well as from the walls of several of the other Beringian margin canyons, thus suggesting a late Tertiary to Quaternary genesis of the canyons. We speculate that the ancestral Yukon and possibly Anadyr Rivers were instrumental in initiating the canyon-cutting processes, but that, due to restrictions imposed by island and subsea bedrock barriers, cutting of the two newly discovered canyons may have begun later and been slower than for the other five canyons. ?? 1984.

  10. The marine soundscape of the Perth Canyon

    NASA Astrophysics Data System (ADS)

    Erbe, Christine; Verma, Arti; McCauley, Robert; Gavrilov, Alexander; Parnum, Iain

    2015-09-01

    The Perth Canyon is a submarine canyon off Rottnest Island in Western Australia. It is rich in biodiversity in general, and important as a feeding and resting ground for great whales on migration. Australia's Integrated Marine Observing System (IMOS) has moorings in the Perth Canyon monitoring its acoustical, physical and biological oceanography. Data from these moorings, as well as weather data from a near-by Bureau of Meteorology weather station on Rottnest Island and ship traffic data from the Australian Maritime Safety Authority were correlated to characterise and quantify the marine soundscape between 5 and 3000 Hz, consisting of its geophony, biophony and anthrophony. Overall, biological sources are a strong contributor to the soundscape at the IMOS site, with whales dominating seasonally at low (15-100 Hz) and mid frequencies (200-400 Hz), and fish or invertebrate choruses dominating at high frequencies (1800-2500 Hz) at night time throughout the year. Ships contribute significantly to the 8-100 Hz band at all times of the day, all year round, albeit for a few hours at a time only. Wind-dependent noise is significant at 200-3000 Hz; winter rains are audible underwater at 2000-3000 Hz. We discuss how passive acoustic data can be used as a proxy for ocean weather. Passive acoustics is an efficient way of monitoring animal visitation times and relative densities, and potential anthropogenic influences.

  11. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument unless...

  12. 36 CFR 7.19 - Canyon de Chelly National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Canyon de Chelly National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.19 Canyon de Chelly National Monument. (a) Visitors are prohibited from entering the canyons of Canyon de Chelly National Monument unless...

  13. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  14. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  15. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  16. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  17. 36 CFR 292.40 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amended (89 Stat. 1117, 16 U.S.C. 460gg et seq.). (b) Scope. Management of National Forest System lands... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Purpose and scope. 292.40... RECREATION AREAS Hells Canyon National Recreation Area-Federal Lands § 292.40 Purpose and scope. (a) Purpose...

  18. Precipitation variability of the Grand Canyon region, 1893 through 2009, and its implications for studying effects of gullying of Holocene terraces and associated archeological sites in Grand Canyon, Arizona

    USGS Publications Warehouse

    Hereford, Richard; Bennett, Glenn E.; Fairley, Helen C.

    2014-01-01

    A daily precipitation dataset covering a large part of the American Southwest was compiled for online electronic distribution (http://pubs.usgs.gov/of/2014/1006/). The dataset contains 10.8 million observations spanning January 1893 through January 2009 from 846 weather stations in six states and 13 climate divisions. In addition to processing the data for distribution, water-year totals and other statistical parameters were calculated for each station with more than 2 years of observations. Division-wide total precipitation, expressed as the average deviation from the individual station means of a climate division, shows that the region—including the Grand Canyon, Arizona, area—has been affected by alternating multidecadal episodes of drought and wet conditions. In addition to compiling and analyzing the long-term regional precipitation data, a second dataset consisting of high-temporal-resolution precipitation measurements collected between November 2003 and January 2009 from 10 localities along the Colorado River in Grand Canyon was compiled. An exploratory study of these high-temporal-resolution precipitation measurements suggests that on a daily basis precipitation patterns are generally similar to those at a long-term weather station in the canyon, which in turn resembles the patterns at other long-term stations on the canyon rims; however, precipitation amounts recorded by the individual inner canyon weather stations can vary substantially from station to station. Daily and seasonal rainfall patterns apparent in these data are not random. For example, the inner canyon record, although short and fragmented, reveals three episodes of widespread, heavy precipitation in late summer 2004, early winter 2005, and summer 2007. The 2004 event and several others had sufficient rainfall to initiate potentially pervasive erosion of the late Holocene terraces and related archeological features located along the Colorado River in Grand Canyon.

  19. Recent vegetation changes along the Colorado River between Glen Canyon Dam and Lake Mead, Arizona

    USGS Publications Warehouse

    Turner, Raymond Marriner; Karpiscak, Martin M.

    1980-01-01

    Vegetation changes in the canyon of the Colorado River between Glen Canyon Dam and Lake Mead were studied by comparing photographs taken prior to completion of Glen Canyon Dam in 1963 with photographs taken afterwards at the same sites. In general, the older pictures show an absence of riparian plants along the banks of the river. The newer photographs of each pair were taken in 1972 through 1976 and reveal an increased density of many plant species. Exotic species, such as saltcedar and camel-thorn, and native riparian plants such as sandbar willow, arrowweed, desert broom and cattail, now form a new riparian community along much of the channel of the Colorado River between Glen Canyon Dam and Lake Mead. The matched photographs also reveal that changes have occurred in the amount of sand and silt deposited along the banks. Detailed maps are presented showing distribution of 25 plant species along the reach of the Colorado River studied. Data showing changes in the hydrologic regime since completion of Glen Canyon Dam are presented. (Kosco-USGS)

  20. 2008 High-Flow Experiment at Glen Canyon Dam Benefits Colorado River Resources in Grand Canyon National Park

    USGS Publications Warehouse

    Melis, Theodore S.; Topping, David J.; Grams, Paul E.; Rubin, David M.; Wright, Scott A.; Draut, Amy E.; Hazel, Joseph E.; Ralston, Barbara E.; Kennedy, Theodore A.; Rosi-Marshall, Emma; Korman, Josh; Hilwig, Kara D.; Schmit, Lara M.

    2010-01-01

    On March 5, 2008, the Department of the Interior began a 60-hour high-flow experiment at Glen Canyon Dam, Arizona, to determine if water releases designed to mimic natural seasonal flooding could be used to improve downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park. U.S. Geological Survey (USGS) scientists and their cooperators undertook a wide range of physical and biological resource monitoring and research activities before, during, and after the release. Scientists sought to determine whether or not high flows could be used to rebuild Grand Canyon sandbars, create nearshore habitat for the endangered humpback chub, and benefit other resources such as archaeological sites, rainbow trout, aquatic food availability, and riverside vegetation. This fact sheet summarizes research completed by January 2010.

  1. Morphodynamic Model of Submarine Canyon Incision by Sandblasting

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Izumi, N.; Cartigny, M.; Li, T.; Wang, G.

    2017-12-01

    Submarine canyons are carved by turbidity currents under the deep sea. As opposed to subaerial canyons, the relevant processes are not easy to observe directly. Turbidity currents are bottom-hugging sediment gravity flows of that can incise or deposit on the seafloor to create submarine canyons or fans. The triggers of turbidity currents can be storms, edge waves, internal waves, canyon wall sapping, delta failure, breaching and hyperpycnal flows. The formation and evolution mechanisms of submarine canyons are similar to those of subaerial canyons, but have substantial differences. For example, sandblasting, rather than wear due to colliding gravel clasts is more likely to be the mechanism of bedrock incision. Submarine canyons incise downward, and often develop meander bends and levees within the canyon, so defining "fairways". Here we propose a simple model for canyon incision. The starting point of our model is the Macro Roughness Saltation Abrasion Alluviation model of Zhang et al. [2015], designed for bedrock incision by gravel clasts in mixed bedrock-alluvial rivers. We adapt this formulation to consider sandblasting as a means of wear. We use a layer-averaged model for turbidity current dynamics. The current contains a mixture of mud, which helps drive the flow but which does not cause incision, and sand, which is the agent of incision. We show that the model can successfully model channel downcutting, and indeed illustrate the early formation of net incisional cyclic steps, i.e. upstream-migrating undulations on the bed associated with transcritical (in the Froude sense) flow. These steps can be expected to abet the process of incision.

  2. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    USGS Publications Warehouse

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  3. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    NASA Astrophysics Data System (ADS)

    Weinstein, Alexander; Navarrete, Luis; Ruppel, Carolyn; Weber, Thomas C.; Leonte, Mihai; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Scranton, Mary I.; Kessler, John D.

    2016-10-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern U.S. Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6-24 kmol methane per day). These analyses suggest that the emitted methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH.

  4. Atmospheric Fragmentation of the Canyon Diablo Meteoroid

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.

    2005-01-01

    About 50 kyr ago the impact of an iron meteoroid excavated Meteor Crater, Arizona, the first terrestrial structure widely recognized as a meteorite impact crater. Recent studies of ballistically dispersed impact melts from Meteor Crater indicate a compositionally unusually heterogeneous impact melt with high SiO2 and exceptionally high (10 to 25% on average) levels of projectile contamination. These are observations that must be explained by any theoretical modeling of the impact event. Simple atmospheric entry models for an iron meteorite similar to Canyon Diablo indicate that the surface impact speed should have been around 12 km/s [Melosh, personal comm.], not the 15-20 km/s generally assumed in previous impact models. This may help explaining the unusual characteristics of the impact melt at Meteor Crater. We present alternative initial estimates of the motion in the atmosphere of an iron projectile similar to Canyon Diablo, to constraint the initial conditions of the impact event that generated Meteor Crater.

  5. General purpose programmable accelerator board

    DOEpatents

    Robertson, Perry J.; Witzke, Edward L.

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  6. 76 FR 54487 - Charter Renewal, Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Management Work Group AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of renewal. SUMMARY: Following... Interior (Secretary) is renewing the charter for the Glen Canyon Dam Adaptive Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide recommendations to the Secretary...

  7. Geologic framework of thermal springs, Black Canyon, Nevada and Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.

    2014-01-01

    Canyon. Regional cross sections in this report show that thick Paleozoic carbonate aquifer rocks of east-central Nevada do not extend into the Black Canyon area and generally are terminated to the south at a major tectonic boundary defined by the northeast-striking Lake Mead Fault System and the northwest-striking Las Vegas Valley shear zone. Faults to the west of Black Canyon strike dominantly north-south and form a complicated pattern that may inhibit easterly groundwater movement from Eldorado Valley. To the east of Black Canyon, crystalline Proterozoic rocks locally overlain by Tertiary volcanic rocks in the Black Mountains are bounded by steep north-south normal faults. These faults may also inhibit westerly groundwater movement from Detrital Valley toward Black Canyon. Finally, the cross sections show clearly that Proterozoic basement rocks and (or) Tertiary plutonic rocks are shallow in the Black Canyon area (at the surface to a few hundred meters depth) and are cut by several major faults that discharge most of the springs in the Black Canyon. Therefore, the faults most likely provide groundwater pathways to sufficient depths that the groundwater is heated to the observed temperatures of up to 55 °C.

  8. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is used to collect, prepare, and examine specimens from the human body for diagnostic purposes, and... 21 Food and Drugs 8 2010-04-01 2010-04-01 false General purpose reagent. 864.4010 Section 864.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  9. 21 CFR 864.4010 - General purpose reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is used to collect, prepare, and examine specimens from the human body for diagnostic purposes, and... 21 Food and Drugs 8 2011-04-01 2011-04-01 false General purpose reagent. 864.4010 Section 864.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  10. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    NASA Astrophysics Data System (ADS)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    Vulnerable Marine Ecosystems (VME) in the deep Mediterranean Sea have been identified by the General Fisheries Commission for the Mediterranean as consisting of communities of Scleractinia (Lophelia pertusa and Madrepora oculata), Pennatulacea (Funiculina quadrangularis) and Alcyonacea (Isidella elongata). This paper deals with video data recorded in the heads of French Mediterranean canyons. Quantitative observations were extracted from 101 video films recorded during the MEDSEACAN cruise in 2009 (Aamp/Comex). Qualitative information was extracted from four other cruises (two Marum/Comex cruises in 2009 and 2011 and two Ifremer cruises in 1995 and 2010) to support the previous observations in the Cassidaigne and Lacaze-Duthiers canyons. All the species, fishing impacts and litter recognized in the video films recorded from 180 to 700 m depth were mapped using GIS. The abundances and distributions of benthic fishing resources (marketable fishes, Aristeidae, Octopodidae), Vulnerable Marine Species, trawling scars and litter of 17 canyons were calculated and compared, as was the open slope between the Stoechades and Toulon canyons. Funiculina quadrangularis was rarely observed, being confined for the most part to the Marti canyon and, I. elongata was abundant in three canyons (Bourcart, Marti, Petit-Rhône). These two cnidarians were encountered in relatively low abundances, and it may be that they have been swept away by repeated trawling. The Lacaze-Duthiers and Cassidaigne canyons comprised the highest densities and largest colony sizes of scleractinian cold-water corals, whose distribution was mapped in detail. These colonies were often seen to be entangled in fishing lines. The alcyonacean Callogorgia verticillata was observed to be highly abundant in the Bourcart canyon and less abundant in several other canyons. This alcyonacean was also severely affected by bottom fishing gears and is proposed as a Vulnerable Marine Species. Our studies on anthropogenic

  11. California State Waters Map Series—Monterey Canyon and vicinity, California

    USGS Publications Warehouse

    Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.

    2016-06-10

    Monterey and Soquel Canyons, the relatively flat continental shelf contains only a few rocky outcrop exposures. Bedrock is covered largely by sediment derived from the Salinas and Pajaro Rivers. North of Monterey Canyon, the broad and flat continental shelf dips gently seaward, to water depths of about 95 m. To the south, the shelf also dips slightly, to water depths of as much as 150 m along the canyon edge.In the map area, Monterey Canyon splits the Santa Cruz littoral cell (north of the canyon) and the southern Monterey littoral cell (south of the canyon). It is estimated that about 400,000 m3/yr of sand on average enters Monterey Canyon from both of these littoral cells.In the Santa Cruz littoral cell, sand generally travels east and south. Sand is supplied through sea cliff erosion, as well as from the San Lorenzo River, the Pajaro River, and several other smaller coastal watersheds. About 152,911 m3/yr of sand is dredged from the entrance channel of the Santa Cruz Small Craft Harbor north of the map area and then placed on beaches to the east (downdrift) of it. This sand feeds the beaches in the southeastern reach of the Santa Cruz littoral cell and (or) is eventually trapped and lost by Monterey Canyon.The southern Monterey Bay littoral cell in the map area consists of two subcells. From the head of Monterey Canyon to the Salinas River, littoral drift is dominantly to the north; sand entering the ocean from the Salinas River either is deposited offshore or travels north in the littoral zone, nourishing the beaches until it is transported down Monterey Canyon. From south of the Salinas River to the southern extent of the map area, coastal sediment is moved mainly to the south; dune erosion is the only significant source of sand in this subcell.

  12. Impact of height and shape of building roof on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  13. Anatomy of La Jolla submarine canyon system; offshore southern California

    USGS Publications Warehouse

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  14. 21 CFR 880.6890 - General purpose disinfectants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false General purpose disinfectants. 880.6890 Section 880.6890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... topical contact with intact skin. (b) Classification. Class I (general controls). The device is exempt...

  15. Bottom-trawling along submarine canyons impacts deep sedimentary regimes.

    PubMed

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-24

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons' morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20 th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  16. Hot Canyon

    ScienceCinema

    None

    2018-05-07

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon".

  17. Aerodynamic effects of trees on pollutant concentration in street canyons.

    PubMed

    Buccolieri, Riccardo; Gromke, Christof; Di Sabatino, Silvana; Ruck, Bodo

    2009-09-15

    This paper deals with aerodynamic effects of avenue-like tree planting on flow and traffic-originated pollutant dispersion in urban street canyons by means of wind tunnel experiments and numerical simulations. Several parameters affecting pedestrian level concentration are investigated, namely plant morphology, positioning and arrangement. We extend our previous work in this novel aspect of research to new configurations which comprise tree planting of different crown porosity and stand density, planted in two rows within a canyon of street width to building height ratio W/H=2 with perpendicular approaching wind. Sulfur hexafluoride was used as tracer gas to model the traffic emissions. Complementary to wind tunnel experiments, 3D numerical simulations were performed with the Computational Fluid Dynamics (CFD) code FLUENT using a Reynolds Stress turbulence closure for flow and the advection-diffusion method for concentration calculations. In the presence of trees, both measurements and simulations showed considerable larger pollutant concentrations near the leeward wall and slightly lower concentrations near the windward wall in comparison with the tree-less case. Tree stand density and crown porosity were found to be of minor importance in affecting pollutant concentration. On the other hand, the analysis indicated that W/H is a more crucial parameter. The larger the value of W/H the smaller is the effect of trees on pedestrian level concentration regardless of tree morphology and arrangement. A preliminary analysis of approaching flow velocities showed that at low wind speed the effect of trees on concentrations is worst than at higher speed. The investigations carried out in this work allowed us to set up an appropriate CFD modelling methodology for the study of the aerodynamic effects of tree planting in street canyons. The results obtained can be used by city planners for the design of tree planting in the urban environment with regard to air quality issues.

  18. Recreational impacts on Colorado River beaches in Glen Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Carothers, Steven W.; Johnson, Robert A.; Dolan, Robert

    1984-07-01

    Recreational impact was measured on eight beaches in Glen Canyon National Recreation Area and 15 beaches in Grand Canyon National Park using permanently located transects and plots. Recreational impact indices included densities of human trash and charcoal and a measure of sand discoloration due to charcoal. Significant increases in the indices occurred on several Glen Canyon beaches over a seven-month period. Sand discoloration became significantly higher over all Glen Canyon beaches during the same time period. All indices were significantly higher in Glen Canyon than on similar Grand Canyon beaches. These differences are probably due to differences in: (a) level of impacts tolerated by the respective management regimes and, (b) in the number of user days among the two National Park Service administrative units. Management alternatives are presented for reversing the present trends of recreational impact on Glen Canyon beaches.

  19. General-Purpose Serial Interface For Remote Control

    NASA Technical Reports Server (NTRS)

    Busquets, Anthony M.; Gupton, Lawrence E.

    1990-01-01

    Computer controls remote television camera. General-purpose controller developed to serve as interface between host computer and pan/tilt/zoom/focus functions on series of automated video cameras. Interface port based on 8251 programmable communications-interface circuit configured for tristated outputs, and connects controller system to any host computer with RS-232 input/output (I/O) port. Accepts byte-coded data from host, compares them with prestored codes in read-only memory (ROM), and closes or opens appropriate switches. Six output ports control opening and closing of as many as 48 switches. Operator controls remote television camera by speaking commands, in system including general-purpose controller.

  20. Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar.

    NASA Astrophysics Data System (ADS)

    Banta, Robert M.; Darby, Lisa S.; Kaufmann, Pirmin; Levinson, David H.; Zhu, Cui-Juan

    1999-08-01

    Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in the canyon was in the opposite direction from the flow above the canyon rim; 2) under strong, gusty flow from the southwest, the flow inside and above the canyon was from a similar direction and coupled; and 3) under light large-scale ambient flow, the lidar found evidence of local, thermally forced up- and down-canyon winds in the bottom of the canyon.On the days with flow reversal in the canyon, the strongest in-canyon flow response was found for days with northwesterly flow and a strong inversion at the canyon rim. The aerosol backscatter profiles were well mixed within the canyon but poorly mixed across the rim because of the inversion. The gusty southwest flow days showed strong evidence of vertical mixing across the rim both in the momentum and in the aerosol backscatter profiles, as one would expect in turbulent flow. The days with light ambient flow showed poor vertical mixing even inside the canyon, where the jet of down-canyon flow in the bottom of the canyon at night was often either cleaner or dirtier than the air in the upper portions of the canyon. In a case study presented, the light ambient flow regime ended with an intrusion of polluted, gusty, southwesterly flow. The polluted, high-backscatter air took several hours to mix into the upper parts of the canyon. An example is also given of high-backscatter air in the upper portions of the canyon being mixed rapidly down into a jet of cleaner air in the bottom of the canyon in just a few minutes.

  1. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels.

    PubMed

    Maggos, Th; Plassais, A; Bartzis, J G; Vasilakos, Ch; Moussiopoulos, N; Bonafous, L

    2008-01-01

    Titanium dioxide is the most important photocatalysts used for purifying applications. If a TiO2- containing material is left outdoors as a form of flat panels, it is activated by sunlight to remove harmful NOx gases during the day. The photocatalytic efficiency of a TiO2-treated mortar for removal of NOx was investigated in the frame of this work. For this purpose a fully equipped monitoring system was designed at a pilot site. This system allows the in situ evaluation of the de-polluting properties of a photocatalytic material by taking into account the climatologic phenomena in street canyons, accurate measurements of pollution level and full registration of meteorological data The pilot site involved three artificial canyon streets, a pollution source, continuous NOx measurements inside the canyons and the source as well as background and meteorological measurements. Significant differences on the NOx concentration level were observed between the TiO2 treated and the reference canyon. NOx values in TiO2 canyon were 36.7 to 82.0% lower than the ones observed in the reference one. Data arising from this study could be used to assess the impact of the photocatalytic material on the purification of the urban environment.

  2. Mapping the True 3D Morphology of Deep-Sea Canyons

    NASA Astrophysics Data System (ADS)

    Huvenne, V. A.; Masson, D.; Tyler, P. A.; Huehnerbach, V.

    2010-12-01

    The importance of submarine canyons as ecosystem hotspots and sediment transport pathways has been recognised for decades (e.g. Heezen et al., 1955; Vetter & Dayton, 1998). However, studying canyon systems in detail is a challenge, because of the complexity and steepness of the terrain. Acoustic surveys are hampered by side-echoes, while the high slope angles cause most types of sampling equipment, deployed from surface vessels, to fail. Ship-borne bathymetric surveys tend to represent the canyon topography in an overly smoothed way as a result of their limited resolution in deep water compared to the scale of the terrain variability. Moreover, it is clear that overhanging cliffs cannot be mapped correctly with traditional, downward looking multibeam echosounders. The increasing availability of underwater vehicles, however, opens new opportunities. During summer 2009, we mapped several submarine canyon habitats in detail, using the UK deep-water Remotely Operated Vehicle (ROV) ISIS. In particular, we developed a new methodology to map vertical cliffs and overhangs by placing the high-resolution Simrad SM2000 multibeam system of the ROV in a forward-looking position rather than in the traditional downward-looking configuration. The cliff morphology was then mapped by moving the ROV laterally in parallel passes at different depths. Repeating this approach at different distances from the cliff face, we obtained maps of varying resolution and extent. The low resolution maps provide an overview of the general geological framework, while individual strata and faunal colonies can be recognised on the highest resolution maps. Using point-cloud models, we combined the ship-borne bathymetry with the ROV-based data, in order to obtain a true 3D seabed morphology of the canyon study site, which can be used for fly-throughs, geomorphological analysis or habitat mapping. With this approach, we could visualise the spatial structure and density distribution of a unique and

  3. The Wide Bay Canyon system: A case study of canyon morphology on the east Australian continental margin

    NASA Astrophysics Data System (ADS)

    Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.

    2014-12-01

    A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.

  4. Grand Canyon Humpback Chub Population Improving

    USGS Publications Warehouse

    Andersen, Matthew E.

    2007-01-01

    The humpback chub (Gila cypha) is a long-lived, freshwater fish found only in the Colorado River Basin. Physical adaptations-large adult body size, large predorsal hump, and small eyes-appear to have helped humpback chub evolve in the historically turbulent Colorado River. A variety of factors, including habitat alterations and the introduction of nonnative fishes, likely prompted the decline of native Colorado River fishes. Declining numbers propelled the humpback chub onto the Federal list of endangered species in 1967, and the species is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Ariz., and one in Grand Canyon, Ariz. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center oversees monitoring and research activities for the Grand Canyon population under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP). Analysis of data collected through 2006 suggests that the number of adult (age 4+ years) humpback chub in Grand Canyon increased to approximately 6,000 fish in 2006, following an approximate 40-50 percent decline between 1989 and 2001. Increasing numbers of adult fish appear to be the result of steadily increasing numbers of juvenile fish reaching adulthood beginning in the mid- to late-1990s and continuing through at least 2002.

  5. Origin, transport and burial of organic matter in the Whittard Canyon, North East Atlantic

    NASA Astrophysics Data System (ADS)

    Kershaw, C. E.

    2016-02-01

    Submarine canyons, large and complex topographic features commonly found at all continental margins, are usually considered efficient conduits of material to the deep sea that can also harbour varied and well developed ecosystems. Recent work from canyons of the Portuguese margin have revealed a highly heterogeneous environment home to diverse habitats, highlighting the significance of submarine canyons and the need for a more comprehensive understanding of the processes within them. Submarine environments are influenced by the variability of the oceanographic and biogeochemical regimes and the interaction with complex topography. The purpose of this research is to examine the provenance, transportation, burial potential and ecological function of sedimentary organic matter at targeted sites of the Whittard submarine canyon (Celtic Sea, North East Atlantic), one of the largest ( 100 km across, down to 4500 m depth) most complex topographic features in the North Western European Margin, and home to an array of diverse benthic ecosystems. Sediment cores down to 50 cm were collected during three surveys in 2013, 2014 and 2015 at various depths across different channels and sedimentological and biogeochemical analyses have begun. Preliminary results have provided a glimpse of the distinct energy regime of the different canyon channels and differing carbon concentrations, emphasizing the complexity of the system. The project aims to elucidate the significance of the Whittard system in marine biogeochemical cycling and deep-sea ecosystem functioning, through further mineralogical and chemical characterization.

  6. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model

    NASA Astrophysics Data System (ADS)

    Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu

    2017-09-01

    Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.

  7. Draft environmental assessment: Davis Canyon site, Utah. Nuclear Waste Policy Act (Section 112). [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluationsmore » are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. The site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Lavender Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site as one of five sites suitable for characterization. Having compared the Davis Canyon site with the other four sites proposed for nomination, the DOE has determined that the Davis Canyon site is not one of the three preferred sites for recommendation to the President as candidates for characterization.« less

  8. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases

  9. 7. DARK CANYON SIPHON Photographic copy of construction drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DARK CANYON SIPHON - Photographic copy of construction drawing c1907 (from Record Group 115, Box 17, Denver Branch of the National Archives, Denver) DARK CANYON SIPHON PLAN, ELEVATION, AND SECTIONS - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  10. Upper Miocene-Pliocene provenance evolution of the Central Canyon in northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Cui, Yuchi; Shao, Lei; Qiao, Peijun; Pei, Jianxiang; Zhang, Daojun; Tran, Huyen

    2018-06-01

    Provenance studies of the Central Canyon, Qiongdongnan Basin has provided significant insights into paleographic and sedimentology research of the South China Sea (SCS). A suite of geochemical approaches mainly including rare earth elemental (REE) analysis and detrital zircon U-Pb dating has been systematically applied to the "source-to-sink" system involving our upper Miocene-Pliocene Central Canyon sediments and surrounding potential source areas. Based on samples tracing the entire course of the Central Canyon, REE distribution patterns indicate that the western channel was generally characterized by positive Eu anomalies in larger proportion, in contrast to the dominance of negative values of its eastern side during late Miocene-Pliocene. Additionally, for the whole canyon and farther regions of Qiongdongnan Basin, the number of samples bearing negative Eu anomalies tended to increase within younger geological strata. On the other hand, U-Pb geochronology results suggest a wide Proterozoic to Mesozoic age range with peak complexity in Yanshanian, Indosinian, Caledonian and Jinningian periods. However in detail, age combination of most western samples displayed older-age signatures than the eastern. To make it more evidently, western boreholes of the Central Canyon are mainly characterized with confined Indosinian and Caledonian clusters which show great comparability with mafic-to-ultramafic source of Kontum Massif of Central Vietnam, while eastern samples largely bear with distinguishable Yanshanian and Indosinian peaks which more resemble with Hainan Island. Based on geochemistry and geochronology analyses, two significant suppliers and sedimentary infilling processes are generated: (1) the Indosinian collision orogenic belt in central-northern Vietnam, Indochina has ever played significant role in Central Canyon sedimentary evolution, (2) Hainan Island once as a typical provenance restricted within eastern Central Canyon, has been enlarging its influence

  11. 5. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DARK CANYON SIPHON - Photographic copy of historic photo, November 11, 1906 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'LOWER END OF DARK CANYON SIPHON CONSTRUCTION' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  12. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    PubMed Central

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-01-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities. PMID:28233856

  13. Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    NASA Astrophysics Data System (ADS)

    Paradis, Sarah; Puig, Pere; Masqué, Pere; Juan-Díaz, Xènia; Martín, Jacobo; Palanques, Albert

    2017-02-01

    Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960 s and 1970 s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons’ morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities.

  14. Active geologic processes in Barrow Canyon, northeast Chukchi Sea

    USGS Publications Warehouse

    Eittreim, S.; Grantz, A.; Greenberg, J.

    1982-01-01

    Circulation patterns on the shelf and at the shelf break appear to dominate the Barrow Canyon system. The canyon's shelf portion underlies and is maintained by the Alaska Coastal Current (A.C.C.), which flows northeastward along the coast toward the northeast corner of the broad Chukchi Sea. Offshelf and onshelf advective processes are indicated by oceanographic measurements of other workers. These advective processes may play an important role in the production of bedforms that are found near the canyon head as well as in processes of erosion or non-deposition in the deeper canyon itself. Coarse sediments recovered from the canyon axis at 400 to 570 m indicate that there is presently significant flow along the canyon. The canyon hooks left at a point north of Point Barrow where the A.C.C. loses its coastal constriction. The left hook, as well as preferential west-wall erosion, continues down to the abyssal plain of the Canada Basin at 3800 m. A possible explanation for the preferential west-wall erosion along the canyon, at least for the upper few hundred meters, is that the occasional upwelling events, which cause nutrient-rich water to flow along the west wall would in turn cause larger populations of burrowing organisms to live there than on the east wall, and that these organisms cause high rates of bioerosion. This hypothesis assumes that the dominant factor in the canyon's erosion is biological activity, not current velocity. Sedimentary bedforms consisting of waves and furrows are formed in soft mud in a region on the shelf west of the canyon head; their presence there perhaps reflects: (a) the supply of fine suspended sediments delivered by the A.C.C. from sources to the south, probably the Yukon and other rivers draining northwestern Alaska; and (b) the westward transport of these suspended sediments by the prevailing Beaufort Gyre which flows along the outer shelf. ?? 1982.

  15. Benthic prokaryotic community dynamics along the Ardencaple Canyon, Western Greenland Sea

    NASA Astrophysics Data System (ADS)

    Quéric, Nadia-Valérie; Soltwedel, Thomas

    2012-07-01

    The Ardencaple Canyon, emanating from the Eastern Greenland continental rise over a distance of about 200 km towards the Greenland Basin, was investigated to determine the effect of enhanced down-slope transport mechanisms on deep-sea benthic prokaryotic communities. The concentration of viable bacterial cells (Live/Dead®BacLight) and prokaryotic incorporation rates (3H-thymidine, 14C-leucine) increased with increasing distance from the continental shelf. Multidimensional scaling (MDS) results from terminal restriction fragment length polymorphism (T-RFLP) analysis indicated a spatial coherence between the benthic bacterial community structure, prokaryotic incorporation rates, water content, protein concentration and the total organic matter in the sediments. The community complexity in sediments at 4-5 cm depth was lower in the central parts of the channel compared with the northern and the southern levees, while richness in surface sediments of all stations was similar. Lacking any clear indications for a recent mass sediment transport or funneled shelf drainage flows, high similarities between bacterial assemblages in sediments along the canyon course may thus be governed by a combination of an ice-edge induced particle flux, episodic down-slope and canyon-guided transport mechanisms.

  16. GENERAL PURPOSE ADA PACKAGES

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    Ten families of subprograms are bundled together for the General-Purpose Ada Packages. The families bring to Ada many features from HAL/S, PL/I, FORTRAN, and other languages. These families are: string subprograms (INDEX, TRIM, LOAD, etc.); scalar subprograms (MAX, MIN, REM, etc.); array subprograms (MAX, MIN, PROD, SUM, GET, and PUT); numerical subprograms (EXP, CUBIC, etc.); service subprograms (DATE_TIME function, etc.); Linear Algebra II; Runge-Kutta integrators; and three text I/O families of packages. In two cases, a family consists of a single non-generic package. In all other cases, a family comprises a generic package and its instances for a selected group of scalar types. All generic packages are designed to be easily instantiated for the types declared in the user facility. The linear algebra package is LINRAG2. This package includes subprograms supplementing those in NPO-17985, An Ada Linear Algebra Package Modeled After HAL/S (LINRAG). Please note that LINRAG2 cannot be compiled without LINRAG. Most packages have widespread applicability, although some are oriented for avionics applications. All are designed to facilitate writing new software in Ada. Several of the packages use conventions introduced by other programming languages. A package of string subprograms is based on HAL/S (a language designed for the avionics software in the Space Shuttle) and PL/I. Packages of scalar and array subprograms are taken from HAL/S or generalized current Ada subprograms. A package of Runge-Kutta integrators is patterned after a built-in MAC (MIT Algebraic Compiler) integrator. Those packages modeled after HAL/S make it easy to translate existing HAL/S software to Ada. The General-Purpose Ada Packages program source code is available on two 360K 5.25" MS-DOS format diskettes. The software was developed using VAX Ada v1.5 under DEC VMS v4.5. It should be portable to any validated Ada compiler and it should execute either interactively or in batch. The largest package

  17. Geology of Raymond Canyon, Sublette Range, western Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, W.A.

    1984-07-01

    Raymond Canyon is located on the west side of the Sublette Range, Lincoln County, Wyoming. The study area is just east of the Idaho border and 10 mi (16 km) southeast of Geneva, Idaho. Formations exposed range in age from Late Pennsylvanian to Tertiary (Pliocene) and include: the lower part of the Wells Formation (Pennsylvanian, total thickness 720 ft or 219 m); the upper part of the Wells Formation and the Phosphoria Formation (both Permian, 153-210 ft or 47-64 m); the Dinwoody Formation (185 ft or 56 m); Woodside Shale (540 ft or 165 m); Thaynes Limestone (2345 ft ormore » 715 m); and Ankareh Formation (930 ft or 283 m), all of Triassic age; the Nugget Sandstone (1610 ft or 491 m), Twin Creek Limestone, Preuss Sandstone, and Stump Formation, all of Jurassic age; and the Salt Lake formation and the Sublette conglomerate, both Pliocene postorogenic continental deposits. Generally these formations are thinner than in nearby areas to the west and northwest. Raymond Canyon lies on the upper plate of the Tunp thrust and the lower plate of the Crawford thrust of the Idaho-Wyoming thrust belt. Thus, it lies near the middle of the imbricate stack of shallowly dipping thrust faults that formed in the late Mesozoic. Study of the stratigraphy, structure, petrography, and inferred depositional environments exposed in Raymond Canyon may be helpful to those engaged in energy development in the Idaho-Wyoming thrust belt.« less

  18. 42 CFR 456.241 - Purpose and general description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... health care. (b) Medical care evaluation studies— (1) Emphasize identification and analysis of patterns... Ur Plan: Medical Care Evaluation Studies § 456.241 Purpose and general description. (a) The purpose of medical care evaluation studies is to promote the most effective and efficient use of available...

  19. 42 CFR 456.241 - Purpose and general description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... health care. (b) Medical care evaluation studies— (1) Emphasize identification and analysis of patterns... Ur Plan: Medical Care Evaluation Studies § 456.241 Purpose and general description. (a) The purpose of medical care evaluation studies is to promote the most effective and efficient use of available...

  20. Perspective view over the Grand Canyon, Arizona

    NASA Image and Video Library

    2001-10-22

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire. http://photojournal.jpl.nasa.gov/catalog/PIA01908

  1. The San Juan Canyon, southeastern Utah: A geographic and hydrographic reconnaissance

    USGS Publications Warehouse

    Miser, Hugh D.

    1924-01-01

    This report, which describes the San Juan Canyon, San Juan River and the tributary streams and the geography and to some extent the geology of the region, presents information obtained by me during the descent of the river with the Trimble party in 1921. The exploration of the canyon, which was financed jointly by the United States Geological Survey and the Southern California Edison Co., had as its primary object the mapping and study of the San Juan in connection with proposed power and storage projects along this and Colorado rivers.1 The exploration party was headed by K. W. Thimble, topographic engineer of the United States Geological Survey. Other members of the party were Robert N. Allen, Los Angeles, Calif., recorder; H. E. Blake, jr., Monticello, Utah, and Hugh Hyde, Salt Lake City, Utah, rodmen; Bert Loper, Green River, Utah, boatman; Heber Christensen, Moab, Utah, cook; and H. D. Miser, geologist. Wesley Oliver, of Mexican Hat, Utah, served as packer for the party and brought mail and provisions by pack train twice a month to specified accessible places west of Goodridge.

  2. 6. DARK CANYON SIPHON Photographic copy of historic photo, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DARK CANYON SIPHON - Photographic copy of historic photo, January 29, 1907 (original print filed in Record Group 115, National Archives, Washington, D.C.) W.J.Lubken, photographer 'RIPRAP AT THE ENTRANCE END OF DARK CANYON PRESSURE PIPE' - Carlsbad Irrigation District, Dark Canyon Siphon, On Main Canal, 1 mile South of Carlsbad, Carlsbad, Eddy County, NM

  3. Use of Composite Fingerprinting Technique to Determine Contribution of Paria River Sediments to Dam-Release Flood Deposits in Marble Canyon, Grand Canyon, Az

    NASA Astrophysics Data System (ADS)

    Chapman, K.; Parnell, R. A.; Smith, M. E.; Grams, P. E.; Mueller, E. R.

    2015-12-01

    The 1963 closure of Glen Canyon Dam drastically reduced the downstream sediment supply and altered daily flow regimes of the Colorado River through Grand Canyon, resulting in significant sandbar erosion downstream of the dam. Dam-release floods, known as High Flow Experiments (HFEs), have occurred six times since 1996 and are intended to rebuild Grand Canyon sandbars using tributary-supplied sediment. In Marble Canyon (first 100 km of Grand Canyon) the targeted tributary is the Paria River which supplies approximately 90% of the annual suspended sediment flux through Marble Canyon; the same input contributed less than 6% prior to the dam. Annual topographic surveys have established that HFEs are effective at rebuilding sandbars. However, the long-term viability of using HFEs for sandbar maintenance is dependent on a sustainable source of sediments comprising HFE deposits. Significant use of non-tributary, main-stem sediments (i.e. pre-dam sand stored in eddies or the channel bed) in HFE deposits would indicate reliance on a limited resource, and diminishing returns in the ability of HFEs to rebuild sandbars. In this study, we sampled vertically throughout 12 bars in Marble Canyon to document temporal and downstream changes in the proportion of sediment sourced from the Paria River during the 2013 and 2014 HFEs. Preliminary data suggest that heavy mineral compositions and concentrations of Ti, S, Cr and Rb, all of which are influenced by grainsize, could be sufficiently capable of differentiating Paria-derived and main-stem sediments when combined into a composite fingerprint (CF). A multivariate mixing model using these CFs quantitatively determines the contribution of Paria-derived sediment in each HFE deposit sample. Mixing model endmembers for non-Paria sand include pre-dam flood deposits in Glen and Marble Canyons, and Marble Canyon dredge samples. These results elucidate the role of contemporary versus legacy sediment in long-term sandbar maintenance.

  4. Recovery and Lithologic Analysis of Sediment from Hole UT-GOM2-1-H002, Green Canyon 955, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kinash, N.; Cook, A.; Sawyer, D.; Heber, R.

    2017-12-01

    In May 2017 the University of Texas led a drilling and pressure coring expedition in the northern Gulf of Mexico, UT-GOM2-01. The holes were located in Green Canyon Block 955, where the Gulf of Mexico Joint Industry Project Leg II identified an approximately 100m thick hydrate-filled course-grained levee unit in 2009. Two separate wells were drilled into this unit: Holes H002 and H005. In Hole H002, a cutting shoe drill bit was used to collect the pressure cores, and only 1 of the 8 cores collected was pressurized during recovery. The core recovery in Hole H002 was generally poor, about 34%, while the only pressurized core had 45% recovery. In Hole H005, a face bit was used during pressure coring where 13 cores were collected and 9 cores remained pressurized. Core recovery in Hole H005 was much higher, at about 75%. The type of bit was not the only difference between the holes, however. Drilling mud was used throughout the drilling and pressure coring of Hole H002, while only seawater was used during the first 80m of pressure cores collected in Hole H005. Herein we focus on lithologic analysis of Hole H002 with the goal of documenting and understanding core recovery in Hole H002 to compare with Hole H005. X-ray Computed Tomography (XCT) images were collected by Geotek on pressurized cores, mostly from Hole H005, and at Ohio State on unpressurized cores, mostly from Hole H002. The XCT images of unpressurized cores show minimal sedimentary structures and layering, unlike the XCT images acquired on the pressurized, hydrate-bearing cores. Only small sections of the unpressurized cores remained intact. The unpressurized cores appear to have two prominent facies: 1) silt that did not retain original sedimentary fabric and often was loose within the core barrel, and 2) dense mud sections with some sedimentary structures and layering present. On the XCT images, drilling mud appears to be concentrated on the sides of cores, but also appears in layers and fractures within

  5. Thermal comfort in an east-west oriented street canyon in Freiburg (Germany) under hot summer conditions

    NASA Astrophysics Data System (ADS)

    Ali-Toudert, F.; Mayer, H.

    2007-01-01

    Field-measurements were conducted in an urban street canyon with an east-west orientation, and a height-to-width ratio H/W = 1 during cloudless summer weather in 2003 in Freiburg, Germany. This experimental work adds to the knowledge available on the microclimate of an urban canyon and its impact on human comfort. Air temperature T a , air humidity VP, wind speed v and direction dd were measured continuously. All short-wave and long-wave radiation fluxes from the 3D surroundings were also measured. The degree of comfort was defined in terms of physiologically equivalent temperature (PET). Furthermore, the data gathered within the canyon were compared to data collected by a permanent urban climate station with the aim of furthering the understanding of microclimatic changes due to street geometry. Changes in the meteorological variables T a , v and dd in the canyon in comparison to an unobstructed roof level location were found to be in good agreement with previous studies, i.e., a small increase of T a in the canyon adjacent to irradiated surfaces, and a good correlation of v and dd between canyon and roof levels. The daily dynamics of canyon facet irradiances and their impacts on the heat gained by a pedestrian were strongly dependent on street geometry and orientation. Thermal stress was mostly attributable to solar exposure. Under cloudless summer weather, a standing body was found to absorb, on average, 74% of heat in the form of long-wave irradiance and 26% as short-wave irradiance. Shading the pedestrian as well as the surrounding surfaces is, hence, the first strategy in mitigating heat stress in summer under hot conditions.

  6. 42 CFR 456.141 - Purpose and general description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... care evaluation studies— (1) Emphasize identification and analysis of patterns of patient care; and (2...: Medical Care Evaluation Studies § 456.141 Purpose and general description. (a) The purpose of medical care evaluation studies is to promote the most effective and efficient use of available health facilities and...

  7. 42 CFR 456.141 - Purpose and general description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... care evaluation studies— (1) Emphasize identification and analysis of patterns of patient care; and (2...: Medical Care Evaluation Studies § 456.141 Purpose and general description. (a) The purpose of medical care evaluation studies is to promote the most effective and efficient use of available health facilities and...

  8. Observations of environmental change in Grand Canyon, Arizona

    USGS Publications Warehouse

    Webb, Robert H.; Melis, Theodore S.; Valdez, Richard A.

    2002-01-01

    Few scientific data have been collected on pre-dam conditions of the Colorado River corridor through Grand Canyon National Park. Using historical diaries, interviews with pre-dam river runners (referred to as the ?Old Timers?), and historical scientific data and observations, we compiled anecdotal information on environmental change in Grand Canyon. The most significant changes are the: lowering of water temperature in the river, near-elimination of heavily sediment-laden flows, erosion of sand bars, invasion of non-native tamarisk trees, reduction in driftwood, development of marshes, increase in non-native fish at the expense of native fishes, and increase in water bird populations. In addition, few debris flows were observed before closure of Glen Canyon Dam, which might suggests that the frequency of debris flows in Grand Canyon has increased. Other possible changes include decreases in bat populations and increases in swallow and bighorn sheep populations, although the evidence is anecdotal and inconclusive. These results provide a perspective on managing the Colorado River that may allow differentiation of the effects of Glen Canyon Dam from other processes of change.

  9. Grand Canyon, Lake Powell, and Lake Mead

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A snowfall in the American West provides contrast to the landscape's muted earth tones and indicates changes in topography and elevation across (clockwise from top left) Nevada, Utah, Colorado, New Mexico, Arizona, and California. In Utah, the southern ranges of the Wasatch Mountains are covered in snow, and the Colorado River etches a dark ribbon across the red rock of the Colorado Plateau. In the center of the image is the reservoir created by the Glen Canyon Dam. To the east are the gray-colored slopes of Navaho Mountain, and to the southeast, dusted with snow is the region called Black Mesa. Southwest of Glen Canyon, the Colorado enters the Grand Canyon, which cuts westward through Arizona. At a deep bend in the river, the higher elevations of the Keibab Plateau have held onto snow. At the end of the Grand Canyon lies another large reservoir, Lake Mead, which is formed by the Hoover Dam. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  10. Colorado River campsite monitoring, Grand Canyon National Park, Arizona, 1998-2012

    USGS Publications Warehouse

    Kaplinski, Matt; Hazel, Joe; Parnell, Rod; Hadley, Daniel R.; Grams, Paul

    2014-01-01

    River rafting trips and hikers use sandbars along the Colorado River in Marble and Grand Canyons as campsites. The U.S. Geological Survey evaluated the effects of Glen Canyon Dam operations on campsite areas on sandbars along the Colorado River in Grand Canyon National Park. Campsite area was measured annually from 1998 to 2012 at 37 study sites between Lees Ferry and Diamond Creek, Arizona. The primary purpose of this report is to present the methods and results of the project. Campsite area surveys were conducted using total station survey methods to outline the perimeter of camping area at each study site. Campsite area is defined as any region of smooth substrate (most commonly sand) with no more than an 8 degree slope and little or no vegetation. We used this definition, but relaxed the slope criteria to include steeper areas near boat mooring locations where campers typically establish their kitchens. The results show that campsite area decreased over the course of the study period, but at a rate that varied by elevation zone and by survey period. Time-series plots show that from 1998 to 2012, high stage-elevation (greater than the 25,000 ft3/s stage-elevation) campsite area decreased significantly, although there was no significant trend in low stage-elevation (15,000–20,000 ft3/s) campsite area. High stage-elevation campsite area increased after the 2004 and 2008 high flows, but decreased in the intervals between high flows. Although no overall trend was detected for low stage-elevation campsite areas, they did increase after high-volume dam releases equal to or greater than about 20,000 ft3/s. We conclude that dam operations have not met the management objectives of the Glen Canyon Adaptive Management program to increase the size of camping beaches in critical and non-critical reaches of the Colorado River between Glen Canyon Dam and Lake Mead.

  11. Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho

    PubMed Central

    Lamb, Michael P.; Mackey, Benjamin H.; Farley, Kenneth A.

    2014-01-01

    Many bedrock canyons on Earth and Mars were eroded by upstream propagating headwalls, and a prominent goal in geomorphology and planetary science is to determine formation processes from canyon morphology. A diagnostic link between process and form remains highly controversial, however, and field investigations that isolate controls on canyon morphology are needed. Here we investigate the origin of Malad Gorge, Idaho, a canyon system cut into basalt with three remarkably distinct heads: two with amphitheater headwalls and the third housing the active Wood River and ending in a 7% grade knickzone. Scoured rims of the headwalls, relict plunge pools, sediment-transport constraints, and cosmogenic (3He) exposure ages indicate formation of the amphitheater-headed canyons by large-scale flooding ∼46 ka, coeval with formation of Box Canyon 18 km to the south as well as the eruption of McKinney Butte Basalt, suggesting widespread canyon formation following lava-flow diversion of the paleo-Wood River. Exposure ages within the knickzone-headed canyon indicate progressive upstream younging of strath terraces and a knickzone propagation rate of 2.5 cm/y over at least the past 33 ka. Results point to a potential diagnostic link between vertical amphitheater headwalls in basalt and rapid erosion during megaflooding due to the onset of block toppling, rather than previous interpretations of seepage erosion, with implications for quantifying the early hydrosphere of Mars. PMID:24344293

  12. Crossing fitness canyons by a finite population

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun

    2017-06-01

    We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.

  13. 7 CFR 248.1 - General purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS WIC FARMERS' MARKET NUTRITION PROGRAM (FMNP) General § 248.1 General... out the WIC Farmers' Market Nutrition Program. The dual purposes of the FMNP are: (a) To provide...

  14. 7 CFR 249.1 - General purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SENIOR FARMERS' MARKET NUTRITION PROGRAM (SFMNP) General § 249.1 General... carry out the Senior Farmers' Market Nutrition Program (SFMNP). The purposes of the SFMNP are to: (1...

  15. 7 CFR 249.1 - General purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SENIOR FARMERS' MARKET NUTRITION PROGRAM (SFMNP) General § 249.1 General... carry out the Senior Farmers' Market Nutrition Program (SFMNP). The purposes of the SFMNP are to: (1...

  16. 7 CFR 249.1 - General purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SENIOR FARMERS' MARKET NUTRITION PROGRAM (SFMNP) General § 249.1 General... carry out the Senior Farmers' Market Nutrition Program (SFMNP). The purposes of the SFMNP are to: (1...

  17. 7 CFR 248.1 - General purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS WIC FARMERS' MARKET NUTRITION PROGRAM (FMNP) General § 248.1 General... out the WIC Farmers' Market Nutrition Program. The dual purposes of the FMNP are: (a) To provide...

  18. 7 CFR 249.1 - General purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SENIOR FARMERS' MARKET NUTRITION PROGRAM (SFMNP) General § 249.1 General... carry out the Senior Farmers' Market Nutrition Program (SFMNP). The purposes of the SFMNP are to: (1...

  19. 7 CFR 248.1 - General purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS WIC FARMERS' MARKET NUTRITION PROGRAM (FMNP) General § 248.1 General... out the WIC Farmers' Market Nutrition Program. The dual purposes of the FMNP are: (a) To provide...

  20. 7 CFR 248.1 - General purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS WIC FARMERS' MARKET NUTRITION PROGRAM (FMNP) General § 248.1 General... out the WIC Farmers' Market Nutrition Program. The dual purposes of the FMNP are: (a) To provide...

  1. 7 CFR 249.1 - General purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SENIOR FARMERS' MARKET NUTRITION PROGRAM (SFMNP) General § 249.1 General... carry out the Senior Farmers' Market Nutrition Program (SFMNP). The purposes of the SFMNP are to: (1...

  2. 7 CFR 248.1 - General purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS WIC FARMERS' MARKET NUTRITION PROGRAM (FMNP) General § 248.1 General... out the WIC Farmers' Market Nutrition Program. The dual purposes of the FMNP are: (a) To provide...

  3. 7 CFR 225.1 - General purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE CHILD NUTRITION PROGRAMS SUMMER FOOD SERVICE PROGRAM General § 225.1 General purpose and scope. This part establishes the regulations under which the Secretary will administer a Summer Food Service... nonprofit food service programs for children during the summer months and at other approved times. The...

  4. 7 CFR 225.1 - General purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE CHILD NUTRITION PROGRAMS SUMMER FOOD SERVICE PROGRAM General § 225.1 General purpose and scope. This part establishes the regulations under which the Secretary will administer a Summer Food Service... nonprofit food service programs for children during the summer months and at other approved times. The...

  5. 7 CFR 225.1 - General purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE CHILD NUTRITION PROGRAMS SUMMER FOOD SERVICE PROGRAM General § 225.1 General purpose and scope. This part establishes the regulations under which the Secretary will administer a Summer Food Service... nonprofit food service programs for children during the summer months and at other approved times. The...

  6. 7 CFR 225.1 - General purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE CHILD NUTRITION PROGRAMS SUMMER FOOD SERVICE PROGRAM General § 225.1 General purpose and scope. This part establishes the regulations under which the Secretary will administer a Summer Food Service... nonprofit food service programs for children during the summer months and at other approved times. The...

  7. [Effect of greenbelt on pollutant dispersion in street canyon].

    PubMed

    Xu, Wei-Jia; Xing, Hong; Yu, Zhi

    2012-02-01

    The effect feature of greenbelt on flow field and pollutant dispersion in urban street canyon was researched. The greenbelt was assumed as uniform porous media and its aerodynamics property defined by the pressure loss coefficient. Subsequently, the pollutant dispersion in the street canyon of which there was greenbelt in the middle was simulated with the steady-state standard kappa-epsilon turbulence model and species transport equation. The simulated results agreed well with the wind-tunnel data. Compared with the treeless case, it finds that the street canyon contain a clockwise vortex, the pollutant concentration of the leeward was several times than the windward and the growth rate of pollutant concentration was 46.0%. The further simulation for the impact of tree crown position on the airflow and pollutant dispersion finds that the height of major vortex center in the street canyon increases with the height of tree crown and gradually closes the top of windward building This causes that the average wind speed in the street canyon decreases. Especially when the top of tree crown over the roof and hinder the air flow above the street canyon, the average pollutant concentration increases with the height of tree crown rapidly.

  8. Preliminary geologic map of Black Canyon and surrounding region, Nevada and Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, L. Sue; Anderson, Zachary W.; Fleck, Robert J.; Wooden, Joseph L.; Seixas, Gustav B.

    2014-01-01

    Canyon. Regional cross sections in this report show that thick Paleozoic carbonate aquifer rocks of east-central Nevada do not extend into the Black Canyon area and generally are terminated to the south at a major tectonic boundary defined by the northeast-striking Lake Mead Fault System and the northwest-striking Las Vegas Valley shear zone. Faults to the west of Black Canyon strike dominantly north-south and form a complicated pattern that may inhibit easterly groundwater movement from Eldorado Valley. To the east of Black Canyon, crystalline Proterozoic rocks locally overlain by Tertiary volcanic rocks in the Black Mountains are bounded by steep north-south normal faults. These faults may also inhibit westerly groundwater movement from Detrital Valley toward Black Canyon. Finally, the cross sections show clearly that Proterozoic basement rocks and (or) Tertiary plutonic rocks are shallow in the Black Canyon area (at the surface to a few hundred meters depth) and are cut by several major faults that discharge most of the springs in the Black Canyon. Therefore, the faults most likely provide groundwater pathways to sufficient depths that the groundwater is heated to the observed temperatures of up to 55 °C.

  9. An analysis of the potential for Glen Canyon Dam releases to inundate archaeological sites in the Grand Canyon, Arizona

    USGS Publications Warehouse

    Sondossi, Hoda A.; Fairley, Helen C.

    2014-01-01

    The development of a one-dimensional flow-routing model for the Colorado River between Lees Ferry and Diamond Creek, Arizona in 2008 provided a potentially useful tool for assessing the degree to which varying discharges from Glen Canyon Dam may inundate terrestrial environments and potentially affect resources located within the zone of inundation. Using outputs from the model, a geographic information system analysis was completed to evaluate the degree to which flows from Glen Canyon Dam might inundate archaeological sites located along the Colorado River in the Grand Canyon. The analysis indicates that between 4 and 19 sites could be partially inundated by flows released from Glen Canyon Dam under current (2014) operating guidelines, and as many as 82 archaeological sites may have been inundated to varying degrees by uncontrolled high flows released in June 1983. Additionally, the analysis indicates that more of the sites currently (2014) proposed for active management by the National Park Service are located at low elevations and, therefore, tend to be more susceptible to potential inundation effects than sites not currently (2014) targeted for management actions, although the potential for inundation occurs in both groups of sites. Because of several potential sources of error and uncertainty associated with the model and with limitations of the archaeological data used in this analysis, the results are not unequivocal. These caveats, along with the fact that dam-related impacts can involve more than surface-inundation effects, suggest that the results of this analysis should be used with caution to infer potential effects of Glen Canyon Dam on archaeological sites in the Grand Canyon.

  10. Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland.

    PubMed

    Baynes, Edwin R C; Attal, Mikaël; Niedermann, Samuel; Kirstein, Linda A; Dugmore, Andrew J; Naylor, Mark

    2015-02-24

    Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (10(0) to 10(3) h). However, their impacts are rarely considered in studies of long-term landscape evolution (>10(3) y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic (3)He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m(3)/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene.

  11. Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland

    PubMed Central

    Baynes, Edwin R. C.; Attal, Mikaël; Kirstein, Linda A.; Dugmore, Andrew J.; Naylor, Mark

    2015-01-01

    Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (100 to 103 h). However, their impacts are rarely considered in studies of long-term landscape evolution (>103 y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic 3He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m3/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene. PMID:25675484

  12. 7 CFR 226.1 - General purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS CHILD AND ADULT CARE FOOD PROGRAM General § 226.1 General purpose and... Child and Adult Care Food Program. Section 17 of the National School Lunch Act, as amended, authorizes...

  13. 7 CFR 215.1 - General purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.1 General purpose and scope. This... Program for Children, under the Child Nutrition Act of 1966, as amended, and sets forth the general...

  14. 7 CFR 215.1 - General purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.1 General purpose and scope. This... Program for Children, under the Child Nutrition Act of 1966, as amended, and sets forth the general...

  15. 7 CFR 215.1 - General purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.1 General purpose and scope. This... Program for Children, under the Child Nutrition Act of 1966, as amended, and sets forth the general...

  16. 7 CFR 226.1 - General purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS CHILD AND ADULT CARE FOOD PROGRAM General § 226.1 General purpose and... Child and Adult Care Food Program. Section 17 of the National School Lunch Act, as amended, authorizes...

  17. 7 CFR 215.1 - General purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.1 General purpose and scope. This... Program for Children, under the Child Nutrition Act of 1966, as amended, and sets forth the general...

  18. 7 CFR 215.1 - General purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.1 General purpose and scope. This... Program for Children, under the Child Nutrition Act of 1966, as amended, and sets forth the general...

  19. 7 CFR 226.1 - General purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS CHILD AND ADULT CARE FOOD PROGRAM General § 226.1 General purpose and... Child and Adult Care Food Program. Section 17 of the National School Lunch Act, as amended, authorizes...

  20. 7 CFR 226.1 - General purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS CHILD AND ADULT CARE FOOD PROGRAM General § 226.1 General purpose and... Child and Adult Care Food Program. Section 17 of the National School Lunch Act, as amended, authorizes...

  1. 7 CFR 210.1 - General purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM General § 210.1 General purpose and scope... is declared to be the policy of Congress, as a measure of national security, to safeguard the health...

  2. 7 CFR 210.1 - General purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM General § 210.1 General purpose and scope... is declared to be the policy of Congress, as a measure of national security, to safeguard the health...

  3. 7 CFR 210.1 - General purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM General § 210.1 General purpose and scope... is declared to be the policy of Congress, as a measure of national security, to safeguard the health...

  4. 7 CFR 210.1 - General purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM General § 210.1 General purpose and scope... is declared to be the policy of Congress, as a measure of national security, to safeguard the health...

  5. 7 CFR 210.1 - General purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS NATIONAL SCHOOL LUNCH PROGRAM General § 210.1 General purpose and scope... is declared to be the policy of Congress, as a measure of national security, to safeguard the health...

  6. Geomorphic Thresholds of Submarine Canyons Along the U.S. Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; ten Brink, U. S.; Andrews, B. D.; Chaytor, J. D.

    2011-12-01

    Vast networks of submarine canyons and associated channels are incised into the U.S. Atlantic continental slope and rise. Submarine canyons form by differential erosion and deposition, primarily from sedimentary turbidity flows. Theoretical and laboratory studies have investigated the initiation of turbidity flows and their capacity to erode and entrain sedimentary material at distances far from the shelf edge. The results have helped understand the nature of turbidite deposits on the continental slope and rise. Nevertheless, few studies have examined the linkages between down-canyon sediment transport and the morphology of canyon/channel networks using mesoscale analyses of swath bathymetry data. We present quantitative analysis of 100-m resolution multibeam bathymetry data spanning ~616,000 km2 of the slope and rise between Georges Banks and the Blake Plateau (New England to North Carolina). Canyons are categorized as shelf-indenting or slope-confined based on spatial scale, vertical relief and connection with terrestrial river systems during sea level low stands. Shelf-indenting canyons usually represent the trunk-canyon of submerged channel networks. On the rise, shelf-indenting canyons have relatively well-developed channel-levees and sharp inner-thalwag incision suggesting much higher frequency and volume of turbidity flows. Because of the similarities between submarine canyon networks and terrestrial river systems, we apply methods originally developed to study fluvial morphology. Along-canyon profiles are extracted from the bathymetry data and the power-law relationship between thalwag gradient and drainage area is examined for more than 180 canyons along an ~1200 km stretch of the US Atlantic margin. We observe distinct thresholds in the power-law relationship between drainage area and gradient. Almost all canyons with heads on the upper slope contain at least two linear segments when plotted in log-log form. The first segment along the upper slope is flat

  7. Spatial and Temporal Variation in DeSoto Canyon Macrofaunal Community Structure

    NASA Astrophysics Data System (ADS)

    Baco-Taylor, A.; Shantharam, A. K.

    2016-02-01

    Sediment-dwelling macrofauna (polychaetes, bivalves, and assorted crustaceans ≥ 300 µm) have long served as biological indicators of ecosystem stress. As part of evaluating the 2010 impact from the Deepwater Horizon blowout, we sampled 12 sites along and transverse to the DeSoto Canyon axis, Gulf of Mexico, as well as 2 control sites outside the Canyon. Sites ranged in depth from 479-2310 m. Three of the sites (PCB06, S36, and XC4) were sampled annually from 2012-2014. We provide an overview of the macrofauna community structure of canyon and non-canyon sites, as well as trends in community structure and diversity at the time-series sites. Compositionally, polychaetes dominated the communities, followed by tanaid crustaceans and bivalves. The total number of individuals was not significantly correlated with depth while the total number of taxa and species richness were. Rarefaction shows the deepest station, XC4 (2310 m) had the lowest diversity while NT800 (a non-canyon control at 800m) had the highest. Multivariate analysis shows the canyon assemblages fall into eight clusters with the non-canyon stations forming a separate ninth cluster, indicating a detectable difference in canyon and non-canyon communities. Time series stations show an increase in diversity from 2012-2014 with a strong overlap in community structure in 2013 and 2014 samples. Environmental analysis, via BEST, using data from 10 canyon sites and the controls, indicated depth in combination with latitude explain the most variation in macrofaunal community structure.

  8. Modern landscape processes affecting archaeological sites along the Colorado River corridor downstream of Glen Canyon Dam, Glen Canyon National Recreation Area, Arizona

    USGS Publications Warehouse

    East, Amy E.; Sankey, Joel B.; Fairley, Helen C.; Caster, Joshua J.; Kasprak, Alan

    2017-08-29

    The landscape of the Colorado River through Glen Canyon National Recreation Area formed over many thousands of years and was modified substantially after the completion of Glen Canyon Dam in 1963. Changes to river flow, sediment supply, channel base level, lateral extent of sedimentary terraces, and vegetation in the post-dam era have modified the river-corridor landscape and have altered the effects of geologic processes that continue to shape the landscape and its cultural resources. The Glen Canyon reach of the Colorado River downstream of Glen Canyon Dam hosts many archaeological sites that are prone to erosion in this changing landscape. This study uses field evaluations from 2016 and aerial photographs from 1952, 1973, 1984, and 1996 to characterize changes in potential windblown sand supply and drainage configuration that have occurred over more than six decades at 54 archaeological sites in Glen Canyon and uppermost Marble Canyon. To assess landscape change at these sites, we use two complementary geomorphic classification systems. The first evaluates the potential for aeolian (windblown) transport of river-derived sand from the active river channel to higher elevation archaeological sites. The second identifies whether rills, gullies, or arroyos (that is, overland drainages that erode the ground surface) exist at the archaeological sites as well as the geomorphic surface, and therefore the relative base level, to which those flow paths drain. Results of these assessments are intended to aid in the management of irreplaceable archaeological resources by the National Park Service and stakeholders of the Glen Canyon Dam Adaptive Management Program.

  9. NASA Satellite Reveals Grandeur of Arizona Grand Canyon

    NASA Image and Video Library

    2011-10-14

    Arguably one of America most magnificent national parks is the Grand Canyon in northern Arizona. NASA Terra spacecraft captured this image looking to the northeast, the buildings and roads in the center foreground are Grand Canyon Village.

  10. Distribution and transport of suspended particulate matter in Monterey Canyon, California

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.; Eittreim, S.L.; Rosenfeld, L.K.; Schwing, F.B.; Pilskaln, C.H.

    2002-01-01

    From August 1993 to August 1994, six moorings that measure current, temperature, salinity, and water clarity were deployed along the axis of Monterey Canyon to study the circulation and transport of water and suspended particulate matter through the canyon system. The moorings occupied three sites that are morphologically different: a narrow transverse section (axis width 900 m) at 1450 m water depth, a wide transverse section at 2837 m, and a third site in the fan valley axis farther offshore at 3223 m that recorded for 3 yr. In addition, CTD/transmissometer casts were conducted within and near the Monterey Canyon during four cruises. Our data show a mainly biogenic, surface turbid layer, a limited intermediate nepheloid layer, and a bottom nepheloid layer. There is a consistent presence of a turbid layer within the canyon at a water depth of about 1500 m. Tidal flow dominates at all sites, but currents above the canyon rim and within the canyon appear to belong to two distinct dynamic systems. Bottom intensification of currents plays an important role in raising the near-bottom shear stress high enough that bottom sediments are often, if not always, resuspended. Mean flow pattern suggests a convergence zone between the narrow and wide site: the near-bed (100 m above bottom where the lowest current meter was located) mean transport is down-canyon at the 1450-m site, while the near-bottom transport at the 2837-m site is up-canyon, at a smaller magnitude. Transport at the 3223-m site is dominantly NNW, cross-canyon, with periods of up-canyon flow over 3 yr. A very high-turbidity event was recorded 100 m above the canyon bottom at the narrow site. The event started very abruptly and lasted more than a week. This event was not detected at either of the deeper sites. A canyon head flushing event is likely the cause. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. 7 CFR 2902.48 - General purpose household cleaners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false General purpose household cleaners. 2902.48 Section 2902.48 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 2902.48 General...

  12. General purpose film plotting system

    NASA Technical Reports Server (NTRS)

    Mcquillan, C.

    1977-01-01

    The general purpose film plotting system which is a plot program design to handle a majority of the data tape formats presently available under OS/360 was discussed. The convenience of this program is due to the fact that the user merely describes the format of his data set and the type of data plots he desires. It processes the input data according to the given specifications. The output is generated on a tape which yields data plots when processed by the selected plotter. A summary of each job is produced on the printer.

  13. Geology of the head of Lydonia Canyon, U.S. Atlantic outer continental shelf

    USGS Publications Warehouse

    Twichell, David C.

    1983-01-01

    The geology of the part of Lydonia Canyon shoreward of the continental shelf edge on the southern side of Georges Bank was mapped using high-resolution seismic-reflection and side-scan sonar techniques and surface sediment grab samples. The head of the canyon incises Pleistocene deltaic deposits and Miocene shallow marine strata. Medium sand containing some coarse sand and gravel covers the shelf except for a belt of very fine sand containing no gravel on either side of the canyon in water depths of 125–140 m. Gravel and boulders, presumably ice-rafted debris, cover the rim of the canyon. The canyon floor and canyon wall gullies are covered by coarse silt of Holocene age which is as much as 25 m thick, and Miocene and Pleistocene strata are exposed on the spurs between gullies. The Holocene sediment is restricted to the canyon shoreward of the shelf edge and has been winnowed from the shelf. Furrows cut in the shelf sands and ripples on the shelf and in the canyon suggest that sediment continues to be moved in this area. Sediment distribution, however, is inconsistent with that expected from the inferred westward sediment transport on the shelf. Either the fine-grained deposits on the shelf to either side of the canyon head are relict or there is a significant component of offshore transport around the canyon head.In the head of Oceanographer Canyon, only 40 km west of Lydonia Canyon, present conditions are strikingly different. The floor of Oceanographer Canyon is covered by sand waves, and their presence indicates active reworking of the bottom sediments by strong currents. The close proximity of the two canyons suggests that the relative importance of processes acting in canyons can be variable over short distances.

  14. Colorado River fish monitoring in Grand Canyon, Arizona; 2002–14 humpback chub aggregations

    USGS Publications Warehouse

    Persons, William R.; Van Haverbeke, David R.; Dodrill, Michael J.

    2017-01-31

    The humpback chub (Gila cypha) is an endangered cyprinid species endemic to the Colorado River. The largest remaining population of the species spawns and rears in the Little Colorado River in Grand Canyon. Construction and operation of Glen Canyon Dam has altered the main-stem Colorado River in Glen and Grand Canyons. Cold, clear water releases from the dam result in a river that is generally unsuitable for successful humpback chub reproduction. During the early 1990s, nine locations within the main-stem Colorado River were identified as humpback chub aggregations—areas with a consistent and disjunct group of fish with no significant exchange of individuals with other aggregations. We monitored main-stem Colorado River aggregations of humpback chub in Grand Canyon during 2010 to 2014 and compared our results to previous investigations. Relative abundance, as described by catch per unit effort (fish per hour) of adult humpback chub at most main-stem aggregations, generally increased from the 1990s to 2014. In addition, distribution of humpback chub in the main-stem Colorado River has increased since the 1990s. Movement of humpback chub between the Little Colorado River and other aggregations likely adds fish to those aggregations. There is clear evidence of reproduction near the 30-Mile aggregation, and reproduction at Middle Granite Gorge and downstream seems likely based on catches of gravid fish and captures of very young fish, especially during relatively warm water releases from Glen Canyon Dam, 2004 to 2011. Humpback chub relative abundance at Shinumo and Havasu Creek inflows increased following translocations of young humpback chub starting in 2009. In light of this information, we modify the original nine aggregations, combining two previously separate aggregations and dropping two locations to form six distinct aggregations of humpback chub. Trends in humpback chub abundance at main-stem aggregations, relative to management actions (for example

  15. 27 CFR 9.152 - Malibu-Newton Canyon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (2) Then south along Kanan Dume Road to the point where an unnamed, unimproved dirt road referred to... Canyon Road to an unnamed, unimproved dirt road referred to by the petitioner as Newton Mountain Way at... southeastern ridgeline of Newton Canyon, to an unnamed, unimproved dirt road referred to by the petitioner as...

  16. Algal and water-quality data for Rapid Creek and Canyon Lake near Rapid City, South Dakota, 2007

    USGS Publications Warehouse

    Hoogestraat, Galen K.; Putnam, Larry D.; Graham, Jennifer L.

    2008-01-01

    This report summarizes the results of algae and water-quality sampling on Rapid Creek and Canyon Lake during May and September 2007. The overall purpose of the study was to determine the algal community composition of Rapid Creek and Canyon Lake in relation to organisms that are known producers of unwanted tastes and odors in drinking-water supplies. Algal assemblage structure (phytoplankton and periphyton) was examined at 16 sites on Rapid Creek and Canyon Lake during May and September 2007, and actinomycetes bacteria were sampled at the Rapid City water treatment plant intake in May 2007, to determine if taste-and-odor producing organisms were present. During the May 2007 sampling, 3 Rapid Creek sites and 4 Canyon Lake sites were quantitatively sampled for phytoplankton in the water column, 7 Rapid Creek sites were quantitatively sampled for attached periphyton, and 4 lake and retention pond sites were qualitatively sampled for periphyton. Five Rapid Creek sites were sampled for geosmin and 2-methylisoborneol, two common taste-and-odor causing compounds known to affect water supplies. During the September 2007 sampling, 4 Rapid Creek sites were quantitatively sampled for attached periphyton, and 3 Canyon Lake sites were qualitatively sampled for periphyton. Water temperature, dissolved oxygen, pH, and specific conductance were measured during each sampling event. Methods of collection and sample analysis are presented for the various types of biological and chemical constituent samples. Diatoms comprised 91-100 percent of the total algal biovolume in periphyton samples collected during May and September. Cyanobacteria (also called blue-green algae) were detected in 7 of the 11 quantitative periphyton samples and ranged from 0.01 to 2.0 percent of the total biovolume. Cyanobacteria were present in 3 of the 7 phytoplankton samples collected in May, but the relative biovolumes were small (0.01-0.2 percent). Six of seven qualitative samples collected from Canyon Lake

  17. A Small Acoustic Goniometer for General Purpose Research

    PubMed Central

    Pook, Michael L.; Loo, Sin Ming

    2016-01-01

    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563

  18. Populating a Control Point Database: A cooperative effort between the USGS, Grand Canyon Monitoring and Research Center and the Grand Canyon Youth Organization

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Fritzinger, C.; Wharton, E.

    2004-12-01

    The Grand Canyon Monitoring and Research Center measures the effects of Glen Canyon Dam operations on the resources along the Colorado River from Glen Canyon Dam to Lake Mead in support of the Grand Canyon Adaptive Management Program. Control points are integral for geo-referencing the myriad of data collected in the Grand Canyon including aerial photography, topographic and bathymetric data used for classification and change-detection analysis of physical, biologic and cultural resources. The survey department has compiled a list of 870 control points installed by various organizations needing to establish a consistent reference for data collected at field sites along the 240 mile stretch of Colorado River in the Grand Canyon. This list is the foundation for the Control Point Database established primarily for researchers, to locate control points and independently geo-reference collected field data. The database has the potential to be a valuable mapping tool for assisting researchers to easily locate a control point and reduce the occurrance of unknowingly installing new control points within close proximity of an existing control point. The database is missing photographs and accurate site description information. Current site descriptions do not accurately define the location of the point but refer to the project that used the point, or some other interesting fact associated with the point. The Grand Canyon Monitoring and Research Center (GCMRC) resolved this problem by turning the data collection effort into an educational exercise for the participants of the Grand Canyon Youth organization. Grand Canyon Youth is a non-profit organization providing experiential education for middle and high school aged youth. GCMRC and the Grand Canyon Youth formed a partnership where GCMRC provided the logistical support, equipment, and training to conduct the field work, and the Grand Canyon Youth provided the time and personnel to complete the field work. Two data

  19. Physiographic rim of the Grand Canyon, Arizona: a digital database

    USGS Publications Warehouse

    Billingsley, George H.; Hampton, Haydee M.

    1999-01-01

    This Open-File report is a digital physiographic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, PostScript and PDF format plot files, each containing an image of the map. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled "For Those Who Don't Use Digital Geologic Map Databases" below. This physiographic map of the Grand Canyon is modified from previous versions by Billingsley and Hendricks (1989), and Billingsley and others (1997). The boundary is drawn approximately along the topographic rim of the Grand Canyon and its tributary canyons between Lees Ferry and Lake Mead (shown in red). Several isolated small mesas, buttes, and plateaus are within this area, which overall encompasses about 2,600 square miles. The Grand Canyon lies within the southwestern part of the Colorado Plateaus of northern Arizona between Lees Ferry, Colorado River Mile 0, and Lake Mead, Colorado River Mile 277. The Colorado River is the corridor for raft trips through the Grand Canyon. Limestone rocks of the Kaibab Formation form most of the north and south rims of the Grand Canyon, and a few volcanic rocks form the north rim of parts of the Uinkaret and Shivwits Plateaus. Limestones of the Redwall Limestone and lower Supai Group form the rim of the Hualapai Plateau area, and Limestones of Devonian and Cambrian age form the boundary rim near the mouth of Grand Canyon at the Lake Mead. The natural physiographic boundary of the Grand Canyon is roughly the area a visitor would first view any part of the Grand Canyon and its tributaries.

  20. Shelf-Slope Exchanges near Submarine Canyons in the Southern Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gong, D.

    2016-02-01

    Shelf-slope exchange processes are major physical drivers of biological productivity near the shelf-break. Observations from two Slocum ocean gliders in Fall 2013 are used to explore the driving mechanisms of cross-shelf-slope exchanges near Norfolk Canyon and Washington Canyon in the southern Mid-Atlantic Bight. Offshore excursion of bottom "cold pool" water, and shoreward intrusion of slope water at surface layer and thermocline depth occurred during northeasterly along-shelf winds. The saline intrusions of surface slope water resided between the cold pool and surface shelf water, and reached the bottom on the outer and mid-shelf, while the offshore excursion of cold pool water was found between the surface and intermediate slope-water over the canyon. Ekman transport calculation shows wind-driven cross-shelf transport can partially explain this interleaving pattern of intrusions. Scaling analysis of double diffusive processes demonstrate that they also likely played a role in the cross-shelf-slope exchange. A unique canyon upwelling event was captured in and around Washington Canyon during a period of southwesterly along-shelf wind and along-shelf flow to the northeast. The water mass distributions and isopycnal responses in both along-canyon and cross-canyon transects are consistent with scaling analysis and numerical studies of canyon upwelling. Temperature-Salinity properties of water masses in the canyon suggest active mixing between shelf and slope water masses near the canyon head. These results point to the importance of wind, double diffusion, and canyon topography on shelf-slope exchange in the MAB.

  1. Evolution and Submarine Landslide Potential of Monterey Canyon Head, Offshore Central California

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Johnson, S. Y.; Hart, P. E.; Hartwell, S. R.

    2016-12-01

    Monterey Canyon, offshore central California, incises the shelf from near the shoreline to 30 km seaward where axial water depths approach 2,000 m. It is one of the world's most studied submarine canyons, yet debate continues concerning its age, formation, and associated geologic hazards. To address these issues, the USGS, with partial support from the California Seafloor Mapping Program, collected hundreds of kilometers of high-resolution, mini-sparker, single-channel (2009 and 2011 surveys) and multichannel (2015 survey) seismic-reflection profiles near the canyon head. The seismic data were combined with multibeam bathymetry to generate a geologic map of the proximal canyon, which delineates numerous faults and compound submarine landslide headwall scarps (covering up to 4 km2) along canyon walls. Seismic-reflection data reveal a massive ( 100 km2 lateral extent) paleochannel cut-and-fill complex underlying the proximal canyon. These subsurface cut-and-fill deposits span both sides of the relatively narrow modern canyon head, crop out in canyon walls, and incise into Purisima Formation (late Miocene and Pliocene) bedrock to depths of up to 0.3 s two-way travel time ( 240 m) below the modern shelf. We propose that the paleochannel complex represents previous locations of a migrating canyon head, and attribute its origin to multiple alternating cycles of fluvial and submarine canyon erosion and deposition linked to fluctuating sea levels. Thus, the canyon head imaged in modern bathymetry is a relatively young feature, perhaps forming in the last 20,000 years of sea-level rise. The paleocanyon deposits are significantly less consolidated than bedrock in deeper canyon walls, and therefore, are probably more prone to submarine landsliding. Nearby mapped faults occur within the active, distributed, San Andreas fault system, and earthquake-generated strong ground motions are likely triggers for past and future submarine landslides and potential associated tsunamis.

  2. Deep-Water Coral Diversity and Habitat Associations: Differences among Northeast Atlantic Submarine Canyons

    NASA Astrophysics Data System (ADS)

    Shank, T. M.

    2016-02-01

    From 2012 to 2015, annual seafloor surveys using the towed camera TowCam were used to characterize benthic ecosystems and habitats to groundtruth recently developed habitat suitability models that predict deep-sea coral locations in northwest Atlantic canyons. Faunal distribution, abundance, and habitat data were obtained from more than 90 towed camera surveys in 21 canyons, specifically Tom's, Hendrickson, Veatch, Gilbert, Ryan, Powell, Munson, Accomac, Leonard, Washington, Wilmington, Lindenkohl, Clipper, Sharpshooter, Welker, Dogbody, Chebacco, Heel Tapper, File Bottom, Carteret, and Spencer Canyons, as well as unnamed minor canyons and inter-canyon areas. We also investigated additional canyons including Block, Alvin, Atlantis, Welker, Heezen, Phoenix, McMaster, Nantucket, and two minor canyons and two intercanyon areas through high-definition ROV image surveys from the NOAA CANEX 2013 and 2014 expeditions. Significant differences in species composition and distribution correlated with specific habitat types, depth, and individual canyons. High abundances and diversity of scleractinians, antipatharians, octocorals and sponges were highly correlated with habitat substrates, includingvertical canyon walls, margins, sediments, cobbles, boulders, and coral rubble habitat. Significant differences in species composition among canyons were observed across similar depths suggesting that many canyons may have their own biological and geological signature. Locating and defining the composition and distribution of vulnerable coral ecosystems in canyons in concert with validating predictive species distribution modeling has resulted in the regional management and conservation recommendations of these living resources and the largest proposed Marine Protected Area in North American waters.

  3. Lung cancer risk assessment due to traffic-generated particles exposure in urban street canyons: A numerical modelling approach.

    PubMed

    Scungio, M; Stabile, L; Rizza, V; Pacitto, A; Russi, A; Buonanno, G

    2018-08-01

    Combustion-generated nanoparticles are responsible for negative health effects due to their ability to penetrate in the lungs, carrying toxic compounds with them. In urban areas, the coexistence of nanoparticle sources and particular street-building configurations can lead to very high particle exposure levels. In the present paper, an innovative approach for the evaluation of lung cancer incidence in street canyon due to exposure to traffic-generated particles was proposed. To this end, the literature-available values of particulate matter, PAHs and heavy metals emitted from different kind of vehicles were used to calculate the Excess Lifetime Cancer Risk (ELCR) at the tailpipe. The estimated ELCR was then used as input data in a numerical CFD (Computational Fluid Dynamics) model that solves the mass, momentum, turbulence and species transport equations, in order to evaluate the cancer risk in every point of interest inside the street canyon. Thus, the influence of wind speed and street canyon geometry (H/W, height of building, H and width of the street, W) on the ELCR at street level was evaluated by means of a CFD simulation. It was found that the ELCR calculated on the leeward and windward sides of the street canyon at a breathable height of 1.5 m, for people exposed 15 min per day for 20 years, is equal to 1.5 × 10 -5 and 4.8 × 10 -6 , respectively, for wind speed of 1 m/s and H/W equal to 1. The ELCR at street level results higher on the leeward side for aspect ratios equal to 1 and 3, while for aspect ratio equal to 2 it is higher on the windward side. In addition, the simulations showed that with the increasing of wind speed the ELCR becomes lower everywhere in the street canyon, due to the increased in dispersion. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Lava Flows in the Grand Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Over vast expanses of time, natural processes like floods and volcanoes deposit layers of rock on the Earth's surface. To delve down through layers of rock is to explore our planet's history. Sometimes rock layers are exposed through human activity, such as drilling or excavation. Other times, rivers carve through the rock. One of the best, and most well-known, examples of a river exposing ancient rocks is Colorado River in Arizona's Grand Canyon. What fewer people know is that the Grand Canyon also has a history of relatively recent (on geologic time scales) volcanism. The evidence--hardened lava--spills down the canyon walls all the way to the river. On June 22, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the Grand Canyon, near 36.2 degrees north latitude and 113.2 degrees west longitude. ASTER detects light visible to human eyes as well as 'invisible' infrared light. Because different minerals reflect different portions of the light spectrum, ASTER can see varying mineral compositions of the rocks it observes, as well as detecting vegetation. In this three-dimensional visualization, lava fields appear brownish gray, darker than the layers of limestone, sandstone and other rock in the canyon. Vegetation appears green, and sparsely vegetated areas appear mustard. Water in the Colorado River is blue-purple. Geologists estimate that between 1.8 million and 400,000 years ago, lava flows actually dammed the Colorado River more than a dozen times. Some of the lava dams were as high as 600 meters (about 1,969 feet), forming immense reservoirs. Over time, enough water and sediment built up to push the river flow over the tops of these dams and eventually erode them away. Today, remnants of these lava dams remain throughout the area, along with the much older rock layers they cover. Among the most well known examples of these 'frozen' lava cascades is Lava Falls, which spills down to the

  5. The flow across a street canyon of variable width—Part 2:. Scalar dispersion from a street level line source

    NASA Astrophysics Data System (ADS)

    Simoëns, Serge; Wallace, James M.

    As described in Part 1 [Simoëns et al., 2007. The flow across a street canyon of variable width—Part 1: kinematic description. Atmospheric Environment 41, 9002-9017] measurements have been made of the velocity field around and within the canyon formed by two obstacles placed on the wall of a turbulent boundary layer. Here in Part 2 measurements of the scalar dispersion of smoke released from a two-dimensional slot in the wall perpendicular to the mean flow and located parallel to and midway between these two square obstacles are presented. The Reynolds number of the boundary layer at the slot location without the obstacles in place was Rθ≈980. Statistical properties of the concentration field and the scalar fluxes in the streamwise plane are reported here for canyon openings that have been chosen based on characteristics of the kinematic description. These opening widths, expressed as multiples of the obstacle height, are 1 h, 4 h and 8 h. The mean concentration field revealed that the much of the scalar is trapped on the leeward side of the upstream obstacle before some of it escapes the canyon and is entrained on the roof of the upstream obstacle. It then is spread downstream by the turbulence in the wake of this obstacle. Surprisingly, the root mean square (rms) concentration field reveals that high concentration fluctuations exist in a zone where velocity field turbulence is very low. Measured streamwise scalar fluxes were found to be negative above the obstacles, whereas they are mainly positive between the obstacles. The measured wall normal scalar fluxes have an inverse behavior. Within the canyon, the scalar fluxes are greatest in the region between the large primary vortex, evident in the kinematic field, and the secondary vortex located in the corner of the leeward side of the upstream obstacle. In the flow above the obstacle roofs the wake of the upstream obstacle seems to dominate the scalar transport. Between the obstacles in and above the canyon

  6. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    USGS Publications Warehouse

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and

  7. The influence of the San Gregorio fault on the morphology of Monterey Canyon

    USGS Publications Warehouse

    McHugh, C.M.G.; Ryan, William B. F.; Eittreim, S.; Donald, Reed

    1998-01-01

    A side-scan sonar survey was conducted of Monterey Canyon and the San Gregorio fault zone, off shore of Monterey Bay. The acoustic character and morphology of the sonar images, enhanced by SeaBeam bathymetry, show the path of the San Gregorio fault zone across the shelf, upper slope, and Monterey Canyon. High backscatter linear features a few kilometers long and 100 to 200 m wide delineate the sea-floor expression of the fault zone on the shelf. Previous studies have shown that brachiopod pavements and carbonate crusts are the source of the lineations backscatter. In Monterey Canyon, the fault zone occurs where the path of the canyon makes a sharp bend from WNW to SSW (1800 m). Here, the fault is marked by NW-SE-trending, high reflectivity lineations that cross the canyon floor between 1850 m and 1900 m. The lineations can be traced to ridges on the northwestern canyon wall where they have ~ 15 m of relief. Above the low-relief ridges, bowl-shaped features have been excavated on the canyon wall contributing to the widening of the canyon. We suggest that shear along the San Gregorio fault has led to the formation of the low-relief ridges near the canyon wall and that carbonate crusts, as along the shelf, may be the source of the high backscatter features on the canyon floor. The path of the fault zone across the upper slope is marked by elongated tributary canyons with high backscatter floors and 'U'-shaped cross-sectional profiles. Linear features and stepped scarps suggestive of recent crustal movement and mass-wasting, occur on the walls and floors of these canyons. Three magnitude-4 earthquakes have occurred within the last 30 years in the vicinity of the canyons that may have contributed to the observed features. As shown by others, motion along the fault zone has juxtaposed diverse lithologies that outcrop on the canyon walls. Gully morphology and the canyon's drainage patterns have been influenced by the substrate into which the gullies have formed.

  8. Is Canyon Width a Diagnostic Indicator of the Discharge of Megafloods on Earth and Mars?

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.

    2013-12-01

    On Earth, large floods have carved steep-walled and amphitheater-headed canyons from the Pleistocene (e.g. Box Canyon, ID) through the Holocene (e.g. Asbyrgi Canyon, Iceland), to historic times (e.g. Canyon Lake Gorge, TX). The geologic record on Mars suggests that similar floods have carved canyons by waterfall retreat about 3.5 billion years ago, when the red planet was wetter and possibly warmer. We currently lack robust paleo-hydraulic tools to reconstruct the discharge of ancient floods, especially on Mars where sediment sizes are obscured from observation. To address this issue, we hypothesize that the width of canyon escarpment is controlled by the hydraulics of the canyon-carving flood due to focusing of the flood into the canyon head. We compiled field data from multiple canyons and floods on Earth and Mars and show that there is a correlation between estimated flood discharge and canyon headwall width. To explore what sets this relationship, we identified five important parameters using dimensional analysis: the Froude number, the ratio of backwater length to canyon length, the ratio of backwater length to flood width, the ratio of canyon width to flood width, and the topographic slope upstream of the canyon. We used the hydraulic numerical modeling suite ANUGA to simulate overland flow over different canyon geometries and flood parameters to systematically explore the relative bed shear stresses along the canyon rim as a metric for flow focusing. Results show that canyons that exceed a certain length, scaling with the hydraulic backwater length, have shear stresses at their heads that are significantly higher than near the canyon mouth. Shear stresses along the rim of the canyon sidewalls are limited, in comparison to stresses along the canyon head, when the flood width is of the order of the backwater length. Flow focusing only occurs for subcritical flow. Together, these results suggest that canyons may only grow from a perturbation that is large

  9. Wind-dependent beluga whale dive behavior in Barrow Canyon, Alaska

    NASA Astrophysics Data System (ADS)

    Stafford, K. M.; Citta, J. J.; Okkonen, S. R.; Suydam, R. S.

    2016-12-01

    Beluga whales (Delphinapterus leucas) are the most abundant cetacean in the Arctic. The Barrow Canyon region, Alaska, is a hotspot for Pacific Arctic belugas, likely because the oceanographic environment provides reliable foraging opportunities. Fronts are known to promote the concentration of planktonic prey; when Barrow-area winds are weak or from the west, a front associated with the Alaskan Coastal Current (ACC) intensifies. This front is weakened or disrupted when strong easterly winds slow or displace the ACC. To determine if winds influence the diving depth of belugas, we used generalized linear mixed models (GLMM) to examine how the dive behavior of animals instrumented with satellite-linked time-depth recorders varied with wind conditions. When projected along-canyon winds are from the WSW and the front associated with the ACC is enhanced, belugas tend to target shallower depths (10-100 m) associated with the front. In contrast, when strong winds from the ENE displaced the ACC, belugas tended to spend more time at depths >200 m where the Arctic halocline grades into relatively warmer Atlantic Water (AW). The probability of diving to >200 m, the number of dives >200 m, and the amount of time spent below 200 m were all significantly related to along-canyon wind stress (p<0.01). From these results and known relationships between wind stress, currents and frontal structure in Barrow Canyon and the characteristic vertical distribution of Arctic cod, we infer that the probability of belugas targeting different depth regimes is based upon how wind stress affects the relative foraging opportunities between these depth regimes. Belugas are known to target AW throughout the Beaufort Sea; however, this is the first work to show that the probability of targeting the AW layer is related to wind stress.

  10. Optimizing Street Canyon Orientation for Rajarhat Newtown, Kolkata, India

    NASA Astrophysics Data System (ADS)

    De, Bhaskar; Mukherjee, Mahua

    2017-12-01

    Air temperature in urban street canyons is increased due to the morphed urban geometry, increased surface area, decreased long wave radiation and evapo-transpiration, different thermo-physical properties of surface materials and anthropogenic heat which results in thermal discomfort. Outdoor thermal stress can be mitigated substantially by properly orienting the canyons. It is crucial for the urban planners and designers to orient street canyons optimally considering variable local climatic context. It is important especially for cities in warm humid climatic context as these cities receive higher insolation with higher relative humidity and low level macro wind flow. This paper examines influence of canyon orientation on outdoor thermal comfort and proposes the optimum canyon orientation for the Rajarhat Newtown, Kolkata - a city in warm humid climate zone. Different scenarios are generated with different orientations. Change in air temperature, wind speed, Mean Radiant Temperature (MRT) and Physiological Equivalent Temperature (PET) of different scenarios are compared to find out the optimum orientation by parametric simulation in ENVI_met. Analysing the simulation results it is observed that orientation angle between 30°-60° to north performs the best for the study area of the Rajarhat Newtown. The findings of this research will be helpful for the planners to orient the street canyons optimally for future development and extension of the Rajarhat Newtown, Kolkata.

  11. Geologic Map of the Upper Parashant Canyon and Vicinity, Mohave County, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Harr, Michelle L.; Wellmeyer, Jessica L.

    2000-01-01

    Introduction The geologic map of the upper Parashant Canyon area covers part of the Colorado Plateau and several large tributary canyons that make up the western part of Arizona's Grand Canyon. The map is part of a cooperative U.S. Geological Survey and National Park Service project to provide geologic information for areas within the newly established Grand Canyon/Parashant Canyon National Monument. Most of the Grand Canyon and parts of the adjacent plateaus have been geologically mapped; this map fills in one of the remaining areas where uniform quality geologic mapping was needed. The geologic information presented may be useful in future related studies as to land use management, range management, and flood control programs for federal and state agencies, and private concerns. The map area is in a remote region of the Arizona Strip, northwestern Arizona about 88 km south of the nearest settlement of St. George, Utah. Elevations range from about 1,097 m (3,600 ft) in Parashant Canyon (south edge of map area) to 2,145 m (7,037 ft) near the east-central edge of the map area. Primary vehicle access is by dirt road locally known as the Mount Trumbull road; unimproved dirt roads and jeep trails traverse various parts of the map area. Travel on the Mount Trumbull road is possible with 2-wheel-drive vehicles except during wet conditions. Extra fuel, two spare tires and extra food and water are highly recommended when traveling in this remote area. The map area includes about 26 sections of land belonging to the State of Arizona, about 40 sections of private land, and a small strip of the Lake Mead National Recreation Area (southeast edge of the map area). The private land is mainly clustered around the abandoned settlement of Mt. Trumbull, locally known as Bundyville, and a few sections are scattered in the upper Whitmore Canyon area just south of Bundyville. Lower elevations within the canyons support a sparse growth of sagebrush, cactus, grass, creosote bush, and a

  12. Hydrologic data, Colorado River and major tributaries, Glen Canyon Dam to Diamond Creek, Arizona, water years 1990-95

    USGS Publications Warehouse

    Rote, John J.; Flynn, Marilyn E.; Bills, D.J.

    1997-01-01

    The U.S. Geological Survey collected hydrologic data at 12 continuous-record stations along the Colorado River and its major tributaries between Glen Canyon Dam and Diamond Creek. The data were collected from October 1989 through September 1995 as part of the Bureau of Reclamation's Glen Canyon Environmental Studies. The data include daily values for streamflow discharge, suspended-sediment discharge, temperature, specific conductance, pH, and dissolved-oxygen concentrations, and discrete values for physical properties and chemical constituents of water. All data are presented in tabular form.

  13. Canyon transfer neutron absorber to fissile material ratio analysis. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemmons, J.S.

    1994-03-04

    Waste tank fissile material and non-fissile material estimates are used to evaluate criticality safety for the existing sludge inventory and batches of sludge sent to Extended Sludge Processing (ESP). This report documents the weight ratios of several non-fissile waste constituents to fissile waste constituents from canyon reprocessing waste streams. Weight ratios of Fe, Mn, Al, Mi, and U-238 to fissile material are calculated from monthly loss estimates from the F and H Canyon Low Heat Waste (LHW) and High Heat Waste (HHW) streams. The monthly weight ratios for Fe, Mn and U-238 are then compared to calculated minimum safe weightmore » ratios. Documented minimum safe weight ratios for Al and Ni to fissile material are currently not available. Total mass data for the subject sludge constituents is provided along with scatter plots of the monthly weight ratios for each waste stream.« less

  14. Restoring fire to wilderness: Sequoia and Kings Canyon National Parks

    USGS Publications Warehouse

    Manley, Jeffrey; Keifer, MaryBeth; Stephenson, Nathan L.; Kaage, William

    2001-01-01

    Sequoia and Kings Canyon National Parks, established in 1890, consist of 863,741 acres (349,551 ha) of Sierra Nevada foothills, mid-elevation conifer forest, and high-elevation alpine environment. The parks contain 36 giant sequoia (Sequoiadendron giganteum) groves, including the largest known tree, the General Sherman. Ninety-four percent of the parklands is in designated or proposed wilderness (fig. 1), with conditions resembling roadless areas in national forests.

  15. Giant submarine canyons: Is size any clue to their importance in the rock record?

    USGS Publications Warehouse

    Normark, William R.; Carlson, Paul R.

    2003-01-01

    Submarine canyons are the most important conduits for funneling sediment from continents to oceans. Submarine canyons, however, are zones of sediment bypassing, and little sediment accumulates in the canyon until it ceases to be an active conduit. To understand the potential importance in the rock record of any given submarine canyon, it is necessary to understand sediment-transport processes in, as well as knowledge of, deep-sea turbidite and related deposits that moved through the canyons. There is no straightforward correlation between the final volume of the sedimentary deposits and size of the associated submarine canyons. Comparison of selected modern submarine canyons together with their deposits emphasizes the wide range of scale differences between canyons and their impact on the rock record.Three of the largest submarine canyons in the world are incised into the Beringian (North American) margin of the Bering Sea. Zhemchug Canyon has the largest cross-section at the shelf break and greatest volume of incision of slope and shelf. The Bering Canyon, which is farther south in the Bering Sea, is first in length and total area. In contrast, the largest submarine fans-e.g., Bengal, Indus, and Amazon-have substantially smaller, delta-front submarine canyons that feed them; their submarine drainage areas are one-third to less than one-tenth the area of Bering Canyon. some very large deep-sea channels and tubidite deposits are not even associated with a significant submarine canyon; examples include Horizon Channel in the northeast Pacific and Laurentian Fan Valley in the North Atlantic. Available data suggest that the size of turbidity currents (as determined by volume of sediment transported to the basins) is also not a reliable indicator of submarine canyon size.

  16. UV Radiation in an Urban Canyon in Southeast Queensland

    NASA Astrophysics Data System (ADS)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  17. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    PubMed

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  18. 7 CFR 220.1 - General purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE CHILD NUTRITION PROGRAMS SCHOOL BREAKFAST PROGRAM § 220.1 General purpose and scope. This part... initiate, maintain, or expand nonprofit breakfast programs in schools. [Amdt. 25, 41 FR 34758, Aug. 17...

  19. 7 CFR 220.1 - General purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE CHILD NUTRITION PROGRAMS SCHOOL BREAKFAST PROGRAM § 220.1 General purpose and scope. This part... initiate, maintain, or expand nonprofit breakfast programs in schools. [Amdt. 25, 41 FR 34758, Aug. 17...

  20. Currents in monterey submarine canyon

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.

    2009-01-01

    Flow fields of mean, subtidal, and tidal frequencies between 250 and 3300 m water depths in Monterey Submarine Canyon are examined using current measurements obtained in three yearlong field experiments. Spatial variations in flow fields are mainly controlled by the topography (shape and width) of the canyon. The mean currents flow upcanyon in the offshore reaches (>1000 m) and downcanyon in the shallow reaches (100-m amplitude isotherm oscillations and associated high-speed rectilinear currents. The 15-day spring-neap cycle and a ???3-day??? band are the two prominent frequencies in subtidal flow field. Neither of them seems directly correlated with the spring-neap cycle of the sea level.

  1. USGS Workshop on Scientific Aspects of a Long-Term Experimental Plan for Glen Canyon Dam, April 10-11, 2007, Flagstaff, Arizona

    USGS Publications Warehouse

    ,

    2008-01-01

    Executive Summary Glen Canyon Dam is located in the lower reaches of Glen Canyon National Recreation Area on the Colorado River, approximately 15 miles upriver from Grand Canyon National Park (fig. 1). In 1992, Congress passed and the President signed into law the Grand Canyon Protection Act (GCPA; title XVIII, sec. 1801?1809, of Public Law 102-575), which seeks ?to protect, mitigate adverse impacts to, and improve the values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established.? The Glen Canyon Dam Adaptive Management Program (GCDAMP) was implemented as a result of the 1996 Record of Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement to ensure that the primary mandate of the GCPA is met through advances in information and resources management (U.S. Department of the Interior, 1995). On November 3, 2006, the Bureau of Reclamation (Reclamation) announced it would develop a long-term experimental plan environmental impact statement (LTEP EIS) for operational activities at Glen Canyon Dam and other management actions on the Colorado River. The purpose of the long-term experimental plan is twofold: (1) to increase the scientific understanding of the ecosystem and (2) to improve and protect important downstream resources. The proposed plan would implement a structured, longterm program of experimentation to include dam operations, potential modifications to Glen Canyon Dam intake structures, and other management actions such as removal of nonnative fish species. The development of the long-term experimental plan continues efforts begun by the GCDAMP to protect resources downstream of Glen Canyon Dam, including Grand Canyon, through adaptive management and scientific experimentation. The LTEP EIS will rely on the extensive scientific studies that have been undertaken as part of the adaptive management program by the U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center (GCMRC

  2. On the nature and origin of water masses in Herald Canyon, Chukchi Sea: Synoptic surveys in summer 2004, 2008, and 2009

    NASA Astrophysics Data System (ADS)

    Linders, Johanna; Pickart, Robert. S.; Björk, Göran; Moore, G. W. K.

    2017-12-01

    Hydrographic and velocity data from three high-resolution shipboard surveys of Herald Canyon in the northwest Chukchi Sea, in 2004, 2008, and 2009, are used to investigate the water masses in the canyon and their possible source regions. Both summer and winter Pacific waters were observed in varying amounts in the different years, although in general the summer waters resided on the eastern side of the canyon while the winter waters were located on the western flank. The predominant summer water was Bering summer water, although some Alaskan coastal water resided in the canyon in the two later years likely due to wind forcing. Both newly ventilated and remnant winter waters were found in the canyon, but the amount lessened in each successive survey. Using mooring data from Bering Strait it is shown that a large amount of Bering summer water in the western channel of the strait follows a relatively direct route into Herald Canyon during the summer months, with an estimated advective speed of 10-20 cm/s. However, while the winter water observed in 2004 was consistent with a Bering Strait source (with a slower advective speed of 5-8 cm/s), the dense water in the canyon during 2008 and 2009 was more in line with a northern source. This is consistent with sections to the west of the canyon and with previously reported measurements implying winter water formation on the East Siberian shelf. Large-scale wind patterns and polynya activity on the shelf are also investigated. It was found that the former appears to impact more strongly the presence of dense water in Herald Canyon.

  3. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  4. Oak Canyon Action Memo

    EPA Pesticide Factsheets

    This memorandum requests approval for a time-critical removal action at the 27 residential properties that compose the Oak Canyon Site located in the Village of Paguate, Pueblo of Laguna, near Cibola County, New Mexico.

  5. California State Waters Map Series--Hueneme Canyon and vicinity, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.

    2012-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts

  6. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial...

  7. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial...

  8. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial...

  9. 36 CFR 7.4 - Grand Canyon National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Grand Canyon National Park. 7.4 Section 7.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.4 Grand Canyon National Park. (a) Commercial...

  10. B-Plant Canyon Ventilation Control System Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms.

  11. Sediment transport processes at the head of Halibut Canyon, Eastern Canada margin: An interplay between internal tides and dense shelf water cascading.

    NASA Astrophysics Data System (ADS)

    Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.

    2013-04-01

    during one or two tidal cycles. A similar transport mechanism can occur in other submarine canyons along the eastern Canadian margin, as well in other canyoned regions elsewhere, where winter convection generally reaches the shelf-edge.

  12. Identifying sources and processes controlling the sulphur cycle in the Canyon Creek watershed, Alberta, Canada.

    PubMed

    Nightingale, Michael; Mayer, Bernhard

    2012-01-01

    Sources and processes affecting the sulphur cycle in the Canyon Creek watershed in Alberta (Canada) were investigated. The catchment is important for water supply and recreational activities and is also a source of oil and natural gas. Water was collected from 10 locations along an 8 km stretch of Canyon Creek including three so-called sulphur pools, followed by the chemical and isotopic analyses on water and its major dissolved species. The δ(2)H and δ(18)O values of the water plotted near the regional meteoric water line, indicating a meteoric origin of the water and no contribution from deeper formation waters. Calcium, magnesium and bicarbonate were the dominant ions in the upstream portion of the watershed, whereas sulphate was the dominant anion in the water from the three sulphur pools. The isotopic composition of sulphate (δ(34)S and δ(18)O) revealed three major sulphate sources with distinct isotopic compositions throughout the catchment: (1) a combination of sulphate from soils and sulphide oxidation in the bedrock in the upper reaches of Canyon Creek; (2) sulphide oxidation in pyrite-rich shales in the lower reaches of Canyon Creek and (3) dissolution of Devonian anhydrite constituting the major sulphate source for the three sulphur pools in the central portion of the watershed. The presence of H(2)S in the sulphur pools with δ(34)S values ∼30 ‰ lower than those of sulphate further indicated the occurrence of bacterial (dissimilatory) sulphate reduction. This case study reveals that δ(34)S values of surface water systems can vary by more than 20 ‰ over short geographic distances and that isotope analyses are an effective tool to identify sources and processes that govern the sulphur cycle in watersheds.

  13. General purpose optimization software for engineering design

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1990-01-01

    The author has developed several general purpose optimization programs over the past twenty years. The earlier programs were developed as research codes and served that purpose reasonably well. However, in taking the formal step from research to industrial application programs, several important lessons have been learned. Among these are the importance of clear documentation, immediate user support, and consistent maintenance. Most important has been the issue of providing software that gives a good, or at least acceptable, design at minimum computational cost. Here, the basic issues developing optimization software for industrial applications are outlined and issues of convergence rate, reliability, and relative minima are discussed. Considerable feedback has been received from users, and new software is being developed to respond to identified needs. The basic capabilities of this software are outlined. A major motivation for the development of commercial grade software is ease of use and flexibility, and these issues are discussed with reference to general multidisciplinary applications. It is concluded that design productivity can be significantly enhanced by the more widespread use of optimization as an everyday design tool.

  14. Red Rock Canyon National Conservation Area Transportation Feasibility Study

    DOT National Transportation Integrated Search

    2012-07-31

    Red Rock Canyon National Conservation Area is a popular Bureau of Land Management natural area located near Las Vegas, Nevada. Red Rock Canyon experiences heavy congestion on its Scenic Drive and associated parking areas, due to high volumes of visit...

  15. Cold-water coral ecosystems in the Penmarc’h and Guilvinec canyons (Bay of Biscay): deep-water versus shallow water settings

    NASA Astrophysics Data System (ADS)

    de Mol, L.; van Rooij, D.; Pirlet, H.; Quemmerais, F.; Greinert, J.; Frank, N.; Henriet, J.

    2009-12-01

    In 1948, Le Danois reported for the first time the occurrence of “massifs coralliens” along the European Atlantic continental margin. Within the framework of the EC FP6 IP HERMES and ESF EuroDIVERSITY MiCROSYSTEMS projects, the R/V Belgica BiSCOSYSTEMS cruise was set out to rediscover these cold-water corals in the Penmarc’h and Guilvinec canyons along the Gascogne margin of the Bay of Biscay. During this cruise, an area of 560 km2 was studied using swath bathymetry (EM1002), high-resolution reflection seismic profiling, CTD casts, ROV observations and USBL-guided boxcoring. Based on the multibeam data and the ROV video images, two different cold-water coral reef settings were distinguished. In water depths ranging from 260 to 350 m, mini-mounds up to 10 m high, covered by dead cold-water coral rubble, were observed. In between these mounds, an alternation of rippled and unrippled seabed with a patchy distribution of dropstones was observed. The second setting features both living and dead cold-water corals (predominantly Madrepora oculata) in water depths of 700 to 950 m. At certain locations, they form dense coral fields with a size of about 10-60 m, characterized by mostly dead corals and a few living ones. In this area also hard substrate with cracks, ridges, cliffs and oyster banks was noticed. Both the shallow area with the mini mounds (SE flank of the Guilvinec canyon) and the living and dead corals in the deeper setting were sampled with boxcores. These boxcores were used to determine the different sedimentary facies and to identify coral species present on the site. For this purpose, grain size analysis, U/Th dating of coral fragments, C14 datings of foraminifera and phylogenetic/genomic studies on living species were established. The cold-water corals from the deeper area occur in a density envelope (sigma-theta) of 27.3 - 27.4 kg.m-3, falling within the range of values which are considered to be a prerequisite for the development, growth and

  16. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lowermore » Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.« less

  17. Volunteer revegetation of waste rock surfaces at the Bingham Canyon Mine, Utah.

    PubMed

    Borden, Richard K; Black, Rick

    2005-01-01

    Voluntary recolonization of sulfide-bearing waste rock dumps by native vegetation is inhibited by the harsh chemical and physical conditions. The success of volunteer vegetation on the waste rock surfaces at the Bingham Canyon (Utah) porphyry copper deposit is most strongly dependent on the soil pH and salinity, and to a lesser extent on physical characteristics such as compaction and distance from seed source. Vegetation cover and richness both decline below a paste pH of about 6 and above a paste conductivity of about 0.7 dS/m (for a 1:1 soil to water mixture). No significant vegetation establishment occurs below a soil pH of about 4.5. Young sulfide-bearing waste rock surfaces at Bingham Canyon have high salinity, but as reactive pyrite is depleted and salts are flushed from the soil, the salinity eventually declines, allowing volunteer native vegetation to become established on surfaces with a circumneutral pH. Under natural conditions, the pH of older acidic weathered surfaces will recover very slowly, but it can be rapidly raised by adding relatively small amounts of limestone because there are few intact reactive sulfides. For uncompacted waste rock surfaces with favorable chemical conditions, less than 90% gravel content, and that are located near a native seed source, the arithmetic mean volunteer vegetation cover was 56 +/- 24% and the mean species richness was 17 +/- 5. These data indicate that with adequate surface preparation and limestone addition, direct planting of older, acidic, but low salinity waste rock surfaces can greatly accelerate natural revegetation.

  18. Does littoral sand bypass the head of Mugu Submarine Canyon? - a modeling study

    USGS Publications Warehouse

    Xu, Jingping; Elias, Edwin; Kinsman, Nicole; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    A newly developed sand-tracer code for the process-based model Delft3D (Deltares, The Netherlands) was used to simulate the littoral transport near the head of the Mugu Submarine Canyon in California, USA. For westerly swells, which account for more than 90% of the wave conditions in the region, the sand tracers in the downcoast littoral drift were unable to bypass the canyon head. A flow convergence near the upcoast rim of the canyon intercepts the tracers and moves them either offshore onto the shelf just west of the canyon rim (low wave height conditions) or into the canyon head (storm wave conditions). This finding supports the notion that Mugu Canyon is the true terminus of the Santa Barbara Littoral Cell.

  19. Influence of San Gabriel submarine canyon on narrow-shelf sediment dynamics, southern California

    USGS Publications Warehouse

    Karl, Herman A.

    1980-01-01

    A conceptual model attributes the PTC to modification of shelf circulation patterns by San Gabriel Canyon. Surface waves diverge over the canyon head resulting in differential wave set up at the shore face. This forces back turbid nearshore water for a distance of a few kilometers toward the canyon. At some point on the shelf, seaward nearshore flow overlaps offshore currents generated or modified by internal waves focused onto the shelf by the canyon and/or turbulent eddies produced by flow separation in currents moving across the canyon axis. At times, these subtle processes overprint tidal and wind-driven currents and thereby create the PTC. The model suggests that canyons heading several kilometers from shore can have a regulatory effect on narrow-shelf sediment dynamics.

  20. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  1. Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba

    NASA Astrophysics Data System (ADS)

    Rodríguez-Algeciras, José; Tablada, Abel; Matzarakis, Andreas

    2017-07-01

    Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create

  2. Lung deposited surface area concentrations in a street canyon

    NASA Astrophysics Data System (ADS)

    Kuuluvainen, Heino; Hietikko, Riina; Järvinen, Anssi; Saukko, Erkka; Irjala, Matti; Niemi, Jarkko V.; Timonen, Hilkka; Keskinen, Jorma; Rönkkö, Topi

    2017-04-01

    Street canyons are interesting environments with respect to the dispersion of traffic emissions and human exposure. Pedestrians may be exposed to relatively high concentrations of fine particles and the vertical dispersion affects the human exposure above the ground level in buildings. Previously, particle concentrations have been measured in street canyons at a few different heights (Marini et al., 2015). The information on the lung deposited surface area (LDSA) concentration, which is a relevant metric for the negative health effects, is very limited even at the ground level of street canyons (Kuuluvainen et al., 2016). More information especially on the vertical dispersion and the ground level concentrations is needed, for instance, for the use of urban planning and the design of ventilation systems in buildings. Measurements were carried out in a busy street canyon in Helsinki, Finland, at an urban super-site measurement station (Mäkelänkatu 50). The data included vertical concentration profiles measured in an intensive measurement campaign with a Partector (Naneos GmbH) installed into a drone, long-term measurements with an AQ Urban particle sensor (Pegasor Ltd.), and an extensive comparison measurement in the field with different devices measuring the LDSA. These devices were an AQ Urban, Partector, DiSCmini (Testo AG), NSAM (TSI Inc.), and an ELPI+ (Dekati Ltd.). In addition, continuous measurements of gas phase components, particle size distributions, and meteorology were run at the supersite. The vertical profile measurements were con-ducted in November 2016 during two days. In the measurements, the drone was flown from the ground level to an altitude of 50 or 100 m, which is clearly above the roof level of the buildings. Altogether, 48 up-and-down flights were conducted during the two days. The vertical profiles were supported by continuous measurements at the ground level on both sides of the street canyon. The long-term measurements were conducted

  3. Science Activities Associated with Proposed 2008 High-Flow Experiment at Glen Canyon Dam

    USGS Publications Warehouse

    Hamill, John

    2008-01-01

    Grand Canyon National Park lies approximately 15 miles downriver from Glen Canyon Dam, which was built on the Colorado River just south of the Arizona-Utah border. Because the dam stops most sediment moving downstream, its presence has resulted in erosion and shrinkage of river sandbars in Grand Canyon. Fewer and smaller sandbars mean smaller camping beaches for visitors to use, continued erosion of cultural sites, and possibly less habitat for native fish, including the endangered humpback chub. In an effort to restore sandbars and related habitat and to comply with its responsibilities under the Grand Canyon Protection Act, the Department of the Interior has proposed a high-flow release of water from Glen Canyon Dam in March 2008. The U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center is responsible for coordinating research associated with the proposed experiment. The proposed studies are designed to evaluate the feasibility of using such high flows to improve a range of Grand Canyon resources.

  4. Storm Water Quality in Los Alamos Canyon following the Cerro Grande Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Johansen; B. Enz; B. Gallaher

    In May 2000, the Cerro Grande Fire burned about 7400 acres of forest on the Los Alamos National Laboratory (LANL) and about 10,000 acres in watersheds above LANL on Santa Fe National Forest lands. The resulting burned landscapes raised concerns of increased storm water runoff and transport of contaminants by runoff in the canyons traversing LANL. On June 2 and 3, 2000, rain fell in the Los Alamos Canyon watershed generating storm water runoff in the canyon bottom. This event was important in that it was the first significant runoff on LANL following the fire and occurred in a canyonmore » containing known legacy waste sites. Samples from this runoff were analyzed for radionuclide, metal, inorganic, and organic constituents. Results show radionuclide concentrations at or below previous (pre-fire) maximum levels at locations on LANL and downstream. However, greater concentrations of some fallout-associated radionuclides (cesium-137 and strontium-90) were seen arriving on LANL from upstream areas compared to pre-fire conditions. Tests indicate most of the radionuclides in the samples were bound to sediments, not dissolved in water. Most radionuclide concentrations in sediments were below LANL Screening Action Levels, with cesium-137 and strontium-90 as exceptions. Most radionuclide concentrations in samples taken at LANL's downstream boundary were greater than those taken upstream, indicating the presence of contributing sources on LANL. For comparison purposes, doses were calculated on a mrem per liter of unfiltered water basis for 11 radionuclides commonly associated with atmospheric fallout and with LANL operations. The maximum dose was 0.094 mrem per liter unfiltered water and was largely associated with plutonium-239/240. In contrast, all filtered samples had total doses less than 0.001 mrem per liter. Compared to past data, potential doses were not increased by the fire during this initial runoff event. Of the 25 metals tested for, seven were above pre

  5. Physical and chemical characteristics of Knowles, Forgotten, and Moqui Canyons, and effects of recreational use on water quality, Lake Powell, Arizona and Utah

    USGS Publications Warehouse

    Hart, Robert J.; Taylor, Howard E.; Antweiler, Ronald C.; Fisk, Greg G.; Anderson, G.M.; Roth, D.A.; Flynn, Marilyn E.; Peart, D.B.; Truini, Margot; Barber, L.B.

    2005-01-01

    Side canyons of Lake Powell are the most popular recreation areas of the Glen Canyon National Recreation Area in Arizona and Utah. There are more than 90 side canyons that are tributaries to the main lake body of Lake Powell. Near Bullfrog and Halls Crossing marinas in Utah, visitors frequent Knowles, Forgotten, and Moqui Canyons to fish, boat, camp, and hike the sandstone formations for which Lake Powell is famous. Areas of recreational activity are greatest near beaches in side canyons. Emissions from houseboats, personal watercraft, speedboats, and from some nonboating recreational activities introduce contaminants to the lake and to beach areas. The U.S. Geological Survey documented concentrations of trace elements, volatile organic compounds, organic wastewater contaminants, and other byproducts of fuel-based contaminants in water and bed material in Knowles, Forgotten, and Moqui Canyons during the summers of 2001 and 2002. Field work was conducted during four trips when recreational use was at a minimum (before Memorial Day in May) and when it was at a maximum (near Labor Day in September). Knowles Canyon was treated as a control; therefore, public access by motorcraft was not permitted during the study. Electric-powered or oar-powered research boats were used to collect samples and measure properties in Knowles Canyon. Record-low reservoir elevations during 2000-2002 limited the availability of camping and day-use beaches in Forgotten and Moqui Canyons. Although more beach areas were exposed during this period, the steep slopes of the beaches made it difficult to use the beaches for camping purposes. Side canyon waters of Knowles, Forgotten, and Moqui Canyons were similarly stratified (physically and chemically) during the study from natural advective and convective reservoir processes. Metalimnetic oxygen minimas were observed in September 2001 and 2002 in the side canyons and the main body of Lake Powell. Chemical concentrations of several organic

  6. Composition, Distribution and Abundance of Anthropogenic Marine Debris in Northwest Atlantic Submarine Canyons

    NASA Astrophysics Data System (ADS)

    Heyl, T. P.; Nizinski, M. S.; Kinlan, B. P.; Shank, T. M.

    2016-02-01

    Submarine canyons are important productive habitats in the deep-sea, as well as downslope conduits for transporting sediment and organic material that enhances local and regional species diversity, including species and ecosystems vulnerable to anthropogenic activities. In 2012 and 2013, we documented and characterized deep-sea coral and sponge ecosystems in virtually unexplored northeast and mid-Atlantic canyons using WHOI's TowCam towed imaging system on the FSV Bigelow. Specifically, thirty-eight digital image TowCam surveys were completed in 10 canyons, with more than 91,000 images documenting not only deep-sea coral and sponge ecosystems and habitat features, but also anthropogenic debris. Canyons surveyed cover most of the latitudinal range of the northeast US region and include Toms Canyon complex, Ryan, Veatch, Gilbert, Powell, and Munson canyons. Each of these canyon hosted debris across depths of 550 to 2100m, consisting mostly of fisheries equipment, including fishing lines, traps, and nets. Potentially-land-based debris (e.g., plastic bags and magazines) was also present in all canyons surveyed. These substrates likely enhance colonization and often served as habitat for specific sessile and mobile species. Comparisons of debris in these canyons revealed depth-related differences, likely due to offshore extent of fishing activities, and will be compared to density and abundances of other deep-sea environments. The occurrence of anthropogenic debris on Northeast US canyon floors suggests major sources via transport ship and fishing-related activities and perhaps the rapid transport of debris through near-shore zones and entrainment in bottom currents.

  7. Seven years of geomorphic change in the head of Monterey Canyon, CA: Steady state equilibrium or monotonic change?

    NASA Astrophysics Data System (ADS)

    Smith, D. P.; Kvitek, R. G.; Ross, E.; Iampietro, P.; Paull, C. K.; Sandersfeld, M.

    2010-12-01

    The head of Monterey submarine canyon has been surveyed with high-precision multibeam sonar at least once each year since September 2002. This poster provides a summary of changes between September 2002 and September 2008. Data were collected with a variety of Reson mulitbeam sonar heads, and logged with an ISIS data acquisition system. Vessel attitude was corrected using an Applanix POS MV equipped with an auxillary C-Nav 2050 GPS receiver. Data were processed and filtered and cleaned in Caris HIPS. Depth changes for various time spans were determined through raster subtraction of pairs of 3-m resolution bathymetric grids in ArcMap. The depth change analyses focused on the canyon floor, except where a landslide occurred on a wall, and where obvious gullying near the headwall had occurred during the time of our study. Canyon walls were generally excluded from analysis. The analysis area was 1,414,240 sq meters. The gross changes between 2002 and 2008 include net erosion of 2,300,000 m^3 +/- 800,000 m^3 of material from the canyon. The annualized rate of net sediment loss from this time frame agrees within an order of magnitude with our previously published estimates from earlier (shorter) time frames, so the erosion events seem to be moderate magnitude and frequent, rather than infrequent and catastrophic. The greatest sediment loss appears to be from lateral erosion of channel-bounding terraces rather than deepening or scouring of the existing channel axis. A single landslide event that occurred in summer 2003 had an initial slide scar (void) volume of 71,000 m^3. The scar was observed to increase annually, and had grown to approximately 96,000 m^3 by 2008. The initial slide was too small to be tsunamigenic. In contrast to the monotonic canyon axis widening, the shoreward terminus of the canyon (canyon lip) appears to be in steady state equilibrium with sediment supply entering the canyon from the littoral zone. The lip position, indicated by the clearly defined

  8. Creationism in the Grand Canyon, Texas Textbooks

    NASA Astrophysics Data System (ADS)

    Folger, Peter

    2004-01-01

    AGU President Bob Dickinson, together with presidents of six other scientific societies, have written to Joseph Alston, Superintendent of Grand Canyon National Park, pointing out that a creationist book, The Grand Canyon: A Different View, is being sold in bookstores within the borders of the park as a scientific explanation about Grand Canyon geologic history. President Dickinson's 16 December letter urges that Alston clearly separate The Grand Canyon: A Different View from books and materials that discuss the legitimate scientific understanding of the origin of the Grand Canyon. The letter warns the Park Service against giving the impression that it approves of the anti-science movement known as young-Earth creationism, or that it endorses the advancement of religious tenets disguised as science. The text of the letter is on AGU's Web site http://www.agu.org/sci_soc/policy/sci_pol.html. Also, this fall, AGU sent an alert to Texas members about efforts by intelligent design creationists aimed at weakening the teaching of biological evolution in textbooks used in Texas schools. The alert pointed scientists to a letter, drafted by AGU, together with the American Institute of Physics, the American Physical Society, the Optical Society of America, and the American Astronomical Society, that urged the Texas State Board of Education to adopt textbooks that presented only accepted, peer-reviewed science and pedagogical expertise. Over 550 scientists in Texas added their names to the letter (http://www.agu.org/sci_soc/policy/texas_textbooks.pdf ), sent to the Board of Education on 1 November prior to their vote to adopt a slate of new science textbooks. The Board voted 11-5 in favor of keeping the textbooks free of changes advocated by groups supporting intelligent design creationism.

  9. Anomalous topography on the continental shelf around Hudson Canyon

    USGS Publications Warehouse

    Knebel, H.J.

    1979-01-01

    Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.

  10. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    USGS Publications Warehouse

    Stevens, Thomas; Paull, Charles K.; Ussler, William III; McGann, Mary; Buylaert, Jan-Pieter; Lundsten, Eve M.

    2013-01-01

    While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry into the canyon head while the 14C ages of benthic foraminifera record the deposition of hemipelagic sediments that bound the sand horizons. We use both single-grain and small (∼2 mm area) single-aliquot regeneration approaches on vibracore samples from fining-upward sequences at various water depths to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand (from 14C ages of benthic foraminifera in bracketing hemipelagic sediments) are interpreted as indicating that the sand does not pass through the entire canyon instantly in large individual events, but rather moves multiple times before emerging onto the fan. The increased spread in single-grain OSL dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL ages that are consistent with a sub-decadal recurrence frequency while the fining-upward sand sequences on the fan indicate that the channel is still experiencing events with a 150

  11. 5. Long view from canyon edge, west of the overlook, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Long view from canyon edge, west of the overlook, showing relationship of Mather Point to neighboring south rim projections; view to southeast - Mather Point Overlook, South Entrance Road, Grand Canyon Village, Coconino County, AZ

  12. General-Purpose Electronic System Tests Aircraft

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1989-01-01

    Versatile digital equipment supports research, development, and maintenance. Extended aircraft interrogation and display system is general-purpose assembly of digital electronic equipment on ground for testing of digital electronic systems on advanced aircraft. Many advanced features, including multiple 16-bit microprocessors, pipeline data-flow architecture, advanced operating system, and resident software-development tools. Basic collection of software includes program for handling many types of data and for displays in various formats. User easily extends basic software library. Hardware and software interfaces to subsystems provided by user designed for flexibility in configuration to meet user's requirements.

  13. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV).

    PubMed

    Doya, Carolina; Chatzievangelou, Damianos; Bahamon, Nixon; Purser, Autun; De Leo, Fabio C; Juniper, S Kim; Thomsen, Laurenz; Aguzzi, Jacopo

    2017-01-01

    Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014). Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage). 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata) were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea), undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens) were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri) were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon), dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of grooved tanner

  14. General Purpose Heat Source Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    The General Purpose Heat Source (GPHS) project seeks to combine the development of an electrically heated, single GPHS module simulator with the evaluation of potential nuclear surface power systems. The simulator is designed to match the form, fit, and function of actual GPHS modules which normally generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of the subsystems and systems without sacrificing the quantity and quality of the test data gathered. Current GPHS activities are centered on developing robust heater designs with sizes and weights which closely match those of actual Pu238 fueled GPHS blocks. Designs are being pursued which will allow operation up to 1100 C.

  15. Overview of the Colorado River Canyon from the helicopter pad. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Colorado River Canyon from the helicopter pad. View of the Nevada side where new bridge will cross canyon, view northwest - Hoover Dam, Spanning Colorado River at Route 93, Boulder City, Clark County, NV

  16. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    NASA Astrophysics Data System (ADS)

    Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.

    2017-08-01

    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.

  17. Status and Trends of Resources Below Glen Canyon Dam Update - 2009

    USGS Publications Warehouse

    Hamill, John F.

    2009-01-01

    The protection of resources found in Glen Canyon National Recreation Area and Grand Canyon National Park, Arizona, emerged as a significant public concern in the decades following the completion of Glen Canyon Dam in 1963. The dam, which lies about 15 miles upstream from the park, altered the Colorado River's flow, temperature, and sediment-carrying capacity, resulting over time in beach erosion, expansion of nonnative species, and losses of native fish. During the 1990s, in response to public concern, Congress and the Department of the Interior embarked on an ongoing effort to reduce and address the effects of dam operations on downstream resources. In 2005, the U.S. Geological Survey produced a comprehensive report entitled 'The State of the Colorado River Ecosystem in Grand Canyon', which documented the condition and trends of resources downstream of Glen Canyon Dam from 1991 to 2004. This fact sheet updates the 2005 report to extend its findings to include data published through April 2009 for key resources.

  18. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper

  19. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    USGS Publications Warehouse

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  20. Specific Conductance in the Colorado River between Glen Canyon Dam and Diamond Creek, Northern Arizona, 1988-2007

    USGS Publications Warehouse

    Voichick, Nicholas

    2008-01-01

    The construction of Glen Canyon Dam, completed in 1963, resulted in substantial physical and biological changes to downstream Colorado River environments between Lake Powell and Lake Mead - an area almost entirely within Grand Canyon National Park, Ariz. In an effort to understand these changes, data have been collected to assess the condition of a number of downstream resources. In terms of measuring water quality, the collection of specific-conductance data is a cost-effective method for estimating salinity. Data-collection activities were initially undertaken by the Bureau of Reclamation's Glen Canyon Environmental Studies (1982-96); these efforts were subsequently transferred to the U.S. Geological Survey's Grand Canyon Monitoring and Research Center (1996 to the present). This report describes the specific-conductance dataset collected for the Colorado River between Glen Canyon Dam and Diamond Creek from 1988 to 2007. Data-collection and processing methods used during the study period are described, and time-series plots of the data are presented. The report also includes plots showing the relation between specific conductance and total dissolved solids. Examples of the use of specific conductance as a natural tracer of parcels of water are presented. Analysis of the data indicates that short-duration spikes and troughs in specific-conductance values lasting from hours to days are primarily the result of flooding in the Paria and Little Colorado Rivers, Colorado River tributaries below Glen Canyon Dam. Specific conductance also exhibits seasonal variations owing to changes in the position of density layers within the reservoir; these changes are driven by inflow hydrology, meteorological conditions, and background stratification. Longer term trends in Colorado River specific conductance are reflective of climatological conditions in the upper Colorado River Basin. For example, drought conditions generally result in an increase in specific conductance in Lake

  1. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Glen Canyon National Recreation Area. 7.70 Section 7.70 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3) After...

  2. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Glen Canyon National Recreation Area. 7.70 Section 7.70 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3) After...

  3. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Glen Canyon National Recreation Area. 7.70 Section 7.70 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3) After...

  4. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Glen Canyon National Recreation Area. 7.70 Section 7.70 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3) After...

  5. 36 CFR 7.70 - Glen Canyon National Recreation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Glen Canyon National Recreation Area. 7.70 Section 7.70 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... in excess of flat wake speed on the Escalante River from Cow Canyon to Coyote Creek. (3) After...

  6. Megabenthic assemblages at the Hudson Canyon head (NW Atlantic margin): Habitat-faunal relationships

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Gori, Andrea; Guida, Vincent G.; Gili, Josep-Maria

    2017-09-01

    The distribution of megabenthic communities at the head of Hudson Canyon and adjacent continental shelf was studied by means of underwater video transects and still photo imagery collected using a towed camera system. The goal was to explore the relationships between faunal distribution and physical seafloor conditions and to test the hypothesis that increased seafloor heterogeneity in the Hudson Canyon supports a larger diversity of benthic communities, compared with the adjacent continental shelf. Hierarchical cluster analysis was performed to identify benthic assemblages as defined in imagery. The BIO-ENV procedure and the Canonical Correspondence Analysis were carried out to elucidate species groupings in relation to terrain variables extracted from bathymetric data. Species accumulation curves were generated to evaluate species turn over in and out of Hudson Canyon. The results indicate that seafloor morphology is the main physical factor related to benthic community composition and distribution. Assemblages dominated by sponges, zoanthids and cup corals colonized the canyon margins and flanks, and were associated with coarse-grained sediments, while sea pen assemblages were observed along muddy seafloor within the thalweg. An assemblage dominated by sea stars occurred on the shelf, associated with a sandy seafloor. Some assemblages were exclusively observed in the canyon area, suggesting that the increased variability of seafloor composition, together with the oceanographic processes specific to the canyon area, enhance beta diversity. The colonization by benthic suspension feeders within the canyon, in contrast to shelf assemblages, mainly composed of carnivores and detritus feeders could be favored the intense hydrodynamics at the canyon head that increase the availability of suspended organic matter. From the perspective of management and conservation of marine resources, the results obtained support the relevance of Hudson Canyon as a biodiversity hotspot

  7. Changing People, Consistent Experiences: 20 Years of Change and Stability at Grand Canyon National Park 1984-2004

    ERIC Educational Resources Information Center

    Backlund, Erik A.

    2009-01-01

    The purpose of this dissertation is to examine long term changes in the overnight backcountry hiker population at Grand Canyon National Park (GCNP) between 1984 and 2004. Longitudinal studies of visitor behavior in wildland recreation settings have been relatively rare but offer great potential for the improvement of management, clarification of…

  8. Establishing a pre-mining geochemical baseline at a uranium mine near Grand Canyon National Park, USA

    USGS Publications Warehouse

    Naftz, David L.; Walton-Day, Katherine

    2016-01-01

    During 2012, approximately 404,000 ha of Federal Land in northern Arizona was withdrawn from consideration of mineral extraction for a 20-year period to protect the Grand Canyon watershed from potentially adverse effects of U mineral exploration and development. The development, operation, and reclamation of the Canyon Mine during the withdrawal period provide an excellent field site to understand and document off-site migration of radionuclides within the withdrawal area. As part of the Department of Interior's (DOI's) study plan for the exclusion area, the objective of our study is to utilize pre-defined decision units (DUs) in areas within and surrounding the Canyon Mine to demonstrate how newly established incremental sampling methodologies (ISM) combined with multivariate statistical methods can be used to document a repeatable and statistically defensible measure of pre-mining baseline conditions in surface soils and stream sediment samples prior to ore extraction. During the survey in June 2013, the highest pre-mining 95% upper confidence level (UCL) concentrations with respect to As, Mo, U, and V were found in the triplicate samples collected from surface soils in the mine site DU designated as M1. Gamma activities were slightly elevated in soils within the M1 DU (up to 28 μR/h); however, off-site gamma activities in soil and stream-sediment samples were lower (< 6 to 12 μR/h). Hierarchical cluster analysis (HCA) was applied to 33 chemical constituents contained in the multivariate data generated from the analysis of triplicate samples collected in the soil and stream sediment DUs within and surrounding Canyon Mine. Most of the triplicate samples from individual DUs were grouped in the same dendrogram cluster when using a similarity value (SV) of 0.70 (unitless). Different group membership of triplicate samples from two of the four haul road DUs was likely the result of heterogeneity induced by non-native soil material introduced from the gravel road base

  9. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem.

    PubMed

    Santora, Jarrod A; Zeno, Ramona; Dorman, Jeffrey G; Sydeman, William J

    2018-05-15

    Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.

  10. 4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. NOTE ROAD CUT ON CANYON WALL. LOOKING NNE. GIS: N-37 56 30.3 / 119 13 44.8 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  11. 7 CFR 3201.48 - General purpose household cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false General purpose household cleaners. 3201.48 Section 3201.48 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.48...

  12. 7 CFR 3201.48 - General purpose household cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false General purpose household cleaners. 3201.48 Section 3201.48 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.48...

  13. 7 CFR 3201.48 - General purpose household cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false General purpose household cleaners. 3201.48 Section 3201.48 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF PROCUREMENT AND PROPERTY MANAGEMENT, DEPARTMENT OF AGRICULTURE GUIDELINES FOR DESIGNATING BIOBASED PRODUCTS FOR FEDERAL PROCUREMENT Designated Items § 3201.48...

  14. 36 CFR 7.92 - Bighorn Canyon National Recreation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Bighorn Canyon National Recreation Area. 7.92 Section 7.92 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.92 Bighorn Canyon National Recreation Area. (a) Aircraft-designated...

  15. Rapid formation of a modern bedrock canyon by a single flood event

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Fonstad, Mark A.

    2010-07-01

    Deep river canyons are thought to form slowly over geological time (see, for example, ref. 1), cut by moderate flows that reoccur every few years. In contrast, some of the most spectacular canyons on Earth and Mars were probably carved rapidly during ancient megaflood events. Quantification of the flood discharge, duration and erosion mechanics that operated during such events is hampered because we lack modern analogues. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood. The event offers a rare opportunity to analyse canyon formation and test palaeo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use digital topographic models and visible/near-infrared aerial images from before and after the flood, discharge measured during the event, field measurements and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated ~7m of limestone and transformed a soil-mantled valley into a bedrock canyon in just ~3days. We find that canyon morphology is strongly dependent on rock type: plucking of limestone blocks produced waterfalls, inner channels and bedrock strath terraces, whereas abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment. We suggest that our results might improve hydraulic reconstructions of similar megafloods on Earth and Mars.

  16. Giant landslides and turbidity currents in the Agadir Canyon Region, NW-Africa

    NASA Astrophysics Data System (ADS)

    Krastel, Sebastian; Wynn, Russell B.; Stevenson, Christopher; Feldens, Peter; Mehringer, Lisa; Schürer, Anke

    2017-04-01

    Coring and drilling of the Moroccan Turbidite System off NW-Africa revealed a long sequence of turbidites, mostly sourced from the Moroccan continental margin and the volcanic Canary Islands. The largest individual flow deposits in the Moroccan Turbidite System contain sediment volumes >100 km3, although these large-scale events are relatively infrequent with a recurrence interval of 10,000 years (over the last 200,000 years). The largest siliciclastic flow in the last 200,000 years was the 'Bed 5 event', which transported 160 km3 of sediment up to 2000 km from the Agadir Canyon region to the southwest Madeira Abyssal Plain. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during RV Maria S. Merian Cruise MSM32 in late 2013. A major landslide area was identified 200 km south of the Agadir Canyon. A landslide was traced from this failure area to the Agadir Canyon. This landslide entered the canyon in about 2500 m water depth. Despite a significant increase in slope angle, the landslide did not disintegrate into a turbidity current when entering the canyon but moved on as landslide for at least another 200 km down the canyon. The age of the landslide ( 145 ka) does not correspond to any major turbidte deposit in the Moroccan Turbidite System, further supporting the fact that the landslide did not disintegrate into a major turbidity current. A core taken about 350 m above the thalweg in the head region of Agadir Canyon shows a single coarse-grained turbidite, which resembles the composition of the Bed 5 event in the Madeira Abyssal Plain. Hence, the Bed 5 turbidite originated as a failure in the

  17. Analysis of the Momentum and Pollutant Transport at the Roof Level of 2D Idealized Street Canyons: a Large-Eddy Simulation Solution

    NASA Astrophysics Data System (ADS)

    Cheng, Wai Chi; Liu, Chun-Ho

    2010-05-01

    vigorous turbulent transport and mixing near the windward facade. Budget analyses of the velocity variance, shear stress, pollutant concentration and pollutant flux were also performed. A sharp peak of TKE production is developed at the roof level. Owing to the strong gradient of streamwise velocity, the streamwise velocity fluctuation is promoted first. The TKE is then transferred from the streamwise to the spanwise and vertical velocity fluctuations via the pressure-rate-of-strain tensor. Analogous to the quadrant analyses, the TKE production grows from a sharp peak (~0.1h width, where h is the building height) on the leeward side to a broad one (~0.5h width) on the windward side. This pattern is partly attributed to the growth of the flow instability and the enhanced turbulent processes along the roof of the street canyon in the streamwise direction. The pollutant removal mechanism is clearly illustrated by the budget analysis of the pollutant concentration. The pollutant is carried by the primary recirculation from the ground level to the roof level of the street canyon. The vertical turbulent pollutant flux dominates the pollutant removal in the region right below the roof level (0.8h) while the streamwise advection dominates the pollutant removal in the shear layer (hh). It is thus suggested that the pollutant is initially removed vertically from the street canyon to the shear layer by turbulence before being carried away by the prevalent wind. Moreover, the roof-level flow instability was found to play a major role so a more efficient pollutant removal was observed on the windward side.

  18. Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Cunha, Marina R.; Paterson, Gordon L. J.; Amaro, Teresa; Blackbird, Sabena; de Stigter, Henko C.; Ferreira, Clarisse; Glover, Adrian; Hilário, Ana; Kiriakoulakis, Konstadinos; Neal, Lenka; Ravara, Ascensão; Rodrigues, Clara F.; Tiago, Áurea; Billett, David S. M.

    2011-12-01

    The macrofaunal assemblages from three Portuguese submarine canyons, Nazaré, Cascais and Setúbal were studied from samples collected at their upper (900-1000 m), middle (3200-3500 m) and lower sections (4200-4500 m) and at the adjacent open slopes (˜1000 m), during the HERMES cruises D297 (R.R.S. Discovery, 2005) CD179 (R.R.S. Charles Darwin, 2006) and 64PE252 (R.V. Pelagia, 2006). The taxonomic composition and patterns in biodiversity, abundance and community structure of the benthic macrofauna were described. Annelida (42.1% of total abundance; 137 species) and Arthropoda (20.6%; 162 species) were, respectively, the most abundant and the most species-rich Phyla among the 342 taxa identified during this study. Multivariate analyses showed significant differences between and within canyons and between canyons and open slope assemblages. At their upper section, canyons supported higher macrofauna abundance but slightly lower biodiversity than the adjacent slopes at similar depth. In all canyons abundance reached the highest value in the middle section and the lowest in the upper section, with marked fluctuations in Nazaré (474-4599 ind. m -2) and lower variability in Cascais (583-1125 ind. m -2). The high abundance and dominance of the assemblages in the middle section of Nazaré and Setúbal was accompanied by depressed biodiversity, while in Cascais, Hurlbert's expected species richness showed increasing values from the upper to the middle canyon, and maintained the high values at the lower section. Overall, the Nazaré Canyon showed the lowest expected species richness (ES (100): 16-39) and the Cascais Canyon the highest (39-54). There was a significant negative Kendall's correlation between total organic carbon concentrations in the superficial sediments and ES (100) and a significant positive correlation between total nitrogen and macrofauna density. The influences of organic enrichment, sediment heterogeneity and hydrodynamic regime on the abundance

  19. Sediment dynamics and post-glacial evolution of the continental shelf around the Blanes submarine canyon head (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Durán, Ruth; Canals, Miquel; Lastras, Galderic; Micallef, Aaron; Amblas, David; Pedrosa-Pàmies, Rut; Sanz, José Luis

    2013-11-01

    The Blanes submarine canyon (BC) deeply incises the Catalan continental shelf in the NW Mediterranean Sea. As a consequence of the closeness (only 4 km) of its head to the coastline and the mouth of the Tordera River, the canyon has a direct influence on the shelf dispersal system as it collects large amounts of sediment, mainly during high-energy events. Multibeam bathymetry, backscatter imagery and very-high resolution seismic reflection profiles have allowed characterizing the morphology of the continental shelf around the canyon head, also identifying sediment sources and transport pathways into the canyon. The morphological data have also been used to reconstruct the evolution of the continental shelf during the last sea-level transgression so that the current understanding of shelf-to-canyon sediment exchanges through time could be improved. The continental shelf surrounding the BC consists of both depositional and erosional or non-depositional areas. Depositional areas display prominent sediment bodies, a generally smooth bathymetry and variable backscatter. These include: (i) an area of modern coarse-grained sediment accumulation that comprises the inner shelf; (ii) a modern fine-grained sedimentation area on the middle shelf offshore Tossa de Mar; and (iii) a modern sediment depleted area that covers most of the middle and outer shelf to the west of the canyon head. Erosional and non-depositional areas display a rough topography and high backscatter, and occur primarily to the east of the canyon head, where the arrival of river-fed inputs is very small. In agreement with this pattern, the continental shelf north and west of the canyon head likely is the main source of shelf sediment into the canyon. To the north, a pattern of very high backscatter extends from the coastline to the canyon head, suggesting the remobilization and off-shelf export of fines. Additionally, relict near-shore sand bodies developed over the Barcelona shelf that extend to the canyon

  20. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA

    USGS Publications Warehouse

    Nosal, D.C.; Cartamil, D.C.; Long, J.W.; Luhrmann, M.; Wegner, N.C.; Graham, J.B.

    2013-01-01

    The demography, spatial distribution, and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon in La Jolla, California, USA, were investigated to resolve the causal explanations for this and similar shark aggregations. All sharks sampled from the aggregation site (n=140) were sexually mature and 97.1 % were female. Aerial photographs taken during tethered balloon surveys revealed high densities of milling sharks of up to 5470 sharks ha-1. Eight sharks were each tagged with a continuous acoustic transmitter and manually tracked without interruption for up to 48 h. Sharks exhibited strong site-fidelity and were generally confined to a divergence (shadow) zone of low wave energy, which results from wave refraction over the steep bathymetric contours of the submarine canyon. Within this divergence zone, the movements of sharks were strongly localized over the seismically active Rose Canyon Fault. Tracked sharks spent most of their time in shallow water (≤2 m for 71.0 % and ≤10 m for 95.9 % of time), with some dispersing to deeper (max: 53.9 m) and cooler (min: 12.7 °C) water after sunset, subsequently returning by sunrise. These findings suggest multiple functions of this aggregation and that the mechanism controlling its formation, maintenance, and dissolution is complex and rooted in the sharks' variable response to numerous confounding environmental factors.

  1. Characterization of the thermal structure inside an urban canyon: field measurements and validation of a simple model

    NASA Astrophysics Data System (ADS)

    Giovannini, Lorenzo; Zardi, Dino; de Franceschi, Massimiliano

    2013-04-01

    The results of measurement campaigns are analyzed to investigate the thermal structure in an urban canyon, and to validate a simplified model simulating the air and surface temperatures from surface energy budgets. Starting from measurements at roof-top level, the model provides time series of air and surface temperatures, as well as surface fluxes. Two campaigns were carried out in summer 2007 and in winter 2008/09 in a street of the city of Trento (Italy). Temperature sensors were placed at various levels near the walls flanking the canyon and on a traffic light in the street center. Furthermore, the atmosphere above the mean roof-top level was monitored by a weather station on top of a tower located nearby. Air temperatures near the walls, being strongly influenced by direct solar radiation, display considerable contrasts between the opposite sides of the canyon. On the other hand, when solar radiation is weak or absent, the temperature field remains rather homogeneous.Moreover, air temperature inside the canyon is generally higher than above roof level, with larger differences during summertime. Air temperatures from the above street measurements are well simulated by the model in both seasons. Furthermore, the modeled surface temperatures are tested against a dataset of wall surface temperatures from the Advanced Tools for Rational Energy Use Towards Sustainability-Photocatalytic Innovative Coverings Applications for Depollution (ATREUS-PICADA) experiment, and a very good agreement is found. Results suggest that themodel is a reliable and convenient tool for simplified assessment of climatic conditions occurring in urban canyons under various weather situations.

  2. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  3. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  4. A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fu, X.; Tao, S.

    2016-12-01

    Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.

  5. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction

    NASA Astrophysics Data System (ADS)

    Buccolieri, Riccardo; Salim, Salim Mohamed; Leo, Laura Sandra; Di Sabatino, Silvana; Chan, Andrew; Ielpo, Pierina; de Gennaro, Gianluigi; Gromke, Christof

    2011-03-01

    This paper first discusses the aerodynamic effects of trees on local scale flow and pollutant concentration in idealized street canyon configurations by means of laboratory experiments and Computational Fluid Dynamics (CFD). These analyses are then used as a reference modelling study for the extension a the neighbourhood scale by investigating a real urban junction of a medium size city in southern Italy. A comparison with previous investigations shows that street-level concentrations crucially depend on the wind direction and street canyon aspect ratio W/H (with W and H the width and the height of buildings, respectively) rather than on tree crown porosity and stand density. It is usually assumed in the literature that larger concentrations are associated with perpendicular approaching wind. In this study, we demonstrate that while for tree-free street canyons under inclined wind directions the larger the aspect ratio the lower the street-level concentration, in presence of trees the expected reduction of street-level concentration with aspect ratio is less pronounced. Observations made for the idealized street canyons are re-interpreted in real case scenario focusing on the neighbourhood scale in proximity of a complex urban junction formed by street canyons of similar aspect ratios as those investigated in the laboratory. The aim is to show the combined influence of building morphology and vegetation on flow and dispersion and to assess the effect of vegetation on local concentration levels. To this aim, CFD simulations for two typical winter/spring days show that trees contribute to alter the local flow and act to trap pollutants. This preliminary study indicates that failing to account for the presence of vegetation, as typically practiced in most operational dispersion models, would result in non-negligible errors in the predictions.

  6. CIRCAL-2 - General-purpose on-line circuit design.

    NASA Technical Reports Server (NTRS)

    Dertouzos, M. L.; Jessel, G. P.; Stinger, J. R.

    1972-01-01

    CIRCAL-2 is a second-generation general-purpose on-line circuit-design program with the following main features: (1) multiple-analysis capability; (2) uniform and general data structures for handling text editing, network representations, and output results, regardless of analysis; (3) special techniques and structures for minimizing and controlling user-program interaction; (4) use of functionals for the description of hysteresis and heat effects; and (5) ability to define optimization procedures that 'replace' the user. The paper discusses the organization of CIRCAL-2, the aforementioned main features, and their consequences, such as a set of network elements and models general enough for most analyses and a set of functions tailored to circuit-design requirements. The presentation is descriptive, concentrating on conceptual rather than on program implementation details.

  7. Modes of development of slope canyons and their relation to channel and levee features on the Ebro sediment apron, off-shore northeastern Spain

    USGS Publications Warehouse

    O'Connell, S.; Ryan, William B. F.; Normark, W.R.

    1987-01-01

    Six submarine slope canyons in an area of the northwestern Mediterranean, offshore from the Ebro River and Delta, were surveyed with bathymetric swathmapping (SeaBeam) and mid-range side-looking sonar (SeaMARC I). All of the canyons have slightly winding paths with concave-upwards gradients that are relatively steep shallower than 1,200 m. Two major types of canyons are identified on the basis of their morphologic character at the base of the slope; Type-I canyons lead to an unchannelled base-of-slope deposit and Type-II canyons are continuous with channel-levee systems that cross the rise. Four Type-I canyons were surveyed in the area. Two of these are broad, U-shaped, steep (average gradients of 1:14), do not indent the shelf, and terminate downslope at debris-flow deposits. These two canyons, the most northern in the area, have rounded heads with extensive gullies separated by knife-edge ridges. Relief of the canyon walls is about equal on both sides of the canyons, although the right-hand walls (looking downslope) are generally steeper. The other two Type-I canyons in the area are similar in that they do not indent the shelf, but they are much smaller and shallower and coalesce before terminating in the base-of-slope region. The two Type-II canyons that feed leveed-channels are U-shaped with flatter floors, longer profiles and gentler gradients than Type-I canyons. They are closer to the Valencia Valley and have relatively small cross-sectional areas. We propose a four-stage evolutionary sequence to explain the development of the canyons observed in this section on the prograding Ebro margin. During the initial stage, slumping and erosion on the slope creates a network of small gullies. During the next stage, headward growth of one (or more) gully leads to a major indentation of the shelf. This is the critical factor for developing a channel that will incise the slope and provide a major conduit for moving sediment to the basin. Stage 3 is characterized by the

  8. Influence of a dam on fine-sediment storage in a canyon river

    USGS Publications Warehouse

    Hazel, J.E.; Topping, D.J.; Schmidt, J.C.; Kaplinski, M.

    2006-01-01

    Glen Canyon Dam has caused a fundamental change in the distribution of fine sediment storage in the 99-km reach of the Colorado River in Marble Canyon, Grand Canyon National Park, Arizona. The two major storage sites for fine sediment (i.e., sand and finer material) in this canyon river are lateral recirculation eddies and the main-channel bed. We use a combination of methods, including direct measurement of sediment storage change, measurements of sediment flux, and comparison of the grain size of sediment found in different storage sites relative to the supply and that in transport, in order to evaluate the change in both the volume and location of sediment storage. The analysis shows that the bed of the main channel was an important storage environment for fine sediment in the predam era. In years of large seasonal accumulation, approximately 50% of the fine sediment supplied to the reach from upstream sources was stored on the main-channel bed. In contrast, sediment budgets constructed for two short-duration, high experimental releases from Glen Canyon Dam indicate that approximately 90% of the sediment discharge from the reach during each release was derived from eddy storage, rather than from sandy deposits on the main-channel bed. These results indicate that the majority of the fine sediment in Marble Canyon is now stored in eddies, even though they occupy a small percentage (???17%) of the total river area. Because of a 95% reduction in the supply of fine sediment to Marble Canyon, future high releases without significant input of tributary sediment will potentially erode sediment from long-term eddy storage, resulting in continued degradation in Marble Canyon. Copyright 2006 by the American Geophysical Union.

  9. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  10. 78 FR 77662 - Notice of Availability (NOA) for General Purpose Warehouse and Information Technology Center...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... (NOA) for General Purpose Warehouse and Information Technology Center Construction (GPW/IT)--Tracy Site.... ACTION: Notice of Availability (NOA) for General Purpose Warehouse and Information Technology Center... FR 65300) announcing the publication of the General Purpose Warehouse and Information Technology...

  11. Are amphitheater headed canyons indicative of a particular formative process?

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.; Johnson, J. P.

    2012-12-01

    Tributary canyons with amphitheater-shaped heads have previously been interpreted as evidence for groundwater seepage erosion, particularly in environments where fluvial processes are assumed to be negligible. However, some have questioned whether this canyon morphology is truly diagnostic of a particular formative process. We seek to determine the relative roles of fluvial and groundwater-related processes and the strength of stratigraphic control on the Colorado Plateau through a combination of fieldwork and GIS analysis. Amphitheater valleys may have overhanging or steep-sided headwalls with a semicircular plan-view pattern. It is reasonable to assume that this form is a result of focused erosion at the base of the headwall (i.e. sapping). Two frequently cited agents may lead to undermining: plunge-pool scour at the base of waterfalls and seepage induced weathering and erosion where the groundwater table intersects the land surface. Both processes are enhanced where weaker, less permeable layers underlie stronger cap rock. We conducted preliminary fieldwork in two locations on the Colorado Plateau, where there are many classic examples of amphitheater headed canyons. The Escalante River landscape is highly variable with a range of canyon and valley-head forms, many of which cut through the thick Navajo Sandstone into the underlying shale and sand of the Kayenta Formation. Northeast of Escalante National Monument, at the base of the Henry Mountains, is Tarantula Mesa. The canyons there are also considerably variable, with nearly all containing at least one abrupt amphitheater knickpoint at the valley head or farther downstream. Our observations are presented here with an analysis of the canyon profiles, surrounding topography, and potential structural controls. We have found that nearly all amphitheaters in both locales show signs of groundwater seepage weathering and plausibly seepage erosion. However, many also contain plunge pools and evidence of substantial

  12. Seasonal and spatial patterns of growth of rainbow trout in the Colorado River in Grand Canyon, AZ

    USGS Publications Warehouse

    Yard, Micheal D.; Korman, Josh; Walters, Carl J.; Kennedy, T.A.

    2016-01-01

    Rainbow trout (Oncorhynchus mykiss) have been purposely introduced in many regulated rivers, with inadvertent consequences on native fishes. We describe how trout growth rates and condition could be influencing trout population dynamics in a 130 km section of the Colorado River below Glen Canyon Dam based on a large-scale mark–recapture program where ∼8000 rainbow trout were recaptured over a 3-year period (2012–2014). There were strong temporal and spatial variations in growth in both length and weight as predicted from von Bertalanffy and bioenergetic models, respectively. There was more evidence for seasonal variation in the growth coefficient and annual variation in the asymptotic length. Bioenergetic models showed more variability for growth in weight across seasons and years than across reaches. These patterns were consistent with strong seasonal variation in invertebrate drift and effects of turbidity on foraging efficiency. Highest growth rates and relative condition occurred in downstream reaches with lower trout densities. Results indicate that reduction in rainbow trout abundance in Glen Canyon will likely increase trout size in the tailwater fishery and may reduce downstream dispersal into Grand Canyon.

  13. Bedrock Canyons Carved by the Largest Known Floods on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lamb, M. P.; Lapôtre, M. G. A.; Larsen, I. J.; Williams, R. M. E.

    2017-12-01

    The surface of Earth is a dynamic and permeable interface where the rocky crust is sculpted by ice, wind and water resulting in spectacular mountain ranges, vast depositional basins and environments that support life. These landforms and deposits contain a rich, yet incomplete, record of Earth history that we are just beginning to understand. Some of the most dramatic landforms are the huge bedrock canyons carved by catastrophic floods. On Mars, similar bedrock canyons, known as Outflow Channels, are the most important indicators of large volumes of surface water in the past. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations - that suggests that bedrock canyons carved by megafloods rapidly evolve to a size and shape such that boundary shear stresses just exceed that required to entrain fractured blocks of rock. The threshold shear stress constraint allows for quantitative reconstruction of the largest known floods on Earth and Mars, and implies far smaller discharges than previous methods that assume flood waters fully filled the canyons to high water marks.

  14. 3D View of Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).

    The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land

  15. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons.

    PubMed

    Tong, Nelson Y O; Leung, Dennis Y C

    2012-01-01

    A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.

  16. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.

    2016-11-01

    This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.

  17. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)

    PubMed Central

    Doya, Carolina; Chatzievangelou, Damianos; Bahamon, Nixon; Purser, Autun; De Leo, Fabio C.; Juniper, S. Kim; Thomsen, Laurenz; Aguzzi, Jacopo

    2017-01-01

    Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014). Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage). 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata) were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea), undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens) were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri) were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon), dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of grooved tanner

  18. Fourmile Canyon Fire Findings

    Treesearch

    Russell Graham; Mark Finney; Chuck McHugh; Jack Cohen; Dave Calkin; Rick Stratton; Larry Bradshaw; Ned Nikolov

    2012-01-01

    The Fourmile Canyon Fire burned in the fall of 2010 in the Rocky Mountain Front Range adjacent to Boulder, Colorado. The fire occurred in steep, rugged terrain, primarily on privately owned mixed ponderosa pine and Douglas-fir forests. The fire started on September 6 when the humidity of the air was very dry (¡Ö

  19. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...: The Glen Canyon Dam Adaptive Management Program (AMP) was implemented as a result of the Record of... consultation requirements of the Grand Canyon Protection Act (Pub. L. 102-575) of 1992. The AMP includes a.../amp/amwg/mtgs/13may08/index.html . Time will be allowed for any individual or organization wishing to...

  20. Deictic primitives for general purpose navigation

    NASA Technical Reports Server (NTRS)

    Crismann, Jill D.

    1994-01-01

    A visually-based deictic primative used as an elementary command set for general purpose navigation was investigated. It was shown that a simple 'follow your eyes' scenario is sufficient for tracking a moving target. Limitations of velocity, acceleration, and modeling of the response of the mechanical systems were enforced. Realistic paths of the robots were produced during the simulation. Scientists could remotely command a planetary rover to go to a particular rock formation that may be interesting. Similarly an expert at plant maintenance could obtain diagnostic information remotely by using deictic primitives on a mobile are used in the deictic primitives, we could imagine that the exact same control software could be used for all of these applications.

  1. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  2. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier-Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    NASA Astrophysics Data System (ADS)

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; Harman, Todd; Nelson, Matthew A.; Brown, Michael J.; Pardyjak, Eric R.

    2017-08-01

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier-Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H_d/H_u) and street canyon-width to building-width aspect ratio ( S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is

  3. Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, north-central Nevada

    USGS Publications Warehouse

    John, D.A.; Hofstra, A.H.; Fleck, R.J.; Brummer, J.E.; Saderholm, E.C.

    2003-01-01

    /or marcasite veins. Ore minerals consist mostly of electrum and Ag sulfide and selenide minerals, with minor to major amounts of pyrite, marcasite, and arsenopyrite, and local stibnite. Both types of ores have similar geochemical signatures, characterized by high Au, Ag, As, Sb, and Se contents, locally high Hg, Mo, Tl, and W contents, and low Cu, Pb, and Zn contents. Stable isotope data indicate that ore fluids consisted dominantly of meteoric water that evolved by deep circulation through Paleozoic sedimentary rocks at low water/rock ratios (about 1) and high temperatures (>200??C). Calculated isotopic compositions of ore fluids are ??18OH2O = -3 to -7 per mil, ??DH2O = -107 to -124 per mil, ??13CCO2 = 0 to -6 per mil, and ??34SH2S = -3 to +8 per mil. The ore fluids obtained much of their H2S and CO2 and probably scavenged ore metals and trace elements from the Paleozoic sedimentary rocks. Some H2S and CO2 may have been derived from degassing Miocene magmas. Mule Canyon formed at shallow depths, probably about 100 m below the paleosurface. Ore fluids were dilute, nearly neutral in pH, reduced, H2S-rich, and CO2-bearing. Peak temperatures in ore zones reached 230?? to 265??C at nearly lithostatic pressures when some crystalline quartz ?? adularia precipitated, but most ore formed at temperatures <200??C at near hydrostatic pressures and was accompanied by precipitation of opaline and chalcedonic silica ?? adularia ?? calcite and dolomite. Deposition of gold in As-rich overgrowths on pyrite and/or marcasite in disseminated ores occurred owing to decreasing H2S in the ore fluids resulting from sulfidation reactions. Later electrum and Ag selenide precipitation in open spaces occurred owing to boiling, loss of H2S to the vapor phase, and cooling. Mule Canyon is similar to most other low-sulfidation Au-Ag deposits associated with Miocene tholeiitic bimodal basalt-rhyolite magmatism in the Great Basin, such as Sleeper, Midas, and Buckhorn. Major differences at Mule Canyon are

  4. SIG: a general-purpose signal processing program. User's manual. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lager, D.; Azevedo, S.

    1985-05-09

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-domain and frequenccy-domain signals. The manual contains a complete description of the SIG program from the user's stand-point. A brief exercise in using SIG is shown. Complete descriptions are given of each command in the SIG core. General information about the SIG structure, command processor, and graphics options are provided. An example usage of SIG for solving a problem is developed, and error message formats are briefly discussed. (LEW)

  5. Evidence of Trawl-Induced Resuspension at the Whittard Canyon, NE Atlantic?

    NASA Astrophysics Data System (ADS)

    Wilson, A. M.; Kiriakoulakis, K.; Raine, R.; Gerritsen, H. D.; Blackbird, S.; Allcock, A. L.; White, M. G.

    2016-02-01

    Four research surveys (2011-2014) to the Whittard Canyon have taken place as part of an Irish Bio-discovery and Ecosystem functioning project. Hydrographic observations including turbidity measurements and samples for biogeochemical analysis were collected in order to improve our understanding of sediment transport, biogeochemical cycling and trophic food webs within canyons. Benthic and intermediate nepheloid layers were detected during all four surveys, in eastern and western branches of the canyon. These layers act as a pathway from productive shelf environments to the deep abyss. Unusual peaks in turbidity were detected in two branches of the canyon in June 2013. These turbidity peaks, termed Enhanced Nepheloid Layers (ENLs), had elevated suspended particulate matter concentrations exceeding 1 mg L-1. Typically, concentrations of material in nepheloid layers range between 0.28-0.6 mg L-1, while the largest ENLs measured between 2-8 mg L-1. The ENLs measured 100-260 m in vertical height and were detected in water depths of between 640-2880 m. Vessel Monitoring System data showed that high spatial and temporal activity of potential bottom trawling vessels coincided with the occurrence of the ENLs. Molar C/N ratios of the suspended organic material from the ENLs showed a high degree of degradation. While trawling has previously been suspected to affect the Whittard Canyon, this is the first study to provide evidence of such activity. Regular occurrences of these events are likely to have implications for increased sediment fluxes, burial of organic carbon and alteration of benthic and canyon ecosystems.

  6. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections.

    PubMed

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-08-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Erosional threshold for the formation of bedrock canyons carved by megafloods on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Lapotre, Mathieu G. A.; Larsen, Isaac J.; Williams, Rebecca M. E.

    2017-04-01

    Enormous canyons have been carved into the surfaces of Earth and Mars by catastrophic outbursts of water. On Mars, these bedrock canyons, known as the planetary-scale outflow channels, are the most important indicator of large volumes of flowing water in the planet's history. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration, and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations of similar landforms on Earth - that suggests that bedrock canyons carved by megafloods may rapidly evolve to a size and shape in which boundary shear stress just exceeds that required to entrain fractured blocks of rock. Recent advances in theory for plucking, sliding and toppling of fractured rock allow for quantitative constraints on erosion thresholds. Coupling these erosional constraints with 2-D hydrodynamic models at waterfalls shows that cataracts in basalt, which are common in megaflood terrain, evolve to a threshold state such that canyon width accurately reflects flood discharge. The erosional threshold hypothesis also is consistent with the formation of gravel bars in the Channeled Scablands of the Missoula Floods, USA, and with observations of a small flood-carved canyon from a dam overflow event in 2002 in Texas. Together, these studies suggest that canyons progressively erode in concert with megaflooding, such that flood waters never fully filled the final canyon relief, implying smaller flood discharges and longer durations than models that assume near canyon-filling floods routed over modern topography.

  8. Mapping wilderness character in Sequoia and Kings Canyon National Parks

    Treesearch

    James Tricker; Peter Landres; Gregg Fauth; Paul Hardwick; Alex Eddy

    2014-01-01

    The Sequoia-Kings Canyon Wilderness was established in September of 1984 when President Ronald Reagan signed the California Wilderness Act (PL 98-425). In March 2009, President Barack Obama signed the Omnibus Public Land Management Act (PL 111-11) designating the John Krebs Wilderness and the Sequoia-Kings Canyon Wilderness Addition (all wholly contained within SEKI)....

  9. Internal tides affect benthic community structure in an energetic submarine canyon off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Liao, Jian-Xiang; Chen, Guan-Ming; Chiou, Ming-Da; Jan, Sen; Wei, Chih-Lin

    2017-07-01

    Submarine canyons are major conduits of terrestrial and shelf organic matter, potentially benefiting the seafloor communities in the food-deprived deep sea; however, strong bottom currents driven by internal tides and the potentially frequent turbidity currents triggered by storm surges, river flooding, and earthquakes may negatively impact the benthos. In this study, we investigated the upper Gaoping Submarine Canyon (GPSC), a high-sediment-yield canyon connected to a small mountain river (SMR) off southwest (SW) Taiwan. By contrasting the benthic meiofaunal and macrofaunal communities within and outside the GPSC, we examined how food supplies and disturbance influenced the benthic community assemblages. The benthic communities in the upper GPSC were mainly a nested subset of the adjacent slope assemblages. Several meiofaunal (e.g. ostracods) and macrofaunal taxa (e.g. peracarid crustaceans and mollusks) that typically occurred on the slope were lost from the canyon. The polychaete families switched from diverse feeding guilds on the slope to motile subsurface deposit feeders dominant in the canyon. The diminishing of epibenthic peracarids and proliferation of deep burrowing polychaetes in the GPSC resulted in macrofauna occurring largely within deeper sediment horizons in the canyon than on the slope. The densities and numbers of taxa were depressed with distinct and more variable composition in the canyon than on the adjacent slope. Both the densities and numbers of taxa were negatively influenced by internal tide flushing and positively influenced by food availability; however, the internal tides also negatively influenced the food supplies. While the meiofauna and macrofauna densities were both depressed by the extreme physical conditions in the GPSC, only the macrofaunal densities increased with depth in the canyon, presumably related to increased frequency and intensity of disturbance toward the canyon head. The population densities of meiofauna, on the

  10. 75 FR 39147 - Establishment of Class E Airspace; Bryce Canyon, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... E airspace at Bryce Canyon, UT, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Bryce Canyon Airport. This will improve the safety and management of Instrument Flight Rules (IFR) operations at the airport. DATES...

  11. Turbulent Transfer Between Street Canyons and the Overlying Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Salizzoni, Pietro; Marro, Massimo; Soulhac, Lionel; Grosjean, Nathalie; Perkins, Richard J.

    2011-12-01

    The turbulent exchange of momentum between a two-dimensional cavity and the overlying boundary layer has been studied experimentally, using hot-wire anemometry and particle image velocimetry (PIV). Conditions within the boundary layer were varied by changing the width of the canyons upstream of the test canyon, whilst maintaining the square geometry of the test canyon. The results show that turbulent transfer is due to the coupling between the instabilities generated in the shear layer above the canyons and the turbulent structures in the oncoming boundary layer. As a result, there is no single, unique velocity scale that correctly characterizes all the processes involved in the turbulent exchange of momentum across the boundary layer. Similarly, there is no single velocity scale that can characterize the different properties of the turbulent flow within the canyon, which depends strongly on the way in which turbulence from the outer flow is entrained into the cavity and carried round by the mean flow. The results from this study will be useful in developing simple parametrizations for momentum exchange in the urban canopy, in situations where the street geometry consists principally of relatively long, uniform streets arranged in grid-like patterns; they are unlikely to be applicable to sparse geometries composed of isolated three-dimensional obstacles.

  12. Environmental and human impact on the sedimentary dynamic in the Rhone Delta subaquatic canyons (France-Switzerland)

    NASA Astrophysics Data System (ADS)

    Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.

    2012-04-01

    Deltas are very sensitive environments and highly vulnerable to variations in water discharge and the amount of suspended sediment load provided by the delta-forming currents. Human activities in the watershed, such as building of dams and irrigation ditches, or river bed deviations, may affect the discharge regime and sediment input, thus affecting delta growth. Underwater currents create deeply incised canyons cutting into the delta lobes. Understanding the sedimentary processes in these subaquatic canyons is crucial to reconstruct the fluvial evolution and human impact on deltaic environments and to carry out a geological risk assessment related to mass movements, which may affect underwater structures and civil infractructure. Recently acquired high-resolution multibeam bathymetry on the Rhone Delta in Lake Geneva (Sastre et al. 2010) revealed the complexity of the underwater morphology formed by active and inactive canyons first described by Forel (1892). In order to unravel the sedimentary processes and sedimentary evolution in these canyons, 27 sediment cores were retrieved in the distal part of each canyon and in the canyon floor/levee complex of the active canyon. Geophysical, sedimentological, geochemical and radiometric dating techniques were applied to analyse these cores. Preliminary data show that only the canyon originating at the current river mouth is active nowadays, while the others remain inactive since engineering works in the watershed occurred, confirming Sastre et al. (2010). However, alternating hemipelagic and turbiditic deposits on the easternmost canyons, evidence underflow processes during the last decades as well. Two canyons, which are located close to the Rhone river mouth, correspond to particularly interesting deeply incised crevasse channels formed when the underwater current broke through the outer bend of a meander in the proximal northern levee. In these canyons, turbidites occur in the sediment record indicating ongoing

  13. Small-scale turbidity currents in a big submarine canyon

    USGS Publications Warehouse

    Xu, Jingping; Barry, James P.; Paull, Charles K.

    2013-01-01

    Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ∼30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.

  14. A Predictive Model for Submarine Canyon Type Based on the Relative Influence of Rivers, Waves and Tides.

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.

    2017-12-01

    In recent years progress has been achieved in directly measuring turbidity currents in submarine canyons and channels. It is useful to consider how representative these observations are of the diversity that potentially exists in the dynamics of turbidity currents among different canyons and channels. Firstly, we integrate sediment core, bathymetric and (in a limited number of cases) direct observations of turbidity current dynamics from 20 submarine canyons on the northern California Margin. We use this dataset to construct a diagram that explains canyon type, and thus turbidity current characteristics (grain-size carried, flow power, relative frequency of flows), based on the relative influence of rivers, waves and tides at the canyon head. This diagram enables prediction of canyon type and thus processes using three easily measurable characteristics: (i) distance of the canyon head from the shoreline; (ii) distance of the canyon head from the nearest river mouth; and (iii) local shelf width. Secondly, we test and refine the diagram using published data on submarine canyons from around the world. We also discuss the influence of outsized events such as earthquakes on submarine canyons. Finally, we demonstrate the location within the diagram of current monitoring studies and thus suggest where it might be fruitful to focus future monitoring efforts.

  15. SIG: a general-purpose signal processing program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lager, D.; Azevedo, S.

    1986-02-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. It also accommodates other representations for data such as transfer function polynomials. Signal processing operations include digital filtering, auto/cross spectral density, transfer function/impulse response, convolution, Fourier transform, and inverse Fourier transform. Graphical operations provide display of signals and spectra, including plotting, cursor zoom, families of curves, and multiple viewport plots. SIG provides two user interfaces with a menu mode for occasional users and a command mode for more experienced users. Capability exits for multiple commands per line, commandmore » files with arguments, commenting lines, defining commands, automatic execution for each item in a repeat sequence, etc. SIG is presently available for VAX(VMS), VAX (BERKELEY 4.2 UNIX), SUN (BERKELEY 4.2 UNIX), DEC-20 (TOPS-20), LSI-11/23 (TSX), and DEC PRO 350 (TSX). 4 refs., 2 figs.« less

  16. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  17. A Laboratory model for the flow in urban street canyons induced by bottom heating

    NASA Astrophysics Data System (ADS)

    Liu, Huizhi; Liang, Bin; Zhu, Fengrong; Zhang, Boyin; Sang, Jianguo

    2003-07-01

    Water tank experiments are carried out to investigate the convection flow induced by bottom heating and the effects of the ambient wind on the flow in non-symmetrical urban street canyons based on the PIV (Particle Image Visualization) technique. Fluid experiments show that with calm ambient wind, the flows in the street canyon are completely driven by thermal force, and the convection can reach the upper atmosphere of the street canyon. Horizontal and vertical motions also appear above the roofs of the buildings. These are the conditions which favor the exchange of momentum and air mass between the street canyon and its environment. More than two vortices are induced by the convection, and the complex circulation pattern will vary with time in a wider street canyon. However, in a narrow street canyon, just one vortex appears. With a light ambient wind, the bottom heating and the associated convection result in just one main vortex. As the ambient wind speed increases, the vortex becomes more organized and its center shifts closer to the leeward building.

  18. Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulet, C. T.; LaGory, K. E.; Environmental Science Division

    2009-10-05

    Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, andmore » develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.« less

  19. General-Purpose Software For Computer Graphics

    NASA Technical Reports Server (NTRS)

    Rogers, Joseph E.

    1992-01-01

    NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.

  20. Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA

    NASA Astrophysics Data System (ADS)

    Brooke, S. D.; Watts, M. W.; Heil, A. D.; Rhode, M.; Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Ross, S. W.

    2017-03-01

    A multi-disciplinary study of two major submarine canyons, Baltimore Canyon and Norfolk Canyon, off the US mid-Atlantic coast focused on the ecology and biology of canyon habitats, particularly those supporting deep-sea corals. Historical data on deep-sea corals from these canyons were sparse with less than 750 records for the mid-Atlantic region, with most being soft sediment species. This study substantially increased the number of deep-sea coral records for the target canyons and the region. Large gorgonians were the dominant structure-forming coral taxa on exposed hard substrates, but several species of scleractinians were also documented, including first observations of Lophelia pertusa in the mid-Atlantic Bight region. Coral distribution varied within and between the two canyons, with greater abundance of the octocoral Paragorgia arborea in Baltimore Canyon, and higher occurrence of stony corals in Norfolk Canyon; these observations reflect the differences in environmental conditions, particularly turbidity, between the canyons. Some species have a wide distribution (e.g., P. arborea, Primnoa resedaeformis, Anthothela grandiflora), while others are limited to certain habitat types and/or depth zones (e.g., Paramuricea placomus, L. pertusa, Solenosmilia variabilis). The distribution of a species is driven by a combination of factors, which include availability of appropriate physical structure and environmental conditions. Although the diversity of the structure-forming corals (gorgonians, branching scleractinians and large anemones) was low, many areas of both canyons supported high coral abundance and a diverse coral-associated community. The canyons provide suitable habitat for the development of deep-sea coral communities that is not readily available elsewhere on the sedimented shelf and slope of the Mid-Atlantic Bight.

  1. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Treesearch

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  2. Turbulence and Air Exchange in a Two-Dimensional Urban Street Canyon Between Gable Roof Buildings

    NASA Astrophysics Data System (ADS)

    Garau, Michela; Badas, Maria Grazia; Ferrari, Simone; Seoni, Alessandro; Querzoli, Giorgio

    2018-04-01

    We experimentally investigate the effect of a typical building covering: the gable roof, on the flow and air exchange in urban canyons. In general, the morphology of the urban canopy is very varied and complex, depending on a large number of factors, such as building arrangement, or the morphology of the terrain. Therefore we focus on a simple, prototypal shape, the two-dimensional canyon, with the aim of elucidating some fundamental phenomena driving the street-canyon ventilation. Experiments are performed in a water channel, over an array of identical prismatic obstacles representing an idealized urban canopy. The aspect ratio, i.e. canyon-width to building-height ratio, ranges from 1 to 6. Gable roof buildings with 1:1 pitch are compared with flat roofed buildings. Velocity is measured using a particle-image-velocimetry technique with flow dynamics discussed in terms of mean flow and second- and third-order statistical moments of the velocity. The ventilation is interpreted by means of a simple well-mixed box model and the outflow rate and mean residence time are computed. Results show that gable roofs tend to delay the transition from the skimming-flow to the wake-interference regime and promote the development of a deeper and more turbulent roughness layer. The presence of a gable roof significantly increases the momentum flux, especially for high packing density. The air exchange is improved compared to the flat roof buildings, and the beneficial effect is more significant for narrow canyons. Accordingly, for unit aspect ratio gable roofs reduce the mean residence time by a factor of 0.37 compared to flat roofs, whereas the decrease is only by a factor of 0.9 at the largest aspect ratio. Data analysis indicates that, for flat roof buildings, the mean residence time increases by 30% when the aspect ratio is decreased from 6 to 2, whereas this parameter is only weakly dependent on aspect ratio in the case of gable roofs.

  3. Mobile Monitoring of Methane During and After the Aliso Canyon Natural Gas Leak

    NASA Astrophysics Data System (ADS)

    Polidori, A.; Pikelnaya, O.; Low, J.; Wimmer, R.; Zhou, Q.

    2016-12-01

    The Aliso Canyon gas leak was discovered inside the SoCalGas (SCG) facility on October 23, 2015. This incident represented the worst natural gas leak in the US history, and spurred a number of odor nuisance complaints from local residents. The community of Porter Ranch, located directly south of the SCG Aliso Canyon facility, was the most affected by the leak although complaints have been also reported in other neighboring communities of the San Fernando Valley. Therefore, monitoring of air quality was and remains crucial for measuring the impact of methane emissions from this leak and assessing the well-being of all residents. As the main local air quality agency for this area, South Coast Air Quality Management District (SCAQMD) organized a set of monitoring activities in response to the leak. Since December 21, 2015 SCAQMD has been conducting mobile survey measurements in and around Porter Ranch to characterize methane levels and concentration gradients within the community. For this purpose, a fast-response optical methane analyzer (LI-COR 7700) and a Global Positioning System (GPS) were mounted on top of a hybrid vehicle and driven around Porter Ranch and other surrounding areas. Following the permanent seal of the leaking well on February 18, 2016 mobile measurements have also been expanded to inside the Aliso Canyon SCG facility. During this presentation we will describe the experimental setup designed for mobile methane surveys and the monitoring strategy used for this study. We will discuss the main results of our mobile measurements including long-term methane trends since the end of the leak.

  4. Canyons and Mesas of Aureum Chaos

    NASA Image and Video Library

    2002-06-26

    This image from NASA Mars Odyssey shows a portion of Aureum Chaos located just south of the Martian equator. This fractured landscape contains canyons and mesas with two large impact craters in the upper left.

  5. Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1982-08-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distancemore » below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy.« less

  6. The parser generator as a general purpose tool

    NASA Technical Reports Server (NTRS)

    Noonan, R. E.; Collins, W. R.

    1985-01-01

    The parser generator has proven to be an extremely useful, general purpose tool. It can be used effectively by programmers having only a knowledge of grammars and no training at all in the theory of formal parsing. Some of the application areas for which a table-driven parser can be used include interactive, query languages, menu systems, translators, and programming support tools. Each of these is illustrated by an example grammar.

  7. Morphology and sediment dynamics of the Capbreton canyon (Bay of Biscay, SW France)

    NASA Astrophysics Data System (ADS)

    Gaudin, M.; Umr 5805; Ifremer Team

    2003-04-01

    The Canyon of Capbreton extending in the Bay of Biscay (SW France) is the deepest canyon in the world. Its structure and morphology was studied using new multibeam bathymetry, acoustic imagery and high-resolution seismic data. The canyon head appears only 250 m away from the coast line and runs westward parallel to the north coast of Spain for 160 km due to structural control, then turns northward, widens and abruptly disappears in the continental rise by 3500 m water depth. Its northern margin is flat and progrades clearly westward. Conversely the southern margin is steep and progrades towards the north (i.e. towards the canyon). Down to 800 m water depth, the canyon deeply incises the continental shelf and the axial channel is meandering (sinuosity of 1.9). The canyon shows both major and minor stream beds, perched tributary valleys, nested terraces and abandoned meanders. The terraces have three morphologies: (1) flat, (2) with a raised side or (3) with a horseshoe structure. These morphologies have been interpreted as overbank deposits or nested levees (1 and 2) or as the result of meander abandon (3). Terraces of types (1) and (2) contain mainly fine deposits resulting from decantation of the top of turbulent surges that flow in the canyon. Westward (800 to 2000 m water depth) the main talweg remains sinuous (1.7). On the southern margin, several straight or slightly sinuous S-N tributary valleys are followed by alignments of pockmarks that also indicate a structural control. On the northern margin, a single large tributary valley with a sinuous central talweg, flowing from the upper Aquitaine continental slope, is interpreted as a giant slump scar due to sediment instability. This valley is bordered to the west by a topographic high with sediment waves on the external flank that might be interpreted as a sedimentary levee. The canyon recorded a recent turbidite activity. An 18 cm-thick turbidite was deposited at 650 m water depth by a turbidity current

  8. Transient simulation of groundwater levels within a sandbar of the Colorado River, Marble Canyon, Arizona, 2004

    USGS Publications Warehouse

    Sabol, Thomas A.; Springer, Abraham E.

    2013-01-01

    Seepage erosion and mass failure of emergent sandy deposits along the Colorado River in Grand Canyon National Park, Arizona, are a function of the elevation of groundwater in the sandbar, fluctuations in river stage, the exfiltration of water from the bar face, and the slope of the bar face. In this study, a generalized three-dimensional numerical model was developed to predict the time-varying groundwater level, within the bar face region of a freshly deposited eddy sandbar, as a function of river stage. Model verification from two transient simulations demonstrates the ability of the model to predict groundwater levels within the onshore portion of the sandbar face across a range of conditions. Use of this generalized model is applicable across a range of typical eddy sandbar deposits in diverse settings. The ability to predict the groundwater level at the onshore end of the sandbar face is essential for both physical and numerical modeling efforts focusing on the erosion and mass failure of eddy sandbars downstream of Glen Canyon Dam along the Colorado River.

  9. A sand budget for Marble Canyon, Arizona: implications for long-term monitoring of sand storage change

    USGS Publications Warehouse

    Grams, Paul E.

    2013-01-01

    Recent U.S. Geological Survey research is providing important insights into how best to monitor changes in the amount of tributary-derived sand stored on the bed of the Colorado River and in eddies in Marble Canyon, Arizona. Before the construction of Glen Canyon Dam and other dams upstream, sandbars in Glen, Marble, and Grand Canyons were replenished each year by sediment-rich floods. Sand input into the Colorado River is crucial to protecting endangered native fish, animals, and plants and cultural and recreational resources along the river in Glen Canyon National Recreation Area and Grand Canyon National Park.

  10. Is there enough sand? Evaluating the fate of Grand Canyon sandbars

    USGS Publications Warehouse

    Wright, S.A.; Schmidt, J.C.; Meles, T.S.; Topping, D.J.; Rubin, D.M.

    2008-01-01

    Large dams have the potential to dramatically alter the flow regime, geomorphology, and aquatic ecosystem of downstream river reaches. Development of flow release regimes in order to meet multiple objectives is a challenge facing dam operators, resource managers, and scientists. Herein, we review previous work and present new analyses related to the effects of Glen Canyon Dam on the downstream reach of the Colorado River in Marble and Grand Canyons. The dam traps the entire incoming sediment load in Lake Powell and modulates the hydrologic regime by, for example, eliminating spring snowmelt floods, resulting in changes in the geomorphology of the river downstream. The primary geomorphic impact has been the erosion of sandbars along the banks of the river. Recognition of this impact has led to many scientific studies and a variety of experimental operations of Glen Canyon Dam with the goal of rebuilding the eroding sandbars. These efforts have thus far been generally unsuccessful and the question remains as to whether or not the dam can be operated such that sandbars can be rebuilt and maintained over extended periods with the existing sediment supply. We attempt to answer this question by evaluating a dam operation that may be considered a "best-case scenario" for rebuilding and maintaining eroded sandbars. Our analysis suggests that this best-case scenario may indeed have viability for rebuilding sandbars, and that the initial rate at which sandbars could be rebuilt is comparable to the rate at which sandbars have been eroded since dam construction. The question remains open as to the viability of operations that deviate from the best-case scenario that we have defined.

  11. Design of low-cost general purpose microcontroller based neuromuscular stimulator.

    PubMed

    Koçer, S; Rahmi Canal, M; Güler, I

    2000-04-01

    In this study, a general purpose, low-cost, programmable, portable and high performance stimulator is designed and implemented. For this purpose, a microcontroller is used in the design of the stimulator. The duty cycle and amplitude of the designed system can be controlled using a keyboard. The performance test of the system has shown that the results are reliable. The overall system can be used as the neuromuscular stimulator under safe conditions.

  12. Impact of building configuration on air quality in street canyon

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Huang, Zhen; Wang, Jia-song

    The objective of this study is to provide a simulation of emissions from vehicle exhausts in a street canyon within an urban environment. Standard, RNG and Chen-Kim k- ɛ turbulence models are compared with the wind tunnel measured data for optimization of turbulence model. In the first approach, the investigation is made into the effect of the different roof shapes and ambient building structures. The results indicate that the in-canyon vortex dynamics (e.g. vortex orientation) and the characteristics of pollutant dispersion are dependent on the roof shapes and ambient building structures strongly. A second set of calculations for a three-dimensional simulation of the street canyon setup was performed to investigate the influence of building geometry on pollutant dispersion. The validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (Studie on different roof geometries in a simplified urban environment, 1995). The studies give evidence that roof shapes, the ambient building configurations and building geometries are important factors determining the flow patterns and pollutant dispersion in street canyon.

  13. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  14. Software Configuration Management Plan for the B-Plant Canyon Ventilation Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCDANIEL, K.S.

    1999-08-31

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This Software Configuration Management Plan provides instructions for change control of the CVCS.

  15. A paleolimnological investigation of historical environmental change in East Canyon Reservoir

    NASA Astrophysics Data System (ADS)

    Higby Halseth, Deanna Renee

    East Canyon Reservoir is located 32 km east of Salt Lake City, Utah, and serves as a resource for irrigation, culinary water, and recreation. This research used paleolimnology and historical records to investigate the impacts of multiple stressors, including land clearance, dam construction and enlargement, and climate warming on East Canyon Reservoir. Recently, blue green algal blooms, typically indicative of eutrophication, have been increasing at East Canyon Reservoir despite reductions of nutrients from point sources, so part of the impetus for this study was to understand the forcing mechanisms of these blooms. A multiproxy analysis of three sediment cores retrieved from the reservoir determined changes in nutrient concentrations and sediment composition over time. Percent organics, magnetic susceptibility, and diatom analyses of 210Pb dated cores were compared to measurements of temperature and precipitation as well as records of historical land use, which were determined using remote sensing. Percent organics and magnetic susceptibility showed changes related to dam construction and increased development. Fossil diatom assemblages indicated that East Canyon Reservoir had been eutrophic since origination; however, principal components analyses of the diatom data indicated that the canyon became more P-enriched following dam construction and increased development. Recent increases in Cyclotella diatoms indicate changes related to warming temperatures, and we speculate that this warming is also what is causing blue-green algal blooms to increase.

  16. Aeromagnetic mapping of the structure of Pine Canyon caldera and Chisos Mountains intrusion, Big Bend National Park, Texas

    USGS Publications Warehouse

    Drenth, B.J.; Finn, C.A.

    2007-01-01

    Analysis of aeromagnetic and gravity data reveals new details of the structure, igneous geology, and temporal evolution of the prominent, enigmatic ca.32 Ma Pine Canyon caldera and the Chisos Mountains (Big Bend National Park, Texas). The main caldera-filling Pine Canyon Rhyolite, the oldest member of the South Rim Formation, is reversely magnetized, allowing it to be used as a key marker bed for determining caldera fill thickness. Modeling of gravity and magnetic anomalies indicates that the Pine Canyon Rhyolite is probably thicker in the northeastern part of the caldera. Lineaments in the magnetic data suggest the presence of buried faults beneath the caldera that may have led to increased downdrop in the northeast versus the southwest, allowing a thicker section of caldera fill to accumulate there. The Pine Canyon caldera has been interpreted as a downsag caldera because it lacks surficial faulting, so these inferred faults are the first mapped features there that could be responsible for caldera collapse. The caldera boundary correlates well with the margins of a gravity low. General features of the caldera match well with basic models of downsag calderas, meaning that the Pine Canyon caldera may be a classic example of downsagging, of which few well-described examples exist, in terms of a geophysical signature. The source of a long-wavelength magnetic high over the Chisos Mountains is interpreted as a previously unknown broad intrusion, the long axis of which trends parallel to a major crustal boundary related to the Ouachita orogeny or an even earlier Precambrian margin. This feature represents the largest intrusion (28-34 km diameter, 1-4 km thick, 700-3000 km3 in volume) in an area where relatively small laccoliths are ubiquitous. The intrusion most likely represents a long-lived (>1 m.y.) reservoir replenished by small batches of magma of varying composition, as reflected in the variation of eruptive products from the Pine Canyon and Sierra Quemada

  17. Numerical modeling of the late Cenozoic geomorphic evolution of Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2008-12-01

    The late Cenozoic geomorphic evolution of Grand Canyon has been influenced by three primary tectonic and drainage adjustment events. First, incision into the Paleozoic strata of the southwestern margin of the Colorado Plateau began at 16 Ma in response to relief production along the Grand Wash Fault. Second, the ancestral Upper Colorado River reversed drainage and became integrated with the Lower Colorado River basin through Grand Canyon between 5.5 and 6 Ma. Third, the Colorado River was influenced by Plio- Quaternary normal faulting along the Hurricane and Toroweap Faults. Despite the relatively firm constraints available on the timing of these events, the geomorphic evolution of Grand Canyon is still not well constrained and many questions remain. For example, was there a deeply-incised gorge in western Grand Canyon before Colorado River integration? How and where was the Colorado River integrated? How have incision rates varied in space and time? In this paper, I describe the results of a numerical modeling study designed to address these questions. The model integrates the stream power model for bedrock channel erosion with cliff retreat and the flexural-isostatic response to erosion. The model honors the structural geology of the Grand Canyon region, including the variable erodibility of rocks in the Colorado Plateau and the occurrence of Plio-Quaternary normal faulting along the Hurricane-Toroweap Fault system. We present the results of two models designed to bracket the possible drainage architectures of the southwestern margin of the Colorado Plateau in Miocene time. In the first model, we assume a 13,000 km2 drainage basin primarily sourced from the Hualapai and Coconino Plateaux. The results of this model indicate that relief production along the Grand Wash fault initiated the formation of a large (700 m) knickpoint that migrated headward at a rate of 15 km/Myr prior to drainage integration at 6 Ma to form a deep gorge in western Grand Canyon. This model

  18. 75 FR 44809 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Canyon Dam Adaptive Management Program (AMP) was implemented as a result of the Record of Decision on the... of the Grand Canyon Protection Act (Pub. L. 102-575) of 1992. The AMP includes a Federal advisory... other administrative and resource issues pertaining to the AMP. To view a copy of the agenda and...

  19. 75 FR 439 - Glen Canyon Dam Adaptive Management Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Canyon Dam Adaptive Management Program (AMP) was implemented as a result of the Record of Decision on the... of the Grand Canyon Protection Act (Pub. L. 102-575) of 1992. The AMP includes a Federal advisory... addition, other administrative and resource issues pertaining to the AMP may be discussed as necessary. To...

  20. Scientific monitoring plan in support of the selected alternative of the Glen Canyon Dam Long-Term Experimental and Management Plan

    USGS Publications Warehouse

    Vanderkooi, Scott P.; Kennedy, Theodore A.; Topping, David J.; Grams, Paul E.; Ward, David L.; Fairley, Helen C.; Bair, Lucas S.; Sankey, Joel B.; Yackulic, Charles B.; Schmidt, John C.

    2017-01-18

    IntroductionThe purpose of this document is to describe a strategy by which monitoring and research data in the natural and social sciences will be collected, analyzed, and provided to the U.S. Department of the Interior (DOI), its bureaus, and to the Glen Canyon Dam Adaptive Management Program (GCDAMP) in support of implementation of the Glen Canyon Dam Long-Term Experimental and Management Plan (LTEMP) (U.S. Department of the Interior, 2016a). The selected alternative identified in the LTEMP Record of Decision (ROD) (U.S. Department of the Interior, 2016b) describes various data collection, analysis, modeling, and interpretation efforts to be conducted by the U.S. Geological Survey’s (USGS) Grand Canyon Monitoring and Research Center (GCMRC), partner agencies, and cooperators that will inform decisions about operations of Glen Canyon Dam and management of downstream resources between 2017 and 2037, the performance period of the LTEMP. General data collection, analysis, modeling, and interpretation activities are described in this science plan, whereas specific monitoring and research activities and detailed study plans are to be described in the GCDAMP’s triennial work plans (TWPs) to be developed by the Bureau of Reclamation and GCMRC with input from partner agencies and cooperators during the LTEMP period, which are to be reviewed and recommended by the GCDAMP and approved by the Secretary of the Interior. The GCDAMP consists of several components, the primary committee being the Adaptive Management Work Group (AMWG). This Federal advisory committee is composed of 25 agencies and stakeholder groups and is chaired by the Secretary of the Interior’s designee. The AMWG makes recommendations to the Secretary of the Interior concerning operations of Glen Canyon Dam and other experimental management actions that are intended to fulfill some obligations of the Grand Canyon Protection Act of 1992. The Technical Work Group (TWG) is a subcommittee of the AMWG and

  1. Turbidite carbon distribution by Ramped PyrOx, Astoria Canyon

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Galy, V.; McNichol, A. P.

    2017-12-01

    The magnitude and nature of carbon preserved in marine sediments can be affected by long-term processes such as climate change and tectonic transport; preservation of carbon can also be affected by short-term, episodic disturbances such as storm events, landslides, and earthquakes. In margins with active canyons, these systems can be efficient burial networks for carbon. The downslope displacement and reorganization of sediment and associated organic carbon (OC) during turbidite formation alters oxygen diffusion and the potential for aerobic oxidation, thereby modifying the redox geochemistry of the sediment package. Generally termed as a `burn-down', reactions at the subsurface oxidation front are linked to a loss of OC preservation within turbidite sequences. Still debated is the source of the OC residual within `burn-down' events, primarily whether the preserved material is dominated by terrestrial or marine components. To better understand the significance of canyon systems and turbidite deposits in the transport, preservation, and `burn-down' of organic carbon, samples from these systems can be studied using the Ramped PyrOx (RPO) technique. Whereas bulk radiocarbon measurements are unsuitable within turbidite deposits, RPO is well suited for characterizing the distribution of carbon sources within a turbidite interval. To complement RPO analyses, OC and N content, stable carbon isotope composition, gamma ray attenuation bulk density, computerized tomography, and magnetic susceptibility were determined. The turbidite systems of the Cascadia Subduction Zone have been extensively studied in relation to the Holocene paleoseismic record. Gravity cores collected in 2011 aboard the R/V Wecoma capture turbidite deposits in Astoria Canyon and demonstrate characteristics of `burn down' intervals. RPO data from within a 15 cm turbidite interval indicate minimal variation in reactivity structure, stable carbon isotope values and radiocarbon age, suggesting a shared

  2. Grand Canyon Similar to Mount Sharp

    NASA Image and Video Library

    2012-08-27

    Before NASA Curiosity rover landed on Mars, the strata exposed in Mount Sharp were compared to those in the Grand Canyon of the western United States, shown here. Scientists are surprised by just how close the similarities are.

  3. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.

    PubMed

    Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-03-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

  4. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins

    PubMed Central

    Mountjoy, Joshu J.; Howarth, Jamie D.; Orpin, Alan R.; Barnes, Philip M.; Bowden, David A.; Rowden, Ashley A.; Schimel, Alexandre C. G.; Holden, Caroline; Horgan, Huw J.; Nodder, Scott D.; Patton, Jason R.; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-01-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean—the ultimate sink—and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful “canyon flushing” event and turbidity current that traveled >680 km along one of the world’s longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year−1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean. PMID:29546245

  5. Magnitude and frequency data for historic debris flows in Grand Canyon National Park and vicinity, Arizona

    USGS Publications Warehouse

    Melis, T.S.; Webb, R.H.; Griffiths, P.G.; Wise, T.J.

    1995-01-01

    drainage basins. On average, debris flows may recur approximately every 30 to 50 years in individual tributaries, although adjacent tributaries may have considerably different histories. Peak discharges were estimated in 18 drainages for debris flows that occurred between 1939 and 1994. Typically, discharges range from about 100 to 300 cubic meters per second (m3/s). The largest debris flow in Grand Canyon during the last century, which occurred in Prospect Canyon in 1939, had a peak discharge of about 1,000 m3/s. Debris-flow deposits generally contain 15 to 30 percent sand-and-finer sediment; however, the variability of sand-and-finer sediment contained by recent debris flows is large. Reconstitution of debris-flow samples indicates a range in water content of 10 to 25 percent by weight;. Before flow regulation of the Colorado River began, debris fans aggraded by debris flows were periodically reworked by large river floods that may have been as large as 11,000 m3/s. Impoundment of the river by Glen Canyon Dam in 1963, and subsequent operation of the reservoir have reduced the magnitude of these floods. Flow releases from the dam since 1963 have only partly reworked recently-aggraded debris fans. Significant reworking of new debris-flow deposits now occurs only during river discharges higher than typical power plant releases, which currently range between 142 and 510 m3/s.

  6. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  7. General purpose nonlinear system solver based on Newton-Krylov method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-12-01

    KINSOL is part of a software family called SUNDIALS: SUite of Nonlinear and Differential/Algebraic equation Solvers [1]. KINSOL is a general-purpose nonlinear system solver based on Newton-Krylov and fixed-point solver technologies [2].

  8. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance

    NASA Astrophysics Data System (ADS)

    Frutos, Inmaculada; Sorbe, Jean Claude

    2017-12-01

    In the Capbreton area, suprabenthic assemblages were sampled with a sledge towed over the bottom, at different sites located within the upper part of a 'gouf-type' canyon (8 hauls between 642 m and 797 m, on the axis of the thalweg or on flat perched flank terraces such as site K), on the northern adjacent open slope (2 hauls between 500 and 567 m) and on the northern adjacent shelf margin (2 hauls between 151 m and 158 m). A multivariate analysis carried on the faunal data discriminated different assemblages in this area: a near-canyon shelf assemblage (55 species, mainly amphipods and decapods; 3496 ind./100 m2, 40% mysids; dominant species: Nyctiphanes couchii, Leptomysis gracilis, Weswoodilla rectirostris, Anchialina agilis, Scopelocheirus hopei and Philocheras bispinosus); an open slope assemblage (111 species, mainly amphipods and isopods; 249 ind./100 m2, 36% amphipods; dominant species: Disconectes phalangium, Munnopsurus atlanticus and Boreomysis arctica); a canyon E assemblage (129 species, mainly amphipods, mysids and cumaceans; 1172 ind./100 m2, 58% amphipods; dominant species: Melphidippa sp. B, Chelator insignis); a canyon E' assemblage (107 species, mainly amphipods and mysids; 507 ind./100 m2, 73% amphipods; dominant species: Cleonardopsis carinata, Bonnierella abyssorum, Rhachotropis caeca and Arcturopsis giardi); and a temporary canyon assemblage at site K (34 species, mainly amphipods and mysids; 899 ind./100 m2, 85% amphipods; dominant species: Tmetomyx similis, Caeconyx caeculus, Nebalia sp. A and Cleonardopsis carinata). Site K was sampled only four months after a turbidity event, detected on sediment cores (18 cm thick Bouma sequence) taken during the same cruise and triggered by the violent storm ('ouragan Martin', wind up to 200 km/h) which affected the French Atlantic coast on 27 December 1999. The corresponding suprabenthic assemblage showed evidence of deep structural changes after this catastrophic event, characterized by relative low

  9. An individual-based model for population viability analysis of humpback chub in Grand Canyon

    USGS Publications Warehouse

    Pine, William Pine; Healy, Brian; Smith, Emily Omana; Trammell, Melissa; Speas, Dave; Valdez, Rich; Yard, Mike; Walters, Carl; Ahrens, Rob; Vanhaverbeke, Randy; Stone, Dennis; Wilson, Wade

    2013-01-01

    We developed an individual-based population viability analysis model (females only) for evaluating risk to populations from catastrophic events or conservation and research actions. This model tracks attributes (size, weight, viability, etc.) for individual fish through time and then compiles this information to assess the extinction risk of the population across large numbers of simulation trials. Using a case history for the Little Colorado River population of Humpback Chub Gila cypha in Grand Canyon, Arizona, we assessed extinction risk and resiliency to a catastrophic event for this population and then assessed a series of conservation actions related to removing specific numbers of Humpback Chub at different sizes for conservation purposes, such as translocating individuals to establish other spawning populations or hatchery refuge development. Our results suggested that the Little Colorado River population is generally resilient to a single catastrophic event and also to removals of larvae and juveniles for conservation purposes, including translocations to establish new populations. Our results also suggested that translocation success is dependent on similar survival rates in receiving and donor streams and low emigration rates from recipient streams. In addition, translocating either large numbers of larvae or small numbers of large juveniles has generally an equal likelihood of successful population establishment at similar extinction risk levels to the Little Colorado River donor population. Our model created a transparent platform to consider extinction risk to populations from catastrophe or conservation actions and should prove useful to managers assessing these risks for endangered species such as Humpback Chub.

  10. A Spacebird-eye View of the Grand Canyon from NASA Terra Spacecraft

    NASA Image and Video Library

    2011-10-14

    NASA Terra spacecraft provided this view of the eastern part of Grand Canyon National Park in northern Arizona in this image on July 14, 2011. This view looks to the west, with tourist facilities of Grand Canyon Village visible in the upper left.

  11. Mud Volcanism in a Canyon: Morphodynamic Evolution of the Active Venere Mud Volcano and Its Interplay With Squillace Canyon, Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Loher, Markus; Ceramicola, Silvia; Wintersteller, Paul; Meinecke, Gerrit; Sahling, Heiko; Bohrmann, Gerhard

    2018-02-01

    Submarine mud volcanoes develop through the extrusion of methane-rich fluids and sediments onto the seafloor. The morphology of a mud volcano can record its extrusive history and processes of erosion and deformation affecting it. The study of offshore mud volcano dynamics is limited because only few have been mapped at resolutions that reveal their detailed surface structures. More importantly, rates and volumes of extruded sediment and methane are poorly constrained. The 100 m high twin cones of Venere mud volcano are situated at ˜1,600 m water depth within Squillace Canyon along the Ionian Calabrian margin, Mediterranean Sea. Seafloor bathymetry and backscatter data obtained by a ship-based system and an autonomous underwater vehicle (AUV) allow mapping of mudflow deposits of the mud volcano and bedforms in the surrounding canyon. Repeated surveying by AUV document active mud movement at the western summit in between 2014 and 2016. Through sediment coring and tephrochronology, ages of buried mudflow deposits are determined based on the sedimentation rate and the thickness of overlying hemipelagic sediments. An average extrusion rate of 27,000 m3/yr over the last ˜882 years is estimated. These results support a three-stage evolutionary model of Venere mud volcano since ˜4,000 years ago. It includes the onset of quiescence at the eastern cone (after ˜2,200 years ago), erosive events in Squillace Canyon (prior to ˜882 years ago), and mudflows from the eastern cone (since ˜882 years). This study reveals new interactions between a mud volcano and a canyon in the deep sea.

  12. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Sherrell, Robert M.; Schofield, Oscar

    2016-07-01

    Bathymetric depressions (canyons) exist along the West Antarctic Peninsula shelf and have been linked with increased phytoplankton biomass and sustained penguin colonies. However, the physical mechanisms driving this enhanced biomass are not well understood. Using a Slocum glider data set with over 25,000 water column profiles, we evaluate the relationship between mixed layer depth (MLD, estimated using the depth of maximum buoyancy frequency) and phytoplankton vertical distribution. We use the glider deployments in the Palmer Deep region to examine seasonal and across canyon variability. Throughout the season, the ML becomes warmer and saltier, as a result of vertical mixing and advection. Shallow ML and increased stratification due to sea ice melt are linked to higher chlorophyll concentrations. Deeper mixed layers, resulting from increased wind forcing, show decreased chlorophyll, suggesting the importance of light in regulating phytoplankton productivity. Spatial variations were found in the canyon head region where local physical water column properties were associated with different biological responses, reinforcing the importance of local canyon circulation in regulating phytoplankton distribution in the region. While the mechanism initially hypothesized to produce the observed increases in phytoplankton over the canyons was the intrusion of warm, nutrient enriched modified Upper Circumpolar Deep Water (mUCDW), our analysis suggests that ML dynamics are key to increased primary production over submarine canyons in the WAP.

  13. Vegetative communities, Davis and Lavender Canyons, Paradox Basin, Utah: ecosystem studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-04-01

    The major vegetative communities of Davis and Lavender canyons located in southeastern Utah are characterized. The report identifies potential secondary impacts and appropriate mitigation options. The Davis Canyon and Lavender Canyon Study Area contains nine major vegetative communities: galleta-shadscale, juniper-blackbrush, juniper-shadscale-ephedra, shadscale-ephedra, grayia-shadscale, juniper, drywash, greasewood, and riparian. The natural recovery times of these communities are exceedingly long. Natural reinvasion of various species would take from 15 to 100 years. No threatened or endangered plant species were identified in the study area. Davis and Lavender canyons have been subject to off-road vehicle activity and extensive grazing. The plant communities maymore » be subject to additional impacts as a result of increased human activity and off-highway activities such as camping, hiking, and hunting could result in changes in cover, composition, and frequency of plant species. Mitigation options for potential impacts include shuttle-busing workers to the site from the highway and fencing site access roads to prevent vehicles from leaving the roads.« less

  14. High-Resolution Acoustic Imaging in the Agadir-Canyon Region, NW-Africa: Morphology, Processes and Geohazards

    NASA Astrophysics Data System (ADS)

    Krastel, S.; Wynn, R. B.; Feldens, P.; Unverricht, D.; Huehnerbach, V.; Stevenson, C.; Glogowski, S.; Schuerer, A.

    2014-12-01

    Agadir Canyon is one of the largest submarine canyons in the World, supplying giant submarine sediment gravity flows to the Agadir Basin and the wider Moroccan Turbidite System. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during Cruise MSM32. We collected ~ 1500 km of high-resolution seismic 2D-lines in combination with a dense net of hydroacoustic data. About 1000 km2 of sea floor were imaged during three deployments of TOBI (deep-towed sidescan sonar operated by the National Oceanography Centre Southampton). A total of 186 m of gravity cores and several giant box cores were recovered at more than 50 stations. The new data show that Agadir canyon is the source area of the world's largest submarine sediment flow, which occurred about 60,000 years ago. Up to 160 km3 of sediment was transported to the deep ocean in a single catastrophic event. For the first time, sediment flows of this scale have been tracked along their entire flow pathway. A major landslide area was identified south of Agadir Canyon. Landslide material enters Agadir canyon in about 2500 m water depth; the material is transported as debrite for at least another 200 km down the canyon. Initial data suggest that the last major slide from this source entered Agadir canyon at least 130,000 years ago. A large field of living deep-water corals was imaged north of Agadir canyon. To our knowledge, these are the first living cold water corals recovered off the coast of Morocco (except for the Gulf of Cadiz). They represent an important link between the known cold-water coral provinces off Mauritania and in the Gulf of Cádiz.

  15. Age and diet of fossil california condors in grand canyon, Arizona.

    PubMed

    Emslie, S D

    1987-08-14

    A dozen new radiocarbon dates, together with a thorough review of its fossil distribution, shed new light on the time and probable cause of extinction of the California condor, Gymnogyps californianus, in Grand Canyon, Arizona. The radiocarbon data indicate that this species became extinct in Grand Canyon, and other parts of the inland West, more than 10,000 years ago in coincidence with the extinction of megafauna (proboscidians, edentates, perissodactyls). That condors relied on the megafauna for food is suggested by the recovery of food bones from a late Pleistocene nest cave in Grand Canyon. These fossil data have relevance to proposed release and recovery programs of the present endangered population of California condors.

  16. Colorado River fish monitoring in Grand Canyon, Arizona; 2000 to 2009 summary

    USGS Publications Warehouse

    Makinster, Andrew S.; Persons, William R.; Avery, Luke A.; Bunch, Aaron J.

    2010-01-01

    Long-term fish monitoring in the Colorado River below Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program (GCDAMP). The GCDAMP is a federally authorized initiative to ensure that the primary mandate of the Grand Canyon Protection Act of 1992 to protect resources downstream from Glen Canyon Dam is met. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center is responsible for the program's long-term fish monitoring, which is implemented in cooperation with the Arizona Game and Fish Department, U.S. Fish and Wildlife Service, SWCA Environmental Consultants, and others. Electrofishing and tagging protocols have been developed and implemented for standardized annual monitoring of Colorado River fishes since 2000. In 2009, sampling occurred throughout the river between Lees Ferry and Lake Mead for 38 nights over two trips. During the two trips, scientists captured 6,826 fish representing 11 species. Based on catch-per-unit-effort, salmonids (for example, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta)) increased eightfold between 2006 and 2009. Flannelmouth sucker (Catostomus latipinnis) catch rates were twice as high in 2009 as in 2006. Humpback chub (Gila cypha) catches were low throughout the 10-year sampling period.

  17. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  18. Seismic profile analysis of sediment deposits in Brownlee and Hells Canyon Reservoirs near Cambridge, Idaho

    USGS Publications Warehouse

    Flocks, James; Kelso, Kyle; Fosness, Ryan; Welcker, Chris

    2014-01-01

    The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center, in cooperation with the USGS Idaho Water Science Center and the Idaho Power Company, collected high-resolution seismic reflection data in the Brownlee and Hells Canyon Reservoirs, in March of 2013.These reservoirs are located along the Snake River, and were constructed in 1958 (Brownlee) and 1967 (Hells Canyon). The purpose of the survey was to gain a better understanding of sediment accumulation within the reservoirs since their construction. The chirp system used in the survey was an EdgeTech Geo-Star Full Spectrum Sub-Bottom (FSSB) system coupled with an SB-424 towfish with a frequency range of 4 to 24 kHz. Approximately 325 kilometers of chirp data were collected, with water depths ranging from 0-90 meters. These reservoirs are characterized by very steep rock valley walls, very low flow rates, and minimal sediment input into the system. Sediments deposited in the reservoirs are characterized as highly fluid clays. Since the acoustic signal was not able to penetrate the rock substrate, only the thin veneer of these recent deposits were imaged. Results from the seismic survey indicate that throughout both of the Brownlee and Hells Canyon reservoirs the accumulation of sediments ranged from 0 to 2.5 m, with an average of 0.5 m. Areas of above average sediment accumulation may be related to lower slope, longer flooding history, and proximity to fluvial sources.

  19. Hydrologic and water-quality data at Government Canyon State Natural Area, Bexar County, Texas, 2002-10

    USGS Publications Warehouse

    Banta, J. Ryan; Slattery, Richard N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service, the Edwards Aquifer Authority, and the Texas Parks and Wildlife Department, collected rainfall, streamflow, evapotranspiration, and stormflow water-quality data at the Laurel Canyon Creek watershed, within the Government Canyon State Natural Area, Bexar County, Tex. The purpose of the data collection was to support evaluations of the effects of brush management conservation practices on components of the hydrologic budget and water quality. One component of brush management was to take endangered wildlife into consideration, specifically the golden-cheeked warbler (Dendroica chrysoparia). Much of the area that may have been considered for brush management was left intact to protect habitat for the golden-cheeked warbler. The area identified for brush management was approximately 10 percent of the study watershed. The hydrologic data presented here (2002–10) represent pre- and post-treatment periods, with brush management treatment occurring from winter 2006–07 to spring 2008.

  20. 77 FR 8895 - Jimbilnan, Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ..., Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon..., Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon Wilderness Areas, Lake Mead... wilderness character; providing for reasonable use of Spirit Mountain and adjacent areas in a manner meeting...

  1. 77 FR 51022 - Clark Canyon Hydro, LLC; Notice of Application Accepted for Filing, Ready for Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12429-007] Clark Canyon... b. Project No.: 12429-007. c. Date Filed: May 31, 2012. d. Applicant: Clark Canyon Hydro, LLC . e. Name of Project: Clark Canyon Dam Hydroelectric Project. f. Location: When constructed, the project...

  2. New thermochronometric constraints on the Tertiary landscape evolution of the central and eastern Grand Canyon, Arizona

    USGS Publications Warehouse

    Lee, John P.; Stockli, Daniel F.; Kelley, S.A.; Pederson, J.; Karlstrom, K.E.; Ehlers, T.A.

    2013-01-01

    Thermal histories are modeled from new apatite (U-Th)/He and apatite fission-track data in order to quantitatively constrain the landscape evolution of the Grand Canyon region. Fifty new samples and their associated thermochronometric ages are presented here. Samples span from Lee’s Ferry in the east to Quartermaster Canyon in the west and include four age-elevation transects into Grand Canyon and borehole samples from the Coconino Plateau. Twenty-seven samples are inversely modeled to provide continuous thermal histories. This represents the most extensive and complete dataset on patterns of long-term exhumation in the Grand Canyon region, and it enables us to constrain the timing and magnitude of erosion and also discriminate between canyon incision and broader planation. The new data suggest that the early Cenozoic landscape in eastern Grand Canyon was low in relief and does not indicate the presence of an early Cenozoic precursor to the modern Grand Canyon. However, there is evidence for the incision of a smaller-scale canyon across the Kaibab Uplift at 28–20 Ma. This middle-Cenozoic denudation event was accompanied by the removal of a majority of remaining Mesozoic strata west of the Kaibab Uplift. In contrast, just upstream in the area of Lee’s Ferry, ∼2 km of Mesozoic strata remained over the middle Cenozoic and were removed after 10 Ma.

  3. On the influence of viaduct and ground heating on pollutant dispersion in 2D street canyons and toward single-sided ventilated buildings

    EPA Science Inventory

    This paper employs Computational Fluid Dynamic (CFD) simulations to investigate the influence of ground heating intensities and viaduct configurations on gaseous and particle dispersion within two-dimensional idealized street canyons (typical aspect ratio H/W=1) and their transpo...

  4. Adobe unlocks Cherry Canyon, other zones in prolific Barstow unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewster, J.

    1979-08-01

    Recent discoveries by Adobe Oil and Gas Corp. in the Barstow unit skirting the Pecos River near Pecos, Texas have extended the Cherry Canyon play approx. 10 miles west in Ward County. In February, Adobe reported an oil discovery, 10 Barstow, drilled between No. 9 and No. 11 (gas wells) in section 34. The well reestablished Cherry Canyon oil production in the Scott field with a potential of 149 bpd of oil and a gor of 1540:1 or gas flow of 230 mcfd. Perforations were from 5827 to 6092 ft. The explanation of the anomaly of an oil well sandwichedmore » between 2 gas wells all producing from the same formation, is that Cherry Canyon consists of lensitic sands, not necessarily connected, that can yield gas and oil in substantially different proportions.« less

  5. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while

  6. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    DOE PAGES

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; ...

    2017-05-18

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while

  7. Geology of the Canyon Reservoir site on the Guadalupe River, Comal County, Texas

    USGS Publications Warehouse

    George, William O.; Welder, Frank A.

    1955-01-01

    In response to a request by Colonel Harry O. Fisher, District Engineer of the Fort Worth District of the Corps of Engineers, United States Army (letter of Dec. 13, 1954), a reconnaissance investigation was made of the geology of the Canyon (F-1) reservoir site on the Guadalupe River in Comal County, Tex. The purpose of the investigation was to study the geology in relation to possible leakage - particularly leakage of water that might then be lost from the drainage area of the Guadalupe River - and to add to the general knowledge of the ground-water hydrology of the San Antonio area. The dam (F-1) was originally designed for flood control and conservation only, with provision for the addition of a power unit if feasible. Since the completion of the investigation by the Corps of Engineers, the city of San Antonio has expressed an interest in the reservoir as a possible source of public water supply. The Corps of Engineers has made a thorough engineering and geologic study of the dam site (Corps of Engineers, 1950), which has Congressional approval. The geology and water resources of Comal County have been studied by George (1952). The rocks studied are those within the reservoir area and generally below the 1,000-foot contour as shown on the Smithson Valley quadrangle of the U.S. Geological Survey.

  8. CHAMA RIVER CANYON WILDERNESS AND CONTIGUOUS ROADLESS AREA, NEW MEXICO.

    USGS Publications Warehouse

    Ridgley, Jennie L.; Light, Thomas D.

    1984-01-01

    Results of mineral surveys indicate that the Chama River Canyon Wilderness and contiguous roadless area in new Mexico have a probable mineral-resource potential for copper with associated uranium and silver. Gypsum occurs throughout the area, exposed in the canyon walls. Further study of the wilderness should concentrate on exploratory drilling to test the oil and gas potential of Pennsylvanian strata and evaluate vanadium anomalies in the Todilto as a prospecting guide for locating uranium.

  9. Captured in Stone: Women in the Rock Art of Canyon de Chelly.

    ERIC Educational Resources Information Center

    Travis, Tara

    1997-01-01

    Describes the pictographs (painted images on stone) and petroglyphs (pecked images on stone) found in the Canyon de Chelly National Monument in Arizona. Canyon de Chelly includes one of the largest concentrations of American Indian rock art in the southwest. Discusses the depiction of women in these images. (MJP)

  10. Zooplankton and Micronekton Distribution and Interaction with Predators at the Northwest Atlantic Shelf Break and its Canyons

    DTIC Science & Technology

    2014-09-30

    with marine mammals and other predators . APPROACH The datasets being examined in this project include: 1. Depth-stratified net samples from 1...with Predators at the Northwest Atlantic Shelf Break and its Canyons Gareth L. Lawson, Andone C. Lavery, & Peter H. Wiebe Woods Hole...determining the distribution, abundance, and community composition of zooplankton and micronekton and their association with predators (including marine

  11. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles D.; Hansen, Leslie A.

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed atmore » the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.« less

  12. Wind tunnel simulation of air pollution dispersion in a street canyon.

    PubMed

    Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek

    2002-01-01

    Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.

  13. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the

  14. New Generation General Purpose Computer (GPC) compact IBM unit

    NASA Technical Reports Server (NTRS)

    1991-01-01

    New Generation General Purpose Computer (GPC) compact IBM unit replaces a two-unit earlier generation computer. The new IBM unit is documented in table top views alone (S91-26867, S91-26868), with the onboard equipment it supports including the flight deck CRT screen and keypad (S91-26866), and next to the two earlier versions it replaces (S91-26869).

  15. Gum-compliant uncertainty propagations for Pu and U concentration measurements using the 1st-prototype XOS/LANL hiRX instrument; an SRNL H-Canyon Test Bed performance evaluation project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Michael K.; O'Rourke, Patrick E.

    An SRNL H-Canyon Test Bed performance evaluation project was completed jointly by SRNL and LANL on a prototype monochromatic energy dispersive x-ray fluorescence instrument, the hiRX. A series of uncertainty propagations were generated based upon plutonium and uranium measurements performed using the alpha-prototype hiRX instrument. Data reduction and uncertainty modeling provided in this report were performed by the SRNL authors. Observations and lessons learned from this evaluation were also used to predict the expected uncertainties that should be achievable at multiple plutonium and uranium concentration levels provided instrument hardware and software upgrades being recommended by LANL and SRNL are performed.

  16. The Fish Canyon magma body, San Juan volcanic field, Colorado: Rejuvenation and eruption of an upper-crustal batholith

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2002-01-01

    More than 5000 km3 of nearly compositionally homogeneous crystalrich dacite (~68 wt % SiO2: ~45% Pl + Kfs + Qtz + Hbl + Bt + Spn + Mag + Ilm + Ap + Zrn + Po) erupted from the Fish Canyon magma body during three phases: (1) the pre-caldera Pagosa Peak Dacite (an unusual poorly fragmented pyroclastic deposit, ~ 200 km3); (2) the syn-collapse Fish Canyon Tuff (one of the largest known ignimbrites, ~ 5000 km3); (3) the post-collapse Nutras Creek Dacite (a volumetrically minor lava). The late evolution of the Fish Canyon magma is characterized by rejuvenation of a near-solidus upper-crustal intrusive body (mainly crystal mush) of batholithic dimensions. The necessary thermal input was supplied by a shallow intrusion of more mafic magma represented at the surface by sparse andesitic enclaves in late-erupted Fish Canyon Tuff and by the post-caldera Huerto Andesite. The solidified margins of this intrusion are represented by holocrystalline xenoliths with Fish Canyon mineralogy and mineral chemistry and widely dispersed partially remelted polymineralic aggregates, but dehydration melting was not an important mechanism in the rejuvenation of the Fish Canyon magma. Underlying mafic magma may have evolved H2O-F-S-Cl-rich fluids that fluxed melting in the overlying crystal mush. Manifestations of the late up-temperature magma evolution are: (1) resorbed quartz, as well as feldspars displaying a wide spectrum of textures indicative of both resorption and growth, including Rapakivi textures and reverse growth zoning (An27-28 to An32-33) at the margins of many plagioclase phenocrysts; (2) high Sr, Ba, and Eu contents in the high-SiO2 rhyolite matrix glass, which are inconsistent with extreme fractional crystallization of feldspar; (3) oscillatory and reverse growth zoning toward the margins of many euhedral hornblende phenocrysts (rimward increases from ~5??5-6 to 7??7-8??5 wt % Al2O3). Homogeneity in magma composition at the chamber-wide scale, contrasting with extreme textural

  17. 77 FR 59607 - Black Canyon Hydro, LLC; Notice of Environmental Site Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14110-001] Black Canyon Hydro, LLC; Notice of Environmental Site Review On Wednesday, October 3, 2012, at 3 p.m., Commission staff will be participating in an environmental site review for the proposed Black Canyon Hydroelectric Project. All interested participants should mee...

  18. Anthropogenic impacts on deep submarine canyons of the western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sanchez-Vidal, A.; Tubau, X.; Llorca, M.; Woodall, L.; Canals, M.; Farré, M.; Barceló, D.; Thompson, R.

    2016-02-01

    Submarine canyons are seafloor geomorphic features connecting the shallow coastal ocean to the deep continental margin and basin. Often considered biodiversity hotspots, submarine canyons have been identified as preferential pathways for water, sediment, pollutant and litter transfers from the coastal to the deep ocean. Here we provide insights on the presence of some of the most insidious man-made debris and substances in submarine canyons of the western Mediterranean Sea, which are relevant to achieve a "Good Environmental Status" by 2020 as outlined in the European Union's ambitious Marine Strategy Framework Directive. Ranked by size on a decreasing basis, we review the origin, distribution and transport mechanisms of i) marine litter, including plastic, lost fishing gear and metallic objects; ii) microplastics in the form of fibers of rayon, polyester, polyamide and acetates; and iii) persistent organic pollutants including the toxic and persistent perfluoroalkyl substances. This integrated analysis allows us to understand the pivotal role of atmospheric driven oceanographic processes occurring in Mediterranean deep canyons (dense shelf water cascading, coastal storms) in spreading any type of man-made compound to the deep sea, where they sink and accumulate before getting buried.

  19. Water quality and quantity of selected springs and seeps along the Colorado River corridor, Utah and Arizona: Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park, 1997-98

    USGS Publications Warehouse

    Taylor, Howard E.; Spence, John R.; Antweiler, Ronald C.; Berghoff, Kevin; Plowman, Terry I.; Peart, Dale B.; Roth, David A.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service conducted an intensive assessment of selected springs along the Colorado River Corridor in Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park in 1997 and 1998, for the purpose of measuring and evaluating the water quality and quantity of the resource. This study was conducted to establish baseline data for the future evaluation of possible effects from recreational use and climate change. Selected springs and seeps were visited over a study period from 1997 to 1998, during which, discharge and on-site chemical measurements were made at selected springs and seeps, and samples were collected for subsequent chemical laboratory analysis. This interdisciplinary study also includes simultaneous studies of flora and fauna, measured and sampled coincidently at the same sites. Samples collected during this study were transported to U.S. Geological Survey laboratories in Boulder, Colorado, where analyses were performed using state-of-the-art laboratory technology. The location of the selected springs and seeps, elevation, geology, aspect, and onsite measurements including temperature, discharge, dissolved oxygen, pH, and specific conductance, were recorded. Laboratory analyses include determinations for alkalinity, aluminum, ammonium (nitrogen), antimony, arsenic, barium, beryllium, bismuth, boron, bromide, cadmium, calcium, cerium, cesium, chloride, chromium, cobalt, copper, dissolved inorganic carbon, dissolved organic carbon, dysprosium, erbium, europium, fluoride, gadolinium, holmium, iodine, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, nitrate (nitrogen), nitrite (nitrogen), phosphate, phosphorus, potassium, praseodymium, rhenium, rubidium, samarium, selenium, silica, silver, sodium, strontium, sulfate, tellurium, terbium, thallium, thorium, thulium, tin, titanium, tungsten

  20. Methods for Trustworthy Design of On-Chip Bus Interconnect for General-Purpose Processors

    DTIC Science & Technology

    2012-03-01

    Technology Andrew Huang, was able to test the security properties of HyperTransport bus protocol on an Xbox [20]. In his research, he was able to...TRUSTWORTHY DESIGN OF ON -CHIP BUS INTERCONNECT FOR GENERAL-PURPOSE PROCESSORS by Jay F. Elson March 2012 Thesis Advisor: Ted Huffmire Second...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Methods for Trustworthy Design of On -Chip Bus Interconnect for General-Purpose Processors 5

  1. A general-purpose optimization program for engineering design

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Sugimoto, H.

    1986-01-01

    A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis) is a FORTRAN program for nonlinear constrained (or unconstrained) function minimization. The optimization process is segmented into three levels: Strategy, Optimizer, and One-dimensional search. At each level, several options are available so that a total of nearly 100 possible combinations can be created. An example of available combinations is the Augmented Lagrange Multiplier method, using the BFGS variable metric unconstrained minimization together with polynomial interpolation for the one-dimensional search.

  2. Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at 'Evolution Canyon'.

    PubMed

    Shen, Yu; Lansky, Ephraim; Traber, Maret; Nevo, Eviatar

    2013-09-01

    Biosynthesis of tocols (vitamin E isoforms) is linked to response to temperature in plants. 'Evolution Canyon', an ecogeographical microcosm extending over an average of 200 meters (range 100-400) wide area in the Carmel Mountains of northern Israel, has been suggested as a model for studying global warming. Both domestic (Hordeum vulgare) and wild (Hordeum spontaneum) barley compared with wheat, oat, corn, rice, and rye show high tocotrienol/tocopherol ratios. Therefore, we hypothesized that tocol distribution might change in response to global warming. α-, β-, γ-, and δ-tocopherol, and α-, β-, γ-, and δ-tocotrienol concentrations were measured in wild barley (H. spontaneum) seeds harvested from the xeric (African) and mesic (European) slopes of Evolution Canyon over a six-year period from 2005-2011. Additionally, we examined seeds from areas contiguous to and distant from the part of the Canyon severely burned during the Carmel Fire of December 2010. Increased α-tocotrienol (p<0.01) was correlated with 1) temperature increases, 2) to the hotter 'African' slope in contrast to the cooler 'European' slope, and 3) to propinquity to the fire. The study illustrates the role of α-tocotrienol in both chronic and acute temperature adaptation in wild barley and suggests future research into thermoregulatory mechanisms in plants. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  3. High-resolution topography and geomorphology of select archeological sites in Glen Canyon National Recreation Area, Arizona

    USGS Publications Warehouse

    Collins, Brian D.; Corbett, Skye C.; Sankey, Joel B.; Fairley, Helen C.

    2014-01-01

    Along the Colorado River corridor between Glen Canyon Dam and Lees Ferry, Arizona, located some 25 km downstream from the dam, archaeological sites dating from 8,000 years before present through the modern era are located within and on top of fluvial and alluvial terraces of the prehistorically undammed river. These terraces are known to have undergone significant erosion and retreat since emplacement of Glen Canyon Dam in 1963. Land managers and policy makers associated with managing the flow of the Colorado River are interested in understanding how the operations of Glen Canyon Dam have affected the archeological sites associated with these terraces and how dam-controlled flows currently interact with other landscape-shaping processes. In 2012, the U.S. Geological Survey initiated a research project in Glen Canyon to study the types and causes of erosion of the terraces. This report provides the first step towards this understanding by presenting comparative analyses on several types of high-resolution topographic data (airborne lidar, terrestrial lidar, and airborne photogrammetry) that can be used in the future to document and analyze changes to terrace-based archaeological sites. Herein, we present topographic and geomorphologic data of four archaeological sites within a 14 km segment of Glen Canyon using each of the three data sources. In addition to comparing each method’s suitability for adequately representing the topography of the sites, we also analyze the data within each site’s context and describe the geomorphological processes responsible for erosion. Our results show that each method has its own strengths and weaknesses, and that terrestrial and airborne lidar are essentially interchangeable for many important topographic characterization and monitoring purposes. However, whereas terrestrial lidar provides enhanced capacity for feature recognition and gully morphology delineation, airborne methods (whether by way of laser or optical sensors) are

  4. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  5. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  6. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  7. Recent sediment transport and deposition in the Cap-Ferret Canyon, South-East margin of Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Schmidt, Sabine; Howa, Hélène; Diallo, Amy; Martín, Jacobo; Cremer, Michel; Duros, Pauline; Fontanier, Christophe; Deflandre, Bruno; Metzger, Edouard; Mulder, Thierry

    2014-06-01

    The Cap-Ferret Canyon (CFC), a major morphologic feature of the eastern margin of the Bay of Biscay, occupies a deep structural depression that opens about 60 km southwest of the Gironde Estuary. Detailed depth profiles of the particle-reactive radionuclides 234Th and 210Pb in interface sediments were used to characterise the present sedimentation (bioturbation, sediment mass accumulation, and focusing) in the CFC region. Two bathymetric transects were sampled along the CFC axis and the southern adjacent margin. Particle fluxes were recorded from the nearby Landes Plateau by means of sediment traps in 2006 and 2007. This dataset provides a new and comprehensive view of particulate matter transfer in the Cap-Ferret Canyon region, through a direct comparison of the canyon with the adjacent southern margin. Radionuclide profiles (234Th and 210Pb) and mass fluxes demonstrate that significant particle dynamics occur on the SE Aquitanian margin in comparison with nearby margins. The results also suggest show three distinct areas in terms of sedimentary activity. In the upper canyon (<500 m), there is little net sediment accumulation, suggesting a by-pass area. Sediment focusing is apparent at the middle canyon (500-1500 m), that therefore acts as a depocenter for particles from the shelf and the upper canyon. The lower canyon (>2000 m) can be considered inactive at annual or decadal scales. In contrast with the slow and continuous accumulation of relatively fresh material that characterises the middle canyon, the lower canyon receives pulses of sediment via gravity flows on longer time scales. At decadal scale, the CFC can be considered as a relatively quiescent canyon. The disconnection of the CFC from major sources of sediment delivery seems to limit its efficiency in particle transfer from coastal areas to the adjacent ocean basin.

  8. Fourmile Canyon: Living with wildfire

    Treesearch

    Hannah Brenkert-Smith; Patricia A. Champ

    2011-01-01

    The most devastating wildfire in Colorado's history in terms of property loss began on Labor Day, September 6, 2010. The Fourmile Canyon Fire was located just 5 miles west of downtown Boulder, CO, in a wildland-urban interface (WUI) zone with homes located on steep slopes and in dense ponderosa pine and Douglas-fir forest. The fire, fueled by high winds, burned 6,...

  9. Assesment of longwave radiation effects on air quality modelling in street canyons

    NASA Astrophysics Data System (ADS)

    Soucasse, L.; Buchan, A.; Pain, C.

    2016-12-01

    Computational Fluid Dynamics is widely used as a predictive tool to evaluate people's exposure to pollutants in urban street canyons. However, in low-wind conditions, flow and pollutant dispersion in the canyons are driven by thermal effects and may be affected by longwave (infrared) radiation due to the absorption and emission of water vapor contained in the air. These effects are mostly ignored in the literature dedicated to air quality modelling at this scale. This study aims at quantifying the uncertainties due to neglecting thermal radiation in air quality models. The Large-Eddy-Simulation of air flow in a single 2D canyon with a heat source on the ground is considered for Rayleigh and Reynolds numbers in the range of [10e8-10e10] and [5.10e3-5.10e4] respectively. The dispersion of a tracer is monitored once the statistically steady regime is reached. Incoming radiation is computed for a mid-latitude summer atmosphere and canyon surfaces are assumed to be black. Water vapour is the only radiating molecule considered and a global model is used to treat the spectral dependancy of its absorption coefficient. Flow and radiation fields are solved in a coupled way using the finite element solvers Fluidity and Fetch which have the capability of adapting their space and angular resolution according to an estimate of the solution error. Results show significant effects of thermal radiation on flow patterns and tracer dispersion. When radiation is taken into account, the air is heated far from the heat source leading to a stronger natural convection flow. The tracer is then dispersed faster out of the canyon potentially decreasing people's exposure to pollution within the street canyon.

  10. Modelling component evaporation and composition change of traffic-induced ultrafine particles during travel from street canyon to urban background.

    PubMed

    Nikolova, Irina; MacKenzie, A Rob; Cai, Xiaoming; Alam, Mohammed S; Harrison, Roy M

    2016-07-18

    We developed a model (CiTTy-Street-UFP) of traffic-related particle behaviour in a street canyon and in the nearby downwind urban background that accounts for aerosol dynamics and the variable vapour pressure of component organics. The model simulates the evolution and fate of traffic generated multicomponent ultrafine particles (UFP) composed of a non-volatile core and 17 Semi-Volatile Organic Compounds (SVOC, modelled as n-alkane proxies). A two-stage modelling approach is adopted: (1) a steady state simulation inside the street canyon is achieved, in which there exists a balance between traffic emissions, condensation/evaporation, deposition, coagulation and exchange with the air above roof-level; and (2) a continuing simulation of the above-roof air parcel advected to the nearby urban park during which evaporation is dominant. We evaluate the component evaporation and associated composition changes of multicomponent organic particles in realistic atmospheric conditions and compare our results with observations from London (UK) in a street canyon and an urban park. With plausible input conditions and parameter settings, the model can reproduce, with reasonable fidelity, size distributions in central London in 2007. The modelled nucleation-mode peak diameter, which is 23 nm in the steady-state street canyon, decreases to 9 nm in a travel time of just 120 s. All modelled SVOC in the sub-10 nm particle size range have evaporated leaving behind only non-volatile material, whereas modelled particle composition in the Aitken mode contains SVOC between C26H54 and C32H66. No data on particle composition are available in the study used for validation, or elsewhere. Measurements addressing in detail the size resolved composition of the traffic emitted UFP in the atmosphere are a high priority for future research. Such data would improve the representation of these particles in dispersion models and provide the data essential for model validation. Enhanced knowledge of the

  11. Geologic map of the Grand Canyon 30' x 60' quadrangle, Coconino and Mohave Counties, northwestern Arizona

    USGS Publications Warehouse

    Billingsley, G.H.

    2000-01-01

    This digital map database, compiled from previously published and unpublished data as well as new mapping by the author, represents the general distribution of bedrock and surficial deposits in the map area. Together with the accompanying pamphlet, it provides current information on the geologic structure and stratigraphy of the Grand Canyon area. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:100,000 or smaller.

  12. 78 FR 17389 - Clark Canyon Hydro, LLC; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12429-009] Clark Canyon...: 12429-009. c. Date Filed: January 28, 2013. d. Applicant: Northwest Power Services on behalf of Clark Canyon Hydro, LLC. e. Name of Project: Clark Canyon Dam Hydroelectric Project. f. Location: The Clark...

  13. The Glen Canyon Dam Adaptive Management Program: An experiment in science-based resource management

    NASA Astrophysics Data System (ADS)

    kaplinski, m

    2001-12-01

    In 1996, Glen Canyon Dam Adaptive Management (GCDAMP) program was established to provide input on Glen Canyon Dam operations and their affect on the Colorado Ecosystem in Grand Canyon. The GCDAMP is a bold experiment in federal resource management that features a governing partnership with all relevant stakeholders sitting at the same table. It is a complicated, difficult process where stakeholder-derived management actions must balance resource protection with water and power delivery compacts, the Endangered Species Act, the National Historical Preservation Act, the Grand Canyon Protection Act, National Park Service Policy, and other stakeholder concerns. The program consists of four entities: the Adaptive Management Workgroup (AMWG), the Technical Workgroup (TWG), the Grand Canyon Monitoring and Research Center (GCMRC), and independent review panels. The AMWG and TWG are federal advisory committees that consists of federal and state resource managers, Native American tribes, power, environmental and recreation interests. The AMWG is develops, evaluates and recommends alternative dam operations to the Secretary. The TWG translates AMWG policy and goals into management objectives and information needs, provides questions that serve as the basis for long-term monitoring and research activities, interprets research results from the GCMRC, and prepares reports as required for the AMWG. The GCMRC is an independent science center that is responsible for all GCDAMP monitoring and research activities. The GCMRC utilizes proposal requests with external peer review and an in-house staff that directs and synthesizes monitoring and research results. The GCMRC meets regularly with the TWG and AMWG and provides scientific information on the consequences of GCDAMP actions. Independent review panels consist of external peer review panels that provide reviews of scientific activities and the program in general, technical advice to the GCMRC, TWG and AMWG, and play a critical

  14. Prehistoric deforestation at Chaco Canyon?

    PubMed Central

    Wills, W. H.; Drake, Brandon L.; Dorshow, Wetherbee B.

    2014-01-01

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical “collapse” associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860–1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world. PMID:25071220

  15. Evaluation of the thermal structure in an urban street canyon: field measurements and model simulation

    NASA Astrophysics Data System (ADS)

    Giovannini, L.; de Franceschi, M.; Zardi, D.

    2009-04-01

    The results of a research project, aiming at providing tools and criteria to evaluate the temperature field inside an urban street canyon, are presented. Temperature measurements have been carried out, both in summertime and in wintertime, inside a North-South oriented urban canyon in the city of Trento (Italy) in the Alps, with sensors placed at various heights on the front of buildings flanking the street and on top of traffic lights in the middle of the canyon. The results have been analyzed in comparison with data from an automated weather station placed close to the street canyon, at 33 m above ground level and taken as a reference for the above roof-top level. During sunny days a well defined cycle was identified in the daily evolution of air temperature measured by the sensors inside the urban canyon, which was primarily influenced by direct solar radiation. As expected, during the morning the East-facing sensors warmed up faster than the other ones, while in the afternoon the West-facing instruments were the warmest. In most cases the air temperature inside the canyon was higher than above roof level, with differences depending on weather conditions and hour of the day. The dataset allowed to characterize the microclimate of the urban canopy layer and provided a basis for testing the ability of a simple numerical model to simulate the thermal structure inside the urban canyon. The model displays the following characteristics: assignment of distinct surface types (road, walls and roofs), in order to better simulate their physical properties; computation of radiative exchanges inside the canyon based on view factors between the different surfaces and explicitly treating both the solar reflections and the shadows; storage heat flux simulated by means of the heat conduction equation. The model requires as input the geometry parameters of the street and the values of meteorological variables measured above roof level. The main outputs are the heat fluxes

  16. Exhumation Across Hells Canyon and the Arc-continent Boundary of Idaho-Oregon

    NASA Astrophysics Data System (ADS)

    Kahn, M.; Fayon, A. K.; Tikoff, B.

    2015-12-01

    Hells Canyon is located along the Idaho-Oregon border. It is proximal to the Salmon River suture zone, the Cretaceous-age western margin of North America that juxtaposes accreted terranes to the west and cratonic North America to the east. We applied (U-Th)/He zircon and apatite thermochronometry to samples along an EW transect across Hells Canyon. (U-Th)/He zircon and apatite ages record the time at which rocks cool below ~ 200 and 60 °C, respectively, providing information on both the timing and rate at which rocks cooled. Samples were collected with respect to structural position relative to the basal Columbia River basalt flow (Imnaha), dated at ~ 17.4 Ma, with most samples taken <100 m below the contact. Given that all localities were at the Earth's surface - and thus cooled below 60˚C - at ~ 17.4 Ma, the variation in obtained ages are assessed relative to this common datum. The easternmost sites were taken on the western margin of the Idaho batholith at Lava Buttes, ID at ~2,700 m elevation: The (U-Th)/He zircon and apatite ages are 64.9±4.6 Ma and 53.8±4.9 Ma, respectively. The westernmost sites occur in the Wallowa Mountains, Oregon, where the base of the Imnaha flow exists at ~3,000 m: The (U-Th)/He zircon and apatite ages are 136.2±42.8 Ma and 21.7±10.0 Ma. Additionally, the basal basalt contact occurs at ~900 m and ~600 m at the bottom of the Salmon River Canyon and Hells Canyon respectively. The (U-Th)/He zircon and apatite ages are 73.1±14.6 Ma and 20.0±7.4 Ma, respectively, for the Salmon River Canyon and 88.6±2.4 Ma and 3.4±0.6 Ma, respectively, for Hells Canyon. The data indicate that: 1) The western Wallowa (accreted) terrane cooled below ~200 °C prior to the formation of the Idaho batholith; 2) The western side of the Idaho batholith shows a rapid and consistent cooling between ~200 °C and ~60 °C in the Paleogene; and 3) Samples at low elevation in Hells Canyon cooled below 60˚C in the Pliocene, which requires reburial of the rocks

  17. Slope instabilities along the Western Andean Escarpment and the main canyons in Northern Chile

    NASA Astrophysics Data System (ADS)

    Crosta, G.; Hermanns, R. L.; Valbuzzi, E.; Dehls, J.; Yugsi Molina, F. X.; Sepulveda, S.

    2012-04-01

    The western slope of the Andes of northern Chile - southern Perù is generally subdivided from the west to the east into the morphological units of: the Coastal Cordillera, Central Depression, the Western Escarpment-Precordillera and the Western Andean Cordillera. The western escarpment and Precordillera are formed by the Azapa coarse-grained clastic formation (sandstones, conglomerates, mudstones) and the Oxaya (rhyodacitic ignimbrites) and Diablo volcanoclastic formations (Oligocene and Miocene). Important uplift has been suggested between the deposition of the Oxaya and Diablo formations. The entire area has been characterized by a long-term hyperaridity (Atacama desert), initially established between 20 and 15 Ma, and this caused a strong difference between the long term continuous uplift and low denudation rates. This long sector of the central western escarpment and Precordillera is incised by deep canyons and subparallel drainage network in the upper part. The drainage network developed in two main phases: a lower-middle Miocene phase with formation of a parallel poorly structured drainage network cutting into the Oxaya formation, and presently well preserved; the canyons have been incised in the initial topography starting around 9 Ma and up to about 3.8 Ma with subsequent refilling episodes. Valley incision (ave. rate of 0.2 mm yr-1) has been controlled by topographic uplift and less arid climate (after 7 Ma). As a consequence of these geologic and climatic settings the evolution of this area has been characterized by canyon incision and extremely large slope instabilities. These slope instabilities occur in the "interfluvial" sectors of the western escarpment and Precordillera and along the canyon flanks. Landslides affecting the preserved paleosurfaces, interested by the parallel drainage network in the Oxaya formation, involve volumes of various cubic kilometres (Lluta collapse, Latagualla Landslide) and can control the drainage network. These mega

  18. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  19. Physical linkages between an offshore canyon and surf zone morphologic change

    NASA Astrophysics Data System (ADS)

    Hansen, Jeff E.; Raubenheimer, Britt; Elgar, Steve; List, Jeffrey H.; Lippmann, Thomas C.

    2017-04-01

    The causes of surf zone morphologic changes observed along a sandy beach onshore of a submarine canyon were investigated using field observations and a numerical model (Delft3D/SWAN). Numerically simulated morphologic changes using four different sediment transport formulae reproduce the temporal and spatial patterns of net cross-shore integrated (between 0 and 6.5 m water depths) accretion and erosion observed in a ˜300 m alongshore region, a few hundred meters from the canyon head. The observations and simulations indicate that the accretion or erosion results from converging or diverging alongshore currents driven primarily by breaking waves and alongshore pressure gradients. The location of convergence or divergence depends on the direction of the offshore waves that refract over the canyon, suggesting that bathymetric features on the inner shelf can have first-order effects on short-term nearshore morphologic change.

  20. Walnut Canyon National Monument : Acoustical Monitoring 2010

    DOT National Transportation Integrated Search

    2013-06-01

    During the summer of 2010 (July - August), the Volpe Center collected baseline acoustical data at Walnut Canyon National Monument (WACA) at a site deployed for approximately 30 days. The baseline data collected during this period will help park manag...

  1. 41 CFR 60-741.40 - General purpose and applicability of the affirmative action program requirement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false General purpose and... Property Management Other Provisions Relating to Public Contracts OFFICE OF FEDERAL CONTRACT COMPLIANCE... requirement. (a) General purpose. An affirmative action program is a management tool designed to ensure equal...

  2. Marine litter in submarine canyons of the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    van den Beld, Inge M. J.; Guillaumont, Brigitte; Menot, Lénaïck; Bayle, Christophe; Arnaud-Haond, Sophie; Bourillet, Jean-François

    2017-11-01

    Marine litter is a matter of increasing concern worldwide, from shallow seas to the open ocean and from beaches to the deep-seafloor. Indeed, the deep sea may be the ultimate repository of a large proportion of litter in the ocean. We used footage acquired with a Remotely Operated Vehicle (ROV) and a towed camera to investigate the distribution and composition of litter in the submarine canyons of the Bay of Biscay. This bay contains many submarine canyons housing Vulnerable Marine Ecosystems (VMEs) such as scleractinian coral habitats. VMEs are considered to be important for fish and they increase the local biodiversity. The objectives of the study were to investigate and discuss: (i) litter density, (ii) the principal sources of litter, (iii) the influence of environmental factors on the distribution of litter, and (iv) the impact of litter on benthic communities. Litter was found in all 15 canyons and at three sites on the edge of the continental shelf/canyon, in 25 of 29 dives. The Belle-île and Arcachon Canyons contained the largest amounts of litter, up to 12.6 and 9.5 items per 100 images respectively. Plastic items were the most abundant (42%), followed by fishing-related items (16%). The litter had both a maritime and a terrestrial origin. The main sources could be linked to fishing activities, major shipping lanes and river discharges. Litter appeared to accumulate at water depths of 801-1100 m and 1401-1700 m. In the deeper of these two depth ranges, litter accumulated on a geologically structured area, accounting for its high frequency at this depth. A larger number of images taken in areas of coral in the shallower of these two depth ranges may account for the high frequency of litter detection at this depth. A larger number of litter items, including plastic objects in particular, were observed on geological structures and in coral areas than on areas of bare substratum. The distribution of fishing-related items was similar for the various types of

  3. 14 CFR 93.309 - General operating procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false General operating procedures. 93.309... Vicinity of Grand Canyon National Park, AZ § 93.309 General operating procedures. Except in an emergency... authorized in writing by the Flight Standards District Office: (1) Northbound. 11,500 or 13,500 feet MSL. (2...

  4. 14 CFR 93.309 - General operating procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false General operating procedures. 93.309... Vicinity of Grand Canyon National Park, AZ § 93.309 General operating procedures. Except in an emergency... authorized in writing by the Flight Standards District Office: (1) Northbound. 11,500 or 13,500 feet MSL. (2...

  5. 14 CFR 93.309 - General operating procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false General operating procedures. 93.309... Vicinity of Grand Canyon National Park, AZ § 93.309 General operating procedures. Except in an emergency... authorized in writing by the Flight Standards District Office: (1) Northbound. 11,500 or 13,500 feet MSL. (2...

  6. 14 CFR 93.309 - General operating procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false General operating procedures. 93.309... Vicinity of Grand Canyon National Park, AZ § 93.309 General operating procedures. Except in an emergency... authorized in writing by the Flight Standards District Office: (1) Northbound. 11,500 or 13,500 feet MSL. (2...

  7. 14 CFR 93.309 - General operating procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false General operating procedures. 93.309... Vicinity of Grand Canyon National Park, AZ § 93.309 General operating procedures. Except in an emergency... authorized in writing by the Flight Standards District Office: (1) Northbound. 11,500 or 13,500 feet MSL. (2...

  8. Simulated Flyover of Mars Canyon Map Animation

    NASA Image and Video Library

    2014-12-12

    This frame from an animation simulates a flyover of a portion of a Martian canyon detailed in a geological map produced by the U.S. Geological Survey and based on observations by the HiRISE camera on NASA Mars Reconnaissance Orbiter.

  9. The down canyon evolution of submarine sediment density flows

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Barry, J.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Maier, K. L.; McGann, M.; Paull, C. K.; O'Reilly, T. C.; Rosenberger, K. J.; Simmons, S.; Sumner, E. J.; Talling, P.; Xu, J.

    2017-12-01

    Submarine density flows, known as turbidity currents, transfer globally significant volumes of terrestrial and shelf sediments, organic carbon, nutrients and fresher-water into the deep ocean. Understanding such flows has wide implications for global organic carbon cycling, the functioning of deep-sea ecosystems, seabed infrastructure hazard assessments, and interpreting geological archives of Earth history. Only river systems transport comparable volumes of sediment over such large areas of the globe. Despite their clear importance, there are remarkably few direct measurements of these oceanic turbidity currents in action. Here we present results from the multi-institution Coordinated Canyon Experiment (CCE) which deployed multiple moorings along the axis of Monterey Canyon (offshore California). An array of six moorings, with downward looking acoustic Doppler current profilers (ADCP) were positioned along the canyon axis from 290 m to 1850 m water depth. The ADCPs reveal the internal flow structure of submarine density flows at each site. We use a novel inversion method to reconstruct the suspended sediment concentration and flow stratification field during each event. Together the six moorings provide the first ever views of the internal structural evolution of turbidity current events as they evolve down system. Across the total 18-month period of deployment at least 15 submarine sediment density flows were measured with velocities up to 8.1 m/sec, with three of these flows extending 50 kms down the canyon beyond the 1850 m water depth mooring. We use these novel data to highlight the controls on ignition, interval structure and collapse of individual events and discuss the implications for the functioning and deposits produced by these enigmatic flows.

  10. A simplified water temperature model for the Colorado River below Glen Canyon Dam

    USGS Publications Warehouse

    Wright, S.A.; Anderson, C.R.; Voichick, N.

    2009-01-01

    Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year-round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first-order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat-exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.58C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam.

  11. An Investigation of Amphitheater-Headed Canyon Distribution, Morphology Variation, and Longitudinal Profile Controls in Escalante and Tarantula Mesa, Utah.

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.

    2014-12-01

    Amphitheater-headed canyons are primarily distinguished from typical fluvial channels by their abrupt headwall terminations. A key goal in the study of river canyons is to establish a reliable link between form and formation processes. This is of particular significance for Mars, where, if such links can be established, amphitheater-headed canyons could be used to determine ancient erosion mechanisms and, by inference, climate conditions. Type examples in arid regions on Earth, such as in Escalante River, Utah, previously have been interpreted as products of groundwater seepage erosion. We investigate amphitheater-headed canyons in Escalante and Tarantula Mesa where variations in canyon head morphology may hold clues for the relative roles of rock properties and fluvial and groundwater processes. In lower Escalante, amphitheaters are only present where canyons have breached the Navajo Sandstone - Kayenta Formation contact. In some canyons, amphitheater development appears to have been inhibited by an abundance of coarse bedload. In Tarantula Mesa, canyons have a variety of headwalls, from amphitheaters to stepped knickzones. Headwall morphology distribution is directly related to the spatially variable presence of knickpoint-forming, fine-grained interbeds within cliff-forming sandstones. Amphitheaters only form where the sandstone unit is undisrupted by these interbeds. Finally, most canyons in Escalante and Tarantula Mesa, regardless of substrate lithology, amphitheater presence, or groundwater spring intensity, are well described by a slope-area power law relationship with regionally constant concavity and normalized steepness indices. This suggests that all channels here are subject to the same erosion rates, independent of groundwater weathering intensity. Thus: 1) variations in canyon headwall form do not necessary relate to differences in fluvial history, 2) stratigraphic variations are clearly of importance in sedimentary canyon systems, and 3) although

  12. Internal wave scattering in continental slope canyons, part 1: Theory and development of a ray tracing algorithm

    NASA Astrophysics Data System (ADS)

    Nazarian, Robert H.; Legg, Sonya

    2017-10-01

    When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.

  13. Nutrient Enrichment Effects on Benthic Biodiversity by the Mississippi River and Submarine Canyon of the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wei, C.; Rowe, G. T.

    2008-12-01

    Biodiversity is measured by (1) α diversity: number of species in relation to a standardized number of individual within a define habitat; (2) β diversity: compositional change or turnover of species between two or more spatial units; and (3) γ diversity: total number of species in a large geographic area. The pattern of biodiversity is usually driven by various physico-chemical conditions. In the deep sea, a cross-isobath parabolic diversity pattern has been well-documented for benthic macrofauna and the cause has been attributed to a dynamic equilibrium between population growth and competition exclusion along a gradient of declining food resources with depth (Rex 1981). Both nutrient-enriched (dominated by opportunistic species) and oligotrophic conditions (slow growth rate) could depress diversity, while the highest diversity can be reached by competitive equilibrium within communities at intermediate resource conditions. In the Gulf of Mexico (GoM), the discharge of Mississippi River can enhance the organic flux to the seafloor adjacent to the mouth of Mississippi River and Mississippi Canyon. The goal of this study was to test Rex's (1981) dynamic equilibrium model between depth-transects that were exposed to different levels of organic enrichment. Four treatments contrasted along the upper slope (250m to 1500m) included (1) Mississippi Canyon (active canyon), (2) De Soto Canyon (inactive canyon), (3) central slope transect (in proximity to Mississippi Canyon), and (4) the west and east slope transects (away from the influence of the Mississippi River). SeaWifs satellite data confirmed that the head of Mississippi Canyon experience highest surface primary production and export POC flux. The lowest α diversity of benthic macrofauna (collecting between 2000 and 2002) was observed at the head of the Mississippi Canyon where γ diversity was relatively high. This suggested that the canyon head was dominated by opportunistic species due the high POC flux but

  14. Geochemical Results of Lysimeter Sampling at the Manning Canyon Repository in the Mercur Mining District, Utah

    USGS Publications Warehouse

    Earle, John; Choate, LaDonna

    2010-01-01

    This report presents chemical characteristics of transient unsaturated-zone water collected by lysimeter from the Manning Canyon repository site in Utah. Data collected by U.S. Geological Survey and U.S. Department of the Interior, Bureau of Land Management scientists under an intragovernmental order comprise the existing body of hydrochemical information on unsaturated-zone conditions at the site and represent the first effort to characterize the chemistry of the soil pore water surrounding the repository. Analyzed samples showed elevated levels of arsenic, barium, chromium, and strontium, which are typical of acidic mine drainage. The range of major-ion concentrations generally showed expected soil values. Although subsequent sampling is necessary to determine long-term effects of the repository, current results provide initial data concerning reactive processes of precipitation on the mine tailings and waste rock stored at the site and provide information on the effectiveness of reclamation operations at the Manning Canyon repository.

  15. Structure-Forming Corals and Sponges and Their Use as Fish Habitat in Bering Sea Submarine Canyons

    PubMed Central

    Miller, Robert J.; Hocevar, John; Stone, Robert P.; Fedorov, Dmitry V.

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide. PMID:22470486

  16. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    PubMed

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  17. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    PubMed

    Miller, Robert J; Hocevar, John; Stone, Robert P; Fedorov, Dmitry V

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  18. 76 FR 56430 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Secretary of Energy approves the Fiscal Year (FY) 2012 Base Charge and Rates (Rates) for Boulder Canyon... calculate the Rates and held a question and answer session. 3. At the public information forum held on April... for FY 2012 in greater detail and held a question and answer session. 4. A public comment forum held...

  19. The Glen Canyon Dam adaptive management program: progress and immediate challenges

    USGS Publications Warehouse

    Hamill, John F.; Melis, Theodore S.; Boon, Philip J.; Raven, Paul J.

    2012-01-01

    Adaptive management emerged as an important resource management strategy for major river systems in the United States (US) in the early 1990s. The Glen Canyon Dam Adaptive Management Program (‘the Program’) was formally established in 1997 to fulfill a statutory requirement in the 1992 Grand Canyon Protection Act (GCPA). The GCPA aimed to improve natural resource conditions in the Colorado River corridor in the Glen Canyon National Recreation Area and Grand Canyon National Park, Arizona that were affected by the Glen Canyon dam. The Program achieves this by using science and a variety of stakeholder perspectives to inform decisions about dam operations. Since the Program started the ecosystem is now much better understood and several biological and physical improvements have been achieved. These improvements include: (i) an estimated 50% increase in the adult population of endangered humpback chub (Gila cypha) between 2001 and 2008, following previous decline; (ii) a 90% decrease in non-native rainbow trout (Oncorhynchus mykiss), which are known to compete with and prey on native fish, as a result of removal experiments; and (iii) the widespread reappearance of sandbars in response to an experimental high-flow release of dam water in March 2008.Although substantial progress has been made, the Program faces several immediate challenges. These include: (i) defining specific, measurable objectives and desired future conditions for important natural, cultural and recreational attributes to inform science and management decisions; (ii) implementing structural and operational changes to improve collaboration among stakeholders; (iii) establishing a long-term experimental programme and management plan; and (iv) securing long-term funding for monitoring programmes to assess ecosystem and other responses to management actions. Addressing these challenges and building on recent progress will require strong and consistent leadership from the US Department of the Interior

  20. Colorado River sediment transport: 1. Natural sediment supply limitation and the influence of Glen Canyon Dam

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Vierra, L.E.

    2000-01-01

    Analyses of flow, sediment‐transport, bed‐topographic, and sedimentologic data suggest that before the closure of Glen Canyon Dam in 1963, the Colorado River in Marble and Grand Canyons was annually supply‐limited with respect to fine sediment (i.e., sand and finer material). Furthermore, these analyses suggest that the predam river in Glen Canyon was not supply‐limited to the same degree and that the degree of annual supply limitation increased near the head of Marble Canyon. The predam Colorado River in Grand Canyon displays evidence of four effects of supply limitation: (1) seasonal hysteresis in sediment concentration, (2) seasonal hysteresis in sediment grain size coupled to the seasonal hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4∥ development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Analyses of sediment budgets provide additional support for the interpretation that the predam river was annually supply‐limited with respect to fine sediment, but it was not supply‐limited with respect to fine sediment during all seasons. In the average predam year, sand would accumulate and be stored in Marble Canyon and upper Grand Canyon for 9 months of the year (from July through March) when flows were dominantly below 200–300 m3/s; this stored sand was then eroded during April through June when flows were typically higher. After closure of Glen Canyon Dam, because of the large magnitudes of the uncertainties in the sediment budget, no season of substantial sand accumulation is evident. Because most flows in the postdam river exceed 200–300 m3/s, substantial sand accumulation in the postdam river is unlikely.

  1. Sediment Transport During Three Controlled-Flood Experiments on the Colorado River Downstream from Glen Canyon Dam, with Implications for Eddy-Sandbar Deposition in Grand Canyon National Park

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Grams, Paul E.; Griffiths, Ronald E.; Sabol, Thomas A.; Voichick, Nicholas; Tusso, Robert B.; Vanaman, Karen M.; McDonald, Richard R.

    2010-01-01

    Three large-scale field experiments were conducted on the Colorado River downstream from Glen Canyon Dam in 1996, 2004, and 2008 to evaluate whether artificial (that is, controlled) floods released from the dam could be used in conjunction with the sand supplied by downstream tributaries to rebuild and sustainably maintain eddy sandbars in the river in Grand Canyon National Park. Higher suspended-sand concentrations during a controlled flood will lead to greater eddy-sandbar deposition rates. During each controlled flood experiment, sediment-transport and bed-sediment data were collected to evaluate sediment-supply effects on sandbar deposition. Data collection substantially increased in spatial and temporal density with each subsequent experiment. The suspended- and bed-sediment data collected during all three controlled-flood experiments are presented and analyzed in this report. Analysis of these data indicate that in designing the hydrograph of a controlled flood that is optimized for sandbar deposition in a given reach of the Colorado River, both the magnitude and the grain size of the sand supply must be considered. Because of the opposing physical effects of bed-sand area and bed-sand grain size in regulating suspended-sand concentration, larger amounts of coarser sand on the bed can lead to lower suspended-sand concentrations, and thus lower rates of sandbar deposition, during a controlled flood than can lesser amounts of finer sand on the bed. Although suspended-sand concentrations were higher at all study sites during the 2008 controlled-flood experiment (CFE) than during either the 1996 or 2004 CFEs, these higher concentrations were likely associated with more sand on the bed of the Colorado River in only lower Glen Canyon. More sand was likely present on the bed of the river in Grand Canyon during the 1996 CFE than during either the 2004 or 2008 CFEs. The question still remains as to whether sandbars can be sustained in the Colorado River in Grand

  2. 76 FR 23623 - Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National Park, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... DEPARTMENT OF THE INTERIOR National Park Service Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National Park, Arizona AGENCY: National Park Service, Department of the Interior..., Grand Canyon National Park. SUMMARY: Pursuant to the National Environmental Policy Act of 1969 (42 U.S.C...

  3. Fluctuating Helical Asymmetry and Morphology of Snails (Gastropoda) in Divergent Microhabitats at ‘Evolution Canyons I and II,’ Israel

    PubMed Central

    Raz, Shmuel; Schwartz, Nathan P.; Mienis, Hendrik K.; Nevo, Eviatar; Graham, John H.

    2012-01-01

    Background Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at ‘Evolution Canyons I and II’ in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, ‘African’ slopes and the mesic, north-facing, ‘European’ slopes have dramatically different microclimates and plant communities. Moreover, ‘Evolution Canyon II’ receives more rainfall than ‘Evolution Canyon I.’ Methodology/Principal Findings We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two ‘Evolution Canyons.’ The xeric ‘African’ slope should be more stressful to land snails than the ‘European’ slope, and ‘Evolution Canyon I’ should be more stressful than ‘Evolution Canyon II.’ Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the ‘European’ slope. Shells of Levantina spiriplana caesareana at ‘Evolution Canyon I,’ were smaller and more asymmetric than those at ‘Evolution Canyon II.’ Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. Conclusions/Significance Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the ‘African’ slope, for increasing surface area and thermoregulation, while Eopolita was larger on the ‘African’ slope, for reducing water evaporation. In addition, ‘Evolution Canyon I’ was more stressful than Evolution Canyon II’ for Levantina. PMID:22848631

  4. Influence of local parameters on the dispersion of traffic-related pollutants within street canyons

    NASA Astrophysics Data System (ADS)

    Karra, Styliani; Malki-Epshtein, Liora; Martin Hyde Collaboration

    2011-11-01

    Ventilation within urban cities and street canyons and the associated air quality is a problem of increasing interest in the last decades. It is important for to minimise exposure of the population to traffic-related pollutants at street level. The residence time of pollutants within the street canyons depends on the meteorological conditions such as wind speed and direction, geometry layout and local parameters (position of traffic lane within the street). An experimental study was carried out to investigate the influence of traffic lane position on the dispersion of traffic-related pollutants within different street canyons geometries: symmetrical (equal building heights on both sides of the street), non-symmetrical (uniform building heights but lower on one side of the street) and heterogeneous (non-uniform building heights on both sides of the street) under constant meteorological conditions. Laboratory experiments were carried out within a water channel and simultaneous measurements of velocity field and concentration scalar levels within and above the street canyons using PIV and PLIF techniques. Traffic -related emissions were simulated using a line emission source. Two positions were examined for all street geometries: line emission source was placed in the centre of the street canyon; line emission source was placed off the centre of the street. TSI Incorporated.

  5. Topographic Change Detection at Select Archeological Sites in Grand Canyon National Park, Arizona, 2006-2007

    USGS Publications Warehouse

    Collins, Brian D.; Minasian, Diane L.; Kayen, Robert

    2009-01-01

    Topographic change of archeological sites within the Colorado River corridor of Grand Canyon National Park (GCNP) is a subject of interest to National Park Service managers and other stakeholders in the Glen Canyon Dam Adaptive Management Program. Although long-term topographic change resulting from a variety of natural processes is typical in the Grand Canyon region, a continuing debate exists on whether and how controlled releases from Glen Canyon Dam, located immediately upstream of GCNP, are impacting rates of site erosion, artifact transport, and the preservation of archeological resources. Continued erosion of archeological sites threatens both the archeological resources and our future ability to study evidence of past cultural habitation. Understanding the causes and effects of archaeological site erosion requires a knowledge of several factors including the location and magnitude of the changes occurring in relation to archeological resources, the rate of the changes, and the relative contribution of several potential causes, including sediment depletion associated with managed flows from Glen Canyon Dam, site-specific weather patterns, visitor impacts, and long-term climate change. To obtain this information, highly accurate, spatially specific data are needed from sites undergoing change. Using terrestrial lidar data collection techniques and novel TIN- and GRID-based change-detection post-processing methods, we analyzed topographic data for nine archeological sites. The data were collected using three separate data collection efforts spanning 16 months (May 2006 to September 2007). Our results documented positive evidence of erosion, deposition, or both at six of the nine sites investigated during this time interval. In addition, we observed possible signs of change at two of the other sites. Erosion was concentrated in established gully drainages and averaged 12 cm to 17 cm in depth with maximum depths of 50 cm. Deposition was concentrated at specific

  6. General-purpose abductive algorithm for interpretation

    NASA Astrophysics Data System (ADS)

    Fox, Richard K.; Hartigan, Julie

    1996-11-01

    Abduction, inference to the best explanation, is an information-processing task that is useful for solving interpretation problems such as diagnosis, medical test analysis, legal reasoning, theory evaluation, and perception. The task is a generative one in which an explanation comprising of domain hypotheses is assembled and used to account for given findings. The explanation is taken to be an interpretation as to why the findings have arisen within the given situation. Research in abduction has led to the development of a general-purpose computational strategy which has been demonstrated on all of the above types of problems. This abduction strategy can be performed in layers so that different types of knowledge can come together in deriving an explanation at different levels of description. Further, the abduction strategy is tractable and offers a very useful tradeoff between confidence in the explanation and completeness of the explanation. This paper will describe this computational strategy for abduction and demonstrate its usefulness towards perceptual problems by examining problem-solving systems in speech recognition and natural language understanding.

  7. 24 CFR 990.310 - Purpose-General policy on financial management, monitoring and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Management Systems, Monitoring, and Reporting § 990.310 Purpose—General policy on financial management, monitoring and reporting. All PHA financial management systems, reporting, and monitoring of program... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Purpose-General policy on financial...

  8. Reconstructing western Grand Canyon's lava dams and their failure mechanisms: new insights from geochemical correlation and 40Ar/39Ar dating

    NASA Astrophysics Data System (ADS)

    Crow, R.; Karlstrom, K. E.; McIntosh, W. C.; Peters, L.; Dunbar, N. W.

    2010-12-01

    longer lived because they undergo less interaction with river water and fracturing and generally fill dry portions of the river bed. Identification of far-traveled clasts on top of lava dam remnants in at least two locations supports the idea that the stable Colorado River established itself on top of the distal parts of some lava dams. Thus, whereas previous workers reported that deposits from outburst flood dam failure events exist in western grand canyon, our data identify specific dam failures and an interaction of catastrophic events at the head of lava dams and modified fluvial processes in distal portions of dams.

  9. Application of a Computerized General Purpose Information Management System (SELGEM) to Medically Important Arthropods (Diptera: Culcidae).

    DTIC Science & Technology

    1980-06-01

    COMPUTERIZED GENERAL PURPOSE INFORMATION MANAGEMENT SYSTEM (SELGE.M) TO KEDICALLY IMPORTANT ARTHROPODS (DIPTERA: CULICIDAE) Annual Report Terry L. Erwin June...GENERAL PURPOSE INFORMATION MANAGEMENT SYSTEM Annual--1 September 1979- (SEIGEM) TO MEDICALLY ThWORTANT ARTHROPODS 30 May 1980 (DIPTERA: CULICIDAE) 6

  10. The architecture of Newton, a general-purpose dynamics simulator

    NASA Technical Reports Server (NTRS)

    Cremer, James F.; Stewart, A. James

    1989-01-01

    The architecture for Newton, a general-purpose system for simulating the dynamics of complex physical objects, is described. The system automatically formulates and analyzes equations of motion, and performs automatic modification of this system equations when necessitated by changes in kinematic relationships between objects. Impact and temporary contact are handled, although only using simple models. User-directed influence of simulations is achieved using Newton's module, which can be used to experiment with the control of many-degree-of-freedom articulated objects.

  11. Rose Canyon Sustainable Aquaculture Project, San Diego, CA

    EPA Pesticide Factsheets

    Documents related to EPA's preparation of an Environmental Assessment (EA) to analyze the potential impacts related to the issuance of a National Pollutant Discharge Elimination System (NPDES) permit for the Rose Canyon Sustainable Aquaculture Project.

  12. Food-web dynamics and isotopic niches in deep-sea communities residing in a submarine canyon and on the adjacent open slopes

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; McClain-Counts, Jennifer; Ross, Steve W.; Brooke, Sandra; Mienis, Furu

    2017-01-01

    Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension feeders, consistent with consuming older, more refractory organic matter. In contrast, canyon suspension feeders had the largest and more distinct isotopic niche, indicating they consume an isotopically discrete food source, possibly fresher organic material. The wider isotopic niche observed for canyon consumers indicated the presence of feeding specialists and generalists. High dispersion in δ13C values for canyon consumers suggests that the isotopic composition of particulate organic matter changes, which is linked to depositional dynamics, resulting in discrete zones of organic matter accumulation or resuspension. Heterogeneity in habitat and food availability likely enhances trophic diversity in canyons. Given their abundance in the world's oceans, our results from Baltimore Canyon suggest that submarine canyons may represent important havens for trophic diversity.

  13. Effectiveness of green infrastructure for improvement of air quality in urban street canyons.

    PubMed

    Pugh, Thomas A M; Mackenzie, A Robert; Whyatt, J Duncan; Hewitt, C Nicholas

    2012-07-17

    Street-level concentrations of nitrogen dioxide (NO(2)) and particulate matter (PM) exceed public health standards in many cities, causing increased mortality and morbidity. Concentrations can be reduced by controlling emissions, increasing dispersion, or increasing deposition rates, but little attention has been paid to the latter as a pollution control method. Both NO(2) and PM are deposited onto surfaces at rates that vary according to the nature of the surface; deposition rates to vegetation are much higher than those to hard, built surfaces. Previously, city-scale studies have suggested that deposition to vegetation can make a very modest improvement (<5%) to urban air quality. However, few studies take full account of the interplay between urban form and vegetation, specifically the enhanced residence time of air in street canyons. This study shows that increasing deposition by the planting of vegetation in street canyons can reduce street-level concentrations in those canyons by as much as 40% for NO(2) and 60% for PM. Substantial street-level air quality improvements can be gained through action at the scale of a single street canyon or across city-sized areas of canyons. Moreover, vegetation will continue to offer benefits in the reduction of pollution even if the traffic source is removed from city centers. Thus, judicious use of vegetation can create an efficient urban pollutant filter, yielding rapid and sustained improvements in street-level air quality in dense urban areas.

  14. Deep-sea bacterial communities in sediments and guts of deposit-feeding holothurians in Portuguese canyons (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Amaro, Teresa; Witte, Harry; Herndl, Gerhard J.; Cunha, Marina R.; Billett, David S. M.

    2009-10-01

    Deposit-feeding holothurians often dominate the megafauna in bathyal deep-sea settings, in terms of both abundance and biomass. Molpadia musculus is particularly abundant at about 3400 m depth in the Nazaré Canyon on the NE Atlantic Continental Margin. However, these high abundances are unusual for burrowing species at this depth. The objective of this research was to understand the reasons of the massive occurrence of these molpadiid holothurians in the Nazaré Canyon. To address this question we investigated possible trophic interactions with bacteria at sites where the organic content of the sediment was different (Setúbal and Cascais Canyons, NE Atlantic Continental Margin). The molecular fingerprinting technique of Denaturing Gradient Gel Electrophoresis (DGGE) with band sequencing, combined with non-metric multi-dimensional scaling and statistical analyses, was used to compare the bacterial community diversity in canyon sediments and holothurian gut contents. Our results suggest that M. musculus does not need to develop a specialised gut bacterial community to aid digestion where the sediment is rich in organic matter (Nazaré Canyon); in contrast, such a community may be developed where the sediment is poorer in organic matter (Cascais Canyon).

  15. Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.

    2017-12-01

    Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in

  16. Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars.

    PubMed

    Lamb, Michael P; Dietrich, William E; Aciego, Sarah M; Depaolo, Donald J; Manga, Michael

    2008-05-23

    Amphitheater-headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater sapping because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, 4He and 14C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion.

  17. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  18. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  19. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  20. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  1. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  2. Effects of three high-flow experiments on the Colorado River ecosystem downstream from Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    Melis, Theodore S.

    2011-01-01

    Three high-flow experiments (HFEs) were conducted by the U.S. Department of the Interior at Glen Canyon Dam, Arizona, in March 1996, November 2004, and March 2008. These experiments, also known as artificial or controlled floods, were large-volume, scheduled releases of water from Glen Canyon Dam that were designed to mimic some aspects of pre-dam Colorado River seasonal flooding. The goal of these experiments was to determine whether high flows could be used to benefit important physical and biological resources in Glen Canyon National Recreation Area and Grand Canyon National Park that had been affected by the operation of Glen Canyon Dam. Efforts such as HFEs that seek to maintain and restore downstream resources are undertaken by the U.S. Department of the Interior under the auspices of the Grand Canyon Protection Act of 1992 (GCPA; title XVIII, secs. 1801-1809, of Public Law 102-575). Scientists conducted a wide range of monitoring and research activities before, during, and after the experiments. Initially, research efforts focused on whether HFEs could be used to rebuild and maintain Grand Canyon sandbars, which provide camping beaches for hikers and whitewater rafters, create habitats potentially used by native fish and other wildlife, and are the source of windborne sand that may help to protect some archaeological resources from weathering and erosion. As scientists gained a better understanding of how HFEs affect the physical environment, research efforts expanded to include additional investigations about the effects of HFEs on biological resources, such as native fishes, nonnative sports fishes, riverside vegetation, and the aquatic food web. The chapters that follow summarize and synthesize for decisionmakers and the public what has been learned about HFEs to provide a framework for implementing similar future experiments. This report is a product of the Glen Canyon Dam Adaptive Management Program (GCDAMP), a Federal initiative authorized to ensure

  3. User's manual SIG: a general-purpose signal processing program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lager, D.; Azevedo, S.

    1983-10-25

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Many of the basic operations one would perform on digitized data are contained in the core SIG package. Out of these core commands, more powerful signal processing algorithms may be built. Many different operations on time- and frequency-domain signals can be performed by SIG. They include operations on the samples of a signal, such as adding a scalar tomore » each sample, operations on the entire signal such as digital filtering, and operations on two or more signals such as adding two signals. Signals may be simulated, such as a pulse train or a random waveform. Graphics operations display signals and spectra.« less

  4. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    PubMed

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  5. Design of a general-purpose European compound screening library for EU-OPENSCREEN.

    PubMed

    Horvath, Dragos; Lisurek, Michael; Rupp, Bernd; Kühne, Ronald; Specker, Edgar; von Kries, Jens; Rognan, Didier; Andersson, C David; Almqvist, Fredrik; Elofsson, Mikael; Enqvist, Per-Anders; Gustavsson, Anna-Lena; Remez, Nikita; Mestres, Jordi; Marcou, Gilles; Varnek, Alexander; Hibert, Marcel; Quintana, Jordi; Frank, Ronald

    2014-10-01

    This work describes a collaborative effort to define and apply a protocol for the rational selection of a general-purpose screening library, to be used by the screening platforms affiliated with the EU-OPENSCREEN initiative. It is designed as a standard source of compounds for primary screening against novel biological targets, at the request of research partners. Given the general nature of the potential applications of this compound collection, the focus of the selection strategy lies on ensuring chemical stability, absence of reactive compounds, screening-compliant physicochemical properties, loose compliance to drug-likeness criteria (as drug design is a major, but not exclusive application), and maximal diversity/coverage of chemical space, aimed at providing hits for a wide spectrum of drugable targets. Finally, practical availability/cost issues cannot be avoided. The main goal of this publication is to inform potential future users of this library about its conception, sources, and characteristics. The outline of the selection procedure, notably of the filtering rules designed by a large committee of European medicinal chemists and chemoinformaticians, may be of general methodological interest for the screening/medicinal chemistry community. The selection task of 200K molecules out of a pre-filtered set of 1.4M candidates was shared by five independent European research groups, each picking a subset of 40K compounds according to their own in-house methodology and expertise. An in-depth analysis of chemical space coverage of the library serves not only to characterize the collection, but also to compare the various chemoinformatics-driven selection procedures of maximal diversity sets. Compound selections contributed by various participating groups were mapped onto general-purpose self-organizing maps (SOMs) built on the basis of marketed drugs and bioactive reference molecules. In this way, the occupancy of chemical space by the EU-OPENSCREEN library could

  6. Mars Odyssey View of Morning Clouds in Canyon

    NASA Image and Video Library

    2016-04-05

    Light blue clouds fill Coprates Chasma on Mars, part of Valles Marineris, the vast Grand Canyon of Mars. The clouds are mostly ice crystals and they appear blue in color in this image from NASA Mars Odyssey.

  7. Multicriteria decision analysis applied to Glen Canyon Dam

    USGS Publications Warehouse

    Flug, M.; Seitz, H.L.H.; Scott, J.F.

    2000-01-01

    Conflicts in water resources exist because river-reservoir systems are managed to optimize traditional benefits (e.g., hydropower and flood control), which are historically quantified in economic terms, whereas natural and environmental resources, including in-stream and riparian resources, are more difficult or impossible to quantify in economic terms. Multicriteria decision analysis provides a quantitative approach to evaluate resources subject to river basin management alternatives. This objective quantification method includes inputs from special interest groups, the general public, and concerned individuals, as well as professionals for each resource considered in a trade-off analysis. Multicriteria decision analysis is applied to resources and flow alternatives presented in the environmental impact statement for Glen Canyon Dam on the Colorado River. A numeric rating and priority-weighting scheme is used to evaluate 29 specific natural resource attributes, grouped into seven main resource objectives, for nine flow alternatives enumerated in the environmental impact statement.

  8. Geologic map of the Glen Canyon Dam 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2013-01-01

    The Glen Canyon Dam 30’ x 60’ quadrangle is characterized by nearly flat lying to gently dipping Paleozoic and Mesozoic sedimentary strata that overlie tilted Proterozoic strata or metasedimentary and igneous rocks similar to those exposed at the bottom of Grand Canyon southwest of the quadrangle. Mississippian to Permian rocks are exposed in the walls of Marble Canyon; Permian strata and minor outcrops of Triassic strata form the surface bedrock of House Rock Valley and Marble Plateau, southwestern quarter of the quadrangle. The Paleozoic strata exposed in Marble Canyon and Grand Canyon south of the map are likely present in the subsurface of the entire quadrangle but with unknown facies and thickness changes. The Mesozoic sedimentary rocks exposed along the Vermilion and Echo Cliffs once covered the entire quadrangle, but Cenozoic erosion has removed most of these rocks from House Rock Valley and Marble Plateau areas. Mesozoic strata remain over much of the northern and eastern portions of the quadrangle where resistant Jurassic sandstone units form prominent cliffs, escarpments, mesas, buttes, and much of the surface bedrock of the Paria, Kaibito, and Rainbow Plateaus. Jurassic rocks in the northeastern part of quadrangle are cut by a sub-Cretaceous regional unconformity that bevels the Entrada Sandstone and Morrison Formation from Cummings Mesa southward to White Mesa near Kaibito. Quaternary deposits, mainly eolian, mantle much of the Paria, Kaibito, and Rainbow Plateaus in the northern and northeastern portion of the quadrangle. Alluvial deposits are widely distributed over parts of House Rock Valley and Marble Plateau in the southwest quarter of the quadrangle. The east-dipping strata of the Echo Cliffs Monocline forms a general north-south structural boundary through the central part of the quadrangle, separating Marble and Paria Plateaus west of the monocline from the Kaibito Plateau east of the monocline. The Echo Cliffs Monocline continues north of

  9. Perspective view over the Grand Canyon, Arizona

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  10. 21 CFR 1240.80 - General requirements for water for drinking and culinary purposes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false General requirements for water for drinking and culinary purposes. 1240.80 Section 1240.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... DRUG ADMINISTRATION CONTROL OF COMMUNICABLE DISEASES Source and Use of Potable Water § 1240.80 General...

  11. Most Detailed Direct Measurements Yet of Turbidity Currents in the Deep Ocean: Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Anderson, K.; Barry, J. P.; Caress, D. W.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Kieft, B.; Lundsten, E. M.; Maier, K. L.; McCann, M. P.; McGann, M.; O'Reilly, T. C.; Parsons, D. R.; Rosenberger, K. J.; Sumner, E.; Talling, P. J.; Xu, J.

    2016-12-01

    Submarine sediment gravity flows (turbidity currents) are among the most important sediment transport processes on Earth, yet there are remarkably few direct measurements of these events in action. The ongoing multi-institution Coordinated Canyon Experiment (CCE) is providing detailed measurements of turbidity currents using multiple sensors and sediment traps deployed in the axis of Monterey Canyon, offshore California, in 6-month long deployments from October 2015 to April 2017 together with seafloor sampling and repeated mapping of seafloor morphology. No previous study has deployed such a dense array of sensors along a turbidity current pathway. Instrumentation includes: an array of 6 moorings carrying downward looking acoustic Doppler current profilers (ADCP) and sediment traps distributed along the canyon axis from 270 to 1,850 m water depth; a benthic instrument node at 1,840 m holding ADCPs of three different frequencies recording on a common time base, as well as salinity, temperature, and turbidity sensors; a McLane profiler at 1,830 m monitoring the lower 500 m of the water column; an array of benthic event detectors (smart boulders) that record their transport within the base of a flow; and precision triangulation beacons to assess creep within the canyon floor. Repeated mapping of the canyon floor at nested grid resolutions ranging from 1-m to 1-cm is being conducted to understand changes in canyon floor morphology. The first 6-month long deployment has been completed and 8 sediment transport events recorded. Seven of these events were restricted to <520 m water depths. However, on January 15th 2016 a sediment-laden turbidity flow ran out for >50 km from <279 m to >1,860 m water depth with an average velocity of 5.4 m/sec. Individual moorings and instruments moved down-canyon up to 7.8 km during this event. The novel instrument array and mapping tools have successfully recorded the down-canyon evolution of the powerful flow in spectacular detail.

  12. A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Kikumoto, Hideki; Ooka, Ryozo

    2012-07-01

    A large-eddy simulation is performed on a turbulent dispersion of chemically reactive air pollutants in a two-dimensional urban street canyon with an aspect ratio of 1.0. Nitrogen monoxide emitted from a line-source set on the bottom of the street canyon disperses and reacts with Ozone included in a free stream. The reactions have significant influences on the concentrations of pollutants in the canyon space, and they increase the concentrations of the reaction products relative to of the concentrations of the reactants. The transport of air pollutants through a free shear layer above the canyon is closely related to the structure of the turbulence. Gases in the canyon are mainly exhausted when low-speed regions appear above the canyon. In contrast, pollutants in the free stream flow into the canyon with high-speed fluid bodies. Consequently, the correlation between the time fluctuations of the reactants' concentrations strongly affects the reaction rates in the region near the free shear layer. In this calculation, the correlation term reaches to a value of 20% of the mean reaction rate at a maximum there.

  13. Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    De Leo, Fabio C.; Vetter, Eric W.; Smith, Craig R.; Rowden, Ashley A.; McGranaghan, Matthew

    2014-06-01

    The mapping of biodiversity on continental margins on landscape scales is highly relevant to marine spatial planning and conservation. Submarine canyons are widespread topographic features on continental and island margins that enhance benthic biomass across a range of oceanic provinces and productivity regimes. However, it remains unclear whether canyons enhance faunal biodiversity on landscape scales relevant to marine protected area (MPA) design. Furthermore, it is not known which physical attributes and heterogeneity metrics can provide good surrogates for large-scale mapping of canyon benthic biodiversity. To test mechanistic hypotheses evaluating the role of different canyon-landscape attributes in enhancing benthic biodiversity at different spatial scales we conducted 34 submersible dives in six submarine canyons and nearby slopes in the Hawaiian archipelago, sampling infaunal macrobenthos in a depth-stratified sampling design. We employed multivariate multiple regression models to evaluate sediment and topographic heterogeneity, canyon transverse profiles, and overall water mass variability as potential drivers of macrobenthic community structure and species richness. We find that variables related to habitat heterogeneity at medium (0.13 km2) and large (15-33 km2) spatial scales such as slope, backscatter reflectivity and canyon transverse profiles are often good predictors of macrobenthic biodiversity, explaining 16-30% of the variance. Particulate organic carbon (POC) flux and distance from shore are also important variables, implicating food supply as a major predictor of canyon biodiversity. Canyons off the high Main Hawaiian Islands (Oahu and Moloka'i) are significantly affected by organic enrichment, showing enhanced infaunal macrobenthos abundance, whereas this effect is imperceptible around the low Northwest Hawaiian Islands (Nihoa and Maro Reef). Variable canyon alpha-diversity and high rates of species turnover (beta-diversity), particularly for

  14. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    NASA Astrophysics Data System (ADS)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  15. Distribution and movement of humpback chub in the Colorado River, Grand Canyon, based on recaptures

    USGS Publications Warehouse

    Paukert, C.P.; Coggins, L.G.; Flaccus, C.E.

    2006-01-01

    Mark-recapture data from the federally endangered humpback chub Gila cypha in the Colorado River, Grand Canyon, were analyzed from 1989 to 2002 to determine large-scale movement patterns and distribution. A total of 14,674 recaptures from 7,127 unique fish were documented; 87% of the recaptures occurred in the same main-stem river reach or tributary as the original captures, suggesting restricted distribution by most fish. A total of 99% of all recaptures were from in and around the Little Colorado River (LCR), a tributary of the Colorado River and primary aggregation and spawning location of humpback chub in Grand Canyon. Time at liberty averaged 394 d, but some fish were recaptured near their main-stem capture location over 10 years later. Proportionally fewer large (>300-mm) humpback chub exhibited restricted distribution than small (<200-mm) fish. However, several fish did move more than 154 km throughout Grand Canyon between capture and recapture, suggesting that limited movement occurs throughout Grand Canyon. The majority of the recaptured fish remained in or returned to the LCR or the Colorado River near the LCR. Although many large-river fishes exhibit extensive migrations to fulfill their life history requirements, most of the humpback chub in Grand Canyon appear to remain in or come back to the LCR and LCR confluence across multiple sizes and time scales. Detecting trends in the overall abundance of this endangered fish in Grand Canyon can probably be accomplished by monitoring the area in and around the LCR.

  16. A simple model for calculating air pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  17. The Colorado River in the Grand Canyon.

    ERIC Educational Resources Information Center

    Speece, Susan

    1991-01-01

    An assessment of the water quality of the Colorado River in the Grand Canyon was made, using the following parameters: dissolved oxygen, water temperature, hydrogen ion concentration, total dissolved solids, turbidity, and ammonium/nitrogen levels. These parameters were used to provide some clue as to the "wellness" and stability of the…

  18. Litter in submarine canyons off the west coast of Portugal

    NASA Astrophysics Data System (ADS)

    Mordecai, Gideon; Tyler, Paul A.; Masson, Douglas G.; Huvenne, Veerle A. I.

    2011-12-01

    Marine litter is of global concern and is present in all the world's oceans, including deep benthic habitats where the extent of the problem is still largely unknown. Litter abundance and composition were investigated using video footage and still images from 16 Remotely Operated Vehicle (ROV) dives in Lisbon, Setúbal, Cascais and Nazaré Canyons located west of Portugal. Litter was most abundant at sites closest to the coastline and population centres, suggesting the majority of the litter was land sourced. Plastic was the dominant type of debris, followed by fishing gear. Standardised mean abundance was 1100 litter items km -2, but was as high as 6600 litter items km -2 in canyons close to Lisbon. Although all anthropogenic material may be harmful to biota, debris was also used as a habitat by some macro-invertebrates. Litter composition and abundance observed in the canyons of the Portuguese margin were comparable to those seen in other deep sea areas around the world. Accumulation of litter in the deep sea is a consequence of human activities both on land and at sea. This needs to be taken into account in future policy decisions regarding marine pollution.

  19. 78 FR 3879 - Ochoco National Forest, Paulina Ranger District; Oregon; Fox Canyon Cluster Allotment Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ...; Fox Canyon Cluster Allotment Management Plan Project EIS AGENCY: Forest Service, USDA. ACTION: Notice... preparing an environmental impact statement (EIS) to analyze the effects of changing grazing management in four allotments on the Paulina Ranger District. The Fox Canyon Cluster project area is located...

  20. 75 FR 10308 - Fire Management Plan, Final Environmental Impact Statement, Record of Decision, Grand Canyon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... DEPARTMENT OF THE INTERIOR National Park Service Fire Management Plan, Final Environmental Impact... Statement for the Fire Management Plan, Grand Canyon National Park. SUMMARY: Pursuant to the National... the Record of Decision for the Fire Management Plan, Grand Canyon National Park, Arizona. On January...

  1. Internal tidal currents in the Gaoping (Kaoping) Submarine Canyon

    USGS Publications Warehouse

    Lee, I.-H.; Wang, Y.-H.; Liu, J.T.; Chuang, W.-S.; Xu, Jie

    2009-01-01

    Data from five separate field experiments during 2000-2006 were used to study the internal tidal flow patterns in the Gaoping (formerly spelled Kaoping) Submarine Canyon. The internal tides are large with maximum interface displacements of about 200??m and maximum velocities of over 100cm/s. They are characterized by a first-mode velocity and density structure with zero crossing at about 100??m depth. In the lower layer, the currents increase with increasing depth. The density interface and the along-channel velocity are approximately 90?? out-of-phase, suggesting a predominant standing wave pattern. However, partial reflection is indicated as there is a consistent phase advance between sea level and density interface along the canyon axis. ?? 2008 Elsevier B.V. All rights reserved.

  2. A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement

    NASA Astrophysics Data System (ADS)

    Drysdale, Graeme Robert

    A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and

  3. Grand Canyon riverbed sediment changes, experimental release of September 2000 - a sample data set

    USGS Publications Warehouse

    Wong, Florence L.; Anima, Roberto J.; Galanis, Peter; Codianne, Jennifer; Xia, Yu; Bucciarelli, Randy; Hamer, Michael

    2003-01-01

    An experimental water release from the Glen Canyon Dam into the Colorado River above Grand Canyon was conducted in September 2000 by the U.S. Bureau of Reclamation. The U.S. Geological Survey (USGS) conducted sidescan sonar surveys between Glen Canyon Dam (mile -15) and Diamond Creek (mile 220), Arizona (mile designations after Stevens, 1998) to determine the sediment characteristics of the Colorado River bed before and after the release. The first survey (R3-00-GC, 28 Aug to 5 Sep 2000) was conducted before the release when the river was at its Low Summer Steady Flow (LSSF) of 8,000 cfs. The second survey (R4-00-GC, 10 to 18 Sep 2000) was conducted immediately after the September 2000 experimental release when the average daily flow was as high as 30,800 cfs as measured below Glen Canyon Dam (Figure 2). Riverbed sediment properties interpreted from the sidescan sonar images include sediment type and sandwaves; overall changes in these properties between the two surveys were calculated. Sidescan sonar data from the USGS surveys were processed for segments of the Colorado River from Glen Canyon Dam (mile -15) to Phantom Ranch (mile 87.7, Figure 3). The surveys targeted pools between rapids that are part of the Grand Canyon Monitoring and Research Center (GCMRC http://www.gcmrc.gov/) physical sciences study. Maps interpreted from the sidescan sonar images show the distribution of sediment types (bedrock, boulders, pebbles or cobbles, and sand) and the extent of sandwaves for each of the pre- and post-flow surveys. The changes between the two surveys were calculated with spatial arithmetric and had properties of fining, coarsening, erosion, deposition, and the appearance or disappearance of sandwaves.

  4. Sand pulses and sand patches on the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Grams, Paul E.; Buscombe, Daniel; Topping, David; Mueller, Erich R.

    2017-01-01

    Alluvial sandbars occur in lateral recirculation zones (eddies) along the Colorado River in Grand Canyon National Park (Schmidt, 1990). Resource managers periodically release controlled floods from the upstream Glen Canyon Dam to rebuild these bars (Grams et al., 2015), which erode during fluctuating dam releases, and by hillslope runoff and wind deflation (Hazel et al., 2010). Because the dam blocks upstream sediment, episodic floods from tributaries provide the only supply to replace eroded sand; and much of this sand originates from a single tributary (Topping et al., 2000). Here, we present new evidence for the downstream translation of the sand component of these sediment inputs as discontinuous sand pulses. Improved understanding of the behaviour of these sand pulses may be used to adjust the timing, magnitude, and duration of controlled floods to maximize potential for deposition on sandbars in different segments of the 450 km-long Grand Canyon.

  5. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  6. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  7. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  8. 40 CFR 439.4 - General limitation or standard for pH.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false General limitation or standard for pH. 439.4 Section 439.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... General limitation or standard for pH. The pH must remain within the range 6.0 to 9.0 in any discharge...

  9. 14. MAIN CANAL CANAL CHECKGATES, JUST BELOW DARK CANYON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. MAIN CANAL - CANAL CHECKGATES, JUST BELOW DARK CANYON SIPHON, VIEW TO NORTHEAST - Carlsbad Irrigation District, Main Canal, 4 miles North to 12 miles Southeast of Carlsbad, Carlsbad, Eddy County, NM

  10. General Purpose Vehicle Mechanic Career Ladder, AFSCs 47232, 47252, and 47275.

    DTIC Science & Technology

    1983-03-01

    general-purpose vehicles; gasoline and diesel engines; automotive electrical and emission control systems maintenance; drive trains and brake systems...OR HYDRAULIC PRESSES ELECTRONIC IGNITION TESTERS HEADLIGHT TESTERS OSCILLOSCOPES DYNAMOMETERS EXHAUST EMISSION TESTERS GAS SHIELD WELDING...collection forms; man-hour accounting forms and reports; corrosion control procedures; troubleshooting exhaust systems, and emission control systems

  11. Selection and Use of General-Purpose Programming Languages--Overview. Volume 1.

    ERIC Educational Resources Information Center

    Cugini, John V.

    This study presents a review of selection factors for the seven major general-purpose programming languages: Ada, BASIC, C, COBOL, FORTRAN, PASCAL, and PL/I. The factors covered include not only the logical operations within each language, but also the advantages and disadvantages stemming from the current computing environment, e.g., software…

  12. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  13. Structure, Quaternary history, and general geology of the Corral Canyon area, Los Angeles County, California

    USGS Publications Warehouse

    Yerkes, R.F.; Wentworth, Carl M.

    1965-01-01

    The Corral Canyon nuclear power plant site consists of about 305 acres near the mouth of Corral Canyon in the central Santa Monica Mountains; it is located on an east-trending segment of the Pacific Coast between Point Dume and Malibu Canyon, about 28 miles due west of Los Angeles. The Santa Monica Mountains are the southwesternmost mainland part of the Transverse Ranges province, the east-trending features of which transect the otherwise relatively uniform northwesterly trend of the geomorphic and geologic features of coastal California. The south margin of the Transverse Ranges is marked by the Santa Monica fault system, which extends eastward near the 34th parallel for at least 145 miles from near Santa Cruz Island to the San Andreas fault zone. In the central Santa Monica Mountains area the Santa Monica fault system includes the Malibu Coast fault and Malibu Coast zone of deformation on the north; from the south it includes an inferred fault--the Anacapa fault--considered to follow an east-trending topographic escarpmemt on the sea floor about 5 miles south of the Malibu Coast fault. The low-lying terrain south of the fault system, including the Los Angeles basin and the largely submerged Continental Borderland offshore, are dominated by northwest-trending structural features. The Malibu Coat zone is a wide, east-trending band of asymmetrically folded, sheared, and faulted bedrock that extends for more than 20 miles along the north margin of the Santa Monica fault system west of Santa Monica. Near the north margin of the Malibu Coast zone the north-dipping, east-trending Malibu Coast fault juxtaposes unlike, in part contemporaneous sedimentary rock sections; it is inferred to be the near-surface expression of a major crustal boundary between completely unrelated basement rocks. Comparison of contemporaneous structural features and stratigraphic sections (Late Cretaceous to middle Miocene sedimentary, rocks and middle Miocene volcanic and intrusive igneous rocks

  14. Effects of Wildfire on the Hydrology of Capulin and Rito de los Frijoles canyons, Bandelier National Monument, New Mexico

    USGS Publications Warehouse

    Veenhuis, Jack E.

    2002-01-01

    In June of 1977, the La Mesa wildfire burned 15,270 acres in and around Frijoles Canyon in Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome wildfire in April of 1996 in Bandelier National Monument burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both watersheds are characterized by abundant and extensive archeological sites that could be affected by increased runoff and accelerated rates of erosion, which typically occur after a wildfire. The U.S. Geological Survey in cooperation with the National Park Service monitored the wildfires' effects on streamflow in both canyons. The magnitude of large stormflows increased dramatically after these wildfires; peak flows at the most downstream streamflow-gaging station in Frijoles and Capulin Canyons increased to about 160 times the maximum recorded flood prior to the fire. Maximum peak flow was 3,030 cubic feet per second at the gaging station in Frijoles Canyon (drainage area equals 18.1 square miles) and 3,630 cubic feet per second at the most downstream crest-stage gage in Capulin Canyon (drainage area equals 14.1 square miles). The pre-fire maximum peak flow recorded in these two canyons was 19 and an estimated 25 cubic feet per second, respectively. As vegetation reestablished itself during the second year, the post-fire annual maximum peak flow decreased to about 10 to 15 times the pre-fire annual maximum peak flow. During the third year, maximum annual peak flows decreased to about three to five times the pre-fire maximum peak flow. In the 22 years since the La Mesa wildfire, flood magnitudes have not completely returned to pre-fire size. Post-fire flood magnitudes in Frijoles and Capulin Canyons do not exceed the maximum floods per drainage area for physiographic regions 5 and 6 in New Mexico. For a burned watershed, however, the peak flows that occur after a wildfire are several orders of magnitude larger than normal forested watershed peak

  15. Objective definition of rainfall intensity-duration thresholds for post-fire flash floods and debris flows in the area burned by the Waldo Canyon fire, Colorado, USA

    USGS Publications Warehouse

    Staley, Dennis M.; Gartner, Joseph E.; Kean, Jason W.

    2015-01-01

    We present an objectively defined rainfall intensity-duration (I-D) threshold for the initiation of flash floods and debris flows for basins recently burned in the 2012 Waldo Canyon fire near Colorado Springs, Colorado, USA. Our results are based on 453 rainfall records which include 8 instances of hazardous flooding and debris flow from 10 July 2012 to 14 August 2013. We objectively defined the thresholds by maximizing the number of correct predictions of debris flow or flood occurrence while minimizing the rate of both Type I (false positive) and Type II (false negative) errors. The equation I = 11.6D−0.7 represents the I-D threshold (I, in mm/h) for durations (D, in hours) ranging from 0.083 h (5 min) to 1 h for basins burned by the 2012 Waldo Canyon fire. As periods of high-intensity rainfall over short durations (less than 1 h) produced all of the debris flow and flood events, real-time monitoring of rainfall conditions will result in very short lead times for early-warning. Our results highlight the need for improved forecasting of the rainfall rates during short-duration, high-intensity convective rainfall events.

  16. A Numerical Study on Characteristics of Flow and Reactive Pollutant Dispersion in Step‒up Street Canyons

    NASA Astrophysics Data System (ADS)

    Kim, E. R.; Kim, J.

    2014-12-01

    For decades, many metro‒ and/or mega‒cities have grown and densities of population and building have increased. Because pollutants released from sources near ground surface such as vehicles are not easy to escape from street canyons which are spaces between buildings standing along streets pedestrians, drivers and residents are likely to be exposed to high concentrations of hazardous pollutants. Therefore, it is important to understand characteristics of flow and pollutant dispersion in street canyons. In this study, step‒up street canyons with higher downwind buildings are considered for understanding flow and reactive pollutants' dispersion characteristics there as a basic step to understand the characteristics in wider urban areas. This study used a CFD model coupled to a chemistry module. Detailed flow and air pollutant concentration are analyzed in step‒up street canyons with different upwind building heights.

  17. Relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy street canyon: Ambient wind effects.

    PubMed

    Kwak, Kyung-Hwan; Lee, Sang-Hyun; Seo, Jaemyeong Mango; Park, Seung-Bu; Baik, Jong-Jin

    2016-01-01

    Rooftop and on-road measurements of O3, NO2, NOx, and CO concentrations were conducted to investigate the relationship between rooftop and on-road concentrations in a busy and shallow street canyon with an aspect ratio of ∼0.3 in Seoul, Republic of Korea, from 15 April to 1 May 2014. The median road-to-roof concentration ratios, correlation coefficients between rooftop and on-road concentrations, and temporal variations of rooftop and on-road concentrations are analyzed according to the rooftop wind directions which are two cross-canyon and two along-canyon directions. The analysis results indicate that the relationship is strong when the rooftop is situated on the downwind side rather than on the upwind side. Relative to the cross-canyon wind directions, one of the along-canyon wind directions can more enhance the relationship. A conceptual framework is proposed to explain the effect of ambient wind direction on the relationship between rooftop and on-road concentrations in a street canyon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E.

    2004-01-01

    The thermal history of the Oquirrh Mountains, Utah, indicates that hydrothermal fluids associated with emplacement of the 37 Ma Bingham Canyon porphyry Cu-Au-Mo deposit extended at least 10 km north of the Bingham pit. An associated paleothermal anomaly enclosed the Barneys Canyon and Melco disseminated gold deposits and several smaller gold deposits between them. Previous studies have shown the Barneys Canyon deposit is near the outer limit of an irregular distal Au-As geochemical halo, about 3 km beyond an intermediate Pb-Zn halo, and 7 km beyond a proximal pyrite halo centered on the Bingham porphyry copper deposit. The Melco deposit also lies near the outer limit of the Au-As halo. Analysis of several geothermometers from samples collected tip to 22 km north of the Bingham Canyon porphyry Cu-Au-Mo deposit indicate that most sedimentary rocks of the Oquirrh Mountains, including those at the gold deposits, have not been regionally heated beyond the "oil window" (less than about 150??C). For geologically reasonable heating durations, the maximum sustained temperature at Melco, 6 km north of the Bingham pit, and at Barneys Canyon, 7.5 km north of the pit, was between 100??C and 140??C, as indicated by combinations of conodont color alteration indices of 1.5 to 2, mean random solid bitumen reflectance of about 1.0 percent, lack of annealing of zircon fission tracks, and partial to complete annealing of apatite fission tracks. The pattern of reset apatite fission-track ages indicates that the gold deposits are located approximately on the 120??C isotherm of the 37 Ma paleothermal anomaly assuming a heating duration of about 106 years. The conodont data further constrain the duration of heating to between 5 ?? 104 and 106 years at approximately 120??C. The ??18O of quartzite host rocks generally increases from about 12.6 per mil at the porphyry to about 15.8 per mil approximately 11 km from the Bingham deposit. This change reflects interaction of interstitial clays in

  19. Tectonic control and mass-wasting processes along S. Vicente Canyon (SW Iberia): evidences from multibeam bathymetry and seismic reflection data

    NASA Astrophysics Data System (ADS)

    Valadares, V.; Roque, C.; Terrinha, P.

    2009-04-01

    The S. Vicente Canyon is located in the Gulf of Cadiz (GoC), in the Northwest Atlantic Ocean, offshore SW Iberia. The GoC is located between the Straits of Gibraltar (5°W) and the Gorringe Bank (12°W) and 34°N and 38°N. It is situated in a complex geodynamic setting at the Eastern tip of the Azores-Gibraltar fracture zone, part of the convergent plate boundary between Northwest Africa and Southwest Eurasia. There are several evidences for active tectonics, moderate seismic activity and some events of high magnitude for earthquakes and tsunamis (like the 1755 and 1969 events). The canyon lies between two of the most prominent faults in the GoC: the Marquês de Pombal and the Horseshoe thrust faults. Since the 1990's nineteen multibeam swath bathymetry surveys were carried out in the Gulf of Cadiz and a compilation of the data was produced adding up to more than 180.000km2. This 100m cellsize compilation allowed a detailed analysis of the seafloor of the GoC including the South and Western Portuguese margins and is in the junction point between these two margins that the S. Vicente Canyon (SVC) is located. The bathymetry data here presented is derived from the MATESPRO survey from 2004, the first large multibeam swath bathymetry survey in the area. The canyon has a general staircase-like shape with the upper and lower parts trending NE-SW and the middle sector with an NNE-SSW direction. The SVC head lies very close to the shore, at depths shallower than 70m and runs towards the Horseshoe Abyssal Plain (HAP) at around 4900m depth. It extends for more than 120km (larger than any other submarine canyon on the GoC) and can reach up to 20 km in width. The walls are steep and frequently affected by mass wasting scars and also strongly incised by minor contributories valleys. A major kink is present where the canyon diverts about 60° from its upper course, as well as several minor ones and some knickpoints are also identifiable across its entire track. Across its

  20. 12 CFR 208.1 - Authority, purpose, and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 208.1 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM MEMBERSHIP OF STATE BANKING INSTITUTIONS IN THE FEDERAL RESERVE SYSTEM (REGULATION H) General Membership and Branching Requirements § 208.1 Authority, purpose, and scope. (a) Authority. Subpart A of Regulation H (12...