Sample records for h-infinity control design

  1. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.

  2. Robust integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    1993-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The emphasis is on formulating the H-infinity optimal control synthesis problem such that the critical requirements for the flight and propulsion systems are adequately reflected within the linear, centralized control problem formulation and the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objective as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope.

  3. Stable H(infinity) Controller Design for the Longitudinal Dynamics of an Aircraft

    NASA Technical Reports Server (NTRS)

    Oezbay, Hitay; Garg, Sanjay

    1995-01-01

    This report discusses different approaches to stable H infinity controller design applied to the problem of augmenting the longitudinal dynamics of an aircraft. Stability of the H infinity controller is investigated by analyzing the effects of changes in the performance index weights, and modifications in the measured outputs. The existence of a stable suboptimal controller is also investigated. It is shown that this is equivalent to finding a stable controller, whose infinity norm is less than a specified bound, for an unstable plant which is determined from parametrization of all H infinity controllers. Examples are given for a gust alleviation and a command tracking problem.

  4. H-infinity based integrated flight-propulsion control design for a STOVL aircraft in transition flight

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle M.; Ouzts, Peter J.

    1990-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic Short Take-Off and Vertical Landing (STOVL) fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC controller design with controller partitioning. Only the feedback controller design portion of the methodology is addressed. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H-infinity control problem such that it reflects the IFPC design objectives. The H-infinity controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance. A discussion is presented of the areas in which the controller performance needs to be improved, and ways in which these improvements can be achieved within the framework of an H-infinity based linear control design.

  5. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  6. Investigation of practical applications of H infinity control theory to the design of control systems for large space structures

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis

    1988-01-01

    The applicability of H infinity control theory to the problems of large space structures (LSS) control was investigated. A complete evaluation to any technique as a candidate for large space structure control involves analytical evaluation, algorithmic evaluation, evaluation via simulation studies, and experimental evaluation. The results of analytical and algorithmic evaluations are documented. The analytical evaluation involves the determination of the appropriateness of the underlying assumptions inherent in the H infinity theory, the determination of the capability of the H infinity theory to achieve the design goals likely to be imposed on an LSS control design, and the identification of any LSS specific simplifications or complications of the theory. The resuls of the analytical evaluation are presented in the form of a tutorial on the subject of H infinity control theory with the LSS control designer in mind. The algorthmic evaluation of H infinity for LSS control pertains to the identification of general, high level algorithms for effecting the application of H infinity to LSS control problems, the identification of specific, numerically reliable algorithms necessary for a computer implementation of the general algorithms, the recommendation of a flexible software system for implementing the H infinity design steps, and ultimately the actual development of the necessary computer codes. Finally, the state of the art in H infinity applications is summarized with a brief outline of the most promising areas of current research.

  7. Mixed H(2)/H(sub infinity): Control with output feedback compensators using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  8. Mixed H2/H(infinity)-Control with an output-feedback compensator using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  9. H(2)- and H(infinity)-design tools for linear time-invariant systems

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi

    1989-01-01

    Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.

  10. Robust H(infinity) tracking control of boiler-turbine systems.

    PubMed

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  11. An analytic formula for H-infinity norm sensitivity with applications to control system design

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Lim, Kyong B.

    1992-01-01

    An analytic formula for the sensitivity of singular value peak variation with respect to parameter variation is derived. As a corollary, the derivative of the H-infinity norm of a stable transfer function with respect to a parameter is presented. It depends on some of the first two derivatives of the transfer function with respect to frequency and the parameter. For cases when the transfer function has a linear system realization whose matrices depend on the parameter, analytic formulas for these first two derivatives are derived, and an efficient algorithm for calculating them is discussed. Examples are given which provide numerical verification of the H-infinity norm sensitivity formula and which demonstrate its utility in designing control systems satisfying H-infinity norm constraints. In the appendix, derivative formulas for singular values are paraphrased.

  12. An LMI approach to design H(infinity) controllers for discrete-time nonlinear systems based on unified models.

    PubMed

    Liu, Meiqin; Zhang, Senlin

    2008-10-01

    A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.

  13. A new approach to mixed H2/H infinity controller synthesis using gradient-based parameter optimization methods

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Schoemig, Ewald

    1993-01-01

    In the past few years, the mixed H(sub 2)/H-infinity control problem has been the object of much research interest since it allows the incorporation of robust stability into the LQG framework. The general mixed H(sub 2)/H-infinity design problem has yet to be solved analytically. Numerous schemes have considered upper bounds for the H(sub 2)-performance criterion and/or imposed restrictive constraints on the class of systems under investigation. Furthermore, many modern control applications rely on dynamic models obtained from finite-element analysis and thus involve high-order plant models. Hence the capability to design low-order (fixed-order) controllers is of great importance. In this research a new design method was developed that optimizes the exact H(sub 2)-norm of a certain subsystem subject to robust stability in terms of H-infinity constraints and a minimal number of system assumptions. The derived algorithm is based on a differentiable scalar time-domain penalty function to represent the H-infinity constraints in the overall optimization. The scheme is capable of handling multiple plant conditions and hence multiple performance criteria and H-infinity constraints and incorporates additional constraints such as fixed-order and/or fixed structure controllers. The defined penalty function is applicable to any constraint that is expressible in form of a real symmetric matrix-inequity.

  14. Adaptive critic designs for discrete-time zero-sum games with application to H(infinity) control.

    PubMed

    Al-Tamimi, Asma; Abu-Khalaf, Murad; Lewis, Frank L

    2007-02-01

    In this correspondence, adaptive critic approximate dynamic programming designs are derived to solve the discrete-time zero-sum game in which the state and action spaces are continuous. This results in a forward-in-time reinforcement learning algorithm that converges to the Nash equilibrium of the corresponding zero-sum game. The results in this correspondence can be thought of as a way to solve the Riccati equation of the well-known discrete-time H(infinity) optimal control problem forward in time. Two schemes are presented, namely: 1) a heuristic dynamic programming and 2) a dual-heuristic dynamic programming, to solve for the value function and the costate of the game, respectively. An H(infinity) autopilot design for an F-16 aircraft is presented to illustrate the results.

  15. Limited Qualities Evaluation of Longitudinal Flight Control Systems Designed Using Multiobjective Control Design Techniques (HAVE INFINITY II)

    DTIC Science & Technology

    1998-06-01

    analytical phase of this research. Finally, the mixed H2/H-Infinity method optimally tradeoff the different benefits offered by the separate H2 and H...potential benefits of the multiobjective design techniques used. Due to the HAVE INFINITY I test results, AFIT made the decision to continue the...sensitivity and complimentary sensitivity weighting, and a mixed H2/H-Infinity design that compromised the benefits of both design techniques optimally. The

  16. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  17. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  18. A nonlinear H-infinity approach to optimal control of the depth of anaesthesia

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Rigatou, Efthymia; Zervos, Nikolaos

    2016-12-01

    Controlling the level of anaesthesia is important for improving the success rate of surgeries and for reducing the risks to which operated patients are exposed. This paper proposes a nonlinear H-infinity approach to optimal control of the level of anaesthesia. The dynamic model of the anaesthesia, which describes the concentration of the anaesthetic drug in different parts of the body, is subjected to linearization at local operating points. These are defined at each iteration of the control algorithm and consist of the present value of the system's state vector and of the last control input that was exerted on it. For this linearization Taylor series expansion is performed and the system's Jacobian matrices are computed. For the linearized model an H-infinity controller is designed. The feedback control gains are found by solving at each iteration of the control algorithm an algebraic Riccati equation. The modelling errors due to this approximate linearization are considered as disturbances which are compensated by the robustness of the control loop. The stability of the control loop is confirmed through Lyapunov analysis.

  19. Robust tracking and distributed synchronization control of a multi-motor servomechanism with H-infinity performance.

    PubMed

    Wang, Minlin; Ren, Xuemei; Chen, Qiang

    2018-01-01

    The multi-motor servomechanism (MMS) is a multi-variable, high coupling and nonlinear system, which makes the controller design challenging. In this paper, an adaptive robust H-infinity control scheme is proposed to achieve both the load tracking and multi-motor synchronization of MMS. This control scheme consists of two parts: a robust tracking controller and a distributed synchronization controller. The robust tracking controller is constructed by incorporating a neural network (NN) K-filter observer into the dynamic surface control, while the distributed synchronization controller is designed by combining the mean deviation coupling control strategy with the distributed technique. The proposed control scheme has several merits: 1) by using the mean deviation coupling synchronization control strategy, the tracking controller and the synchronization controller can be designed individually without any coupling problem; 2) the immeasurable states and unknown nonlinearities are handled by a NN K-filter observer, where the number of NN weights is largely reduced by using the minimal learning parameter technique; 3) the H-infinity performances of tracking error and synchronization error are guaranteed by introducing a robust term into the tracking controller and the synchronization controller, respectively. The stabilities of the tracking and synchronization control systems are analyzed by the Lyapunov theory. Simulation and experimental results based on a four-motor servomechanism are conducted to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Multivariable control of the Space Shuttle remote manipulator system using H2 and H(infinity) optimization. M.S. Thesis - Massachusetts Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Prakash, OM, II

    1991-01-01

    Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.

  1. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Astrophysics Data System (ADS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.

    1994-10-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  2. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  3. Hypersonic vehicle control law development using H infinity and mu-synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1992-01-01

    Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.

  4. An H-infinity approach to optimal control of oxygen and carbon dioxide contents in blood

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Selisteanu, Dan; Precup, Radu

    2016-12-01

    Nonlinear H-infinity control is proposed for the regulation of the levels of oxygen and carbon dioxide in the blood of patients undergoing heart surgery and extracorporeal blood circulation. The levels of blood gases are administered through a membrane oxygenator and the control inputs are the externally supplied oxygen, the aggregate gas supply (oxygen plus nitrogen), and the blood flow which is regulated by a blood pump. The proposed control method is based on linearization of the oxygenator's dynamical model through Taylor series expansion and the computation of Jacobian matrices. The local linearization points are defined by the present value of the oxygenator's state vector and the last value of the control input that was exerted on this system. The modelling errors due to linearization are considered as disturbances which are compensated by the robustness of the control loop. Next, for the linearized model of the oxygenator an H-infinity control input is computed at each iteration of the control algorithm through the solution of an algebraic Riccati equation. With the use of Lyapunov stability analysis it is demonstrated that the control scheme satisfies the H-infinity tracking performance criterion, which signifies improved robustness against modelling uncertainty and external disturbances. Moreover, under moderate conditions the asymptotic stability of the control loop is also proven.

  5. Discrete-time infinity control problem with measurement feedback

    NASA Technical Reports Server (NTRS)

    Stoorvogel, A. A.; Saberi, A.; Chen, B. M.

    1992-01-01

    The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.

  6. H Infinity Control of Magnetic Bearings to Ensure Both System and External Periodic Disturbance Robustness

    NASA Technical Reports Server (NTRS)

    Jiang, Yuhong; Zmood, R. B.

    1996-01-01

    Both self-excited and forced disturbances often lead to severe rotor vibrations in a magnetic bearing systems with long slender shafts. This problem has been studied using the H-infinity method, and stability with good robustness can be achieved for the linearized model of a magnetic bearing when small transient disturbances are applied. In this paper, the H-infinity control method for self-excited and forced disturbances is first reviewed. It is then applied to the control of a magnetic bearing rotor system. In modelling the system, the shaft is first discretized into 18 finite elements and then three levels of condensation are applied. This leads to a system with three masses and three compliant elements which can be described by six state variable coordinates. Simulation of the resultant system design has been performed at speeds up to 10,000 rpm. Disturbances in terms of different initial displacements, initial impulses, and external periodic inputs have been imposed. The simulation results show that good stability can be achieved under these different transient disturbances using the proposed controller while at the same time reducing the sensitivity to external periodic disturbances.

  7. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    PubMed

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  8. F-18 Robust Control Design Using H2 and H-Infinity Methods

    DTIC Science & Technology

    1990-09-01

    INFINITY METHODS by Gerald A. Hartley September 1990 Thesis Advisor: Prof. D. J . Collins Approved for public release; distribution is unlimited. 91...AERONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September, 1990 Author: ’t -4 Cl > J 2 1I Gerald A. Hartley Approved by: -Y2__ ____ ____ Daniel... J Collins, Thesis Advisor Loui V. Schmidt, Second Reader Dep timent of Aeronauticsand-A tronautics iii ABSTRACT The open loop F-18 longitudinal

  9. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  10. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  11. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  12. Optimal Controller Design for the Microgravity Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Hampton, R. David

    1998-01-01

    H2 controllers, when designed using an appropriate design model and carefully chosen frequency weightings, appear to provide robust performance and robust stability for Microgravity Isolation Mount (MIM). The STS-85 flight data will be used to evaluate the H2 controllers' performance on the actual hardware under working conditions. Next, full-order H-infinity controllers will be developed, as an intermediate step, in order to determine appropriate H-infinity performance weights for use in the mixed-norm design. Finally the basic procedure outlined above will be used to develop fixed-order mixed-norm controllers for MIM.

  13. Vibration attenuation of the NASA Langley evolutionary structure experiment using H(sub infinity) and structured singular value (micron) robust multivariable control techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1992-01-01

    The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.

  14. An exact algebraic solution of the infimum in H-infinity optimization with output feedback

    NASA Technical Reports Server (NTRS)

    Chen, Ben M.; Saberi, Ali; Ly, Uy-Loi

    1991-01-01

    This paper presents a simple and noniterative procedure for the computation of the exact value of the infimum in the standard H-infinity-optimal control with output feedback. The problem formulation is general and does not place any restrictions on the direct feedthrough terms between the control input and the controlled output variables, and between the disturbance input and the measurement output variables. The method is applicable to systems that satisfy (1) the transfer function from the control input to the controlled output is right-invertible and has no invariant zeros on the j(w) axis and, (2) the transfer function from the disturbance to the measurement output is left-invertible and has no invariant zeros on the j(w) axis. A set of necessary and sufficient conditions for the solvability of H-infinity-almost disturbance decoupling problem via measurement feedback with internal stability is also given.

  15. On a cost functional for H2/H(infinity) minimization

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Hall, Steven R.; Mustafa, Denis

    1990-01-01

    A cost functional is proposed and investigated which is motivated by minimizing the energy in a structure using only collocated feedback. Defined for an H(infinity)-norm bounded system, this cost functional also overbounds the H2 cost. Some properties of this cost functional are given, and preliminary results on the procedure for minimizing it are presented. The frequency domain cost functional is shown to have a time domain representation in terms of a Stackelberg non-zero sum differential game.

  16. Infrared image enhancement using H(infinity) bounds for surveillance applications.

    PubMed

    Qidwai, Uvais

    2008-08-01

    In this paper, two algorithms have been presented to enhance the infrared (IR) images. Using the autoregressive moving average model structure and H(infinity) optimal bounds, the image pixels are mapped from the IR pixel space into normal optical image space, thus enhancing the IR image for improved visual quality. Although H(infinity)-based system identification algorithms are very common now, they are not quite suitable for real-time applications owing to their complexity. However, many variants of such algorithms are possible that can overcome this constraint. Two such algorithms have been developed and implemented in this paper. Theoretical and algorithmic results show remarkable enhancement in the acquired images. This will help in enhancing the visual quality of IR images for surveillance applications.

  17. Noniterative computation of infimum in H(infinity) optimisation for plants with invariant zeros on the j(omega)-axis

    NASA Technical Reports Server (NTRS)

    Chen, B. M.; Saber, A.

    1993-01-01

    A simple and noniterative procedure for the computation of the exact value of the infimum in the singular H(infinity)-optimization problem is presented, as a continuation of our earlier work. Our problem formulation is general and we do not place any restrictions in the finite and infinite zero structures of the system, and the direct feedthrough terms between the control input and the controlled output variables and between the disturbance input and the measurement output variables. Our method is applicable to a class of singular H(infinity)-optimization problems for which the transfer functions from the control input to the controlled output and from the disturbance input to the measurement output satisfy certain geometric conditions. In particular, the paper extends the result of earlier work by allowing these two transfer functions to have invariant zeros on the j(omega) axis.

  18. Mixed H2/H Infinity Optimization with Multiple H Infinity Constraints

    DTIC Science & Technology

    1994-06-01

    given by (w = 1P I Ijwj, !5 1); p = 2900 The 2-norm is the energy, and the c-norm is the maximum magnitude of the signal. A good measure of performance is...the system 2-norm is not good for uncertainty management)] is conservative, especially when the uncertainty model is highly structured. In this case, g...57.6035 T [-6.4183, 3.6504] ±30.2811 Although the objective was to design a pure regulator, from Table 5-1 we see that the H2 controller provides good

  19. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Hughes, Hunter Douglas

    using the nonlinear flexible hypersonic model for both the velocity tracking and altitude tracking cases. Both of these cases were subject to a ramp input and a multi-step input both with and without perturbation in the model. The results of the simulation show that the tracking state follows the command signal successfully though the perturbed system does show some higher frequency characteristics in the non-tracking states. It was discovered that there is an issue with integral windup when switching takes place in the controller, so an algorithm was implemented to reset the integration of the error on the tracking state when the switch takes place. It was also seen that there was a decline in altitude when tracking velocity, and a large change in velocity that occurred during altitude tracking. These results lead to the decision to include a unity gain regulation state on velocity for the altitude tracking and the altitude for the velocity tracking during the output feedback control synthesis. The procedure for synthesizing an output feedback H infinity LPV controller for the hypersonic vehicle is also discussed in this dissertation. The output feedback design looked at velocity tracking and altitude tracking with rigid body motion variables for both the exible and rigid body hypersonic vehicle models. As with the full state feedback controller, a parametric study was conducted on each of these controllers to determine the number of gridding points in the parameter space and the parameter variation rate limits in the system. The parametric study reveals a 7x7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.1 200]T is preferable for both the velocity tracking and altitude tracking cases with both the exible and rigid body assumptions. The resulting Hinfinity robust performances were gamma = 113:2146 for the exible body velocity tracking case, gamma = 83.6931 for the rigid body

  20. Robust control of systems with real parameter uncertainty and unmodelled dynamics

    NASA Technical Reports Server (NTRS)

    Chang, Bor-Chin; Fischl, Robert

    1991-01-01

    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both

  1. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.

  2. Neural network application to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  3. Intergration of system identification and robust controller designs for flexible structures in space

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Lew, Jiann-Shiun

    1990-01-01

    An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach.

  4. Model Reduction for Control System Design

    NASA Technical Reports Server (NTRS)

    Enns, D. F.

    1985-01-01

    An approach and a technique for effectively obtaining reduced order mathematical models of a given large order model for the purposes of synthesis, analysis and implementation of control systems is developed. This approach involves the use of an error criterion which is the H-infinity norm of a frequency weighted error between the full and reduced order models. The weightings are chosen to take into account the purpose for which the reduced order model is intended. A previously unknown error bound in the H-infinity norm for reduced order models obtained from internally balanced realizations was obtained. This motivated further development of the balancing technique to include the frequency dependent weightings. This resulted in the frequency weighted balanced realization and a new model reduction technique. Two approaches to designing reduced order controllers were developed. The first involves reducing the order of a high order controller with an appropriate weighting. The second involves linear quadratic Gaussian synthesis based on a reduced order model obtained with an appropriate weighting.

  5. Optimal Control Design Using an H2 Method for the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT)

    NASA Technical Reports Server (NTRS)

    Calhoun, Phillip C.; Hampton, R. David; Whorton, Mark S.

    2001-01-01

    The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for micro-gravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current command to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for both frequency-weighted H(sub 2) and H(sub infinity) norms. Comparison of the performance and robustness to plant uncertainty for these two optimal control design approaches are included in the discussion.

  6. Robust control synthesis for uncertain dynamical systems

    NASA Technical Reports Server (NTRS)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  7. Robust controller design for flexible structures using normalized coprime factor plant descriptions

    NASA Technical Reports Server (NTRS)

    Armstrong, Ernest S.

    1993-01-01

    Stabilization is a fundamental requirement in the design of feedback compensators for flexible structures. The search for the largest neighborhood around a given design plant for which a single controller produces closed-loop stability can be formulated as an H(sub infinity) control problem. The use of normalized coprime factor plant descriptions, in which the plant perturbations are defined as additive modifications to the coprime factors, leads to a closed-form expression for the maximum neighborhood boundary allowing optimal and suboptimal H(sub infinity) compensators to be computed directly without the usual gamma iteration. A summary of the theory on robust stabilization using normalized coprime factor plant descriptions is presented, and the application of the theory to the computation of robustly stable compensators for the phase version of the Control-Structures Interaction (CSI) Evolutionary Model is described. Results from the application indicate that the suboptimal version of the theory has the potential of providing the bases for the computation of low-authority compensators that are robustly stable to expected variations in design model parameters and additive unmodeled dynamics.

  8. Feedback control laws for highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.

    1992-01-01

    The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.

  9. D{sub {infinity}}-differential A{sub {infinity}}-algebras and spectral sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapin, S V

    2002-02-28

    In the present paper the construction of a D{sub {infinity}}-differential A{sub {infinity}}-(co)algebra is introduced and basic homotopy properties of this construction are studied. The connection between D{sub {infinity}}-differential A{sub {infinity}}-(co)algebras and spectral sequences is established, which enables us to construct the structure of an A{sub {infinity}} -coalgebra on the Milnor coalgebra directly from the differentials of the Adams spectral sequence.

  10. H(infinity)/H(2)/Kalman filtering of linear dynamical systems via variational techniques with applications to target tracking

    NASA Astrophysics Data System (ADS)

    Rawicz, Paul Lawrence

    In this thesis, the similarities between the structure of the H infinity, H2, and Kalman filters are examined. The filters used in this examination have been derived through duality to the full information controller. In addition, a direct variation of parameters derivation of the Hinfinity filter is presented for both continuous and discrete time (staler case). Direct and controller dual derivations using differential games exist in the literature and also employ variational techniques. Using a variational, rather than a differential games, viewpoint has resulted in a simple relationship between the Riccati equations that arise from the derivation and the results of the Bounded Real Lemma. This same relation has previously been found in the literature and used to relate the Riccati inequality for linear systems to the Hamilton Jacobi inequality for nonlinear systems when implementing the Hinfinity controller. The Hinfinity, H2, and Kalman filters are applied to the two-state target tracking problem. In continuous time, closed form analytic expressions for the trackers and their performance are determined. To evaluate the trackers using a neutral, realistic, criterion, the probability of target escape is developed. That is, the probability that the target position error will be such that the target is outside the radar beam width resulting in a loss of measurement. In discrete time, a numerical example, using the probability of target escape, is presented to illustrate the differences in tracker performance.

  11. D{sub {infinity}}-differential E{sub {infinity}}-algebras and spectral sequences of fibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapin, Sergei V

    2007-10-31

    The notion of an E{sub {infinity}}-algebra with a filtration is introduced. The connections are established between E{sub {infinity}}-algebras with filtrations and the theory of D{sub {infinity}}-differential E{sub {infinity}}-algebras over fields. Based on the technique of D{sub {infinity}}-differential E{sub {infinity}}-algebras, the apparatus of spectral sequences is developed for E{sub {infinity}}-algebras with filtrations, and applications of this apparatus to the multiplicative cohomology spectral sequences of fibrations are given. Bibliography: 21 titles.

  12. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    Students from Benjamin E. Mays Preparatory School in New Orleans enjoyed a hands-on experience at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.

  13. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    Lauren Lombard from Benjamin E. Mays Preparatory School in New Orleans enjoys lettuce she helped to harvest at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques

  14. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    The Controlled Environment Agriculture unit at the INFINITY at NASA Stennis Space Center visitor center and museum grows butterhead lettuce using an aeroponic process that involves no soil and advance LED lighting techniques. Students from Benjamin E. Mays Preparatory School in New Orleans helped to harvest the first crop of lettuce during a visit to the facility May 7, 2012.

  15. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    Shania Etheridge from Benjamin E. Mays Preparatory School in New Orleans shows off the head of lettuce she harvested at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.

  16. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  17. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less

  18. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew

    2009-03-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  19. Are All Infinities Created Equal?

    ERIC Educational Resources Information Center

    Paoletti, Teo J.

    2013-01-01

    Can one infinity be more than another infinity? Ask students this question, and many will be puzzled; others will insist that "infinity is infinity." The question seems to pique their interest and provides an opportunity to present the beautifully simple but counterintuitive proofs concerning the size of infinity first constructed by…

  20. INFINITY harvest

    NASA Image and Video Library

    2012-05-07

    Janice Hueschen of Innovative Imaging & Research Corp. at Stennis Space Center helps students from Benjamin E. Mays Preparatory School in New Orleans harvest lettuce at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.

  1. Integrated control-system design via generalized LQG (GLQG) theory

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.

    1989-01-01

    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.

  2. Conceptualisations of infinity by primary pre-service teachers

    NASA Astrophysics Data System (ADS)

    Date-Huxtable, Elizabeth; Cavanagh, Michael; Coady, Carmel; Easey, Michael

    2018-05-01

    As part of the Opening Real Science: Authentic Mathematics and Science Education for Australia project, an online mathematics learning module embedding conceptual thinking about infinity in science-based contexts, was designed and trialled with a cohort of 22 pre-service teachers during 1 week of intensive study. This research addressed the question: "How do pre-service teachers conceptualise infinity mathematically?" Participants argued the existence of infinity in a summative reflective task, using mathematical and empirical arguments that were coded according to five themes: definition, examples, application, philosophy and teaching; and 17 codes. Participants' reflections were differentiated as to whether infinity was referred to as an abstract (A) or a real (R) concept or whether both (B) codes were used. Principal component analysis of the reflections, using frequency of codings, revealed that A and R codes occurred at different frequencies in three groups of reflections. Distinct methods of argument were associated with each group of reflections: mathematical numerical examples and empirical measurement comparisons characterised arguments for infinity as an abstract concept, geometric and empirical dynamic examples and belief statements characterised arguments for infinity as a real concept and empirical measurement and mathematical examples and belief statements characterised arguments for infinity as both an abstract and a real concept. An implication of the results is that connections between mathematical and empirical applications of infinity may assist pre-service teachers to contrast finite with infinite models of the world.

  3. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  4. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Clare Johnston, 10, and Eden Landis, 3, stare in wonder at the moon rock on display at the INFINITY at NASA Stennis Space Center visitor center and museum. The children toured INFINITY exhibits during ribbon-cutting activities for the facility April 11, 2012.

  5. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Ceremony participants prepare to cut the ribbon on the INFINITY at NASA Stennis Space Center facility April 11, 2012. Participating in the ceremony were (l to r): Gulfport Mayor and INFINITY Science Center Inc. Chairman George Schloegel; U.S. Rep. Steven Palazzo, R-Miss.; U.S. Sen. Roger Wicker, R-Miss.; Roy S. Estess granddaughter Lauren McKay; Mississippi Gov. Phil Bryant; Leo Seal Jr. grandson Leo Seal IV; Stennis Director Patrick Scheuermann; U.S. Sen. Thad Cochran, R-Miss.; NASA Chief of Staff David Radzanowski; and Apollo 13 astronaut and INFINITY Science Center Inc. Vice Chairman Fred Haise.

  6. Conformal Infinity.

    PubMed

    Frauendiener, Jörg

    2000-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  7. Conformal Infinity.

    PubMed

    Frauendiener, Jörg

    2004-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  8. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Mississippi Gov. Phil Bryant looks on as Apollo 13 astronaut and INFINITY Science Center Inc. Vice Chairman Fred Haise points out features of the spacesuit he wore on his lunar mission in 1970. The suit is on display at the INFINITY at NASA Stennis Space Center visitor center and museum. The two men toured the facility during ribbon-cutting activities April 11, 2012.

  9. Application of Mixed H2/H Infinity Optimization

    DTIC Science & Technology

    1991-11-01

    Standard Form .................. . 29 4.4 a-Plot of the Open Loop System .. ......... .. 31 4.5 o-Plot of the H2 & H. Optimal Td ........... . 32 4.6 o...o.34 4.9 o-Plot of Mixed SolutiCo,,, Te.. .......... 35 4.10 a-Plot of H. Central Solution Td ........ 36 4.11 a-Plot of the Mixed Controllers...norm = 3.7) .. .. ......... 41 4.18 a3-Plot of Ted (V-norm 2.8) .......... o.42 v 4.19 a-Plot of Td (ac-norm = 2.5) . . . . . .. 0 42 4.20 a-Plot

  10. Design of dissipative low-authority controllers using an eigensystem assignment technique

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Gupta, S.; Joshi, S. M.

    1992-01-01

    A novel method for the design of dissipative, low-authority controllers has been developed. The method uses a sequential approach along with eigensystem assignment to compute rate and position gain matrices that assign a number of closed-loop poles of the system to desired locations. Because the feedback gain matrices are symmetric and nonnegative definite, the closed-loop stability is always guaranteed regardless of the model order or parameter inaccuracies. The resulting (nominal) closed-loop system can have specified damping ratios for m modes, which makes the plant amenable to high-authority controller design, using methods such as LQG/LTR or H-infinity. A numerical example is worked out for a flexible structure in order to demonstrate the proposed technique.

  11. Infinity: The Twilight Zone of Mathematics.

    ERIC Educational Resources Information Center

    Love, William P.

    1989-01-01

    The theorems and proofs presented are designed to enhance student understanding of the theory of infinity as developed by Cantor and others. Three transfinite numbers are defined to express the cardinality of infinite algebraic sets, infinite sets of geometric points and infinite sets of functions. (DC)

  12. Spacelike matching to null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenginoglu, Anil; Tiglio, Manuel

    2009-07-15

    We present two methods to include the asymptotic domain of a background spacetime in null directions for numerical solutions of evolution equations so that both the radiation extraction problem and the outer boundary problem are solved. The first method is based on the geometric conformal approach, the second is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by including future null infinity in the computational domain with relatively minor modifications. We demonstrate the flexibilitymore » of the methods by considering both Boyer-Lindquist and ingoing Kerr coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.« less

  13. Active member control of a precision structure with an H(infinity) performance objective

    NASA Technical Reports Server (NTRS)

    Fanson, J. L.; Chu, C.-C.; Smith, R. S.; Anderson, E. H.

    1990-01-01

    This paper addresses the noncollocated control of active structures using active structural elements. A top level architecture for active structures is presented, and issues pertaining to robust control of structures are discussed. Controllers optimized for an H sub inf performance specification are implemented on a test structure and the results are compared with analytical predictions. Directions for further research are identified.

  14. Adaptive Attitude Control of the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  15. Modern CACSD using the Robust-Control Toolbox

    NASA Technical Reports Server (NTRS)

    Chiang, Richard Y.; Safonov, Michael G.

    1989-01-01

    The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

  16. Wavelet-based scalable L-infinity-oriented compression.

    PubMed

    Alecu, Alin; Munteanu, Adrian; Cornelis, Jan P H; Schelkens, Peter

    2006-09-01

    Among the different classes of coding techniques proposed in literature, predictive schemes have proven their outstanding performance in near-lossless compression. However, these schemes are incapable of providing embedded L(infinity)-oriented compression, or, at most, provide a very limited number of potential L(infinity) bit-stream truncation points. We propose a new multidimensional wavelet-based L(infinity)-constrained scalable coding framework that generates a fully embedded L(infinity)-oriented bit stream and that retains the coding performance and all the scalability options of state-of-the-art L2-oriented wavelet codecs. Moreover, our codec instantiation of the proposed framework clearly outperforms JPEG2000 in L(infinity) coding sense.

  17. Integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control for Lead-Wing close formation systems

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Jiang, Bin; Zhang, Ke

    2018-03-01

    This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.

  18. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  19. The Conceptual Evolution of Actual Mathematical Infinity.

    ERIC Educational Resources Information Center

    Moreno A., Luis E.; Waldegg, Guillermina

    1991-01-01

    Analyzed are the different stages in the conceptual evolution of infinity as developed historically through the work of Bolzano and Cantor. Results of a study of 18 to 20 year old's concept of infinity prior to instruction produced aspects of the passage between conceptual levels of infinity. (MDH)

  20. Closed-loop transfer recovery with observer-based controllers. I - Analysis. II - Design

    NASA Technical Reports Server (NTRS)

    Chen, Ben M.; Saberi, Ali; Ly, Uy-Loi

    1992-01-01

    A detailed study is presented of three fundamental issues related to the problem of closed-loop transfer (CLT) recovery. The first issues concerns what can and cannot be achieved for a given system and for an arbitrary target CLT function (TCLTF). The second issue involves developing necessary and/or sufficient conditions for a TCLTF to be recoverable either exactly or approximately. The third issue involves the necessary and/or sufficient conditions on a given system such that it has at least one recoverable TCLTF. The results of the analysis identify some fundamental limitations of the given system as a consequence of its structural properties which enables designers to appreciate at the outset different design limitations incurred in the synthesis of output-feedback controllers. Then, the actual design of full-order or reduced-order observer-based controllers is addressed which will achieve as close as possibly the desired TCLTF. Three design methods are considered: (1) the ATEA method, (2) a method that minimizes the H2-norm of a recovery matrix, and (3) a method that minimizes the respective H(infinity) norm. The relative merits of the methods are discussed.

  1. Challenges in assessing college students' conception of duality: the case of infinity

    NASA Astrophysics Data System (ADS)

    Babarinsa-Ochiedike, Grace Olutayo

    Interpreting students' views of infinity posits a challenge for researchers due to the dynamic nature of the conception. There is diversity and variation among students' process-object perceptions. The fluctuations between students' views however reveal an undeveloped duality conception. This study examined college students' conception of duality in understanding and representing infinity with the intent to design strategies that could guide researchers in categorizing students' views of infinity into different levels. Data for the study were collected from N=238 college students enrolled in Calculus sequence courses (Pre-Calculus, Calculus I through Calculus III) at one of the southwestern universities in the U.S. using self-report questionnaires and semi-structured individual task-based interviews. Data was triangulated using multiple measures analyzed by three independent experts using self-designed coding sheets to assess students' externalization of the duality conception of infinity. Results of this study reveal that college students' experiences in traditional Calculus sequence courses are not supportive of the development of duality conception. On the contrary, it strengthens the singularity perspective on fundamental ideas of mathematics such as infinity. The study also found that coding and assessing college students' conception of duality is a challenging and complex process due to the dynamic nature of the conception that is task-dependent and context-dependent. Practical significance of the study is that it helps to recognize misconceptions and starts addressing them so students will have a more comprehensive view of fundamental mathematical ideas as they progress through the Calculus coursework sequence. The developed duality concept development framework called Action-Process-Object-Duality (APOD) adapted from the APOS theory could guide educators and researchers as they engage in assessing students' conception of duality. The results of this study

  2. Multi-unit dosage formulations of theophylline for controlled release applications.

    PubMed

    Uhumwangho, Michael U; Okor, Roland S

    2007-01-01

    The study was carried out to investigate the drug release profiles of multi-unit dosage formulations of theophylline consisting of both the fast and slow release components in a unit dose. The fast release component consisted of conventional granules of theophylline formed by mixing the drug powder with starch mucilage (20% w/v) while the slow release component consisted of wax granulations of theophylline formed by triturating the drug powder with a melted Carnauba wax (drug:wax ratio, 4:1). The granules were either filled into capsules or tabletted. In the study design, the drug release characteristics of the individual fast or slow release particles were first determined separately and then mixed in various proportions for the purpose of optimizing the drug release profiles. The evaluating parameters were the prompt release in the first 1 h (mp), the maximum release (m infinity) and the time to attain it (t infinity). Total drug content in each capsule or tablet was 300 mg and two of such were used in dissolution studies. The release kinetics and hence the release mechanism was confirmed by measuring the linear regression coefficient (R2 values) of the release data. The release kinetics was generally most consistent with the Higuchi square root of time relationship (R2 = 0.95). indicating a diffusion-controlled mechanism. The mp (mg) and t infinity (h) values for capsules and tablets of the conventional granules were (420 mg, 3 h) and (348 mg, 5 h), respectively, while for the capsules and tablets of the wax granulations mp and t infinity values were (228 mg, 9 h) and (156 mg, 12 h), respectively, indicating that a combination of wax granulation and tableting markedly retarded drug release. In the multi-unit dose formulations where the conventional and wax granulations were mixed in the ratios 2:1, 1:1 and 1:2 (conventional: matrix), the m infinity and t infinity values for the capsules were (378 mg, 6 h), (326 mg, 6 h) and (272 mg, 7 h), reSpectively. The

  3. Feedback system design with an uncertain plant

    NASA Technical Reports Server (NTRS)

    Milich, D.; Valavani, L.; Athans, M.

    1986-01-01

    A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.

  4. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1993-01-01

    The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.

  6. Comparison of adaptive critic-based and classical wide-area controllers for power systems.

    PubMed

    Ray, Swakshar; Venayagamoorthy, Ganesh Kumar; Chaudhuri, Balarko; Majumder, Rajat

    2008-08-01

    An adaptive critic design (ACD)-based damping controller is developed for a thyristor-controlled series capacitor (TCSC) installed in a power system with multiple poorly damped interarea modes. The performance of this ACD computational intelligence-based method is compared with two classical techniques, which are observer-based state-feedback (SF) control and linear matrix inequality LMI-H(infinity) robust control. Remote measurements are used as feedback signals to the wide-area damping controller for modulating the compensation of the TCSC. The classical methods use a linearized model of the system whereas the ACD method is purely measurement-based, leading to a nonlinear controller with fixed parameters. A comparative analysis of the controllers' performances is carried out under different disturbance scenarios. The ACD-based design has shown promising performance with very little knowledge of the system compared to classical model-based controllers. This paper also discusses the advantages and disadvantages of ACDs, SF, and LMI-H(infinity).

  7. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Stennis Space Center welcomes participants during ribbon-cutting activities for the INFINITY at NASA Stennis Space Center facility April 11, 2012. The visitor center and museum is located on Interstate 10, Exit 2, in south Mississippi.

  8. INFINITY construction contract signed

    NASA Image and Video Library

    2010-04-06

    Key state and community leaders celebrated April 6 with the signing of a construction contract for the state-of-the-art INFINITY Science Center planned near John C. Stennis Space Center in south Mississippi. Gulfport Mayor George Schloegel (l to r), chair of non-profit INFINITY Science Center Inc., was joined for the signing ceremony at the Hancock Bank in Gulfport by Virginia Wagner, sister of late Hancock Bank President Leo Seal Jr.; and Roy Anderson III, president and CEO of Roy Anderson Corp. Seal was the first chair of INFINITY Science Center Inc., which has led in development of the project. Roy Anderson Corp. plans to begin construction on the 72,000-square-foot, $28 million science and education center in May. The Mississippi Department of Transportation (MDOT) also is set to begin construction of a $2 million access road to the new center. The April 6 ceremony was attended by numerous officials, including former Stennis Space Center Directors Jerry Hlass and Roy Estess; Mississippi Senate President Pro Tempore Billy Hewes, R-Gulfport; Mississippi Rep. Diane Peranich, D-Pass Christian; and MDOT Southern District Commissioner Wayne Brown.

  9. INFINITY construction contract signed

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Key state and community leaders celebrated April 6 with the signing of a construction contract for the state-of-the-art INFINITY Science Center planned near John C. Stennis Space Center in south Mississippi. Gulfport Mayor George Schloegel (l to r), chair of non-profit INFINITY Science Center Inc., was joined for the signing ceremony at the Hancock Bank in Gulfport by Virginia Wagner, sister of late Hancock Bank President Leo Seal Jr.; and Roy Anderson III, president and CEO of Roy Anderson Corp. Seal was the first chair of INFINITY Science Center Inc., which has led in development of the project. Roy Anderson Corp. plans to begin construction on the 72,000-square-foot, $28 million science and education center in May. The Mississippi Department of Transportation (MDOT) also is set to begin construction of a $2 million access road to the new center. The April 6 ceremony was attended by numerous officials, including former Stennis Space Center Directors Jerry Hlass and Roy Estess; Mississippi Senate President Pro Tempore Billy Hewes, R-Gulfport; Mississippi Rep. Diane Peranich, D-Pass Christian; and MDOT Southern District Commissioner Wayne Brown.

  10. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems.

    PubMed

    Chang, Yeong-Chan

    2005-12-01

    This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.

  11. Robust predictive control with optimal load tracking for critical applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, J.; Bentsman, J.; Miller, N.

    1994-09-01

    This report derives a multi-input multi-output (MIMO) version of a two-degree-of-freedom receding-horizon control law based on mixed H{sub 2}/H{infinity} minimization. First, the integrand in the frequency domain representation of the MIMO performance criterion is decomposed into disturbance and reference spectra. Then the controller is derived which minimizes the peak of the disturbance spectrum and the integral of the reference spectrum on the unit circle. The resulting two-degree-of-freedom MIMO control strategy, referred to as the minimax predictive multivariable control (MPC), is shown to have worst-case-disturbance-rejection and robust-stability properties superior to those of purely H{sub 2}-optimal controllers, such as Generalized Predictive Controlmore » (GPC), for identical horizons. An attractive feature of the receding horizon structure of MPC is that it can, in ways similar to GPC, directly incorporate input constraints and pre-programmed reference inputs, which are nontrivial tasks in the standard H{infinity} design.« less

  12. Leaders break ground for INFINITY

    NASA Image and Video Library

    2008-11-20

    Community leaders from Mississippi and Louisiana break ground for the new INFINITY at NASA Stennis Space Center facility during a Nov. 20 ceremony. Groundbreaking participants included (l to r): Gottfried Construction representative John Smith, Mississippi Highway Commissioner Wayne Brown, INFINITY board member and Apollo 13 astronaut Fred Haise, Stennis Director Gene Goldman, Studio South representative David Hardy, Leo Seal Jr. family representative Virginia Wagner, Hancock Bank President George Schloegel, Mississippi Rep. J.P. Compretta, Mississippi Band of Choctaw Indians representative Charlie Benn and Louisiana Sen. A.G. Crowe.

  13. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems

    PubMed Central

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    Purpose To compare cumulative dissipated energy between two phacoemulsification machines. Setting An ambulatory surgical center, Honolulu, Hawaii, USA. Design Retrospective chart review. Methods A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. Results The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds) (P<0.001) across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%–45% (2.25–12.54 percent-seconds) (P=0.005–<0.001). Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. Conclusion The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system. PMID:26229430

  14. Between Perception and Intuition: Learning about Infinity

    ERIC Educational Resources Information Center

    Singer, Florence Mihaela; Voica, Cristian

    2008-01-01

    Based on an empirical study, we explore children's primary and secondary perceptions on infinity. When discussing infinity, children seem to highlight three categories of primary perceptions: processional, topological, and spiritual. Based on their processional perception, children see the set of natural numbers as being infinite and endow Q with…

  15. Helicopter flight-control design using an H(2) method

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1991-01-01

    Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.

  16. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1994-01-01

    The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.

  17. Representations of S{sub {infinity}} admissible with respect to Young subgroups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessonov, Nikolai I

    2012-03-31

    Let N be the set of positive integers and S{sub {infinity}} the set of finite permutations of N. For a partition {Pi} of the set N into infinite parts A{sub 1},A{sub 2},... we denote by S{sub {Pi}} the subgroup of S{sub {infinity}} whose elements leave invariant each of the sets A{sub j}. We set S{sub {infinity}}{sup (N)}={l_brace}s element of S{sub {infinity}:} s(i)=i for any i=1,2,...,N{r_brace}. A factor representation T of the group S{sub {infinity}} is said to be {Pi}-admissible if for some N it contains a nontrivial identity subrepresentation of the subgroup S{sub {Pi}} intersection S{sub {infinity}}{sup (N)}. In themore » paper, we obtain a classification of the {Pi}-admissible factor representations of S{sub {infinity}}. Bibliography: 14 titles.« less

  18. Control system design for flexible structures using data models

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.

    1993-01-01

    presents a recently demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design System (MADCADS), developed for achieving H(sub infinity) type design specifications using data models. Control system design for the NASA/MSFC Single Structure Control Facility are demonstrated for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that require analytical plant models are also presented.

  19. Recursive boson system in the Cuntz algebra O{sub {infinity}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Katsunori

    2007-09-15

    Bosons and fermions are often written by elements of other algebras. Abe (private communication) gave a realization of bosons by formal infinite sums of the canonical generators of the Cuntz algebra O{sub {infinity}}. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of O{sub {infinity}}. In this meaning, we can regard as if the algebra B of bosons was a unital *-subalgebra of O{sub {infinity}} on a given permutative representation. According to this relation, we compute branching laws arising from restrictions of representations of O{sub {infinity}} on B. For example,more » it is shown that the Fock representation of B is given as the restriction of the standard representation of O{sub {infinity}} on B.« less

  20. The Nature of Infinity in Quantum Field Calculations

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-05-01

    In many textbooks on Quantum Field Theory it has been noted that an infinity is taken a circle and the flux is calculated from the A field in that manner. There are of course many such examples of this sort of calculation using infinity as a circle. This author would like to point out that if the three dimensions of space are curved and the one dimension of time is not, in say a four space, infinity is the horizon, which is not a circle but rather a sphere; as long as space-time is curved uniformly, smoothly and has positive curvature. This author believes the math may be in error, since maps of the CMBR seem to indicate a ``Swiss-Cheese'' type of topology, wherein the Sphere at infinity (the Horizon of the Universe), has holes in it that can readily be seen. This author believes that these irregularities most certainly have a calculable effect on QED, QCD and Quantum Field Theory.

  1. Googols and Infinity

    ERIC Educational Resources Information Center

    Gough, John

    2005-01-01

    In this article, the author presents his tales of very large numbers. He discusses the concept of infinity and extremely large numbers such as "googol" and "googolplex". "Googol" which could be written as 1, followed by one hundred zeros, was popularized by Edward Kasner and James Newman. Moreover, "googol" was coined by Kasner's nine-year old…

  2. Physical insight into the simultaneous optimization of structure and control

    NASA Technical Reports Server (NTRS)

    Jacques, Robert N.; Miller, David W.

    1993-01-01

    Recent trends in spacecraft design which yield larger structures with more stringent performance requirements place many flexible modes of the structure within the bandwidth of active controllers. The resulting complications to the spacecraft design make it highly desirable to understand the impact of structural changes on an optimally controlled structure. This work uses low structural models with optimal H(sub 2) and H(sub infinity) controllers to develop some basic insight into this problem. This insight concentrates on several basic approaches to improving controlled performance and how these approaches interact in determining the optimal designs. A numerical example is presented to demonstrate how this insight can be generalized to more complex problems.

  3. Improving the Critic Learning for Event-Based Nonlinear $H_{\\infty }$ Control Design.

    PubMed

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    In this paper, we aim at improving the critic learning criterion to cope with the event-based nonlinear H ∞ state feedback control design. First of all, the Hcontrol problem is regarded as a two-player zero-sum game and the adaptive critic mechanism is used to achieve the minimax optimization under event-based environment. Then, based on an improved updating rule, the event-based optimal control law and the time-based worst-case disturbance law are obtained approximately by training a single critic neural network. The initial stabilizing control is no longer required during the implementation process of the new algorithm. Next, the closed-loop system is formulated as an impulsive model and its stability issue is handled by incorporating the improved learning criterion. The infamous Zeno behavior of the present event-based design is also avoided through theoretical analysis on the lower bound of the minimal intersample time. Finally, the applications to an aircraft dynamics and a robot arm plant are carried out to verify the efficient performance of the present novel design method.

  4. Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peoman G.

    1997-01-01

    The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction

  5. INFINITY Science Center taking shape

    NASA Image and Video Library

    2010-09-06

    Construction of the new INFINITY Science Center is proceeding just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Roy Anderson Corp. of Gulfport is building the 72,000-squarefoot, $43 million science and education center, which will feature a space gallery and an Earth gallery to showcase the science underpinning missions of the agencies at Stennis Space Center. The project is being spearheaded by INFINITY Science Center, Inc., a non-profit corporation led by Gulfport Mayor George Schloegel and Apollo 13 astronaut Fred Haise, in partnership with NASA, the state of Mississippi and private donors. When completed, it will serve as the official Stennis visitors center and will be home to the NASA Educator Resource Center.

  6. Infinity Computer and Calculus

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.

    2007-09-01

    Traditional computers work with finite numbers. Situations where the usage of infinite or infinitesimal quantities is required are studied mainly theoretically. In this survey talk, a new computational methodology (that is not related to nonstandard analysis) is described. It is based on the principle `The part is less than the whole' applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The new methodology allows us to introduce the Infinity Computer working with all these numbers (its simulator is presented during the lecture). The new computational paradigm both gives possibilities to execute computations of a new type and simplifies fields of mathematics where infinity and/or infinitesimals are encountered. Numerous examples of the usage of the introduced computational tools are given during the lecture.

  7. Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Newsome, Jerry R.

    2015-01-01

    Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.

  8. A nonlinear optimal control approach to stabilization of a macroeconomic development model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.

    2017-11-01

    A nonlinear optimal (H-infinity) control approach is proposed for the problem of stabilization of the dynamics of a macroeconomic development model that is known as the Grossman-Helpman model of endogenous product cycles. The dynamics of the macroeconomic development model is divided in two parts. The first one describes economic activities in a developed country and the second part describes variation of economic activities in a country under development which tries to modify its production so as to serve the needs of the developed country. The article shows that through control of the macroeconomic model of the developed country, one can finally control the dynamics of the economy in the country under development. The control method through which this is achieved is the nonlinear H-infinity control. The macroeconomic model for the country under development undergoes approximate linearization round a temporary operating point. This is defined at each time instant by the present value of the system's state vector and the last value of the control input vector that was exerted on it. The linearization is based on Taylor series expansion and the computation of the associated Jacobian matrices. For the linearized model an H-infinity feedback controller is computed. The controller's gain is calculated by solving an algebraic Riccati equation at each iteration of the control method. The asymptotic stability of the control approach is proven through Lyapunov analysis. This assures that the state variables of the macroeconomic model of the country under development will finally converge to the designated reference values.

  9. Robust blood-glucose control using Mathematica.

    PubMed

    Kovács, Levente; Paláncz, Béla; Benyó, Balázs; Török, László; Benyó, Zoltán

    2006-01-01

    A robust control design on frequency domain using Mathematica is presented for regularization of glucose level in type I diabetes persons under intensive care. The method originally proposed under Mathematica by Helton and Merino, --now with an improved disturbance rejection constraint inequality--is employed, using a three-state minimal patient model. The robustness of the resulted high-order linear controller is demonstrated by nonlinear closed loop simulation in state-space, in case of standard meal disturbances and is compared with H infinity design implemented with the mu-toolbox of Matlab. The controller designed with model parameters represented the most favorable plant dynamics from the point of view of control purposes, can operate properly even in case of parameter values of the worst-case scenario.

  10. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems.

    PubMed

    Ryoo, Na Kyung; Kwon, Ji-Won; Wee, Won Ryang; Miller, Kevin M; Han, Young Keun

    2013-10-12

    To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Experiments were performed under in-vitro conditions in this study.Three phacoemulsification handpieces (Infiniti, Signature, and Stellaris) were inserted into balanced salt solution-filled silicone test chambers and were imaged side-by-side by using a thermal camera. Incision compression was simulated by suspending 30.66-gram weights from the silicone chambers. The irrigation flow rate was set at 0, 1, 2, 3, 4, and 5 cc/min and the phacoemulsification power on the instrument consoles was set at 40, 60, 80, and 100%. The highest temperatures generated from each handpiece around the point of compression were measured at 0, 10, 30, and 60 seconds. Under the same displayed phacoemulsification power settings, the peak temperatures measured when using the Infiniti were lower than when using the other two machines, and the Signature was cooler than the Stellaris. At 10 seconds, torsional phacoemulsification with Infiniti at 100% power showed data comparable to that of the Signature at 80% and the Stellaris at 60%. At 30 seconds, the temperature from the Infiniti at 100% power was lower than the Signature at 60% and the Stellaris at 40%. Torsional phacoemulsification with the Infiniti generates less heat than longitudinal phacoemulsification with the Signature and the Stellaris. Lower operating temperatures indicate lower heat generation within the same fluid volume, which may provide additional thermal protection during cataract surgery.

  11. Parametric robust control and system identification: Unified approach

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1994-01-01

    Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.

  12. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  13. Thermal imaging comparison of Signature, Infiniti, and Stellaris phacoemulsification systems

    PubMed Central

    2013-01-01

    Background To compare the heat production of 3 different phacoemulsification machines under strict laboratory test conditions. More specifically, the thermal behavior was analyzed between the torsional modality of the Infiniti system and longitudinal modalities of the Abbot WhiteStar Signature Phacoemulsification system and Bausch and Lomb Stellaris system. Methods Experiments were performed under in-vitro conditions in this study. Three phacoemulsification handpieces (Infiniti, Signature, and Stellaris) were inserted into balanced salt solution-filled silicone test chambers and were imaged side-by-side by using a thermal camera. Incision compression was simulated by suspending 30.66-gram weights from the silicone chambers. The irrigation flow rate was set at 0, 1, 2, 3, 4, and 5 cc/min and the phacoemulsification power on the instrument consoles was set at 40, 60, 80, and 100%. The highest temperatures generated from each handpiece around the point of compression were measured at 0, 10, 30, and 60 seconds. Results Under the same displayed phacoemulsification power settings, the peak temperatures measured when using the Infiniti were lower than when using the other two machines, and the Signature was cooler than the Stellaris. At 10 seconds, torsional phacoemulsification with Infiniti at 100% power showed data comparable to that of the Signature at 80% and the Stellaris at 60%. At 30 seconds, the temperature from the Infiniti at 100% power was lower than the Signature at 60% and the Stellaris at 40%. Conclusions Torsional phacoemulsification with the Infiniti generates less heat than longitudinal phacoemulsification with the Signature and the Stellaris. Lower operating temperatures indicate lower heat generation within the same fluid volume, which may provide additional thermal protection during cataract surgery. PMID:24118895

  14. Microgravity Vibration Control and Civil Applications

    NASA Technical Reports Server (NTRS)

    Whorton, Mark Stephen; Alhorn, Dean Carl

    1998-01-01

    Controlling vibration of structures is essential for both space structures as well as terrestrial structures. Due to the ambient acceleration levels anticipated for the International Space Station, active vibration isolation is required to provide a quiescent acceleration environment for many science experiments. An overview is given of systems developed and flight tested in orbit for microgravity vibration isolation. Technology developed for vibration control of flexible space structures may also be applied to control of terrestrial structures such as buildings and bridges subject to wind loading or earthquake excitation. Recent developments in modern robust control for flexible space structures are shown to provide good structural vibration control while maintaining robustness to model uncertainties. Results of a mixed H-2/H-infinity control design are provided for a benchmark problem in structural control for earthquake resistant buildings.

  15. Bolzano's Approach to the Paradoxes of Infinity: Implications for Teaching

    ERIC Educational Resources Information Center

    Waldegg, Guillermina

    2005-01-01

    In this paper we analyze excerpts of "Paradoxes of the Infinite", the posthumous work of Bernard Bolzano (1781-1848), in order to show that Georg Cantor's (1845-1918) approach to the problem of defining actual mathematical infinity is not the most natural. In fact, Bolzano's approach to the paradoxes of infinity is more intuitive, while remaining…

  16. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection.

    PubMed

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-12-23

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  17. Comparison of the Infiniti vision and the series 20,000 Legacy systems.

    PubMed

    Fernández de Castro, Luis E; Solomon, Kerry D; Hu, Daniel J; Vroman, David T; Sandoval, Helga P

    2008-01-01

    To compare the efficiency of the Infiniti vision system and the Series 20,000 Legacy system phacoemulsification units during routine cataract extraction. Thirty-nine eyes of 39 patients were randomized to have their cataract removed using either the Infiniti or the Legacy system, both using the Neosonix handpiece. System settings were standardized. Ultrasound time, amount of balanced salt solution (BSS) used intraoperatively, and postoperative visual acuity at postoperative days 1, 7 and 30 were evaluated. Preoperatively, best corrected visual acuity was significantly worse in the Infiniti group compared to the Legacy group (0.38 +/- 0.23 and 0.21 +/- 0.16, respectively; p = 0.012). The mean phacoemulsification time was 39.6 +/- 22.9 s (range 6.0-102.0) for the Legacy group and 18.3 +/-19.1 s (range 1.0-80.0) for the Infiniti group (p = 0.001). The mean amounts of intraoperative BSS used were 117 +/- 37.7 ml (range 70-195) in the Legacy group and 85.3 +/- 38.9 ml (range 40-200) in the Infiniti group (p = 0.005). No differences in postoperative visual acuity were found. The ability to use higher flow rates and vacuum settings with the Infiniti vision system allowed for cataract removal with less phacoemulsification time than when using the Legacy system. Copyright 2008 S. Karger AG, Basel.

  18. Extensions of output variance constrained controllers to hard constraints

    NASA Technical Reports Server (NTRS)

    Skelton, R.; Zhu, G.

    1989-01-01

    Covariance Controllers assign specified matrix values to the state covariance. A number of robustness results are directly related to the covariance matrix. The conservatism in known upperbounds on the H infinity, L infinity, and L (sub 2) norms for stability and disturbance robustness of linear uncertain systems using covariance controllers is illustrated with examples. These results are illustrated for continuous and discrete time systems. **** ONLY 2 BLOCK MARKERS FOUND -- RETRY *****

  19. Bolzano`s Approach to the Paradoxes of Infinity: Implications for Teaching

    NASA Astrophysics Data System (ADS)

    Waldegg, Guillermina

    2005-08-01

    In this paper we analyze excerpts of Paradoxes of the Infinite, the posthumous work of Bernard Bolzano (1781-1848), in order to show that Georg Cantor‘s (1845-1918) approach to the problem of defining actual mathematical infinity is not the most natural. In fact, Bolzano‘s approach to the paradoxes of infinity is more intuitive, while remaining internally coherent. Bolzano‘s approach, however, had limitations. We discuss implications for teaching, which include a better understanding of the responses of students to situations involving actual mathematical infinity, for it is possible to draw a kind of parallel between these responses and Bolzano‘s reasoning.

  20. Spectral methods for the spin-2 equation near the cylinder at spatial infinity

    NASA Astrophysics Data System (ADS)

    Macedo, Rodrigo P.; Valiente Kroon, Juan A.

    2018-06-01

    We solve, numerically, the massless spin-2 equations, written in terms of a gauge based on the properties of conformal geodesics, in a neighbourhood of spatial infinity using spectral methods in both space and time. This strategy allows us to compute the solutions to these equations up to the critical sets where null infinity intersects with spatial infinity. Moreover, we use the convergence rates of the numerical solutions to read-off their regularity properties.

  1. L{sup {infinity}} Variational Problems with Running Costs and Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronsson, G., E-mail: gunnar.aronsson@liu.se; Barron, E. N., E-mail: enbarron@math.luc.edu

    2012-02-15

    Various approaches are used to derive the Aronsson-Euler equations for L{sup {infinity}} calculus of variations problems with constraints. The problems considered involve holonomic, nonholonomic, isoperimetric, and isosupremic constraints on the minimizer. In addition, we derive the Aronsson-Euler equation for the basic L{sup {infinity}} problem with a running cost and then consider properties of an absolute minimizer. Many open problems are introduced for further study.

  2. Actively Controlled Structures Theory. Volume 1. Theory of Design Methods

    DTIC Science & Technology

    1979-11-01

    the effects of control and observacion spillover can be treated as stochastic disturbances instead of being ignored as usual. Furthermore, the...accordingly given by k = lA .. + 6.7021/-X.. for A.. <^ 0. Note first that as IX-J increases from zero to infinity, k decreases from infinity to k...BFiC1l TK + Q + PCJFJNF^J - 0 YES (solve for K) (c)pL{A-BF1Ci] T + lA -BFiCi]L + Xo 1 -1 T T T -1 „F, - - N XB KLCnC.LC.1] 1 p ill

  3. Flight control optimization from design to assessment application on the Cessna Citation X business aircraft =

    NASA Astrophysics Data System (ADS)

    Boughari, Yamina

    New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna

  4. Il Concetto di Infinito nell'Intuizione Matematica (Concept of Infinity in Mathematical Intuition).

    ERIC Educational Resources Information Center

    Ferrari, E.; And Others

    1995-01-01

    Investigated the acquisition and maturation of the infinity concept in mathematics of students ages 13-15. Found the infinity concept is learned by students only when provided with appropriate guidance. (Author/MKR)

  5. Light cone structure near null infinity of the Kerr metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Shan; Shang Yu; Graduate School of Chinese Academy of Sciences, Beijing, 100080

    2007-02-15

    Motivated by our attempt to understand the question of angular momentum of a relativistic rotating source carried away by gravitational waves, in the asymptotic regime near future null infinity of the Kerr metric, a family of null hypersurfaces intersecting null infinity in shearfree (good) cuts are constructed by means of asymptotic expansion of the eikonal equation. The geometry of the null hypersurfaces as well as the asymptotic structure of the Kerr metric near null infinity are studied. To the lowest order in angular momentum, the Bondi-Sachs form of the Kerr metric is worked out. The Newman-Unti formalism is then furthermore » developed, with which the Newman-Penrose constants of the Kerr metric are computed and shown to be zero. Possible physical implications of the vanishing of the Newman-Penrose constants of the Kerr metric are also briefly discussed.« less

  6. Robust tracking control of a magnetically suspended rigid body

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1994-01-01

    This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.

  7. Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonora, L.; Cvitan, M.; Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb

    2009-10-15

    We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawkingmore » radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.« less

  8. Composite Robust $$H_\\infty$$ Control for Uncertain Stochastic Nonlinear Systems with State Delay via Disturbance Observer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Hong; Guo, Lei

    Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less

  9. Composite Robust $$H_\\infty$$ Control for Uncertain Stochastic Nonlinear Systems with State Delay via Disturbance Observer

    DOE PAGES

    Liu, Yunlong; Wang, Hong; Guo, Lei

    2018-03-26

    Here in this note, the robust stochastic stabilization and robust H_infinity control problems are investigated for uncertain stochastic time-delay systems with nonlinearity and multiple disturbances. By estimating the disturbance, which can be described by an exogenous model, a composite hierarchical control scheme is proposed that integrates the output of the disturbance observer with state feedback control law. Sufficient conditions for the existence of the disturbance observer and composite hierarchical controller are established in terms of linear matrix inequalities, which ensure the mean-square asymptotic stability of the resulting closed-loop system and the disturbance attenuation. It has been shown that the disturbancemore » rejection performance can also be achieved. A numerical example is provided to show the potential of the proposed techniques and encouraging results have been obtained.« less

  10. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: nonspherical Schwarzschild waves and singularities at null infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Hennig, Jörg

    2018-03-01

    We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.

  11. A Robust HController for an UAV Flight Control System

    PubMed Central

    López, J.

    2015-01-01

    The objective of this paper is the implementation and validation of a robust Hcontroller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, Hcontrol methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements. PMID:26221622

  12. A Robust HController for an UAV Flight Control System.

    PubMed

    López, J; Dormido, R; Dormido, S; Gómez, J P

    2015-01-01

    The objective of this paper is the implementation and validation of a robust Hcontroller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, Hcontrol methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

  13. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems.

    PubMed

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    To compare cumulative dissipated energy between two phacoemulsification machines. An ambulatory surgical center, Honolulu, Hawaii, USA. Retrospective chart review. A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds) (P<0.001) across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%-45% (2.25-12.54 percent-seconds) (P=0.005-<0.001). Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system.

  14. Stabilization of business cycles of finance agents using nonlinear optimal control

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.

    2017-11-01

    Stabilization of the business cycles of interconnected finance agents is performed with the use of a new nonlinear optimal control method. First, the dynamics of the interacting finance agents and of the associated business cycles is described by a modeled of coupled nonlinear oscillators. Next, this dynamic model undergoes approximate linearization round a temporary operating point which is defined by the present value of the system's state vector and the last value of the control inputs vector that was exerted on it. The linearization procedure is based on Taylor series expansion of the dynamic model and on the computation of Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms in the Taylor series expansion is considered as a disturbance which is compensated by the robustness of the control loop. Next, for the linearized model of the interacting finance agents, an H-infinity feedback controller is designed. The computation of the feedback control gain requires the solution of an algebraic Riccati equation at each iteration of the control algorithm. Through Lyapunov stability analysis it is proven that the control scheme satisfies an H-infinity tracking performance criterion, which signifies elevated robustness against modelling uncertainty and external perturbations. Moreover, under moderate conditions the global asymptotic stability features of the control loop are proven.

  15. The BMS4 algebra at spatial infinity

    NASA Astrophysics Data System (ADS)

    Troessaert, Cédric

    2018-04-01

    We show how a global BMS4 algebra appears as part of the asymptotic symmetry algebra at spatial infinity. Using linearised theory, we then show that this global BMS4 algebra is the one introduced by Strominger as a symmetry of the S-matrix.

  16. Parameter Design and Optimal Control of an Open Core Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Pang, D.; Anand, D. K.; Kirk, J. A.

    1996-01-01

    are good correlations between the theoretical model and experimental data. Both simulation and experiment confirm large variations of the magnetic bearing characteristics due to air gap growth. Therefore, the gap growth effect should be considered in the magnetic bearing system design. Additionally, the magnetic bearing control system will be compared to other design methods using not only parameter design but H-infinity optimal control and mu synthesis.

  17. Infinity as a Multi-Faceted Concept in History and in the Mathematics Classroom

    ERIC Educational Resources Information Center

    Arzarello, Ferdinando; Bussi, Maria G., Bartolini; Robutti, Ornella

    2004-01-01

    This paper presents the conceptualisation of infinity as a multi-faceted concept, discussing two examples. The first is from history and illustrates the work of Euler, when using infinity in an algebraic context. The second sketches an activity in a school context, namely students who approach the definite integral with symbolic-graphic…

  18. Switching State-Feedback LPV Control with Uncertain Scheduling Parameters

    NASA Technical Reports Server (NTRS)

    He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.

    2017-01-01

    This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.

  19. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    PubMed Central

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-01-01

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534

  20. Generalized symmetries and [ital w][sub [infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, S.

    After establishing a formal theory for getting solutions of one type of high-dimensional partial differential equation, two sets of generalized symmetries of the 3D Toda theory, which arises from a particular reduction of the 4D self-dual gravity equation, are obtained concretely by a simple formula. Each set of symmetries constitutes a generalized [omega][sub [infinity

  1. Active damping using a control structure interaction approach

    NASA Astrophysics Data System (ADS)

    Umland, Jeffrey W.

    1991-12-01

    The vibration control of flexible structures using electromagnetic actuators is investigated. A model of an electromagnetic voice coil actuator is developed from elementary theory, and the required parameters are measured. Given a constant magnetic field, the force output of the voice coil varies linearly with the current flowing through the coil. The primary damping mechanism of the actuator used is found to be Coulomb friction. It is seen that Coulomb friction inhibits the response of the actuator to low levels of excitation. It is also seen that the actuator displayed a nonlinear relationship between force and current indicating that the applied magnetic field was not constant. This nonlinearity leads to a closed loop instability. Several design improvements are considered. Four different feedback control laws are developed to add active damping to a structure. The actuator is used as both a point force source and as a link in a mechanism that applies bending moments at two places on the structure. The actuator is used as both a point force source and as a link in a mechanism that applies bending moments at two places on the structure. The first control law uses the actuator as a traditional passive vibration absorber. The second control law is direct structural velocity feedback plus direct proof mass position feedback. The third control strategy is also direct structural velocity feedback but using compensated feedback of the proof mass position. The compensator is designed according to an H infinity optimization technique. The fourth control law uses the actuator as an equivalent mechanical viscous damper connected to two points on the structure. The results show that using direct structural velocity feedback provides improved vibration suppression in comparison to a traditional vibration absorber. Furthermore, the tuning criteria is only restricted to maintaining the actuator's single degree of freedom natural frequency below those of the structure to which

  2. Asymptotic symmetries of Rindler space at the horizon and null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hyeyoun

    2010-08-15

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler spacemore » at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.« less

  3. Fixed-Order Mixed Norm Designs for Building Vibration Control

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Calise, Anthony J.

    2000-01-01

    This study investigates the use of H2, mu-synthesis, and mixed H2/mu methods to construct full order controllers and optimized controllers of fixed dimensions. The benchmark problem definition is first extended to include uncertainty within the controller bandwidth in the form of parametric uncertainty representative of uncertainty in the natural frequencies of the design model. The sensitivity of H2 design to unmodeled dynamics and parametric uncertainty is evaluated for a range of controller levels of authority. Next, mu-synthesis methods are applied to design full order compensators that are robust to both unmodeled dynamics and to parametric uncertainty. Finally, a set of mixed H2/mu compensators are designed which are optimized for a fixed compensator dimension. These mixed norm designs recover the H2 design performance levels while providing the same levels of robust stability as the mu designs. It is shown that designing with the mixed norm approach permits higher levels of controller authority for which the H2 designs are destabilizing. The benchmark problem is that of an active tendon system. The controller designs are all based on the use of acceleration feedback.

  4. Optimizing laboratory animal stress paradigms: The H-H* experimental design.

    PubMed

    McCarty, Richard

    2017-01-01

    Major advances in behavioral neuroscience have been facilitated by the development of consistent and highly reproducible experimental paradigms that have been widely adopted. In contrast, many different experimental approaches have been employed to expose laboratory mice and rats to acute versus chronic intermittent stress. An argument is advanced in this review that more consistent approaches to the design of chronic intermittent stress experiments would provide greater reproducibility of results across laboratories and greater reliability relating to various neural, endocrine, immune, genetic, and behavioral adaptations. As an example, the H-H* experimental design incorporates control, homotypic (H), and heterotypic (H*) groups and allows for comparisons across groups, where each animal is exposed to the same stressor, but that stressor has vastly different biological and behavioral effects depending upon each animal's prior stress history. Implementation of the H-H* experimental paradigm makes possible a delineation of transcriptional changes and neural, endocrine, and immune pathways that are activated in precisely defined stressor contexts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fluidics and heat generation of Alcon Infiniti and Legacy, Bausch & Lomb Millennium, and advanced medical optics sovereign phacoemulsification systems.

    PubMed

    Floyd, Michael S; Valentine, Jeremy R; Olson, Randall J

    2006-09-01

    To study heat generation, vacuum, and flow characteristics of the Alcon Infiniti and Bausch & Lomb Millennium with results compared with the Alcon Legacy and advanced medical optics (AMO) Sovereign machines previously studied. Experimental study. Heat generation with continuous ultrasound was determined with and without a 200-g weight. Flow and vacuum were determined from 12 to 40-ml/min in 2-ml/min steps. The impact of a STAAR Cruise Control was also tested. Millennium created the most heat/20% of power (5.67 +/- 0.51 degrees C unweighted and 6.80 +/- 0.80 degrees C weighted), followed by Sovereign (4.59 +/- 0.70 degrees C unweighted and 5.65 +/- 0.72 degrees C weighted), Infiniti (2.79 +/- 0.62 degrees C unweighted and 3.96 +/- 0.31 degrees C weighted), and Legacy (1.99 +/- 0.49 degrees C unweighted and 4.27 +/- 0.76 degrees C weighted; P < .0001 for all comparisons between machines except Infiniti vs Legacy, both weighted). Flow studies revealed that Millennium Peristaltic was 17% less than indicated (P < .0001 to all other machines), and all other machines were within 3.5% of indicated. Cruise Control decreased flow by 4.1% (P < .0001 for same machine without it). Millennium Venturi had the greatest vacuum (81% more than the least Sovereign; P < .0001), and Cruise Control increased vacuum in a peristaltic machine 35% more than the Venturi system (P < .0001). Percent power is not consistent in regard to heat generation, however, flow was accurate for all machines except Millennium Peristaltic. Restriction with Cruise Control elevates unoccluded vacuum to levels greater than the Venturi system tested.

  6. Frequency Weighted H2 Control Design for the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT)

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Hampton, R. David

    2004-01-01

    The acceleration environment on the International Space Station (ISS) exceeds the requirements of many microgravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) has been built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. The g-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform, for mounting science payloads, from the nominal acceleration environment. The system utilizes payload-acceleration, relative-position, and relative-orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. The present work documents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H2 norms. Comparison of performance and robustness to plant uncertainty for this control design approach is included in the discussion. System performance is demonstrated in the presence of plant modeling error.

  7. INtensive versus Standard Ambulatory Blood Pressure Lowering to Prevent Functional DeclINe In The ElderlY (INFINITY)

    PubMed Central

    White, William B.; Marfatia, Ravi; Schmidt, Julia; Wakefield, Dorothy B.; Kaplan, Richard F.; Bohannon, Richard W.; Hall, Charles B.; Guttmann, Charles R.; Moscufo, Nicola; Fellows, Douglas; Wolfson, Leslie

    2012-01-01

    Reductions in mobility and cognitive function linked to accrual of brain microvascular disease related white-matter hyperintensities(WMH) on magnetic resonance imaging (MRI) canoccur in older hypertensive patients in as little as 2 years. We have designed a trial evaluating two levels of ambulatory BP control in individuals with normal or mildly impaired mobility and cognition who have detectable cerebrovascular disease (>0.5% WMH fraction of intracranial volume) on functional outcomes. The study is a prospective randomized, open-label trial with blinded endpoints, inpatients ages 75 and older with elevated 24-h systolic BP (≥145 mmHg in the untreated state) who do not have unstable cardiovascular disease, heart failure or stroke. The primary and key secondary outcomes in the trial are: change from baseline in mobility and cognitive function and damage to brain white matter as demonstrated by accrual of WMH volume and changes indiffusion tensor imaging.Approximately 300 patients will be enrolled and 200 randomized to one of two levels of ambulatory BP control (intensive to achieve a goal 24-hour systolic BP of ≤ 130 mmHg or standard to achieve a goal 24-hour systolic BP of ≤ 145 mmHg) for a total of 36 months using similar antihypertensive regimens. The analytical approach provides 85% power to show a clinically meaningful effect in differences in mobility accompanied by quantitative differences in WMH between treatment groups. The INFINITY trial is the first to guide antihypertensive therapy using ambulatory BP monitoring rather than clinic BP to reduce cerebrovascular disease. PMID:23453090

  8. Theoretical constraints in the design of multivariable control systems

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Mook, D. J.

    1993-01-01

    The theoretical constraints inherent in the design of multivariable control systems were defined and investigated. These constraints are manifested by the system transmission zeros that limit or bound the areas in which closed loop poles and individual transfer function zeros may be placed. These constraints were investigated primarily in the context of system decoupling or non-interaction. It was proven that decoupling requires the placement of closed loop poles at the system transmission zeros. Therefore, the system transmission zeros must be minimum phase to guarantee a stable decoupled system. Once decoupling has been accomplished, the remaining part of the system exhibits transmission zeros at infinity, so nearly complete design freedom is possible in terms of placing both poles and zeros of individual closed loop transfer functions. A general, dynamic inversion model following system architecture was developed that encompasses both the implicit and explicit configuration. Robustness properties are developed along with other attributes of this type of system. Finally, a direct design is developed for the longitudinal-vertical degrees of freedom of aircraft motion to show how a direct lift flap can be used to improve the pitch-heave maneuvering coordination for enhanced flying qualities.

  9. INFINITY at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  10. INFINITY at NASA Stennis Space Center

    NASA Image and Video Library

    2010-11-17

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  11. Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.

    2017-11-01

    It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.

  12. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space.

    PubMed

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies.

  13. Design and Testing of a Controller for the Martian Atmosphere Pressure and Humidity Instrument DREAMS-P/H

    NASA Astrophysics Data System (ADS)

    Tapani Nikkanen, Timo; Schmidt, Walter; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri

    2013-04-01

    The European Space Agency (ESA), driven by the goal of performing a soft landing on Mars, is planning to launch the Entry, descent and landing Demonstrator Module (EDM)[1] simultaneously with the Trace Gas Orbiter (TGO) as a part of the ExoMars program towards Mars in 2016. As a secondary objective, the EDM will gather meteorological data and observe the electrical environment of the landing site with its Dust characterisation, Risk assessment, and Environmental Analyser on the Martian Surface (DREAMS). The Finnish Meteorological Institute (FMI) is participating in the project by designing, building and testing a pressure and a humidity instrument for Mars, named DREAMS-P and DREAMS-H, respectively. The instruments are based on previous FMI designs, including ones flown on board the Huygens, Phoenix and Mars Science Laboratory.[2] Traditionally, the FMI pressure and humidity instruments have been controlled by an FPGA. However, the need to incorporate more autonomy and modifiability into instruments, cut the development time and component costs, stimulated interest to study a Commercial Off-The-Shelf (COTS) Microcontroller Unit (MCU) based instrument design. Thus, in the DREAMS-P/H design, an automotive MCU is used as the instrument controller. The MCU has been qualified for space by tests in and outside FMI. The DREAMS-P/H controller command and data interface utilizes a RS-422 connection to receive telecommands from and to transmit data to the Central Electronics Unit (CEU) of the DREAMS science package. The two pressure transducers of DREAMS-P and one humidity transducer of DREAMS-H are controlled by a single MCU. The MCU controls the power flow for each transducer and performs pulse counting measurements on sensor and reference channels to retrieve scientific data. Pressure and humidity measurements are scheduled and set up according to a configuration table assigned to each transducer. The configuration tables can be modified during the flight. The whole

  14. Surprising structures hiding in Penrose’s future null infinity

    NASA Astrophysics Data System (ADS)

    Newman, Ezra T.

    2017-07-01

    Since the late1950s, almost all discussions of asymptotically flat (Einstein-Maxwell) space-times have taken place in the context of Penrose’s null infinity, I+. In addition, almost all calculations have used the Bondi coordinate and tetrad systems. Beginning with a known asymptotically flat solution to the Einstein-Maxwell equations, we show first, that there are other natural coordinate systems, near I+, (analogous to light-cones in flat-space) that are based on (asymptotically) shear-free null geodesic congruences (analogous to the flat-space case). Using these new coordinates and their associated tetrad, we define the complex dipole moment, (the mass dipole plus i times angular momentum), from the l  =  1 harmonic coefficient of a component of the asymptotic Weyl tensor. Second, from this definition, from the Bianchi identities and from the Bondi-Sachs mass and linear momentum, we show that there exists a large number of results—identifications and dynamics—identical to those of classical mechanics and electrodynamics. They include, among many others, {P}=M{v}+..., {L}= {r} × {P} , spin, Newton’s second law with the rocket force term (\\dotM v) and radiation reaction, angular momentum conservation and others. All these relations take place in the rather mysterious H-space rather than in space-time. This leads to the enigma: ‘why do these well known relations of classical mechanics take place in H-space?’ and ‘What is the physical meaning of H-space?’

  15. An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Watts, Stephen R.; Garg, Sanjay

    1995-01-01

    This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.

  16. H2, fixed architecture, control design for large scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1990-01-01

    The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.

  17. An Innovation in Children's T.V. the Infinity Factory

    ERIC Educational Resources Information Center

    La Luz, 1977

    1977-01-01

    "Infinity Factory" is a slick, fast-paced, sophisticated series aimed at teaching mathematics fundamentals with a unique and arresting approach. The 30 minutes of live-action skits, brief filmed documentaries, and animation sequences explore common sense math concepts and present useful information showing math at work in everyday life. (NQ)

  18. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Xu, Q; Xue, J

    2014-06-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured withmore » scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD{sub 10} of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R{sub 80} matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs.« less

  19. A fluidics comparison of Alcon Infiniti, Bausch & Lomb Stellaris, and Advanced Medical Optics Signature phacoemulsification machines.

    PubMed

    Georgescu, Dan; Kuo, Annie F; Kinard, Krista I; Olson, Randall J

    2008-06-01

    To compare three phacoemulsification machines for measurement accuracy and postocclusion surge (POS) in human cadaver eyes. In vitro comparisons of machine accuracy and POS. Tip vacuum and flow were compared with machine indicated vacuum and flow. All machines were placed in two human cadaver eyes and POS was determined. Vacuum (% of actual) was 101.9% +/- 1.7% for Infiniti (Alcon, Fort Worth, Texas, USA), 93.2% +/- 3.9% for Stellaris (Bausch & Lomb, Rochester, New York, USA), and 107.8% +/- 4.6% for Signature (Advanced Medical Optics, Santa, Ana, California, USA; P < .0001). At 60 ml/minute flow, actual flow and unoccluded flow vacuum (UFV) was 55.8 +/- 0.4 ml/minute and 197.7 +/- 0.7 mm Hg for Infiniti, 53.5 +/- 0.0 ml/minute and 179.8 +/- 0.9 mm Hg for Stellaris, and 58.5 +/- 0.0 ml/minute and 115.1 +/- 2.3 mm Hg for Signature (P < .0001). POS in an 32-year-old eye was 0.33 +/- 0.05 mm for Infiniti, 0.16 +/- 0.06 mm for Stellaris, and 0.13 +/- 0.04 mm for Signature at 550 mm Hg, 60 cm bottle height, 45 ml/minute flow with 19-gauge tips (P < .0001 for Infiniti vs Stellaris and Signature). POS in an 81-year-old eye was 1.51 +/- 0.22 mm for Infiniti, 0.83 +/- 0.06 mm for Stellaris, 0.67 +/- 0.01 mm for Signature at 400 mm Hg vacuum, 70 cm bottle height, 40 ml/minute flow with 19-gauge tips (P < .0001). Machine-indicated accuracy, POS, and UFV were statistically significantly different. Signature had the lowest POS and vacuum to maintain flow. Regarding POS, Stellaris was close to Signature; regarding vacuum to maintain flow, Infiniti and Stellaris were similar. Minimizing POS and vacuum to maintain flow potentially are important in avoiding ocular damage and surgical complications.

  20. Precise, motion-free polarization control in Second Harmonic Generation microscopy using a liquid crystal modulator in the infinity space

    PubMed Central

    Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J.

    2013-01-01

    Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies. PMID:24156059

  1. Robust Control for The G-Limit Microgravity Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    Many microgravity science experiments need an active isolation system to provide a sufficiently quiescent acceleration environment. The g-LIMIT vibration isolation system will provide isolation for Microgravity Science Glovebox experiments in the International Space Station. While standard control system technologies have been demonstrated for these applications, modern control methods have the potential for meeting performance requirements while providing robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H infinity methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/mu controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  2. Electrochemical control of pH in a hydroponic nutrient solution

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1986-01-01

    The electrochemical pH control system described was found to provide a feasible alternative method of controlling nutrient solution pH for CELSS applications. The plants grown in nutrient solution in which the pH was controlled electrochemically showed no adverse effects. Further research into the design of a larger capacity electrode bridge for better control is indicated by the results of this experiment, and is currently under way.

  3. Direct Reduced Order Mixed H2/H infinity Control for the Short Take-Off and Landing/Maneuver Technology Demonstrator (STOL/MTD)

    DTIC Science & Technology

    1994-03-01

    There are many people who helped me over the course of this research project to whom I am indebted. The first I would like to thank is my advisor Dr...Ridgely. I benifited greatly from his knowledge and experience. I also owe a lot to the sponsor of this research , David Moorhouse for presenting the...resources, adding comments about my research , and putting up with my many questions. The two people that helped me get the mixed H2 / H. code up and running

  4. Estimating energy-momentum and angular momentum near null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helfer, Adam D.

    2010-04-15

    The energy-momentum and angular momentum contained in a spacelike two-surface of spherical topology are estimated by joining the two-surface to null infinity via an approximate no-incoming-radiation condition. The result is a set of gauge-invariant formulas for energy-momentum and angular momentum which should be applicable to much numerical work; it also gives estimates of the finite-size effects.

  5. An Adaptive H infinity Control Algorithm for Jitter Control and Target Tracking in a Directed Energy Weapon

    DTIC Science & Technology

    2012-05-16

    large size and lack of efficiency of current technology after initial review. In the 1990’s the Air Force designed and produced a high- altitude ...Forden, G.E., "The airborne laser," Spectrum, IEEE , vol.34, no.9, pp.40-49, Sep 1997 10 altitude of 40,000 ft. the atmosphere was much clearer...distance remains the same. OT-5 provides a relative position of beam center on the detector. Two voltage outputs are given corresponding to x-axis location

  6. Design-Filter Selection for H2 Control of Microgravity Isolation Systems: A Single-Degree-of-Freedom Case Study

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Whorton, Mark S.

    2000-01-01

    Many microgravity space-science experiments require active vibration isolation, to attain suitably low levels of background acceleration for useful experimental results. The design of state-space controllers by optimal control methods requires judicious choices of frequency-weighting design filters. Kinematic coupling among states greatly clouds designer intuition in the choices of these filters, and the masking effects of the state observations cloud the process further. Recent research into the practical application of H2 synthesis methods to such problems, indicates that certain steps can lead to state frequency-weighting design-filter choices with substantially improved promise of usefulness, even in the face of these difficulties. In choosing these filters on the states, one considers their relationships to corresponding design filters on appropriate pseudo-sensitivity- and pseudo-complementary-sensitivity functions. This paper investigates the application of these considerations to a single-degree-of-freedom microgravity vibration-isolation test case. Significant observations that were noted during the design process are presented. along with explanations based on the existent theory for such problems.

  7. An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion

    NASA Astrophysics Data System (ADS)

    Messelmi, Farid

    2017-12-01

    We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.

  8. A fuzzy controller with nonlinear control rules is the sum of a global nonlinear controller and a local nonlinear PI-like controller

    NASA Technical Reports Server (NTRS)

    Ying, Hao

    1993-01-01

    The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller. If N approaches infinity, the global controller becomes a nonlinear controller while the local controller disappears. If linear control rules are used, the global controller becomes a global two-dimensional multilevel relay which approaches a global linear proportional-integral (PI) controller as N approaches infinity.

  9. Semi-discrete approximations to nonlinear systems of conservation laws; consistency and L(infinity)-stability imply convergence

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1988-01-01

    A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusion into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods).

  10. Computational design of a pH-sensitive IgG binding protein.

    PubMed

    Strauch, Eva-Maria; Fleishman, Sarel J; Baker, David

    2014-01-14

    Computational design provides the opportunity to program protein-protein interactions for desired applications. We used de novo protein interface design to generate a pH-dependent Fc domain binding protein that buries immunoglobulin G (IgG) His-433. Using next-generation sequencing of naïve and selected pools of a library of design variants, we generated a molecular footprint of the designed binding surface, confirming the binding mode and guiding further optimization of the balance between affinity and pH sensitivity. In biolayer interferometry experiments, the optimized design binds IgG with a Kd of ∼ 4 nM at pH 8.2, and approximately 500-fold more weakly at pH 5.5. The protein is extremely stable, heat-resistant and highly expressed in bacteria, and allows pH-based control of binding for IgG affinity purification and diagnostic devices.

  11. A nonlinear optimal control approach for chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.

  12. Optimal Control Design using an H(sub 2) Method for the Glovebox Integrated Microgravity Isolation Technology (G-Limit)

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Hampton, R. David

    2002-01-01

    The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H(sub 2) norms. Comparison of the performance and robustness to plant uncertainty for this control design approach is included in the discussion.

  13. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines.

    PubMed

    Ward, Matthew S; Georgescu, Dan; Olson, Randall J

    2008-08-01

    To assess how flow and bottle height affect postocclusion surge in the Infiniti (Alcon, Inc.) and Millennium (Bausch & Lomb) peristaltic machines. John A. Moran Eye Center Clinical Laboratories, University of Utah, Salt Lake City, Utah. Postocclusion anterior chamber depth changes were measured in human eye-bank eyes using A-scan. Surge was simulated by clamping the aspiration tubing and releasing it at maximum vacuum. In both machines, surge was measured (1) with aspiration held constant at 12 mL/min and bottle heights at 60, 120, and 180 cm and (2) with bottle height held constant at 60 cm and aspiration rates at 12, 24, and 36 mL/min. Surge decreased approximately 40% with each 60 cm increase in bottle height in the Infiniti. It was constant at all bottle heights in the Millennium. At 12 and 24 mL/min aspiration rates, surge in the Millennium was less than half that in the Infiniti (P<.001). Postocclusion surge decreased linearly with increasing bottle height in the Infiniti system and was relatively constant with increasing bottle height in the Millennium system. The Millennium may offer a more stable phacoemulsification platform with respect to surge at a higher aspiration rate.

  14. Model Following and High Order Augmentation for Rotorcraft Control, Applied via Partial Authority

    NASA Astrophysics Data System (ADS)

    Spires, James Michael

    only (HOC_FB), while the combined objective HOC has both feedback and feedforward elements (HOC_FBFF). The HOC_FB was found to be better at improving turbulence rejection but generally degrades the following of pilot commands. The HOC_FBFF improves turbulence rejection relative to the Baseline controller, but not by as much as HOC_FB. However, HOC_FBFF also generally improves the following of pilot commands. Future work is suggested and facilitated in the areas of DI, MIMO EMF, and HOC augmentation. High frequency dynamics, neglected in the DI design, unexpectedly change the low frequency behavior of the DI-plant system, in addition to the expected change in high frequency dynamics. This dissertation shows why, and suggests a technique for designing a pseudo-command pre-filter that at least partially restores the intended DI-plant dynamics. For EMF, a procedure is presented that avoids use of a reducedorder model, and instead uses a full-order model or even frequency-domain flight test data. With HOC augmentation, future research might investigate the utility of adding an H? constraint to the design objective, which is known as an equal-weighting mixed-norm H2/H infinity design. Because all the formulas in the published literature either require solution of three coupled Riccati Equations (for which there is no readily available tool), or make assumptions that do not fit the present problem, appropriate equalweighting H2/H infinity design formulas are derived which involve two de-coupled Riccati Equations.

  15. Cosmic infinity: a dynamical system approach

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Marto, João; Morais, João; Silva, César M.

    2017-03-01

    Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identify normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.

  16. Infinities in Quantum Field Theory and in Classical Computing: Renormalization Program

    NASA Astrophysics Data System (ADS)

    Manin, Yuri I.

    Introduction. The main observable quantities in Quantum Field Theory, correlation functions, are expressed by the celebrated Feynman path integrals. A mathematical definition of them involving a measure and actual integration is still lacking. Instead, it is replaced by a series of ad hoc but highly efficient and suggestive heuristic formulas such as perturbation formalism. The latter interprets such an integral as a formal series of finite-dimensional but divergent integrals, indexed by Feynman graphs, the list of which is determined by the Lagrangian of the theory. Renormalization is a prescription that allows one to systematically "subtract infinities" from these divergent terms producing an asymptotic series for quantum correlation functions. On the other hand, graphs treated as "flowcharts", also form a combinatorial skeleton of the abstract computation theory. Partial recursive functions that according to Church's thesis exhaust the universe of (semi)computable maps are generally not everywhere defined due to potentially infinite searches and loops. In this paper I argue that such infinities can be addressed in the same way as Feynman divergences. More details can be found in [9,10].

  17. pH-Controlled Assembly of DNA Tiles

    DOE PAGES

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo; ...

    2016-09-15

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  18. pH-Controlled Assembly of DNA Tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo

    We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less

  19. Cosmic infinity: a dynamical system approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-López, Mariam; Marto, João; Morais, João

    2017-03-01

    Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identifymore » normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.« less

  20. Pointing and Jitter Control for the USNA Multi-Beam Combining System

    DTIC Science & Technology

    2013-05-10

    previous work, an adaptive H-infinity optimal controller has been developed to control a single beam using a beam position detector for feedback... turbulence and airborne particles, platform jitter, lack of feedback from the target , and current laser technology represent just a few of these...lasers. Solid state lasers, however, cannot currently provide high enough power levels to destroy a target using a single beam. On solid-state

  1. Unprecedented {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains and four novel organic-inorganic hybrids based on Mo-POMs and azaheterocycles templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Haijuan; Zunzhe Shu; Niu Yunyin, E-mail: niuyy@zzu.edu.cn

    2012-06-15

    Abstrct: Four novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [{beta}-Mo{sub 8}O{sub 26}] [NH{sub 4}]{sub 2} (1), [BMIM] [{beta}-Mo{sub 8}O{sub 26}]{sub 0.5}{center_dot}H{sub 2}O (2), [BMIM] [1D-Mo{sub 8}O{sub 26}]{sub 0.5} (3) and {l_brace}3D-[Cu(DIE){sub 2}] [1D-Mo{sub 8}O{sub 26}]{sub 0.5}{r_brace}{sub {infinity}} (4) [DEB= 1,1 Prime -diethyl-4,4 Prime -bipyridinium, BMIM=1,1 Prime -bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and [DEB]{sup 2+} or [BMIM]{sup 2+} organic cations. Compound 3 is themore » first external template example of Mo-POMs-based supramolecular network incorporated with novel {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H{sub 2}O{sub 2}. - Graphical abstract: Four novel organic templated polyoxometalates comprising of 0D, 1D and 3D supramolecular frameworks together with the catalytic activities on the acetaldehyde oxidation to acetic acid were reported. Highlights: Using cation templated self-assembly four novel polyoxometalates were prepared. Compounds 1 and 2 consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and organic cations. Compound 3 is the first external template-assisted POMs with {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} chain. Compound 4 is a rare 3D

  2. Studies of the Twin Helix Parametric-resonance Ionization Cooling Channel with COSY INFINITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.A. Maloney, K.B. Beard, R.P. Johnson, A. Afanasev, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov, B. Erdelyi

    2012-07-01

    A primary technical challenge to the design of a high luminosity muon collider is an effective beam cooling system. An epicyclic twin-helix channel utilizing parametric-resonance ionization cooling has been proposed for the final 6D cooling stage. A proposed design of this twin-helix channel is presented that utilizes correlated optics between the horizontal and vertical betatron periods to simultaneously focus transverse motion of the beam in both planes. Parametric resonance is induced in both planes via a system of helical quadrupole harmonics. Ionization cooling is achieved via periodically placed wedges of absorbing material, with intermittent rf cavities restoring longitudinal momentum necessarymore » to maintain stable orbit of the beam. COSY INFINITY is utilized to simulate the theory at first order. The motion of particles around a hyperbolic fixed point is tracked. Comparison is made between the EPIC cooling channel and standard ionization cooling effects. Cooling effects are measured, after including stochastic effects, for both a single particle and a distribution of particles.« less

  3. Scattering theory for graphs isomorphic to a regular tree at infinity

    NASA Astrophysics Data System (ADS)

    Colin de Verdière, Yves; Truc, Françoise

    2013-06-01

    We describe the spectral theory of the adjacency operator of a graph which is isomorphic to a regular tree at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operator on a regular tree. We develop this scattering theory using the classical recipes for Schrödinger operators in Euclidian spaces.

  4. Calculus Limits Involving Infinity: The Role of Students' Informal Dynamic Reasoning

    ERIC Educational Resources Information Center

    Jones, Steven R.

    2015-01-01

    Few studies on calculus limits have centred their focus on student understanding of limits at infinity or infinite limits that involve continuous functions (as opposed to discrete sequences). This study examines student understanding of these types of limits using both pure mathematics and applied-science functions and formulas. Seven calculus…

  5. Student's Concept of Infinity in the Context of a Simple Geometrical Construct

    ERIC Educational Resources Information Center

    Jirotkova, Darina; Littler, Graham

    2003-01-01

    The research described in this paper was undertaken to determine student-teachers' understanding of infinity in a geometrical context. The methods of analysis of students' responses is presented and these were found to be universally applicable. The findings show that school mathematics does not generally develop the students' ideas of infinity…

  6. A Study of Fixed-Order Mixed Norm Designs for a Benchmark Problem in Structural Control

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Calise, Anthony J.; Hsu, C. C.

    1998-01-01

    This study investigates the use of H2, p-synthesis, and mixed H2/mu methods to construct full-order controllers and optimized controllers of fixed dimensions. The benchmark problem definition is first extended to include uncertainty within the controller bandwidth in the form of parametric uncertainty representative of uncertainty in the natural frequencies of the design model. The sensitivity of H2 design to unmodelled dynamics and parametric uncertainty is evaluated for a range of controller levels of authority. Next, mu-synthesis methods are applied to design full-order compensators that are robust to both unmodelled dynamics and to parametric uncertainty. Finally, a set of mixed H2/mu compensators are designed which are optimized for a fixed compensator dimension. These mixed norm designs recover the H, design performance levels while providing the same levels of robust stability as the u designs. It is shown that designing with the mixed norm approach permits higher levels of controller authority for which the H, designs are destabilizing. The benchmark problem is that of an active tendon system. The controller designs are all based on the use of acceleration feedback.

  7. Semi-discrete approximations to nonlinear systems of conservation laws; consistency and L(infinity)-stability imply convergence. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadmor, E.

    1988-07-01

    A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusionmore » into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods).« less

  8. Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer

    DTIC Science & Technology

    2006-03-01

    able to analyze and design aircraft and missile guidance and control systems, including feedback stabilization schemes and stochastic processes, using ...Uncertainty modeling for robust control; Robust closed-loop stability and performance; Robust H- infinity control; Robustness check using mu-analysis...Controlled feedback (reduces noise) 3. Statistical group response (reduce pressure toward conformity) When used as a tool to study a complex problem

  9. Wise Guys: "The Man Who Knew Infinity" and Other Movies about Uppity Geniuses

    ERIC Educational Resources Information Center

    Beck, Bernard

    2017-01-01

    Conventional expectations about subcultural groups can be undermined by unusual performances of some individual members. Several recent movies have concerned people of exceptional ability who unexpectedly excelled at prestigious centers of learning. "The Man Who Knew Infinity," "The Imitation Game," and "The Theory of…

  10. Advanced Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet system is being tested to evaluate methodologies for a Turbine Based Combined Cycle (TBCC) propulsion system to perform a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the closed loop control system, which utilizes a shock location sensor to improve inlet performance and operability. Even though the shock location feedback has a coarse resolution, the feedback allows for a reduction in steady state error and, in some cases, better performance than with previous proposed pressure ratio based methods. This paper demonstrates the design and benefit with the implementation of a proportional-integral controller, an H-Infinity based controller, and a disturbance observer based controller.

  11. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    PubMed

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  12. H-Man: a planar, H-shape cabled differential robotic manipulandum for experiments on human motor control.

    PubMed

    Campolo, Domenico; Tommasino, Paolo; Gamage, Kumudu; Klein, Julius; Hughes, Charmayne M L; Masia, Lorenzo

    2014-09-30

    In the last decades more robotic manipulanda have been employed to investigate the effect of haptic environments on motor learning and rehabilitation. However, implementing complex haptic renderings can be challenging from technological and control perspectives. We propose a novel robot (H-Man) characterized by a mechanical design based on cabled differential transmission providing advantages over current robotic technology. The H-Man transmission translates to extremely simplified kinematics and homogenous dynamic properties, offering the possibility to generate haptic channels by passively blocking the mechanics, and eliminating stability concerns. We report results of experiments characterizing the performance of the device (haptic bandwidth, Z-width, and perceived impedance). We also present the results of a study investigating the influence of haptic channel compliance on motor learning in healthy individuals, which highlights the effects of channel compliance in enhancing proprioceptive information. The generation of haptic channels to study motor redundancy is not easy for actual robots because of the needs of powerful actuation and complex real-time control implementation. The mechanical design of H-Man affords the possibility to promptly create haptic channels by mechanical stoppers (on one of the motors) without compromising the superior backdriveability and high isotropic manipulability. This paper presents a novel robotic device for motor control studies and robotic rehabilitation. The hardware was designed with specific emphasis on the mechanics that result in a system that is easy to control, homogeneous, and is intrinsically safe for use. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan; Chan, Hoyin

    2017-08-01

    Human pulse signal tracking is an emerging technology that is needed in traditional Chinese medicine. However, soft actuation with multi-frequency tracking capability is needed for tracking human pulse signal. Dielectric elastomer (DE) is one type of soft actuating that has great potential in human pulse signal tracking. In this paper, a DE diaphragm actuator was designed and fabricated to track human pulse pressure signal. A physics-based and control-oriented model has been developed to capture the dynamic behavior of DE diaphragm actuator. Using the physical model, an H-infinity robust control was designed for the actuator to reject high-frequency sensing noises and disturbances. The robust control was then implemented in real-time to track a multi-frequency signal, which verified the tracking capability and robustness of the control system. In the human pulse signal tracking test, a human pulse signal was measured at the City University of Hong Kong and then was tracked using DE actuator at Wichita State University in the US. Experimental results have verified that the DE actuator with its robust control is capable of tracking human pulse signal.

  14. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability

    NASA Technical Reports Server (NTRS)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.

    1999-01-01

    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  15. Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet for a turbine based combined cycle (TBCC) propulsion system is to be tested in order to evaluate methodologies for performing a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms which are designed to maintain shock position during inlet disturbances. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the development of a mode transition schedule for the HiTECC simulation that is analogous to the development of inlet performance maps. Inlet performance maps, derived through experimental means, describe the performance and operability of the inlet as the splitter closes, switching power production from the turbine engine to the Dual Mode Scram Jet. With knowledge of the operability and performance tradeoffs, a closed loop system can be designed to optimize the performance of the inlet. This paper demonstrates the design of the closed loop control system and benefit with the implementation of a Proportional-Integral controller, an H-Infinity based controller, and a disturbance observer based controller; all of which avoid inlet unstart during a mode transition with a simulated disturbance that would lead to inlet unstart without closed loop control.

  16. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  17. Long life reaction control system design

    NASA Astrophysics Data System (ADS)

    Fanciullo, Thomas J.; Judd, Craig

    1993-02-01

    Future single stage to orbit systems will utilize oxygen/hydrogen propellants in their main propulsion means due to the propellant's high energy content and environmental acceptability. Operational effectiveness studies and life cycle cost studies have indicated that minimizing the number of different commodities on a given vehicle not only reduces cost, but reduces the ground span times in both the pre- and postflight operations. Therefore, oxygen and hydrogen should be used for the reaction controls systems, eliminating the need to deal with toxic or corrosive fluids. When the hydrogen scramjet powered NASP design development began in 1985, new system design studies considered overall integration of subsystems; in the context of that approach, O2/H2 reaction controls system were more than competitive with storable propellant systems and had the additional benefits of lower life cycle cost, rapid turnaround times, and O2 and H2 commodities for use throughout the vehicle. Similar benefits were derived in rocket-powered SSTO vehicles.

  18. Extended H2 synthesis for multiple degree-of-freedom controllers

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Knospe, Carl R.

    1992-01-01

    H2 synthesis techniques are developed for a general multiple-input-multiple-output (MIMO) system subject to both stochastic and deterministic disturbances. The H2 synthesis is extended by incorporation of anticipated disturbances power-spectral-density information into the controller-design process, as well as by frequency weightings of generalized coordinates and control inputs. The methodology is applied to a simple single-input-multiple-output (SIMO) problem, analogous to the type of vibration isolation problem anticipated in microgravity research experiments.

  19. Microchannel Reactor System Design & Demonstration For On-Site H2O2 Production by Controlled H2/O2 Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal

    We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant tomore » produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the

  20. From Zero to Infinity: Montessori Parent Education in Hong Kong and Greater China

    ERIC Educational Resources Information Center

    Lau, Daisy; Yau, Ralph

    2015-01-01

    It was a hot and humid afternoon in 2006, 3 months after the opening of the Children's House at the Infinity Children's School in Hong Kong. A 3-year-old boy selected a table-scrubbing activity. He moved erratically and without purpose, accidentally bumping into another child and spilling water on the floor. Meanwhile, a toddler girl strolled…

  1. Design of Life Extending Controls Using Nonlinear Parameter Optimization

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.

  2. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci.

    PubMed

    Falcone, Emmanuela; Grandoni, Luca; Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone

    2016-01-01

    miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor-miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported.

  3. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci

    PubMed Central

    Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone

    2016-01-01

    Motivation miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor–miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. Results In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. Conclusions The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Availability and Implementation Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported. PMID:27082112

  4. Conceptual Design of the ITER Plasma Control System

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.

    2013-10-01

    The conceptual design of the ITER Plasma Control System (PCS) has been approved and the preliminary design has begun for the 1st plasma PCS. This is a collaboration of many plasma control experts from existing devices to design and test plasma control techniques applicable to ITER on existing machines. The conceptual design considered all phases of plasma operation, ranging from non-active H/He plasmas through high fusion gain inductive DT plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture can satisfy the demands of the ITER Research Plan. The PCS will control plasma equilibrium and density, plasma heat exhaust, a range of MHD instabilities (including disruption mitigation), and the non-inductive current profile required to maintain stable steady-state scenarios. The PCS architecture requires sophisticated shared actuator management and event handling systems to prioritize control goals, algorithms, and actuators according to dynamic control needs and monitor plasma and plant system events to trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.

  5. Multi-linear model set design based on the nonlinearity measure and H-gap metric.

    PubMed

    Shaghaghi, Davood; Fatehi, Alireza; Khaki-Sedigh, Ali

    2017-05-01

    This paper proposes a model bank selection method for a large class of nonlinear systems with wide operating ranges. In particular, nonlinearity measure and H-gap metric are used to provide an effective algorithm to design a model bank for the system. Then, the proposed model bank is accompanied with model predictive controllers to design a high performance advanced process controller. The advantage of this method is the reduction of excessive switch between models and also decrement of the computational complexity in the controller bank that can lead to performance improvement of the control system. The effectiveness of the method is verified by simulations as well as experimental studies on a pH neutralization laboratory apparatus which confirms the efficiency of the proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Control of Flexible Systems in the Presence of Failures

    NASA Technical Reports Server (NTRS)

    Magahami, Peiman G.; Cox, David E.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Control of flexible systems under degradation or failure of sensors/actuators is considered. A Linear Matrix Inequality framework is used to synthesize H(sub infinity)-based controllers, which provide good disturbance rejection while capable of tolerating real parameter uncertainties in the system model, as well as potential degradation or failure of the control system hardware. In this approach, a one-at-a-time failure scenario is considered, wherein no more than one sensor or actuator is allowed to fail at any given time. A numerical example involving control synthesis for a two-dimensional flexible system is presented to demonstrate the feasibility of the proposed approach.

  7. Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics

    NASA Astrophysics Data System (ADS)

    Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo

    2017-12-01

    This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.

  8. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. In this paper a general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  9. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. A general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  10. Synthesis, characterization, and fluorescent properties of two Pb(II) complexes: {l_brace}[Pb(hca){sub 2}.DMF].DMF{r_brace} {sub {infinity}} and [Pb(hca){sub 2}(phen).DMF]{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Qingfeng; Zhou Qiuxuan; Lu Jianmei

    2007-01-15

    Two novel Pb(II) complexes, {l_brace}[Pb(hca){sub 2}.DMF].DMF{r_brace} {sub {infinity}} and [Pb(hca){sub 2}(phen).DMF]{sub 2} (hca=trans-4-hydroxycinnamic group), were obtained by solid-phase reactions of PbAc{sub 2} and Hhca and PbAc{sub 2}, Hhca, and phen, respectively, and characterized by spectroscopy. X-ray crystallography analysis reveals that complex 1, {l_brace}[Pb(hca){sub 2}.DMF].DMF{r_brace} {sub {infinity}} , adopts a 2-dimensional structure through the weak interactions of Pb and O atoms and that complex 2, [Pb(hca){sub 2}(phen).DMF]{sub 2}, shows a discrete dimeric structure, in which hydrogen bonds link the dimers into a 2D network. Both complexes 1 and 2 show visible fluorescence and the intensity is stronger than that of themore » ligand. More interestingly, the intensity of emission was increased at least fivefolds when the pH of the solution was adjusted to alkalinity. This can be attributed to that the deprotonization of phenolic group enhancing the conjugation of the ligand hca. These results indicate that this method may be an effective way to increase the emission intensity of similar complexes. - Graphical abstract: Two novel Pb(II) complexes: {l_brace}[Pb(hca){sub 2}.DMF].DMF{r_brace}{sub {infinity}} and [Pb(hca){sub 2}(phen).DMF]{sub 2}, (hca = trans-4-hydroxycinnamic anion) were obtained and characterized. Their structures are also determined by X-ray crystal analysis. Both of complexes in DMF solution show visible fluorescence and the intensity is stronger than that of ligand. Their emission intensities are increased greatly in an alkaline solution of pH 8, which is due to the enhancement of the planar conjugation of ligand hca with the deprotonate of the phenolic group.« less

  11. H2/H∞ control for grid-feeding converter considering system uncertainty

    NASA Astrophysics Data System (ADS)

    Li, Zhongwen; Zang, Chuanzhi; Zeng, Peng; Yu, Haibin; Li, Shuhui; Fu, Xingang

    2017-05-01

    Three-phase grid-feeding converters are key components to integrate distributed generation and renewable power sources to the power utility. Conventionally, proportional integral and proportional resonant-based control strategies are applied to control the output power or current of a GFC. But, those control strategies have poor transient performance and are not robust against uncertainties and volatilities in the system. This paper proposes a H2/H∞-based control strategy, which can mitigate the above restrictions. The uncertainty and disturbance are included to formulate the GFC system state-space model, making it more accurate to reflect the practical system conditions. The paper uses a convex optimisation method to design the H2/H∞-based optimal controller. Instead of using a guess-and-check method, the paper uses particle swarm optimisation to search a H2/H∞ optimal controller. Several case studies implemented by both simulation and experiment can verify the superiority of the proposed control strategy than the traditional PI control methods especially under dynamic and variable system conditions.

  12. Thermal design of the IMP-I and H spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, R. H.

    1974-01-01

    A description of the thermal subsystem of the IMP-I and H spacecraft is presented. These two spacecraft were of a larger and more advanced type in the Explorer series and were successfully launched in March 1971 and September 1972. The thermal requirements, analysis, and design of each spacecraft are described including several specific designs for individual experiments. Techniques for obtaining varying degrees of thermal isolation and contact are presented. The thermal control coatings including the spaceflight performance of silver-coated FEP Teflon are discussed. Predicted performance is compared to measured flight data. The good agreement between them verifies the validity of the thermal model and the selection of coatings.

  13. Candidate proof mass actuator control laws for the vibration suppression of a frame

    NASA Technical Reports Server (NTRS)

    Umland, Jeffrey W.; Inman, Daniel J.

    1991-01-01

    The vibration of an experimental flexible space truss is controlled with internal control forces produced by several proof mass actuators. Four candidate control law strategies are evaluated in terms of performance and robustness. These control laws are experimentally implemented on a quasi free-free planar truss. Sensor and actuator dynamics are included in the model such that the final closed loop is self-equilibrated. The first two control laws considered are based on direct output feedback and consist of tuning the actuator feedback gains to the lowest mode intended to receive damping. The first method feeds back only the position and velocity of the proof mass relative to the structure; this results in a traditional vibration absorber. The second method includes the same feedback paths as the first plus feedback of the local structural velocity. The third law is designed with robust H infinity control theory. The fourth strategy is an active implementation of a viscous damper, where the actuator is configured to provide a bending moment at two points on the structure. The vibration control system is then evaluated in terms of how it would benefit the space structure's position control system.

  14. Volvo and Infiniti drivers' experiences with select crash avoidance technologies.

    PubMed

    Braitman, Keli A; McCartt, Anne T; Zuby, David S; Singer, Jeremiah

    2010-06-01

    Vehicle-based crash avoidance systems can potentially reduce crashes, but success depends on driver acceptance and understanding. This study gauged driver use, experience, and acceptance among early adopters of select technologies. Telephone interviews were conducted in early 2009 with 380 owners of Volvo vehicles equipped with forward collision warning with autobrake, lane departure warning, side-view assist, and/or active bi-xenon headlights and 485 owners of Infiniti vehicles with lane departure warning/prevention. Most owners kept systems turned on most of the time, especially forward collision warning with autobrake and side-view assist. The exception was lane departure prevention; many owners were unaware they had it, and the system must be activated each time the vehicle is started. Most owners reported being safer with the technologies and would want them again on their next vehicles. Perceived false or unnecessary warnings were fairly common, particularly with side-view assist. Some systems were annoying, especially lane departure warning. Many owners reported safer driving behaviors such as greater use of turn signals (lane departure warning), increased following distance (forward collision warning), and checking side mirrors more frequently (side-view assist), but some reported driving faster at night (active headlights). Despite some unnecessary or annoying warnings, most Volvo and Infiniti owners use crash avoidance systems most of the time. Among early adopters, the first requirement of effective warning systems (that owners use the technology) seems largely met. Systems requiring activation by drivers for each trip are used less often. Owner experience with the latest technologies from other automobile manufacturers should be studied, as well as for vehicles on which technologies are standard (versus optional) equipment. The effectiveness of technologies in preventing and mitigating crashes and injuries, and user acceptance of interfaces, should be

  15. Some Historical Issues and Paradoxes Regarding the Concept of Infinity: An APOS Analysis: Part 2

    ERIC Educational Resources Information Center

    Dubinsky, Ed; Weller, Kirk; McDonald, Michael A.; Brown, Anne

    2005-01-01

    This is Part 2 of a two-part study of how APOS theory may be used to provide cognitive explanations of how students and mathematicians might think about the concept of infinity. We discuss infinite processes, describe how the mental mechanisms of interiorization and encapsulation can be used to conceive of an infinite process as a completed…

  16. Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (EuroSCAR).

    PubMed

    Sidoroff, A; Dunant, A; Viboud, C; Halevy, S; Bavinck, J N Bouwes; Naldi, L; Mockenhaupt, M; Fagot, J-P; Roujeau, J-C

    2007-11-01

    Acute generalized exanthematous pustulosis (AGEP) is a disease characterized by the rapid occurrence of many sterile, nonfollicular pustules usually arising on an oedematous erythema often accompanied by leucocytosis and fever. It is usually attributed to drugs. To evaluate the risk for different drugs of causing AGEP. A multinational case-control study (EuroSCAR) conducted to evaluate the risk for different drugs of causing severe cutaneous adverse reactions; the study included 97 validated community cases of AGEP and 1009 controls. Results Strongly associated drugs, i.e. drugs with a lower bound of the 95% confidence interval (CI) of the odds ratio (OR) > 5 were pristinamycin (CI 26-infinity), ampicillin/amoxicillin (CI 10-infinity), quinolones (CI 8.5-infinity), (hydroxy)chloroquine (CI 8-infinity), anti-infective sulphonamides (CI 7.1-infinity), terbinafine (CI 7.1-infinity) and diltiazem (CI 5.0-infinity). No significant risk was found for infections and a personal or family history of psoriasis (CI 0.7-2.2). Medications associated with AGEP differ from those associated with Stevens-Johnson syndrome or toxic epidermal necrolysis. Different timing patterns from drug intake to reaction onset were observed for different drugs. Infections, although possible triggers, played no prominent role in causing AGEP and there was no evidence that AGEP is a variant of pustular psoriasis.

  17. SDO Delta H Mode Design and Analysis

    NASA Technical Reports Server (NTRS)

    Mason, Paul A.; Starin, Scott R.

    2007-01-01

    While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.

  18. Flatness-based adaptive fuzzy control of chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.

  19. An H(∞) control approach to robust learning of feedforward neural networks.

    PubMed

    Jing, Xingjian

    2011-09-01

    A novel H(∞) robust control approach is proposed in this study to deal with the learning problems of feedforward neural networks (FNNs). The analysis and design of a desired weight update law for the FNN is transformed into a robust controller design problem for a discrete dynamic system in terms of the estimation error. The drawbacks of some existing learning algorithms can therefore be revealed, especially for the case that the output data is fast changing with respect to the input or the output data is corrupted by noise. Based on this approach, the optimal learning parameters can be found by utilizing the linear matrix inequality (LMI) optimization techniques to achieve a predefined H(∞) "noise" attenuation level. Several existing BP-type algorithms are shown to be special cases of the new H(∞)-learning algorithm. Theoretical analysis and several examples are provided to show the advantages of the new method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Mixed H2/Hinfinity output-feedback control of second-order neutral systems with time-varying state and input delays.

    PubMed

    Karimi, Hamid Reza; Gao, Huijun

    2008-07-01

    A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.

  1. Perspective view, northeast. Billings Memorial Library was designed by H.H. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view, northeast. Billings Memorial Library was designed by H.H. Richardson in 1883-85 in his characteristic Romanesque Revival mode. Located on the University of Vermont campus, it is now a student center. - University of Vermont, Billings Memorial Library, 48 University Place, Burlington, Chittenden County, VT

  2. On Mixed Data and Event Driven Design for Adaptive-Critic-Based Nonlinear $H_{\\infty}$ Control.

    PubMed

    Wang, Ding; Mu, Chaoxu; Liu, Derong; Ma, Hongwen

    2018-04-01

    In this paper, based on the adaptive critic learning technique, the control for a class of unknown nonlinear dynamic systems is investigated by adopting a mixed data and event driven design approach. The nonlinear control problem is formulated as a two-player zero-sum differential game and the adaptive critic method is employed to cope with the data-based optimization. The novelty lies in that the data driven learning identifier is combined with the event driven design formulation, in order to develop the adaptive critic controller, thereby accomplishing the nonlinear control. The event driven optimal control law and the time driven worst case disturbance law are approximated by constructing and tuning a critic neural network. Applying the event driven feedback control, the closed-loop system is built with stability analysis. Simulation studies are conducted to verify the theoretical results and illustrate the control performance. It is significant to observe that the present research provides a new avenue of integrating data-based control and event-triggering mechanism into establishing advanced adaptive critic systems.

  3. Design and experimental validation of linear and nonlinear vehicle steering control strategies

    NASA Astrophysics Data System (ADS)

    Menhour, Lghani; Lechner, Daniel; Charara, Ali

    2012-06-01

    This paper proposes the design of three control laws dedicated to vehicle steering control, two based on robust linear control strategies and one based on nonlinear control strategies, and presents a comparison between them. The two robust linear control laws (indirect and direct methods) are built around M linear bicycle models, each of these control laws is composed of two M proportional integral derivative (PID) controllers: one M PID controller to control the lateral deviation and the other M PID controller to control the vehicle yaw angle. The indirect control law method is designed using an oscillation method and a nonlinear optimisation subject to H ∞ constraint. The direct control law method is designed using a linear matrix inequality optimisation in order to achieve H ∞ performances. The nonlinear control method used for the correction of the lateral deviation is based on a continuous first-order sliding-mode controller. The different methods are designed using a linear bicycle vehicle model with variant parameters, but the aim is to simulate the nonlinear vehicle behaviour under high dynamic demands with a four-wheel vehicle model. These steering vehicle controls are validated experimentally using the data acquired using a laboratory vehicle, Peugeot 307, developed by National Institute for Transport and Safety Research - Department of Accident Mechanism Analysis Laboratory's (INRETS-MA) and their performance results are compared. Moreover, an unknown input sliding-mode observer is introduced to estimate the road bank angle.

  4. Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoglu, Anil

    2011-10-15

    We compute and analyze the gravitational waveform emitted to future null infinity by a system of two black holes in the large-mass-ratio limit. We consider the transition from the quasiadiabatic inspiral to plunge, merger, and ringdown. The relative dynamics is driven by a leading order in the mass ratio, 5PN-resummed, effective-one-body (EOB), analytic-radiation reaction. To compute the waveforms, we solve the Regge-Wheeler-Zerilli equations in the time-domain on a spacelike foliation, which coincides with the standard Schwarzschild foliation in the region including the motion of the small black hole, and is globally hyperboloidal, allowing us to include future null infinity inmore » the computational domain by compactification. This method is called the hyperboloidal layer method, and is discussed here for the first time in a study of the gravitational radiation emitted by black hole binaries. We consider binaries characterized by five mass ratios, {nu}=10{sup -2,-3,-4,-5,-6}, that are primary targets of space-based or third-generation gravitational wave detectors. We show significative phase differences between finite-radius and null-infinity waveforms. We test, in our context, the reliability of the extrapolation procedure routinely applied to numerical relativity waveforms. We present an updated calculation of the final and maximum gravitational recoil imparted to the merger remnant by the gravitational wave emission, v{sub kick}{sup end}/(c{nu}{sup 2})=0.04474{+-}0.00007 and v{sub kick}{sup max}/(c{nu}{sup 2})=0.05248{+-}0.00008. As a self-consistency test of the method, we show an excellent fractional agreement (even during the plunge) between the 5PN EOB-resummed mechanical angular momentum loss and the gravitational wave angular momentum flux computed at null infinity. New results concerning the radiation emitted from unstable circular orbits are also presented. The high accuracy waveforms computed here could be considered for the construction of

  5. Energy storage and thermal control system design status

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Vanommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for and the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation and storage is described.

  6. pH-controlled drug release for dental applications

    NASA Astrophysics Data System (ADS)

    Wironen, John Francis

    A large proportion of the dental fillings replaced at present are revised because of the perceived presence of a recurrent caries under or adjacent to the restoration. Many of these perceived caries may not exist, while others may go undetected. This work describes the preparation of drug loaded polymer microspheres that sense the presence of the bacteria that cause caries by the associated presence of acid by-products of digestion. These microspheres are designed to swell and release their antimicrobial drugs once the pH drops to a level that would normally cause caries. The preparation of the microspheres as well as their loading with potassium fluoride, chlorhexidine digluconate, chlorhexidine dihydrochloride, chlorhexidine diacetate, and tetracycline hydrochloride are described. A detailed study of the controlled release behavior of fluoride as a function of polymer composition and pH is presented first. A study of the release kinetics of potassium fluoride, chlorhexidine digluconate, diacetate, dihydrochloride, and tetracycline hydrochloride as a function of pH in the same polymer system is then presented. Additional studies of the swelling kinetics of chlorhexidine-loaded microspheres in various pH buffers are discussed with special reference to correlations with the controlled-release data. Finally, an experiment in which the microspheres are tested in an in vitro bacteria model that includes Streptococcus mutans is presented and discussed in detail.

  7. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  8. Sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage.

    PubMed

    Weng, Falu; Liu, Mingxin; Mao, Weijie; Ding, Yuanchun; Liu, Feifei

    2018-05-10

    The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on matrix transformation, the state-space model of structural systems with sensor outages and uncertainties appearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness of the proposed theorems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  10. Lunar Reconnaissance Orbiter (LRO) Thruster Control Mode Design and Flight Experience

    NASA Technical Reports Server (NTRS)

    Hsu, Oscar C.

    2010-01-01

    National Aeronautics and Space Administration s (NASA) Goddard Space Flight Center (GSFC) in Greenbelt, MD, designed, built, tested, and launched the Lunar Reconnaissance Orbiter (LRO) from Cape Canaveral Air Force Station on June 18, 2009. The LRO spacecraft is the first operational spacecraft designed to support NASA s return to the Moon, as part of the Vision for Space Exploration. LRO was launched aboard an Atlas V 401 launch vehicle into a direct insertion trajectory to the Moon. Twenty-four hours after separation the propulsion system was used to perform a mid-course correction maneuver. Four days after the mid-course correction a series of propulsion maneuvers were executed to insert LRO into its commissioning orbit. The commission period lasted eighty days and this followed by a second set of thruster maneuvers that inserted LRO into its mission orbit. To date, the spacecraft has been gathering invaluable data in support of human s future return to the moon. The LRO Attitude Control Systems (ACS) contains two thruster based control modes: Delta-H and Delta-V. The design of the two controllers are similar in that they are both used for 3-axis control of the spacecraft with the Delta-H controller used for momentum management and the Delta-V controller used for orbit adjust and maintenance maneuvers. In addition to the nominal purpose of the thruster modes, the Delta-H controller also has the added capability of performing a large angle slew maneuver. A suite of ACS components are used by the thruster based control modes, for both initialization and control. For initialization purposes, a star tracker or the Kalman Filter solution is used for providing attitude knowledge and upon entrance into the thruster based control modes attitude knowledge is provided via rate propagation using a inertial reference unit (IRU). Rate information for the controller is also supplied by the IRU. Three-axis control of the spacecraft in the thruster modes is provided by eight 5

  11. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

  12. Proton Transport and pH Control in Fungi

    PubMed Central

    Kane, Patricia M.

    2018-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPaseare coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This re view describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi. PMID:26721270

  13. Integrated control-structure design

    NASA Technical Reports Server (NTRS)

    Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.

    1991-01-01

    A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

  14. PI controller design for indirect vector controlled induction motor: A decoupling approach.

    PubMed

    Jain, Jitendra Kr; Ghosh, Sandip; Maity, Somnath; Dworak, Pawel

    2017-09-01

    Decoupling of the stator currents is important for smoother torque response of indirect vector controlled induction motors. Typically, feedforward decoupling is used to take care of current coupling that requires exact knowledge of motor parameters, additional circuitry and signal processing. In this paper, a method is proposed to design the regulating proportional-integral gains that minimize coupling without any requirement of the additional decoupler. The variation of the coupling terms for change in load torque is considered as the performance measure. An iterative linear matrix inequality based Hcontrol design approach is used to obtain the controller gains. A comparison between the feedforward and the proposed decoupling schemes is presented through simulation and experimental results. The results show that the proposed scheme is simple yet effective even without additional block or burden on signal processing. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Experimental results of active control on a large structure to suppress vibration

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1991-01-01

    Three design methods, Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR), H-infinity, and mu-synthesis, are used to obtain compensators for suppressing the vibrations of a 10-bay vertical truss structure, a component typical of what may be used to build a large space structure. For the design process the plant dynamic characteristics of the structure were determined experimentally using an identification method. The resulting compensators were implemented on a digital computer and tested for their ability to suppress the first bending mode response of the 10-bay vertical truss. Time histories of the measured motion are presented, and modal damping obtained during the experiments are compared with analytical predictions. The advantages and disadvantages of using the various design methods are discussed.

  16. Novel needle guide reduces time to perform ultrasound-guided femoral nerve catheter placement: A randomised controlled trial.

    PubMed

    Turan, Alparslan; Babazade, Rovnat; Elsharkawy, Hesham; Esa, Wael Ali Sakr; Maheshwari, Kamal; Farag, Ehab; Zimmerman, Nicole M; Soliman, Loran Mounir; Sessler, Daniel I

    2017-03-01

    Ultrasound-guided nerve blocks have become the standard when performing regional nerve blocks in anaesthesia. Infiniti Plus (CIVCO Medical Solutions, Kalona, Iowa, USA) is a needle guide that has been recently developed to help clinicians in performing ultrasound-guided nerve blocks. We tested the hypothesis that femoral nerve catheter placement carried out with the Infiniti Plus needle guide will be quicker to perform than without the Infiniti Plus. Secondary aims were to assess whether the Infiniti Plus needle guide decreased the number of block attempts and also whether it improved needle visibility. A randomised, controlled trial. Cleveland Clinic, Cleveland, Ohio, USA. We enrolled adult patients having elective total knee arthroplasty with a femoral nerve block and femoral nerve catheter. Patients, who were pregnant or those who had preexisting neuropathy involving the surgical limb, coagulopathy, infection at the block site or allergy to local anaesthetics were excluded. Patients were randomised into two groups to receive the ultrasound-guided femoral nerve catheter placement with or without the Infiniti Plus needle guide. The time taken to place the femoral nerve catheter, the number of attempts, the success rate and needle visibility were recorded. We used an overall α of 0.05 for both the primary and secondary analyses; the secondary analyses were Bonferroni corrected to control for multiple comparisons. The median (interquartile range Q1 to Q3) time to perform the femoral nerve catheter placement was 118 (100 to 150) s with Infiniti Plus and 177 (130 to 236) s without Infiniti Plus. Infiniti Plus significantly reduced the time spent performing femoral nerve catheterisation, with estimated ratio of means [(95% confidence interval), P value] of 0.67 [(0.60 to 0.75), P < 0.001] with Infiniti Plus compared with no Infiniti Plus. However, Infiniti Plus had no effect on the odds of a successful femoral nerve catheter placement, number of attempts or

  17. Robust stabilization of the Space Station in the presence of inertia matrix uncertainty

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Liu, Qiang; Sunkel, John

    1993-01-01

    This paper presents a robust H-infinity full-state feedback control synthesis method for uncertain systems with D11 not equal to 0. The method is applied to the robust stabilization problem of the Space Station in the face of inertia matrix uncertainty. The control design objective is to find a robust controller that yields the largest stable hypercube in uncertain parameter space, while satisfying the nominal performance requirements. The significance of employing an uncertain plant model with D11 not equal 0 is demonstrated.

  18. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    PubMed

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  19. Reliable actuators for twin rotor MIMO system

    NASA Astrophysics Data System (ADS)

    Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.

    2017-11-01

    Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.

  20. Receiver-exciter controller design

    NASA Technical Reports Server (NTRS)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  1. From here and now to infinity and eternity: a message to new medical doctors(*).

    PubMed

    Lapeña, José Florencio F

    2014-01-01

    Commencement means both an end and a beginning; the end of the academic year and the beginning of the rest of your life as new physicians. For such a beginning, it is useful to view it in retrospect, from the point of view of the end, by conducting a pre-mortem on your life. Taking the existentialist (ex sistere, to stand forth) stance, each of us can be classified into one of four basic types of person, based on our characteristic space and time (or spatio-temporal) context or horizon. Our space can be limited to the "here" and our time to the "now;" or our space may extend to "infinity" and our time embark on "eternity." In-between these poles, most have space contexts rooted in their home and work "turf" and time involving their "lifetime," while some expand their space to include the "world" and their time to encompass "history." From the "here and now" and "turf and lifetime" contexts, the horizons of "world and history," and "infinity and eternity" are examined, challenging new medical doctors to realize their full potential. The new physician is exhorted not to wait for a post-mortem to define (des finitus, to set limits) his or her life. He or she should stand forth, to live, and give life. The new medical doctor is encouraged to look to the sunrise, draw strength from the sunshine, to be brave, and strong and true.

  2. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  3. Recursive Deadbeat Controller Design

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1997-01-01

    This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.

  4. Stochastic targeted (STAR) glycemic control: design, safety, and performance.

    PubMed

    Evans, Alicia; Le Compte, Aaron; Tan, Chia-Siong; Ward, Logan; Steel, James; Pretty, Christopher G; Penning, Sophie; Suhaimi, Fatanah; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. STAR (Stochastic TARgeted) is a flexible, model-based TGC approach that directly accounts for intra- and interpatient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 72 mg/dl. This research assesses the safety, efficacy, and clinical burden of a STAR TGC controller modulating both insulin and nutrition inputs in virtual and clinical pilot trials. Clinically validated virtual trials using data from 370 patients in the SPRINT (Specialized Relative Insulin and Nutrition Titration) study were used to design the STAR protocol and test its safety, performance, and required clinical effort prior to clinical pilot trials. Insulin and nutrition interventions were given every 1-3 h as chosen by the nurse to allow them to manage workload. Interventions were designed to maximize the overlap of the model-predicted (5-95(th) percentile) range of BG outcomes with the 72-117 mg/dl band and thus provide a maximum 5% risk of BG <72 mg/dl. Interventions were calculated using clinically validated computer models of human metabolism and its variability in critical illness. Carbohydrate intake (all sources) was selected to maximize intake up to 100% of the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) goal (25 kg/kcal/h). Insulin doses were limited (8 U/h maximum), with limited increases based on current rate (0.5-2.0 U/h). Initial clinical pilot trials involved 3 patients covering ~450 h. Approval was granted by the Upper South A Regional Ethics Committee. Virtual trials indicate that STAR provides similar glycemic control performance to SPRINT with 2-3 h (maximum) measurement intervals. Time in the 72-126 mg/dl and 72-145 mg/dl bands was equivalent for all controllers, indicating that glycemic outcome differences between protocols were only shifted in this range. Safety from hypoglycemia was improved. Importantly

  5. Automatic control design procedures for restructurable aircraft control

    NASA Technical Reports Server (NTRS)

    Looze, D. P.; Krolewski, S.; Weiss, J.; Barrett, N.; Eterno, J.

    1985-01-01

    A simple, reliable automatic redesign procedure for restructurable control is discussed. This procedure is based on Linear Quadratic (LQ) design methodologies. It employs a robust control system design for the unfailed aircraft to minimize the effects of failed surfaces and to extend the time available for restructuring the Flight Control System. The procedure uses the LQ design parameters for the unfailed system as a basis for choosing the design parameters of the failed system. This philosophy alloys the engineering trade-offs that were present in the nominal design to the inherited by the restructurable design. In particular, it alloys bandwidth limitations and performance trade-offs to be incorporated in the redesigned system. The procedure also has several other desirable features. It effectively redistributes authority among the available control effectors to maximize the system performance subject to actuator limitations and constraints. It provides a graceful performance degradation as the amount of control authority lessens. When given the parameters of the unfailed aircraft, the automatic redesign procedure reproduces the nominal control system design.

  6. Lanthanide-based coordination polymers assembled by a flexible multidentate linker: design, structure, photophysical properties, and dynamic solid-state behavior.

    PubMed

    Marchal, Claire; Filinchuk, Yaroslav; Chen, Xiao-Yan; Imbert, Daniel; Mazzanti, Marinella

    2009-01-01

    Four picolinate building blocks were implemented into the multidentate linker N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine (H(4)tpabn) with a linear flexible spacer to promote the assembly of lanthanide-based 1D coordination polymers. The role of the linker in directing the geometry of the final assembly is evidenced by the different results obtained in the presence of Htpabn(3-) and tpabn(4-) ions. The tpabn(4-) ion leads to the desired 1D polymer {[Nd(tpabn)]H(3)O x 6 H(2)O}(infinity) (12). The Htpabn(3-) ion leads to the assembly of Tb(III) and Er(III) ions into 1D zigzag chains of the general formula {[M(Htpabn)] x xH(2)O}(infinity) (M = Tb, x = 14 (1); M = Tb, x = 8 (11); M = Er, x = 14 (2); M = Er, x = 5.5 (4)), a 2D network is formed by the Eu(III) ion (i.e., {[Eu(Htpabn)] x 10 H(2)O}(infinity) (7)), and both supramolecular isomers (1D and 2D) are obtained by the Tb(III) ion. The high flexibility of the polymeric chains results in a dynamic behavior with a solvent-induced reversible structural transition. The Tb(III)- and Eu(III)-containing polymers display high-luminescence quantum yields (38 and 18%, respectively). A sizeable near-IR luminescence emission is observed for the Er(III)- and Nd(III)-containing polymers when lattice water molecules are removed.

  7. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.

    PubMed

    Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin

    2014-08-07

    All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Application of digital computer APU modeling techniques to control system design.

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.; Burriss, W. L.

    1973-01-01

    Study of the required controls for a H2-O2 auxiliary power unit (APU) technology program for the Space Shuttle. A steady-state system digital computer program was prepared and used to optimize initial system design. Analytical models of each system component were included. The program was used to solve a nineteen-dimensional problem, and then time-dependent differential equations were added to the computer program to simulate transient APU system and control. Some system parameters were considered quasi-steady-state, and others were treated as differential variables. The dynamic control analysis proceeded from initial ideal control modeling (which considered one control function and assumed the others to be ideal), stepwise through the system (adding control functions), until all of the control functions and their interactions were considered. In this way, the adequacy of the final control design over the required wide range of APU operating conditions was established.

  9. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Wei, Lulu; Lu, Beibei; Cui, Lin; Peng, Xueying; Wu, Jianning; Li, Deqiang; Liu, Zhiyong; Guo, Xuhong

    2017-12-01

    A novel type of amphiphilic pH-responsive folate-poly(ɛ-caprolactone)- block-poly(2-hydroxyethylmethacrylate)- co-poly(2-(dimethylamino)-ethylmethacrylate) (FA-PCL- b-P(HEMA- co-DMAEMA)) (MFP) block copolymers were designed and synthesized via atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) techniques. The molecular structures of the copolymers were confirmed with 1H NMR, FTIR and GPC measurements. The critical micelle concentration (CMC) of MFP in aqueous solution was extremely low (about 6.54 mg/L). The in vitro release behavior of DOX-loaded micelles was significantly accelerated when the pH value of solution decreased from 7.4 to 5.0. In vitro antitumor efficiency was evaluated by incubating DOX-loaded micelles with Hela cells. The results demonstrated that this copolymer possessed excellent biocompatibility, and FA-decorated micelles MFP showed higher cellular uptake than those micelles without the FA moiety, indicating their unique targetability. These folate-conjugated biodegradable micelles are highly promising for targeted cancer chemothe-rapy.

  10. Supertranslations: redundancies of horizon data and global symmetries at null infinity

    NASA Astrophysics Data System (ADS)

    Sousa, K.; Miláns del Bosch, G.; Reina, B.

    2018-03-01

    We characterise the geometrical nature of smooth supertranslations defined on a generic non-expanding horizon (NEH) embedded in vacuum. To this end we consider the constraints imposed by the vacuum Einstein’s equations on the NEH structure, and discuss the transformation properties of their solutions under supertranslations. We present a freely specifiable data set which is both necessary and sufficient to reconstruct the full horizon geometry, and is composed of objects which are invariant under supertranslations. We conclude that smooth supertranslations do not transform the geometry of the NEH and that they should be regarded as pure gauge. Our results apply both to stationary and non-stationary states of a NEH, the latter ones being able to describe radiative processes taking place on the horizon. As a consistency check we repeat the analysis for Bondi–Metzner–Sachs (BMS) supertranslations defined on null infinity, \

  11. Characterization of (asymptotically) Kerr-de Sitter-like spacetimes at null infinity

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Paetz, Tim-Torben; Senovilla, José M. M.; Simon, Walter

    2016-08-01

    We investigate solutions ({M},g) to Einstein's vacuum field equations with positive cosmological constant Λ which admit a smooth past null infinity {{I}}- à la Penrose and a Killing vector field whose associated Mars-Simon tensor (MST) vanishes. The main purpose of this work is to provide a characterization of these spacetimes in terms of their Cauchy data on {{I}}-. Along the way, we also study spacetimes for which the MST does not vanish. In that case there is an ambiguity in its definition which is captured by a scalar function Q. We analyze properties of the MST for different choices of Q. In doing so, we are led to a definition of ‘asymptotically Kerr-de Sitter-like spacetimes’, which we also characterize in terms of their asymptotic data on {{I}}-. Preprint UWThPh-2016-5.

  12. Vibration Attenuation of the NASA Langley Evolutionary Structure Experiment Using H(infinity) and Structured Singular Value (mu) Robust Multivariable Control Techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1996-01-01

    This final report summarizes the research results under NASA Contract NAG-1-1254 from May, 1991 - April, 1995. The main contribution of this research are in the areas of control of flexible structures, model validation, optimal control analysis and synthesis techniques, and use of shape memory alloys for structural damping.

  13. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  14. Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; He, Feng

    2018-04-01

    The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.

  15. Nutrient Control Design Manual

    EPA Science Inventory

    The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...

  16. Control design for future agile fighters

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Davidson, John B.

    1991-01-01

    The CRAFT control design methodology is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The approach combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, and a graphical approach for representing control design metrics that captures numerous design goals in one composite illustration. The methodology makes use of control design metrics from four design objective areas, namely, control power, robustness, agility, and flying qualities. An example of the CRAFT methodology as well as associated design issues are presented.

  17. Seismic design of passive tuned mass damper parameters using active control algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Shia, Syuan; Lai, Yong-An

    2018-07-01

    Tuned mass dampers are a widely-accepted control method to effectively reduce the vibrations of tall buildings. A tuned mass damper employs a damped harmonic oscillator with specific dynamic characteristics, thus the response of structures can be regulated by the additive dynamics. The additive dynamics are, however, similar to the feedback control system in active control. Therefore, the objective of this study is to develop a new tuned mass damper design procedure based on the active control algorithm, i.e., the H2/LQG control. This design facilitates the similarity of feedback control in the active control algorithm to determine the spring and damper in a tuned mass damper. Given a mass ratio between the damper and structure, the stiffness and damping coefficient of the tuned mass damper are derived by minimizing the response objective function of the primary structure, where the structural properties are known. Varying a single weighting in this objective function yields the optimal TMD design when the minimum peak in the displacement transfer function of the structure with the TMD is met. This study examines various objective functions as well as derives the associated equations to compute the stiffness and damping coefficient. The relationship between the primary structure and optimal tuned mass damper is parametrically studied. Performance is evaluated by exploring the h2-and h∞-norms of displacements and accelerations of the primary structure. In time-domain analysis, the damping effectiveness of the tune mass damper controlled structures is investigated under impulse excitation. Structures with the optimal tuned mass dampers are also assessed under seismic excitation. As a result, the proposed design procedure produces an effective tuned mass damper to be employed in a structure against earthquakes.

  18. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility.

    PubMed

    Kumar, E K Pramod; Jølck, Rasmus I; Andresen, Thomas L

    2015-09-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors. Both approaches provide stable nanosensors with similar pKa profiles and thereby nanosensors with similar pH sensitivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. pH dependent silver nanoparticles releasing titanium implant: A novel therapeutic approach to control peri-implant infection.

    PubMed

    Dong, Yiwen; Ye, Hui; Liu, Yi; Xu, Lihua; Wu, Zuosu; Hu, Xiaohui; Ma, Jianfeng; Pathak, Janak L; Liu, Jinsong; Wu, Gang

    2017-10-01

    Peri-implant infection control is crucial for implant fixation and durability. Antimicrobial administration approaches to control peri-implant infection are far from satisfactory. During bacterial infection, pH level around the peri-implant surface decreases as low as pH 5.5. This change of pH can be used as a switch to control antimicrobial drug release from the implant surface. Silver nanoparticles (AgNPs) have broad-spectrum antimicrobial properties. In this study, we aimed to design a pH-dependent AgNPs releasing titania nanotube arrays (TNT) implant for peri-implant infection control. The nanotube arrays were fabricated on the surface of titanium implant as containers; AgNPs were grafted on TNT implant surface via a low pH-sensitive acetal linker (TNT-AL-AgNPs). SEM, TEM, AFM, FTIR as well as XPS data showed that AgNPs have been successfully linked to TNT via acetal linker without affecting the physicochemical characteristics of TNT. The pH 5.5 enhanced AgNPs release from TNT-AL-AgNPs implant compared with pH 7.4. AgNPs released at pH 5.5 robustly increased antimicrobial activities against gram-positive and gram-negative bacteria compared with AgNPs released at pH 7.4. TNT-AL-AgNPs implant enhanced osteoblast proliferation, differentiation, and did not affect osteoblast morphology in vitro. In conclusion, incorporation of AgNPs in TNT via acetal linker maintained the surface characteristics of TNT. TNT-AL-AgNPs implant was biocompatible to osteoblasts and showed osteoinductive properties. AgNPs were released from TNT-AL-AgNPs implant in high dose at pH 5.5, and this release showed strong antimicrobial properties in vitro. Therefore, this novel design of low pH-triggered AgNPs releasing TNT-AL-AgNPs could be an infection-triggered antimicrobial releasing implant model to control peri-implant infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Design of H2-O2 space shuttle APU. Volume 1: APU design

    NASA Technical Reports Server (NTRS)

    Harris, E.

    1974-01-01

    The H2-O2 space shuttle auxiliary power unit (APU) program is a NASA-Lewis effort aimed at hardware demonstration of the technology required for potential use on the space shuttle. It has been shown that a hydrogen-oxygen power unit (APU) system is an attractive alternate to the space shuttle baseline hydrazine APU system for minimum weight. It has the capability for meeting many of the heat sink requirements for the space shuttle vehicle, thereby reducing the amount of expendable evaporants required for cooling in the baseline APU. Volume 1 of this report covers preliminary design and analysis of the current reference system and detail design of the test version of this reference system. Combustor test results are also included. Volume 2 contains the results of the analysis of an initial version of the reference system and the computer printouts of system performance. The APU consists of subsystems for propellant feed and conditioning, turbopower, and control. Propellant feed and conditioning contains all heat exchangers, valves, and the combustor. The turbopower subsystem contains a two-stage partial-admission pressure-modulated, 400-hp, 63,000-rpm turbine, a 0-to 4-g lubrication system, and a gearbox with output pads for two hydraulic pumps and an alternator (alternator not included on test unit). The electronic control functions include regulation of speed and system temperatures; and start-and-stop sequences, overspeed (rpm) and temperature limits, failsafe provisions, and automatic shutdown provisions.

  1. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kwang Ho; Ricotti, Massimo, E-mail: kpark@astro.umd.edu, E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillationsmore » decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.« less

  2. Estimation of the weighted CTDI{sub {infinity}} for multislice CT examinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xinhua; Zhang Da; Liu, Bob

    2012-02-15

    Purpose: The aim of this study was to examine the variations of CT dose index (CTDI) efficiencies, {epsilon}(CTDI{sub 100})=CTDI{sub 100}/CTDI{sub {infinity}}, with bowtie filters and CT scanner types. Methods: This was an extension of our previous study [Li, Zhang, and Liu, Phys. Med. Biol. 56, 5789-5803 (2011)]. A validated Monte Carlo program was used to calculate {epsilon}(CTDI{sub 100}) on a Siemens Somatom Definition scanner. The {epsilon}(CTDI{sub 100}) dependencies on tube voltages and beam widths were tested in previous studies. The influences of different bowtie filters and CT scanner types were examined in this work. The authors tested the variations ofmore » {epsilon}(CTDI{sub 100}) with bowtie filters on the Siemens Definition scanner. The authors also analyzed the published CTDI measurements of four independent studies on five scanners of four models from three manufacturers. Results: On the Siemens Definition scanner, the difference in {epsilon}(CTDI{sub W}) between using the head and body bowtie filters was 2.5% (maximum) in the CT scans of the 32-cm phantom, and 1.7% (maximum) in the CT scans of the 16-cm phantom. Compared with CTDI{sub W}, the weighted CTDI{sub {infinity}} increased by 30.5% (on average) in the 32-cm phantom, and by 20.0% (on average) in the 16-cm phantom. These results were approximately the same for 80-140 kV and 1-40 mm beam widths (4.2% maximum deviation). The differences in {epsilon}(CTDI{sub 100}) between the simulations and the direct measurements of four previous studies were 1.3%-5.0% at the center/periphery of the 16-cm/32-cm phantom (on average). Conclusions: Compared with CTDI{sub vol}, the equilibrium dose for large scan lengths is 30.5% higher in the 32-cm phantom, and is 20.0% higher in the 16-cm phantom. The relative increases are practically independent of tube voltages (80-140 kV), beam widths (up to 4 cm), and the CT scanners covered in this study.« less

  3. Evaluating nanoparticle sensor design for intracellular pH measurements.

    PubMed

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  4. Habit-associated salivary pH changes in oral submucous fibrosis-A controlled cross-sectional study.

    PubMed

    Donoghue, Mandana; Basandi, Praveen S; Adarsh, H; Madhushankari, G S; Selvamani, M; Nayak, Prachi

    2015-01-01

    Oral submucous fibrosis (OSF) is a multi-causal inflammatory reaction to the chemical or mechanical trauma caused due to exposure to arecanut containing products with or without tobacco (ANCP/T). Arecanut and additional components such as lime and chewing tobacco render ANCP/T highly alkaline. Fibrosing repair is a common reaction to an alkaline exposure in the skin. OSF may be related to the alkaline exposure by ANCP/T in a similar manner. The study was aimed at establishing the relationship of habit-associated salivary pH changes and OSF. The study design was controlled cross-sectional. Base line salivary pH (BLS pH), salivary pH after chewing the habitual ANCP/T substance, post chew salivary pH (PCSpH) for 2 min and salivary pH recovery time (SpHRT) were compared in 30 OSF patients and 30 sex-matched individuals with ANCP/T habits and apparently healthy oral mucosa. The group's mean BLSpH values were similar and within normal range and representative of the population level values. The average PCSpH was significantly higher (P ˂ 0.0001) than the average BLSpH in both groups. There was no significant difference (P = 0.09) between PCSpH of OSF patients and controls. OSF patients had a significantly longer (P = 0.0076) SpHRT than controls. Factors such as age, daily exposure, cumulative habit years, BLSpH and PCSpH, had varying effects on the groups. Chewing ANCP/T causes a significant rise in salivary pH of all individuals. SpHRT has a significant association with OSF. The effect of salivary changes in OSF patients differs with those in healthy controls.

  5. Displacement and force coupling control design for automotive active front steering system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanzhong; Zhang, Han; Li, Yijun

    2018-06-01

    A displacement and force coupling control design for active front steering (AFS) system of vehicle is proposed in this paper. In order to investigate the displacement and force characteristics of the AFS system of the vehicle, the models of AFS system, vehicle, tire as well as the driver model are introduced. Then, considering the nonlinear characteristics of the tire force and external disturbance, a robust yaw rate control method is designed by applying a steering motor to generate an active steering angle to adjust the yaw stability of the vehicle. Based on mixed H2/H∞ control, the system robustness and yaw rate tracking performance are enforced by H∞ norm constraint and the control effort is captured through H2 norm. In addition, based on the AFS system, a planetary gear set and an assist motor are both added to realize the road feeling control in this paper to dismiss the influence of extra steering angle through a compensating method. Evaluation of the overall system is accomplished by simulations and experiments under various driving condition. The simulation and experiment results show the proposed control system has excellent tracking performance and road feeling performance, which can improve the cornering stability and maneuverability of vehicle.

  6. 21 CFR 820.30 - Design controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Design controls. 820.30 Section 820.30 Food and... QUALITY SYSTEM REGULATION Design Controls § 820.30 Design controls. (a) General. (1) Each manufacturer of..., shall establish and maintain procedures to control the design of the device in order to ensure that...

  7. 21 CFR 820.30 - Design controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Design controls. 820.30 Section 820.30 Food and... QUALITY SYSTEM REGULATION Design Controls § 820.30 Design controls. (a) General. (1) Each manufacturer of..., shall establish and maintain procedures to control the design of the device in order to ensure that...

  8. 21 CFR 820.30 - Design controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Design controls. 820.30 Section 820.30 Food and... QUALITY SYSTEM REGULATION Design Controls § 820.30 Design controls. (a) General. (1) Each manufacturer of..., shall establish and maintain procedures to control the design of the device in order to ensure that...

  9. 21 CFR 820.30 - Design controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Design controls. 820.30 Section 820.30 Food and... QUALITY SYSTEM REGULATION Design Controls § 820.30 Design controls. (a) General. (1) Each manufacturer of..., shall establish and maintain procedures to control the design of the device in order to ensure that...

  10. 21 CFR 820.30 - Design controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Design controls. 820.30 Section 820.30 Food and... QUALITY SYSTEM REGULATION Design Controls § 820.30 Design controls. (a) General. (1) Each manufacturer of..., shall establish and maintain procedures to control the design of the device in order to ensure that...

  11. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  12. Design and Applications of the SAMI-pH Sensor

    NASA Astrophysics Data System (ADS)

    Moore, T. S.; Degrandpre, M. D.; Cullison, S. E.; Harris, K. E.; Beck, J.; Spalding, R.; Dickson, A. G.

    2010-12-01

    Spectrophotometric methods are routinely used to make high-precision pH measurements in oceanographic studies. The SAMI-pH sensor incorporates this technique into an autonomous, in situ sensor capable of extended deployments with minimal instrument drift. The SAMI-pH operates by mixing seawater with an indicator dye (metacresol purple) and measuring pH by absorbance. Laboratory studies have found that the SAMI-pH has an accuracy of 0.0017 ± 0.0007 pH units. Additionally, two SAMIs deployed for 22 days in coastal waters had a mean difference of +0.0042, and there was no drift evident during the deployment. The SAMI-pH has recently been re-designed with funding from the National Oceanographic Partnership Program. The new SAMI-pH design replaces the tungsten lamp with LEDs, decreasing power consumption. The SAMI-pH can now make more than 2,300 measurements in a single deployment, i.e. run for 290 days sampling every 3 hours. The design is also much more compact, allowing for easier deployment. Additionally, the SAMI-pH can now be deployed with a certified reference material (CRM), allowing for in situ data verification. The CRM, produced by Dr. Andrew Dickson (Scripps), is a tris seawater buffer that has a pH that is accurately known over the range of seawater temperatures. The new SAMI-pH has been tested extensively in the lab, with consistent high accuracy and precision. Field based studies have also yielded very good results. The SAMI-pH was deployed for three months at the MBARI M0 mooring. Data collected were used with salinity derived alkalinity to calculate in situ pCO2, which initially had a mean difference of 2.0 ± 0.4 μatm, as compared to an infrared CO2 sensor mounted on the buoy. During this time aragonite saturation states varied from 1.8-3.7, and calcite saturation states varied from 2.9-5.8. Data collected by a SAMI-pH and SAMI-CO2 on the NH-10 mooring off the Oregon Coast gave similar results. The SAMI-pH was deployed on a drifter for 1 month in the

  13. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  14. Experimental Investigation of a Point Design Optimized Arrow Wing HSCT Configuration

    NASA Technical Reports Server (NTRS)

    Narducci, Robert P.; Sundaram, P.; Agrawal, Shreekant; Cheung, S.; Arslan, A. E.; Martin, G. L.

    1999-01-01

    The M2.4-7A Arrow Wing HSCT configuration was optimized for straight and level cruise at a Mach number of 2.4 and a lift coefficient of 0.10. A quasi-Newton optimization scheme maximized the lift-to-drag ratio (by minimizing drag-to-lift) using Euler solutions from FL067 to estimate the lift and drag forces. A 1.675% wind-tunnel model of the Opt5 HSCT configuration was built to validate the design methodology. Experimental data gathered at the NASA Langley Unitary Plan Wind Tunnel (UPWT) section #2 facility verified CFL3D Euler and Navier-Stokes predictions of the Opt5 performance at the design point. In turn, CFL3D confirmed the improvement in the lift-to-drag ratio obtained during the optimization, thus validating the design procedure. A data base at off-design conditions was obtained during three wind-tunnel tests. The entry into NASA Langley UPWT section #2 obtained data at a free stream Mach number, M(sub infinity), of 2.55 as well as the design Mach number, M(sub infinity)=2.4. Data from a Mach number range of 1.8 to 2.4 was taken at UPWT section #1. Transonic and low supersonic Mach numbers, M(sub infinity)=0.6 to 1.2, was gathered at the NASA Langley 16 ft. Transonic Wind Tunnel (TWT). In addition to good agreement between CFD and experimental data, highlights from the wind-tunnel tests include a trip dot study suggesting a linear relationship between trip dot drag and Mach number, an aeroelastic study that measured the outboard wing deflection and twist, and a flap scheduling study that identifies the possibility of only one leading-edge and trailing-edge flap setting for transonic cruise and another for low supersonic acceleration.

  15. Designing pH induced fold switch in proteins

    NASA Astrophysics Data System (ADS)

    Baruah, Anupaul; Biswas, Parbati

    2015-05-01

    This work investigates the computational design of a pH induced protein fold switch based on a self-consistent mean-field approach by identifying the ensemble averaged characteristics of sequences that encode a fold switch. The primary challenge to balance the alternative sets of interactions present in both target structures is overcome by simultaneously optimizing two foldability criteria corresponding to two target structures. The change in pH is modeled by altering the residual charge on the amino acids. The energy landscape of the fold switch protein is found to be double funneled. The fold switch sequences stabilize the interactions of the sites with similar relative surface accessibility in both target structures. Fold switch sequences have low sequence complexity and hence lower sequence entropy. The pH induced fold switch is mediated by attractive electrostatic interactions rather than hydrophobic-hydrophobic contacts. This study may provide valuable insights to the design of fold switch proteins.

  16. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    PubMed Central

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  17. The development of H-II rocket solid rocket booster thrust vector control system

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Fukushima, Yukio; Kazama, Hiroo; Asai, Tatsuro; Okaya, Shunichi; Watanabe, Yasushi; Muramatsu, Shoji

    The development of the thrust-vector-control (TVC) system for the two solid rocket boosters (SRBs) of the H-II rocket, which was started in 1984 and completed in 1989, is described. Special attention is given to the system's design, the trade-off studies, and the evaluation of the SRB-TVC system performance, as well as to problems that occurred in the course of the system's development and to the countermeasures that were taken. Schematic diagrams are presented for the H-II rocket, the SRB, and the SRB-TVC system configurations.

  18. Vortex Design Problem

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz

    2007-11-01

    In this investigation we are concerned with a family of solutions of the 2D steady--state Euler equations, known as the Prandtl--Batchelor flows, which are characterized by the presence of finite--area vortex patches embedded in an irrotational flow. We are interested in flows in the exterior of a circular cylinder and with a uniform stream at infinity, since such flows are often employed as models of bluff body wakes in the high--Reynolds number limit. The ``vortex design'' problem we consider consists in determining a distribution of the wall--normal velocity on parts of the cylinder boundary such that the vortex patches modelling the wake vortices will have a prescribed shape and location. Such inverse problem have applications in various areas of flow control, such as mitigation of the wake hazard. We show how this problem can be solved computationally by formulating it as a free--boundary optimization problem. In particular, we demonstrate that derivation of the adjoint system, required to compute the cost functional gradient, is facilitated by application of the shape differential calculus. Finally, solutions of the vortex design problem are illustrated with computational examples.

  19. Optimal Control Design Advantages Utilizing Two-Degree-of-Freedom Controllers

    DTIC Science & Technology

    1993-12-01

    AFrTIGAE/ENYIV3D-27 AD--A273 839 D"TIC OPTIMAL CONTROL DESIGN ADVANTAGES UTILIZING TWO-DEGREE-OF-FREEDOM CONTROLLERS THESIS Michael J. Stephens...AFIT/GAE/ENY/93D-27 OPTIMAL CONTROL DESIGN ADVANTAGES UTILIZING TWO-DEGREE-OF-FREEDOM CONTROLLERS THESIS Presented to the Faculty of the Graduate...measurement noises compared to the I- DOF model. xvii OPTIMAL CONTROL DESIGN ADVANTAGES UTILIZING TWO-DEGREE-OF-FREEDOM CONTROLLERS I. Introduction L1

  20. SP-100 Control System Design

    NASA Astrophysics Data System (ADS)

    Shukla, Jaikaran N.; Halfen, Frank J.; Brynsvold, Glen V.; Syed, Akbar; Jiang, Thomas J.; Wong, Kwok K.; Otwell, Robert L.

    1994-07-01

    Recent work in lower power generic early applications for the SP-100 have resulted in control system design simplification for a 20 kWe design with thermoelectric power conversion. This paper presents the non-mission-dependent control system features for this design. The control system includes a digital computer based controller, dual purpose control rods and drives, temperature sensors, and neutron flux monitors. The thaw system is mission dependent and can be either electrical or based on NaK trace lines. Key features of the control system and components are discussed. As was the case for higher power applications, the initial on-orbit approach to criticality involves the relatively fast withdrawal of the control-rods to a near-critical position followed by slower movement through critical and into the power range. The control system performs operating maneuvers as well as providing for automatic startup, shutdown, restart, and reactor protection.

  1. Control Allocation with Load Balancing

    NASA Technical Reports Server (NTRS)

    Bodson, Marc; Frost, Susan A.

    2009-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the actuator deflections. The paper discusses the alternative choice of the l(infinity) norm, or sup norm. Minimization of the control effort translates into the minimization of the maximum actuator deflection (min-max optimization). The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are also investigated through examples. In particular, the min-max criterion results in a type of load balancing, where the load is th desired command and the algorithm balances this load among various actuators. The solution using the l(infinity) norm also results in better robustness to failures and to lower sensitivity to nonlinearities in illustrative examples.

  2. Ares I Flight Control System Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedrossian, Nazareth; Hall, Charles; Ryan, Stephen; Jackson, Mark

    2010-01-01

    The Ares I launch vehicle represents a challenging flex-body structural environment for flight control system design. This paper presents a design methodology for employing numerical optimization to develop the Ares I flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares I time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time launch control systems in the presence of parametric uncertainty. Flex filters in the flight control system are designed to minimize the flex components in the error signals before they are sent to the attitude controller. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constraints minimizes performance degradation caused by the addition of the flex filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The flight control system designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC 6DOF nonlinear time domain simulation.

  3. Radiological controls integrated into design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindred, G.W.

    1995-03-01

    Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facilitymore » from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.« less

  4. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

    NASA Technical Reports Server (NTRS)

    Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

  5. Combat Systems Vision 2030 Conceptual Design of Control Structures for Combat Systems

    DTIC Science & Technology

    1992-02-01

    IEEE, 68(6), pp. 644-654, 1980. 26. Singh , M. G.; Titli, A.; and Malinowski, K.; "Decentralized Control Design: An Overview," Large Scale Systems...IFAC Symposium, pp. 335-339, 1988. 40. Cameron, E. J.; Petschenik, N. H.; Ruston, Lillian; Shah, Swati ; and Srinidhi, Hassan, (Bell Communications

  6. Sliding Mode Control Applied to Reconfigurable Flight Control Design

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wells, S. R.; Bacon, Barton (Technical Monitor)

    2002-01-01

    Sliding mode control is applied to the design of a flight control system capable of operating with limited bandwidth actuators and in the presence of significant damage to the airframe and/or control effector actuators. Although inherently robust, sliding mode control algorithms have been hampered by their sensitivity to the effects of parasitic unmodeled dynamics, such as those associated with actuators and structural modes. It is known that asymptotic observers can alleviate this sensitivity while still allowing the system to exhibit significant robustness. This approach is demonstrated. The selection of the sliding manifold as well as the interpretation of the linear design that results after introduction of a boundary layer is accomplished in the frequency domain. The design technique is exercised on a pitch-axis controller for a simple short-period model of the High Angle of Attack F-18 vehicle via computer simulation. Stability and performance is compared to that of a system incorporating a controller designed by classical loop-shaping techniques.

  7. M{sub 2}X intermetallics: Nonmetal insertion in a h.c.-like metallic distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivan, J.Y.; Guerin, R.

    A simple structural model is proposed on the basis of an ideal hexagonal close-packing (AB){sup {infinity}} of the metal atoms M. The metalloid atoms X, located in an ordered manner in the metallic planes with the stacking sequence ..(A){sup {infinity}}.. or ..(B){sup {infinity}}.., generate two types of elementary units called units U{sub I} and U{sub II}. These units are hexagonal prisms with the fundamental vectors a{sub 0}, b{sub 0}, c{sub 0} and the elementary volume V{sub 0}. When the exclusive occurrence of U{sub I} (or U{sub II}) only yields 6-prismatic and triangular sites of metalloid atoms X, additional tetrahedral andmore » pyramidal sites of X atoms are present when units U{sub I} and U{sub II} exist simultaneously. The structures of compounds with the general formula M{sub 2}X (M = 3d, 4d, 5d and (or) 4f, 5f elements, X = B, P, As, Sb, Si, Ge, {hor_ellipsis}) are described in terms of intergrowth mechanisms. Binary, ternary, or even quaternary structures of compounds, with M/X ratios equal or close to two, appear as superstructures of the elementary units. Insofar as no ordering is considered along the stacking direction, the vectorial combinations of the fundamental vectors in the form A = h.a{sub 0}+s.b{sub 0}, B = k.a{sub 0}+t.b{sub 0}, C = c{sub 0} result in supercells with the volume V = (h.t {minus} k.s).V{sub 0}. The attainable symmetry (hexagonal, tetragonal, orthorhombic, monoclinic, {hor_ellipsis}) strongly depends on the particular values of the integers h, s, k, t. The criteria of occurrence of various series of compounds are presented together with their crystallographic features and structural relationships are emphasized. Moreover, the model demonstrates that numerous compounds with the predicted unit cell parameters should be obtained in each crystal system.« less

  8. A Genetically Encoded Ratiometric pH Probe: Wavelength Regulation-Inspired Design of pH Indicators.

    PubMed

    Berbasova, Tetyana; Tahmasebi Nick, Setare; Nosrati, Meisam; Nossoni, Zahra; Santos, Elizabeth M; Vasileiou, Chrysoula; Geiger, James H; Borhan, Babak

    2018-04-12

    Mutants of human cellular retinol-binding protein II (hCRBPII) were engineered to bind a julolidine retinal analogue for the purpose of developing a ratiometric pH sensor. The design relied on the electrostatic influence of a titratable amino acid side chain, which affects the absorption and, thus, the emission of the protein/fluorophore complex. The ratio of emissions obtained at two excitation wavelengths that correspond to the absorption of the two forms of the protein/fluorophore complex, leads to a concentration-independent measure of pH. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 10 CFR 72.146 - Design control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design control. 72.146 Section 72.146 Energy NUCLEAR... Design control. (a) The licensee, applicant for a license, certificate holder, and applicant for a CoC... shall establish measures for the identification and control of design interfaces and for coordination...

  10. 10 CFR 72.146 - Design control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design control. 72.146 Section 72.146 Energy NUCLEAR... Design control. (a) The licensee, applicant for a license, certificate holder, and applicant for a CoC... shall establish measures for the identification and control of design interfaces and for coordination...

  11. 10 CFR 72.146 - Design control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design control. 72.146 Section 72.146 Energy NUCLEAR... Design control. (a) The licensee, applicant for a license, certificate holder, and applicant for a CoC... shall establish measures for the identification and control of design interfaces and for coordination...

  12. 10 CFR 72.146 - Design control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design control. 72.146 Section 72.146 Energy NUCLEAR... Design control. (a) The licensee, applicant for a license, certificate holder, and applicant for a CoC... shall establish measures for the identification and control of design interfaces and for coordination...

  13. 10 CFR 72.146 - Design control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design control. 72.146 Section 72.146 Energy NUCLEAR... Design control. (a) The licensee, applicant for a license, certificate holder, and applicant for a CoC... shall establish measures for the identification and control of design interfaces and for coordination...

  14. Development of a Model Following Control Law for Inflight Simulation and Flight Controls Research

    NASA Technical Reports Server (NTRS)

    Takahashi, Mark; Fletcher, Jay; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    quality models that include rotor dynamics in a physically meaningful context must be available. A non-physical accounting of the rotor, such as lumping the effect as a time delay, is not likely to produce the desired results. High order simulation models based on first principals are satisfactory for the initial design phase in order to work out the control law design concept and get an initial set of gains. These models, however, have known deficiencies, which must be resolved in the final control law design. The error in the pitch-roll cross coupling is one notable deficiency that even sophisticated rotorcraft models including complex wake aerodynamics have yet to capture successfully. This error must be accounted for to achieve the desired decoupling. The approach to design the proposed inflight simulation control law is based on using a combination of simulation and identified models. The linear and nonlinear higher order models were used to develop an explicit model following control structure. This structure was developed to accommodate the design of control laws compliant to many of the quantitative requirements in ADS-33C. Furthermore, it also allows for control law research using rotor-state feedback and other design methodologies such as Quantitative Feedback and H-Infinity. Final gain selection will be based on higher order identified models which include rotor degrees of freedom.

  15. pH Control on the Sequential Uptake and Release of Organic Cations by Cucurbit[7]uril.

    PubMed

    Mikulu, Lukas; Michalicova, Romana; Iglesias, Vivian; Yawer, Mirza A; Kaifer, Angel E; Lubal, Premysl; Sindelar, Vladimir

    2017-02-16

    Cucurbit[7]uril (CB7) is a macrocycle with the ability to form the most stable supramolecular complexes in water ever reported for an artificial receptor. Its use for the design of advanced functional materials is, however, very limited because there is no example of a fully reversible CB7 based supramolecular complex enabling repetitious dissociation/association controlled by external stimuli. We report the synthesis of a new ferrocene amino acid that forms with CB7 a 1:1 inclusion complex that is stable in submicromolar concentration at low pH but dissociates at high pH. This reversible process was used for the sequential uptake and release of bispyridinium and antraquinone guests by CB7, which is controlled by adjusting the pH of the solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 10 CFR 835.1001 - Design and control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Design and control. 835.1001 Section 835.1001 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1001 Design and control. (a... administrative controls. The primary methods used shall be physical design features (e.g., confinement...

  17. 10 CFR 835.1001 - Design and control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Design and control. 835.1001 Section 835.1001 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1001 Design and control. (a... administrative controls. The primary methods used shall be physical design features (e.g., confinement...

  18. 10 CFR 835.1001 - Design and control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Design and control. 835.1001 Section 835.1001 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1001 Design and control. (a... administrative controls. The primary methods used shall be physical design features (e.g., confinement...

  19. 10 CFR 835.1001 - Design and control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Design and control. 835.1001 Section 835.1001 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1001 Design and control. (a... administrative controls. The primary methods used shall be physical design features (e.g., confinement...

  20. 10 CFR 835.1001 - Design and control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Design and control. 835.1001 Section 835.1001 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1001 Design and control. (a... administrative controls. The primary methods used shall be physical design features (e.g., confinement...

  1. Control/structure interaction design methodology

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Layman, William E.

    1989-01-01

    The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies.

  2. [The case-case-time-control study design].

    PubMed

    Wang, Jing; Zhuo, Lin; Zhan, Siyan

    2014-12-01

    Although the 'self-matched case-only studies' (such as the case-cross-over or self-controlled case-series method) can control the time-invariant confounders (measured or unmeasured) through design of the study, however, they can not control those confounders that vary with time. A bidirectional case-crossover design can be used to adjust the exposure-time trends. In the areas of pharmaco-epidemiology, illness often influence the future use of medications, making a bidirectional study design problematic. Suissa's case-time-control design combines the case-crossover and the case-control design which could adjust for exposure-trend bias, but the control group may reintroduce selection bias, if the matching does not go well. We propose a "case-case-time-control" design which is an extension of the case-time-control design. However, rather than using a sample of external controls, we choose those future cases as controls for current cases to counter the bias that arising from temporal trends caused by exposure to the target of interest. In the end of this article we will discuss the strength and limitations of this design based on an applied example.

  3. Computer model of hydroponics nutrient solution pH control using ammonium.

    PubMed

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  4. ACSYNT inner loop flight control design study

    NASA Technical Reports Server (NTRS)

    Bortins, Richard; Sorensen, John A.

    1993-01-01

    The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between

  5. Automated Design of the Europa Orbiter Tour

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Strange, Nathan J.; Longusaki, James M.; Bonfiglio, Eugene P.

    2000-01-01

    In this paper we investigate tours of the Jovian satellites Europa, Ganymede, and Callisto for the Europa Orbiter Mission. The principal goal of the tour design is to lower arrival V(sub infinity) for the final Europa encounter while meeting all of the design constraints. Key constraints arise from considering the total time of the tour and the radiation dosage of a tour. These tours may employ 14 or more encounters with the Jovian satellites, hence there is an enormous number of possible sequences of these satellites to investigate. We develop a graphical method that greatly aids the design process.

  6. Optimal Flow Control Design

    NASA Technical Reports Server (NTRS)

    Allan, Brian; Owens, Lewis

    2010-01-01

    In support of the Blended-Wing-Body aircraft concept, a new flow control hybrid vane/jet design has been developed for use in a boundary-layer-ingesting (BLI) offset inlet in transonic flows. This inlet flow control is designed to minimize the engine fan-face distortion levels and the first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. This concept represents a potentially enabling technology for quieter and more environmentally friendly transport aircraft. An optimum vane design was found by minimizing the engine fan-face distortion, DC60, and the first five Fourier harmonic half amplitudes, while maximizing the total pressure recovery. The optimal vane design was then used in a BLI inlet wind tunnel experiment at NASA Langley's 0.3-meter transonic cryogenic tunnel. The experimental results demonstrated an 80-percent decrease in DPCPavg, the reduction in the circumferential distortion levels, at an inlet mass flow rate corresponding to the middle of the operational range at the cruise condition. Even though the vanes were designed at a single inlet mass flow rate, they performed very well over the entire inlet mass flow range tested in the wind tunnel experiment with the addition of a small amount of jet flow control. While the circumferential distortion was decreased, the radial distortion on the outer rings at the aerodynamic interface plane (AIP) increased. This was a result of the large boundary layer being distributed from the bottom of the AIP in the baseline case to the outer edges of the AIP when using the vortex generator (VG) vane flow control. Experimental results, as already mentioned, showed an 80-percent reduction of DPCPavg, the circumferential distortion level at the engine fan-face. The hybrid approach leverages strengths of vane and jet flow control devices, increasing inlet performance over a broader operational range with significant reduction in mass flow requirements. Minimal distortion level requirements

  7. Integral Manifold in System Design with Application to Flexible Link Robot Control

    DTIC Science & Technology

    1988-06-01

    environment. I am very grateful to my advisor . Professor Kokotovic. whose insight and guidance in my research work led me to the beginning of my...MANIFOLD IN SVSTEM DESIGN WITH RPLICATION TT 2Z2 FLEXIBLE LINK ROBO (U) ILLINOIS UNIV AT URBANA DECISION AND CONTROL LAB H C TSENG JUN 98

  8. LPV Modeling and Control for Active Flutter Suppression of a Smart Airfoil

    NASA Technical Reports Server (NTRS)

    Al-Hajjar, Ali M. H.; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming

    2018-01-01

    In this paper, a novel technique of linear parameter varying (LPV) modeling and control of a smart airfoil for active flutter suppression is proposed, where the smart airfoil has a groove along its chord and contains a moving mass that is used to control the airfoil pitching and plunging motions. The new LPV modeling technique is proposed that uses mass position as a scheduling parameter to describe the physical constraint of the moving mass, in addition the hard constraint at the boundaries is realized by proper selection of the parameter varying function. Therefore, the position of the moving mass and the free stream airspeed are considered the scheduling parameters in the study. A state-feedback based LPV gain-scheduling controller with guaranteed H infinity performance is presented by utilizing the dynamics of the moving mass as scheduling parameter at a given airspeed. The numerical simulations demonstrate the effectiveness of the proposed LPV control architecture by significantly improving the performance while reducing the control effort.

  9. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1994-01-01

    This report documents the activities and research results obtained under a grant (NAG3-998) from the NASA Lewis Research Center. The focus of the research was the investigation of dynamic interactions between airframe and engines for advanced ASTOVL aircraft configurations, and the analysis of the implications of these interactions on the stability and performance of the airframe and engine control systems. In addition, the need for integrated flight and propulsion control for such aircraft was addressed. The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multi variable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important non-linear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multi variable techniques, included model-following formulations of LQG and/or H (infinity) methods showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods.

  10. Model reduction in integrated controls-structures design

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  11. Resource Balancing Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc

    2010-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the control effort. The paper discusses the alternative choice of using the l1 norm for minimization of the tracking error and a normalized l(infinity) norm, or sup norm, for minimization of the control effort. The algorithm computes the norm of the actuator deflections scaled by the actuator limits. Minimization of the control effort then translates into the minimization of the maximum actuator deflection as a percentage of its range of motion. The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are investigated through examples. In particular, the min-max criterion results in a type of resource balancing, where the resources are the control surfaces and the algorithm balances these resources to achieve the desired command. A study of the sensitivity of the algorithms to the data is presented, which shows that the normalized l(infinity) algorithm has the lowest sensitivity, although high sensitivities are observed whenever the limits of performance are reached.

  12. pH responsive alginate polymeric rafts for controlled drug release by using box behnken response surface design

    PubMed Central

    Abbas, Ghulam; Hanif, Muhammad; Khan, Mahtab Ahmad

    2017-01-01

    Abstract Aim of the present work was to develop alginate raft forming tablets for controlled release pantoprazole sodium sesquihydrate (PSS). Box behnken design was used to optimize 15 formulations with three independent and three dependent variables. Physical tests of all formulations were within pharmacopoeial limits. Raft was characterized by their strength, thickness, resilience, acid neutralizing capacity, floating lag time and total floating time. Raft strength, thickness and resilience of optimized formulation AR9 were 7.43 ± 0.019 g, 5.8 ± 0.245 cm and greater than 480 min, respectively. Buffering and neutralizing capacity were 11.2 ± 1.01 and 6.5 ± 0.56 meq, respectively. Dissolution studies were performed by using simulated gastric fluid pH 1.2 and cumulative percentage release of optimized formulation AR9 was found 98%. First order release kinetics were followed and non-fickian diffusion was observed as value of n was greater than 0.45 in korsmeyer-peppas model. PSS, polymers, tablets and rafts were further characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). FTIR spectra of PSS, polymers and raft of optimized formulation AR9 showed peaks at 3223.09, 1688.17, 1586.67, 1302.64 and 1027.74 cm−1 due to –OH stretching, ester carbonyl group (C=O) stretching, existence of water and carboxylic group in raft, C–N stretching and –OH bending vibration showed no interaction between them. XRD showed diffraction lines indicates crystalline nature of PSS. DSC thermogram showed endothermic peaks at 250 °C for PSS. The developed raft was suitable for controlled release delivery of PSS. PMID:29491774

  13. Effect of Consuming Tea with Stevia on Salivary pH - An In Vivo Randomised Controlled Trial.

    PubMed

    Pallepati, Akhil; Yavagal, Puja; Veeresh, D J

    To assess the effect of consuming tea with stevia on salivary pH. This randomised controlled trial employed a Latin square design. Twenty-four male students aged 20-23 years were randomly allocated to 4 different groups, 3 experimental with tea sweetened by sucrose, jaggery or stevia, and one unsweetened control. Salivary pH assessments were performed at baseline and 1 min, 20 and 60 min after consumption of the respective tea. One-way ANOVA and repeated measures ANOVA followed by Tukey's post-hoc tests were employed to analyse the data. One minute after tea consumption, the salivary pH of the sucrose group significantly decreased compared to the stevia group (p = 0.01). There was a significant difference between baseline mean salivary pH and post-interventional mean salivary pH values at all time intervals in the tea + sucrose, tea + jaggery, and plain tea groups (p < 0.01). One hour after consumption of tea, the salivary pH values reached the baseline pH in stevia and plain tea groups, but it remained lower in the sucrose and jaggery groups. The results of the present study, in which the salivary pH values returned to baseline pH 1 h after drinking stevia-sweetened tea, suggest stevia's potential as a non-cariogenic sweetener.

  14. Nutrient Control Design Manual

    EPA Science Inventory

    The purpose of this EPA design manual is to provide updated, state‐of‐the‐technology design guidance on nitrogen and phosphorus control at municipal Wastewater Treatment Plants (WWTPs). Similar to previous EPA manuals, this manual contains extensive information on the principles ...

  15. Proton mediated control of biochemical reactions with bioelectronic pH modulation

    NASA Astrophysics Data System (ADS)

    Deng, Yingxin; Miyake, Takeo; Keene, Scott; Josberger, Erik E.; Rolandi, Marco

    2016-04-01

    In Nature, protons (H+) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H+ channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H+ currents and H+ concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H+ between PdHx contacts and solution. The present transducer records bistable pH modulation from an “enzymatic flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. The transducer also controls bioluminescence from firefly luciferase by affecting solution pH.

  16. Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of L-tryptophan by Escherichia coli.

    PubMed

    Cheng, Li-Kun; Wang, Jian; Xu, Qing-Yang; Zhao, Chun-Guang; Shen, Zhi-Qiang; Xie, Xi-Xian; Chen, Ning

    2013-05-01

    Optimum production of L-tryptophan by Escherichia coli depends on pH. Here, we established conditions for optimizing the production of L-tryptophan. The optimum pH range was 6.5-7.2, and pH was controlled using a three-stage strategy [pH 6.5 (0-12 h), pH 6.8 (12-24 h), and pH 7.2 (24-38 h)]. Specifically, ammonium hydroxide was used to adjust pH during the initial 24 h, and potassium hydroxide and ammonium hydroxide (1:2, v/v) were used to adjust pH during 24-38 h. Under these conditions, NH4 (+) and K(+) concentrations were kept below the threshold for inhibiting L-tryptophan production. Optimization was also accomplished using ratios (v/v) of glucose to alkali solutions equal to 4:1 (5-24 h) and 6:1 (24-38 h). The concentration of glucose and the pH were controlled by adjusting the pH automatically. Applying a pH-feedback feeding method, the steady-state concentration of glucose was maintained at approximately 0.2 ± 0.02 g/l, and acetic acid accumulated to a concentration of 1.15 ± 0.03 g/l, and the plasmid stability was 98 ± 0.5 %. The final, optimized concentration of L-tryptophan was 43.65 ± 0.29 g/l from 52.43 ± 0.38 g/l dry cell weight.

  17. Proton mediated control of biochemical reactions with bioelectronic pH modulation

    DOE PAGES

    Deng, Yingxin; Miyake, Takeo; Keene, Scott; ...

    2016-04-07

    In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less

  18. Proton mediated control of biochemical reactions with bioelectronic pH modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yingxin; Miyake, Takeo; Keene, Scott

    In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less

  19. A clinical study of patient acceptance and satisfaction of Varilux Plus and Varilux Infinity lenses.

    PubMed

    Cho, M H; Barnette, C B; Aiken, B; Shipp, M

    1991-06-01

    An independent study was conducted at the UAB School of Optometry to determine the clinical success with Varilux Plus (Varilux 2) and Varilux Infinity progressive addition lenses (PAL). Two hundred eighty patients (280) were fit between June 1988 and May 1989. The acceptance rate of 97.5 percent was based on the number of lenses ordered versus the number of lenses returned. Patients were contacted by telephone and asked to rate their level of satisfaction with their PALs. A chi-square (non-parametric) test revealed no statistically significant differences in levels of satisfaction with respect to gender, PAL type, or degree of presbyopia. Also, neither refractive error nor previous lens history had a measurable impact on patient satisfaction.

  20. Integrated structure/control law design by multilevel optimization

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Schmidt, David K.

    1989-01-01

    A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.

  1. 10 CFR 71.107 - Package design control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Package design control. 71.107 Section 71.107 Energy... Assurance § 71.107 Package design control. (a) The licensee, certificate holder, and applicant for a CoC... identification and control of design interfaces and for coordination among participating design organizations...

  2. 10 CFR 71.107 - Package design control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Package design control. 71.107 Section 71.107 Energy... Assurance § 71.107 Package design control. (a) The licensee, certificate holder, and applicant for a CoC... identification and control of design interfaces and for coordination among participating design organizations...

  3. 10 CFR 71.107 - Package design control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Package design control. 71.107 Section 71.107 Energy... Assurance § 71.107 Package design control. (a) The licensee, certificate holder, and applicant for a CoC... identification and control of design interfaces and for coordination among participating design organizations...

  4. 10 CFR 71.107 - Package design control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Package design control. 71.107 Section 71.107 Energy... Assurance § 71.107 Package design control. (a) The licensee, certificate holder, and applicant for a CoC... identification and control of design interfaces and for coordination among participating design organizations...

  5. 10 CFR 71.107 - Package design control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Package design control. 71.107 Section 71.107 Energy... Assurance § 71.107 Package design control. (a) The licensee, certificate holder, and applicant for a CoC... identification and control of design interfaces and for coordination among participating design organizations...

  6. Integrated structural control design of large space structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.J.; Lauffer, J.P.

    1995-01-01

    Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust controlmore » methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.« less

  7. Orion Orbit Control Design and Analysis

    NASA Technical Reports Server (NTRS)

    Jackson, Mark; Gonzalez, Rodolfo; Sims, Christopher

    2007-01-01

    The analysis of candidate thruster configurations for the Crew Exploration Vehicle (CEV) is presented. Six candidate configurations were considered for the prime contractor baseline design. The analysis included analytical assessments of control authority, control precision, efficiency and robustness, as well as simulation assessments of control performance. The principles used in the analytic assessments of controllability, robustness and fuel performance are covered and results provided for the configurations assessed. Simulation analysis was conducted using a pulse width modulated, 6 DOF reaction system control law with a simplex-based thruster selection algorithm. Control laws were automatically derived from hardware configuration parameters including thruster locations, directions, magnitude and specific impulse, as well as vehicle mass properties. This parameterized controller allowed rapid assessment of multiple candidate layouts. Simulation results are presented for final phase rendezvous and docking, as well as low lunar orbit attitude hold. Finally, on-going analysis to consider alternate Service Module designs and to assess the pilot-ability of the baseline design are discussed to provide a status of orbit control design work to date.

  8. The Avoidance of Saturation Limits in Magnetic Bearing Systems During Transient Excitation

    NASA Technical Reports Server (NTRS)

    Rutland, Neil K.; Keogh, Patrick S.; Burrows, Clifford R.

    1996-01-01

    When a transient event, such as mass loss, occurs in a rotor/magnetic bearing system, optimal vibration control forces may exceed bearing capabilities. This will be inevitable when the mass loss is sufficiently large and a conditionally unstable dynamic system could result if the bearing characteristic become non-linear. This paper provides a controller design procedure to suppress, where possible, bearing force demands below saturation levels while maintaining vibration control. It utilizes H(sub infinity) optimization with appropriate input and output weightings. Simulation of transient behavior following mass loss from a flexible rotor is used to demonstrate the avoidance of conditional instability. A compromise between transient control force and vibration levels was achieved.

  9. Practical Loop-Shaping Design of Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the

  10. Solar Powered Remediation and pH Control

    DTIC Science & Technology

    2017-04-13

    Kitanidis, and P.L. McCarty. 2004. Possible factors controlling the effectiveness of bioenhanced dissolution of non -aqueous phase tetrachloroethene...FINAL REPORT Solar Powered Remediation and pH Control ESTCP Project ER-201033 APRIL 2017 David Lippincott, PG CB&I Federal... control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To

  11. Spacecraft Design Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  12. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  13. A simple method relating specific rate constants k(E,J) and Thermally averaged rate constants k(infinity)(T) of unimolecular bond fission and the reverse barrierless association reactions.

    PubMed

    Troe, J; Ushakov, V G

    2006-06-01

    This work describes a simple method linking specific rate constants k(E,J) of bond fission reactions AB --> A + B with thermally averaged capture rate constants k(cap)(T) of the reverse barrierless combination reactions A + B --> AB (or the corresponding high-pressure dissociation or recombination rate constants k(infinity)(T)). Practical applications are given for ionic and neutral reaction systems. The method, in the first stage, requires a phase-space theoretical treatment with the most realistic minimum energy path potential available, either from reduced dimensionality ab initio or from model calculations of the potential, providing the centrifugal barriers E(0)(J). The effects of the anisotropy of the potential afterward are expressed in terms of specific and thermal rigidity factors f(rigid)(E,J) and f(rigid)(T), respectively. Simple relationships provide a link between f(rigid)(E,J) and f(rigid)(T) where J is an average value of J related to J(max)(E), i.e., the maximum J value compatible with E > or = E0(J), and f(rigid)(E,J) applies to the transitional modes. Methods for constructing f(rigid)(E,J) from f(rigid)(E,J) are also described. The derived relationships are adaptable and can be used on that level of information which is available either from more detailed theoretical calculations or from limited experimental information on specific or thermally averaged rate constants. The examples used for illustration are the systems C6H6+ <==> C6H5+ + H, C8H10+ --> C7H7+ + CH3, n-C9H12+ <==> C7H7+ + C2H5, n-C10H14+ <==> C7H7+ + C3H7, HO2 <==> H + O2, HO2 <==> HO + O, and H2O2 <==> 2HO.

  14. Kinetically controlled transition from disordered aggregates to ordered lattices of a computationally designed peptide sequence.

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Zhang, Huixi; Kiick, Kristi; Saven, Jeffrey; Pochan, Darrin

    Peptides with well-defined secondary-structures have the ability to exhibit specific, local shapes, which enables the design of complex nanostructures through intermolecular assembly. Our computationally designed coiled-coil homotetrameric peptide building block can self-assemble into 2-D nanomaterial lattices with predetermined symmetries by control of the coiled-coil bundle exterior amino acid residues. And the assemblies can be controlled kinetically. Firstly, the solution pH influences the assembly by affecting the external charged state of peptide bundles which can lead the bundles to be either repulsive or attractive to each other. At room temperature when peptides are under the least charged pH conditions, disordered aggregates are formed that slowly transformed into the desired 2-D lattice structures over long periods of time (weeks). Around neutral pH, even subtle charge differences that come from small pH changes can have an influence on the thickness of afterwards formed plates. Secondly, the solution temperature can largely eliminate the formation of disordered aggregates and accelerate the assembling of matured, desired nanomaterial plates by providing extra energy for the organization process of assembly building blocks. The ability to control the assembly process kinetically makes our peptide plate assemblies very promising templates for further applications to develop inorganic-organic hybrid materials. Funding acknowledged from NSF DMREF program under awards DMR-1234161 and DMR-1235084.

  15. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  16. Protein quality control in organelles - AAA/FtsH story.

    PubMed

    Janska, Hanna; Kwasniak, Malgorzata; Szczepanowska, Joanna

    2013-02-01

    This review focuses on organellar AAA/FtsH proteases, whose proteolytic and chaperone-like activity is a crucial component of the protein quality control systems of mitochondrial and chloroplast membranes. We compare the AAA/FtsH proteases from yeast, mammals and plants. The nature of the complexes formed by AAA/FtsH proteases and the current view on their involvement in degradation of non-native organellar proteins or assembly of membrane complexes are discussed. Additional functions of AAA proteases not directly connected with protein quality control found in yeast and mammals but not yet in plants are also described shortly. Following an overview of the molecular functions of the AAA/FtsH proteases we discuss physiological consequences of their inactivation in yeast, mammals and plants. The molecular basis of phenotypes associated with inactivation of the AAA/FtsH proteases is not fully understood yet, with the notable exception of those observed in m-AAA protease-deficient yeast cells, which are caused by impaired maturation of mitochondrial ribosomal protein. Finally, examples of cytosolic events affecting protein quality control in mitochondria and chloroplasts are given. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Landing on Enceladus: Mission Design Parameters and Techniques

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2006-12-01

    Since Cassini/Huygens mission results revealed the intriguing nature of Enceladus, scientists have discussed various ways to obtain more detailed information about the south-polar geysers and subsurface conditions that produce them. This includes potential science instruments and investigations, and also the kinds of spacecraft platforms that could deliver and support the instruments. The three most commonly discussed platforms are Saturn orbiters that perform multiple close Enceladus flybys, Enceladus orbiters, and landers (soft or hard). Some high-value science investigations, such as producing an accurate description of the gravity field to infer internal structure, are best done from an orbiter. Some, such as seismic investigations, can be done only with a landed package. Unlike larger satellites such as Europa and Ganymede, Enceladus's low mass yields low surface gravity (~0.11 m/s2), low orbital speeds (<200 m/s), and other mission design characteristics that make it a manageable destination for a practical, high-value lander mission. The main mission design challenge is deceleration from Enceladus approach to a direct landing approach or orbit insertion. A Hohmann transfer from Titan approaches Enceladus with a V- infinity of >4 km/s, most of which would have to be decelerated away propulsively - a sizeable, multi-stage task for current propulsion systems - if no gravity-assist pump-down is used. Preliminary conclusions from JPL mission designers suggest that a pump-down tour could reduce that V-infinity to 2 km/s or less, possibly as little as 1 km/s if a lengthy pump-down is tolerable (Strange, Russell, and Lam, 2006). Once in orbit, landing from a moderately stable, 100-km circular orbit can be accomplished with as little as 210 m/s delta-V, a relatively simple task for a simple propulsion system. Temporary use of marginally stable orbits could reduce that figure. Low surface gravity allows use of small, light thrusters and provides ample reaction time

  18. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  19. Encapsulation of an adamantane-doxorubicin prodrug in pH-responsive polysaccharide capsules for controlled release.

    PubMed

    Luo, Guo-Feng; Xu, Xiao-Ding; Zhang, Jing; Yang, Juan; Gong, Yu-Hui; Lei, Qi; Jia, Hui-Zhen; Li, Cao; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2012-10-24

    Supramolecular microcapsules (SMCs) with the drug-loaded wall layers for pH-controlled drug delivery were designed and prepared. By using layer-by-layer (LbL) technique, the SMCs were constructed based on the self-assembly between polyaldenhyde dextran-graft-adamantane (PAD-g-AD) and carboxymethyl dextran-graft-β-CD (CMD-g-β-CD) on CaCO(3) particles via host-guest interaction. Simultaneously, adamantine-modified doxorubicin (AD-Dox) was also loaded on the LbL wall via host-guest interaction. The in vitro drug release study was carried out at different pHs. Because the AD groups were linked with PAD (PAD-g-AD) or Dox (AD-Dox) by pH-cleavable hydrazone bonds, AD moieties can be removed under the weak acidic condition, leading to destruction of SMCs and release of Dox. The pH-controlled drug release can enhance the uptake by tumor cells and thus achieve improved cancer therapy efficiency.

  20. Escherichia coli O157:H7 outbreak associated with consumption of ground beef, June-July 2002.

    PubMed

    Vogt, Richard L; Dippold, Laura

    2005-01-01

    A case-control and environmental study tested the hypothesis that purchasing and eating ground beef from a specific source was the cause of a cluster of cases of hemolytic uremic syndrome (HUS) and Escherichia coli (E. coli) O157:H7 gastroenteritis. A case-control study comparing risk factors was conducted over the telephone on nine case-patients with 23 selected controls. An environmental investigation was conducted that consisted of reviewing beef handling practices at a specific local supermarket and obtaining ground beef samples from the store and two households with case-patients. The analysis of the case-control study showed that eight case-patients (89%) purchased ground beef at Grocery Chain A compared with four controls who did not develop illness (17%) (matched odds ratio=undefined; 95% confidence interval 2.8, infinity; p=0.006). The environmental investigation showed that Grocery Chain A received meat from Meatpacker A. Laboratory analysis of meat samples from Meatpacker A and Grocery Chain A and stool samples from some patients recovered an identical strain of E. coli O157:H7 according to pulse-field gel electrophoresis. Both the case-control and environmental studies showed that purchasing ground beef at Grocery Chain A, which received ground beef from Meatpacker A, was the major risk factor for illness in eight case-patients; the ninth case-patient was found to be unrelated to the outbreak. Furthermore, meat from Meatpacker A was associated with a nationwide outbreak of E. coli O157:H7 illness that resulted in the second largest recall of beef in U.S. history at the time.

  1. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  2. Control/structure interaction conceptual design tool

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1990-01-01

    The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.

  3. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  4. Techniques for designing rotorcraft control systems

    NASA Technical Reports Server (NTRS)

    Yudilevitch, Gil; Levine, William S.

    1994-01-01

    Over the last two and a half years we have been demonstrating a new methodology for the design of rotorcraft flight control systems (FCS) to meet handling qualities requirements. This method is based on multicriterion optimization as implemented in the optimization package CONSOL-OPTCAD (C-O). This package has been developed at the Institute for Systems Research (ISR) at the University of Maryland at College Park. This design methodology has been applied to the design of a FCS for the UH-60A helicopter in hover having the ADOCS control structure. The controller parameters have been optimized to meet the ADS-33C specifications. Furthermore, using this approach, an optimal (minimum control energy) controller has been obtained and trade-off studies have been performed.

  5. A Study of Energy Management Systems and its Failure Modes in Smart Grid Power Distribution

    NASA Astrophysics Data System (ADS)

    Musani, Aatif

    The subject of this thesis is distribution level load management using a pricing signal in a smart grid infrastructure. The project relates to energy management in a spe-cialized distribution system known as the Future Renewable Electric Energy Delivery and Management (FREEDM) system. Energy management through demand response is one of the key applications of smart grid. Demand response today is envisioned as a method in which the price could be communicated to the consumers and they may shift their loads from high price periods to the low price periods. The development and deployment of the FREEDM system necessitates controls of energy and power at the point of end use. In this thesis, the main objective is to develop the control model of the Energy Management System (EMS). The energy and power management in the FREEDM system is digitally controlled therefore all signals containing system states are discrete. The EMS is modeled as a discrete closed loop transfer function in the z-domain. A breakdown of power and energy control devices such as EMS components may result in energy con-sumption error. This leads to one of the main focuses of the thesis which is to identify and study component failures of the designed control system. Moreover, H-infinity ro-bust control method is applied to ensure effectiveness of the control architecture. A focus of the study is cyber security attack, specifically bad data detection in price. Test cases are used to illustrate the performance of the EMS control design, the effect of failure modes and the application of robust control technique. The EMS was represented by a linear z-domain model. The transfer function be-tween the pricing signal and the demand response was designed and used as a test bed. EMS potential failure modes were identified and studied. Three bad data detection meth-odologies were implemented and a voting policy was used to declare bad data. The run-ning mean and standard deviation analysis method proves to be

  6. Farm- and flock-level risk factors associated with Highly Pathogenic Avian Influenza outbreaks on small holder duck and chicken farms in the Mekong Delta of Viet Nam.

    PubMed

    Henning, Kate A; Henning, Joerg; Morton, John; Long, Ngo Thanh; Ha, Nguyen Truc; Meers, Joanne

    2009-10-01

    After 11 consecutive months of control, the Mekong Delta in Viet Nam experienced a wave of Highly Pathogenic Avian Influenza (HPAI) H5N1 outbreaks on small holder poultry farms from December 2006 to January 2007. We conducted a retrospective matched case-control study to investigate farm- and flock-level risk factors for outbreak occurrence during this period. Twenty-two case farms were selected from those where clinical signs consistent with HPAI H5N1 had been present and HPAI H5N1 had been confirmed with a positive real-time PCR test from samples obtained from affected birds. For every case farm enrolled, two control farms were selected matched on time of outbreak occurrence, farm location and species. Veterinarians conducted interviews with farmers, to collect information on household demographics, farm characteristics, husbandry practices, trading practices, poultry health, vaccination and biosecurity. Exact stratified logistic regression models were used to assess putative risk factors associated with a flock having or not having a HPAI outbreak. Nested analyses were also performed, restricted to subsets of farms using scavenging, confinement or supplementary feeding practices. Risk of an outbreak of HPAI H5N1 was increased in flocks that had received no vaccination (odds ratio (OR)=20.2; 95% confidence interval (CI): 1.0, +infinity) or only one vaccination (OR=85.2; 95% CI: 6.5, +infinity) of flocks compared to two vaccinations, and in flocks on farms that had family and friends visiting (OR=8.2; 95% CI: 1.0, +infinity) and geese present (OR=11.5; 95% CI: 1.1, +infinity). The subset analysis using only flocks that scavenged showed that sharing of scavenging areas with flocks from other farms was associated with increased risk of an outbreak (OR=10.9; 95% CI: 1.4, 492.9). We conclude that none or only one vaccination, visitors to farms, the presence of geese on farms and sharing of scavenging areas with ducks from other farms increase the risk of HPAI H5N1

  7. Enhanced optical design by distortion control

    NASA Astrophysics Data System (ADS)

    Thibault, Simon; Gauvin, Jonny; Doucet, Michel; Wang, Min

    2005-09-01

    The control of optical distortion is useful for the design of a variety of optical system. The most popular is the F-theta lens used in laser scanning system to produce a constant scan velocity across the image plane. Many authors have designed during the last 20 years distortion control corrector. Today, many challenging digital imaging system can use distortion the enhanced their imaging capability. A well know example is a reversed telephoto type, if the barrel distortion is increased instead of being corrected; the result is a so-called Fish-eye lens. However, if we control the barrel distortion instead of only increasing it, the resulting system can have enhanced imaging capability. This paper will present some lens design and real system examples that clearly demonstrate how the distortion control can improve the system performances such as resolution. We present innovative optical system which increases the resolution in the field of view of interest to meet the needs of specific applications. One critical issue when we designed using distortion is the optimization management. Like most challenging lens design, the automatic optimization is less reliable. Proper management keeps the lens design within the correct range, which is critical for optimal performance (size, cost, manufacturability). Many lens design presented tailor a custom merit function and approach.

  8. Thruster Limitation Consideration for Formation Flight Control

    NASA Technical Reports Server (NTRS)

    Xu, Yunjun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Physical constraints of any real system can have a drastic effect on its performance. Some of the more recognized constraints are actuator and sensor saturation and bandwidth, power consumption, sampling rate (sensor and control-loop) and computation limits. These constraints can degrade system s performance, such as settling time, overshoot, rising time, and stability margins. In order to address these issues, researchers have investigated the use of robust and nonlinear controllers that can incorporate uncertainty and constraints into a controller design. For instance, uncertainties can be addressed in the synthesis model used in such algorithms as H(sub infinity), or mu. There is a significant amount of literature addressing this type of problem. However, there is one constraint that has not often been considered; that is, actuator authority resolution. In this work, thruster resolution and controller schemes to compensate for this effect are investigated for position and attitude control of a Low Earth Orbit formation flight system In many academic problems, actuators are assumed to have infinite resolution. In real system applications, such as formation flight systems, the system actuators will not have infinite resolution. High-precision formation flying requires the relative position and the relative attitude to be controlled on the order of millimeters and arc-seconds, respectively. Therefore, the minimum force resolution is a significant concern in this application. Without the sufficient actuator resolution, the system may be unable to attain the required pointing and position precision control. Furthermore, fuel may be wasted due to high-frequency chattering phenomena when attempting to provide a fine control with inadequate actuators. To address this issue, a Sliding Mode Controller is developed along with the boundary Layer Control to provide the best control resolution constraints. A Genetic algorithm is used to optimize the controller parameters

  9. A transmission infrared cell design for temperature-controlled adsorption and reactivity studies on heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Cybulskis, Viktor J.; Harris, James W.; Zvinevich, Yury; Ribeiro, Fabio H.; Gounder, Rajamani

    2016-10-01

    A design is presented for a versatile transmission infrared cell that can interface with an external vacuum manifold to undergo in situ gas treatments and receive controlled doses of various adsorbates and probe molecules, allowing characterization of heterogeneous catalyst surfaces in order to identify and quantify active sites and adsorbed surface species. Critical design characteristics include customized temperature control for operation between cryogenic and elevated temperatures (100-1000 K) and modified Cajon fittings for operation over a wide pressure range (10-2-103 Torr) that eliminates the complications introduced when using sealants or flanges to secure cell windows. The customized, hand-tightened Cajon fittings simplify operation of the cell compared to previously reported designs, because they allow for rapid cell assembly and disassembly and, in turn, replacement of catalyst samples. In order to validate the performance of the cell, transmission infrared spectroscopic experiments are reported to characterize the Brønsted and Lewis acid sites present in H-beta and H-mordenite zeolites using cryogenic adsorption of CO (<150 K).

  10. A transmission infrared cell design for temperature-controlled adsorption and reactivity studies on heterogeneous catalysts.

    PubMed

    Cybulskis, Viktor J; Harris, James W; Zvinevich, Yury; Ribeiro, Fabio H; Gounder, Rajamani

    2016-10-01

    A design is presented for a versatile transmission infrared cell that can interface with an external vacuum manifold to undergo in situ gas treatments and receive controlled doses of various adsorbates and probe molecules, allowing characterization of heterogeneous catalyst surfaces in order to identify and quantify active sites and adsorbed surface species. Critical design characteristics include customized temperature control for operation between cryogenic and elevated temperatures (100-1000 K) and modified Cajon fittings for operation over a wide pressure range (10 -2 -10 3 Torr) that eliminates the complications introduced when using sealants or flanges to secure cell windows. The customized, hand-tightened Cajon fittings simplify operation of the cell compared to previously reported designs, because they allow for rapid cell assembly and disassembly and, in turn, replacement of catalyst samples. In order to validate the performance of the cell, transmission infrared spectroscopic experiments are reported to characterize the Brønsted and Lewis acid sites present in H-beta and H-mordenite zeolites using cryogenic adsorption of CO (<150 K).

  11. Evaluation of pH monitoring as a method of processor control.

    PubMed

    Stears, J G; Gray, J E; Winkler, N T

    1979-01-01

    Sensitometry and pH values of the developer solution were compared in controlled over-replenishment, developer depletion, fixer contamination experiments, and on a daily quality control basis. The purpose of these comparisons was to evaluate the potential of pH monitoring as a method of processor control, or a supplement to sensitometry as a method of quality control. Reasonable correlation was found between pH values and film density in two of the three experiments but little or no correlation was found in the third experiment and on a day-to-day basis. The conclusion drawn from these comparisons is that pH monitoring has several limitations which render it unsuitable as a method of daily processor quality control as either a primary or supplementary technique. Sensitometry takes into account all the variables encountered in film processing and is the clear method of choice for processor quality control.

  12. Statistical issues in quality control of proteomic analyses: good experimental design and planning.

    PubMed

    Cairns, David A

    2011-03-01

    Quality control is becoming increasingly important in proteomic investigations as experiments become more multivariate and quantitative. Quality control applies to all stages of an investigation and statistics can play a key role. In this review, the role of statistical ideas in the design and planning of an investigation is described. This involves the design of unbiased experiments using key concepts from statistical experimental design, the understanding of the biological and analytical variation in a system using variance components analysis and the determination of a required sample size to perform a statistically powerful investigation. These concepts are described through simple examples and an example data set from a 2-D DIGE pilot experiment. Each of these concepts can prove useful in producing better and more reproducible data. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A variable-gain output feedback control design approach

    NASA Technical Reports Server (NTRS)

    Haylo, Nesim

    1989-01-01

    A multi-model design technique to find a variable-gain control law defined over the whole operating range is proposed. The design is formulated as an optimal control problem which minimizes a cost function weighing the performance at many operating points. The solution is obtained by embedding into the Multi-Configuration Control (MCC) problem, a multi-model robust control design technique. In contrast to conventional gain scheduling which uses a curve fit of single model designs, the optimal variable-gain control law stabilizes the plant at every operating point included in the design. An iterative algorithm to compute the optimal control gains is presented. The methodology has been successfully applied to reconfigurable aircraft flight control and to nonlinear flight control systems.

  14. Ab initio design of laser pulses to control molecular motion

    NASA Astrophysics Data System (ADS)

    Balint-Kurti, Gabriel; Ren, Qinghua; Manby, Frederick; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel; Zou, Shiyang; Singh, Harjinder

    2007-03-01

    Our recent attempts to design laser pulses entirely theoretically, in a quantitative and accurate manner, so as to fully understand the underlying mechanisms active in the control process will be outlined. We have developed a new Born-Oppenheimer like separation called the electric-nuclear Born-Oppenheimer (ENBO) approximation. In this approximation variations of both the nuclear geometry and of the external electric field are assumed to be slow compared with the speed at which the electronic degrees of freedom respond to these changes. This assumption permits the generation of a potential energy surface that depends not only on the relative geometry of the nuclei, but also on the electric field strength and on the orientation of the molecule with respect to the electric field. The range of validity of the ENBO approximation is discussed. Optimal control theory is used along with the ENBO approximation to design laser pulses for exciting vibrational and rotational motion in H2 and CO molecules. Progress on other applications, including controlling photodissociation processes, isotope separation, stabilization of molecular Bose-Einstein condensates as well as applications to biological molecules also be presented. *Support acknowledged from EPSRC.

  15. Finite Time Control Design for Bilateral Teleoperation System With Position Synchronization Error Constrained.

    PubMed

    Yang, Yana; Hua, Changchun; Guan, Xinping

    2016-03-01

    Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.

  16. Design of clinical trials involving multiple hypothesis tests with a common control.

    PubMed

    Schou, I Manjula; Marschner, Ian C

    2017-07-01

    Randomized clinical trials comparing several treatments to a common control are often reported in the medical literature. For example, multiple experimental treatments may be compared with placebo, or in combination therapy trials, a combination therapy may be compared with each of its constituent monotherapies. Such trials are typically designed using a balanced approach in which equal numbers of individuals are randomized to each arm, however, this can result in an inefficient use of resources. We provide a unified framework and new theoretical results for optimal design of such single-control multiple-comparator studies. We consider variance optimal designs based on D-, A-, and E-optimality criteria, using a general model that allows for heteroscedasticity and a range of effect measures that include both continuous and binary outcomes. We demonstrate the sensitivity of these designs to the type of optimality criterion by showing that the optimal allocation ratios are systematically ordered according to the optimality criterion. Given this sensitivity to the optimality criterion, we argue that power optimality is a more suitable approach when designing clinical trials where testing is the objective. Weighted variance optimal designs are also discussed, which, like power optimal designs, allow the treatment difference to play a major role in determining allocation ratios. We illustrate our methods using two real clinical trial examples taken from the medical literature. Some recommendations on the use of optimal designs in single-control multiple-comparator trials are also provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nonlinear flight control design using backstepping methodology

    NASA Astrophysics Data System (ADS)

    Tran, Thanh Trung

    The subject of nonlinear flight control design using backstepping control methodology is investigated in the dissertation research presented here. Control design methods based on nonlinear models of the dynamic system provide higher utility and versatility because the design model more closely matches the physical system behavior. Obtaining requisite model fidelity is only half of the overall design process, however. Design of the nonlinear control loops can lessen the effects of nonlinearity, or even exploit nonlinearity, to achieve higher levels of closed-loop stability, performance, and robustness. The goal of the research is to improve control quality for a general class of strict-feedback dynamic systems and provide flight control architectures to augment the aircraft motion. The research is divided into two parts: theoretical control development for the strict-feedback form of nonlinear dynamic systems and application of the proposed theory for nonlinear flight dynamics. In the first part, the research is built on two components: transforming the nonlinear dynamic model to a canonical strict-feedback form and then applying backstepping control theory to the canonical model. The research considers a process to determine when this transformation is possible, and when it is possible, a systematic process to transfer the model is also considered when practical. When this is not the case, certain modeling assumptions are explored to facilitate the transformation. After achieving the canonical form, a systematic design procedure for formulating a backstepping control law is explored in the research. Starting with the simplest subsystem and ending with the full system, pseudo control concepts based on Lyapunov control functions are used to control each successive subsystem. Typically each pseudo control must be solved from a nonlinear algebraic equation. At the end of this process, the physical control input must be re-expressed in terms of the physical states by

  18. Evolutionary Design of Controlled Structures

    NASA Technical Reports Server (NTRS)

    Masters, Brett P.; Crawley, Edward F.

    1997-01-01

    Basic physical concepts of structural delay and transmissibility are provided for simple rod and beam structures. Investigations show the sensitivity of these concepts to differing controlled-structures variables, and to rational system modeling effects. An evolutionary controls/structures design method is developed. The basis of the method is an accurate model formulation for dynamic compensator optimization and Genetic Algorithm based updating of sensor/actuator placement and structural attributes. One and three dimensional examples from the literature are used to validate the method. Frequency domain interpretation of these controlled structure systems provide physical insight as to how the objective is optimized and consequently what is important in the objective. Several disturbance rejection type controls-structures systems are optimized for a stellar interferometer spacecraft application. The interferometric designs include closed loop tracking optics. Designs are generated for differing structural aspect ratios, differing disturbance attributes, and differing sensor selections. Physical limitations in achieving performance are given in terms of average system transfer function gains and system phase loss. A spacecraft-like optical interferometry system is investigated experimentally over several different optimized controlled structures configurations. Configurations represent common and not-so-common approaches to mitigating pathlength errors induced by disturbances of two different spectra. Results show that an optimized controlled structure for low frequency broadband disturbances achieves modest performance gains over a mass equivalent regular structure, while an optimized structure for high frequency narrow band disturbances is four times better in terms of root-mean-square pathlength. These results are predictable given the nature of the physical system and the optimization design variables. Fundamental limits on controlled performance are discussed

  19. Dissipative rendering and neural network control system design

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using

  20. Control centers design for ergonomics and safety.

    PubMed

    Quintana, Leonardo; Lizarazo, Cesar; Bernal, Oscar; Cordoba, Jorge; Arias, Claudia; Monroy, Magda; Cotrino, Carlos; Montoya, Olga

    2012-01-01

    This paper shows the general design conditions about ergonomics and safety for control centers in the petrochemical process industry. Some of the topics include guidelines for the optimized workstation design, control room layout, building layout, and lighting, acoustical and environmental design. Also takes into account the safety parameters in the control rooms and centers design. The conditions and parameters shown in this paper come from the standards and global advances on this topic on the most recent publications. And also the work was supplemented by field visits of our team to the control center operations in a petrochemical company, and technical literature search efforts. This guideline will be useful to increase the productivity and improve the working conditions at the control rooms.

  1. H2-control and the separation principle for discrete-time jump systems with the Markov chain in a general state space

    NASA Astrophysics Data System (ADS)

    Figueiredo, Danilo Zucolli; Costa, Oswaldo Luiz do Valle

    2017-10-01

    This paper deals with the H2 optimal control problem of discrete-time Markov jump linear systems (MJLS) considering the case in which the Markov chain takes values in a general Borel space ?. It is assumed that the controller has access only to an output variable and to the jump parameter. The goal, in this case, is to design a dynamic Markov jump controller such that the H2-norm of the closed-loop system is minimised. It is shown that the H2-norm can be written as the sum of two H2-norms, such that one of them does not depend on the control, and the other one is obtained from the optimal filter for an infinite-horizon filtering problem. This result can be seen as a separation principle for MJLS with Markov chain in a Borel space ? considering the infinite time horizon case.

  2. Unified Bayesian Estimator of EEG Reference at Infinity: rREST (Regularized Reference Electrode Standardization Technique).

    PubMed

    Hu, Shiang; Yao, Dezhong; Valdes-Sosa, Pedro A

    2018-01-01

    The choice of reference for the electroencephalogram (EEG) is a long-lasting unsolved issue resulting in inconsistent usages and endless debates. Currently, both the average reference (AR) and the reference electrode standardization technique (REST) are two primary, apparently irreconcilable contenders. We propose a theoretical framework to resolve this reference issue by formulating both (a) estimation of potentials at infinity, and (b) determination of the reference, as a unified Bayesian linear inverse problem, which can be solved by maximum a posterior estimation. We find that AR and REST are very particular cases of this unified framework: AR results from biophysically non-informative prior; while REST utilizes the prior based on the EEG generative model. To allow for simultaneous denoising and reference estimation, we develop the regularized versions of AR and REST, named rAR and rREST, respectively. Both depend on a regularization parameter that is the noise to signal variance ratio. Traditional and new estimators are evaluated with this framework, by both simulations and analysis of real resting EEGs. Toward this end, we leverage the MRI and EEG data from 89 subjects which participated in the Cuban Human Brain Mapping Project. Generated artificial EEGs-with a known ground truth, show that relative error in estimating the EEG potentials at infinity is lowest for rREST. It also reveals that realistic volume conductor models improve the performances of REST and rREST. Importantly, for practical applications, it is shown that an average lead field gives the results comparable to the individual lead field. Finally, it is shown that the selection of the regularization parameter with Generalized Cross-Validation (GCV) is close to the "oracle" choice based on the ground truth. When evaluated with the real 89 resting state EEGs, rREST consistently yields the lowest GCV. This study provides a novel perspective to the EEG reference problem by means of a unified

  3. Unified Bayesian Estimator of EEG Reference at Infinity: rREST (Regularized Reference Electrode Standardization Technique)

    PubMed Central

    Hu, Shiang; Yao, Dezhong; Valdes-Sosa, Pedro A.

    2018-01-01

    The choice of reference for the electroencephalogram (EEG) is a long-lasting unsolved issue resulting in inconsistent usages and endless debates. Currently, both the average reference (AR) and the reference electrode standardization technique (REST) are two primary, apparently irreconcilable contenders. We propose a theoretical framework to resolve this reference issue by formulating both (a) estimation of potentials at infinity, and (b) determination of the reference, as a unified Bayesian linear inverse problem, which can be solved by maximum a posterior estimation. We find that AR and REST are very particular cases of this unified framework: AR results from biophysically non-informative prior; while REST utilizes the prior based on the EEG generative model. To allow for simultaneous denoising and reference estimation, we develop the regularized versions of AR and REST, named rAR and rREST, respectively. Both depend on a regularization parameter that is the noise to signal variance ratio. Traditional and new estimators are evaluated with this framework, by both simulations and analysis of real resting EEGs. Toward this end, we leverage the MRI and EEG data from 89 subjects which participated in the Cuban Human Brain Mapping Project. Generated artificial EEGs—with a known ground truth, show that relative error in estimating the EEG potentials at infinity is lowest for rREST. It also reveals that realistic volume conductor models improve the performances of REST and rREST. Importantly, for practical applications, it is shown that an average lead field gives the results comparable to the individual lead field. Finally, it is shown that the selection of the regularization parameter with Generalized Cross-Validation (GCV) is close to the “oracle” choice based on the ground truth. When evaluated with the real 89 resting state EEGs, rREST consistently yields the lowest GCV. This study provides a novel perspective to the EEG reference problem by means of a unified

  4. Shock Positioning Controls Designs for a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.

    2010-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The supersonic inlet design that is utilized to efficiently compress the incoming air and deliver it to the engine has many design challenges. Among those challenges is the shock positioning of internal compression inlets, which requires active control in order to maintain performance and to prevent inlet unstarts due to upstream (freestream) and downstream (engine) disturbances. In this paper a novel feedback control technique is presented, which emphasizes disturbance attenuation among other control performance criteria, while it ties the speed of the actuation system(s) to the design of the controller. In this design, the desired performance specifications for the overall control system are used to design the closed loop gain of the feedback controller and then, knowing the transfer function of the plant, the controller is calculated to achieve this performance. The innovation is that this design procedure is methodical and allows maximization of the performance of the designed control system with respect to actuator rates, while the stability of the calculated controller is guaranteed.

  5. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.

    PubMed

    Dolphin, G T; Baltzer, L

    1997-01-01

    De novo designed helix-loop-helix motifs can fold into well-defined tertiary structures if residues or groups of residues are incorporated at the helix-helix boundary to form helix-recognition sites that restrict the conformational degrees of freedom of the helical segments. Understanding the relationship between structure and function of conformational constraints therefore forms the basis for the engineering of non-natural proteins. This paper describes the design of an interhelical HisH+-Asp- hydrogen-bonded ion pair and the conformational stability of the folded helix-loop-helix motif. GTD-C, a polypeptide with 43 amino acid residues, has been designed to fold into a hairpin helix-loop-helix motif that can dimerise to form a four-helix bundle. The folded motif is in slow conformational exchange on the NMR timescale and has a well-dispersed 1H NMR spectrum, a narrow temperature interval for thermal denaturation and a near-UV CD spectrum with some fine structure. The conformational stability is pH dependent with an optimum that corresponds to the pH for maximum formation of a hydrogen-bonded ion pair between HisH17+ in helix I and Asp27- in helix II. The formation of an interhelical salt bridge is strongly suggested by the pH dependence of a number of spectroscopic probes to generate a well-defined tertiary structure in a designed helix-loop-helix motif. The thermodynamic stability of the folded motif is not increased by the formation of the salt bridge, but neighbouring conformations are destabilised. The use of this novel design principle in combination with hydrophobic interactions that provide sufficient binding energy in the folded structure should be of general use in de novo design of native-like proteins.

  6. Effective Control of Bioelectricity Generation from a Microbial Fuel Cell by Logical Combinations of pH and Temperature

    PubMed Central

    Tang, Jiahuan; Liu, Ting; Yuan, Yong

    2014-01-01

    In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as “temperature” and “pH.” Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices. PMID:24741343

  7. Microcomputer-Aided Control Systems Design.

    ERIC Educational Resources Information Center

    Roat, S. D.; Melsheimer, S. S.

    1987-01-01

    Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)

  8. A novel constrained H2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry.

    PubMed

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong

    2017-11-01

    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.

  10. Simple Comb Generator Design for SWaP Constrained Applications

    DTIC Science & Technology

    2016-01-26

    symmetry in the time domain, all the even harmonics are zero. Following the oscillator is a series capacitor and shunt resistor that together form a...filter’s ideal frequency response is represented by H(j2πk) = 1 1 + 1j2πkRC , (2) where R and C are the resistor and capacitor values, respectively. In...Finally, the output capacitor was included to block the DC bias current from the output connector. III. RESULTS For the prototype measurements discussed

  11. Robust HControl for Spacecraft Rendezvous with a Noncooperative Target

    PubMed Central

    Wu, Shu-Nan; Zhou, Wen-Ya; Tan, Shu-Jun; Wu, Guo-Qiang

    2013-01-01

    The robust Hcontrol for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H ∞ performance and finite time performance are proposed, and a robust Hcontroller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller. PMID:24027446

  12. Haystack Antenna Control System Design Document

    DTIC Science & Technology

    2010-12-07

    The ICDs will be referenced, where appropriate. The control system isn’t being designed in a vacuum . Other teams are designing or will be designing...a horizontally scrolling display which updates in real time based upon instrumentation status messages from the ACU. In the above figure a rather...hydrostatic bearing pump systems are shut down. 6.8 ELEVATION STOW PINS The stow pins will be monitored and controlled via the PLC. There will be 2 or 4

  13. Optimization-based controller design for rotorcraft

    NASA Technical Reports Server (NTRS)

    Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.

    1993-01-01

    An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.

  14. Integrated Controls-Structures Design Methodology for Flexible Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Price, D. B.

    1995-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.

  15. Modular design of H - synchrotrons for radiation therapy

    NASA Astrophysics Data System (ADS)

    Martin, R. L.

    1989-04-01

    A modular synchrotron for accelerating H - ions and a proton beam delivery system are being developed for radiation therapy with protons under SBIR grants from the National Cancer Institute. The advantage proposed for accelerating H - ions and utilizing charge exchange as a slow extraction mechanism lies in enhanced control of the extracted beam current, important for beam delivery with raster scanning for 3D dose contouring of a tumor site. Under these grants prototype magnets and vacuum systems are being constructed, appropriate H - sources are being developed and beam experiments will be carried out to demonstrate some of the key issues of this concept. The status of this program is described along with a discussion of a relatively inexpensive beam delivery system and a proposed program for its development.

  16. A design methodology for nonlinear systems containing parameter uncertainty: Application to nonlinear controller design

    NASA Technical Reports Server (NTRS)

    Young, G.

    1982-01-01

    A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.

  17. Designing for Damage: Robust Flight Control Design using Sliding Mode Techniques

    NASA Technical Reports Server (NTRS)

    Vetter, T. K.; Wells, S. R.; Hess, Ronald A.; Bacon, Barton (Technical Monitor); Davidson, John (Technical Monitor)

    2002-01-01

    A brief review of sliding model control is undertaken, with particular emphasis upon the effects of neglected parasitic dynamics. Sliding model control design is interpreted in the frequency domain. The inclusion of asymptotic observers and control 'hedging' is shown to reduce the effects of neglected parasitic dynamics. An investigation into the application of observer-based sliding mode control to the robust longitudinal control of a highly unstable is described. The sliding mode controller is shown to exhibit stability and performance robustness superior to that of a classical loop-shaped design when significant changes in vehicle and actuator dynamics are employed to model airframe damage.

  18. Fermentation pH influences the physiological-state dynamics of Lactobacillus bulgaricus CFL1 during pH-controlled culture.

    PubMed

    Rault, Aline; Bouix, Marielle; Béal, Catherine

    2009-07-01

    This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.

  19. Robust Control Design for Uncertain Nonlinear Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Crespo, Luis G.; Andrews, Lindsey; Giesy, Daniel P.

    2012-01-01

    Robustness to parametric uncertainty is fundamental to successful control system design and as such it has been at the core of many design methods developed over the decades. Despite its prominence, most of the work on robust control design has focused on linear models and uncertainties that are non-probabilistic in nature. Recently, researchers have acknowledged this disparity and have been developing theory to address a broader class of uncertainties. This paper presents an experimental application of robust control design for a hybrid class of probabilistic and non-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physical uncertainty is realized by a known additional lumped mass at an unknown location on the pendulum. This unknown location has the effect of substantially altering the nominal frequency and controllability of the nonlinear system, and in the limit has the capability to make the system neutrally stable and uncontrollable. Another uncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfies stability, tracking error, control power, and transient behavior requirements for the largest range of parametric uncertainties. This paper presents an overview of the theory behind the robust control design methodology and the experimental results.

  20. Laboratory, semi-pilot and room scale study of nitrite and molybdate mediated control of H(2)S emission from swine manure.

    PubMed

    Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi

    2010-04-01

    The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Control And Containment Design Report

    EPA Pesticide Factsheets

    his work plan (571-pages) is called the “SWMU-3-1 and 3-4 Control and Containment Design Report” was written to be in compliance with new FEMA requirements that the design must not create any positive change in the 100 year flood elevation.

  2. A variable-gain output feedback control design methodology

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.

    1989-01-01

    A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.

  3. Design of a control configured tanker aircraft

    NASA Technical Reports Server (NTRS)

    Walker, S. A.

    1976-01-01

    The benefits that accrue from using control configured vehicle (CCV) concepts were examined along with the techniques for applying these concepts to an advanced tanker aircraft design. Reduced static stability (RSS) and flutter mode control (FMC) were the two primary CCV concepts used in the design. The CCV tanker was designed to the same mission requirements specified for a conventional tanker design. A seven degree of freedom mathematical model of the flexible aircraft was derived and used to synthesize a lateral stability augmentation system (SAS), a longitudinal control augmentation system (CAS), and a FMC system. Fatigue life and cost analyses followed the control system synthesis, after which a comparative evaluation of the CCV and conventional tankers was made. This comparison indicated that the CCV weight and cost were lower but that, for this design iteration, the CCV fatigue life was shorter. Also, the CCV crew station acceleration was lower, but the acceleration at the boom operator station was higher relative to the corresponding conventional tanker. Comparison of the design processes used in the CCV and conventional design studies revealed that they were basically the same.

  4. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  5. Pharmacokinetic and bioequivalence study of itopride HCl in healthy volunteers.

    PubMed

    Cho, Kyung-Jin; Cho, Wonkyung; Cha, Kwang-Ho; Park, Junsung; Kim, Min-Soo; Kim, Jeong-Soo; Hwang, Sung-Joo

    2010-01-01

    In the present study two different formulations containing 50 mg itopride HCl (N-[4-12-(dimethylamino)ethoxylbenzyl]-3,4-dimethoxybenzamide HCl, CAS 122898-67-3) were compared in 28 healthy male volunteers in order to compare the bioavailability and prove the bioequivalence. The study was performed in an open, single dose randomized, 2-sequence, crossover design in 28 healthy male volunteers with a one-week washout period. Blood samples for pharmacokinetic profiling were drawn at selected times during 24 h. The serum concentrations of itopride HCl were determined using a specific and sensitive HPLC method with fluorescence detection. The detection limit of itopride HCl was 5 ng/ml and no endogenous compounds were found to interfere with analysis. The mean AUC(0-4h), AUC(0 --> infinity), C(max), T(max) and T1/2 were 865.28 ng x h/ml, 873.04 ng x h/ml, 303.72 ng/ml, 0.75 h, and 2.95 h, respectively, for the test formulations, and 833.00 ng x h/ml, 830.97 ng x h/ml, 268.01 ng/ml, 0.78 h, and 2.83 h, respectively, for the reference formulation. Both primary target parameters AUC(0 --> infinity) and C(max) were log-transformed and tested parametrically by analysis of variance (ANOVA). 90% confidence intervals of AUC(0 --> infinity) and C(max) were 100.57%-109.56% and 105.46%-121.18%, respectively, and were in the range of acceptable limits of bioequivalence (80-125%). Based on these results, the two formulations of itopride HCl are considered to be bioequivalent.

  6. Use of Automated Testing to Facilitate Affordable Design of Military Systems

    DTIC Science & Technology

    2015-04-30

    momentum across the Navy and DoD. This initiative is no new big bang /silver bullet; it simply focuses on lowering the cost and risk of government...University of Minnesota. He has developed several specification languages, software tools for computer-aided software design, and fundamental theory ...review of lessons learned and recommendations for further enhancements are discussed. Overview: The Testing Challenge Infinity Is a Big Place The

  7. Robust decentralized power system controller design: Integrated approach

    NASA Astrophysics Data System (ADS)

    Veselý, Vojtech

    2017-09-01

    A unique approach to the design of gain scheduled controller (GSC) is presented. The proposed design procedure is based on the Bellman-Lyapunov equation, guaranteed cost and robust stability conditions using the parameter dependent quadratic stability approach. The obtained feasible design procedures for robust GSC design are in the form of BMI with guaranteed convex stability conditions. The obtained design results and their properties are illustrated in the simultaneously design of controllers for simple model (6-order) turbogenerator. The results of the obtained design procedure are a PI automatic voltage regulator (AVR) for synchronous generator, a PI governor controller and a power system stabilizer for excitation system.

  8. Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin.

    PubMed

    Shalviri, Alireza; Chan, Ho Ka; Raval, Gaurav; Abdekhodaie, Mohammad J; Liu, Qiang; Heerklotz, Heiko; Wu, Xiao Yu

    2013-01-01

    This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, (1)H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and (1)H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and porous morphology. They exhibited pH-dependent swelling in a physiological pH range. The particle size and magnitude of phase transition were dependent on polymer composition and formulation parameters such as concentrations of surfactant and cross-linking agent and total monomer concentration. The nanoparticles with optimized compositions showed high loading capacity for Dox and sustained Dox release. The results suggest that the new pH-responsive terpolymer nanoparticles are useful in controlled drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Design Of Combined Stochastic Feedforward/Feedback Control

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  10. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    PubMed

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  11. Tracking control of WMRs on loose soil based on mixed H2/H∞ control with longitudinal slip ratio estimation

    NASA Astrophysics Data System (ADS)

    Gao, Haibo; Chen, Chao; Ding, Liang; Li, Weihua; Yu, Haitao; Xia, Kerui; Liu, Zhen

    2017-11-01

    Wheeled mobile robots (WMRs) often suffer from the longitudinal slipping when moving on the loose soil of the surface of the moon during exploration. Longitudinal slip is the main cause of WMRs' delay in trajectory tracking. In this paper, a nonlinear extended state observer (NESO) is introduced to estimate the longitudinal velocity in order to estimate the slip ratio and the derivative of the loss of velocity which are used in modelled disturbance compensation. Owing to the uncertainty and disturbance caused by estimation errors, a multi-objective controller using the mixed H2/H∞ method is employed to ensure the robust stability and performance of the WMR system. The final inputs of the trajectory tracking consist of the feedforward compensation, compensation for the modelled disturbances and designed multi-objective control inputs. Finally, the simulation results demonstrate the effectiveness of the controller, which exhibits a satisfactory tracking performance.

  12. Exploratory Investigation of the Effects of Boundary-Layer Control on the Pressure-Recovery Characteristics of a Circular Internal-Contraction Inlet with Translating Centerbody at Mach Numbers of 2.00 and 2.35

    NASA Technical Reports Server (NTRS)

    Martin, Norman J.

    1959-01-01

    Exploratory tests of a circular internal-contraction inlet were made at Mach numbers of 2.00 and 2.35 to determine the effect of a cowl-type boundary-layer control located downstream of the inlet throat. The inlet was designed for a Mach number of 2.5. Tests were also made of the inlet modified to correspond to design Mach numbers of 2.35 and 2.25. Surveys near the minimum area section of the inlet without boundary-layer control indicated maximum averaged pressure recoveries between 0.90 and 0.92 at a free-stream Mach number, M(sub infinity), of 2.35 for the inlets. Farther downstream, after partial subsonic diffusion, a maximum pressure recovery of 0.842 was obtained with the inlet at M(sub infinity) = 2.35. The pressure recovery of the inlet was increased by 0.03 at a Mach number of 2.35 and decreased by 0.02 at a Mach number of 2.00 by the application of cowl-type boundary-layer control. Further investigation with the inlet without bleed demonstrated that an increase of angle of attack from 0 deg to 3 deg reduced the pressure recovery 0.04. The effect of Reynolds number was to increase pressure recovery 0.07 (from 0.785 to 0.855) with an increase in Reynolds number (based on inlet diameter) from 0.79 x 10(exp 6) to 3.19 x 10(exp 6).

  13. Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Mc Kenna, K. J.; Schmeichel, H.

    1968-01-01

    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.

  14. The study and design of tension controller

    NASA Astrophysics Data System (ADS)

    Jun, G.; Lamei, X.

    2018-02-01

    Tension control is a wide used technology in areas such as textiles, paper and plastic films. In this article, the tension control system release and winding process is analyzed and the mathematical model of tension control system is established, and a high performance tension controller is designed. In hardware design, STM32F130 single chip microcomputer is used as the control core, which has the characteristics of fast running speed and rich peripheral features. In software design, μC/OS-II operating system is introduced to improve the efficiency of single chip microcomputer, and enhance the independence of each module, and make development and maintenance more convenient. The taper tension control is adopted in the winding part, which can effectively solve the problem of rolling shrinkage. The results show that the tension controller has the characteristics of simple structure, easy operation and stable performance.

  15. Candidate control design metrics for an agile fighter

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Bailey, Melvin L.; Ostroff, Aaron J.

    1991-01-01

    Success in the fighter combat environment of the future will certainly demand increasing capability from aircraft technology. These advanced capabilities in the form of superagility and supermaneuverability will require special design techniques which translate advanced air combat maneuvering requirements into design criteria. Control design metrics can provide some of these techniques for the control designer. Thus study presents an overview of control design metrics and investigates metrics for advanced fighter agility. The objectives of various metric users, such as airframe designers and pilots, are differentiated from the objectives of the control designer. Using an advanced fighter model, metric values are documented over a portion of the flight envelope through piloted simulation. These metric values provide a baseline against which future control system improvements can be compared and against which a control design methodology can be developed. Agility is measured for axial, pitch, and roll axes. Axial metrics highlight acceleration and deceleration capabilities under different flight loads and include specific excess power measurements to characterize energy meneuverability. Pitch metrics cover both body-axis and wind-axis pitch rates and accelerations. Included in pitch metrics are nose pointing metrics which highlight displacement capability between the nose and the velocity vector. Roll metrics (or torsion metrics) focus on rotational capability about the wind axis.

  16. Control Design for a Generic Commercial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  17. Synthesis and X-ray crystal structure of (OsO(3)F(2))(2)2XeOF(4) and the Raman spectra of (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4).

    PubMed

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2009-05-18

    The adduct, (OsO(3)F(2))(2)2XeOF(4), was synthesized by dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in XeOF(4) solvent at room temperature followed by removal of excess XeOF(4) under dynamic vacuum at 0 degrees C. Continued pumping at 0 degrees C resulted in removal of associated XeOF(4), yielding (OsO(3)F(2))(2), a new low-temperature phase of OsO(3)F(2). Upon standing at 25 degrees C for 1(1)/(2) h, (OsO(3)F(2))(2) underwent a phase transition to the known monoclinic phase, (OsO(3)F(2))(infinity). The title compounds, (OsO(3)F(2))(infinity), (OsO(3)F(2))(2), and (OsO(3)F(2))(2)2XeOF(4) have been characterized by low-temperature (-150 degrees C) Raman spectroscopy. Crystallization of (OsO(3)F(2))(2)2XeOF(4) from XeOF(4) solution at 0 degrees C yielded crystals suitable for X-ray structure determination. The structural unit contains the (OsO(3)F(2))(2) dimer in which the OsO(3)F(3) units are joined by two Os---F---Os bridges having fluorine bridge atoms that are equidistant from the osmium centers (2.117(5) and 2.107(4) A). The dimer coordinates to two XeOF(4) molecules through Os-F...Xe bridges in which the Xe...F distances (2.757(5) A) are significantly less than the sum of the Xe and F van der Waals radii (3.63 A). The (OsO(3)F(2))(2) dimer has C(i) symmetry in which each pseudo-octahedral OsO(3)F(3) unit has a facial arrangement of oxygen ligands with XeOF(4) molecules that are only slightly distorted from their gas-phase C(4v) symmetry. Quantum-chemical calculations using SVWN and B3LYP methods were employed to calculate the gas-phase geometries, natural bond orbital analyses, and vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), XeOF(4), OsO(2)F(4), and (mu-FOsO(3)F(2))(2)OsO(3)F(-) to aid in the assignment of the experimental vibrational frequencies of (OsO(3)F(2))(2), (OsO(3)F(2))(2)2XeOF(4), and (OsO(3)F(2))(infinity). The vibrational modes of the low-temperature polymeric phase, (OsO(3)F(2))(infinity), have been

  18. Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2008-01-01

    As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.

  19. 2002 Controls Design Challenge

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Vetter, T. K.; Wells, S. R.

    2002-01-01

    This document is intended to provide the specifications and requirements for a flight control system design challenge. The response to the challenge will involve documenting whether the particular design has met the stated requirements through analysis and computer simulation. The response should be written in the general format of a technical publication with corresponding length limits, e.g., an approximate maximum length of 45 units, with each full-size figure and double-spaced typewritten page constituting one unit.

  20. Design of an environmentally controlled rotating chamber for bioaerosol aging studies

    PubMed Central

    Verreault, Daniel; Duchaine, Caroline; Marcoux-Voiselle, Melissa; Turgeon, Nathalie; Roy, Chad J.

    2015-01-01

    A chamber was designed and built to study the long-term effects of environmental conditions on air-borne microorganisms. The system consists of a 55.5-L cylindrical chamber, which can rotate at variable speeds on its axis. The chamber is placed within an insulated temperature controlled enclosure which can be either cooled or heated with piezoelectric units. A germicidal light located at the chamber center irradiates at a 360° angle. Access ports are located on the stationary sections on both ends of the chamber. Relative humidity (RH) is controlled by passing the aerosol through meshed tubes surrounded by desiccant. Validation assay indicates that the interior temperature is stable with less than 0.5 °C in variation when set between 18 and 30 °C with the UV light having no effect of temperature during operation. RH levels set at 20%, 50% and 80% varied by 2.2%, 3.3% and 3.3%, respectively, over a 14-h period. The remaining fraction of particles after 18 h of suspension was 8.8% at 1 rotation per minute (rpm) and 2.6% at 0 rpm with the mass median aerodynamic diameter (MMAD) changing from 1.21 ± 0.04 μm to 1.30 ± 0.02 μm at 1 rpm and from 1.21 ± 0.04 μm to 0.91 ± 0.01 μm at 0 rpm within the same time period. This chamber can be used to increase the time of particle suspension in an aerosol cloud and control the temperature, RH and UV exposure; the design facilitates stationary sampling to be performed while the chamber is rotating. PMID:25055842

  1. Controlling radiation fields in siemans designed light water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, R.; Marchl, T.

    1995-03-01

    An essential item for the control of radiation fields is the minimization of the use of satellites in the reactor systems of Light Water Reactors (LWRs). A short description of the qualification of Co-replacement materials will be followed by an illustration of the locations where these materials were implemented in Siemens designed LWRs. Especially experiences in PWRs show the immense influence of reduction of cobalt sources on dose rate buildup. The corrosion and the fatique and wear behavior of the replacement materials has not created concern up to now. A second tool to keep occupational radiation doses at a lowmore » level in PWRs is the use of the modified B/Li-chemistry. This is practized in Siemens designed plants by keeping the Li level at a max. value of 2 ppm until it reaches a pH (at 300{degrees}C) of {approximately}7.4. This pH is kept constant until the end of the cycle. The substitution of cobalt base alloys and thus the removal of the Co-59 sources from the system had the largest impact on the radiation levels. Nonetheless, the effectiveness of the coolant chemistry should not be neglected either. Several years of successful operation of PWRs with the replacement materials resulted in an occupational radiation exposure which is below 0.5 man-Sievert/plant and year.« less

  2. The case-control design in veterinary sciences: A survey.

    PubMed

    Cullen, Jonah N; Sargeant, Jan M; Makielski, Kelly M; O'Connor, Annette M

    2016-11-01

    The case-control study design is deceptively simple. However, many design considerations influence the estimated effect measure. An investigation of case-control studies in the human health literature suggested that some of these considerations are not described in reports of case-control studies. Our hypothesis was that the majority of veterinary studies labeled as case-controls would be incident density designs, and many would not interpret the effect measure obtained from those studies as the rate ratio rather than the odds ratio. Reference databases were searched for author-designated case-control studies. A survey of 100 randomly selected studies was conducted to examine the different design options described and estimated effect measures. Of the 100 author-identified case-control studies, 83 assessed an exposure-outcome association and, of those, only 54 (65.1%) sampled the study population based on an outcome and would thus be considered case-control designs. Twelve studies were incidence density designs but none used this terminology. Of the studies that reported an odds ratio as the effect measure, none reported on additional considerations that would have enabled a more interpretable result. This survey indicated many case-control-labeled studies were not case-control designs and among case-control studies, key design aspects were not often described. The absence of information about study design elements and underlying assumptions in case-control studies limits the ability to establish the effect measured by the study and the evidentiary value of the study might be underestimated. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Process Design Manual for Nitrogen Control.

    ERIC Educational Resources Information Center

    Parker, Denny S.; And Others

    This manual presents theoretical and process design criteria for the implementation of nitrogen control technology in municipal wastewater treatment facilities. Design concepts are emphasized through examination of data from full-scale and pilot installations. Design data are included on biological nitrification and denitrification, breakpoint…

  4. Overview of the preliminary design of the ITER plasma control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.

    An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less

  5. Overview of the preliminary design of the ITER plasma control system

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; Ambrosino, R.; Amoskov, V.; Blanken, T. C.; Bremond, S.; Cinque, M.; de Tommasi, G.; de Vries, P. C.; Eidietis, N.; Felici, F.; Felton, R.; Ferron, J.; Formisano, A.; Gribov, Y.; Hosokawa, M.; Hyatt, A.; Humphreys, D.; Jackson, G.; Kavin, A.; Khayrutdinov, R.; Kim, D.; Kim, S. H.; Konovalov, S.; Lamzin, E.; Lehnen, M.; Lukash, V.; Lomas, P.; Mattei, M.; Mineev, A.; Moreau, P.; Neu, G.; Nouailletas, R.; Pautasso, G.; Pironti, A.; Rapson, C.; Raupp, G.; Ravensbergen, T.; Rimini, F.; Schneider, M.; Travere, J.-M.; Treutterer, W.; Villone, F.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2017-12-01

    An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.

  6. Overview of the preliminary design of the ITER plasma control system

    DOE PAGES

    Snipes, J. A.; Albanese, R.; Ambrosino, G.; ...

    2017-09-11

    An overview of the Preliminary Design of the ITER Plasma Control System (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemesmore » for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.« less

  7. Estimated critical conditions for UO[sub 2]F[sub 2]--H[sub 2]O systems in fully water-reflected spherical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO[sub 2]F[sub 2]-H[sub 2]O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO[sub 2]F[sub 2]-H[sub 2]O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k[sub [infinity

  8. Design, construction, and operation of an actively controlled deep-sea CO2 enrichment experiment using a cabled observatory system

    NASA Astrophysics Data System (ADS)

    Kirkwood, William J.; Walz, Peter M.; Peltzer, Edward T.; Barry, James P.; Herlien, Robert A.; Headley, Kent L.; Kecy, Chad; Matsumoto, George I.; Maughan, Thom; O'Reilly, Thomas C.; Salamy, Karen A.; Shane, Farley; Brewer, Peter G.

    2015-03-01

    We describe the design, testing, and performance of an actively controlled deep-sea Free Ocean CO2 Enrichment (dp-FOCE) system for the execution of seafloor experiments relating to the impacts of ocean acidification on natural ecosystems. We used the 880 m deep MARS (Monterey Accelerated Research System) cable site offshore Monterey Bay, California for this work, but the Free Ocean CO2 Enrichment (FOCE) system concept is designed to be scalable and can be modified to be used in a wide variety of ocean depths and locations. The main frame is based on a flume design with active thruster control of flow and a central experimental chamber. The unit was allowed to free fall to the seafloor and connected to the cable node by remotely operated vehicle (ROV) manipulation. For operation at depth we designed a liquid CO2 containment reservoir which provided the CO2 enriched working fluid as ambient seawater was drawn through the reservoir beneath the more buoyant liquid CO2. Our design allowed for the significant lag time associated with the hydration of the dissolved CO2 molecule, resulting in an e-folding time, τ, of 97 s between fluid injection and pH sensing at the mean local T=4.31±0.14 °C and pHT of 7.625±0.011. The system maintained a pH offset of 0.4 pH units compared to the surrounding ocean for a period of 1 month. The unit allows for the emplacement of deep-sea animals for testing. We describe the components and software used for system operation and show examples of each. The demonstrated ability for active control of experimental systems opens new possibilities for deep-sea biogeochemical perturbation experiments of several kinds and our developments in open source control systems software and hardware described here are applicable to this end.

  9. Design and development of pH-responsive HSPC:C12H25-PAA chimeric liposomes.

    PubMed

    Naziris, Nikolaos; Pippa, Natassa; Meristoudi, Anastasia; Pispas, Stergios; Demetzos, Costas

    2017-06-01

    The application of stimuli-responsive medical practices has emerged, in which pH-sensitive liposomes figure prominently. This study investigates the impact of the incorporation of different amounts of pH-sensitive polymer, C 12 H 25 -PAA (poly(acrylic acid) with a hydrophobic end group) in l-α-phosphatidylcholine, hydrogenated (Soy) (HSPC) phospholipidic bilayers, with respect to biomimicry and functionality. PAA is a poly(carboxylic acid) molecule, classified as a pH-sensitive polymer, whose pH-sensitivity is attributed to its regulative -COOH groups, which are protonated under acidic pH (pKa ∼4.2). Our concern was to fully characterize, in a biophysical and thermodynamical manner, the mixed nanoassemblies arising from the combination of the two biomaterials. At first, we quantified the physicochemical characteristics and physical stability of the prepared chimeric nanosystems. Then, we studied their thermotropic behavior, through measurement of thermodynamical parameters, using Differential Scanning Calorimetry (DSC). Finally, the loading and release of indomethacin (IND) were evaluated, as well as the physicochemical properties and stability of the nanocarriers incorporating it. As expected, thermodynamical findings are in line with physicochemical results and also explain the loading and release profiles of IND. The novelty of this investigation is the utilization of these pH-sensitive chimeric advanced Drug Delivery nano Systems (aDDnSs) in targeted drug delivery which relies entirely on the biophysics and thermodynamics between such designs and the physiological membranes and environment of living organisms.

  10. Quadrocopter Control Design and Flight Operation

    NASA Technical Reports Server (NTRS)

    Karwoski, Katherine

    2011-01-01

    A limiting factor in control system design and analysis for spacecraft is the inability to physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly and take much preparation. As such, EV41 recently acquired a small research quadrocopter that has the ability to be a test bed for new control systems. This project focused on learning how to operate, fly, and maintain the quadrocopter, as well as developing and testing protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the design and analysis of simple control systems for the quadrocopter. Software provided by the manufacturer enabled testing of the Simulink control system on the vehicle.

  11. Integrated active and passive control design methodology for the LaRC CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Voth, Christopher T.; Richards, Kenneth E., Jr.; Schmitz, Eric; Gehling, Russel N.; Morgenthaler, Daniel R.

    1994-01-01

    A general design methodology to integrate active control with passive damping was demonstrated on the NASA LaRC CSI Evolutionary Model (CEM), a ground testbed for future large, flexible spacecraft. Vibration suppression controllers designed for Line-of Sight (LOS) minimization were successfully implemented on the CEM. A frequency-shaped H2 methodology was developed, allowing the designer to specify the roll-off of the MIMO compensator. A closed loop bandwidth of 4 Hz, including the six rigid body modes and the first three dominant elastic modes of the CEM was achieved. Good agreement was demonstrated between experimental data and analytical predictions for the closed loop frequency response and random tests. Using the Modal Strain Energy (MSE) method, a passive damping treatment consisting of 60 viscoelastically damped struts was designed, fabricated and implemented on the CEM. Damping levels for the targeted modes were more than an order of magnitude larger than for the undamped structure. Using measured loss and stiffness data for the individual damped struts, analytical predictions of the damping levels were very close to the experimental values in the (1-10) Hz frequency range where the open loop model matched the experimental data. An integrated active/passive controller was successfully implemented on the CEM and was evaluated against an active-only controller. A two-fold increase in the effective control bandwidth and further reductions of 30 percent to 50 percent in the LOS RMS outputs were achieved compared to an active-only controller. Superior performance was also obtained compared to a High-Authority/Low-Authority (HAC/LAC) controller.

  12. Towards practical control design using neural computation

    NASA Technical Reports Server (NTRS)

    Troudet, Terry; Garg, Sanjay; Mattern, Duane; Merrill, Walter

    1991-01-01

    The objective is to develop neural network based control design techniques which address the issue of performance/control effort tradeoff. Additionally, the control design needs to address the important issue if achieving adequate performance in the presence of actuator nonlinearities such as position and rate limits. These issues are discussed using the example of aircraft flight control. Given a set of pilot input commands, a feedforward net is trained to control the vehicle within the constraints imposed by the actuators. This is achieved by minimizing an objective function which is the sum of the tracking errors, control input rates and control input deflections. A tradeoff between tracking performance and control smoothness is obtained by varying, adaptively, the weights of the objective function. The neurocontroller performance is evaluated in the presence of actuator dynamics using a simulation of the vehicle. Appropriate selection of the different weights in the objective function resulted in the good tracking of the pilot commands and smooth neurocontrol. An extension of the neurocontroller design approach is proposed to enhance its practicality.

  13. Adaptive fuzzy-neural-network control for maglev transportation system.

    PubMed

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  14. The design of digital-adaptive controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.

  15. Design of controlled elastic and inelastic structures

    NASA Astrophysics Data System (ADS)

    Reinhorn, A. M.; Lavan, O.; Cimellaro, G. P.

    2009-12-01

    One of the founders of structural control theory and its application in civil engineering, Professor Emeritus Tsu T. Soong, envisioned the development of the integral design of structures protected by active control devices. Most of his disciples and colleagues continuously attempted to develop procedures to achieve such integral control. In his recent papers published jointly with some of the authors of this paper, Professor Soong developed design procedures for the entire structure using a design — redesign procedure applied to elastic systems. Such a procedure was developed as an extension of other work by his disciples. This paper summarizes some recent techniques that use traditional active control algorithms to derive the most suitable (optimal, stable) control force, which could then be implemented with a combination of active, passive and semi-active devices through a simple match or more sophisticated optimal procedures. Alternative design can address the behavior of structures using Liapunov stability criteria. This paper shows a unified procedure which can be applied to both elastic and inelastic structures. Although the implementation does not always preserve the optimal criteria, it is shown that the solutions are effective and practical for design of supplemental damping, stiffness enhancement or softening, and strengthening or weakening.

  16. Design and Analysis of Morpheus Lander Flight Control System

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  17. Experimental Validation of an Integrated Controls-Structures Design Methodology

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Walz, Joseph E.

    1996-01-01

    The first experimental validation of an integrated controls-structures design methodology for a class of large order, flexible space structures is described. Integrated redesign of the controls-structures-interaction evolutionary model, a laboratory testbed at NASA Langley, was described earlier. The redesigned structure was fabricated, assembled in the laboratory, and experimentally tested against the original structure. Experimental results indicate that the structure redesigned using the integrated design methodology requires significantly less average control power than the nominal structure with control-optimized designs, while maintaining the required line-of-sight pointing performance. Thus, the superiority of the integrated design methodology over the conventional design approach is experimentally demonstrated. Furthermore, amenability of the integrated design structure to other control strategies is evaluated, both analytically and experimentally. Using Linear-Quadratic-Guassian optimal dissipative controllers, it is observed that the redesigned structure leads to significantly improved performance with alternate controllers as well.

  18. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2015-01-01

    Principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters is presented. Both the vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has three main aspects: It summarizes key RCS control System design principles from the Space Shuttle and Space Station programs, it demonstrates a new approach to develop a linear model of a phase plane control system using describing functions, and applies each of these to the initial development of the NASA's next generation of upper stage vehicles. Topics addressed include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and automaneuver logic.

  19. Size control of Au NPs supported by pH operation

    NASA Astrophysics Data System (ADS)

    Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi

    2017-07-01

    Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.

  20. Design and performance analysis of generalised integrator-based controller for grid connected PV system

    NASA Astrophysics Data System (ADS)

    Saxena, Hemant; Singh, Alka; Rai, J. N.

    2018-07-01

    This article discusses the design and control of a single-phase grid-connected photovoltaic (PV) system. A 5-kW PV system is designed and integrated at the DC link of an H-bridge voltage source converter (VSC). The control of the VSC and switching logic is modelled using a generalised integrator (GI). The use of GI or its variants such as second-order GI have recently evolved for synchronisation and are being used as phase locked loop (PLL) circuits for grid integration. Design of PLL circuits and the use of transformations such as Park's and Clarke's are much easier in three-phase systems. But obtaining in-phase and quadrature components becomes an important and challenging issue in single-phase systems. This article addresses this issue and discusses an altogether different application of GI for the design of compensator based on the extraction of in-phase and quadrature components. GI is frequently used as a PLL; however, in this article, it is not used for synchronisation purposes. A new controller has been designed for a single-phase grid-connected PV system working as a single-phase active compensator. Extensive simulation results are shown for the working of integrated PV system under different atmospheric and operating conditions during daytime as well as night conditions. Experimental results showing the proposed control approach are presented and discussed for the hardware set-up developed in the laboratory.

  1. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A. D.; Fingersh, L. J.

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  2. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.

    PubMed

    Xu, Sen; Chen, Hao

    2016-08-10

    Maintaining desired pH is a necessity for optimal cell growth and protein production. It is typically achieved through a two-sided pH control loop on the bioreactor controller. Here we investigated cell culture processes with minimum or no pH control and demonstrated that high-density mammalian cell cultures could be maintained for long-term protein production without pH control. The intrinsic interactions between pCO2, lactate, and pH were leveraged to maintain culture pH. Fed-batch cultures at the same lower pH limit of 6.75 but different upper pH limits (7.05, 7.30, 7.45, 7.65) were evaluated in the 3L bioreactors and comparable results were obtained. Neither CO2 sparging nor base addition was required to control pH in the pH range of 6.75-7.65. The impact of sparger configurations (drilled hole sparger vs. frit sparger) and scales (3L vs. 200L) on CO2 accumulation and culture pH was also demonstrated. The same principle was applied in two perfusion cultures with steady state cell densities at 42.5±3.3 or 68.3±6.0×10(6)cells/mL with low cell specific perfusion rates (15±2 to 23±3pL/cell/day), achieving up to 1.9±0.1g/L/day bioreactor productivity. Culture pH level in the 3L perfusion bioreactors was steadily maintained by controlling the residual lactate and pCO2 levels without the requirement of external pH control for up to 40days with consistent productivity and product quality. Furthermore, culture pH could be potentially modulated via adjusting residual glucose levels and CO2 stripping capability in perfusion cultures. To the best of our knowledge, this is the first time a systematic study was performed to evaluate the long-term cell cultivation and protein production in stirred-tank bioreactors without external pH control. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Real-time motion-based H.263+ frame rate control

    NASA Astrophysics Data System (ADS)

    Song, Hwangjun; Kim, JongWon; Kuo, C.-C. Jay

    1998-12-01

    Most existing H.263+ rate control algorithms, e.g. the one adopted in the test model of the near-term (TMN8), focus on the macroblock layer rate control and low latency under the assumptions of with a constant frame rate and through a constant bit rate (CBR) channel. These algorithms do not accommodate the transmission bandwidth fluctuation efficiently, and the resulting video quality can be degraded. In this work, we propose a new H.263+ rate control scheme which supports the variable bit rate (VBR) channel through the adjustment of the encoding frame rate and quantization parameter. A fast algorithm for the encoding frame rate control based on the inherent motion information within a sliding window in the underlying video is developed to efficiently pursue a good tradeoff between spatial and temporal quality. The proposed rate control algorithm also takes the time-varying bandwidth characteristic of the Internet into account and is able to accommodate the change accordingly. Experimental results are provided to demonstrate the superior performance of the proposed scheme.

  4. A Modular Flow Design for the meta-Selective C-H Arylation of Anilines.

    PubMed

    Gemoets, Hannes P L; Laudadio, Gabriele; Verstraete, Kirsten; Hessel, Volker; Noël, Timothy

    2017-06-12

    Described herein is an effective and practical modular flow design for the meta-selective C-H arylation of anilines. The design consists of four continuous-flow modules (i.e., diaryliodonium salt synthesis, meta-selective C-H arylation, inline copper extraction, and aniline deprotection) which can be operated either individually or consecutively to provide direct access to meta-arylated anilines. With a total residence time of 1 hour, the desired product could be obtained in high yield and excellent purity without the need for column chromatography, and the residual copper content meets the standards for parenterally administered pharmaceutical substances. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Design of healthy hearts in the heartland (H3): A practice-randomized, comparative effectiveness study.

    PubMed

    Ciolino, Jody D; Jackson, Kathryn L; Liss, David T; Brown, Tiffany; Walunas, Theresa L; Murakami, Linda; Chung, Isabel; Persell, Stephen D; Kho, Abel N

    2018-06-02

    The Healthy Hearts in the Heartland (H3) study is part of a nationwide effort, EvidenceNOW, seeking to better understand the ability of small primary care practices to improve "ABCS" clinical quality measures: appropriate Aspirin therapy, Blood pressure control, Cholesterol management, and Smoking cessation. H3 aimed to assess feasibility of implementing Point-of-Care (POC) or POC plus Population Management (POC + PM) quality improvement (QI) strategies to improve ABCS at practices in Illinois, Indiana, and Wisconsin. We describe the design and randomization of the H3 study. We conducted a two-arm (1:1, POC:POC + PM), practice-randomized, comparative effectiveness study in 226 primary care practices across four "waves" of randomization with a 12-month intervention period, followed by a six-month sustainability period. Randomization controlled imbalance in nine baseline variables through a modified constrained algorithm. Among others, we used initial, unverified estimates of baseline ABCS values. We randomized 112 and 114 practices to POC and POC + PM arms, respectively. Randomization ensured baseline comparability for all nine key variables, including the ABCS measures indicating proportion of patients at the practice level meeting each quality measure. Median(Inner Quartile Range) values were A: 0.78(0.66-0.86) in POC arm vs. 0.77(0.63-0.86) in POC + PM arm, B: 0.64(0.53-0.73) vs. 0.64(0.53-0.75), C: 0.78(0.63-0.86) vs. 0.75(0.64-0.81), S: 0.80(0.65-0.81) vs. 0.79(0.61-0.91). Surrogate estimates for the true ABCS at baseline coupled with the unique randomization logic achieved adequate baseline balance on these outcomes. Similar practice- or cluster-randomized trials may consider adaptations of this design. Final analyses on 12- and 18-month ABCS outcomes for the H3 study are forthcoming. This trial is registered on ClinicalTrials.gov (Initial post: 11/05/2015; identifier: NCT02598284; https://clinicaltrials.gov/ct2/show/NCT02598284?term

  6. Large-scale performance and design for construction activity erosion control best management practices.

    PubMed

    Faucette, L B; Scholl, B; Beighley, R E; Governo, J

    2009-01-01

    The National Pollutant Discharge Elimination System (NPDES) Phase II requires construction activities to have erosion and sediment control best management practices (BMPs) designed and installed for site storm water management. Although BMPs are specified on storm water pollution prevention plans (SWPPPs) as part of the construction general permit (GP), there is little evidence in the research literature as to how BMPs perform or should be designed. The objectives of this study were to: (i) comparatively evaluate the performance of common construction activity erosion control BMPs under a standardized test method, (ii) evaluate the performance of compost erosion control blanket thickness, (iii) evaluate the performance of compost erosion control blankets (CECBs) on a variety of slope angles, and (iv) determine Universal Soil Loss Equation (USLE) cover management factors (C factors) for these BMPs to assist site designers and engineers. Twenty-three erosion control BMPs were evaluated using American Society of Testing and Materials (ASTM) D-6459, standard test method for determination of ECB performance in protecting hill slopes from rainfall induced erosion, on 4:1 (H:V), 3:1, and 2:1 slopes. Soil loss reduction for treatments exposed to 5 cm of rainfall on a 2:1 slope ranged from-7 to 99%. For rainfall exposure of 10 cm, treatment soil loss reduction ranged from 8 to 99%. The 2.5 and 5 cm CECBs significantly reduced erosion on slopes up to 2:1, while CECBs < 2.5 cm are not recommended on slopes >or= 4:1 when rainfall totals reach 5 cm. Based on the soil loss results, USLE C factors ranged from 0.01 to 0.9. These performance and design criteria should aid site planners and designers in decision-making processes.

  7. The robust model predictive control based on mixed H2/H∞ approach with separated performance formulations and its ISpS analysis

    NASA Astrophysics Data System (ADS)

    Li, Dewei; Li, Jiwei; Xi, Yugeng; Gao, Furong

    2017-12-01

    In practical applications, systems are always influenced by parameter uncertainties and external disturbance. Both the H2 performance and the H∞ performance are important for the real applications. For a constrained system, the previous designs of mixed H2/H∞ robust model predictive control (RMPC) optimise one performance with the other performance requirement as a constraint. But the two performances cannot be optimised at the same time. In this paper, an improved design of mixed H2/H∞ RMPC for polytopic uncertain systems with external disturbances is proposed to optimise them simultaneously. In the proposed design, the original uncertain system is decomposed into two subsystems by the additive character of linear systems. Two different Lyapunov functions are used to separately formulate the two performance indices for the two subsystems. Then, the proposed RMPC is designed to optimise both the two performances by the weighting method with the satisfaction of the H∞ performance requirement. Meanwhile, to make the design more practical, a simplified design is also developed. The recursive feasible conditions of the proposed RMPC are discussed and the closed-loop input state practical stable is proven. The numerical examples reflect the enlarged feasible region and the improved performance of the proposed design.

  8. pH Responsive Microcapsules for Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco

    2008-01-01

    The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.

  9. A summary of the mechanical design, testing and performance of the IMP-H and J attitude control systems

    NASA Technical Reports Server (NTRS)

    Metzger, J. R.

    1974-01-01

    The main aspects of the attitude control system used on both the IMP-H and J spacecraft are presented. The mechanical configuration is described. Information on all the specific components comprising the flight system is provided. The acceptance and qualification testing of both individual components and the installed system are summarized. Functional information regarding the operation and performance in relation to the orbiting spacecraft and its mission is included. Related topics which are discussed are: (1) safety requirements, (2) servicing procedures, (3) anomalous behavior, and (4) pyrotechnic devices.

  10. Spacecraft Design Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  11. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    NASA Technical Reports Server (NTRS)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  12. Mechanical Engineering Design Project report: Enabler control systems

    NASA Technical Reports Server (NTRS)

    Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.

    1992-01-01

    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.

  13. Advanced control design for hybrid turboelectric vehicle

    NASA Technical Reports Server (NTRS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-01-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  14. The Spinal Cord Has an Intrinsic System for the Control of pH.

    PubMed

    Jalalvand, Elham; Robertson, Brita; Tostivint, Hervé; Wallén, Peter; Grillner, Sten

    2016-05-23

    For survival of the organism, acid-base homeostasis is vital [1, 2]. The respiratory and renal systems are central to this control. Here we describe a novel mechanism, intrinsic to the spinal cord, with sensors that detect pH changes and act to restore pH to physiological levels by reducing motor activity. This pH sensor consists of somatostatin-expressing cerebrospinal fluid-contacting (CSF-c) neurons, which target the locomotor network. They have a low level of activity at pH 7.4. However, at both alkaline and acidic pH, the activity of the individual CSF-c neuron is markedly enhanced through the action of two separate channel subtypes. The alkaline response depends on PKD2L1 channels that have a large conductance and an equilibrium potential around 0 mV, both characteristics of mouse PKD2L1 channels [3-5]. The acidic response is due to an activation of ASIC3 [6]. The discharge pattern of the CSF-c neurons is U-shaped with a minimum frequency around pH 7.4 and a marked increase already at slightly lower and higher pH. During ongoing locomotor activity in the isolated spinal cord, both an increase and as a decrease of pH will reduce the locomotor burst rate. A somatostatin antagonist blocks these effects, suggesting that CSF-c neurons are responsible for the suppression of locomotor activity. CSF-c neurons thus represent a novel innate homeostatic mechanism, designed to sense any deviation from physiological pH and to respond by causing a depression of the motor activity. Because CSF-c neurons are found in all vertebrates, their pH-sensing function is most likely conserved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Robust Control Design for Flight Control

    DTIC Science & Technology

    1989-07-01

    controller may be designed to produce desired responses to pilot commands, responses to external (atmospheric) disturbances may be unusual and...suggested for stabilizing open loop unstable aircraft result in nonminimum phase zeros in the dynamics as seen by the pilot . This issue has not been...stability test it does retain several essential features of the popular single loop test developed by Nyquist. In particular, it identifies a Nyquist

  16. Validation of updated neutronic calculation models proposed for Atucha-II PHWR. Part I: Benchmark comparisons of WIMS-D5 and DRAGON cell and control rod parameters with MCNP5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollerach, R.; Leszczynski, F.; Fink, J.

    2006-07-01

    In 2005 the Argentine Government took the decision to complete the construction of the Atucha-II nuclear power plant, which has been progressing slowly during the last ten years. Atucha-II is a 745 MWe nuclear station moderated and cooled with heavy water, of German (Siemens) design located in Argentina. It has a pressure-vessel design with 451 vertical coolant channels, and the fuel assemblies (FA) are clusters of 37 natural UO{sub 2} rods with an active length of 530 cm. For the reactor physics area, a revision and update calculation methods and models (cell, supercell and reactor) was recently carried out coveringmore » cell, supercell (control rod) and core calculations. As a validation of the new models some benchmark comparisons were done with Monte Carlo calculations with MCNP5. This paper presents comparisons of cell and supercell benchmark problems based on a slightly idealized model of the Atucha-I core obtained with the WIMS-D5 and DRAGON codes with MCNP5 results. The Atucha-I core was selected because it is smaller, similar from a neutronic point of view, and more symmetric than Atucha-II Cell parameters compared include cell k-infinity, relative power levels of the different rings of fuel rods, and some two-group macroscopic cross sections. Supercell comparisons include supercell k-infinity changes due to the control rods (tubes) of steel and hafnium. (authors)« less

  17. Control system design and analysis using the INteractive Controls Analysis (INCA) program

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Downing, John P.

    1987-01-01

    The INteractive Controls Analysis (INCA) program was developed at the Goddard Space Flight Center to provide a user friendly efficient environment for the design and analysis of linear control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. Moreover, the results of the analytic tools imbedded in INCA have been flight proven with at least three currently orbiting spacecraft. This paper describes the INCA program and illustrates, using a flight proven example, how the package can perform complex design analyses with relative ease.

  18. Stability and optimised H∞ control of tripped and untripped vehicle rollover

    NASA Astrophysics Data System (ADS)

    Jin, Zhilin; Zhang, Lei; Zhang, Jiale; Khajepour, Amir

    2016-10-01

    Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.

  19. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH.

    PubMed

    Søndergaard, Rikke V; Henriksen, Jonas R; Andresen, Thomas L

    2014-12-01

    Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis. This protocol describes the design and application of a polyacrylamide-based nanosensor (∼60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1-7.0), and uses the pH-insensitive fluorophore rhodamine as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design of calibration buffers, the determination of the effective range and especially the description of how to critically evaluate results. The entire procedure typically takes 2-3 weeks.

  20. Wiring design for the control of electromagnetic interference (EMI)

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1995-01-01

    Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.

  1. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  2. Robust Control Design via Linear Programming

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  3. Users manual for flight control design programs

    NASA Technical Reports Server (NTRS)

    Nalbandian, J. Y.

    1975-01-01

    Computer programs for the design of analog and digital flight control systems are documented. The program DIGADAPT uses linear-quadratic-gaussian synthesis algorithms in the design of command response controllers and state estimators, and it applies covariance propagation analysis to the selection of sampling intervals for digital systems. Program SCHED executes correlation and regression analyses for the development of gain and trim schedules to be used in open-loop explicit-adaptive control laws. A linear-time-varying simulation of aircraft motions is provided by the program TVHIS, which includes guidance and control logic, as well as models for control actuator dynamics. The programs are coded in FORTRAN and are compiled and executed on both IBM and CDC computers.

  4. Techniques for designing rotorcraft control systems

    NASA Technical Reports Server (NTRS)

    Levine, William S.; Barlow, Jewel

    1993-01-01

    This report summarizes the work that was done on the project from 1 Apr. 1992 to 31 Mar. 1993. The main goal of this research is to develop a practical tool for rotorcraft control system design based on interactive optimization tools (CONSOL-OPTCAD) and classical rotorcraft design considerations (ADOCS). This approach enables the designer to combine engineering intuition and experience with parametric optimization. The combination should make it possible to produce a better design faster than would be possible using either pure optimization or pure intuition and experience. We emphasize that the goal of this project is not to develop an algorithm. It is to develop a tool. We want to keep the human designer in the design process to take advantage of his or her experience and creativity. The role of the computer is to perform the calculation necessary to improve and to display the performance of the nominal design. Briefly, during the first year we have connected CONSOL-OPTCAD, an existing software package for optimizing parameters with respect to multiple performance criteria, to a simplified nonlinear simulation of the UH-60 rotorcraft. We have also created mathematical approximations to the Mil-specs for rotorcraft handling qualities and input them into CONSOL-OPTCAD. Finally, we have developed the additional software necessary to use CONSOL-OPTCAD for the design of rotorcraft controllers.

  5. Designing Control System Application Software for Change

    NASA Technical Reports Server (NTRS)

    Boulanger, Richard

    2001-01-01

    The Unified Modeling Language (UML) was used to design the Environmental Systems Test Stand (ESTS) control system software. The UML was chosen for its ability to facilitate a clear dialog between software designer and customer, from which requirements are discovered and documented in a manner which transposes directly to program objects. Applying the UML to control system software design has resulted in a baseline set of documents from which change and effort of that change can be accurately measured. As the Environmental Systems Test Stand evolves, accurate estimates of the time and effort required to change the control system software will be made. Accurate quantification of the cost of software change can be before implementation, improving schedule and budget accuracy.

  6. Application of the H-Mode, a Design and Interaction Concept for Highly Automated Vehicles, to Aircraft

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Flemisch, Frank O.; Schutte, Paul C.; Williams, Ralph A.

    2006-01-01

    Driven by increased safety, efficiency, and airspace capacity, automation is playing an increasing role in aircraft operations. As aircraft become increasingly able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help us understand their use and guide their design using new forms of automation and interaction. We propose a novel design metaphor to aid the conceptualization, design, and operation of highly-automated aircraft. Design metaphors transfer meaning from common experiences to less familiar applications or functions. A notable example is the "Desktop metaphor" for manipulating files on a computer. This paper describes a metaphor for highly automated vehicles known as the H-metaphor and a specific embodiment of the metaphor known as the H-mode as applied to aircraft. The fundamentals of the H-metaphor are reviewed followed by an overview of an exploratory usability study investigating human-automation interaction issues for a simple H-mode implementation. The envisioned application of the H-mode concept to aircraft is then described as are two planned evaluations.

  7. Methodologies for Root Locus and Loop Shaping Control Design with Comparisons

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2017-01-01

    This paper describes some basics for the root locus controls design method as well as for loop shaping, and establishes approaches to expedite the application of these two design methodologies to easily obtain control designs that meet requirements with superior performance. The two design approaches are compared for their ability to meet control design specifications and for ease of application using control design examples. These approaches are also compared with traditional Proportional Integral Derivative (PID) control in order to demonstrate the limitations of PID control. Robustness of these designs is covered as it pertains to these control methodologies and for the example problems.

  8. Robustness of controllers designed using Galerkin type approximations

    NASA Technical Reports Server (NTRS)

    Morris, K. A.

    1990-01-01

    One of the difficulties in designing controllers for infinite-dimensional systems arises from attempting to calculate a state for the system. It is shown that Galerkin type approximations can be used to design controllers which will perform as designed when implemented on the original infinite-dimensional system. No assumptions, other than those typically employed in numerical analysis, are made on the approximating scheme.

  9. A control system design approach for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Silverberg, L. M.

    1985-01-01

    A control system design approach for flexible spacecraft is presented. The control system design is carried out in two steps. The first step consists of determining the ideal control system in terms of a desirable dynamic performance. The second step consists of designing a control system using a limited number of actuators that possess a dynamic performance that is close to the ideal dynamic performance. The effects of using a limited number of actuators is that the actual closed-loop eigenvalues differ from the ideal closed-loop eigenvalues. A method is presented to approximate the actual closed-loop eigenvalues so that the calculation of the actual closed-loop eigenvalues can be avoided. Depending on the application, it also may be desirable to apply the control forces as impulses. The effect of digitizing the control to produce the appropriate impulses is also examined.

  10. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  11. Controller design via structural reduced modeling by FETM

    NASA Technical Reports Server (NTRS)

    Yousuff, Ajmal

    1987-01-01

    The Finite Element-Transfer Matrix (FETM) method has been developed to reduce the computations involved in analysis of structures. This widely accepted method, however, has certain limitations, and does not address the issues of control design. To overcome these, a modification of the FETM method has been developed. The new method easily produces reduced models tailored toward subsequent control design. Other features of this method are its ability to: (1) extract open loop frequencies and mode shapes with less computations, (2) overcome limitations of the original FETM method, and (3) simplify the design procedures for output feedback, constrained compensation, and decentralized control. This report presents the development of the new method, generation of reduced models by this method, their properties, and the role of these reduced models in control design. Examples are included to illustrate the methodology.

  12. Mathematical model for internal pH control in immobilized enzyme particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, J.K.; Rousseau, I.

    A mathematical model has been developed for the internal pH control in immobilized enzyme particles. This model describes the kinetics of a coupled system of two enzymes, immobilized in particles of either planar, cylindrical, or spherical shape. The enzyme kinetics are assumed to be of a mixed type, including Michaelis-Menten kinetics, uncompetitive substrate inhibition, and competitive and noncompetitive product inhibition. In a case study we have considered the enzyme combination urease and penicillin acylase, whose kinetics are coupled through the pH dependence of the kinetic parameters. The hydrolysis of urea by urease yields ammonia and carbon dioxide, whereas benzylpenicillin (Pen-G)more » is converted to 6-animo penicillanic acid and phenyl acetic acid by penicillin acylase. The production of acids by the latter enzyme will cause a decrease in pH. Because of the presence of the ammonia-carbon dioxide system, however, the pH may be kept under control. In order to obtain information about the optimum performance of this enzymatic pH controller, we have computed the effectiveness factor and the conversion in a CSTR at different enzyme loadings. The results of the computer simulations indicate that a high conversion of Pen-G may be achieved (80-90%) at bulk pH values of about 7.5 - 8. 27 references.« less

  13. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  14. Full design of fuzzy controllers using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Mccormick, ED

    1992-01-01

    This paper examines the applicability of genetic algorithms in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.

  15. Design of Low Complexity Model Reference Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan

    2012-01-01

    Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.

  16. Thermal comparison of Infiniti OZil and Signature Ellips phacoemulsification systems.

    PubMed

    Schmutz, Joseph S; Olson, Randall J

    2010-05-01

    To determine thermal characteristics of Signature Ellips (Abbott Medical Optics) and Infiniti OZil (Alcon, Inc.) transverse ultrasound and compare both with longitudinal ultrasound in clinically relevant scenarios. Laboratory investigation. Temperature increase over baseline after 60 seconds was measured in water at positions in 90-degree increments around the sleeve near the proximal needle shaft in an artificial chamber for Ellips and OZil on continuous ultrasound with aspiration blocked and unblocked. This was also done with Signature using longitudinal ultrasound, with and without micropulse (6 ms on, 12 ms off), with aspiration blocked and unblocked, and at the OZil sleeve tip on continuous transverse mode with aspiration unblocked. OZil (8.1 +/- 0.3 C) had greater temperature increase than Ellips (5.2 +/- 0.3 C; P < .0001) with aspiration unblocked and blocked (29.3 +/- 1.0 C vs 12.2 +/- 0.7 C; P < .0001). OZil had uneven distribution of heat around the shaft (30.1 +/- 0.5 C vs 28.5 +/- 0.6 C; P < .0001), whereas Ellips did not (P = .57). OZil was cooler at the tip (6.6 +/- 0.2 C; P < .0001). Friction in a cadaver eye incision only increased these numbers by 10% (OZil, irrigation blocked). Metal stress probably creates heat at the proximal needle junction for both transverse methods. Heat generation differences between OZil and Ellips result from the manner in which they create needle motion. Incision burns may occur, especially for OZil, under nonpulsed settings during fragment removal with occlusion when reaching across the anterior chamber such that the proximal needle shaft came near the wound. Copyright 2010 Elsevier Inc. All rights reserved.

  17. H. pylori infection and gastric cancer in Bangladesh: a case-control study.

    PubMed

    Sarker, Khandker Kawser; Kabir, Md Jahangir; Bhuyian, A K M Minhaj Uddin; Alam, Md Shahjadul; Chowdhury, Fazle Rabbi; Ahad, M Abdul; Rahman, Md Anisur; Rahman, M Mizanur

    2017-11-01

    Like that of other Asian countries gastric cancer (GC) is also a leading cancer in Bangladesh and also a cause for cancer-related mortality. Infection with Helicobacter pylori ( H. pylori ) is the strongest recognized risk factor for gastric adenocarcinoma. The infection is also prevalent in common people. This case-control study was carried out to find an association between GC and H. pylori infection in the community. To evaluate association of H. pylori and carcinoma of stomach this study was conducted at National Institute of Cancer Research & Hospital, Dhaka from January 2013 to December 2014. H. pylori status was determined serologically by using H. pylori kit in the department of Biochemistry laboratory of Bangabandhu Sheikh Mujib Medical University. In total, 114 patients with GC and 520 patients not having GC were studied as controls. Logistic regression method was used to calculate the odds ratio. Significantly more patients in the case group (86.8%) were found to be seropositive for H. pylori antigen in contrast to the control group (67.5%). All of the cases in the present study were in advanced stage. No significant association between H. pylori seropositivity and tumor location was found. It was noted that undifferentiated gastric carcinoma had slightly more association with H. pylori infection. Younger H. pylori -infected patients had been found to be at higher relative risk for GC than older patients. As there is a strong association found between GC and H. pylori infection special emphasis to eradicate H. pylori infection might reduce the incidence of this dreadly disease.

  18. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System

    PubMed Central

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-01-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01. PMID:26633407

  19. Optimized Design of the SGA-WZ Strapdown Airborne Gravimeter Temperature Control System.

    PubMed

    Cao, Juliang; Wang, Minghao; Cai, Shaokun; Zhang, Kaidong; Cong, Danni; Wu, Meiping

    2015-12-01

    The temperature control system is one of the most important subsystems of the strapdown airborne gravimeter. Because the quartz flexible accelerometer based on springy support technology is the core sensor in the strapdown airborne gravimeter and the magnet steel in the electromagnetic force equilibrium circuits of the quartz flexible accelerometer is greatly affected by temperature, in order to guarantee the temperature control precision and minimize the effect of temperature on the gravimeter, the SGA-WZ temperature control system adopts a three-level control method. Based on the design experience of the SGA-WZ-01, the SGA-WZ-02 temperature control system came out with a further optimized design. In 1st level temperature control, thermoelectric cooler is used to conquer temperature change caused by hot weather. The experiments show that the optimized stability of 1st level temperature control is about 0.1 °C and the max cool down capability is about 10 °C. The temperature field is analyzed in the 2nd and 3rd level temperature control using the finite element analysis software ANSYS. The 2nd and 3rd level temperature control optimization scheme is based on the foundation of heat analysis. The experimental results show that static accuracy of SGA-WZ-02 reaches 0.21 mGal/24 h, with internal accuracy being 0.743 mGal/4.8 km and external accuracy being 0.37 mGal/4.8 km compared with the result of the GT-2A, whose internal precision is superior to 1 mGal/4.8 km and all of them are better than those in SGA-WZ-01.

  20. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth A.

    2018-01-01

    Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.

  1. Pattern Recognition Control Design

    NASA Technical Reports Server (NTRS)

    Gambone, Elisabeth

    2016-01-01

    Spacecraft control algorithms must know the expected spacecraft response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach can be used to investigate the relationship between the control effector commands and the spacecraft responses. Instead of supplying the approximated vehicle properties and the effector performance characteristics, a database of information relating the effector commands and the desired vehicle response can be used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands can be analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center (Ref. 1) to analyze flight dynamics Monte Carlo data sets through pattern recognition methods can be used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands is established, it can be used in place of traditional control laws and gains set. This pattern recognition approach can be compared with traditional control algorithms to determine the potential benefits and uses.

  2. Engineering Design of ITER Prototype Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and

  3. Progress in multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1991-01-01

    A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.

  4. Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.

    1997-01-01

    An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.

  5. A Modular Flow Design for the meta‐Selective C−H Arylation of Anilines

    PubMed Central

    Gemoets, Hannes P. L.; Laudadio, Gabriele; Verstraete, Kirsten; Hessel, Volker

    2017-01-01

    Abstract Described herein is an effective and practical modular flow design for the meta‐selective C−H arylation of anilines. The design consists of four continuous‐flow modules (i.e., diaryliodonium salt synthesis, meta‐selective C−H arylation, inline copper extraction, and aniline deprotection) which can be operated either individually or consecutively to provide direct access to meta‐arylated anilines. With a total residence time of 1 hour, the desired product could be obtained in high yield and excellent purity without the need for column chromatography, and the residual copper content meets the standards for parenterally administered pharmaceutical substances. PMID:28543979

  6. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.

    PubMed

    Wiedman, Gregory; Wimley, William C; Hristova, Kalina

    2015-04-01

    In this work, we sought to rationally design membrane-active peptides that are triggered by low pH to form macromolecular-sized pores in lipid bilayers. Such peptides could have broad utility in biotechnology and in nanomedicine as cancer therapeutics or drug delivery vehicles that promote release of macromolecules from endosomes. Our approach to rational design was to combine the properties of a pH-independent peptide, MelP5, which forms large pores allowing passage of macromolecules, with the properties of two pH-dependent membrane-active peptides, pHlip and GALA. We created two hybrid sequences, MelP5_Δ4 and MelP5_Δ6, by using the distribution of acidic residues on pHlip and GALA as a guide to insert acidic amino acids into the amphipathic helix of MelP5. We show that the new peptides bind to lipid bilayers and acquire secondary structure in a pH-dependent manner. The peptides also destabilize bilayers in a pH-dependent manner, such that lipid vesicles release the small molecules ANTS/DPX at low pH only. Thus, we were successful in designing pH-triggered pore-forming peptides. However, no macromolecular release was observed under any conditions. Therefore, we abolished the unique macromolecular poration properties of MelP5 by introducing pH sensitivity into its sequence. We conclude that the properties of pHlip, GALA, and MelP5 are additive, but only partially so. We propose that this lack of additivity is a limitation in the rational design of novel membrane-active peptides, and that high-throughput approaches to discovery will be critical for continued progress in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Control Law Design in a Computational Aeroelasticity Environment

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Robertshaw, Harry H.; Kapania, Rakesh K.

    2003-01-01

    A methodology for designing active control laws in a computational aeroelasticity environment is given. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this paper solves the transonic small disturbance aerodynamic equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structure. These structural responses are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The Eigensystem Realization Algorithm is then employed to develop an explicit state-space model of the equivalent linear system. The Linear Quadratic Guassian control law design technique is employed to design a control law. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the aeroelastic system is increased through increased angle-of-attack changes.

  8. Boiler-turbine control system design using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.; Lee, K.Y.

    1995-12-01

    This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.

  9. Gating of the designed trimeric/tetrameric voltage-gated H+ channel

    PubMed Central

    Fujiwara, Yuichiro; Kurokawa, Tatsuki; Takeshita, Kohei; Nakagawa, Atsushi; Larsson, H Peter; Okamura, Yasushi

    2013-01-01

    The voltage-gated H+ channel functions as a dimer, a configuration that is different from standard tetrameric voltage-gated channels. Each channel protomer has its own permeation pathway. The C-terminal coiled-coil domain has been shown to be necessary for both dimerization and cooperative gating in the two channel protomers. Here we report the gating cooperativity in trimeric and tetrameric Hv channels engineered by altering the hydrophobic core sequence of the coiled-coil assembly domain. Trimeric and tetrameric channels exhibited more rapid and less sigmoidal kinetics of activation of H+ permeation than dimeric channels, suggesting that some channel protomers in trimers and tetramers failed to produce gating cooperativity observed in wild-type dimers. Multimerization of trimer and tetramer channels were confirmed by the biochemical analysis of proteins, including crystallography. These findings indicate that the voltage-gated H+ channel is optimally designed as a dimeric channel on a solid foundation of the sequence pattern of the coiled-coil core, with efficient cooperative gating that ensures sustained and steep voltage-dependent H+ conductance in blood cells. PMID:23165764

  10. pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles.

    PubMed

    Manatunga, Danushika C; de Silva, Rohini M; de Silva, K M Nalin; de Silva, Nuwan; Bhandari, Shiva; Yap, Yoke Khin; Costha, N Pabakara

    2017-08-01

    Developing a drug carrier system which could perform targeted and controlled release over a period of time is utmost concern in the pharmaceutical industry. This is more relevant when designing drug carriers for poorly water soluble drug molecules such as curcumin and 6-gingerol. Development of a drug carrier system which could overcome these limitations and perform controlled and targeted drug delivery is beneficial. This study describes a promising approach for the design of novel pH sensitive sodium alginate, hydroxyapatite bilayer coated iron oxide nanoparticle composite (IONP/HAp-NaAlg) via the co-precipitation approach. This system consists of a magnetic core for targeting and a NaAlg/HAp coating on the surface to accommodate the drug molecules. The nanocomposite was characterized using FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The loading efficiency and loading capacity of curcumin and 6-gingerol were examined. In vitro drug releasing behavior of curcumin and 6-gingerol was studied at pH 7.4 and pH 5.3 over a period of seven days at 37°C. The mechanism of drug release from the nanocomposite of each situation was studied using kinetic models and the results implied that, the release is typically via diffusion and a higher release was observed at pH 5.3. This bilayer coated system can be recognized as a potential drug delivery system for the purpose of curcumin and 6-gingerol release in targeted and controlled manner to treat diseases such as cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Control Law Design Method Facilitating Control Power, Robustness, Agility, and Flying Qualities Tradeoffs: CRAFT

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Davidson, John B.

    1998-01-01

    A multi-input, multi-output control law design methodology, named "CRAFT", is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The methodology makes use of control law design metrics from each of the four design objective areas. It combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, with a graphical approach for representing the metrics that captures numerous design goals in one composite illustration. Sensitivity of the metrics to eigenspace choice is clearly displayed, enabling the designer to assess the cost of design tradeoffs. This approach enhances the designer's ability to make informed design tradeoffs and to reach effective final designs. An example of the CRAFT methodology applied to an advanced experimental fighter and discussion of associated design issues are provided.

  12. Gain-scheduled {{\\mathscr{H}}}_{\\infty } buckling control of a circular beam-column subject to time-varying axial loads

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Platz, Roland

    2018-06-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.

  13. Linear parameter varying representations for nonlinear control design

    NASA Astrophysics Data System (ADS)

    Carter, Lance Huntington

    Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that

  14. Design of control-group conditions in clinical trials of behavioral interventions.

    PubMed

    Lindquist, Ruth; Wyman, Jean F; Talley, Kristine M C; Findorff, Mary J; Gross, Cynthia R

    2007-01-01

    To review considerations in the design of placebo (attention) control conditions for community-based clinical trials of health behavior change interventions and to provide practical strategies for the design of control conditions. A well-designed control condition is an essential component of a clinical trial to foster the unambiguous interpretation of study findings. Pitfalls in the design of control conditions in clinical trials of behavioral interventions are identified and strategies to address them are offered. Types of control conditions that have been used in fall prevention trials are described, along with their strengths and weaknesses. The control condition used in the recent fall evaluation and prevention program (FEPP) was designed to overcome limitations of previous trial designs; it is provided to illustrate how to apply specific design principles. Pitfalls in the design of behavioral intervention studies may be avoided with the application of sound design principles. The FEPP active control condition can be used as a model in the design of future studies.

  15. Object-oriented design for accelerator control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stok, P.D.V. van der; Berk, F. van den; Deckers, R.

    1994-02-01

    An object-oriented design for the distributed computer control system of the accelerator ring EUTERPE is presented. Because of the experimental nature of the ring, flexibility is of the utmost importance. The object-oriented principles have contributed considerably to the flexibility of the design incorporating multiple views, multi-level access and distributed surveillance.

  16. Design and Simulation of a PID Controller for Motion Control Systems

    NASA Astrophysics Data System (ADS)

    Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab

    2018-04-01

    Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.

  17. Model based design introduction: modeling game controllers to microprocessor architectures

    NASA Astrophysics Data System (ADS)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  18. Automatic control system generation for robot design validation

    NASA Technical Reports Server (NTRS)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  19. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  20. Humanoid robot Lola: design and walking control.

    PubMed

    Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz

    2009-01-01

    In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories.

  1. Robust attitude control design for spacecraft under assigned velocity and control constraints.

    PubMed

    Hu, Qinglei; Li, Bo; Zhang, Youmin

    2013-07-01

    A novel robust nonlinear control design under the constraints of assigned velocity and actuator torque is investigated for attitude stabilization of a rigid spacecraft. More specifically, a nonlinear feedback control is firstly developed by explicitly taking into account the constraints on individual angular velocity components as well as external disturbances. Considering further the actuator misalignments and magnitude deviation, a modified robust least-squares based control allocator is employed to deal with the problem of distributing the previously designed three-axis moments over the available actuators, in which the focus of this control allocation is to find the optimal control vector of actuators by minimizing the worst-case residual error using programming algorithms. The attitude control performance using the controller structure is evaluated through a numerical example. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Results of an integrated structure-control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1988-01-01

    Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.

  3. A single dynamic observer-based module for design of simultaneous fault detection, isolation and tracking control scheme

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Meskin, N.; Khorasani, K.

    2018-03-01

    The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).

  4. Microgravity Isolation Control System Design Via High-Order Sliding Mode Control

    NASA Technical Reports Server (NTRS)

    Shkolnikov, Ilya; Shtessel, Yuri; Whorton, Mark S.; Jackson, Mark

    2000-01-01

    Vibration isolation control system design for a microgravity experiment mount is considered. The controller design based on dynamic sliding manifold (DSM) technique is proposed to attenuate the accelerations transmitted to an isolated experiment mount either from a vibrating base or directly generated by the experiment, as well as to stabilize the internal dynamics of this nonminimum phase plant. An auxiliary DSM is employed to maintain the high-order sliding mode on the primary sliding manifold in the presence of uncertain actuator dynamics of second order. The primary DSM is designed for the closed-loop system in sliding mode to be a filter with given characteristics with respect to the input external disturbances.

  5. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  6. Categorization and modeling of information work for H-journal design.

    PubMed Central

    Sundaram, A.

    1996-01-01

    This paper reports on a doctoral research project that examined the work of reference librarians in the health sciences domain. Categories of information work are derived and used to build Hyper-MedLib, a proof-of-concept h-journal. Findings from this study may be used in the design of electronic documents and information systems for the practice environments. PMID:8947690

  7. Optimal laser pulse design for transferring the coherent nuclear wave packet of H+2

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; He, Guang-Qiang; He, Feng

    2014-07-01

    Within the Franck-Condon approximation, the single ionisation of H2 leaves H+2 in a coherent superposition of 19 nuclear vibrational states. We numerically design an optimal laser pulse train to transfer such a coherent nuclear wave packet to the ground vibrational state of H+2. Frequency analysis of the designed optimal pulse reveals that the transfer principle is mainly an anti-Stokes transition, i.e. the H+2 in 1sσg with excited nuclear vibrational states is first pumped to 2pσg state by the pulse at an appropriate time, and then dumped back to 1sσg with lower excited or ground vibrational states. The simulation results show that the population of the ground state after the transfer is more than 91%. To the best of our knowledge, this is the highest transition probability when the driving laser field is dozens of femtoseconds.

  8. SRP engineering and design history, Vol III, 200 F and H Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banick, C.J.

    2000-04-17

    This volume combines the record of events relating to the development of design for both the 200-F and H Areas. Chronologically, the definition of plant facilities was first established for the 200-F Area. The second area, 200-H, was projected initially to be a supplementary plutonium separations facility. This history explains the differences in character and capacity of the manufacturing facilities in both areas as production requirements and experience with separations processes advanced.

  9. Statistical Design Model (SDM) of satellite thermal control subsystem

    NASA Astrophysics Data System (ADS)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi

    2016-07-01

    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  10. Fuzzy logic-based flight control system design

    NASA Astrophysics Data System (ADS)

    Nho, Kyungmoon

    The application of fuzzy logic to aircraft motion control is studied in this dissertation. The self-tuning fuzzy techniques are developed by changing input scaling factors to obtain a robust fuzzy controller over a wide range of operating conditions and nonlinearities for a nonlinear aircraft model. It is demonstrated that the properly adjusted input scaling factors can meet the required performance and robustness in a fuzzy controller. For a simple demonstration of the easy design and control capability of a fuzzy controller, a proportional-derivative (PD) fuzzy control system is compared to the conventional controller for a simple dynamical system. This thesis also describes the design principles and stability analysis of fuzzy control systems by considering the key features of a fuzzy control system including the fuzzification, rule-base and defuzzification. The wing-rock motion of slender delta wings, a linear aircraft model and the six degree of freedom nonlinear aircraft dynamics are considered to illustrate several self-tuning methods employing change in input scaling factors. Finally, this dissertation is concluded with numerical simulation of glide-slope capture in windshear demonstrating the robustness of the fuzzy logic based flight control system.

  11. Improvement of the Performance of an Electrocoagulation Process System Using Fuzzy Control of pH.

    PubMed

    Demirci, Yavuz; Pekel, Lutfiye Canan; Altinten, Ayla; Alpbaz, Mustafa

    2015-12-01

    The removal efficiencies of electrocoagulation (EC) systems are highly dependent on the initial value of pH. If an EC system has an acidic influent, the pH of the effluent increases during the treatment process; conversely, if such a system has an alkaline influent, the pH of the effluent decreases during the treatment process. Thus, changes in the pH of the wastewater affect the efficiency of the EC process. In this study, we investigated the dynamic effects of pH. To evaluate approaches for preventing increases in the pH of the system, the MATLAB/Simulink program was used to develop and evaluate an on-line computer-based system for pH control. The aim of this work was to study Proportional-Integral-Derivative (PID) control and fuzzy control of the pH of a real textile wastewater purification process using EC. The performances and dynamic behaviors of these two control systems were evaluated based on determinations of COD, colour, and turbidity removal efficiencies.

  12. A Comparative Study of Standardized Infinity Reference and Average Reference for EEG of Three Typical Brain States

    PubMed Central

    Zheng, Gaoxing; Qi, Xiaoying; Li, Yuzhu; Zhang, Wei; Yu, Yuguo

    2018-01-01

    The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG) signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST) has been increasingly applied, while the average reference (AR) was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening). The analysis results revealed the following observations: (1) there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2) there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3) the global brain functional connectivity density (FCD) and local FCD have higher values for REST than for AR under different behavior states; and (4) the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands) higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording. PMID:29593490

  13. Controller design via structural reduced modeling by FETM

    NASA Technical Reports Server (NTRS)

    Yousuff, A.

    1986-01-01

    The Finite Element - Transfer Matrix (FETM) method has been developed to reduce the computations involved in analysis of structures. This widely accepted method, however, has certain limitations, and does not directly produce reduced models for control design. To overcome these shortcomings, a modification of FETM method has been developed. The modified FETM method easily produces reduced models that are tailored toward subsequent control design. Other features of this method are its ability to: (1) extract open loop frequencies and mode shapes with less computations, (2) overcome limitations of the original FETM method, and (3) simplify the procedures for output feedback, constrained compensation, and decentralized control. This semi annual report presents the development of the modified FETM, and through an example, illustrates its applicability to an output feedback and a decentralized control design.

  14. Structured output-feedback controller synthesis with design specifications

    NASA Astrophysics Data System (ADS)

    Hao, Yuqing; Duan, Zhisheng

    2017-03-01

    This paper considers the problem of structured output-feedback controller synthesis with finite frequency specifications. Based on the orthogonal space information of input matrix, an improved parameter-dependent Lyapunov function method is first proposed. Then, a two-stage construction method is designed, which depends on an initial centralised controller. Corresponding design conditions for three types of output-feedback controllers are presented in terms of unified representations. Moreover, heuristic algorithms are provided to explore the desirable controllers. Finally, the effectiveness of these proposed methods is illustrated via some practical examples.

  15. The role of modern control theory in the design of controls for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    The development, applications, and current research in modern control theory (MCT) are reviewed, noting the importance for fuel-efficient operation of turbines with variable inlet guide vanes, compressor stators, and exhaust nozzle area. The evolution of multivariable propulsion control design is examined, noting a basis in a matrix formulation of the differential equations defining the process, leading to state space formulations. Reports and papers which appeared from 1970-1982 which dealt with problems in MCT applications to turbine engine control design are outlined, including works on linear quadratic regulator methods, frequency domain methods, identification, estimation, and model reduction, detection, isolation, and accommodation, and state space control, adaptive control, and optimization approaches. Finally, NASA programs in frequency domain design, sensor failure detection, computer-aided control design, and plant modeling are explored

  16. Optical charge state control of spin defects in 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.

    Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less

  17. Optical charge state control of spin defects in 4H-SiC

    DOE PAGES

    Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.; ...

    2017-11-30

    Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less

  18. Static-dynamic hybrid communication scheduling and control co-design for networked control systems.

    PubMed

    Wen, Shixi; Guo, Ge

    2017-11-01

    In this paper, the static-dynamic hybrid communication scheduling and control co-design is proposed for the networked control systems (NCSs) to solve the capacity limitation of the wireless communication network. The analytical most regular binary sequences (MRBSs) are used as the communication scheduling function for NCSs. When the communication conflicts yielded in the binary sequence MRBSs, a dynamic scheduling strategy is proposed to on-line reallocate the medium access status for each plant. Under such static-dynamic hybrid scheduling policy, plants in NCSs are described as the non-uniform sampled-control systems, whose controller have a group of controller gains and switch according to the sampling interval yielded by the binary sequence. A useful communication scheduling and control co-design framework is proposed for the NCSs to simultaneously decide the controller gains and the parameters used to generate the communication sequences MRBS. Numerical example and realistic example are respectively given to demonstrate the effectiveness of the proposed co-design method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Real-time pH monitoring of industrially relevant enzymatic reactions in a microfluidic side-entry reactor (μSER) shows potential for pH control.

    PubMed

    Gruber, Pia; Marques, Marco P C; Sulzer, Philipp; Wohlgemuth, Roland; Mayr, Torsten; Baganz, Frank; Szita, Nicolas

    2017-06-01

    Monitoring and control of pH is essential for the control of reaction conditions and reaction progress for any biocatalytic or biotechnological process. Microfluidic enzymatic reactors are increasingly proposed for process development, however typically lack instrumentation, such as pH monitoring. We present a microfluidic side-entry reactor (μSER) and demonstrate for the first time real-time pH monitoring of the progression of an enzymatic reaction in a microfluidic reactor as a first step towards achieving pH control. Two different types of optical pH sensors were integrated at several positions in the reactor channel which enabled pH monitoring between pH 3.5 and pH 8.5, thus a broader range than typically reported. The sensors withstood the thermal bonding temperatures typical of microfluidic device fabrication. Additionally, fluidic inputs along the reaction channel were implemented to adjust the pH of the reaction. Time-course profiles of pH were recorded for a transketolase and a penicillin G acylase catalyzed reaction. Without pH adjustment, the former showed a pH increase of 1 pH unit and the latter a pH decrease of about 2.5 pH units. With pH adjustment, the pH drop of the penicillin G acylase catalyzed reaction was significantly attenuated, the reaction condition kept at a pH suitable for the operation of the enzyme, and the product yield increased. This contribution represents a further step towards fully instrumented and controlled microfluidic reactors for biocatalytic process development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.