Sample records for h-mode confinement scalings

  1. Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Osborne, T.; Snyder, P. B.; Alper, B.; Angioni, C.; Bourdelle, C.; Buratti, P.; Crisanti, F.; Giovannozzi, E.; Giroud, C.; Groebner, R.; Hobirk, J.; Jenkins, I.; Joffrin, E.; Leyland, M. J.; Lomas, P.; Mantica, P.; McDonald, D.; Nunes, I.; Rimini, F.; Saarelma, S.; Voitsekhovitch, I.; de Vries, P.; Zarzoso, D.; Contributors, JET-EFDA

    2013-01-01

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ˜ 1.5-2, H98 ˜ 1, whereas the hybrid plasmas have βN ˜ 2.5-3, H98 < 1.5. The database study contains both low- (δ ˜ 0.2-0.25) and high-triangularity (δ ˜ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as Mach_A^{0.41+/- 0.07} and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ˜ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No

  2. Semiempirical models of H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, C.E.; Redi, M.; Boyd, D.

    1985-05-01

    The H-mode transition can lead to a rapid increase in tokamak plasma confinement. A semiempirical transport model was derived from global OH and L-mode confinement scalings and then applied to simulation of H-mode discharges. The radial diffusivities in the model also depend on local density and pressure gradients and satisfy an appropriate dimensional constraint. Examples are shown of the application of this and similar models to the detailed simulation of two discharges which exhibit an H-mode transition. The models reproduce essential features of plasma confinement in the ohmic heating, low and high confinement phases of these discharges. In particular, themore » evolution of plasma energy content through the H-mode transition can be reproduced without any sudden or ad hoc modification of the plasma transport formulation.« less

  3. E-H mode transition of a high-power inductively coupled plasma torch at atmospheric pressure with a metallic confinement tube

    NASA Astrophysics Data System (ADS)

    Altenberend, Jochen; Chichignoud, Guy; Delannoy, Yves

    2012-08-01

    Inductively coupled plasma torches need high ignition voltages for the E-H mode transition and are therefore difficult to operate. In order to reduce the ignition voltage of an RF plasma torch with a metallic confinement tube the E-H mode transition was studied. A Tesla coil was used to create a spark discharge and the E-H mode transition of the plasma was then filmed using a high-speed camera. The electrical potential of the metallic confinement tube was measured using a high-voltage probe. It was found that an arc between the grounded injector and the metallic confinement tube is maintained by the electric field (E-mode). The transition to H-mode occurred at high magnetic fields when the arc formed a loop. The ignition voltage could be reduced by connecting the metallic confinement tube with a capacitor to the RF generator.

  4. High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak.

    PubMed

    Thome, K E; Bongard, M W; Barr, J L; Bodner, G M; Burke, M G; Fonck, R J; Kriete, D M; Perry, J M; Schlossberg, D J

    2016-04-29

    Tokamak experiments at near-unity aspect ratio A≲1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A∼3 plasmas, the L-H power threshold P_{LH} is ∼15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible J_{edge}(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  5. High confinement mode and edge localized mode characteristics in a near-unity aspect ratio tokamak

    DOE PAGES

    Thome, Kathreen E.; Bongard, Michael W.; Barr, Jayson L.; ...

    2016-04-27

    Tokamak experiments at near-unity aspect ratio A ≲ 1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A ~ 3 plasmas, the L–H power threshold P LH is ~15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. Furthermore, these ultralow-A operations enable heretofore inaccessible J edge(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  6. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D [Discovery of stationary operation of quiescent H-mode plasmas with Net-Zero NBI torque and high energy confinement on DIII-D

    DOE PAGES

    Burrell, Keith H.; Barada, Kshitish; Chen, Xi; ...

    2016-03-11

    Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good

  7. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D [Discovery of stationary operation of quiescent H-mode plasmas with Net-Zero NBI torque and high energy confinement on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Keith H.; Barada, Kshitish; Chen, Xi

    Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good

  8. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    NASA Astrophysics Data System (ADS)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  9. Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.

    PubMed

    Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G

    2012-04-13

    Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

  10. ITER L-Mode Confinement Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Kaye and the ITER Confinement Database Working Group

    This paper describes the content of an L-mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR, and Tore-Supra. The database consists of a total of 2938 entries, 1881 of which are in the L-phase while 922 are ohmically heated (OH) only. Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning, and configuration. The paper presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER. The L-modemore » thermal confinement time scaling was determined from a subset of 1312 entries for which the thermal confinement time scaling was provided.« less

  11. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, K. H.; Chen, X.; Garofalo, A. M.

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H{sub 98y2} international tokamakmore » energy confinement scaling (H{sub 98y2} = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β{sub N} = 1.6–1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware

  12. Multi-Field/-Scale Interaction of Neoclassical Tearing Modes with Turbulence and Impact on Plasma Confinement

    NASA Astrophysics Data System (ADS)

    Bardoczi, Laszlo

    Neoclassical Tearing Modes (NTMs) are a major impediment in the development of operational scenarios of present toroidal fusion devices. The multi-scale and non-linear interaction of NTMs with turbulence has been an active field of theoretical plasma research in the past decade for its role in plasma confinement. However, little to no experimental effort has been devoted to explore this interaction. As part of this thesis, dedicated experiments were conducted utilizing the full complement of the DIII-D turbulence diagnostics to study the effect of NTM on turbulence as well as the effect of turbulence on NTM growth. The first localized measurements of long and intermediate wavelength turbulent density fluctuations and long wavelength turbulent electron temperature fluctuations modified by magnetic islands are presented. These long and intermediate wavelengths correspond to the expected Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) scales, respectively. Two regimes were observed when tracking density fluctuations during NTM evolution: (1) small islands are characterized by steep electron temperature radial profile and turbulence levels comparable to that of the background; (2) large islands have a flat electron temperature profile and reduced turbulence level at the O-point. Radially outside of the large island, the electron temperature profile is steeper and the turbulence level increased compared to the no or small island case. It was also found that turbulence is reduced in the O-point region compared to the X-point region. This helical structure of turbulence modification leads to a 15% modulation of the density fluctuation power as the island rotates in the lab frame and this modulation is nearly in phase with the electron temperature modulation. These measurements were also used to determine the turbulence penetration length scale at the island separatrix and was found that the turbulence penetration length scale is on the order of the

  13. Isotope effects on L-H threshold and confinement in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Maggi, C. F.; Weisen, H.; Hillesheim, J. C.; Chankin, A.; Delabie, E.; Horvath, L.; Auriemma, F.; Carvalho, I. S.; Corrigan, G.; Flanagan, J.; Garzotti, L.; Keeling, D.; King, D.; Lerche, E.; Lorenzini, R.; Maslov, M.; Menmuir, S.; Saarelma, S.; Sips, A. C. C.; Solano, E. R.; Belonohy, E.; Casson, F. J.; Challis, C.; Giroud, C.; Parail, V.; Silva, C.; Valisa, M.; Contributors, JET

    2018-01-01

    The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.

  14. Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary.

    PubMed

    Evans, T E; Moyer, R A; Thomas, P R; Watkins, J G; Osborne, T H; Boedo, J A; Doyle, E J; Fenstermacher, M E; Finken, K H; Groebner, R J; Groth, M; Harris, J H; La Haye, R J; Lasnier, C J; Masuzaki, S; Ohyabu, N; Pretty, D G; Rhodes, T L; Reimerdes, H; Rudakov, D L; Schaffer, M J; Wang, G; Zeng, L

    2004-06-11

    A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.

  15. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D [Impurity confinement and transport in high confinement regimes without ELMs on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Nazikian, Raffi M.; ...

    2015-04-17

    Here, impurity transport in the DIII-D tokamak is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP) ELM-suppression and QH-mode the confinement time of fluorine (Z=9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection the impurity particle confinement time compared to the energy confinement time is in the range of τ p/τ e ≈ 2 $-$ 3. In QH-mode operation the impurity confinement time is shown to be smaller for intense, coherent magnetic and density fluctuations of the edge harmonicmore » oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2-3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient higher inside of ρ = 0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.« less

  16. Transport properties of NSTX-U L- and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, Stanley; Guttenfelder, Walter; Bell, Ron; Diallo, Ahmed; Leblanc, Ben; Podesta, Mario

    2016-10-01

    The confinement and transport properties of L- and H-mode plasmas in NSTX-U has been studied using the TRANSP code. A dedicated series of L-mode discharges was obtained to study the dependence of confinement and transport on power level and beam aiming angle. The latter is made possible by having two beamlines with 3 sources each, capable of injecting with tangency radii from Rtan = 50 to 130 cm (Rgeo = 92 cm). L-mode plasmas typically have confinement enhancement factors with H98y,2 =0.6 to 0.65, exhibiting a 25% decrease in confinement time as the beam power is raised from 1 to 3 MW. Associated with this is an increase in the electron thermal diffusivity in the core of the plasma from 3.5 to 10 m2/s. Electron thermal transport is the dominant energy loss channel in these plasmas. H-mode plasmas exhibit improved confinement, with H98y,2 =1 or above, and core electron thermal diffusivity values <1 m2/s. Details of these studies will be presented, along with the results of the beam tangency radius scan in L-mode plasmas. This research was supported by the U.S. Department of Energy contract # DE-AC02-09CH11466.

  17. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E., E-mail: whitea@mit.edu; Howard, N. T.; Creely, A. J.

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and comparemore » with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.« less

  18. Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2009-05-01

    A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

  19. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [The quiescent H-mode regime for high performance ELM-stable operation in future burning plasmas

    DOE PAGES

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...

    2015-05-26

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  20. SPECIAL TOPIC: ITER L mode confinement database

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Greenwald, M.; Stroth, U.; Kardaun, O.; Kus, A.; Schissel, D.; DeBoo, J.; Bracco, G.; Thomsen, K.; Cordey, J. G.; Miura, Y.; Matsuda, T.; Tamai, H.; Takizuda, T.; Hirayama, T.; Kikuchi, H.; Naito, O.; Chudnovskij, A.; Ongena, J.; Hoang, G.

    1997-09-01

    This special topic describes the contents of an L mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR and Tore Supra. The database consists of a total of 2938 entries, 1881 of which are in the L phase while 922 are ohmically heated only (ohmic). Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning and configuration. The special topic presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER. The L mode thermal confinement time scaling, determined from a subset of 1312 entries for which the τE,th are provided, is τE,th = 0.023Ip0.96BT0.03R1.83(R/a)0.06 κ0.64ne0.40Meff0.20P-0.73 in units of seconds, megamps, teslas, metres, -, -, 10-9 m-1

  1. Multi-device studies of pedestal physics and confinement in the I-mode regime

    DOE PAGES

    Hubbard, A. E.; Osborne, T.; Ryter, F.; ...

    2016-07-05

    This paper describes joint ITPA studies of the I-mode regime, which features an edge thermal barrier together with L-mode-like particle and impurity transport and no Edge Localized Modes (ELMs). The regime has been demonstrated on the Alcator C-Mod, ASDEX Upgrade and DIII-D tokamaks, over a wide range of device parameters and pedestal conditions. Dimensionless parameters at the pedestal show overlap across devices and extend to low collisionality. When they are matched, pedestal temperature profiles are also similar. Pedestals are stable to peeling ballooning modes, consistent with lack of ELMs. Access to Imode is independent of heating method (neutral beam injection,more » Ion Cyclotron and/or Electron Cyclotron Resonance Heating). Normalized energy confinement H 98,y2 ≥ 1 has been achieved for a range of 3 ≤ q 95 ≤ 4.9 and scales favourably with power. Changes in turbulence in the pedestal region accompany the transition from L-mode to I-mode. The L-I threshold increases with plasma density and current, and with device size, but has a weak dependence on toroidal magnetic field B T. The upper limit of power for I-modes, which is set by I-H transitions, increases with B T and the power range is largest on Alcator C-Mod at B > 5 T. Finally, issues for extrapolation to ITER and other future fusion devices are discussed.« less

  2. Improved H mode with flat central q profile on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Haiqing; Yang, Yao; Gao, Xiang; Zeng, Long; Qian, Jinping; Gong, Xianzu; Wan, Baonian; Ding, Weixing; Brower, David Lyn; EAST Team

    2017-10-01

    High betaN ( 1.8) plasma with good confinement (H98y2 1.1) on EAST tokamak has been reported recently. These ELMy H-mode plasmas with Bt = 1.6T, Ip = 400 kA and q95 4.5 were heated by lower hybrid wave and neutral beam injection. The internal transport barrier (ITB) and edge transport barrier (ETB) are both observed with m/n =1/1 fishbone, which were identified to clamp central q at values close to unity. Implying an improved H-mode with flat central q profile and absence of sawteeth, like other devices. Accurate q profile, key profile for developing scenarios aim at high performance H mode, were derived by Polarimeter-interferometer (POINT) measurement as constraint. Base on the optimized current profile, better confinement (H98y2 1.4) with an electron ITB was obtained also with flat central q profile and absence of sawteeth at high betaP ( 2) regime with Bt = 2.5T, Ip = 400 kA. Both high betaN regime and high betaP regime H mode, are characterized by a stationary flat central q profile q0 >=1, but typically close to 1, absence of sawteeth, H98(y,2) >1 and simultaneously, with ITB. This work is supported by the National Magnetic Confinement Fusion Program of China with Contract No. 2014GB106002 and partly supported by the US D.O.E. contract DESC0010469.

  3. Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.

    2018-01-01

    High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.

  4. Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.

    2018-05-01

    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.

  5. Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition.

    PubMed

    Conway, G D; Angioni, C; Ryter, F; Sauter, P; Vicente, J

    2011-02-11

    A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

  6. Investigation of physical processes limiting plasma density in H-mode on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, R.; Mahdavi, M.A.; Jernigan, T.C.

    1996-12-01

    A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmasmore » was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.« less

  7. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  8. The effect of the isotope on the H-mode density limit

    NASA Astrophysics Data System (ADS)

    Huber, A.; Wiesen, S.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Abreu, P.; Boboc, A.; Brix, M.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Guillemaut, C.; Jachmich, S.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph.; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; contributors, JET; ASDEX Upgrade Team

    2017-08-01

    In order to understand the mechanisms for the H-mode density limit in machines with fully metallic walls, systematic investigations of H-mode density limit plasmas in experiments with deuterium and hydrogen external gas fuelling have been performed on JET-ILW. The observed H-mode density limit on JET in D- as well as in H-plasmas demonstrates similar operation phases: the stable H-mode phase, degrading H-mode, breakdown of the H-mode with energy confinement deterioration accompanied by a dithering cycling phase, followed by the L-mode phase. The density limit is not related to an inward collapse of the hot core plasma due to an overcooling of the plasma periphery by radiation. Indeed, independently of the isotopic effect, the total radiated power stay almost constant during the H-mode phase until the H-L back transition. It was observed in D- and H-plasmas that neither detachment, nor the X-point MARFE itself do trigger the H-L transition and that they thus do not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the H-mode DL. By comparing similar discharges but fuelled with either deuterium or hydrogen, we have found that the H-mode density limit exhibits a dependence on the isotope mass: the density limit is up to 35% lower in hydrogen compared to similar deuterium plasma conditions (the obtained density limit is in agreement with the Greenwald limit for D-plasma). In addition, the density limit is nearly independent of the applied power both in deuterium or hydrogen fuelling conditions. The measured Greenwald fractions are consistent with the predictions from a theoretical model based on an MHD instability theory in the near-SOL. The JET operational domains are significantly broadened when increasing the plasma effective mass (e.g. tritium or deuterium-tritium operation), i.e. the L to H power threshold is reduced whereas the density limit for the L-mode back

  9. Overview of long pulse H-mode operation on EAST

    NASA Astrophysics Data System (ADS)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  10. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    DOE PAGES

    Suttrop, Wolfgang; Kirk, A.; Nazikian, R.; ...

    2016-11-22

    Here, the interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality,more » $$\

  11. BOUT++ simulations of edge turbulence in Alcator C-Mod's EDA H-mode

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.; MIT PSFC Team; Atomics Team, General; LLNL Team

    2013-10-01

    Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.

  12. BOUT++ Simulations of Edge Turbulence in Alcator C-Mod's EDA H-Mode

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.

    2013-10-01

    Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.

  13. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    DOE PAGES

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; ...

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$ e ≈ 7 × 10 19 m ₋3) and normalized Greenwald fraction ($$\\bar{n}$$ e/n G > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q 95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less

  14. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    NASA Astrophysics Data System (ADS)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  15. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  16. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    PubMed

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  17. ELM Suppression and Pedestal Structure in I-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Walk, John

    2013-10-01

    The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.

  18. Collective oscillations and coupled modes in confined microfluidic droplet arrays

    NASA Astrophysics Data System (ADS)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.

  19. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures.

    PubMed

    Brar, Victor W; Jang, Min Seok; Sherrott, Michelle; Kim, Seyoon; Lopez, Josue J; Kim, Laura B; Choi, Mansoo; Atwater, Harry

    2014-07-09

    Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.

  20. Effect of density gradients in confined supersonic shear layers. Part 2: 3-D modes

    NASA Astrophysics Data System (ADS)

    Peroomian, Oshin; Kelly, R. E.

    1994-11-01

    The effect of basic flow density gradients on the supersonic wall modes were investigated in Part 1 of this analysis. In that investigation only the 2-D modes were studied. Tam and Hu investigated the 3-D modes in a confined vortex sheet and reported that the first 2-D Class A mode (A01) had the highest growth rate compared to all other 2-D and 3-D modes present in the vortex sheet for that particular set of flow patterns. They also showed that this result also held true for finite thickness shear layers with delta(sub w) less than 0.125. For free shear layers, Sandham and Reynolds showed that the 3-D K-H mode became the dominant mode for M(sub c) greater than 0.6. Jackson and Grosch investigated the effect of crossflow and obliqueness on the slow and fast odes present in a M(sub c) greater than 1 environment and showed that for certain combination of crossflow and wave angles the growth rates could be increased by up to a factor of 2 with respect to the 2-D case. The case studied here is a confined shear layer shown in Part 1. All solution procedures and basic low profiles are the same as in Part 1. The effect of density gradients on the 3-D modes present in the density ratios considered in Part 1 are investigated.

  1. Unified approach for calculating the number of confined modes in multilayered waveguiding structures

    NASA Astrophysics Data System (ADS)

    Ruschin, S.; Griffel, G.; Hardy, A.; Croitoru, N.

    1986-01-01

    A general formalism is developed in order to find the number of modes and mode cutoff conditions in multilayer waveguiding structures. An explicit expression is presented for the number of confined modes that allows the modes to be counted without having to analyze the specific eigenvalue equation of the structure. The method is illustrated by its application to several structures: the buried layer, the directional coupler, and the three-guide symmetrical arrangement. By a suitable extension of the formalism, the number of well-confined modes is found for a four-layer structure.

  2. Edge-localized mode avoidance and pedestal structure in I-mode plasmasa)

    NASA Astrophysics Data System (ADS)

    Walk, J. R.; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A.; Cziegler, I.

    2014-05-01

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle Pnet/n ¯e, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of Pnet/n ¯e. This is consistent with targets for increased performance in I-mode, elevating pedestal βp and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of

  3. Response of impurity particle confinement time to external actuators in QH-mode plasmas on DIII-D

    DOE PAGES

    Grierson, Brian A.; Burrell, Keith H.; Garofalo, Andrea M.; ...

    2014-11-04

    A series of quiescent H-mode discharges have been executed with the specific aim of determining the particle confinement time of impurities in the presence of the edge harmonic oscillation. These discharges utilize non-intrinsic, non-recycling fully-stripped fluorine as the diagnostic species monitored by charge-exchange recombination spectroscopy. It is found that the EHO is an efficient means of impurity expulsion from the core plasma, with impurity exhaust rates comparable to or exceeding those in companion ELMing discharges. Furthermore, as the external torque from neutral beam injection is lowered, the global energy confinement time increases while the impurity confinement time does not displaymore » an increase.« less

  4. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Asunta, O.; Kurki-Suonio, T.; Tala, T.; Sipilä, S.; Salomaa, R.; contributors, JET-EFDA

    2008-12-01

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger (~16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  5. Edge Stability and Performance of the ELM-Free Quiescent H-Mode and the Quiescent Double Barrier Mode on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, W P; Burrell, K H; Casper, T A

    2004-12-03

    The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less

  6. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE PAGES

    Ding, Siye; Garofalo, A. M.; Qian, J.; ...

    2017-05-03

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  7. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Siye; Garofalo, A. M.; Qian, J.

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  8. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to themore » structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  9. Observation of the L-H confinement bifurcation triggered by a turbulence-driven shear flow in a tokamak plasma.

    PubMed

    Yan, Z; McKee, G R; Fonck, R; Gohil, P; Groebner, R J; Osborne, T H

    2014-03-28

    Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100  μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.

  10. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  11. Confinement & Stability in MAST

    NASA Astrophysics Data System (ADS)

    Akers, Rob

    2001-10-01

    Transition to H-mode has been achieved in the MAST spherical tokamak (ST) for both ohmically and neutral beam heated plasmas (P_NBI ~ 0.5-1.5MW), resulting in double-null diverted discharges containing both regular and irregular edge localised modes (ELMs). The observed L-H power threshold is ~10 times higher than predicted by established empirical scalings. L-H transition in MAST is accompanied by a sharp increase in edge density gradient, the efficient conversion of internal electron Bernstein waves into free space waves, the onset and saturation of edge poloidal rotation and a marked decrease in turbulence. During ELM free periods, a reduction in outboard power deposition width is observed using a Langmuir probe array. A novel divertor structure has been installed to counter the resulting increase in target heat-flux by applying a toroidally varying potential to the divertor plasma, theory suggesting that convective broadening of the scrape off layer will take place. Global confinement in H-mode is found to routinely exceed the international IPB(y,2) scaling, even for discharges approaching the Greenwald density. In an attempt to further extend the density range (densities in excess of Greenwald having been achieved for plasma currents up to 0.8MA) a multi-pellet injector has been installed at the low-field-side. In addition, high field side fuelling can be supplied via a gas-feed located at the centre-column mid-plane, this technique having been found to significantly enhance H-mode accessibility and quality. A range of stability issues will be discussed, including vertical displacement events, the rich variety of high frequency MHD seen in MAST and the physics of the Neoclassical Tearing Mode. This work was funded by the UK Department of Trade and Industry and by EURATOM. The NBI equipment is on loan from ORNL and the pellet injector was provided by FOM.

  12. Distinct turbulence sources and confinement features in the spherical tokamak plasma regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; ...

    2015-10-30

    New turbulence contributions to plasma transport and confinement in the spherical tokamak (ST) regime are identified through nonlinear gyrokinetic simulations. The drift wave Kelvin-Helmholtz (KH) mode characterized by intrinsic mode asymmetry is shown to drive significant ion thermal transport in strongly rotating national spherical torus experiment (NSTX) L-modes. The long wavelength, quasi-coherent dissipative trapped electron mode (TEM) is destabilized in NSTX H-modes despite the presence of strong E x B shear, providing a robust turbulence source dominant over collisionless TEM. Dissipative trapped electron mode (DTEM)-driven transport in the NSTX parametric regime is shown to increase with electron collision frequency, offeringmore » one possible source for the confinement scaling observed in experiments. There exists a turbulence-free regime in the collision-induced collisionless trapped electron mode to DTEM transition for ST plasmas. In conclusion, this predicts a natural access to a minimum transport state in the low collisionality regime that future advanced STs may cover.« less

  13. Public Data Set: High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-04-27

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak,' Phys. Rev. Lett. 116, 175001 (2016).

  14. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×10 7 s -1.« less

  15. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    NASA Astrophysics Data System (ADS)

    Ding, S.; Garofalo, A. M.; Qian, J.; Cui, L.; McClenaghan, J. T.; Pan, C.; Chen, J.; Zhai, X.; McKee, G.; Ren, Q.; Gong, X.; Holcomb, C. T.; Guo, W.; Lao, L.; Ferron, J.; Hyatt, A.; Staebler, G.; Solomon, W.; Du, H.; Zang, Q.; Huang, J.; Wan, B.

    2017-05-01

    Systematic experimental and modeling investigations on DIII-D show attractive transport properties of fully non-inductive high βp plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high βp regime, is maintained when the scenario is extended from q95 ˜ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without the E × B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift, which is essential and sets a βp threshold for large-radius ITB formation in the high βp scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for a βN scan and the other for a q95 scan. They both give the same βp threshold at 1.9 in the experiment. The experimental trend of increasing thermal transport with decreasing βp is consistent with transport modeling. The progress toward the high βp scenario on Experimental Advanced Superconducting Tokamak (EAST) is reported. The very first step of extending the high βp scenario on DIII-D to long pulse on EAST is to establish a long pulse H-mode with ITB on EAST. This paper shows the first 61 s fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave as a key tool to optimize the current profile in the EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability are also used to develop advanced scenarios for the China Fusion Engineering Test Reactor. Overall, these results provide encouragement that the high βp regime can be extended to a lower safety factor and very low rotation

  16. Dependence of L-mode confinement on the electron cyclotron power deposition profile in the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Kirneva, N. A.; Razumova, K. A.; Pochelon, A.; Behn, R.; Coda, S.; Curchod, L.; Duval, B. P.; Goodman, T. P.; Labit, B.; Karpushov, A. N.; Rancic, M.; Sauter, O.; Silva, M.; TCV Team

    2012-01-01

    Scenarios with different electron cyclotron heating power profile distributions and widths were compared for the first time in experiments on the Tokamak à Configuration Variable (TCV). The heating profile was changed from shot to shot over a wide range from localized on-axis, with normalized minor radius half-width at half maximum σ1/2 ~ 0.1, up to a widely distributed heating power profile with σ1/2 ~ 0.4 and finally to a profile peaked far off-axis. The global confinement, MHD activity, density, temperature and electron pressure profile evolution were compared. In particular, the energy confinement properties of discharges with localized on-axis heating and distributed on-axis heating were very similar, with degradation close to that predicted by the ITER L-mode scaling; in the case of off-axis heating, on the other hand, the confinement degradation was even stronger.

  17. H-Mode Behavior Induced by Modulated Toroidal Current on HT-7 and HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, J. S.; Luo, J. R.; Xu, Y. H.; Zhao, J. Y.; Zhang, X. M.; Li, J. G.; Zhang, X. M.; Gao, X.; Li, Y. D.; Jie, Y. X.; Wu, Z. W.; Hu, L. Q.; Liu, S. X.; Zhang, X. D.; Bao, Y.; Yang, K.; Wang, G. X.; Chen, L.; Shi, Y. J.; Qin, P. J.; Gu, X. M.; Cui, N. Z.; Fan, H. Y.; Chen, Y. F.; Xia, C. Y.; Ruan, H. L.; Tong, X. D.; Phillips, P. E.

    2001-10-01

    An improved Ohmic confinement phase (similar to H-mode) has been observed during Modulating Toroidal Current on the Hefei Tokamak-6M (HT-6M) and Hefei super-conducting Tokamak-7 (HT-7). This improved plasma confinement phase is characterized by: (a) an increase in ne and T_e(0); (b) reduced H_α radiation from the edge; (c) steeper density and temperature profiles at the edge; (d) a more negative radial electric field inside the limiter; (e) a deeper electrostatic potential well at the edge; (f) reduced magnetic fluctuations at the edge; (g) MHD suppressing; (h) and by an increase in global energy confinement time, τ _e, by 27%-45%. The well-like structure of the radial electric field E_r, appears at an L-H like transition.

  18. Axisymmetric oscillations at L-H transitions in JET: M-mode

    NASA Astrophysics Data System (ADS)

    Solano, Emilia R.; Vianello, N.; Delabie, E.; Hillesheim, J. C.; Buratti, P.; Réfy, D.; Balboa, I.; Boboc, A.; Coelho, R.; Sieglin, B.; Silburn, S.; Drewelow, P.; Devaux, S.; Dodt, D.; Figueiredo, A.; Frassinetti, L.; Marsen, S.; Meneses, L.; Maggi, C. F.; Morris, J.; Gerasimov, S.; Baruzzo, M.; Stamp, M.; Grist, D.; Nunes, I.; Rimini, F.; Schmuck, S.; Lupelli, I.; Silva, C.; contributors, JET

    2017-02-01

    L to H transition studies at JET have revealed an n  =  0, m  =  1 magnetic oscillation starting immediately at the L to H transition (called M-mode for brevity). While the magnetic oscillation is present a weak ELM-less H-mode regime is obtained, with a clear increase of density and a weak electron temperature pedestal. It is an intermediate state between L and H-mode. In ICRH heated plasmas or low density NBI plasmas the magnetic mode and the pedestal can remain steady (with small oscillations) for the duration of the heating phase, of order 10 s or more. The axisymmetric magnetic oscillation has period ~0.5-2 ms, and poloidal mode number m  =  1: it looks like a pedestal localised up/down oscillation, although it is clearly a natural oscillation of the plasma, not driven by the position control system. Electron cyclotron emission, interferometry, reflectometry and fast Li beam measurements locate the mode in the pedestal region. D α , fast infrared camera and Langmuir probe measurements show that the mode modulates heat and particle fluxes to the target. The mode frequency appears to scale with the poloidal Alfvén velocity, and not with sound speed (i.e. it is not a geodesic acoustic mode). A heuristic model is proposed for the frequency scaling of the mode. We discuss the relationship between the M-mode and other related observations near the L-H transition.

  19. H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment

    DOE PAGES

    Thome, Kathleen E.; Bongard, Michael W.; Barr, Jayson L.; ...

    2016-09-30

    H-mode is obtained atmore » $$A\\sim 1.2$$ in the Pegasus Toroidal Experiment via Ohmic heating, high-field-side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to $${{H}_{98y,2}}\\sim 1$$ . The L–H power threshold $${{P}_{\\text{LH}}}$$ increases with density, and there is no $${{P}_{\\text{LH}}}$$ minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured $${{P}_{\\text{LH}}}$$ is $$\\sim 15\\,\\,\\times $$ higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and $${{P}_{\\text{LH}}}/{{P}_{\\text{ITPA}08}}$$ increases as $$A\\to 1$$ . Small ELMs are present at low input power $${{P}_{\\text{IN}}}\\sim {{P}_{\\text{LH}}}$$ , with toroidal mode number $$n\\leqslant 4$$ . At $${{P}_{\\text{IN}}}\\gg {{P}_{\\text{LH}}}$$ , they transition to large ELMs with intermediate 5 < n < 15. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.« less

  20. Discriminant analysis to predict the occurrence of ELMS in H-mode discharges

    NASA Astrophysics Data System (ADS)

    Kardaun, O. J. W. F.; Itoh, S.-I.; Itoh, K.; Kardaun, J. W. P. F.

    1993-08-01

    After an exposition of its theoretical background, discriminant analysis is applied to the H-mode confinement database to find the region in plasma parameter space in which H-mode with small ELM's (Edge Localized Modes) is likely to occur. The boundary of this region is determined by the condition that the probability of appearance of such a type of H-mode, as a function of the plasma parameters, should be larger than some threshold value and larger than the corresponding probability for other types of H-mode (i.e., H-mode without ELM's or with giant ELM's). In practice, the discrimination has been performed for the ASDEX, JET and JFT-2M tokamaks using four instantaneous plasma parameters (injected power Pinj, magnetic field Bt, plasma current Ip and line averaged electron density ne) and taking also memory effects of the plasma and the distance between the plasma and the wall into account, while using variables that are normalized with respect to machine size. Generally speaking, it is found that there is a substantial overlap between the region of H-mode with small ELM's and the region of the two other types of H-mode. However, the ELM-free and the giant ELM H-modes relatively rarely appear in the region, that, according to the analysis, is allocated to small ELM's. A reliable production of H-mode with only small ELM's seems well possible by choosing this regime in parameter space. In the present study, it was not attempted to arrive at a unified discrimination across the machines. So, projection from one machine to another remains difficult, and a reliable determination of the region where small ELM's occur still requires a training sample from the device under consideration.

  1. Study of the confinement properties in a reversed-field pinch with mode rotation and gas fuelling

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Malmberg, J.-A.; Nielsen, P.; Pasqualotto, R.; Drake, J. R.

    2002-08-01

    An extensive investigation of the global confinement properties in different operating scenarios in the rebuilt EXTRAP T2R reversed-field pinch (RFP) experiment is reported here. In particular, the role of a fast gas puff valve system, used to control plasma density, on confinement is studied. Without gas puffing, the electron density decays below 0.5×1019 m-3. The poloidal beta varies between 5% and 15%, decreasing at large I/N. The energy confinement time ranges from 70 to 225 μs. With gas puffing, the density is sustained at ne≈1.5×1019 m-3. However, a general slight deterioration of the plasma performances is observed for the same values of I/N: the plasma becomes cooler and more radiative. The poloidal beta is comparable to that in the scenarios without puff but the energy confinement time drops ranging from 60 to 130 μs. The fluctuation level and the energy confinement time have been found to scale with the Lundquist number as S-0.05+/-0.07 and S0.5+/-0.1, respectively. Mode rotation is typical for all the discharges and rotation velocity is observed to increase with increasing electron diamagnetic velocity.

  2. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V A; Bell, M G; Bell, R E

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphitemore » Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi

  3. Low to high confinement transition theory of finite-beta drift-wave driven shear flow and its comparison with data from DIII-D

    NASA Astrophysics Data System (ADS)

    Guzdar, P. N.; Kleva, R. G.; Groebner, R. J.; Gohil, P.

    2004-03-01

    Shear flow stabilization of edge turbulence in tokamaks has been the accepted paradigm for the improvement in confinement observed in high (H) confinement mode plasmas. Results on the generation of zonal flow and fields in finite β plasmas are presented. This theory yields a criterion for bifurcation from low to high (L-H) confinement mode, proportional to Te/√Ln , where Te is the electron temperature and Ln is the density scale-length at the steepest part of the density gradient. When this parameter exceeds a critical value (mostly determined by the strength of the toroidal magnetic field), the transition occurs. The predicted threshold based on this parameter shows good agreement with edge measurements on discharges undergoing L-H transitions in DIII-D [J. L. Luxon, R. Anderson, F. Batty et al., in Proceedings of the 11th Conference on Plasma Physics and Controlled Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter due to the differences in the density gradient scale-lengths in the edge. The theory also provides a possible explanation for lowered threshold power, pellet injection H modes in DIII-D, thereby providing a unified picture of the varied observations on the L-H transition.

  4. H-mode pedestal stability and ELMs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mossessian, Dmitri

    2002-11-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity accumulation. The major relaxation mechanism seen on most of the existing tokamaks - large type I ELMs - drive high particle and energy fluxes that present a significant power load on the divertor plates. On Alcator C-Mod, however, type I ELMs are not observed. Instead, more benign mechanisms - EDA and small grassy ELMs - appear to drive enhanced particle transport at the edge of H-mode plasmas. Both have good energy confinement, no impurity accumulation, and are steady state. In EDA the edge relaxation mechanism is provided by a quasicoherent electromagnetic mode localized in the outer part of the pedestal. Non-linear gyrofluid and linear gyrokinetic simulations, as well as real geometry fluctuation modeling based on fluid equations show the presence of a coherent mode. Based on those results the observed mode is tentatively identified as resistive ballooning. At higher edge pressure gradient the mode is replaced by broadband fluctuations and small irregular ELMs are observed. Based on ideal MHD calculations that include effects of bootstrap current, these ELMs are identified as medium n coupled ideal peeling/ballooning modes. The stability threshold and modes structure of these modes are studied with recently developed linear MHD stability code ELITE and the results are compared with the observed dependence of the ELMs' character on pedestal parameters and plasma shape.

  5. Initiatives in Non-Solenoidal Startup and H-mode Physics at Near-Unity A

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.; Thome, K. E.; Winz, G. R.

    2014-10-01

    Research on the A ~ 1 Pegasus ST is advancing the physics of non-solenoidal tokamak startup and the H-mode confinement regime. Local helicity injection (LHI) uses current sources in the plasma edge to initiate and drive Ip via DC helicity injection, subject to constraints from helicity conservation and Taylor relaxation. To date, Ip ~ 0 . 18 MA has been initiated with Iinj ~ 6 kA. A predictive 0-D power balance model of LHI Ip (t) evolution matches present discharges with strong PF induction. It projects Ip ~ 0 . 3 MA operation in Pegasus will achieve the LHI-dominated physics regime expected for 1 MA NSTX-U startup. Ohmic H-mode plasmas are routinely attained, due to the low Pth at the low BT of A --> 1 plasmas. However, both limited and favorable ∇B SN plasmas have Pth ~ 11 times higher than expected from high- A scalings. They have improved τe (H98 ~ 1) and a quiescent Jedge pedestal between edge localized modes (ELMs). Unique Jedge (t) measurements through a single Type I ELM show a complex, multimodal pedestal collapse and filament ejection. A proposed Pegasus-U initiative will upgrade the centerstack assembly and LHI injector systems, increasing BT to 1 T, Ohmic V-s by × 6 , and pulse length to 100 ms at A = 1 . 2 . This allows the physics and technology of LHI to be validated at NSTX-U relevant parameters, supports studies of nonlinear ELM dynamics, and will test high-βT tokamak stability. Work supported by US DOE Grant DE-FG02-96ER54375.

  6. Structure and Dynamics of Confined C-O-H Fluids Relevant to the Subsurface: Application of Magnetic Resonance, Neutron Scattering and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Gautam, Siddharth S.; Ok, Salim; Cole, David R.

    2017-06-01

    Geo-fluids consisting of C-O-H volatiles are the main mode of transport of mass and energy throughout the lithosphere and are commonly found confined in pores, grain boundaries and fractures. The confinement of these fluids by porous media at the length scales of a few nanometers gives rise to numerous physical and chemical properties that deviate from the bulk behavior. Studying the structural and dynamical properties of these confined fluids at the length and time scales of nanometers and picoseconds respectively forms an important component of understanding their behavior. To study confined fluids, non-destructive penetrative probes are needed. Nuclear magnetic resonance (NMR) by virtue of its ability to monitor longitudinal and transverse magnetization relaxations of spins, and chemical shifts brought about by the chemical environment of a nucleus, and measuring diffusion coefficient provides a good opportunity to study dynamics and chemical structure at the molecular length and time scales. Another technique that gives insights into the dynamics and structure at these length and time scales is neutron scattering (NS). This is because the wavelength and energies of cold and thermal neutrons used in scattering experiments are in the same range as the spatial features and energies involved in the dynamical processes occurring at the molecular level. Molecular Dynamics (MD) simulations on the other hand help with the interpretation of the NMR and NS data. Simulations can also supplement the experiments by calculating quantities not easily accessible to experiments. Thus using NMR, NS and MD simulations in conjunction, a complete description of the molecular structure and dynamics of confined geo-fluids can be obtained. In the current review, our aim is to show how a synergistic use of these three techniques has helped shed light on the complex behavior of water, CO2, and low molecular weight hydrocarbons. After summarizing the theoretical backgrounds of the

  7. The energy confinement response of DIII-D plasmas to Resonant Magnetic Perturbations

    DOE PAGES

    Cui, L.; Nazikian, Raffi; Grierson, B. A.; ...

    2017-07-11

    Here, Resonant Magnetic Perturbations (RMPs) are a leading method for edge localized modes (ELMs) Control in fusion plasmas. However they can also cause a rapid degradation in energy confinement. In this paper we show that the energy confinement in low collisionality (v* e < 0.3) DIII-D ITER Similar Shape (ISS) plasmas often recovers after several energy confinement times for RMP amplitudes up to the threshold for ELM suppression. Immediately following the application of the RMP, the plasma stored energy decreases in proportion to the decrease in the line-averaged density during density "pump-out". Later in the discharge confinement recovery is observedmore » in the thermal ion channel and is correlated with the increase in the ion temperature at the top of the H-mode pedestal. A correlation between the inverse scale length of the ion temperature (α/L Ti) and the E x B shearing rate at the top of the pedestal is seen during the confinement recovery phase. Transport analysis reveals that the confinement improvement in the ion channel results from the self-similarity in the ion temperature profiles in the plasma core combined with the observed increase in α/L Ti in the plasma edge following density pump-out. In contrast the electron temperature scale length (α/L Ti) remains essentially unchanged in response to the application of the RMP. At significantly higher RMP levels the edge EXB shearing rate and α/L Ti does not increase and the confinement does not recover following density pump-out.« less

  8. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  9. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach

    2017-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.

  10. Impact of perturbative, non-axisymmetric impurity fueling on Alcator C-Mod H-modes

    NASA Astrophysics Data System (ADS)

    Reinke, M. L.; Lore, J. D.; Terry, J.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Hubbard, A.; Hughes, J. W.; Mumgaard, R.; Pitts, R. A.

    2017-12-01

    Experiments on Alcator C-Mod have been performed to investigate the impact of toroidally localized impurity injection on H-mode exhaust scenarios. Results help to inform sub-divertor gas injector designs, in particular that of the ITER machine, for which this work was primarily undertaken. In repeated EDA H-modes, the amount of N2 injected into the private flux region was scanned up to levels which strongly impacted normalized energy confinement, H98, and led to an H/L back-transition. Repeated scans increased the toroidal peaking of the gas injection, reducing from five equally spaced locations to a single toroidal and poloidal injector. Results show the impact on the pedestal and core plasma is similar between all cases as long as the total gas injection rate is held constant. An influence on toroidally localized impurity spectroscopy is shown, demonstrating a complication in using such data in interpreting experiments and supporting boundary modeling in cases where there are localized extrinsic or intrinsic impurity sources. These results, along with prior work in this area on Alcator C-Mod, form a comprehensive set of L-mode and H-mode data to be used for validation of 3D boundary physics codes.

  11. Integrated modelling of H-mode pedestal and confinement in JET-ILW

    NASA Astrophysics Data System (ADS)

    Saarelma, S.; Challis, C. D.; Garzotti, L.; Frassinetti, L.; Maggi, C. F.; Romanelli, M.; Stokes, C.; Contributors, JET

    2018-01-01

    A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98(y, 2) scaling of the energy confinement time. The weak power degradation is reproduced in the coupled core-pedestal simulation. The coupled core-pedestal model is further tested for a 3.0 MA plasma with the highest stored energy achieved in JET-ILW so far, giving a prediction of the stored plasma energy within the error margins of the measured experimental value. A pedestal density prediction model based on the neutral penetration is tested on a JET-ILW database giving a prediction with an average error of 17% from the experimental data when a parameter taking into account the fuelling rate is added into the model. However the model fails to reproduce the power dependence of the pedestal density implying missing transport physics in the model. The future JET-ILW deuterium campaign with increased heating power is predicted to reach plasma energy of 11 MJ, which would correspond to 11-13 MW of fusion power in equivalent deuterium-tritium plasma but with isotope effects on pedestal stability and core transport ignored.

  12. Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tae; Romanelli, M.; Voitsekhovitch, I.; Koskela, T.; Conboy, J.; Giroud, C.; Maddison, G.; Joffrin, E.; contributors, JET

    2015-06-01

    A consistent deterioration of global confinement in H-mode experiments has been observed in JET [1] following the replacement of all carbon plasma facing components (PFCs) with an all metal (‘ITER-like’) wall (ILW). This has been correlated to the observed degradation of the pedestal confinement, as lower electron temperature (Te) values are routinely measured at the top of the edge barrier region. A comparative investigation of core heat transport in JET-ILW and JET-CW (carbon wall) discharges has been performed, to assess whether core confinement has also been affected by the wall change. The results presented here have been obtained by analysing a set of discharges consisting of high density JET-ILW H-mode plasmas and comparing them against their counterpart discharges in JET-CW having similar global operational parameters. The set contains 10 baseline ({βN}=1.5∼ 2 ) discharge-pairs with 2.7 T toroidal magnetic field, 2.5 MA plasma current, and 14 to 17 MW of neutral beam injection (NBI) heating. Based on a Te profile analysis using high resolution Thomson scattering (HRTS) data, the Te profile peaking (i.e. core Te (ρ = 0.3) / edge Te (ρ = 0.7)) is found to be similar, and weakly dependent on edge Te, for both JET-ILW and JET-CW discharges. When ILW discharges are seeded with N2, core and edge Te both increase to maintain a similar peaking factor. The change in core confinement is addressed with interpretative TRANSP simulations. It is found that JET-ILW H-mode plasmas have higher NBI power deposition to electrons and lower NBI power deposition to ions as compared to the JET-CW counterparts. This is an effect of the lower electron temperature at the top of the pedestal. As a result, the core electron energy confinement time is reduced in JET-ILW discharges, but the core ion energy confinement time is not decreased. Overall, the core energy confinement is found to be the same in the JET-ILW discharges compared to the JET-CW counterparts.

  13. Observation of Trapped-Electron Mode Microturbulence in Improved Confinement Reversed-Field Pinch Plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James R.

    This is a dissertation for the completion of a Doctorate of Philosophy in Physics degree granted at the University of Wisconsin-Madison. Density fluctuations in the large-density-gradient region of improved confinement Madison Sym- metric Torus (MST) RFP plasmas exhibit multiple features that are characteristic of the trapped- electron mode (TEM). In fusion relevant plasmas, thermal transport is a key avenue of research in order to achieve a burning plasma. In the reversed field pinch (RFP) magnetic geometry, the dy- namics of conventional plasma discharges are primarily governed by magnetic stochasticity stem- ming from multiple long-wavelength tearing modes, that sustain the RFP discharge but have an adverse effect on the plasma confinement. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasma. Under these conditions with certain plasma equilibria, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at frequencies f 50 kHz that have normalized perpendicular wavenumbers k⊥rhos ≤ 0.2, and propagate in the electron diamagnetic drift direction. By adjusting the plasma current or the inductive suppression, there are observable variations in the spectral features. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with a local density gradient dependent parameter. These characteristics are consistent with the predictions of unstable TEMs based on gyrokinetic analysis using the GENE code. This thesis represents the first observation and description of TEM-like instabilities in the RFP geometry.

  14. Confined Three-Dimensional Plasmon Modes inside a Ring-Shaped Nanocavity on a Silver Film Imaged by Cathodoluminescence Microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, X. L.; Ma, Y.; Zhang, J. S.; Xu, J.; Wu, X. F.; Zhang, Y.; Han, X. B.; Fu, Q.; Liao, Z. M.; Chen, L.; Yu, D. P.

    2010-09-01

    The confined modes of surface plasmon polaritons in boxing ring-shaped nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver (Ag) reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control.

  15. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  16. Plasma core power exhaust in ELMy H-Mode in JET with ITER-Like Wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Metzger, C.; Appel, L.; Drewelow, P.; Horvath, L.; Matthews, G. F.; Szepesi, G.; Solano, E. R.; contributors, JET

    2018-07-01

    The mitigation of target heat load in future steady state fusion devices will require dissipation of a significant amount of power through radiation. Plasma operations relying on ELMy H-modes could be problematic since ELMs may transport substantial amounts of power to the target without significant dissipation. Therefore, estimation of the average ELM power exhaust from the plasma core is crucial to evaluate the potential limitation on the power dissipation in ELMy H-mode regime. A series of more than 50 Type-I ELMy H-mode discharges in JET with ITER-Like Wall (JET-ILW) with a wide range of conditions has been used here to compare the average ELM power to the average input power. The effect of input power, ELM frequency, plasma current, confinement and radiation on ELM power exhaust has been studied and reported in this paper. Good agreement has been found here with previous studies made in carbon machines. This work suggests that it should not be possible to dissipate more than 70%–80% of the input power in Type-I ELMy H-modes in JET-ILW which is consistent with the maximum radiative fraction found experimentally.

  17. The low density type III ELMy H-mode regime on JET-ILW: a low density H-mode compatible with a tungsten divertor?

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team

    2016-10-01

    The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at = 2.9 1019 m-3 with up to 15 MW of heating power at H98y 0.9. Better knowledge of the operational boundaries of this high frequency ELM regime could provide insight in how to sustain it at higher heating power for high temperature scenarios. Work supported, in part, by the US DOE under Contract No. DE-AC05-00OR22725.

  18. Coherent nonlinear coupling between a long-wavelength mode and small-scale turbulence in the TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, H.Y.W.; Rypdal, K.; Ritz, C.P.

    1993-04-26

    Bispectral analysis of Langmuir probe data indicates that coherent nonlinear coupling, in addition to the noncoherent turbulent interactions, exists in the edge plasma of the tokamak TEXT. Not all the modes involved reside within the spectral region of the usual broadband turbulence. At a major resonant surface the small-scale turbulent activity interacts [ital coherently] with a localized long-wavelength mode; a signature of regular or coherent structure. By the observed coupling to the transport related turbulence, the long-wavelength mode can influence plasma confinement indirectly. These observations signify the influence of low-order resonant surfaces on the edge turbulence in tokamaks.

  19. Transport modeling of L- and H-mode discharges with LHCD on EAST

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.

    2013-04-01

    High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.

  20. Compatibility of separatrix density scaling for divertor detachment with H-mode pedestal operation in DIII-D

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.; McLean, A. G.; Makowski, M. A.; Stangeby, P. C.

    2017-08-01

    The midplane separatrix density is characterized in response to variations in upstream parallel heat flux density and central density through deuterium gas injection. The midplane density is determined from a high spatial resolution Thomson scattering diagnostic at the midplane with power balance analysis to determine the separatrix location. The heat flux density is varied by scans of three parameters, auxiliary heating, toroidal field with fixed plasma current, and plasma current with fixed safety factor, q 95. The separatrix density just before divertor detachment onset is found to scale consistent with the two-point model when radiative dissipation is taken into account. The ratio of separatrix to pedestal density, n e,sep/n e,ped varies from  ⩽30% to  ⩾60% over the dataset, helping to resolve the conflicting scaling of core plasma density limit and divertor detachment onset. The scaling of the separatrix density at detachment onset is combined with H-mode power threshold scaling to obtain a scaling ratio of minimum n e,sep/n e,ped expected in future devices.

  1. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement

    NASA Astrophysics Data System (ADS)

    Roy, V.; Paré, C.; Labranche, B.; Laperle, P.; Desbiens, L.; Boivin, M.; Taillon, Y.

    2017-02-01

    A polarization-maintaining Yb-doped large mode area fiber with depressed-index inner cladding layer and confinement of rare-earth dopants has been drawn as a long tapered fiber. The larger end features a core/clad diameter of 56/400 μm and core NA 0.07, thus leading to an effective mode area over 1000 μm2. The fiber was tested up to 100 W average power, with near diffraction-limited output as the beam quality M2 was measured < 1.2. As effective single-mode guidance is enforced in the first section due to enhanced bending loss, subsequent adiabatic transition of the mode field in the taper section preserves single-mode amplification towards the larger end of the fiber.

  2. Experiment-theory comparison for low frequency BAE modes in the strongly shaped H-1NF stellarator

    DOE PAGES

    Haskey, S. R.; Blackwell, B. D.; Nuhrenberg, C.; ...

    2015-08-12

    Here, recent advances in the modeling, analysis, and measurement of fluctuations have significantly improved the diagnosis and understanding of Alfvén eigenmodes in the strongly shaped H-1NF helical axis stellarator. Experimental measurements, including 3D tomographic inversions of high resolution visible light images, are in close agreement with beta-induced Alfvén eigenmodes (BAEs) calculated using the compressible ideal MHD code, CAS3D. This is despite the low β in H-1NF, providing experimental evidence that these modes can exist due to compression that is induced by the strong shaping in stellarators, in addition to high β, as is the case in tokamaks. This is confirmedmore » using the CONTI and CAS3D codes, which show significant gap structures at lower frequencies which contain BAE and beta-acoustic Alfvén eigenmodes (BAAEs). The BAEs are excited in the absence of a well confined energetic particle source, further confirming previous studies that thermal particles, electrons, or even radiation fluctuations can drive these modes. Datamining of magnetic probe data shows the experimentally measured frequency of these modes has a clear dependence on the rotational transform profile, which is consistent with a frequency dependency due to postulated confinement related temperature variations.« less

  3. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  4. Divertor heat flux simulations in ELMy H-mode discharges of EAST

    NASA Astrophysics Data System (ADS)

    Xia, T. Y.; Xu, X. Q.; Wu, Y. B.; Huang, Y. Q.; Wang, L.; Zheng, Z.; Liu, J. B.; Zang, Q.; Li, Y. Y.; Zhao, D.; EAST Team

    2017-11-01

    This paper presents heat flux simulations for the ELMy H-mode on the Experimental Advanced Superconducting Tokamak (EAST) using a six-field two-fluid model in BOUT++. Three EAST ELMy H-mode discharges with different plasma currents I p and geometries are studied. The trend of the scrape-off layer width λq with I p is reproduced by the simulation. The simulated width is only half of that derived from the EAST scaling law, but agrees well with the international multi-machine scaling law. Note that there is no radio-frequency (RF) heating scheme in the simulations, and RF heating can change the boundary topology and increase the flux expansion. Anomalous electron transport is found to contribute to the divertor heat fluxes. A coherent mode is found in the edge region in simulations. The frequency and poloidal wave number kθ are in the range of the edge coherent mode in EAST. The magnetic fluctuations of the mode are smaller than the electric field fluctuations. Statistical analysis of the type of turbulence shows that the turbulence transport type (blobby or turbulent) does not influence the heat flux width scaling. The two-point model differs from the simulation results but the drift-based model shows good agreement with simulations.

  5. Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2016-10-01

    The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.

  6. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-06

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  7. Confined Three-Dimensional Plasmon Modes inside a Ring-Shaped Nanocavity on a Silver Film Imaged by Cathodoluminescence Microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Xinli; Zhang, Jiasen; Xu, Jun; Yu, Dapeng

    2011-03-01

    The confined modes of surface plasmon polaritons in boxing ring-shaped nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control. This work is supported by NSFC (10804003, 61036005 and 11074015), the national 973 program of China (2007CB936203, 2009CB623703), MOST and NSFC/RGC (N HKUST615/06).

  8. Large angular scale CMB anisotropy from an excited initial mode

    NASA Astrophysics Data System (ADS)

    Sojasi, A.; Mohsenzadeh, M.; Yusofi, E.

    2016-07-01

    According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit ℓ < 200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H << M * < M p and on the slow-roll parameter ɛ. Supported by the Islamic Azad University, Rasht Branch, Rasht, Iran

  9. Investigation of the n  =  1 resistive wall modes in the ITER high-mode confinement

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.

    2017-06-01

    The n  =  1 resistive wall mode (RWM) stability of ITER high-mode confinement is investigated with bootstrap current included for equilibrium, together with the rotation and diamagnetic drift effects for stability. Here, n is the toroidal mode number. We use the CORSICA code for computing the free boundary equilibrium and AEGIS code for stability. We find that the inclusion of bootstrap current for equilibrium is critical. It can reduce the local magnetic shear in the pedestal, so that the infernal mode branches can develop. Consequently, the n  =  1 modes become unstable without a stabilizing wall at a considerably lower beta limit, driven by the steep pressure gradient in the pedestal. Typical values of the wall position stabilize the ideal mode, but give rise to the ‘pedestal’ resistive wall modes. We find that the rotation can contribute a stabilizing effect on RWMs and the diamagnetic drift effects can further improve the stability in the co-current rotation case. But, generally speaking, the rotation stabilization effects are not as effective as the case without including the bootstrap current effects on equilibrium. We also find that the diamagnetic drift effects are actually destabilizing when there is a counter-current rotation.

  10. Access to a new plasma edge state with high density and pressures using the quiescent H mode

    DOE PAGES

    Solomon, Wayne M.; Snyder, Philip B.; Burrell, Keith H.; ...

    2014-09-24

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. As a result, calculations of themore » pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  11. The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011) The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011)

    NASA Astrophysics Data System (ADS)

    Saibene, G.

    2012-11-01

    The 13th International Workshop on H-mode Physics and Transport Barriers, held in Lady Margaret Hall College in Oxford in October 2011 continues the tradition of bi-annual international meetings dedicated to the study of transport barriers in fusion plasmas. The first meeting of this series took place in S Diego (CA, US) in 1987, and since then scientists in the fusion community studying the formation and effects of transport barriers in plasmas have been meeting at this small workshop to discuss progress, new experimental evidence and related theoretical studies. The first workshops were strongly focussed on the characterization and understanding of the H-mode plasma, discovered in ASDEX in 1982. Tokamaks throughout the entire world were able to reproduce the H-mode transition in the following few years and since then the H-mode has been recognised as a pervasive physics feature of toroidally confined plasmas. Increased physics understanding of the H-mode transition and of the properties of H-mode plasmas, together with extensive development of diagnostic capabilities for the plasma edge, led to the development of edge transport barrier studies and theory. The H-mode Workshop reflected this extension in interest, with more and more contributions discussing the phenomenology of edge transport barriers and instabilities (ELMs), L-H transition and edge transport barrier formation theory. In the last 15 years, in response to the development of fusion plasma studies, the scientific scope of the workshop has been broadened to include experimental and theoretical studies of both edge and internal transport barriers, including formation and sustainment of transport barriers for different transport channels (energy, particle and momentum). The 13th H-mode Workshop was organized around six leading topics, and, as customary for this workshop, a lead speaker was selected for each topic to present to the audience the state-of-the-art, new understanding and open issues, as well

  12. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    NASA Astrophysics Data System (ADS)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  13. Super H-mode: theoretical prediction and initial observations of a new high performance regime for tokamak operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Philip B.; Solomon, Wayne M.; Burrell, Keith H.

    2015-07-21

    A new “Super H-mode” regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (“H-mode”) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard “Hmode” solution, and a “Super H-Mode” solution at substantially larger pedestal height and width. The Supermore » H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. Finally, the very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.« less

  14. Scaled particle theory for bulk and confined fluids: A review

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Chen, XiaoSong

    2018-07-01

    More than half a century after its first formulation by Reiss, Frisch and Lebowitz in 1959, scaled particle theory (SPT) has proven its immense usefulness and has become one of the most successful theories in liquid physics. In recent years, we have strived to extend SPT to fluids confined in a variety of random porous matrices. In this article, we present a timely review of these developments. We have endeavored to present a formulation that is pedagogically more accessible than those presented in various original papers, and we hope this benefits newcomers in their research work. We also use more consistent notations for different cases. In addition, we discuss issues that have been scarcely considered in the literature, e.g., the one-fluid structure of SPT due to the isomorphism between the equation of state for a multicomponent fluid and that for a one-component fluid or the pure-confinement scaling relation that provides a connection between a confined and a bulk fluid.

  15. Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.

    2018-02-01

    The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature

  16. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolon, A.; Maingi, R.; Mansfield, D. K.

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3–0.9mm, speed of 50–120 m s -1 and average injection rates up to 100 Hz for 0.9mm granules and up to 700 Hz for 0.3mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas formore » the entire shot length, at ELM frequencies 3–5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Altogether, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is need« less

  17. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2016-04-08

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3–0.9mm, speed of 50–120 m s -1 and average injection rates up to 100 Hz for 0.9mm granules and up to 700 Hz for 0.3mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas formore » the entire shot length, at ELM frequencies 3–5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Altogether, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is need« less

  18. Fusion Plasma Performance and Confinement Studies on JT-60 and JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, Y.; Fujita, T.; Ishida, S.

    2002-09-15

    Fusion plasma performance and confinement studies on JT-60 and JT-60U are reviewed. With the main aim of providing a physics basis for ITER and the steady-state tokamak reactors, JT-60/JT-60U has been developing and optimizing the operational concepts, and extending the discharge regimes toward sustainment of high integrated performance in the reactor relevant parameter regime. In addition to achievement of high fusion plasma performances such as the equivalent breakeven condition (Q{sub DT}{sup eq} up to 1.25) and a high fusion triple product n{sub D}(0){tau}{sub E}T{sub i}(0) = 1.5 x 10{sup 21} m{sup -3}skeV, JT-60U has demonstrated the integrated performance of highmore » confinement, high {beta}{sub N}, full non-inductive current drive with a large fraction of bootstrap current. These favorable performances have been achieved in the two advanced operation regimes, the reversed magnetic shear (RS) and the weak magnetic shear (high-{beta}{sub p}) ELMy H modes characterized by both internal transport barriers (ITB) and edge transport barriers (ETB). The key factors in optimizing these plasmas towards high integrated performance are control of profiles of current, pressure, rotation, etc. utilizing a variety of heating, current drive, torque input, and particle control capabilities and high triangularity operation. As represented by discovery of ITBs (density ITB in the central pellet mode, ion temperature ITB in the high-{beta}{sub p} mode, and electron temperature ITB in the reversed shear mode), confinement studies in JT-60/JT-60U have been emphasizing freedom and also restriction of radial profiles of temperature and density. In addition to characterization of confinement and analyses of transport properties of the OH, the L-mode, the H-mode, the pellet mode, the high-{beta}{sub p} mode, and the RS mode, JT-60U has clarified formation conditions, spatial structures and dynamics of edge and internal transport barriers, and evaluated effects of repetitive MHD

  19. Trajectory and Mixing Scaling Laws for Confined and Unconfined Transverse Jets

    DTIC Science & Technology

    2012-05-01

    engines , issues of confinement, very large density ratio, and super/transcritical effects complicate the utility of the ...opposite wall at a streamwise position that is one -half pipe diameter downstream of the injection location (termed moderate impaction). This...BD, and Eq. 10 scaling laws are 0.97 and 0.90, respectively. One of the primary effects of the confinement is that the

  20. ITER L-mode confinement database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, S.M.

    This paper describes the content of an L-mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR, and Tore-Supra. The database consists of a total of 2938 entries, 1881 of which are in the L-phase while 922 are ohmically heated only (OH). Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning, and configuration. The paper presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER.

  1. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldon, David; Boivin, Rejean L.; Groebner, Richard J.

    Here, the H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized bymore » significant (up to ~50%) reduction of pedestal height on short (~1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important for planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports 2 those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.« less

  2. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldon, D., E-mail: deldon@princeton.edu; Princeton University, Princeton, New Jersey 08543; Boivin, R. L.

    The H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized by significantmore » (up to ∼50%) reduction of pedestal height on short (∼1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important of planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.« less

  3. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    DOE PAGES

    Eldon, David; Boivin, Rejean L.; Groebner, Richard J.; ...

    2015-05-14

    Here, the H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized bymore » significant (up to ~50%) reduction of pedestal height on short (~1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important for planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports 2 those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.« less

  4. Transverse mode control in proton-implanted and oxide-confined VCSELs via patterned dielectric anti-phase filters

    NASA Astrophysics Data System (ADS)

    Kesler, Benjamin; O'Brien, Thomas; Dallesasse, John M.

    2017-02-01

    A novel method for controlling the transverse lasing modes in both proton implanted and oxide-confined vertical- cavity surface-emitting lasers (VCSELs) with a multi-layer, patterned, dielectric anti-phase (DAP) filter is pre- sented. Using a simple photolithographic liftoff process, dielectric layers are deposited and patterned on individual VCSELs to modify (increase or decrease) the mirror reflectivity across the emission aperture via anti-phase reflections, creating spatially-dependent threshold material gain. The shape of the dielectric pattern can be tailored to overlap with specific transverse VCSEL modes or subsets of transverse modes to either facilitate or inhibit lasing by decreasing or increasing, respectively, the threshold modal gain. A silicon dioxide (SiO2) and titanium dioxide (TiO2) anti-phase filter is used to achieve a single-fundamental-mode, continuous-wave output power greater than 4.0 mW in an oxide-confined VCSEL at a lasing wavelength of 850 nm. A filter consisting of SiO2 and TiO2 is used to facilitate injection-current-insensitive fundamental mode and lower order mode lasing in proton implanted VCSELs at a lasing wavelength of 850 nm. Higher refractive index dielectric materials such as amorphous silicon (a-Si) can be used to increase the effectiveness of the anti-phase filter on proton implanted devices by reducing the threshold modal gain of any spatially overlapping modes. This additive, non-destructive method allows for mode selection at any lasing wavelength and for any VCSEL layer structure without the need for semiconductor etching or epitaxial regrowth. It also offers the capability of designing a filter based upon available optical coating materials.

  5. Analysis of metallic impurity density profiles in low collisionality Joint European Torus H-mode and L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Valisa, M.; Angioni, C.; Garzotti, L.; Mantica, P.; Mattioli, M.; Carraro, L.; Coffey, I.; Sozzi, C.

    2006-04-01

    This paper describes the behavior of nickel in low confinement (L-mode) and high confinement (H-mode) Joint European Torus (JET) discharges [P. J. Lomas, Plasma Phys. Control. Fusion 31, 1481 (1989)] characterized by the application of radio-frequency (rf) power heating and featuring ITER (International Thermonuclear Experimental Reactor) relevant collisionality. The impurity transport is analyzed on the basis of perturbative experiments (laser blow off injection) and is compared with electron heat and deuterium transport. In the JET plasmas analyzed here, ion cyclotron resonance heating (ICRH) is applied either in mode conversion (MC) to heat the electrons or in minority heating (MH) to heat the ions. The two heating schemes have systematically different effects on nickel transport, yielding flat or slightly hollow nickel density profiles in the case of ICRH in MC and peaked nickel density profiles in the case of rf applied in MH. Accordingly, both diffusion coefficients and pinch velocities of nickel are found to be systematically different. Linear gyrokinetic calculations by means of the code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995)] provide a possible explanation of such different behavior by exploring the effects produced by the different microinstabilities present in these plasmas. In particular, trapped electron modes driven by the stronger electron temperature gradients measured in the MC cases, although subdominant, produce a contribution to the impurity pinch directed outwards that is qualitatively in agreement with the pinch reversal found in the experiment. Particle and heat diffusivities appear to be decoupled in MH shots, with χe and DD≫DNi, and are instead quite similar in the MC ones. In the latter case, nickel transport appears to be driven by the same turbulence that drives the electron heat transport and is sensitive to the value of the electron temperature gradient length. These findings give

  6. Tunable zero-line modes via magnetic field in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Qiao, Zhenhua

    Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.

  7. Scaling of Linking and Writhing Numbers for Spherically Confined and Topologically Equilibrated Flexible Polymers

    PubMed Central

    Marko, John F.

    2011-01-01

    Scaling laws for Gauss linking number Ca and writhing number Wr for spherically confined flexible polymers with thermally fluctuating topology are analyzed. For ideal (phantom) polymers each of N segments of length unity confined to a spherical pore of radius R there are two scaling regimes: for sufficiently weak confinement (R ⪢ N1/3) each chain has |Wr| ≈ N1/2, and each pair of chains has average |Ca| ≈ N/R3/2; alternately for sufficiently tight confinement (N1/3 ⪢ R), |Wr| ≈ |CA| ≈ N/R3/2. Adding segment-segment avoidance modifies this result: for n chains with excluded volume interactions |Ca| ≈ (N/n)1/2f(ϕ) where f is a scaling function that depends approximately linearly on the segment concentration ϕ = nN/R3. Scaling results for writhe are used to estimate the maximum writhe of a polymer; this is demonstrated to be realizable through a writhing instability that occurs for a polymer which is able to change knotting topology and which is subject to an applied torque. Finally, scaling results for linking are used to estimate bounds on the entanglement complexity of long chromosomal DNA molecules inside cells, and to show how “lengthwise” chromosome condensation can suppress DNA entanglement. PMID:21686050

  8. Estimation of Confined Peak Strength of Crack-Damaged Rocks

    NASA Astrophysics Data System (ADS)

    Bahrani, Navid; Kaiser, Peter K.

    2017-02-01

    It is known that the unconfined compressive strength of rock decreases with increasing density of geological features such as micro-cracks, fractures, and veins both at the laboratory specimen and rock block scales. This article deals with the confined peak strength of laboratory-scale rock specimens containing grain-scale strength dominating features such as micro-cracks. A grain-based distinct element model, whereby the rock is simulated with grains that are allowed to deform and break, is used to investigate the influence of the density of cracks on the rock strength under unconfined and confined conditions. A grain-based specimen calibrated to the unconfined and confined strengths of intact and heat-treated Wombeyan marble is used to simulate rock specimens with varying crack densities. It is demonstrated how such cracks affect the peak strength, stress-strain curve and failure mode with increasing confinement. The results of numerical simulations in terms of unconfined and confined peak strengths are used to develop semi-empirical relations that relate the difference in strength between the intact and crack-damaged rocks to the confining pressure. It is shown how these relations can be used to estimate the confined peak strength of a rock with micro-cracks when the unconfined and confined strengths of the intact rock and the unconfined strength of the crack-damaged rock are known. This approach for estimating the confined strength of crack-damaged rock specimens, called strength degradation approach, is then verified by application to published laboratory triaxial test data.

  9. Comparison of a low- to high-confinement transition theory with experimental data from DIII-D.

    PubMed

    Guzdar, P N; Kleva, R G; Groebner, R J; Gohil, P

    2002-12-23

    From our recent theory based on the generation of shear flow and field in finite beta plasmas, the criterion for bifurcation from low to high confinement mode yields a critical parameter proportional to T(e)/square root (L(n)), where T(e) is the electron temperature and L(n) is the density scale length. The predicted threshold shows very good agreement with edge measurements on discharges undergoing low-to-high transitions in DIII-D. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter. The theory also provides an explanation for pellet injection H modes in DIII-D, thereby unifying unconnected methods for accomplishing the transition.

  10. Geodesic least squares regression for scaling studies in magnetic confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdoolaege, Geert

    In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority ofmore » the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices.« less

  11. Multi-scale study of the isotope effect in ISTTOK

    NASA Astrophysics Data System (ADS)

    Liu, B.; Silva, C.; Figueiredo, H.; Pedrosa, M. A.; van Milligen, B. Ph.; Pereira, T.; Losada, U.; Hidalgo, C.

    2016-05-01

    The isotope effect, namely the isotope dependence of plasma confinement, is still one of the principal scientific conundrums facing the magnetic fusion community. We have investigated the impact of isotope mass on multi-scale mechanisms, including the characterization of radial correlation lengths (\\boldsymbol{L}{r} ) and long-range correlations (LRC) of plasma fluctuations using multi-array Langmuir probe system, in hydrogen (H) and deuterium (D) plasmas in the ISTTOK tokamak. We found that when changing plasma composition from the H dominated to D dominated, the LRC amplitude increased markedly (10-30%) and the \\boldsymbol{L}{r} increased slightly (~10%). The particle confinement also improved by about 50%. The changes of LRC and \\boldsymbol{L}{r} are congruent with previous findings in the TEXTOR tokamak (Xu et al 2013 Phys. Rev. Lett. 110 265005). In addition, using biorthogonal decomposition, both geodesic acoustic modes and very low frequency (<5 kHz) coherent modes were found to be contributing to LRC.

  12. Assessment of Scanning Tunneling Spectroscopy Modes Inspecting Electron Confinement in Surface-Confined Supramolecular Networks

    PubMed Central

    Krenner, Wolfgang; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V.

    2013-01-01

    Scanning tunneling spectroscopy (STS) enables the local, energy-resolved investigation of a samples surface density of states (DOS) by measuring the differential conductance (dI/dV) being approximately proportional to the DOS. It is popular to examine the electronic structure of elementary samples by acquiring dI/dV maps under constant current conditions. Here we demonstrate the intricacy of STS mapping of samples exhibiting a strong corrugation originating from electronic density and local work function changes. The confinement of the Ag(111) surface state by a porous organic network is studied with maps obtained under constant-current (CC) as well as open-feedback-loop (OFL) conditions. We show how the CC maps deviate markedly from the physically more meaningful OFL maps. By applying a renormalization procedure to the OFL data we can mimic the spurious effects of the CC mode and thereby rationalize the physical effects evoking the artefacts in the CC maps. PMID:23503526

  13. Observation of internal transport barrier in ELMy H-mode plasmas on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Gao, X.; Liu, H. Q.; Li, G. Q.; Zhang, T.; Zeng, L.; Liu, Y. K.; Wu, M. Q.; Kong, D. F.; Ming, T. F.; Han, X.; Wang, Y. M.; Zang, Q.; Lyu, B.; Li, Y. Y.; Duan, Y. M.; Zhong, F. B.; Li, K.; Xu, L. Q.; Gong, X. Z.; Sun, Y. W.; Qian, J. P.; Ding, B. J.; Liu, Z. X.; Liu, F. K.; Hu, C. D.; Xiang, N.; Liang, Y. F.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Wan, Y. X.; EAST Team

    2017-08-01

    The internal transport barrier (ITB) has been obtained in ELMy H-mode plasmas by neutron beam injection and lower hybrid wave heating on the Experimental Advanced Superconducting Tokamak (EAST). The ITB structure has been observed in profiles of ion temperature, electron temperature, and electron density within ρ < 0.5. It was also observed that the ITB formation is stepwise. Due to the ITB formation, the confinement quality H 98y2 increases from 1 to 1.1 and the normalized beta, β N, increases from 1.5 to near 2. The fishbone activity observed during the ITB phase suggests the central safety factor q(0) ˜ 1. Transport coefficients are calculated by particle balance and power balance analysis, showing an obvious reduction after the ITB formation.

  14. Quasi-steady-state high confinement at high density by lower hybrid waves in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jiangang; Luo, Jiarong; Wan, Baonian; Wan, Yuanxi; Liu, Yuexiu; Yin, Finxian; Gong, Xianzu; Li, Duochuan; Liu, Shen; Jie, Yinxian; Gao, Xiang; Luo, Nancang; Jiang, Jiaguang; Han, Yuqing; Wu, Mingjun; Wang, Guangxin; Liang, Yunfeng; Yao, Ailing; Wu, Zhenwei; Zhang, Shouyin; Mao, Jiansan; Cui, Lingzhuo; Xu, Yuhong; Meng, Yuedong; Zhao, Junyu; Ding, Bolong; Li, Guiming; Xu, Xiangdong; Lin, Bili; Wei, Meishen; Yie, Weiwei

    2000-03-01

    The quasi-steady-state (tH > 10 τEoh) H mode with high plasma density (ELMy and ELM free) was routinely obtained by the injection of lower hybrid wave heating and lower hybrid current drive with a power threshold of 50 kW. The antenna spectrum was scanned over a wide range and τE was about 1.5-2.0 times that of the L mode scaling. The density increases by almost a factor of 3 during the H phase by gas puffing and the particle confinement time increases by more than this factor even with a line averaged density of 3 × 1013cm-3, which is about 60% of the Greenwald density limit. A hollow Te profile was achieved in the high density case. The experimental results reproducibly show a good agreement with the theoretical prediction for the LH off-axis power deposition profile. When a certain fraction of the plasma current is non-inductively sustained by the LH waves, a hollow current density profile is formed and the magnetic shear is reversed. This off-axis hollow profile and enhanced confinement improvement are attributed to a strong reduction of the electron thermal diffusivity in the reversed shear region.

  15. The Physics Basis of ITER Confinement

    NASA Astrophysics Data System (ADS)

    Wagner, F.

    2009-02-01

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode—the preferred confinement regime of ITER.

  16. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges.

    DOE PAGES

    Maingi, R.; Osborne, T. H.; Bell, M. G.; ...

    2014-11-04

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D α emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ E and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, wemore » also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. As a result, this indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.« less

  17. Rouse mode analysis of chain relaxation in homopolymer melts

    DOE PAGES

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; ...

    2014-09-15

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less

  18. Diffusive and rotational dynamics of condensed n-H2 confined in MCM-41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prisk, Timothy R; Bryan, Matthew; Sokol, Paul E

    2014-01-01

    In this paper, we report an inelastic neutron scattering study of liquid and solid n-H2 confined within MCM-41. This is a high surface area, mesoporous silica glass with a narrow pore size distribution centered at 3.5 nm. The scattering data provides information about the diffusive and rotational dynamics of the adsorbed n-H2 at low temperatures. In the liquid state, the neutron scattering data demonstrates that only a fraction of the adsorbed o-H2 is mobile on the picosecond time scale. This mobile fraction undergoes liquid-like jump diffusion, and values for the residence time t and effective mean-squared displacement hu2i are reportedmore » as a function of pore filling. In the solid state, the rotational energy levels of adsorbed H2 are strongly perturbed from their free quantum rotor behavior in the bulk solid. The underlying orientational potential of the hindered rotors is due to the surface roughness and heterogeneity of the MCM-41 pore walls. This potential is compared to the hindering potential of other porous silicas, such as Vycor. Strong selective adsorption makes the interfacial layer rich in o-H2, leaving the inner core volume consisting of a depleted mixture of o-H2 and p-H2.« less

  19. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure.

    PubMed

    Alcaraz Iranzo, David; Nanot, Sébastien; Dias, Eduardo J C; Epstein, Itai; Peng, Cheng; Efetov, Dmitri K; Lundeberg, Mark B; Parret, Romain; Osmond, Johann; Hong, Jin-Yong; Kong, Jing; Englund, Dirk R; Peres, Nuno M R; Koppens, Frank H L

    2018-04-20

    The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing, and nanoscale lasers. Although plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the length scale of one atom. This is achieved through far-field excitation of plasmon modes squeezed into an atomically thin hexagonal boron nitride dielectric spacer between graphene and metal rods. A theoretical model that takes into account the nonlocal optical response of both graphene and metal is used to describe the results. These ultraconfined plasmonic modes, addressed with far-field light excitation, enable a route to new regimes of ultrastrong light-matter interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Energy-confinement scaling for high-beta plasmas in the W7-AS stellarator.

    PubMed

    Preuss, R; Dinklage, A; Weller, A

    2007-12-14

    High-beta energy-confinement data are subjected to comparisons of scaling invariant, first-principles physical models. The models differ in the inclusion of basic equations indicating the nature of transport. The result for high-beta data of the W7-AS stellarator is that global transport is described best with a collisional high-beta model, which is different from previous outcomes for low-beta data. Model predictive calculations indicate the validation of energy-confinement prediction with respect to plasma beta and collisionality nu*. The finding of different transport behaviors in distinct beta regimes is important for the development of fusion energy based on magnetic confinement and for the assessment of different confinement concepts.

  1. Tapping-mode AFM study of tip-induced polymer deformation under geometrical confinement.

    PubMed

    Zhang, Hong; Honda, Yukio; Takeoka, Shinji

    2013-02-05

    The morphological stability of polymer films is critically important to their application as functional materials. The deformation of polymer surfaces on the nanoscale may be significantly influenced by geometrical confinement. Herein, we constructed a mechanically heterogeneous polymer surface by phase separation in a thin polymer film and investigated the deformation behavior of its nanostructure (∼30 nm thickness and ∼100 nm average diameter) with tapping-mode atomic force microscopy. By changing different scan parameters, we could induce deformation localized to the nanostructure in a controllable manner. A quantity called the deformation index is defined and shown to be correlated to energy dissipation by tip-sample interaction. We clarified that the plastic deformation of a polymer on the nanoscale is energy-dependent and is related to the glass-to-rubber transition. The mobility of polymer chains beneath the tapping tip is enhanced, and in the corresponding region a rubberlike deformation with the lateral motion of the tip is performed. The method we developed can provide insight into the geometrical confinement effects on polymer behavior.

  2. Surface induced molecular dynamics of thin lipid films confined to submicron cavities: A 1H multiple-quantum NMR study

    NASA Astrophysics Data System (ADS)

    Jagadeesh, B.; Prabhakar, A.; Demco, D. E.; Buda, A.; Blümich, B.

    2005-03-01

    The dynamics and molecular order of thin lipid (lecithin) films confined to 200, 100 and 20 nm cylindrical pores with varying surface coverage, were investigated by 1H multiple-quantum NMR. The results show that the molecular dynamics in the surface controlled layers are less hindered compared to those in the bulk. Dynamic heterogeneity among terminal CH 3 groups is evident. Enhanced dynamic freedom is observed for films with area per molecule, ˜ 128 Å 2. The results are discussed in terms of changes in the lipid molecular organization with respect to surface concentration, its plausible motional modes and dynamic heterogeneity.

  3. Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode

    NASA Astrophysics Data System (ADS)

    Sojasi, A.

    2018-01-01

    In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .

  4. Dynamic self-organization of confined autophoretic particles

    NASA Astrophysics Data System (ADS)

    Medrano, Anthony; Michelin, Sébastien; Kanso, Eva

    2016-11-01

    We study the behavior of chemically-active Janus particles in microfluidic Hele-Shaw-type confinement. These micron-scale chemical motors, when immersed in a fuel-laden fluid, produce an ionic chemical field which leads to motility and consequently a local fluid flow. In unconfined settings, experimental and computational studies have shown these particles to spontaneously self-organize into crystal structures, and form into asters of two or more particles. Here, we show that geometric confinement alters both the chemical and hydrodynamic signature of the particles in such a way that their far-field effects can be modeled as source dipoles. Each particle moves according to its own self-propelled motion and in response to the chemical and hydrodynamic field created by other particles. Two interaction modes are observed: self-assembly into quasi-static crystals and into dynamically-evolving chains. We discuss the conditions that lead to these modes of interactions and the phase transitions between them for various Janus particle concentrations. The National GEM Consortium.

  5. Dynamics of proteins aggregation. II. Dynamic scaling in confined media

    NASA Astrophysics Data System (ADS)

    Zheng, Size; Shing, Katherine S.; Sahimi, Muhammad

    2018-03-01

    In this paper, the second in a series devoted to molecular modeling of protein aggregation, a mesoscale model of proteins together with extensive discontinuous molecular dynamics simulation is used to study the phenomenon in a confined medium. The medium, as a model of a crowded cellular environment, is represented by a spherical cavity, as well as cylindrical tubes with two aspect ratios. The aggregation process leads to the formation of β sheets and eventually fibrils, whose deposition on biological tissues is believed to be a major factor contributing to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis diseases. Several important properties of the aggregation process, including dynamic evolution of the total number of the aggregates, the mean aggregate size, and the number of peptides that contribute to the formation of the β sheets, have been computed. We show, similar to the unconfined media studied in Paper I [S. Zheng et al., J. Chem. Phys. 145, 134306 (2016)], that the computed properties follow dynamic scaling, characterized by power laws. The existence of such dynamic scaling in unconfined media was recently confirmed by experiments. The exponents that characterize the power-law dependence on time of the properties of the aggregation process in spherical cavities are shown to agree with those in unbounded fluids at the same protein density, while the exponents for aggregation in the cylindrical tubes exhibit sensitivity to the geometry of the system. The effects of the number of amino acids in the protein, as well as the size of the confined media, have also been studied. Similarities and differences between aggregation in confined and unconfined media are described, including the possibility of no fibril formation, if confinement is severe.

  6. SDO Delta H Mode Design and Analysis

    NASA Technical Reports Server (NTRS)

    Mason, Paul A.; Starin, Scott R.

    2007-01-01

    While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.

  7. First Experiments with e-e-H- H- Plasmas: Enhanced Mode Damping and Transport

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Thompson, K. A.; Driscoll, C. F.

    2017-10-01

    Negative Hydrogen ions are produced and confined in a room-temperature electron plasma, causing enhanced mode damping and particle transport effects. We accumulate an H- charge fraction nH-nH-ne 20 % ne 20 % in about 200 seconds, as externally excited H2 molecules undergo dissociative electron attachment in the plasma. The accumulated H- fraction causes a novel algebraic damping of diocotron mode amplitude A(t) , and the damping is coincident with an enhanced outward drift υr of the H- ions. That is, dA dA dt = - α dt = - α , with α nH- *υr . We observe that heating the e-e-H- H- plasma terminates the enhanced damping and enhanced centrifugal separation, both of which resume when plasma re-cools by cyclotron radiation at B = 1.2T. Other interesting observations include: (1) enhanced e- cooling from collisions with H- cooled by neutrals; (2) enhanced damping of plasma waves due to e-e-H- H- collisional drag; (3) strong exponential damping of diocotron modes in a ``floppy'' nearly-pure H- plasma, created by rapid axial ejection of the electrons. Additional novel drift modes and instabilities are predicted theoretically in such a plasma. Supported by NSF/DoE Partnership Grants PHY-1414570 and DE-SC0008693.

  8. Modes and emergent time scales of embayed beach dynamics

    NASA Astrophysics Data System (ADS)

    Ratliff, Katherine M.; Murray, A. Brad

    2014-10-01

    In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.

  9. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    NASA Astrophysics Data System (ADS)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  10. Progress in understanding the enhanced pedestal H-mode in NSTX

    DOE PAGES

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; ...

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from themore » plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.« less

  11. Transport induced by large scale convective structures in a dipole-confined plasma.

    PubMed

    Grierson, B A; Mauel, M E; Worstell, M W; Klassen, M

    2010-11-12

    Convective structures characterized by E×B motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  12. Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.

    2009-11-01

    The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.

  13. Nanopore Confinement of C-O-H Fluids Relevant to Subsurface Energy Systems

    NASA Astrophysics Data System (ADS)

    Cole, D. R.

    2016-12-01

    Complex intermolecular interactions of C-O-H fluids (e.g., H2O, CO2, CH4) result in their unique thermophysical properties, including large deviations in the volumetric properties from ideality, vapor-liquid equilibria, and critical phenomena as these fluids encounter different pressure-temperature-pore network conditions in the crust. Development of a comprehensive understanding of the structures, dynamics, and reactivity at multiple length scales (molecular to macroscopic) over wide ranges of state conditions and composition is foundational to advances in quantifying geochemical processes involving mineral-fluid interfaces. The size, distribution and connectivity of these confined geometries dictate how fluids migrate into and through these micro- and nano-environments, wet and react with the solid. This presentation will provide an overview of the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of different mixtures of C-O-H fluids in nanpores. Key results include: (1) The addition of a second carbon-bearing phase or water has a profound effect on the competition for sorption sites, phase chemistry and the dynamical properties of all phases present in the pore. (2) Low solubility phases such as methane may exhibit profound increases in concentration in nanopores in the presence of water at elevated pressures and ambient temperature compared to bulk values. (3) Methane permeability through the hydrated pores is strongly dependent on the solid substrate and local properties of confined water, including its structure and, more importantly, evolution of solvation free energy and hydrogen bond structure. (4) Under certain conditions preferential adsorption of the fluids in the

  14. Physics and performance of the I-mode regime over an expanded operating space on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Hubbard, A. E.; Baek, S.-G.; Brunner, D.; Creely, A. J.; Cziegler, I.; Edlund, E.; Hughes, J. W.; LaBombard, B.; Lin, Y.; Liu, Z.; Marmar, E. S.; Reinke, M. L.; Rice, J. E.; Sorbom, B.; Sung, C.; Terry, J.; Theiler, C.; Tolman, E. A.; Walk, J. R.; White, A. E.; Whyte, D.; Wolfe, S. M.; Wukitch, S.; Xu, X. Q.; the Alcator C-Mod Team

    2017-12-01

    New results on the I-mode regime of operation on the Alcator C-Mod tokamak are reported. This ELM-free regime features high energy confinement and a steep temperature pedestal, while particle confinement remains at L-mode levels, giving stationary density and avoiding impurity accumulation. I-mode has now been obtained over nearly all of the magnetic fields and currents possible in this high field tokamak (I p 0.55-1.7 MA, B T 2.8-8 T) using a configuration with B  ×  ∇ B drift away from the X-point. Results at 8 T confirm that the L-I power threshold varies only weakly with B T, and that the power range for I-mode increases with B T; no 8 T discharges transitioned to H-mode. Parameter dependences of energy confinement are investigated. Core transport simulations are giving insight into the observed turbulence reduction, profile stiffness and confinement improvement. Pedestal models explain the observed stability to ELMs, and can simulate the observed weakly coherent mode. Conditions for I-H transitions have complex dependences on density as well as power. I-modes have now been maintained in near-DN configurations, leading to improved divertor power flux sharing. Prospects for I-mode on future fusion devices such as ITER and ARC are encouraging. Further experiments on other tokamaks are needed to improve confidence in extrapolation.

  15. Influence of high magnetic field on access to stationary H-modes and pedestal characteristics in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Tolman, E. A.; Hughes, J. W.; Wolfe, S. M.; Wukitch, S. J.; LaBombard, B.; Hubbard, A. E.; Marmar, E. S.; Snyder, P. B.; Schmidtmayr, M.

    2018-04-01

    Recent Alcator C-Mod experiments have explored access to and characteristics of H-modes at magnetic fields approaching 8 T, the highest field achieved to date in a diverted tokamak. The H-modes originated from L-mode densities ranging from 1.1 × 1020~m-3 to 2.8 × 1020~m-3 , allowing insight into the density dependence of the H-mode power threshold at high magnetic field. This dependence is compared to predictions from the ITPA scaling law ([1]), finding that the law is approximately accurate at 7.8 T. However, the law underpredicted the high density H-mode threshold at lower magnetic field in previous C-Mod experiments ([2]), suggesting that the overall dependence of the threshold on magnetic field is weaker than predicted by the scaling law. The threshold data at 7.8 T also indicates that the onset of a low density branch at this magnetic field on C-Mod occurs below 1.4 × 1020~m-3 , which is lower than predicted by an existing model for low density branch onset. The H-modes achieved steady-state densities ranging from 2.3 × 1020 ~m-3 to 4.4 × 1020 ~m-3 , and higher transient densities, and had values of q 95 from 3.3 to 6.0. This parameter range allowed the achievement of all three types of H-mode routinely observed at lower magnetic field on C-Mod: the stationary, ELM-suppressed Enhanced D α (EDA) regime, seen at high densities and high values of q 95; the nonstationary ELM-free regime, seen at lower densities and values of q 95; and the ELMy regime, seen at low density, moderate q 95, and specialized plasma shape. The parameter space in which these regimes occur at 7.8 T is consistent with lower magnetic field experience. Pressure pedestal height at 7.8 T is compared to EPED [3, 4] predictions, and a scaling law for EDA density pedestal height developed between 4.5 T and 6.0 T is updated to include fields from 2.7 T to 7.8 T. Overall, this analysis increases confidence in the use of low magnetic field experience to predict some elements of high magnetic

  16. Imaging nanowire plasmon modes with two-photon polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruber, Christian; Trügler, Andreas; Hohenester, Ulrich

    2015-02-23

    Metal nanowires sustain propagating surface plasmons that are strongly confined to the wire surface. Plasmon reflection at the wire end faces and interference lead to standing plasmon modes. We demonstrate that these modes can be imaged via two-photon (plasmon) polymerization of a thin film resist covering the wires and subsequent electron microscopy. Thereby, the plasmon wavelength and the phase shift of the nanowire mode picked up upon reflection can be directly retrieved. In general terms, polymerization imaging is a promising tool for the imaging of propagating plasmon modes from the nano- to micro-scale.

  17. ELM Dynamics in TCV H-modes

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Martin, Y. R.; Lister, J. B.; Llobet, X.; Bak, P. E.

    2003-06-01

    TCV (Tokamak à Configuration Variable, R = 0.88 m, a < 0.25 m, BT < 1.54 T) is a highly elongated tokamak, capable of producing limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma — wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock.

  18. Robust scaling laws for energy confinement time, including radiated fraction, in Tokamaks

    NASA Astrophysics Data System (ADS)

    Murari, A.; Peluso, E.; Gaudio, P.; Gelfusa, M.

    2017-12-01

    In recent years, the limitations of scalings in power-law form that are obtained from traditional log regression have become increasingly evident in many fields of research. Given the wide gap in operational space between present-day and next-generation devices, robustness of the obtained models in guaranteeing reasonable extrapolability is a major issue. In this paper, a new technique, called symbolic regression, is reviewed, refined, and applied to the ITPA database for extracting scaling laws of the energy-confinement time at different radiated fraction levels. The main advantage of this new methodology is its ability to determine the most appropriate mathematical form of the scaling laws to model the available databases without the restriction of their having to be power laws. In a completely new development, this technique is combined with the concept of geodesic distance on Gaussian manifolds so as to take into account the error bars in the measurements and provide more reliable models. Robust scaling laws, including radiated fractions as regressor, have been found; they are not in power-law form, and are significantly better than the traditional scalings. These scaling laws, including radiated fractions, extrapolate quite differently to ITER, and therefore they require serious consideration. On the other hand, given the limitations of the existing databases, dedicated experimental investigations will have to be carried out to fully understand the impact of radiated fractions on the confinement in metallic machines and in the next generation of devices.

  19. Impact of neoclassical tearing mode–turbulence multi-scale interaction in global confinement degradation and magnetic island stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardoczi, Lazlo; Carter, Troy A.; La Haye, Robert J.

    Recent measurements of turbulent density (more » $$\\tilde{n}$$) and electron-temperature ($$\\tilde{T}$$ e) fluctuations have reported turbulence modifications by Neoclassical Tearing Mode (NTM) islands: turbulence decreases (increases) inside (outside) the island region when the island width (W) exceeds a threshold (W T), in qualitative agreement with gyrokinetic simulations. As the cross-field transport in tokamaks is dominantly driven by turbulence, these observations call into question the conventional understanding of confinement degradation by NTMs and magnetic island stability physics. The experimental data presented here support the following points: (i) When profiles flatten at the O-point and gradients increase outside of the island, $$\\tilde{n}$$ decreases (increases) inside (outside) the island. Along with the parallel transport resulting in increased fluxes inside the island, the increase of $$\\tilde{n}$$ outside of the island offers an explanation for the temporal increase of fluxes in that region. As the plasma stored energy (WMHD) gradually decreases in synchronization with the island growth and saturation, gradients, $$\\tilde{n}$$ and fluxes also decrease outside the island until they become about the same as before NTM onset. These fluxes balance the constant sources, and the plasma comes to a steady state at lower W MHD. (ii) Turbulence reduction in the O-point region has a destabilizing effect on the island. This effect is, however, nearly compensated by the reduced confinement. In conclusion, these observations suggest that driving turbulence in the island region could lead to smaller saturated islands offering a path toward better confinement and safer operation of reactor-scale fusion devices.« less

  20. Impact of neoclassical tearing mode–turbulence multi-scale interaction in global confinement degradation and magnetic island stability

    DOE PAGES

    Bardoczi, Lazlo; Carter, Troy A.; La Haye, Robert J.; ...

    2017-12-08

    Recent measurements of turbulent density (more » $$\\tilde{n}$$) and electron-temperature ($$\\tilde{T}$$ e) fluctuations have reported turbulence modifications by Neoclassical Tearing Mode (NTM) islands: turbulence decreases (increases) inside (outside) the island region when the island width (W) exceeds a threshold (W T), in qualitative agreement with gyrokinetic simulations. As the cross-field transport in tokamaks is dominantly driven by turbulence, these observations call into question the conventional understanding of confinement degradation by NTMs and magnetic island stability physics. The experimental data presented here support the following points: (i) When profiles flatten at the O-point and gradients increase outside of the island, $$\\tilde{n}$$ decreases (increases) inside (outside) the island. Along with the parallel transport resulting in increased fluxes inside the island, the increase of $$\\tilde{n}$$ outside of the island offers an explanation for the temporal increase of fluxes in that region. As the plasma stored energy (WMHD) gradually decreases in synchronization with the island growth and saturation, gradients, $$\\tilde{n}$$ and fluxes also decrease outside the island until they become about the same as before NTM onset. These fluxes balance the constant sources, and the plasma comes to a steady state at lower W MHD. (ii) Turbulence reduction in the O-point region has a destabilizing effect on the island. This effect is, however, nearly compensated by the reduced confinement. In conclusion, these observations suggest that driving turbulence in the island region could lead to smaller saturated islands offering a path toward better confinement and safer operation of reactor-scale fusion devices.« less

  1. Boundary perturbations coupled to core 3/2 tearing modes on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Yu, L.; Domier, C. W.; Luhmann, N. C., Jr.; Austin, M. E.; Paz-Soldan, C.; Turnbull, A. D.; Classen, I. G. J.; the DIII-D Team

    2013-09-01

    High confinement (H-mode) discharges on the DIII-D tokamak are routinely subject to the formation of long-lived, non-disruptive magnetic islands that degrade confinement and limit fusion performance. Simultaneous, 2D measurement of electron temperature fluctuations in the core and edge regions allows for reconstruction of the radially resolved poloidal mode number spectrum and phase of the global plasma response associated with these modes. Coherent, n = 2 excursions of the plasma boundary are found to be the result of coupling to an n = 2, kink-like mode which arises locked in phase to the 3/2 island chain. This coupling dictates the relative phase of the displacement at the boundary with respect to the tearing mode. This unambiguous phase relationship, for which no counter-examples are observed, is presented as a test for modeling of the perturbed fields to be expected outside the confined plasma.

  2. Stationary multifaceted asymmetric radiation from the edge and improved confinement mode in a superconducting tokamak.

    PubMed

    Gao, X; Xie, J K; Wan, Y X; Ushigusa, K; Wan, B N; Zhang, S Y; Li, J; Kuang, G L

    2002-01-01

    Stationary multifaceted asymmetric radiation from the edge (MARFE) is studied by gas-puffing feedback control according to an empirical MARFE critical density ( approximately 1.8 x 10(13) cm(-3)) in the HT-7 Ohmic discharges (where the plasma current I(p) is about 170 kA, loop voltage V(loop)=2-3 V, toroidal field B(T)=1.9 T, and Z(eff)=3-4). It is observed that an improved confinement mode characterized by D(alpha) line emissions drops and the line-averaged density increase is triggered in the stationary MARFE discharges. The mode is not a symmetric "detachment" state, because the quasi-steady-state poloidally asymmetric radiation (e.g., C III line emissions) still exists. This phenomenon has not been predicted by the current MARFE theory.

  3. Multi-Phonon Relaxation of H^- Local Modes in CaF_2

    NASA Astrophysics Data System (ADS)

    Davison, C. P.; Happek, U.; Campbell, J. A.; Engholm, J. R.; Schwettman, H. A.

    1998-03-01

    Local modes play an important role in the relaxation of vibrational modes of small molecules in solids (J.R. Engholm, C.W. Rella, H.A. Schwettman, and U. Happek; Phys. Rev. Lett. 77), 1302 (1996)., but only few attempts have been reported to study the relaxation of these local modes. Here we report on experiments to investigate the non-radiative relaxation of H^- local modes in CaF_2. Using a pump-probe technique, saturation experiments on the H^- local modes, both interstitial and substitutional, were performed at the Stanford Free Electron Laser Center. At low temperature we find a relaxation time T1 of 45 psec for the substitutional H^- local mode, and a more rapid relaxation for the interstitial H^- local modes next to La^3+ and Lu^3+ impurities. Information on the decay channels of the local modes are obtained from the characteristic temperature dependence of the relaxation rates. This work is supported in part by the ONR, Grant No. N00014-94-1024.

  4. Quantum Electric Dipole Lattice - Water Molecules Confined to Nanocavities in Beryl

    NASA Astrophysics Data System (ADS)

    Dressel, Martin; Zhukova, Elena S.; Thomas, Victor G.; Gorshunov, Boris P.

    2018-02-01

    Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.

  5. Non-unique monopole oscillations of harmonically confined Yukawa systems

    NASA Astrophysics Data System (ADS)

    Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael

    2008-11-01

    Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)

  6. Edge ohmic heating and improved confinement on HT-6M Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.

    1995-04-01

    An improved confinement has been observed on HT-6M tokamak after application of Edge Ohmic Heating (EOH) which makes plasma current rapidly ramp up from an initial steady state (I{sub p}=55 kA) within a small time scale (0.4 ms) to a second steady state (I{sub p}=60 kA) with a ramp rate of 12 MA/sec. The improved confinement is characterized by (a) increased average density n{sub e}; (b) reduced H{sub alpha} radiation; (c) reduced density fluctuations both in the center and at the edge; (d) a steeper n{sub e} and T{sub e} profile at the edge; (e) the changed profiles of plasmamore » parameters n{sub e}(r), q(r) and j(r); (f) transferred the oscillation modes of the soft-X ray signals from Mirnov fluctuation (12 kHz) to sawtooth oscillation (1.7 kHz). The changes of edge fluctuation, radial electric field and bremsstrahlung during EOH were measured and discussed in details. The measured values of {beta}{sub p}+l{sub i}/2 and soft-X ray sawtooth inversion radius implied the anomalous current penetration. 10 refs., 2 figs.« less

  7. Scaling of mode shapes from operational modal analysis using harmonic forces

    NASA Astrophysics Data System (ADS)

    Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.

    2017-10-01

    This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.

  8. Laboratory-scale uranium RF plasma confinement experiments

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.

  9. Turbulent particle transport as a function of toroidal rotation in DIII-D H-mode plasmas

    DOE PAGES

    Wang, Xin; Mordijck, Saskia; Zeng, Lei; ...

    2016-03-01

    In this paper we show how changes in toroidal rotation, by controlling the injected torque, affect particle transport and confinement. The toroidal rotation is altered using the co- and counter neutral beam injection (NBI) in low collisionality H-mode plasmas on DIII-D with dominant electron cyclotron heating (ECH). We find that there is no correlation between the toroidal rotation shear and the inverse density gradient, which is observed on AUG whenmore » $${{T}_{\\text{e}}}/{{T}_{\\text{i}}}$$ is varied using ECH (Angioni et al 2011 Phys. Rev. Lett. 107 215003). In DIII-D, we find that in a discharge with balanced torque injection, the $$E\\times B$$ shear is smaller than the linear gyrokinetic growth rate for small $${{k}_{\\theta}}{{\\rho}_{s}}$$ for $$\\rho =0.6$$ –0.85. This results in lower particle confinement. In the co- and counter- injected discharges the $$E\\times B$$ shear is larger or close to the linear growth rate at the plasma edge and both configurations have higher particle confinement. In order to measure particle transport, we use a small periodic perturbative gas puff. This gas puff perturbs the density profiles and allows us to extract the perturbed diffusion and inward pinch coefficients. We observe a strong increase in the inward particle pinch in the counter-torque injected plasma. Lastly, the calculated quasi-linear particle flux, nor the linear growth rates using TGLF agree with experimental observations.« less

  10. Dependence of SOL widths on plasma current and density in NSTX H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Maingi, R.; Boedo, J. A.; Soukhanovskii, V.; NSTX Team

    2009-06-01

    The dependence of various SOL widths on the line-averaged density ( n) and plasma current ( Ip) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ( λq), measured by the IR camera, is virtually insensitive to n and has a strong negative dependence on Ip. This insensitivity of λq to n¯e is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ( λTe, λjsat, λne, and λpe, respectively) measured by the probe showed that λTe and λjsat have strong negative dependence on Ip, whereas λne and λpe revealed only a little or no dependence. The dependence of λTe on Ip is consistent with the scaling law in the literature, while λne and λpe dependence shows a different trend.

  11. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  12. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    PubMed

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  13. Fe-H/D stretching and bending modes in nuclear resonant vibrational, Raman and infrared spectroscopies: Comparisons of density functional theory and experiment

    PubMed Central

    Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Cramer, Stephen P.; Case, David A.

    2010-01-01

    Infrared, Raman, and nuclear resonant vibrational (NRVS) spectroscopies have been used to address the Fe-H bonding in trans-Fe(H)(CO) iron hydride compound, Fe(H)(CO)(dppe)2, dppe = 1,2-bis(diphenylphosphino)ethane. H and D isotopomers of the compound, with the selective substitution at the metal-coordinated hydrogen, have been considered in order to address the Fe-H/D stretching and bending modes. Experimental results are compared to the normal mode analysis by the density functional theory (DFT). The results are that (i) the IR spectrum does not clearly show Fe–H stretching or bending modes; (ii) Fe–H stretching modes are clear but weak in the Raman spectrum, and Fe–H bending modes are weak; (iii) NRVS 57Fe spectroscopy resolves Fe-H bending clearly, but Fe–H or Fe–D stretching is above its experimentally resolved frequency range. DFT caclulations (with no scaling of frequencies) show intensities and peak locations that allow unambigous correlations between observed and calculated features, with frequency errors generally less than 15 cm−1. Prospects for using these techniques to unravel vibrational modes of protein active sites are discussed. PMID:21322496

  14. Small-scale dynamic confinement gap test

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm

    2011-06-01

    Gap tests are routinely used to ascertain the shock sensitiveness of new explosive formulations. The tests are popular since that are easy and relatively cheap to perform. However, with modern insensitive formulations with big critical diameters, large test samples are required. This can make testing and screening of new formulations expensive since large quantities of test material are required. Thus a new test that uses significantly smaller sample quantities would be very beneficial. In this paper we describe a new small-scale test that has been designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. The long duration shock wave allows less reactive materials that are below their critical diameter, more time to react. We present details on the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.

  15. Towards Multiscale Interactions Between Tearing Modes and Microturbulence

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.

    2017-10-01

    Work on the Madison Symmetric Torus Reversed-Field Pinch (RFP) has shown that large-scale tearing modes present in standard operation are highly detrimental to confinement. These tearing modes, even when reduced in improved confinement regimes of operation, significantly affect zonal flow activity and play a large role in setting microturbulent-induced transport levels. Previous gyrokinetic work has shown that a small but finite tearing fluctuation amplitude is necessary to produce transport values in agreement with experimental observation. This has previously been implemented via an ad-hoc, constant-in-time A∥ perturbation. This work details self-consistent modeling of tearing fluctuations in the RFP using the Gene code via the inclusion of a current gradient drive incorporated into the background distribution function. Tearing mode growth rates calculated from gyrokinetic simulations are benchmarked with results from fluid theory. Additionally, first results from multiscale Gene simulations describing tearing mode interactions with RFP microturbulence are presented. This work is supported by the U.S. Department of Energy, Grant No. DE-FG02-85ER-53121.

  16. Stability properties and fast ion confinement of hybrid tokamak plasma configurations

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.

    2015-11-01

    In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.

  17. Gate-defined Quantum Confinement in Suspended Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Allen, Monica

    2013-03-01

    Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.

  18. Global Confinement, Sawtooth Mixing, and Stochastic Diffusion Ripple Loss of Fast ICRF-driven H+ Minority Ions in TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, M.P.; Bell, R.; Budny, R.V.

    1998-07-01

    This paper presents studies of ICRF-driven H+ minority ions in TFTR (Tokamak Fusion Test Reator) deuterium plasmas using primarily passive Ho flux detection in the energy range of 0.2-1.0 MeV with some corroborating active (lithium pellet charge exchange) measurements. It is shown that in the passive mode the main donors for the neutralization of H+ ions in this energy range are C5+ ions. The measured effective H+ tail temperatures range from 0.15 MeV at an ICRF power of 2 MW to 0.35 MeV at 6 MW. Analysis of the ICRF-driven H+ ion energy balance has been performed on the basismore » of the dependence of effective H+ temperatures on the plasma parameters. The analysis showed that H+ confinement times are comparable with their slowing-down times and tended to decrease with increasing ICRF power. Radial redistribution of ICRF-driven H+ ions was detected when giant sawtooth crashes occurred during the ICRF heating. The redistribution affected ions with energy below 0.7-0.8 MeV. The sawtooth crashes displace H+ ions outward along the plasma major radius into the stochastic ripple diffusion domain were those ions are lost in about 10 milliseconds. These observations are consistent with the model of the redistribution of energetic particles developed previously to explain the results of deuterium-tritium alpha-particle redistribution due to sawteeth observed in TFTR. The experimental data are also consistent with ORBIT code simulations of H+ stochastic ripple diffusion losses.« less

  19. Streamer formation and transport for parameters characteristic of H-mode pedestals

    NASA Astrophysics Data System (ADS)

    Blackmon, Austin; Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Hazeltine, R. D.

    2017-10-01

    We investigate, through gyrokinetic simulations, the formation of streamers as a consequence of electron temperature gradient driven, electron scale instabilities. We also study the interaction of velocity shear with streamers for parameters typical of H-mode pedestals, exploring both the higher as well as lower temperature gradient regions. Without ExB shear, the streamers form at the pedestal top causing large heat fluxes; the modes, however, did not saturate. When ExB shear was turned on, the streamers dissipated, and heat flux was lowered, though still of significant magnitude. In the middle of the pedestal, with high temperature gradient, heat flux was insignificant. There was no evidence of streamers in this region, leading to a conclusion that streamers have a strong influence on heat flux. Work supported by US DOE under DE-FG02-04ER54742.

  20. Strongly coupled modes of M and H for perpendicular resonance

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Saslow, Wayne M.

    2018-05-01

    We apply the equations for the magnetization M ⃗ and field H ⃗ to study their coupled modes for a semi-infinite ferromagnet, conductor, or insulator with magnetization M0 and field H0 normal to the plane (perpendicular resonance) and wave vector normal to the plane, which makes the modes doubly degenerate. With dimensionless damping constant α and dimensionless transverse susceptibility χ⊥=M0/He(He≡H0-M0) , we derive an analytic expression for the wave vector squared, showing that M ⃗ and H ⃗ are nearly decoupled only if α ≫χ⊥ . This is violated in the ferromagnetic regime, although a first correction is found to give good agreement away from resonance. Emphasizing the conductor permalloy as a function of H0 we study the eigenvalues and eigenmodes and the dissipation rate due to absorption both from the total effective field and from the Joule heating. (We include the contribution of the nonuniform exchange energy term, needed for energy conservation.) Using these modes we then apply, for a semi-infinite ferromagnet, a range of boundary conditions (i.e., surface anisotropies) on M⊥ to find the reflection coefficient R and the reflectivity |R| 2. As a function of H0, absorption is dominated by the the skin depth mode (primarily H ⃗) except near the resonance and at a higher-field Hd associated with a dip in the reflectivity, whose position above the main resonance varies quadratically with the surface anisotropy Ks. The dip is driven by the boundary condition on M ⃗; the coefficient of the (primarily) M ⃗ mode becomes very small at the dip, being compensated by an increase in the amplitude of the M ⃗ mode, which has a Lorentzian line shape of height ˜α-1 and width ˜α .

  1. Influence of toroidal rotation on tearing modes

    NASA Astrophysics Data System (ADS)

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  2. Effects of high sound speed confiners on ANFO detonations

    NASA Astrophysics Data System (ADS)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  3. The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress

    NASA Astrophysics Data System (ADS)

    Schmitz, L.

    2017-02-01

    Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E   ×   B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E   ×   B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.

  4. Modelling of transitions between L- and H-mode in JET high plasma current plasmas and application to ITER scenarios including tungsten behaviour

    NASA Astrophysics Data System (ADS)

    Koechl, F.; Loarte, A.; Parail, V.; Belo, P.; Brix, M.; Corrigan, G.; Harting, D.; Koskela, T.; Kukushkin, A. S.; Polevoi, A. R.; Romanelli, M.; Saibene, G.; Sartori, R.; Eich, T.; Contributors, JET

    2017-08-01

    The dynamics for the transition from L-mode to a stationary high Q DT H-mode regime in ITER is expected to be qualitatively different to present experiments. Differences may be caused by a low fuelling efficiency of recycling neutrals, that influence the post transition plasma density evolution on the one hand. On the other hand, the effect of the plasma density evolution itself both on the alpha heating power and the edge power flow required to sustain the H-mode confinement itself needs to be considered. This paper presents results of modelling studies of the transition to stationary high Q DT H-mode regime in ITER with the JINTRAC suite of codes, which include optimisation of the plasma density evolution to ensure a robust achievement of high Q DT regimes in ITER on the one hand and the avoidance of tungsten accumulation in this transient phase on the other hand. As a first step, the JINTRAC integrated models have been validated in fully predictive simulations (excluding core momentum transport which is prescribed) against core, pedestal and divertor plasma measurements in JET C-wall experiments for the transition from L-mode to stationary H-mode in partially ITER relevant conditions (highest achievable current and power, H 98,y ~ 1.0, low collisionality, comparable evolution in P net/P L-H, but different ρ *, T i/T e, Mach number and plasma composition compared to ITER expectations). The selection of transport models (core: NCLASS  +  Bohm/gyroBohm in L-mode/GLF23 in H-mode) was determined by a trade-off between model complexity and efficiency. Good agreement between code predictions and measured plasma parameters is obtained if anomalous heat and particle transport in the edge transport barrier are assumed to be reduced at different rates with increasing edge power flow normalised to the H-mode threshold; in particular the increase in edge plasma density is dominated by this edge transport reduction as the calculated neutral influx across the

  5. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, R.; Canik, J. M.; Bell, R. E.

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10-30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which ismore » optimized for a boundary shape similar to the one in this experiment.« less

  6. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    DOE PAGES

    Maingi, R.; Canik, J. M.; Bell, R. E.; ...

    2016-07-19

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10-30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which ismore » optimized for a boundary shape similar to the one in this experiment.« less

  7. Collisionality dependence and ion species effects on heat transport in He and H plasma, and the role of ion scale turbulence in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nagaoka, K.; Murakami, S.; Takahashi, H.; Osakabe, M.; Yokoyama, M.; Seki, R.; Michael, C. A.; Yamaguchi, H.; Suzuki, C.; Shimizu, A.; Tokuzawa, T.; Yoshinuma, M.; Akiyama, T.; Ida, K.; Yamada, I.; Yasuhara, R.; Funaba, H.; Kobayashi, T.; Yamada, H.; Du, X. D.; Vyacheslavov, L. N.; Mikkelsen, D. R.; Yun, G. S.; the LHD Experimental Group

    2017-11-01

    Surveys of the ion and electron heat transports of neutral beam (NB) heating plasma were carried out by power balance analysis in He and H rich plasma at LHD. Collisionality was scanned by changing density and heating power. The characteristics of the transport vary depending on collisionality. In low collisionality, with low density and high heating power, an ion internal transport barrier (ITB) was formed. The ion heat conductivity (χ i) is lower than electron heat conductivity (χ e) in the core region at ρ  <  0.7. On the other hand, in high collisionality, with high density and low heating power, χ i is higher than χ e across the entire range of plasma. These different confinement regimes are associated with different fluctuation characteristics. In ion ITB, fluctuation has a peak at ρ  =  0.7, and in normal confinement, fluctuation has a peak at ρ  =  1.0. The two confinement modes change gradually depending on the collisionality. Scans of concentration ratio between He and H were also performed. The ion confinement improvements were investigated using gyro-Bohm normalization, taking account of the effective mass and charge. The concentration ratio affected the normalized χ i only in the edge region (ρ ~ 1.0). This indicates ion species effects vary depending on collisionality. Turbulence was modulated by the fast ion loss instability. The modulation of turbulence is higher in H rich than in He rich plasma.

  8. H2@Scale Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivovar, Bryan

    2017-03-31

    Final report from the H2@Scale Workshop held November 16-17, 2016, at the National Renewable Energy Laboratory in Golden, Colorado. The U.S. Department of Energy's National Renewable Energy Laboratory hosted a technology workshop to identify the current barriers and research needs of the H2@Scale concept. H2@Scale is a concept regarding the potential for wide-scale impact of hydrogen produced from diverse domestic resources to enhance U.S. energy security and enable growth of innovative technologies and domestic industries. Feedback received from a diverse set of stakeholders at the workshop will guide the development of an H2@Scale roadmap for research, development, and early stagemore » demonstration activities that can enable hydrogen as an energy carrier at a national scale.« less

  9. Effect of Hydration and Confinement on Micro-Structure of Calcium-Silicate-Hydrate Gels

    NASA Astrophysics Data System (ADS)

    Gadde, Harish Kumar

    Calcium-silicate-hydrate(C-S-H) gel is a primary nano-crystalline phase present in hydrated Ordinary Portland Cement (OPC) responsible for its strength and creep behavior. Our reliance on cement for infrastructure is global, and there is a need to improve infrastructure life-times. A way forward is to engineer the cement with more durability and long-term strength. The main purpose of this research is to quantify the micro-structure of C-S-H to see if cement can be engineered at various length scales to improve long-term behavior by spatial arrangement. We investigate the micro-structure evolution of C-S-H in cement as a function of hydration time and confinement. Scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to quantify the material and spatial properties of C-S-H as a function of hydration time. The data obtained from these experiments was used to identify C-S-H phases in cement sample. Pair Distribution Function (PDF) analysis of HD C-S-H phase with different hydration times was done at Advanced Photon Source, Argonne National Laboratory, beamline 11-ID-B. Only nonlinear trends in the atomic ordering of C-S-H gel as a function of hydration time were observed. Solid state 29Si Nuclear Magnetic Resonance (NMR) was used to quantify the effect of confinement on two types of C-S-H: white cement C-S-H and synthetic C-S-H. NMR spectra revealed that there is no significant difference in the structure of C-S-H due to confinement when compared with unconfined C-S-H. It is also found that there is significant difference in the Si environments of these two types of C-S-H. Though it does seem possible to engineer the cement on atomic scales, all these studies reveal that engineering cement on such a scale requires a more statistically accurate understanding of intricate structure of C-S-H than is currently available.

  10. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  11. Vibrational mode frequencies of H2S and H2O adsorbed on Ge(0 0 1)-(2 × 1) surfaces

    NASA Astrophysics Data System (ADS)

    Hartnett, M.; Fahy, S.

    2015-02-01

    The equilibrium geometry and vibrational modes of H2S and H2O-terminated Ge(0 0 1)-(2 × 1) surfaces are calculated in a supercell approach using first-principles density functional theory in the local density (LDA), generalized gradient (GGA) approximations and van der Waals (vdW) interactions. Mode frequencies are found using the frozen phonon method. For the H2S-passivated surface, the calculated frequencies in LDA (GGA) are 2429 cm-1 (2490) for the Hsbnd S stretch mode, 712 cm-1 (706) for the Hsbnd S bond bending mode, 377 cm-1 (36) for the Gesbnd S stretch mode and 328 cm-1 (337) for Hsbnd S wag mode. Frequencies for the H2O passivated surface are 3590 cm-1 (3600) for the Hsbnd O stretch mode, 921 cm-1 (947) for the bending mode, 609 cm-1 (559) for the Gesbnd O stretch, 1995 cm-1 (1991) for the Gesbnd H stretch mode, 498 cm-1 (478) for the Gesbnd H bending mode and 342 cm-1 (336) for the Hsbnd O wag mode. The differences between the functionals including vdW terms and the LDA or GGA are less than the differences between LDA and GGA for the vibrational mode frequencies.

  12. Colloid-polymer mixtures under slit confinement

    NASA Astrophysics Data System (ADS)

    Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo

    2017-03-01

    We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1 ⩾q ⩾0.4 and the confinement distance, H, in 10 σc ⩾H ⩾3 σc , σc being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σc ) -1 for H ≳4 σc . The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σc ) -1, from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.

  13. Ground-state calculations of confined hydrogen molecule H2 using variational Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Doma, S. B.; El-Gammal, F. N.; Amer, A. A.

    2018-07-01

    The variational Monte Carlo method is used to evaluate the ground-state energy of a confined hydrogen molecule H2. Accordingly, we considered the.me case of hydrogen molecule confined by a hard prolate spheroidal cavity when the nuclear positions are clamped at the foci (on-focus case). Also, the case of off-focus nuclei in which the two nuclei are not clamped to the foci is studied. This case provides flexibility for the treatment of the molecular properties by selecting an arbitrary size and shape for the confining spheroidal box. A simple chemical analysis concerning the catalytic role of enzyme is investigated. An accurate trial wave function depending on many variational parameters is used for this purpose. The obtained results for the case of clamped foci exhibit good accuracy compared with the high precision variational data presented previously. In the case of off-focus nuclei, an improvement is obtained with respect to the most recent uncorrelated results existing in the literature.

  14. Large scale Brownian dynamics of confined suspensions of rigid particles

    NASA Astrophysics Data System (ADS)

    Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar

    2017-12-01

    We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose

  15. The transition mechanisms of the E to H mode and the H to E mode in an inductively coupled argon-mercury mixture discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu

    2015-10-15

    In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less

  16. Theory-based transport simulations of TFTR L-mode temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, G.

    1992-03-01

    The temperature profiles from a selection of Tokamak Fusion Test Reactor (TFTR) L-mode discharges (17{ital th} {ital European} {ital Conference} {ital on} {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Amsterdam, 1990 (EPS, Petit-Lancy, Switzerland, 1990, p. 114)) are simulated with the 1 (1)/(2) -D baldur transport code (Comput. Phys. Commun. {bold 49}, 275 (1988)) using a combination of theoretically derived transport models, called the Multi-Mode Model (Comments Plasma Phys. Controlled Fusion {bold 11}, 165 (1988)). The present version of the Multi-Mode Model consists of effective thermal diffusivities resulting from trapped electron modes and ion temperature gradient ({eta}{submore » {ital i}}) modes, which dominate in the core of the plasma, together with resistive ballooning modes, which dominate in the periphery. Within the context of this transport model and the TFTR simulations reported here, the scaling of confinement with heating power comes from the temperature dependence of the {eta}{sub {ital i}} and trapped electron modes, while the scaling with current comes mostly from resistive ballooning modes.« less

  17. Photonic confinement in laterally structured metal-organic microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mischok, Andreas, E-mail: andreas.mischok@iapp.de; Brückner, Robert; Sudzius, Markas

    2014-08-04

    We investigate the formation of optical modes in organic microcavities with an incorporated perforated silver layer. The metal leads to a formation of Tamm-plasmon-polaritons and thus separates the sample into metal-free or metal-containing areas, supporting different resonances. This mode splitting is exploited to confine photons in elliptic holes and triangular cuts, forming distinctive standing wave patterns showing the strong lateral confinement. A comparison with a Maxwell-Bloch based rate equation model clearly shows the nonlinear transition into the lasing regime. The concentration of the electric field density and inhibition of lateral loss channels in turn decreases the lasing threshold by upmore » to one order of magnitude, to 0.1 nJ. By spectroscopic investigation of such a triangular wedge, we observe the transition from the unperturbed cavity state to a strongly confined complex transversal mode. Such a structured silver layer can be utilized in future for charge carrier injection in an electrically driven organic solid state laser.« less

  18. Polymer Chain Conformation and Dynamical Confinement in a Model One-Component Nanocomposite

    NASA Astrophysics Data System (ADS)

    Mark, C.; Holderer, O.; Allgaier, J.; Hübner, E.; Pyckhout-Hintzen, W.; Zamponi, M.; Radulescu, A.; Feoktystov, A.; Monkenbusch, M.; Jalarvo, N.; Richter, D.

    2017-07-01

    We report a neutron-scattering investigation on the structure and dynamics of a single-component nanocomposite based on SiO2 particles that were grafted with polyisoprene chains at the entanglement limit. By skillful labeling, we access both the monomer density in the corona as well as the conformation of the grafted chains. While the corona profile follows a r-1 power law, the conformation of a grafted chain is identical to that of a chain in a reference melt, implying a high mutual penetration of the coronas from different particles. The brush crowding leads to topological confinement of the chain dynamics: (i) At local scales, the segmental dynamics is unchanged compared to the reference melt, while (ii) at the scale of the chain, the dynamics appears to be slowed down; (iii) by performing a mode analysis in terms of end-fixed Rouse chains, the slower dynamics is tracked to topological confinement within the cone spanned by the adjacent grafts; (iv) by adding 50% matrix chains, the topological confinement sensed by the grafted chain is lifted partially and the apparent chain motion is accelerated. We observe a crossover from pure Rouse motion at short times to topological confined motion beyond the time when the segmental mean squared displacement has reached the distance to the next graft.

  19. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    NASA Astrophysics Data System (ADS)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  20. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    PubMed Central

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-01-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor–memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes. PMID:28155871

  1. Nano scale dynamics of bubble nucleation in confined liquid subjected to rapid cooling: Effect of solid-liquid interfacial wettability

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.

    2017-06-01

    This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.

  2. A propagating freshwater mode in the Arctic Ocean with multidecadal time scale

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Malskær Olsen, Steffen; Margrethe Ringgaard, Ida

    2017-04-01

    We apply Principal Oscillatory Pattern analysis to the Arctic Ocean fresh water content as simulated in a 500 year long control run with constant preindustrial forcing with the EC-Earth global climate model. Two modes emerge from this analysis. One mode is a standing mode with decadal time scale describing accumulation and release of fresh water in the Beaufort Gyre, known in the literature as the Beaufort Gyre flywheel. In addition, we identify a propagating mode with a time scale around 80 years, propagating along the rim of the Canadian Basin. This mode has maximum variability of the fresh water content in the Transpolar Drift and represents the bulk of the total variability of the fresh water content in the Arctic Ocean and also projects on the fresh water through the Fram Strait. Therefore, potentially, it can introduce a multidecadal variability to the Atlantic meridional overturning circulation. We will discuss the physical origin of this propagating mode. This include planetary-scale internal Rossby waves with multidecadal time scale, due to the slow variation of the Coriolis parameter at these high latitudes, as well as topographic steering of these Rossby waves.

  3. Quantized edge modes in atomic-scale point contacts in graphene

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  4. Quantized edge modes in atomic-scale point contacts in graphene.

    PubMed

    Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0  = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  5. One-dimensional Tamm plasmons: Spatial confinement, propagation, and polarization properties

    NASA Astrophysics Data System (ADS)

    Chestnov, I. Yu.; Sedov, E. S.; Kutrovskaya, S. V.; Kucherik, A. O.; Arakelian, S. M.; Kavokin, A. V.

    2017-12-01

    Tamm plasmons are confined optical states at the interface of a metal and a dielectric Bragg mirror. Unlike conventional surface plasmons, Tamm plasmons may be directly excited by an external light source in both TE and TM polarizations. Here we consider the one-dimensional propagation of Tamm plasmons under long and narrow metallic stripes deposited on top of a semiconductor Bragg mirror. The spatial confinement of the field imposed by the stripe and its impact on the structure and energy of Tamm modes are investigated. We show that the Tamm modes are coupled to surface plasmons arising at the stripe edges. These plasmons form an interference pattern close to the bottom surface of the stripe that involves modification of both the energy and loss rate for the Tamm mode. This phenomenon is pronounced only in the case of TE polarization of the Tamm mode. These findings pave the way to application of laterally confined Tamm plasmons in optical integrated circuits as well as to engineering potential traps for both Tamm modes and hybrid modes of Tamm plasmons and exciton polaritons with meV depth.

  6. Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.

    PubMed

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D

    2015-05-08

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  7. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  8. Infrared spectrum of NH4+(H2O): Evidence for mode specific fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankewitz, Tobias; Lagutschenkov, Anita; Niedner-schatteburg, Gereon

    2007-02-21

    The gas phase infrared spectrum (3250 to 3810 cm1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by consequence spectroscopy of mass selected and isolated ions. The obtained four bands are assigned to N-H stretching modes and O-H stretching modes, respectively. The observed N-H stretching modes are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The observed O-H stretching modes are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicularmore » transitions. The K-type equidistant rotational spacings of 11.1(2) cm1 (NH4+) and 29(3) cm1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The recorded relative band intensities compare favorably with predictions of high level ab initio calculations except for the 3(H2O) band for which the observed value is about 20 times weaker than the calculated one. This long standing puzzle motivated us to examine the a 3(H2O)/1(H2O) intensity ratios from other published action spectra in other cationic complexes. These suggest that the 3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggested that the coupling of the 3(H2O) and 1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings altogether render the picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high-level electronic structure calculations at the coupled-cluster single and double with perturbative treatment of triple

  9. General approach to polymer chains confined by interacting boundaries

    NASA Astrophysics Data System (ADS)

    Freed, Karl F.; Dudowicz, Jacek; Stukalin, Evgeny B.; Douglas, Jack F.

    2010-09-01

    Polymer chains, confined to cavities or polymer layers with dimensions less than the chain radius of gyration, appear in many phenomena, such as gel chromatography, rubber elasticity, viscolelasticity of high molar mass polymer melts, the translocation of polymers through nanopores and nanotubes, polymer adsorption, etc. Thus, the description of how the constraints alter polymer thermodynamic properties is a recurrent theoretical problem. A realistic treatment requires the incorporation of impenetrable interacting (attractive or repulsive) boundaries, a process that introduces significant mathematical complications. The standard approach involves developing the generalized diffusion equation description of the interaction of flexible polymers with impenetrable confining surfaces into a discrete eigenfunction expansion, where the solutions are normally truncated at the first mode (the "ground state dominance" approximation). This approximation is mathematically well justified under conditions of strong confinement, i.e., a confinement length scale much smaller than the chain radius of gyration, but becomes unreliable when the polymers are confined to dimensions comparable to their typically nanoscale size. We extend a general approach to describe polymers under conditions of weak to moderate confinement and apply this semianalytic method specifically to determine the thermodynamics and static structure factor for a flexible polymer confined between impenetrable interacting parallel plate boundaries. The method is first illustrated by analyzing chain partitioning between a pore and a large external reservoir, a model system with application to chromatography. Improved agreement is found for the partition coefficients of a polymer chain in the pore geometry. An expression is derived for the structure factor S(k ) in a slit geometry to assist in more accurately estimating chain dimensions from scattering measurements for thin polymer films.

  10. Damping of collective modes and the echo effect in a confined Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kuklov, A. B.; Chencinski, N.

    1998-04-01

    We discuss the reversible nature of two mechanisms of the apparent damping of the collective modes of a confined Bose-Einstein condensate -- Landau Damping (LD) and a dephasing caused by thermal fluctuations of the normal component. The reversibility of the damping in both cases can be tested by the echo effect, when two consecutive external pulses modulate the potential trapping the condensate and induce a third pulse -- the echo -- at the time approximately equal to twice the time interval between the first two pulses. This effect is similar to the phonon echo in powders (Koji Kajimura in Physical Acoustics), ed. W.P. Mason, V.XVI, Academic Press, NY, Toronto 1982.. Parameters of the echo for the isotropic condensate are calculated analytically in the adiabatic approximation for the case of the small external pulses. Numerical simulations for the arbitrary pulses are also presented. The echo in an anisotropic condensate, where the adaibatic approximation is not valid because of the LD, is described in terms of the model of a single oscillator interacting with a quasi-continuum of modes which constitutes the normal component. In both cases in the weak echo limit the echo amplitude turns out to be proportional to the amplitudes of the external pulses. We suggest to test these predictions experimentally.

  11. EDGE2D-EIRENE modelling of near SOL E r: possible impact on the H-mode power threshold

    NASA Astrophysics Data System (ADS)

    Chankin, A. V.; Delabie, E.; Corrigan, G.; Harting, D.; Maggi, C. F.; Meyer, H.; Contributors, JET

    2017-04-01

    Recent EDGE2D-EIRENE simulations of JET plasmas showed a significant difference between radial electric field (E r) profiles across the separatrix in two divertor configurations, with the outer strike point on the horizontal target (HT) and vertical target (VT) (Chankin et al 2016 Nucl. Mater. Energy, doi: 10.1016/j.nme.2016.10.004). Under conditions (input power, plasma density) where the HT plasma went into the H-mode, a large positive E r spike in the near scrape-off layer (SOL) was seen in the code output, leading to a very large E × B shear across the separatrix over a narrow region of a fraction of a cm width. No such E r feature was obtained in the code solution for the VT configuration, where the H-mode power threshold was found to be twice as high as in the HT configuration. It was hypothesised that the large E × B shear across the separatrix in the HT configuration could be responsible for the turbulence suppression leading to an earlier (at lower input power) L-H transition compared to the VT configuration. In the present work these ideas are extended to cover some other experimental observations on the H-mode power threshold variation with parameters which typically are not included in the multi-machine H-mode power threshold scalings, namely: ion mass dependence (isotope H-D-T exchange), dependence on the ion ∇B drift direction, and dependence on the wall material composition (ITER-like wall versus carbon wall in JET). In all these cases EDGE2D-EIRENE modelling shows larger positive E r spikes in the near SOL under conditions where the H-mode power threshold is lower, at least in the HT configuration.

  12. Use of a bilayer lattice-matched AlInGaN barrier for improving the channel carrier confinement of enhancement-mode AlInGaN/GaN hetero-structure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Rahbardar Mojaver, Hassan; Gosselin, Jean-Lou; Valizadeh, Pouya

    2017-06-01

    A quaternary lattice-matched layer structure based on employing a bilayer barrier for improving the carrier confinement in the channel of enhancement-mode metal-face c-plane wurtzite AlInGaN/GaN hetero-structure field effect transistors (HFETs) is for the first time proposed. Using the commercial self-consistent Poisson-Schrödinger solver Nextnano, electronic properties of the proposed hetero-structure, including the sheet charge density and carrier confinement on the GaN side of the hetero-interface, are evaluated. Based on these evaluations, it is shown that while the proposed layer structure substantially improves the carrier confinement in the GaN channel layer, it also upholds the merits of employing a lattice-matched barrier towards achieving an enhancement-mode operation (i.e., in the absence of the piezoelectric effect). According to these simulations, in terms of maintaining the required positive threshold-voltage for the enhancement-mode operation, it is also shown that the proposed layer structure substantially outperforms the quaternary AlInGaN/GaN HFETs employing a thin AlN spacer layer.

  13. Topological superfluids confined in a nanoscale slab geometry

    NASA Astrophysics Data System (ADS)

    Saunders, John

    2013-03-01

    Nanofluidic samples of superfluid 3He provide a route to explore odd-parity topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions. We have cooled superfluid 3He confined in a precisely defined nano-fabricated cavity to well below 1 mK for the first time. We fingerprint the order parameter by nuclear magnetic resonance, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We demonstrate that dimensional confinement, at length scales comparable to the superfluid Cooper-pair diameter, has a profound influence on the superfluid order of 3He. The chiral A-phase is stabilized at low pressures, in a cavity of height 650 nm. At higher pressures we observe 3He-B with a surface induced planar distortion. 3He-B is a time-reversal invariant topological superfluid, supporting gapless Majorana surface states. In the presence of the small symmetry breaking NMR static magnetic field we observe two possible B-phase states of the order parameter manifold, which can coexist as domains. Non-linear NMR on these states enables a measurement of the surface induced planar distortion, which determines the spectral weight of the surface excitations. The expected structure of the domain walls is such that, at the cavity surface, the line separating the two domains is predicted to host fermion zero modes, protected by symmetry and topology. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase, which breaks time reversal symmetry, has a protected chiral edge mode, and may host half-quantum vortices with a Majorana zero-mode at the core. We discuss experimental progress toward this phase, through measurements on a 100 nm cavity. On the other hand, a cavity height of 1000 nm may stabilize a novel ``striped'' superfluid with spatially modulated order parameter. Supported by EPSRC (UK) GR/J022004/1 and European Microkelvin Consortium, FP7 grant 228464

  14. Hot-spot mix in ignition-scale inertial confinement fusion targets.

    PubMed

    Regan, S P; Epstein, R; Hammel, B A; Suter, L J; Scott, H A; Barrios, M A; Bradley, D K; Callahan, D A; Cerjan, C; Collins, G W; Dixit, S N; Döppner, T; Edwards, M J; Farley, D R; Fournier, K B; Glenn, S; Glenzer, S H; Golovkin, I E; Haan, S W; Hamza, A; Hicks, D G; Izumi, N; Jones, O S; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Ma, T; MacFarlane, J J; MacKinnon, A J; Mancini, R C; McCrory, R L; Meezan, N B; Meyerhofer, D D; Nikroo, A; Park, H-S; Ralph, J; Remington, B A; Sangster, T C; Smalyuk, V A; Springer, P T; Town, R P J

    2013-07-26

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50)  ng and 4000(-2970,+17 160)  ng are observed.

  15. Hot-spot mix in ignition-scale inertial confinement fusion targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Epstein, R.; Hammel, B. A.

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. As a result, low neutron yields and hot-spot mix mass between 34(–13,+50) ng and 4000(–2970,+17 160) ng are observed.

  16. Hot-spot mix in ignition-scale inertial confinement fusion targets

    DOE PAGES

    Regan, S. P.; Epstein, R.; Hammel, B. A.; ...

    2013-07-22

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. As a result, low neutron yields and hot-spot mix mass between 34(–13,+50) ng and 4000(–2970,+17 160) ng are observed.

  17. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng

    2018-03-01

    Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.

  18. Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.

    PubMed

    Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W

    2016-06-23

    The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.

  19. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive

  20. Equilibrium drives of the low and high field side n = 2 plasma response and impact on global confinement

    DOE PAGES

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...

    2016-03-31

    The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive

  1. Colloid-polymer mixtures under slit confinement.

    PubMed

    Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo

    2017-03-14

    We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1⩾q⩾0.4 and the confinement distance, H, in 10σ c ⩾H⩾3σ c , σ c being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σ c ) -1 for H≳4σ c . The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σ c ) -1 , from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.

  2. Quantum confinement effect in 6H-SiC quantum dots observed via plasmon-exciton coupling-induced defect-luminescence quenching

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxiao; Zhang, Yumeng; Fan, Baolu; Fan, Jiyang

    2017-03-01

    The quantum confinement effect is one of the crucial physical effects that discriminate a quantum material from its bulk material. It remains a mystery why the 6H-SiC quantum dots (QDs) do not exhibit an obvious quantum confinement effect. We study the photoluminescence of the coupled colloidal system of SiC QDs and Ag nanoparticles. The experimental result in conjunction with the theoretical calculation reveals that there is strong coupling between the localized electron-hole pair in the SiC QD and the localized surface plasmon in the Ag nanoparticle. It results in resonance energy transfer between them and resultant quenching of the blue surface-defect luminescence of the SiC QDs, leading to uncovering of a hidden near-UV emission band. This study shows that this emission band originates from the interband transition of the 6H-SiC QDs and it exhibits a remarkable quantum confinement effect.

  3. Intrinsic Flow and Momentum Transport during Improved Confinement in MST

    NASA Astrophysics Data System (ADS)

    Craig, D.; Tan, E.; Schott, B.; Anderson, J. K.; Boguski, J.; Nornberg, M. D.; Xing, Z. A.

    2017-10-01

    Progress in absolute wavelength calibration of the Charge Exchange Recombination Spectroscopy (CHERS) system on MST has enabled new observations and analysis of intrinsic flow and momentum transport. Localized toroidal and poloidal flow measurements with systematic accuracy of +/- 3 km/s have been obtained during improved confinement Pulsed Parallel Current Drive (PPCD) plasmas at high plasma current (400-500 kA). The magnetic activity prior to and during the transition to improved confinement tends to increase the flow and sets the initial condition for the momentum profile evolution during improved confinement where intrinsic flow drive appears to weaken. Inboard flows change in time during PPCD, consistent with changes in the core-resonant m =1, n =6 tearing mode phase velocity. Outboard flows near the magnetic axis are time-independent, resulting in the development of a strongly sheared toroidal flow in the core and asymmetry in the poloidal flow profile. The deceleration of the n =6 mode during the period of improved confinement correlates well with the n =6 mode amplitude and is roughly consistent with the expected torque from eddy currents in the conducting shell. The level of Dα emission and secondary mode amplitudes (n =7-10) do not correlate with the mode deceleration suggesting that the momentum loss from charge exchange with neutrals and diffusion due to residual magnetic stochasticity are not significant in PPCD. This work has been supported by the U.S.D.O.E.

  4. Auroral kilometric radiation: Wave modes, harmonic and source region electron density structures

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1984-01-01

    A change from extraordinary (X) mode to ordinary (0) mode dominance is observed in the auroral kilometric radiation (AKR) detected on ISIS 1 topside sounder ionograms as the source region plasma to gyrofrequency ratio fN/fH varies from 0.1 to 1.3. The X and 0 mode AKR, Z (the slow branch of the X mode) and whistler (W) mode are also observed. The Z mode is typically slightly less intense than the 0-mode. Thw W-mode is confined to frequencies less than fH/2, suggesting that it is the result of field aligned ducted signals reaching the satellite from a source at lower altitudes. Harmonic AKR bands are commonly observed and the 2nd harmonic appears to be due to propagating signals. The deduced (fN/fH) at the bottom of the AKR source region is always less than 0.4 and is typically less than 0.2 during the generation of X-mode AKR, but approaches 0.9 for 0-mode AKR. No large density enhancements were observed within AKR source region density cavities. It is suggested that the observed INTENSE AKR IS cyclotron X-mode radiation rather than plasma frequency 0-mode radiation.

  5. H-mode and Edge Physics on the Pegasus ST: Progress and Future Directions

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Bodner, G. M.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Kriete, D. M.; Lewicki, B. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.; Thome, K. E.; Winz, G. R.

    2015-11-01

    Ohmic H-modes are routinely attained on the Pegasus ST, in part due to the low L-H power threshold PLH arising from low-BT operation at A ~ 1 . Characteristics of H-mode include: improved τe, consistent with H98 ~ 1 edge current and pressure pedestal formation; and the occurrence of ELMs. Experiments in the past year have examined magnetic topology and density dependencies of PLH in detail. PLH exceeds ITER L-H scaling values by 10-20 ×, with PLH /PITPA 08 increasing sharply as A --> 1 . No PLH-minimizing density has been found. Unlike at high- A, PLH is insensitive to limited or diverted magnetic topologies to date. The low BT and modest pedestal values at A ~ 1 afford unique edge diagnostic accessibility to investigate ELMs and their nonlinear dynamics. Jedge (R , t) measured through a Type I ELM shows a complex pedestal collapse and filament ejection. These studies are being extended to higher Ip and longer pulse length with LHI startup to conserve Ohmic V-s and improve MHD stability. A modest-cost upgrade to the facility will enable detailed validation studies of nonlinear ELM dynamics and ELM control. This initiative will upgrade the centerstack, increasing BT by × 3 , Ohmic V-s by × 4 , and pulse lengths to 100 ms at A < 1 . 3 , as well as deploy a comprehensive 3D magnetic perturbation coil system with full poloidal coverage from frame coils and helical centerstack windings. Work supported by US DOE grant DE-FG02-96ER54375.

  6. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    DOE PAGES

    Evans, T. E.

    2015-11-13

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  7. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T. E.

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  8. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  9. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  10. Confined wormlike chains in external fields

    NASA Astrophysics Data System (ADS)

    Morrison, Greg

    The confinement of biomolecules is ubiquitous in nature, such as the spatial constraints of viral encapsulation, histone binding, and chromosomal packing. Advances in microfluidics and nanopore fabrication have permitted powerful new tools in single molecule manipulation and gene sequencing through molecular confinement as well. In order to fully understand and exploit these systems, the ability to predict the structure of spatially confined molecules is essential. In this talk, I describe a mean field approach to determine the properties of stiff polymers confined to cylinders and slits, which is relevant for a variety of biological and experimental conditions. I show that this approach is able to not only reproduce known scaling laws for confined wormlike chains, but also provides an improvement over existing weakly bending rod approximations in determining the detailed chain properties (such as correlation functions). Using this approach, we also show that it is possible to study the effect of an externally applied tension or static electric field in a natural and analytically tractable way. These external perturbations can alter the scaling laws and introduce important new length scales into the system, relevant for histone unbinding and single-molecule analysis of DNA.

  11. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  12. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth

    PubMed Central

    Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.

    2017-01-01

    We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697

  13. Confinement time of electron plasma approaching magnetic pumping transport limit in small aspect ratio C-shaped torus

    NASA Astrophysics Data System (ADS)

    Lachhvani, Lavkesh; Pahari, Sambaran; Goswami, Rajiv; Bajpai, Manu; Yeole, Yogesh; Chattopadhyay, P. K.

    2016-06-01

    A long confinement time of electron plasma, approaching magnetic pumping transport limit, has been observed in SMARTEX-C (a small aspect ratio partial torus with R o / a ˜ 1.59 ). Investigations of the growth rate reveal that they are governed by instabilities like resistive wall destabilization, ion driven instabilities, and electron-neutral collisions. Successful confinement of electron plasmas exceeding > 1 × 10 5 poloidal E → × B → rotations lasting for nearly 2.1 ± 0.1 s is achieved by suppressing these instabilities. The confinement time has been estimated in two ways: (a) from the frequency scaling of the linear diocotron mode launched from sections of the wall that are also used as capacitive probes and (b) by dumping the plasma onto a charge collector at different hold times.

  14. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact.more » From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.« less

  15. ECE-imaging of the H-mode pedestal (invited).

    PubMed

    Tobias, B J; Austin, M E; Boom, J E; Burrell, K H; Classen, I G J; Domier, C W; Luhmann, N C; Nazikian, R; Snyder, P B

    2012-10-01

    A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T(e) and n(e) contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.

  16. Modulation of Core Turbulent Density Fluctuations by Large-Scale Neoclassical Tearing Mode Islands in the DIII-D Tokamak

    DOE PAGES

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; ...

    2016-05-26

    We report the first observation of localized modulation of turbulent density uctuations en (via Beam Emission Spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that en could be dominantly driven by the ion temperature gradient (ITG) instability.

  17. One-dimensional Confinement Effect on the Self-assembly of Symmetric H-shaped Copolymers in a Thin Film.

    PubMed

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-10-19

    The self-assembly of a reformed symmetric H-shaped copolymer with four hydrophilic branches and one hydrophobic stem was systematically investigated. The existence of vacancies is vital to regulate the sizes of self-assembled cylinders to be able to form a hexagonal arrangement. With the introduction of horizontal-orientated confinement, a micellar structure is formed through a coalescence mechanism. The short acting distance and large influencing area of the confinement produces numerous small-sized micelles. Additionally, the cycled "contraction-expansion" change helps achieve hexagonal arrangement. In contrast, the introduction of lateral-oriented confinement with long acting distance and small influencing area cannot change the cylindrical structure. Under the fission mechanism, in which the larger cylinder splits into smaller ones, it is quite efficient to generate hierarchical-sized cylinders from larger-sized cylinders in the middle region and smaller-sized cylinders near both walls. The results indicate the possibility of regulating the characteristics of a nanomaterial by tuning the molecular structure of the copolymer and the parameters of the introduced confinement, which are closely related to the self-assembly structure.

  18. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Tanushree

    Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g.,more » perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.« less

  19. Behavior of plastic sand confinement grids

    DOT National Transportation Integrated Search

    1986-01-01

    The concept of improving the load carrying ability of unbound aggregates, particularly sand, by lateral confinement has been investigated for some time. Extensive full-scale testing of the trafficability of confined beach sand pavement layers has bee...

  20. Self-doped polyaniline multifunctional optical probes in confined nanostructure for pH sensing

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Hwang, Seungyeon; Yang, Jaemoon

    2017-07-01

    We have successfully fabricated nanocomposite, which is composed of polyaniline (PAni) and pyrene butyric acid (Pyba) via solvent shift method, and the outer layer was enclosed by Tween 80 as a surfactant. First of all, the various ratios between PAni and Pyba were applied for synthesis of polyaniline nanocomposite, and an identical condition for exhibition of proper absorbance and fluorescence properties was found out. The morphology of polyaniline nanocomposite was confirmed via scanning electron microscopic imaging and hydrodynamic size was also confirmed by dynamic light scattering method. We demonstrated that confined self-doped polyaniline nanocomposite as a pH sensing agent are preserved in the doped state even at a neutral pH value. Especially, PAni exhibited strong convertible property at absorbance spectra, on the other hand, Pyba showed changing property at fluorescence spectra at various pH values. In conclude, this polyaniline nanocomposite can accomplish as a fine nanoagent expressing absorbance and fluorescence properties according to surrounding pH values.

  1. Bifurcation of quiescent H-mode to a wide pedestal regime in DIII-D and advances in the understanding of edge harmonic oscillations

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; Barada, K.; Ferraro, N. M.; Garofalo, A. M.; Groebner, R. J.; McKee, G. R.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Solomon, W. M.; Yan, Z.; The DIII-D Team

    2017-08-01

    New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E  ×  B shear required for the EHO decreases linearly with pedestal collisionality ν \\text{e}\\ast , which is favorable for operating QH-mode in machines with low collisionality and low rotation such as ITER. In addition, the QH-mode regime in DIII-D has recently been found to bifurcate into a new ‘wide-pedestal’ state at low torque in double-null shaped plasmas, characterized by increased pedestal height, width and thermal energy confinement (Burrell 2016 Phys. Plasmas 23 056103, Chen 2017 Nucl. Fusion 57 022007). This potentially provides an alternate path for achieving high performance ELM-stable operation at low torque, in addition to the low-torque QH-mode sustained with applied 3D fields. Multi-branch low-k and intermediate-k turbulences are observed in the ‘wide-pedestal’. New experiments support the hypothesis that the decreased edge E  ×  B shear enables destabilization of broadband turbulence, which relaxes edge pressure gradients, improves peeling-ballooning stability and allows a wider and thus higher pedestal. The ability to accurately predict the critical E  ×  B shear for EHO and maintain high performance QH-mode at low torque is an essential requirement for projecting QH-mode operation to ITER and future machines.

  2. 1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution.

    PubMed

    Aksnes, D W; Kimtys, L

    2004-01-01

    The pore size distributions of four controlled pore glasses and three silica gels with nominal diameters in the range 4-24 nm were determined by measuring the 1H and 2H NMR signals from the non-frozen fraction of confined benzene and perdeuterated benzene as a function of temperature, in steps of ca. 0.1-1 K. The liquid and solid components of the adsorbate were distinguished, on the basis of the spin-spin relaxation time T2, by employing a spin-echo sequence. The experimental intensity curves of the liquid component are well represented by a sum of two error functions. The mean melting point depression of benzene and perdeuterated benzene confined in the four controlled pore glasses, with pore radius R, follows the simplified Gibbs-Thompson equation DeltaT=kp/R with a kp value of 44 K nm. As expected, the kp value mainly determines the position of the pore size distribution curve, i.e., the mean pore radius, while the transition width determines the shape of the pore size distribution curve. The excellent agreement between the results from the 1H and 2H measurements shows that the effect of the background absorption from protons in physisorbed water and silanol groups is negligible under the experimental conditions used. The overall pore size distributions determined by NMR are in reasonable agreement with the results specified by the manufacturer, or measured by us using the N2 sorption technique. The NMR method, which is complementary to the conventional gas sorption method, is particularly appropriate for studying pore sizes in the mesoporous range.

  3. Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.

    2017-02-01

    Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.

  4. Strain partitioning and deformation mode analysis of the normal faults at Red Mountain, Birmingham, Alabama

    NASA Astrophysics Data System (ADS)

    Wu, Schuman

    1989-12-01

    In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow

  5. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  6. FRET enhancement in aluminum zero-mode waveguides.

    PubMed

    de Torres, Juan; Ghenuche, Petru; Moparthi, Satish Babu; Grigoriev, Victor; Wenger, Jérôme

    2015-03-16

    Zero-mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero-mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentrations with single-molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor-acceptor fluorophore pairs that diffuse into aluminum zero-mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large amount of literature that describe their use for single-molecule fluorescence spectroscopy. We also compared the results between ZMWs milled in gold and aluminum, and found that although gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observed that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states. Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single-molecule FRET at physiological concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    PubMed

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  8. Equilibrium drives of the low and high field side n  =  2 plasma response and impact on global confinement

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.

    2016-05-01

    The nature of the multi-modal n  =  2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n  =  2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n  =  2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap

  9. Comparative study on the mechanical mechanism of confined concrete supporting arches in underground engineering.

    PubMed

    Lv, Zhijin; Qin, Qian; Jiang, Bei; Luan, Yingcheng; Yu, Hengchang

    2018-01-01

    In order to solve the supporting problem in underground engineering with high stress, square steel confined concrete (SQCC) supporting method is adopted to enhance the control on surrounding rocks, and the control effect is remarkable. The commonly used cross section shapes of confined concrete arch are square and circular. At present, designers have no consensus on which kind is more proper. To search for the answer, this paper makes an analysis on the mechanical properties of the two shapes of the cross-sections. A full-scale indoor comparative test was carried out on the commonly used straight-wall semi-circular SQCC arch and circular steel confined concrete arch (CCC arch). This test is based on self-developed full-scale test system for confined concrete arch. Our research, combining with the numerical analysis, shows: (1) SQCC arch is consistent with CCC arch in the deformation and failure mode. The largest damages parts are at the legs of both of them. (2) The SQCC arch's bearing capability is 1286.9 kN, and the CCC arch's ultimate bearing capability is 1072.4kN. Thus, the SQCC arch's bearing capability is 1.2 times that of the CCC arch. (3) The arches are subjected to combined compression and bending, bending moment is the main reason for the arch failure. The section moment of inertia of SQCC arch is 1.26 times of that of CCC arch, and the former is better than the latter in bending performance. The ultimate bearing capacity is positively correlated with the size of the moment of inertia. Based on the above research, the engineering suggestions are as follows: (1) To improve the bearing capacity of the arch, the cross-sectional shape of the chamber should be optimized and the arch bearing mode changed accordingly. (2) The key damaged positions, such as the arch leg, should be reinforced, optimizing the state of force on the arch. SQCC arches should be used for supporting in underground engineering, which is under stronger influence of the bending moment and

  10. Comparative study on the mechanical mechanism of confined concrete supporting arches in underground engineering

    PubMed Central

    Qin, Qian; Jiang, Bei; Luan, Yingcheng; Yu, Hengchang

    2018-01-01

    In order to solve the supporting problem in underground engineering with high stress, square steel confined concrete (SQCC) supporting method is adopted to enhance the control on surrounding rocks, and the control effect is remarkable. The commonly used cross section shapes of confined concrete arch are square and circular. At present, designers have no consensus on which kind is more proper. To search for the answer, this paper makes an analysis on the mechanical properties of the two shapes of the cross-sections. A full-scale indoor comparative test was carried out on the commonly used straight-wall semi-circular SQCC arch and circular steel confined concrete arch (CCC arch). This test is based on self-developed full-scale test system for confined concrete arch. Our research, combining with the numerical analysis, shows: (1) SQCC arch is consistent with CCC arch in the deformation and failure mode. The largest damages parts are at the legs of both of them. (2) The SQCC arch’s bearing capability is 1286.9 kN, and the CCC arch’s ultimate bearing capability is 1072.4kN. Thus, the SQCC arch’s bearing capability is 1.2 times that of the CCC arch. (3) The arches are subjected to combined compression and bending, bending moment is the main reason for the arch failure. The section moment of inertia of SQCC arch is 1.26 times of that of CCC arch, and the former is better than the latter in bending performance. The ultimate bearing capacity is positively correlated with the size of the moment of inertia. Based on the above research, the engineering suggestions are as follows: (1) To improve the bearing capacity of the arch, the cross-sectional shape of the chamber should be optimized and the arch bearing mode changed accordingly. (2) The key damaged positions, such as the arch leg, should be reinforced, optimizing the state of force on the arch. SQCC arches should be used for supporting in underground engineering, which is under stronger influence of the bending

  11. H-localized mode in chains of hydrogen-bonded amide groups

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Kellouai, Hassan; Page, Gabriel; Moret, Jacques; Johnson, Susanna W.; Eckert, Juergen

    1993-09-01

    New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary results of structural data obtained by neutron diffraction at low temperature are also described. Besides the well-known anomalous amide-1 mode (1650 cm -1), it is shown that the NH out-of-plane bend (770 cm -1) and the “H-bond strain” (at about 105 cm -1) exhibit an anomalous increase of intensity proportional to the law exp(- T2/ Θ2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H - localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy at 15 K. Considering these new results, the theoretical model of a self-trapped “polaronic” state seems to be the most consistent with the whole set of observed anomalies in this family of crystals.

  12. Polymer chain dynamics under nanoscopic confinements.

    PubMed

    Kimmich, Rainer; Fatkullin, Nail; Mattea, Carlos; Fischer, Elmar

    2005-02-01

    It is shown that the confinement of polymer melts in nanopores leads to chain dynamics dramatically different from bulk behavior. This so-called corset effect occurs both above and below the critical molecular mass and induces the dynamic features predicted for reptation. A spinodal demixing technique was employed for the preparation of linear poly(ethylene oxide) (PEO) confined to nanoscopic strands that are in turn embedded in a quasi-solid and impenetrable methacrylate matrix. Both the molecular weight of the PEO and the mean diameter of the strands were varied to a certain degree. The chain dynamics of the PEO in the molten state was examined with the aid of field-gradient NMR diffusometry (time scale, 10(-2)-10(0) s) and field-cycling NMR relaxometry (time scale, 10(-9)-10(-4) s). The dominating mechanism for translational displacements probed in the nanoscopic strands by either technique is shown to be reptation. On the time scale of spin-lattice relaxation time measurements, the frequency dependence signature of reptation (i.e., T1 approximately nu(3/4)) showed up in all samples. A "tube" diameter of only 0.6 nm was concluded to be effective on this time scale even when the strand diameter was larger than the radius of gyration of the PEO random coils. This corset effect is traced back to the lack of the local fluctuation capacity of the free volume in nanoscopic confinements. The confinement dimension is estimated at which the crossover from confined to bulk chain dynamics is expected.

  13. Molecular dynamic heterogeneity of confined lipid films by 1H magnetization-exchange nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Buda, A.; Demco, D. E.; Jagadeesh, B.; Blümich, B.

    2005-01-01

    The molecular dynamic heterogeneity of monolayer to submonolayer thin lecithin films confined to submicron cylindrical pores were investigated by 1H magnetization exchange nuclear magnetic resonance. In this experiment a z-magnetization gradient was generated by a double-quantum dipolar filter. The magnetization-exchange decay and buildup curves were interpreted with the help of a theoretical model based on the approximation of a one-dimensional spin-diffusion process in a three-domain morphology. The dynamic heterogeneity of the fatty acid chains and the effects of the surface area per molecule, the diameter of the pores, and the temperature were characterized with the help of local spin-diffusion coefficients. The effect of various parameters on the molecular dynamics of the mobile region of the fatty acid chains was quantified by introducing an ad hoc Gaussian distribution function of the 1H residual dipolar couplings. For the lipid films investigated in this study, the surface induced order and the geometrical confinement affect the chain dynamics of the entire molecule. Therefore, each part of the chain independently reflects the effect of surface coverage, pore size, and temperature.

  14. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    NASA Astrophysics Data System (ADS)

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-01

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST

  15. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    DOE PAGES

    Wang, W. X.; Ethier, S.; Ren, Y.; ...

    2015-10-15

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E x B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transportmore » that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around k θρs ~ 0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E x B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E x B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Furthermore, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in

  16. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    DOE PAGES

    Solomon, W. M.; Snyder, P. B.; Bortolon, A.; ...

    2016-03-25

    In a new high pedestal regime ("Super H-mode") we predicted and accessed DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. And while elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER canmore » benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. In similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.« less

  17. Extending Mode Areas of Single-mode All-solid Photonic Bandgap Fibers

    DTIC Science & Technology

    2015-04-02

    T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal ...Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). 10. L. Dong, T. Wu, H. McKay, L. Fu...progress in mode area scaling of optical fibers. One notable area is in photonic crystal fibers (PCF) [3–5, 8, 9]. The short straight PCF rods used in

  18. Strong coupling between 0D and 2D modes in optical open microcavities

    NASA Astrophysics Data System (ADS)

    Trichet, A. A. P.; Dolan, P. R.; Smith, J. M.

    2018-02-01

    We present a study of the coupling between confined modes and continuum states in an open microcavity system. The confined states are the optical modes of a plano-concave Fabry-Pérot cavity while the continuum states are the propagating modes in a surrounding planar cavity. The length tunability of the open cavity system allows to study the evolution of localised modes as they are progressively deconfined and coupled to the propagating modes. We observe an anti-crossing between the confined and propagating modes proving that mode-mixing takes place in between these two families of modes, and identify 0D-2D mixed modes which exhibit reduced loss compared with their highly localised counterparts. For practical design, we investigate the details of the microcavity shape that can be used to engineer the degree of mode-mixing. This study discusses for the first time experimentally and theoretically how light confinement arises in planar micromirrors and is of interest for the realisation of chip-based extended microphotonics using open cavities.

  19. H2@Scale Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    2017-07-12

    'H2@Scale' is a concept based on the opportunity for hydrogen to act as an intermediate between energy sources and uses. Hydrogen has the potential to be used like the primary intermediate in use today, electricity, because it too is fungible. This presentation summarizes the H2@Scale analysis efforts performed during the first third of 2017. Results of technical potential uses and supply options are summarized and show that the technical potential demand for hydrogen is 60 million metric tons per year and that the U.S. has sufficient domestic resources to meet that demand. A high level infrastructure analysis is also presentedmore » that shows an 85% increase in energy on the grid if all hydrogen is produced from grid electricity. However, a preliminary spatial assessment shows that supply is sufficient in most counties across the U.S. The presentation also shows plans for analysis of the economic potential for the H2@Scale concept. Those plans involve developing supply and demand curves for potential hydrogen generation options and as compared to other options for use of that hydrogen.« less

  20. Hydrodynamics of confined active fluids.

    PubMed

    Brotto, Tommaso; Caussin, Jean-Baptiste; Lauga, Eric; Bartolo, Denis

    2013-01-18

    We theoretically describe the dynamics of swimmer populations in rigidly confined thin liquid films. We first demonstrate that hydrodynamic interactions between confined swimmers depend solely on their shape and are independent of their specific swimming mechanism. We also show that, due to friction with the nearby rigid walls, confined swimmers do not just reorient in flow gradients but also in uniform flows. We then quantify the consequences of these microscopic interaction rules on the large-scale hydrodynamics of isotropic populations. We investigate in detail their stability and the resulting phase behavior, highlighting the differences with conventional active, three-dimensional suspensions. Two classes of polar swimmers are distinguished depending on their geometrical polarity. The first class gives rise to coherent directed motion at all scales, whereas for the second class we predict the spontaneous formation of coherent clusters (swarms).

  1. Ability of the Confined Explosive Component Water Gap Test STANAG 4363 to Assess the Shock Sensitivity of MM-Scale Detonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A S; Roeske, F; Benterou, J

    2006-02-10

    The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increasedmore » to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.« less

  2. Fractal scaling analysis of groundwater dynamics in confined aquifers

    NASA Astrophysics Data System (ADS)

    Tu, Tongbi; Ercan, Ali; Kavvas, M. Levent

    2017-10-01

    Groundwater closely interacts with surface water and even climate systems in most hydroclimatic settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological processes by considering potential temporal long-range dependence and scaling crossovers in the groundwater level fluctuations. In this study, it is demonstrated that the groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior. Detrended fluctuation analysis (DFA) was utilized to quantify the monofractality, and multifractal detrended fluctuation analysis (MF-DFA) and multiscale multifractal analysis (MMA) were employed to examine the multifractal behavior. The DFA results indicated that fractals exist in groundwater level time series, and it was shown that the estimated Hurst exponent is closely dependent on the length and specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist, which may be partially due to a broad probability density distribution with infinite moments. Furthermore, it is demonstrated that the underlying distribution of groundwater level fluctuations exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics depending on the site characteristics. However, fractional Brownian motion (fBm), which has been identified as an appropriate model to characterize groundwater level fluctuation, is Gaussian with finite moments. Therefore, fBm may be inadequate for the description of physical processes with infinite moments, such as the groundwater level fluctuations in this study. It is concluded that there is a need for generalized governing equations of groundwater flow processes that can model both the long-memory behavior and the Brownian finite-memory behavior.

  3. Edge Plasma behavior during Improved Confinement by Lower Hybrid Wave Heating in HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jian-gang; Bao, Yi; Luo, Jia-rong; Wan, Bao-nian; Liu, Yue-xiu; Gong, Xian-zu; Chen, Jun-ling; Liang, Yun-feng

    2002-10-01

    Lower hybrid heating (LHH) has been successfully carried out in the HT-6M tokamak. The H-mode has been obtained with a power threshold of 50 kW under a boronized wall condition. Both energy and particle confinements have been improved along with a dropped edge plasma density and an increase electron temperature during the LHH phase. A negative Er well plays a key role of triggering and sustaining the good confinement. Both electrostatic fluctuation of the plasma potential and the density fluctuations dropped to an ultra-low level. The observation of an enhanced Er shear before the reduction in turbulence level is consistent with an increased Er shear as the cause of turbulence suppression.

  4. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions

    NASA Astrophysics Data System (ADS)

    Garimella, Sandilya V. B.; Webb, Ian K.; Prabhakaran, Aneesh; Attah, Isaac K.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-07-01

    Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented.

  5. Enhanced H-mode pedestals with lithium injection in DIII-D

    DOE PAGES

    Osborne, Thomas H.; Jackson, Gary L.; Yan, Zheng; ...

    2015-05-08

    Periods of edge localized mode (ELM)-free H-mode with increased pedestal pressure and width were observed in the DIII-D tokamak when density fluctuations localized to the region near the separatrix were present. Injection of a powder of 45 μm diameter lithium particles increased the duration of the enhanced pedestal phases to up to 350 ms, and also increased the likelihood of a transition to the enhanced phase. Lithium injection at a level sufficient for triggering the extended enhanced phases resulted in significant lithium in the plasma core, but carbon and other higher Z impurities as well as radiated power levels weremore » reduced. Recycling of the working deuterium gas appeared unaffected by this level of lithium injection. The ion scale, k θ ρ s ~ 0.1–0.2, density fluctuations propagated in the electron drift direction with f ~ 80 kHz and occurred in bursts every ~1 ms. The fluctuation bursts correlated with plasma loss resulting in a flattening of the pressure profile in a region near the separatrix. This localized flattening 2 allowed higher overall pedestal pressure at the peeling-ballooning stability limit and higher pressure than expected under the EPED model due to reduction of the pressure gradient below the “ballooning critical profile”. Furthermore, reduction of the ion pressure by lithium dilution may contribute to the long ELM-free periods.« less

  6. Critical quench dynamics in confined systems.

    PubMed

    Collura, Mario; Karevski, Dragi

    2010-05-21

    We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.

  7. X-Divertor Geometries for Deeper Detachment Without Degrading the DIII-D H-Mode

    NASA Astrophysics Data System (ADS)

    Covele, Brent; Kotschenreuther, M. T.; Valanju, P. M.; Mahajan, S. M.; Leonard, A. W.; Hyatt, A. W.; McLean, A. G.; Thomas, D. M.; Guo, H. Y.; Watkins, J. G.; Makowski, M. A.; Hill, D. N.

    2015-11-01

    Recent DIII-D experiments comparing the standard divertor (SD) and X-Divertor (XD) geometries show heat and particle flux reduction at the divertor target plate. The XD features large poloidal flux expansion, increased connection length, and poloidal field line flaring, quantified by the Divertor Index. Both SD and XD were pushed deep into detachment with increased gas puffing, until core energy confinement and pedestal pressure were substantially reduced. As expected, outboard target heat fluxes are significantly reduced in the XD compared to the SD under similar upstream plasma conditions, even at low Greenwald fraction. The high-triangularity (floor) XD cases show larger reduction in temperature, heat, and particle flux relative to the SD in all cases, while low-triangularity (shelf) XD cases show more modest reductions over the SD. Consequently, heat flux reduction and divertor detachment may be achieved in the XD with less gas puffing and higher pedestal pressures. Further causative analysis, as well as detailed modeling with SOLPS, is underway. These initial experiments suggest the XD as a promising candidate to achieve divertor heat flux control compatible with robust H-mode operation. Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54754, and DE-FG02-04ER54742.

  8. Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.

    PubMed

    Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M

    2009-04-17

    For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.

  9. Dynamic "Scanning-Mode" Meniscus Confined Electrodepositing and Micropatterning of Individually Addressable Ultraconductive Copper Line Arrays.

    PubMed

    Lei, Yu; Zhang, Xianyun; Xu, Dingding; Yu, Minfeng; Yi, Zhiran; Li, Zhixiang; Sun, Aihua; Xu, Gaojie; Cui, Ping; Guo, Jianjun

    2018-05-03

    Micro- and nanopatterning of cost-effective addressable metallic nanostructures has been a long endeavor in terms of both scientific understanding and industrial needs. Herein, a simple and efficient dynamic meniscus-confined electrodeposition (MCED) technique for precisely positioned copper line micropatterns with superior electrical conductivity (greater than 1.57 × 10 4 S/cm) on glass, silicon, and gold substrates is reported. An unexpected higher printing speed in the evaporative regime is realized for precisely positioned copper lines patterns with uniform width and height under horizontal scanning-mode. The final line height and width depend on the typical behavior of traditional flow coating process, while the surface morphologies and roughness are mainly governed by evaporation-driven electrocrystallization dynamics near the receding moving contact line. Integrated 3D structures and a rapid prototyping of 3D hot-wire anemometer are further demonstrated, which is very important for the freedom integration applications in advanced conceptual devices, such as miniaturized electronics and biomedical sensors and actuators.

  10. Emergent patterns of collective cell migration under tubular confinement.

    PubMed

    Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee

    2017-11-15

    Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.

  11. Vertical normal modes of a mesoscale model using a scaled height coordinate

    NASA Technical Reports Server (NTRS)

    Lipton, A. E.; Pielke, R. A.

    1986-01-01

    Vertical modes were derived for a version of the Colorado State Regional Atmospheric Mesoscale Modeling System. The impacts of three options for dealing with the upper boundary of the model were studied. The standard model formulation holds pressure constant at a fixed altitude near the model top, and produces a fastest mode with a speed of about 90 m/sec. An alternative formulation, which allows for an external mode, could require recomputation of vertical modes for every surface elevation on the horizontal grid unless the modes are derived in a particular way. These results have bearing on the feasibility of applying vertical mode initialization to models with scaled height coordinates.

  12. A novel feedback algorithm for simulating controlled dynamics and confinement in the advanced reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlin, J.-E.; Scheffel, J.

    2005-06-15

    In the advanced reversed-field pinch (RFP), the current density profile is externally controlled to diminish tearing instabilities. Thus the scaling of energy confinement time with plasma current and density is improved substantially as compared to the conventional RFP. This may be numerically simulated by introducing an ad hoc electric field, adjusted to generate a tearing mode stable parallel current density profile. In the present work a current profile control algorithm, based on feedback of the fluctuating electric field in Ohm's law, is introduced into the resistive magnetohydrodynamic code DEBSP [D. D. Schnack and D. C. Baxter, J. Comput. Phys. 55,more » 485 (1984); D. D. Schnack, D. C. Barnes, Z. Mikic, D. S. Marneal, E. J. Caramana, and R. A. Nebel, Comput. Phys. Commun. 43, 17 (1986)]. The resulting radial magnetic field is decreased considerably, causing an increase in energy confinement time and poloidal {beta}. It is found that the parallel current density profile spontaneously becomes hollow, and that a formation, being related to persisting resistive g modes, appears close to the reversal surface.« less

  13. H-mode achievement and edge features in RFX-mod tokamak operation

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Cavazzana, R.; Marrelli, L.; Carraro, L.; Franz, P.; Spagnolo, S.; Zaniol, B.; Zuin, M.; Cordaro, L.; Dal Bello, S.; De Masi, G.; Ferro, A.; Finotti, C.; Grando, L.; Grenfell, G.; Innocente, P.; Kudlacek, O.; Marchiori, G.; Martines, E.; Momo, B.; Paccagnella, R.; Piovesan, P.; Piron, C.; Puiatti, M. E.; Recchia, M.; Scarin, P.; Taliercio, C.; Vianello, N.; Zanotto, L.

    2017-11-01

    The RFX-mod experiment is a fusion device designed to operate as a reversed field pinch (RFP), with a major radius R = 2 m and a minor radius a = 0.459 m. Its high versatility recently allowed operating it also as an ohmic tokamak, allowing comparative studies between the two configurations in the same device. The device is equipped with a state of the art MHD mode feedback control system providing a magnetic boundary effective control, by applying resonant or non-resonant magnetic perturbations (MP), both in RFP and in tokamak configurations. In the fusion community the application of MPs is widely studied as a promising tool to limit the impact of plasma filaments and ELMs (edge localized modes) on plasma facing components. An important new research line is the exploitation of the RFX-mod active control system for ELM mitigation studies. As a first step in this direction, this paper presents the most recent achievements in term of RFX-mod tokamak explored scenarios, which allowed the first investigation of the ohmic and edge biasing induced H-mode. The production of D-shaped tokamak discharges and the design and deployment of an insertable polarized electrode were accomplished. Reproducible H-mode phases were obtained with insertable electrode negative biasing in single null discharges, representing an unexplored scenario with this technique. Important modifications of the edge plasma density and flow properties are observed. During the achieved H-mode ELM-like electromagnetic composite filamentary structures are observed. They are characterized by clear vorticity and parallel current density patterns.

  14. The Light-Front Schrödinger Equation and Determination of the Perturbative QCD Scale from Color Confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre P.

    2015-09-01

    The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic andmore » dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ {ovr MS} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ {ovr MS}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.« less

  15. Atomic Scale Mixing for Inertial Confinement Fusion Associated Hydro Instabilities

    DTIC Science & Technology

    2013-01-26

    observe that the obvious step of RT validation using NIF or Omega laser data does not address themultimode, mode coupling RTgrowth stage, as the...ignition facility, Phys. Plasmas 18 (2011) 051001. [2] W. Goldstein, R. Rosner, Workshop on the Science of Fusion Ignition on NIF , Technical Report LLNL-TR...11 (2004) 339e491. [6] S.P. Regan, R. Epstein, B.A. Hammel, L.J. Suter, J. Ralph, et al., Hot-spot mix in ignition-scale implosions on the NIF , Phys

  16. Isotope Mass Scaling of Turbulence and Transport

    NASA Astrophysics Data System (ADS)

    McKee, George; Yan, Zheng; Gohil, Punit; Luce, Tim; Rhodes, Terry

    2017-10-01

    The dependence of turbulence characteristics and transport scaling on the fuel ion mass has been investigated in a set of hydrogen (A = 1) and deuterium (A = 2) plasmas on DIII-D. Normalized energy confinement time (B *τE) is two times lower in hydrogen (H) plasmas compare to similar deuterium (D) plasmas. Dimensionless parameters other than ion mass (A) , including ρ*, q95, Te /Ti , βN, ν*, and Mach number were maintained nearly fixed. Matched profiles of electron density, electron and ion temperature, and toroidal rotation were well matched. The normalized turbulence amplitude (ñ / n) is approximately twice as large in H as in D, which may partially explain the increased transport and reduced energy confinement time. Radial correlation lengths of low-wavenumber density turbulence in hydrogen are similar to or slightly larger than correlation lengths in the deuterium plasmas and generally scale with the ion gyroradius, which were maintained nearly fixed in this dimensionless scan. Predicting energy confinement in D-T burning plasmas requires an understanding of the large and beneficial isotope scaling of transport. Supported by USDOE under DE-FG02-08ER54999 and DE-FC02-04ER54698.

  17. Confinement and the Glass Transition Temperature in Supported Polymer Films: Molecular Weight, Repeat Unit Modification, and Cooperativity Length Scale Investigations

    NASA Astrophysics Data System (ADS)

    Mundra, Manish K.

    2005-03-01

    It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.

  18. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.

    PubMed

    Stavila, Vitalie; Bhakta, Raghunandan K; Alam, Todd M; Majzoub, Eric H; Allendorf, Mark D

    2012-11-27

    We demonstrate that NaAlH(4) confined within the nanopores of a titanium-functionalized metal-organic framework (MOF) template MOF-74(Mg) can reversibly store hydrogen with minimal loss of capacity. Hydride-infiltrated samples were synthesized by melt infiltration, achieving loadings up to 21 wt %. MOF-74(Mg) possesses one-dimensional, 12 Å channels lined with Mg atoms having open coordination sites, which can serve as sites for Ti catalyst stabilization. MOF-74(Mg) is stable under repeated hydrogen desorption and hydride regeneration cycles, allowing it to serve as a "nanoreactor". Confining NaAlH(4) within these pores alters the decomposition pathway by eliminating the stable intermediate Na(3)AlH(6) phase observed during bulk decomposition and proceeding directly to NaH, Al, and H(2), in agreement with theory. The onset of hydrogen desorption for both Ti-doped and undoped nano-NaAlH(4)@MOF-74(Mg) is ∼50 °C, nearly 100 °C lower than bulk NaAlH(4). However, the presence of titanium is not necessary for this increase in desorption kinetics but enables rehydriding to be almost fully reversible. Isothermal kinetic studies indicate that the activation energy for H(2) desorption is reduced from 79.5 kJ mol(-1) in bulk Ti-doped NaAlH(4) to 57.4 kJ mol(-1) for nanoconfined NaAlH(4). The structural properties of nano-NaAlH(4)@MOF-74(Mg) were probed using (23)Na and (27)Al solid-state MAS NMR, which indicates that the hydride is not decomposed during infiltration and that Al is present as tetrahedral AlH(4)(-) anions prior to desorption and as Al metal after desorption. Because of the highly ordered MOF structure and monodisperse pore dimensions, our results allow key template features to be identified to ensure reversible, low-temperature hydrogen storage.

  19. Phase locking of multi-helicity neoclassical tearing modes in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Richard

    2015-04-15

    The attractive “hybrid” tokamak scenario combines comparatively high q{sub 95} operation with improved confinement compared with the conventional H{sub 98,y2} scaling law. Somewhat unusually, hybrid discharges often exhibit multiple neoclassical tearing modes (NTMs) possessing different mode numbers. The various NTMs are eventually observed to phase lock to one another, giving rise to a significant flattening, or even an inversion, of the core toroidal plasma rotation profile. This behavior is highly undesirable because the loss of core plasma rotation is known to have a deleterious effect on plasma stability. This paper presents a simple, single-fluid, cylindrical model of the phase lockingmore » of two NTMs with different poloidal and toroidal mode numbers in a tokamak plasma. Such locking takes place via a combination of nonlinear three-wave coupling and conventional toroidal coupling. In accordance with experimental observations, the model predicts that there is a bifurcation to a phase-locked state when the frequency mismatch between the modes is reduced to one half of its original value. In further accordance, the phase-locked state is characterized by the permanent alignment of one of the X-points of NTM island chains on the outboard mid-plane of the plasma, and a modified toroidal angular velocity profile, interior to the outermost coupled rational surface, which is such that the core rotation is flattened, or even inverted.« less

  20. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the rst time to regimes of electron density scale length (~500 to 700 μm), electron temperature (~3 to 5 keV), and laser intensity (6 to 16 x 10 14 W/cm 2) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRSmore » sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ~0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ~4 x 10 14 to ~6 x 10 14 W/cm 2. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.« less

  1. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    DOE PAGES

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; ...

    2018-01-29

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the rst time to regimes of electron density scale length (~500 to 700 μm), electron temperature (~3 to 5 keV), and laser intensity (6 to 16 x 10 14 W/cm 2) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRSmore » sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ~0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ~4 x 10 14 to ~6 x 10 14 W/cm 2. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.« less

  2. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Seka, W.; Michel, P.; Hohenberger, M.; Short, R. W.; Epstein, R.; Regan, S. P.; Campbell, E. M.; Chapman, T.; Goyon, C.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.; Bates, J. W.

    2018-01-01

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (˜500 to 700 μ m ), electron temperature (˜3 to 5 keV), and laser intensity (6 to 16 ×1014 W /cm2 ) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ˜0.7 % to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ˜4×10 14 to ˜6 ×1014 W /cm2 . These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  3. Deep-Reaching Hydrodynamic Flow Confinement: Micrometer-Scale Liquid Localization for Open Substrates With Topographical Variations.

    PubMed

    Oskooei, Ali; Kaigala, Govind V

    2017-06-01

    We present a method for nonintrusive localization and reagent delivery on immersed biological samples with topographical variation on the order of hundreds of micrometers. Our technique, which we refer to as the deep-reaching hydrodynamic flow confinement (DR-HFC), is simple and passive: it relies on a deep-reaching hydrodynamic confinement delivered through a simple microfluidic probe design to perform localized microscale alterations on substrates as deep as 600 μm. Designed to scan centimeter-scale areas of biological substrates, our method passively prevents sample intrusion by maintaining a large gap between the probe and the substrate. The gap prevents collision of the probe and the substrate and reduces the shear stress experienced by the sample. We present two probe designs: linear and annular DR-HFC. Both designs comprise a reagent-injection aperture and aspiration apertures that serve to confine the reagent. We identify the design parameters affecting reagent localization and depth by DR-HFC and study their individual influence on the operation of DR-HFC numerically. Using DR-HFC, we demonstrate localized binding of antihuman immunoglobulin G (IgG) onto an activated substrate at various depths from 50 to 600 μm. DR-HFC provides a readily implementable approach for noninvasive processing of biological samples applicable to the next generation of diagnostic and bioanalytical devices.

  4. Lattice gauge action suppressing near-zero modes of H{sub W}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi

    2006-11-01

    We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less

  5. Dominant modes of variability in large-scale Birkeland currents

    NASA Astrophysics Data System (ADS)

    Cousins, E. D. P.; Matsuo, Tomoko; Richmond, A. D.; Anderson, B. J.

    2015-08-01

    Properties of variability in large-scale Birkeland currents are investigated through empirical orthogonal function (EOF) analysis of 1 week of data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Mean distributions and dominant modes of variability are identified for both the Northern and Southern Hemispheres. Differences in the results from the two hemispheres are observed, which are attributed to seasonal differences in conductivity (the study period occurred near solstice). A universal mean and set of dominant modes of variability are obtained through combining the hemispheric results, and it is found that the mean and first three modes of variability (EOFs) account for 38% of the total observed squared magnetic perturbations (δB2) from both hemispheres. The mean distribution represents a standard Region 1/Region 2 (R1/R2) morphology of currents and EOF 1 captures the strengthening/weakening of the average distribution and is well correlated with the north-south component of the interplanetary magnetic field (IMF). EOF 2 captures a mixture of effects including the expansion/contraction and rotation of the (R1/R2) currents; this mode correlates only weakly with possible external driving parameters. EOF 3 captures changes in the morphology of the currents in the dayside cusp region and is well correlated with the dawn-dusk component of the IMF. The higher-order EOFs capture more complex, smaller-scale variations in the Birkeland currents and appear generally uncorrelated with external driving parameters. The results of the EOF analysis described here are used for describing error covariance in a data assimilation procedure utilizing AMPERE data, as described in a companion paper.

  6. Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D

    DOE PAGES

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...

    2016-09-30

    A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge ExB rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. And at the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by ≤60%) and width (by ≤50%). We posit that themore » enhanced edge turbulence-driven transport, enabled by the lower edge ExB flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8≤ρ≤0.9) owing to increased ExB flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. Our findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.« less

  7. Simulation of High-Beta Plasma Confinement

    NASA Astrophysics Data System (ADS)

    Font, Gabriel; Welch, Dale; Mitchell, Robert; McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor concept utilizes magnetic cusps to confine the plasma. In order to minimize losses through the axial and ring cusps, the plasma is pushed to a high-beta state. Simulations were made of the plasma and magnetic field system in an effort to quantify particle confinement times and plasma behavior characteristics. Computations are carried out with LSP using implicit PIC methods. Simulations of different sub-scale geometries at high-Beta fusion conditions are used to determine particle loss scaling with reactor size, plasma conditions, and gyro radii. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  8. H2@Scale Resource and Market Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    The 'H2@Scale' concept is based on the potential for wide-scale utilization of hydrogen as an energy intermediate where the hydrogen is produced from low cost energy resources and it is used in both the transportation and industrial sectors. H2@Scale has the potential to address grid resiliency, energy security, and cross-sectoral emissions reductions. This presentation summarizes the status of an ongoing analysis effort to quantify the benefits of H2@Scale. It includes initial results regarding market potential, resource potential, and impacts of when electrolytic hydrogen is produced with renewable electricity to meet the potential market demands. It also proposes additional analysis effortsmore » to better quantify each of the factors.« less

  9. First experiments with e-/H- plasmas: Enhanced centrifugal separation from diocotron mode damping

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Thompson, K. A.; Driscoll, C. F.

    2018-01-01

    Negative hydrogen ions are produced and contained within a room-temperature electron plasma, by dissociative electron attachment onto exited H2 neutrals. We observe a strongly enhanced centrifugal separation of electrons and ions when a diocotron mode is present. The outward ion transport rate is proportional to the diocotron mode amplitude, with concurrent diocotron mode damping. This is not yet understood theoretically.

  10. The Conformations of Confined Polymers in an External Potential

    NASA Astrophysics Data System (ADS)

    Morrison, Greg

    The confinement of biomolecules is ubiquitous in nature, such as the spatial constraints of viral encapsulation, histone binding, and chromosomal packing. Advances in microfluidics and nanopore fabrication have permitted powerful new tools in single molecule manipulation and gene sequencing through molecular confinement as well. In order to fully understand and exploit these systems, the ability to predict the structure of spatially confined molecules is essential. In this talk, I describe a mean field approach to determine the properties of stiff polymers confined to cylinders and slits, which is relevant for a variety of biological and experimental conditions. I show that this approach is able to not only reproduce known scaling laws for confined wormlike chains, but also provides an improvement over existing weakly bending rod approximations in determining the detailed chain properties (such as correlation functions). Using this approach, we also show that it is possible to study the effect of an externally applied tension or static electric field in a natural and analytically tractable way. These external perturbations can alter the scaling laws and introduce important new length scales into the system, relevant for histone unbinding and single-molecule analysis of DNA.

  11. Glass transition of polymers in bulk, confined geometries, and near interfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, Simone; Glynos, Emmanouil; Tito, Nicholas B.

    2017-03-01

    When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass—a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye-Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric

  12. Chaotic density fluctuations in L-mode plasmas of the DIII-D tokamak

    DOE PAGES

    Maggs, J. E.; Rhodes, Terry L.; Morales, G. J.

    2015-03-05

    Analysis of the time series obtained with the Doppler backscattering system (DBS) in the DIII-D tokamak shows that intermediate wave number plasma density fluctuations in low confinement (L-mode) tokamak plasmas are chaotic. Here, the supporting evidence is based on the shape of the power spectrum; the location of the signal in the complexity-entropy plane (C-H plane); and the population of the corresponding Bandt-Pompe probability distributions.

  13. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, C., E-mail: csung@physics.ucla.edu; White, A. E.; Greenwald, M.

    2016-04-15

    Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local,more » electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].« less

  14. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    PubMed

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  15. Observation of energetic electron confinement in a largely stochastic reversed-field pinch plasma

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Chapman, B. E.; O'Connell, R.; Almagri, A. F.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; Bonomo, F.; Franz, P.; Gobbin, M.; Piovesan, P.

    2010-01-01

    Runaway electrons with energies >100 keV are observed with the appearance of an m =1 magnetic island in the core of otherwise stochastic Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field-pinch plasmas. The island is associated with the innermost resonant tearing mode, which is usually the largest in the m =1 spectrum. The island appears over a range of mode spectra, from those with a weakly dominant mode to those, referred to as quasi single helicity, with a strongly dominant mode. In a stochastic field, the rate of electron loss increases with electron parallel velocity. Hence, high-energy electrons imply a region of reduced stochasticity. The global energy confinement time is about the same as in plasmas without high-energy electrons or an island in the core. Hence, the region of reduced stochasticity must be localized. Within a numerical reconstruction of the magnetic field topology, high-energy electrons are substantially better confined inside the island, relative to the external region. Therefore, it is deduced that the island provides a region of reduced stochasticity and that the high-energy electrons are generated and well confined within this region.

  16. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-01

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.

  17. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Séguin, F. H.; Li, C. K.; DeCiantis, J. L.

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  18. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  19. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE PAGES

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.; ...

    2016-03-22

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  20. Modification of turbulence and turbulent transport associated with a confinement transition in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, Troy

    2009-11-01

    Azimuthal flow is driven in the edge of the Large Plasma Device (LAPD) through biasing a section of the vacuum vessel relative to the plasma source cathode. As the applied bias exceeds a threshold, a transition in radial particle confinement is observed, evidenced by a dramatic steepening in the density profile, similar to the L- to H-mode transition in toroidal confinement devices. The threshold behavior and dynamic behavior of radial transport is related to flow penetration and the degree of spatial overlap between the flow shear and density gradient profiles. An investigation of the changes in turbulence and turbulent particle transport associated with the confinement transition is presented. Two-dimensional cross-correlation measurements show that the spatial coherence of edge turbulence in LAPD changes significantly with biasing. The azimuthal correlation in the turbulence increases dramatically, while the radial correlation length is little altered. Turbulent amplitude is reduced at the transition, particularly in electric field fluctuations, but the dominant change observed is in the cross-phase between density and electric field fluctuations. The changes in cross-phase lead to a suppression and then apparent reversal of turbulent particle flux as the threshold is exceeded.

  1. Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D

    DOE PAGES

    Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...

    2015-09-04

    In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less

  2. Deterministic control of radiative processes by shaping the mode field

    NASA Astrophysics Data System (ADS)

    Pellegrino, D.; Pagliano, F.; Genco, A.; Petruzzella, M.; van Otten, F. W.; Fiore, A.

    2018-04-01

    Quantum dots (QDs) interacting with confined light fields in photonic crystal cavities represent a scalable light source for the generation of single photons and laser radiation in the solid-state platform. The complete control of light-matter interaction in these sources is needed to fully exploit their potential, but it has been challenging due to the small length scales involved. In this work, we experimentally demonstrate the control of the radiative interaction between InAs QDs and one mode of three coupled nanocavities. By non-locally moulding the mode field experienced by the QDs inside one of the cavities, we are able to deterministically tune, and even inhibit, the spontaneous emission into the mode. The presented method will enable the real-time switching of Rabi oscillations, the shaping of the temporal waveform of single photons, and the implementation of unexplored nanolaser modulation schemes.

  3. Highly damped quasinormal modes and the small scale structure of quantum corrected black hole exteriors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babb, James; Kunstatter, Gabor; Daghigh, Ramin

    2011-10-15

    Quasinormal modes provide valuable information about the structure of spacetime outside a black hole. There is also a conjectured relationship between the highly damped quasinormal modes and the semiclassical spectrum of the horizon area/entropy. In this paper, we show that for spacetimes characterized by more than one scale, the 'infinitely damped' modes in principle probe the structure of spacetime outside the horizon at the shortest length scales. We demonstrate this with the calculation of the highly damped quasinormal modes of the nonsingular, single-horizon, quantum corrected black hole derived in [A. Peltola and G. Kunstatter, Phys. Rev. D 79, 061501 (2009);more » ].« less

  4. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.

    PubMed

    Rosenberg, M J; Solodov, A A; Myatt, J F; Seka, W; Michel, P; Hohenberger, M; Short, R W; Epstein, R; Regan, S P; Campbell, E M; Chapman, T; Goyon, C; Ralph, J E; Barrios, M A; Moody, J D; Bates, J W

    2018-02-02

    Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700  μm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14}  W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14}  W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

  5. Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes

    NASA Astrophysics Data System (ADS)

    Lourenço-Martins, Hugo; Kociak, Mathieu

    2017-10-01

    Recently, two reports [Krivanek et al. Nature (London) 514, 209 (2014), 10.1038/nature13870, Lagos et al. Nature (London) 543, 529 (2017), 10.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014), 10.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989), 10.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997), 10.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008), 10.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012), 10.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015), 10.1021/acsphotonics.5b00421].

  6. Interfacial electrofluidics in confined systems

    PubMed Central

    Tang, Biao; Groenewold, Jan; Zhou, Min; Hayes, Robert A.; Zhou, Guofu (G.F.)

    2016-01-01

    Electrofluidics is a versatile principle that can be used for high speed actuation of liquid interfaces. In most of the applications, the fundamental mechanism of electro-capillary instability plays a crucial role, yet it’s potential richness in confined fluidic layers has not been well addressed. Electrofluidic displays which are comprised of thin pixelated colored films in a range of architectures are excellent systems for studying such phenomena. In this study we show theoretically and experimentally that confinement leads to the generation of a cascade of voltage dependent modes as a result of the electro-capillary instability. In the course of reconciling theory with our experimental data we have observed a number of previously unreported phenomena such as a significant induction time (several milliseconds) prior to film rupture as well as a rupture location not corresponding to the minimum electric field strength in the case of the standard convex water/oil interface used in working devices. These findings are broadly applicable to a wide range of switchable electrofluidic applications and devices having confined liquid films. PMID:27221211

  7. Detecting the transition to failure: wavelet analysis of multi-scale crack patterns at different confining pressures

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    Numerous laboratory brittle deformation experiments have shown that a rapid transition exists in the behaviour of porous materials under stress: at a certain point, early formed tensile cracks interact and coalesce into a `single' narrow zone, the shear plane, rather than remaining distributed throughout the material. In this work, we present and apply a novel image processing tool which is able to quantify this transition between distributed (`stable') damage accumulation and localised (`unstable') deformation, in terms of size, density, and orientation of cracks at the point of failure. Our technique, based on a two-dimensional (2D) continuous Morlet wavelet analysis, can recognise, extract and visually separate the multi-scale changes occurring in the fracture network during the deformation process. We have analysed high-resolution SEM-BSE images of thin sections of Hopeman Sandstone (Scotland, UK) taken from core plugs deformed under triaxial conditions, with increasing confining pressure. Through this analysis, we can determine the relationship between the initial orientation of tensile microcracks and the final geometry of the through-going shear fault, exploiting the total areal coverage of the analysed image. In addition, by comparing patterns of fractures in thin sections derived from triaxial (σ1>σ2=σ3=Pc) laboratory experiments conducted at different confining pressures (Pc), we can quantitatively explore the relationship between the observed geometry and the inferred mechanical processes. The methodology presented here can have important implications for larger-scale mechanical problems related to major fault propagation. Just as a core plug scale fault localises through extension and coalescence of microcracks, larger faults also grow by extension and coalescence of segments in a multi-scale process by which microscopic cracks can ultimately lead to macroscopic faulting. Consequently, wavelet analysis represents a useful tool for fracture pattern

  8. The study of the transition regime between slab and mixed slab-toroidal electron temperature gradient modes in a basic experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbaky, Abed; Sokolov, Vladimir; Sen, Amiya K.

    2015-05-15

    Electron temperature gradient (ETG) modes are suspected sources of anomalous electron thermal transport in magnetically confined plasmas as in tokamaks. Prior work in the Columbia Linear Machine (CLM) has been able to produce and identify slab ETG modes in a slab geometry [Wei et al., Phys. Plasmas 17, 042108 (2010)]. Now by modifying CLM to introduce curvature to the confining axial magnetic field, we have excited mixed slab-toroidal modes. Linear theory predicts a transition between slab and toroidal ETG modes when (k{sub ∥}R{sub c})/(k{sub y}ρ) ∼1 [J. Kim and W. Horton, Phys. Fluids B 3, 1167 (1991)]. We observe changesmore » in the mode amplitude for levels of curvature R{sub c}{sup −1}≪(k{sub ∥,slab})/(k{sub ⊥}ρ) , which may be explained by reductions in k{sub ∥} in the transition from slab to mixed slab-toroidal modes, as also predicted by theory. We present mode amplitude scaling as a function of magnetic field curvature. Over the range of curvature available in CLM experimentally we find a modest increase in saturated ETG potential fluctuations (∼1.5×), and a substantial increase in the power density of individual mode peaks (∼4–5×)« less

  9. Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.

    PubMed

    Sharma, A S; Moarref, R; McKeon, B J

    2017-03-13

    Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  10. Overview of transport, fast particle and heating and current drive physics using tritium in JET plasmas

    NASA Astrophysics Data System (ADS)

    Stork, D.; Baranov, Yu.; Belo, P.; Bertalot, L.; Borba, D.; Brzozowski, J. H.; Challis, C. D.; Ciric, D.; Conroy, S.; de Baar, M.; de Vries, P.; Dumortier, P.; Garzotti, L.; Hawkes, N. C.; Hender, T. C.; Joffrin, E.; Jones, T. T. C.; Kiptily, V.; Lamalle, P.; Mailloux, J.; Mantsinen, M.; McDonald, D. C.; Nave, M. F. F.; Neu, R.; O'Mullane, M.; Ongena, J.; Pearce, R. J.; Popovichev, S.; Sharapov, S. E.; Stamp, M.; Stober, J.; Surrey, E.; Valovic, M.; Voitsekhovitch, I.; Weisen, H.; Whiteford, A. D.; Worth, L.; Yavorskij, V.; Zastrow, K.-D.; EFDA contributors, JET

    2005-10-01

    Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (nT/nD < 3%). Thermal tritium particle transport coefficients (DT, vT) are found to exceed neo-classical values in all regimes, except in ELMy H-modes at high densities and in the region of internal transport barriers (ITBs) in reversed shear plasmas. In ELMy H-mode dimensionless parameter scans, at q95 ~ 2.8 and triangularity δ = 0.2, the T particle transport scales in a gyro-Bohm manner in the inner plasma (r/a < 0.4), whilst the outer plasma particle transport scaling is more Bohm-like. Dimensionless parameter scans show contrasting behaviour for the trace particle confinement (increases with collisionality, ν* and β) and bulk energy confinement (decreases with ν* and is independent of β). In an extended ELMy H-mode data set, with ρ*, ν*, β and q varied but with neo-classical tearing modes (NTMs) either absent or limited to weak, benign core modes (4/3 or above), the multiparameter fit to the normalized diffusion coefficient in the outer plasma (0.65 < r/a < 0.8) gives DT/Bphi ~ ρ*2.46ν*-0.23β-1.01q2.03. In hybrid scenarios (qmin ~ 1, low positive shear, no sawteeth), the T particle confinement is found to scale with increasing triangularity and plasma current. Comparing regimes (ELMy H-mode, ITB plasma and hybrid scenarios) in the outer plasma region, a correlation of high values of DT with high values of vT is seen. The normalized diffusion coefficients for the hybrid and ITB scenarios do not fit the scaling derived for ELMy H-modes. The normalized tritium diffusion scales with normalized poloidal Larmor radius (\\rho_{\\theta}^\\ast=q\\rho^{\\ast}) in a manner close to gyro-Bohm ({\\sim}\\rho_{\\theta}^{\\ast 3}) , with an added inverse β dependence. The effects of ELMs, sawteeth and NTMs on the T particle transport are described. Fast-ion confinement in current-hole (CH) plasmas was tested in TTE by tritium neutral beam injection into

  11. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Chang, P. Y.; Anderson, K. S.

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehlymore » et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.« less

  12. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Chang, P.Y.; Spears, B.K.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.« less

  13. Probing plasmonic breathing modes optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Markus K., E-mail: markus.krug@uni-graz.at; Reisecker, Michael; Hohenau, Andreas

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  14. Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Debayan; Nath, Sujit; Bhanja, Dipankar

    2018-04-01

    Twin fluid atomizers utilize the kinetic energy of high speed gases to disintegrate a liquid sheet into fine uniform droplets. Quite often, the gas streams are injected at unequal velocities to enhance the aerodynamic interaction between the liquid sheet and surrounding atmosphere. In order to improve the mixing characteristics, practical atomizers confine the gas flows within ducts. Though the liquid sheet coming out of an injector is usually annular in shape, it can be considered to be planar as the mean radius of curvature is much larger than the sheet thickness. There are numerous studies on breakup of the planar liquid sheet, but none of them considered the simultaneous effects of confinement and unequal gas velocities on the spray characteristics. The present study performs a nonlinear temporal analysis of instabilities in the planar liquid sheet, produced by two co-flowing gas streams moving with unequal velocities within two solid walls. The results show that the para-sinuous mode dominates the breakup process at all flow conditions over the para-varicose mode of breakup. The sheet pattern is strongly influenced by gas velocities, particularly for the para-varicose mode. Spray characteristics are influenced by both gas velocity and proximity to the confining wall, but the former has a much more pronounced effect on droplet size. An increase in the difference between gas velocities at two interfaces drastically shifts the droplet size distribution toward finer droplets. Moreover, asymmetry in gas phase velocities affects the droplet velocity distribution more, only at low liquid Weber numbers for the input conditions chosen in the present study.

  15. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH 3 in promoting H + NH 3 → H 2 + NH 2 reaction

    DOE PAGES

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-07

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-ofthe- art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH 3 → H 2 + NH 2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH 3 stretching modes, ismore » demonstrated. In conclusion, it is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH 3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.« less

  16. L to H mode transition: Parametric dependencies of the temperature threshold

    DOE PAGES

    Bourdelle, C.; Chone, L.; Fedorczak, N.; ...

    2015-06-15

    The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T th). They are based on the stabilization of the underlying turbulence by a mean radialmore » electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T th are tested versus magnetic field, density, effective charge. Furthermore, various robust experimental observations are reproduced, in particular T th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.« less

  17. Boundary condition for toroidal plasma flow imposed at the separatrix in high confinement JT-60U plasmas with edge localized modes and the physics process in pedestal structure formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, K.; Honda, M.; Urano, H.

    2014-12-15

    Modulation charge eXchange recombination spectroscopy measurements with high spatial and temporal resolution have made the evaluation of the toroidal plasma flow of fully stripped carbon impurity ions (V{sub ϕ}{sup C6+}) in the JT-60U tokamak peripheral region (including, in particular, the separatrix) possible with a better signal-to-noise ratio. By comparing co- and counter-neutral beam injection discharges experimentally, we have identified the boundary condition of V{sub ϕ}{sup C6+} and radial electric field shear (∇E{sub r}) imposed at the separatrix in high confinement (H-mode) plasmas with edge localized modes (ELMs). The V{sub ϕ}{sup C6+} value at the separatrix is not fixed at zeromore » but varies with the momentum input direction. On the other hand, the ∇E{sub r} value is nearly zero (or very weakly positive) at the separatrix. Furthermore, the edge localized mode perturbation does not appear to affect both V{sub ϕ}{sup C6+} and ∇E{sub r} values at the separatrix as strongly as that in the pedestal region. The above experimental findings based on the precise edge measurements have been used to validate a theoretical model and develop a new empirical model. A better understanding of the physical process in the edge transport barrier (ETB) formation due to the sheared E{sub r} formation is also discussed.« less

  18. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  19. Shape dependent resonant modes of skyrmions in magnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Lake, Roger K.; Zang, Jiadong

    2018-06-01

    Resonant modes of a single Néel type skyrmion in confined nanodisks with varying aspect ratios (AR) are investigated using micromagnetic simulations. The AR of the skyrmion has a non-linear dependence on that of the nanodisk. The power spectra of skyrmions in nanodisks with AR ranging from 1.0 to 2.0 are calculated. With the increase of disk AR, multiple new modes emerge in the power spectrum, which originate from the broken rotational symmetry of both the nanodisk and the skyrmion. All of the spin wave modes are resolved by spatial maps of the real time magnetization fluctuations. New mixed modes such as rotation modes and oscillation modes with different azimuthal and radial components are identified in the elliptical nanodisk with AR = 1.8. The new emergent modes may provide new approaches to skyrmion-based oscillators and spin wave sources in confined structures.

  20. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling [The inter-ELM W erosion profile in DIII-D H-mode discharges and benchmarking with OEDGE+ERO modeling

    DOE PAGES

    Abrams, Tyler; Ding, Rui; Guo, Houyang Y.; ...

    2017-04-03

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and TZM molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but divergemore » at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. As a result, it is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.« less

  1. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling [The inter-ELM W erosion profile in DIII-D H-mode discharges and benchmarking with OEDGE+ERO modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Tyler; Ding, Rui; Guo, Houyang Y.

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and TZM molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but divergemore » at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. As a result, it is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.« less

  2. Upper-Tropospheric Synoptic-Scale Waves. Part II: Maintenance and Excitation of Quasi Modes.

    NASA Astrophysics Data System (ADS)

    Rivest, Chantal; Farrell, Brian F.

    1992-11-01

    In a preceding paper a simple dynamical model for the maintenance of upper-tropospheric waves was proposed: the upper-level Eady normal modes. In this paper it is shown that these modes have counterparts in basic states with positive tropospheric gradients of potential vorticity, and that these counterparts can be maintained and excited on time scales consistent with observations.In the presence of infinitesimal positive tropospheric gradients of potential vorticity, the upper-level normal-mode solutions no longer exist. That the normal-mode solution disappears when gradients are infinitesimal represents an apparent singularity and challenges the interpretation of upper-level synoptic-scale waves as related to the upper-level Eady normal modes. What happens to the upper-level modal solution in the presence of tropospheric gradients of potential vorticity is examined in a series of initial-value experiments. Our results show that they become slowly decaying quasi modes. Mathematically the quasi modes consist of a superposition of singular modes sharply peaked in the phase speed domain, and their decay proceeds as the modes interfere with one another. We repeat these experiments in basic states with a smooth tropopause in the presence of tropospheric and stratospheric gradients, and similar results are obtained.Following a previous study by Farrell, a class of near-optimal initial conditions for the excitation of upper-level waves is identified. The initial conditions consist of upper-tropospheric disturbances that lean against the shear. They strongly excite upper-level waves not only in the absence of tropospheric potential vorticity gradients, but also in their presence. This result is important mathematically since it suggests that quasi modes are as likely to emerge from favorably configured initial disturbances as true normal modes, although the excitation is followed by a slow decay.

  3. Vibrational Modes of Oblate Clouds of Charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Spencer, Ross L.

    2000-10-01

    When a nonneutral plasma confined in a Penning trap is allowed time to expand, its shape at global thermal equilibrium is that of a thin oblate spheroid [D. L. Paulson et al., Phys. Plasmas 5, 345 (1998)]. Oscillations similar to those of a drumhead can be externally induced in such a plasma. Although a theory developed by Dubin predicts the frequencies of the various normal modes of oscillation [Phys. Rev. Lett. 66, 2076 (1991)], this theory assumes that the plasma has zero temperature and is confined by an ideal quadrupole electric field. Neither of these conditions is strictly true in experiments [C. S. Weimer et al., Phys. Rev. A 49, 3842 (1994)] where physical properties of the plasma are deduced from measurements of these frequencies, causing the measurements and ideal theory to differ by about 20%. We reformulate the problem of the normal oscillatory modes as a principal-value integral eigenvalue equation, including finite-temperature and non-ideal confinement effects. The equation is solved numerically to obtain the plasma's normal mode frequencies and shapes; reasonable agreement with experiment is obtained.

  4. Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; Solomon, W. M.; Barada, K.; Garofalo, A. M.; Groebner, R. J.; Luhmann, N. C.; McKee, G. R.; Muscatello, C. M.; Ono, M.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Staebler, G. M.; Tobias, B. J.; Yan, Z.; the DIII-D Team

    2017-02-01

    A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge E  ×  B rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. At the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by  ⩽60%) and width (by  ⩽50%). We posit that the enhanced edge turbulence-driven transport, enabled by the lower edge E  ×  B flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8  ⩽  ρ  ⩽0.9) owing to increased E  ×  B flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. These findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.

  5. Observations of highly sheared turbulence in the H-mode pedestal using Phase Contrast Imaging on DIII-D

    NASA Astrophysics Data System (ADS)

    Rost, J. C.; Marinoni, A.; Davis, E. M.; Porkolab, M.; Burrell, K. H.

    2017-10-01

    Highly sheared turbulence with short radial correlation lengths has been measured near the top of the H-mode pedestal, in addition to the previously measured highly-sheared turbulence measured in the Er well. Turbulence in regions of large velocity shear is characterized by radial correlation lengths shorter than the poloidal wavelength (L < λ 2 cm) and large Doppler-shifted frequencies (f > 200 kHz). The phase contrast imaging (PCI) diagnostic on DIII-D is ideally suited to measuring this density turbulence due to the measurement geometry and high frequency bandwidth. Radial localization is achieved by optical filtering, varying the ExB profile, and shifting the plasma position. Reconfiguration of the Er well, such as at the L-H transition or the transition to wide pedestal QH-mode, shows a near-instantaneous change (t < 1 ms) to the sheared turbulence in the Er well ( 1 cm inside the separatrix). In contrast, the sheared turbulence near the top of the pedestal ( 2 cm inside the separatrix) varies over times scales of tens of ms, consistent with pedestal evolution. Work supported by the US Department of Energy under DE-FG02-94ER54235 and DE-FC02-04ER54698.

  6. Glycerol in micellar confinement with tunable rigidity

    NASA Astrophysics Data System (ADS)

    Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael

    2016-12-01

    We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

  7. Conductance signatures of electron confinement induced by strained nanobubbles in graphene

    NASA Astrophysics Data System (ADS)

    Bahamon, Dario A.; Qi, Zenan; Park, Harold S.; Pereira, Vitor M.; Campbell, David K.

    2015-09-01

    We investigate the impact of strained nanobubbles on the conductance characteristics of graphene nanoribbons using a combined molecular dynamics - tight-binding simulation scheme. We describe in detail how the conductance, density of states, and current density of zigzag or armchair graphene nanoribbons are modified by the presence of a nanobubble. In particular, we establish that low-energy electrons can be confined in the vicinity of or within the nanobubbles by the delicate interplay among the pseudomagnetic field pattern created by the shape of the bubble, mode mixing, and substrate interaction. The coupling between confined evanescent states and propagating modes can be enhanced under different clamping conditions, which translates into Fano resonances in the conductance traces.

  8. Confinement of translated field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Armstrong, W. T.; Chrien, R. E.; Klingner, P. L.; McKenna, K. F.; Rej, D. J.; Sherwood, E. G.; Siemon, R. E.

    1986-03-01

    The confinement properties of translating field-reversed configurations (FRC) in the FRX-C/T device [Phys. Fluids 29, (1986)] are analyzed and compared to previous data without translation and to available theory. Translation dynamics do not appear to appreciably modify the FRC confinement. Some empirical scaling laws with respect to various plasma parameters are extracted from the data. These are qualitatively similar to those obtained in the TRX-1 device [Phys. Fluids 28, 888 (1985)] without translation and with a different formation method. Translation with a static gas fill offers new opportunities such as improved particle confinement or refueling of the FRC particle inventory.

  9. Changes in Reactivity as Chemistry Becomes Confined to an Interface. The Case of Free Radical Oxidation of C 30H 62 Alkane by OH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houle, Frances A.; Wiegel, Aaron A.; Wilson, Kevin R.

    Here, we examine in a simple organic aerosol the transition between heterogeneous chemistry under well-mixed conditions to chemistry under interfacial confinement. A single reaction mechanism, shown to reproduce observed OH oxidation chemistry for liquid and semisolid C 30H 62, is used in reaction-diffusion simulations to explore reactivity over a broad viscosity range. The results show that when internal mixing of the aerosol is fast and the particle interface is enriched in C-H groups, ketone and alcohol products, formed via peroxy radical disproportionation, predominate. As viscosity increases the reactions become confined to a shell at the gas-aerosol interface. The confinement ismore » accompanied by emergence of acyloxy reaction pathways that are particularly active when the shell is 1 nm or less. We quantify this trend using a reaction-diffusion index, allowing the parts of the mechanism that control reactivity as viscosity increases to be identified.« less

  10. Changes in Reactivity as Chemistry Becomes Confined to an Interface. The Case of Free Radical Oxidation of C 30H 62 Alkane by OH

    DOE PAGES

    Houle, Frances A.; Wiegel, Aaron A.; Wilson, Kevin R.

    2018-02-14

    Here, we examine in a simple organic aerosol the transition between heterogeneous chemistry under well-mixed conditions to chemistry under interfacial confinement. A single reaction mechanism, shown to reproduce observed OH oxidation chemistry for liquid and semisolid C 30H 62, is used in reaction-diffusion simulations to explore reactivity over a broad viscosity range. The results show that when internal mixing of the aerosol is fast and the particle interface is enriched in C-H groups, ketone and alcohol products, formed via peroxy radical disproportionation, predominate. As viscosity increases the reactions become confined to a shell at the gas-aerosol interface. The confinement ismore » accompanied by emergence of acyloxy reaction pathways that are particularly active when the shell is 1 nm or less. We quantify this trend using a reaction-diffusion index, allowing the parts of the mechanism that control reactivity as viscosity increases to be identified.« less

  11. EDITORIAL: Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.

    2010-06-01

    The 12th International Workshop on H-mode Physics and Transport Barriers was held at the Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA between September 30 and October 2, 2009. This meeting was the continuation of a series of previous meetings which was initiated in 1987 and has been held bi-annually since then. Following the recent tradition at the last few meetings, the program was sub- divided into six sessions. At each session, an overview talk was presented, followed by two or three shorter oral presentations which supplemented the coverage of important issues. These talks were followed by discussion periods and poster sessions of contributed papers. The sessions were: Physics of Transition to/from Enhanced Confinement Regimes, Pedestal and Edge Localized Mode Dynamics, Plasma Rotation and Momentum Transport, Role of 3D Physics in Transport Barriers, Transport Barriers: Theory and Simulations and High Priority ITER Issues on Transport Barriers. The diversity of the 90 registered participants was remarkable, with 22 different nationalities. US participants were in the majority (36), followed by Japan (14), South Korea (7), and China (6). This special issue of Nuclear Fusion consists of a cluster of 18 accepted papers from submitted manuscripts based on overview talks and poster presentations. The paper selection procedure followed the guidelines of Nuclear Fusion which are essentially the same as for regular articles with an additional requirement on timeliness of submission, review and revision. One overview paper and five contributed papers report on the H-mode pedestal related results which reflect the importance of this issue concerning the successful operation of ITER. Four papers address the rotation and momentum transport which play a crucial role in transport barrier physics. The transport barrier transition condition is the main focus of other four papers. Finally, four additional papers are devoted to the behaviour and control of

  12. Dynamic correlations at different time-scales with empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Nava, Noemi; Di Matteo, T.; Aste, Tomaso

    2018-07-01

    We introduce a simple approach which combines Empirical Mode Decomposition (EMD) and Pearson's cross-correlations over rolling windows to quantify dynamic dependency at different time scales. The EMD is a tool to separate time series into implicit components which oscillate at different time-scales. We apply this decomposition to intraday time series of the following three financial indices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatility index USA), obtaining time-varying multidimensional cross-correlations at different time-scales. The correlations computed over a rolling window are compared across the three indices, across the components at different time-scales and across different time lags. We uncover a rich heterogeneity of interactions, which depends on the time-scale and has important lead-lag relations that could have practical use for portfolio management, risk estimation and investment decisions.

  13. Edge simulations in ELMy H-mode discharges of EAST tokamak

    NASA Astrophysics Data System (ADS)

    Xia, T. Y.; Huang, Y. Q.; Xu, X. Q.; Wu, Y. B.; Wang, L.; Zheng, Z.; Liu, J. B.; Zang, Q.; Li, Y. Y.; Zhao, D.

    2017-10-01

    Simulations of ELM crash followed by a coherent mode, leading to transient divertor heat flux on EAST are achieved by the six-field two-fluid model in BOUT + + . Three EAST ELMy H-mode discharges with different pedestal structure, geometry and plasma current Ip are studied. The ELM-driven crash of the profiles in pedestal is reproduced, and the footprints of ELM filaments on targets are comparable with the measurements from divertor probes. A coherent mode is also found in the edge region in all the simulations after the ELM crash. The frequency and poloidal wave number are in the range of the edge coherent mode (ECM) on EAST. The magnetic fluctuations of the mode are smaller than the electric field fluctuations. The detailed comparisons between simulated mode structures with measurements will be reported. Statistical analysis on the simulated turbulent fluctuations shows that both the turbulent and blobby electron anomalous transport can pump the pedestal energy out into SOL, and then flow to divertors. The similar trend of the heat flux width with Ip is obtained in the simulations. The effects of the SOL current driven by LHW on ELMs will be discussed in this paper. This work was performed under the auspices of the US DOE by LLNL under contract DE-AC52-07NA27344. It was supported by the China NSF 11405215 and 11675217.

  14. Predictions of H-mode performance in ITER

    NASA Astrophysics Data System (ADS)

    Budny, Robert

    2008-11-01

    Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP [1] code is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT. [0pt] [1] R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 (2008) 075005.

  15. Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H.; Chapman, S. C.; Department of Mathematics and Statistics, University of Tromso

    2013-04-15

    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond,more » Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as 'robustness' for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas.« less

  16. Micro X-ray CT imaging of pore-scale changes in unconsolidated sediment under confining pressure

    NASA Astrophysics Data System (ADS)

    Schindler, M.; Prasad, M.

    2017-12-01

    Micro X-ray computed tomography was used to image confining-pressure induced changes in a dry, unconsolidated quartz sand pack while simultaneously recording ultrasonic P-wave velocities. The experiments were performed under in-situ pressure of up to 4000 psi. The majority of digital rock physics studies rely on micro CT images obtained under ambient pressure and temperature conditions although effective rock properties strongly depend on in situ conditions. Goal of this work is to be able to obtain micro CT images of rock samples while pore and confining pressure is applied. Simultaneously we recorded ultrasonic P-wave velocities. The combination of imaging and velocity measurements provides insight in pore-scale changes in the rock and their influence on elastic properties. We visually observed a reduction in porosity by more than a third of the initial value as well as extensive grain damage, changes in pore and grain size distribution and an increase in contact number and contact radius with increasing confining pressure. An increase in measured ultrasonic P-wave velocities with increasing pressure was observed. We used porosity, contact number and contact radius obtained from micro CT images to model P-wave velocity with the contact-radius model by Bachrach et al. (1998). Our observations showed that the frame of unconsolidated sediments is significantly altered starting at pressures of only 1000 psi. This finding indicates that common assumptions in rock physics models (the solid frame remains unchanged) are violated for unconsolidated sediments. The effects on the solid frame should be taken into account when modeling the pressure dependence of elastic rock properties.

  17. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    NASA Astrophysics Data System (ADS)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  18. Observed modes of sea surface temperature variability in the South Pacific region

    NASA Astrophysics Data System (ADS)

    Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier

    2018-02-01

    The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

  19. Raman investigation of ro-vibrational modes of interstitial H2 in Si

    NASA Astrophysics Data System (ADS)

    Koch, S. G.; Lavrov, E. V.; Weber, J.

    2012-08-01

    A Raman scattering study of ro-vibrational transitions Q(J) of the interstitial H2 in Si is presented. It is shown that the Q(2) mode of para hydrogen is coupled to the TAX phonon of Si. The mode appears in the spectra at temperatures above 200 K. The results presented also suggest that the Q(3) transition of ortho hydrogen is resonantly coupled to the OΓ phonon.

  20. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis.

    PubMed

    Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping

    2015-09-01

    The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.

  1. Nanometer Scale Confined Growth of Single-Crystalline Gold Nanowires via Photocatalytic Reduction.

    PubMed

    Lee, Seonhee; Bae, Changdeuck; Shin, Hyunjung

    2018-06-20

    Single-crystalline gold nanowires (Au NWs) are directly synthesized by the photocatalytic reduction of an aqueous HAuCl 4 solution inside high-aspect-ratio TiO 2 nanotubes (NTs). Crystalline TiO 2 (anatase) NTs are prepared by the template-assisted atomic layer deposition technique with a subsequent annealing. Under the irradiation of ultraviolet light, photoexcited electrons are formed on the surfaces of TiO 2 NTs and could reduce Au ions to create nuclei without using any surfactant, reducing agent, and/or seed. Once nucleation occurred, high-aspect-ratio Au NWs are grown inside the TiO 2 NTs in a diffusion-controlled manner. As the solution pH increased, the nucleation/growth rate decreased and twin-free (or not observed), single-crystalline Au NWs are formed. At a pH above 6, the nucleation/growth rates increased and Au nanoparticles are observed both inside and outside of the TiO 2 NTs. The confined nanoscale geometries of the interior of the TiO 2 NTs are found to play a key role in the controlled diffusion of Au species and in determining the crystal morphology of the resulting Au NWs.

  2. Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

    NASA Astrophysics Data System (ADS)

    Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.

    2018-05-01

    ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1  +  SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on

  3. Confinement-induced alterations in the evaporation dynamics of sessile droplets.

    PubMed

    Bansal, Lalit; Chakraborty, Suman; Basu, Saptarshi

    2017-02-07

    Evaporation of sessile droplets has been a topic of extensive research. However, the effect of confinement on the underlying dynamics has not been well explored. Here, we report the evaporation dynamics of a sessile droplet in a confined fluidic environment. Our findings reveal that an increase in the channel length delays the completion of the evaporation process and leads to unique spatio-temporal evaporation flux and internal flow. The evaporation modes (constant contact angle and constant contact radius) during the droplet lifetime however exhibit global similarity when normalized by appropriate length and timescales. These results are explained in light of an increase in vapor concentration inside the channel due to greater accumulation of water vapor on account of increased channel length. We have formulated a theoretical framework which introduces two key parameters namely an enhanced concentration of the vapor field in the vicinity of the confined droplet and a corresponding accumulation lengthscale over which the accumulated vapor relaxes to the ambient concentration. Using these two parameters and modified diffusion based evaporation we are able to show that confined droplets exhibit a universal behavior in terms of the temporal evolution of each evaporation mode irrespective of the channel length. These results may turn out to be of profound importance in a wide variety of applications, ranging from surface patterning to microfluidic technology.

  4. Limits on rock strength under high confinement

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Schulson, Erland M.

    2007-06-01

    Understanding of deep earthquake source mechanisms requires knowledge of failure processes active under high confinement. Under low confinement the compressive strength of rock is well known to be limited by frictional sliding along stress-concentrating flaws. Under higher confinement strength is usually assumed limited by power-law creep associated with the movement of dislocations. In a review of existing experimental data, we find that when the confinement is high enough to suppress frictional sliding, rock strength increases as a power-law function only up to a critical normalized strain rate. Within the regime where frictional sliding is suppressed and the normalized strain rate is below the critical rate, both globally distributed ductile flow and localized brittle-like failure are observed. When frictional sliding is suppressed and the normalized strain rate is above the critical rate, failure is always localized in a brittle-like manner at a stress that is independent of the degree of confinement. Within the high-confinement, high-strain rate regime, the similarity in normalized failure strengths across a variety of rock types and minerals precludes both transformational faulting and dehydration embrittlement as strength-limiting mechanisms. The magnitude of the normalized failure strength corresponding to the transition to the high-confinement, high-strain rate regime and the observed weak dependence of failure strength on strain rate within this regime are consistent with a localized Peierls-type strength-limiting mechanism. At the highest strain rates the normalized strengths approach the theoretical limit for crystalline materials. Near-theoretical strengths have previously been observed only in nano- and micro-scale regions of materials that are effectively defect-free. Results are summarized in a new deformation mechanism map revealing that when confinement and strain rate are sufficient, strengths approaching the theoretical limit can be achieved in

  5. Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael

    2009-11-01

    The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)

  6. Full-Scale Linear Cutting Tests in Chongqing Sandstone to Study the Influence of Confining Stress on Rock Cutting Forces by TBM Disc Cutter

    NASA Astrophysics Data System (ADS)

    Pan, Yucong; Liu, Quansheng; Liu, Jianping; Peng, Xingxin; Kong, Xiaoxuan

    2018-06-01

    In order to study the influence of confining stress on rock cutting forces by tunnel boring machine (TBM) disc cutter, full-scale linear cutting tests are conducted in Chongqing Sandstone (uniaxial compressive strength 60.76 MPa) using five equal biaxial confining stressed conditions, i.e. 0-0, 5-5, 10-10, 15-15 and 20-20 MPa; disc cutter normal force, rolling force, cutting coefficient and normalized resultant force are analysed. It is found that confining stress can greatly affect disc cutter resultant force, its proportion in normal and rolling directions and its acting point for the hard Chongqing Sandstone and the confining stress range used in this study. For every confining stressed condition, as cutter penetration depth increases, disc cutter normal force increases with decreasing speed, rolling force and cutting coefficient both increase linearly, and acting point of the disc cutter resultant force moves downward at some extent firstly and then upward back to its initial position. For same cutter penetration depth, as confining stress increases, disc cutter normal force, rolling force, cutting coefficient and normalized resultant force all increase at some extent firstly and then decrease rapidly to very small values (quite smaller than those obtained under the non-stressed condition) after some certain confining stress thresholds. The influence of confining stress on rock cutting by TBM disc cutter can be generally divided into three stages as confining stress increases, i.e. strengthening effect stage, damaging effect stage and rupturing effect stage. In the former two stages (under low confining stress), rock remains intact and rock cutting forces are higher than those obtained under the non-stressed condition, and thus rock cutting by TBM disc cutter is restrained; in the last stage (under high confining stress), rock becomes non-intact and rock slabbing failure is induced by confining stress before disc cutting, and thus rock cutting by TBM disc

  7. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.

    PubMed

    Liu, Yan-Jun; Le Berre, Maël; Lautenschlaeger, Franziska; Maiuri, Paolo; Callan-Jones, Andrew; Heuzé, Mélina; Takaki, Tohru; Voituriez, Raphaël; Piel, Matthieu

    2015-02-12

    The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Somersault of Paramecium in extremely confined environments.

    PubMed

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-08-19

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young's modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces.

  9. Dynamics of an optically confined nanoparticle diffusing normal to a surface.

    PubMed

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2016-06-01

    Here we measure the hindered diffusion of an optically confined nanoparticle in the direction normal to a surface, and we use this to determine the particle-surface interaction profile in terms of the absolute height. These studies are performed using the evanescent field of an optically excited single-mode silicon nitride waveguide, where the particle is confined in a height-dependent potential energy well generated from the balance of optical gradient and surface forces. Using a high-speed cmos camera, we demonstrate the ability to capture the short time-scale diffusion dominated motion for 800-nm-diam polystyrene particles, with measurement times of only a few seconds per particle. Using established theory, we show how this information can be used to estimate the equilibrium separation of the particle from the surface. As this measurement can be made simultaneously with equilibrium statistical mechanical measurements of the particle-surface interaction energy landscape, we demonstrate the ability to determine these in terms of the absolute rather than relative separation height. This enables the comparison of potential energy landscapes of particle-surface interactions measured under different experimental conditions, enhancing the utility of this technique.

  10. Diffusive dynamics of nanoparticles in ultra-confined media

    DOE PAGES

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; ...

    2015-08-10

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less

  11. Particle-in-cell modeling of gas-confined barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-15

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  12. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    PubMed

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Confined polar mixtures within cylindrical nanocavities.

    PubMed

    Rodriguez, Javier; Elola, M Dolores; Laria, Daniel

    2010-06-17

    Using molecular dynamics experiments, we have extended our previous analysis of equimolar mixtures of water and acetonitrile confined between silica walls [J. Phys. Chem. B 2009, 113, 12744] to examine similar solutions trapped within carbon nanotubes and cylindrical silica pores. Two different carbon tube sizes were investigated, (8,8) tubes, with radius R(cnt) = 0.55 nm, and (16,16) ones, with R(cnt) = 1.1 nm. In the narrowest tubes, we found that the cylindrical cavity is filled exclusively by acetonitrile; as the radius of the tube reaches approximately 1 nm, water begins to get incorporated within the inner cavities. In (16,16) tubes, the analysis of global and local concentration fluctuations shows a net increment of the global acetonitrile concentration; in addition, the aprotic solvent is also the prevailing species at the vicinity of the tube walls. Mixtures confined within silica nanopores of radius approximately 1.5 nm were also investigated. Three pores, differing in the effective wall/solvent interactions, were analyzed, (i) a first class, in which dispersive forces prevail (hydrophobic cavities), (ii) a second type, where oxygen sites at the pore walls are transformed into polar silanol groups (hydrophilic cavities), and (iii) finally, an intermediate scenario, in which 60% of the OH groups are replaced by mobile trimethylsilyl groups. Within the different pores, we found clear distinctions between the solvent layers that lie in close contact with the silica substrate and those with more central locations. Dynamical modes of the confined liquid phases were investigated in terms of diffusive and rotational time correlation functions. Compared to bulk results, the characteristic time scales describing different solvent motions exhibit significant increments. In carbon nanotubes, the most prominent modifications operate in the narrower tubes, where translations and rotations become severely hindered. In silica nanopores, the manifestations of the overall

  14. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  15. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE PAGES

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; ...

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  16. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  17. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    PubMed

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  18. Collective Modes of Dust Helical Clusters

    NASA Astrophysics Data System (ADS)

    Tsytovich, V. N.; Gousein-Zade, N. G.; Morfill, G. E.

    2005-10-01

    The helical structures are the simplest 3D crystal-like cylindrical structures with radius R being a system of 2D clusters equally separated along the cylindrical axis with a relative rotation on constant angle φ0. For mean free path for grain charging much larger than the separation of the grains, the total energy of grain interaction is a sum of all pair grain interactions. The helical structures have been found experimentally for ions in laser traps in cylindrical gas discharges at very low temperatures (in both case as ``warms''). The equilibrium criterion and the criteria of stability including the absence of saddle points show that in the plane ρ, φ the bifurcation points are often present with new branches appearing (stable and unstable). Numerical MD simulations show that for cylindrical symmetry any random distributions of grains is developing into helical structures. The theory of collective modes of helical structures is developed for arbitrary grain interactions. The dispersion relation for frequencies of the collective modes for different branches of helical structures is derived and solved numerically for interaction including different type of screened grain potentials including the grain attraction. The dispersion relation in the first Brillouin zone for the square of the frequency ω2 is shown to be a be-cubic equation and gives the square of frequency ω2 > 0 for stable modes and the square of the growth rates for the unstable modes ω2 < 0. Modes for helical structures in parabolic external confining potential well perpendicular to cylindrical axis are found. Stabile self-confined structures without external confinement are discovered in presence of both non-collective and collective grain attractions.

  19. Recent progress towards a physics-based understanding of the H-mode transition

    DOE PAGES

    Tynan, G. R.; Cziegler, I.; Diamond, P. H.; ...

    2016-01-22

    Results from recent experiment and numerical simulation point towards a picture of the L-H transition in which edge shear flows interacting with edge turbulence create the conditions needed to produce a non-zero turbulent Reynolds stress at and just inside the LCFS during L-mode discharges. This stress acts to reinforce the shear flow at this location and the flow drive gets stronger as heating is increased. The L-H transition ensues when the rate of work done by this stress is strong enough to drive the shear flow to large values, which then grows at the expense of the turbulence intensity. Themore » drop in turbulence intensity momentarily reduces the heat flux across the magnetic flux surface, which then allows the edge plasma pressure gradient to build. A sufficiently strong ion pressure gradient then locks in the H-mode state. The results are in general agreement with previously published reduced 0D and 1D predator prey models. An extended predator–prey model including separate ion and electron heat channels yields a non-monotonic power threshold dependence on plasma density provided that the fraction of heat deposited on the ions increases with plasma density. Possible mechanisms to explain other macroscopic transition threshold criteria are identified. A number of open questions and unexplained observations are identified, and must be addressed and resolved in order to build a physics-based model that can yield predictions of the macroscopic conditions needed for accessing H-mode.« less

  20. The possible crossover effects of NaNO3 confined in porous media: From bulk to clusters

    NASA Astrophysics Data System (ADS)

    Mu, R.; Jin, F.; Morgan, S. H.; Henderson, D. O.; Silberman, E.

    1994-05-01

    Differential scanning calorimetry (DSC) and Raman spectra are reported for NaNO3 bulk and for NaNO3 confined in porous silica with pore radii, rp=2.5, 5, 10, 20 nm. Raman spectra are also given for a 6 M solution of NaNO3. The melting transition for the confined NaNO3 exhibits a 1/rp dependence where rp is the pore radius for rp≳5 nm. No melting transition is observed for NaNO3 confined in 2.5 nm pores. Above this pore size, their appears to be a deviation in the melting transition dependence on rp. The internal modes observed in the Raman spectra for the confined material are in agreement with those of the bulk solid except for a feature observed on the low frequency side of the ν1 band. The external TO mode observed at 100 cm-1 and the librational mode at 175 cm-1 for NaNO3 both decrease in intensity and broaden as rp decreases and both bands disappear at rp=2.5 nm. An additional peak at 70 cm-1 not observed in the solution or bulk NaNO3 spectra appears in the spectra of confined NaNO3 and increases in intensity as rp decreases. We assign this band to a new phase of NaNO3 which is stabilized by the surface hydroxyl groups of the porous silica. For NaNO3 confined in pores, rp≤2.5 nm, we suggest that NaNO3 exists as disordered aggregates.

  1. Vibrational modes of thin oblate clouds of charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Spencer, Ross L.

    2002-07-01

    A numerical method is presented for finding the eigenfunctions (normal modes) and mode frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial thickness is much smaller than their radial size. The plasma may be approximated as a charged disk in this limit; the normal modes and frequencies can be found if the surface charge density profile σ(r) of the disk and the trap bounce frequency profile ωz(r) are known. The dependence of the eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning trap fields is discussed. The results of the calculation are compared with the experimental data of Weimer et al. [Phys. Rev. A 49, 3842 (1994)] and it is shown that the plasma in this experiment was probably hollow and had mode displacement functions that were concentrated near the center of the plasma.

  2. Oxidation mode of pyranose 2-oxidase is controlled by pH.

    PubMed

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A; Chaiyen, Pimchai

    2013-02-26

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O₂ as an electron acceptor to form the corresponding 2-keto-sugars and H₂O₂. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O₂ to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H₂O₂. At pH 8.0 and higher, the majority of the reduced P2O reacts with O₂ via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.

  3. Folded fabric tunes rock deformation and failure mode in the upper crust.

    PubMed

    Agliardi, F; Dobbs, M R; Zanchetta, S; Vinciguerra, S

    2017-11-10

    The micro-mechanisms of brittle failure affect the bulk mechanical behaviour and permeability of crustal rocks. In low-porosity crystalline rocks, these mechanisms are related to mineralogy and fabric anisotropy, while confining pressure, temperature and strain rates regulate the transition from brittle to ductile behaviour. However, the effects of folded anisotropic fabrics, widespread in orogenic settings, on the mechanical behaviour of crustal rocks are largely unknown. Here we explore the deformation and failure behaviour of a representative folded gneiss, by combining the results of triaxial deformation experiments carried out while monitoring microseismicity with microstructural and damage proxies analyses. We show that folded crystalline rocks in upper crustal conditions exhibit dramatic strength heterogeneity and contrasting failure modes at identical confining pressure and room temperature, depending on the geometrical relationships between stress and two different anisotropies associated to the folded rock fabric. These anisotropies modulate the competition among quartz- and mica-dominated microscopic damage processes, resulting in transitional brittle to semi-brittle modes under P and T much lower than expected. This has significant implications on scales relevant to seismicity, energy resources, engineering applications and geohazards.

  4. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    2013-07-15

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporatormore » scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt

  5. Inhibited phenol ionization in reverse micelles: confinement effect at the nanometer scale.

    PubMed

    Silva, O Fernando; Fernández, Mariana A; Silber, Juana J; de Rossi, Rita H; Correa, N Mariano

    2012-01-16

    We found that the absorption spectra of 2-acetylphenol (2-HAP), 4-acetylphenol (4-HAP), and p-nitrophenol (p-NPh) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane reverse micelles (RMs) at various W(0) (W(0) = [H(2)O]/[surfactant]) values studied changed with time if (-)OH ions were present in the RM water pool. There is an evolution of ionized phenol (phenolate) bands to nonionized phenol absorption bands with time and this process is faster at low W(0) values and with phenols with higher bulk water pK(a) values. That is, in bulk water and at the hydroxide anion concentration used, only phenolate species are observed, whereas in AOT RMs at this fixed hydroxide anion concentration, ionized phenols convert into nonionized phenol species over time. Furthermore, we demonstrate that, independent of the (-)OH concentration used to prepare the AOT RMs, the nonionized phenols are the more stable species in the RM media. We explain our results by considering that strong hydrogen-bonding interactions between phenols and the AOT polar head groups result in the existence of only nonionized phenols at the AOT RM interface. The situation is quite different when the phenols are dissolved in cationic benzyl-n-hexadecyldimethylammonium chloride RMs. Therein, only phenolates species are present at the (-)OH concentrations used. The results clearly demonstrate that the classical definition of pH does not apply in a confined environment, such as in the interior of RMs and challenge the general idea that pH can be determined inside RMs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamical behavior of a single polymer chain under nanometric confinement

    NASA Astrophysics Data System (ADS)

    Lagrené, K.; Zanotti, J.-M.; Daoud, M.; Farago, B.; Judeinstein, P.

    2010-10-01

    We address the dynamical behavior of a single polymer chain under nanometric confinement. We consider a polymer melt made of a mixture of hydrogenated and deuterated high molecular mass Poly(Ethylene Oxide) (PEO). The confining material is a membrane of Anodic Aluminum Oxide (AAO), a macroscopically highly ordered confining system made of parallel cylindrical channels. We use Neutron Spin-Echo (NSE) under the Zero Average Contrast (ZAC) condition to, all at once, i) match the intense porous AAO detrimental elastic SANS (Small Angle Neutron Scattering) contribution to the total intermediate scattering function I(Q,t) and ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The polymer dynamics is probed on an extremely broad spacial ([2.2 10-2 Å-1, 0.2 Å-1]) and temporal ([0.1 ns, 600 ns]) ranges. We do not detect any influence of confinement on the polymer dynamics. This result is discussed in the framework of the debate on the existence of a "corset effect" recently suggested by NMR relaxometry data.

  7. Nonlocal response in plasmonic waveguiding with extreme light confinement

    NASA Astrophysics Data System (ADS)

    Toscano, Giuseppe; Raza, Søren; Yan, Wei; Jeppesen, Claus; Xiao, Sanshui; Wubs, Martijn; Jauho, Antti-Pekka; Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2013-07-01

    We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allowing us to study waveguides with subnanometer cross-sections exhibiting extreme light confinement. We show that groove and wedge waveguides have a fundamental lower limit in their mode confinement, only captured by the nonlocal theory. The limitation translates into an upper limit for the corresponding Purcell factors, and thus has important implications for quantum plasmonics.

  8. Mode-dependent templates and scan order for H.264/AVC-based intra lossless coding.

    PubMed

    Gu, Zhouye; Lin, Weisi; Lee, Bu-Sung; Lau, Chiew Tong; Sun, Ming-Ting

    2012-09-01

    In H.264/advanced video coding (AVC), lossless coding and lossy coding share the same entropy coding module. However, the entropy coders in the H.264/AVC standard were original designed for lossy video coding and do not yield adequate performance for lossless video coding. In this paper, we analyze the problem with the current lossless coding scheme and propose a mode-dependent template (MD-template) based method for intra lossless coding. By exploring the statistical redundancy of the prediction residual in the H.264/AVC intra prediction modes, more zero coefficients are generated. By designing a new scan order for each MD-template, the scanned coefficients sequence fits the H.264/AVC entropy coders better. A fast implementation algorithm is also designed. With little computation increase, experimental results confirm that the proposed fast algorithm achieves about 7.2% bit saving compared with the current H.264/AVC fidelity range extensions high profile.

  9. Quantum Confinement at Polar Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Gariglio, Stefano; Li, Danfeng; Wu, Zhenping; Liu, Wei; Fete, Alexandre; Boselli, Margherita; Lemal, Sebastien; Bristowe, Nicholas; Ghosez, Philippe; Gabay, Marc; Triscone, Jean-Marc

    The discovery of a two-dimensional electron liquid (2DEL), confined at the interface between the two band insulators LaAlO3 (LAO) and SrTiO3 (STO) has generated tremendous research interest. The 2DEL confinement lifts the degeneracy of Ti t2 g orbitals and promotes exotic physical properties. A previous study has demonstrated that a 2DEL is also observed when LAO is alloyed with STO (La,Al)1-x(Sr,Ti)xO3 (LASTO: x). The threshold thickness required for the onset of conductivity scales with x. We present here a study of superconductivity at the (LASTO:0.5)/STO interface. The thickness of the 2DEL, measured using perpendicular and parallel critical fields, is larger than the one at the LAO/STO interface. This change is due to a modification on the confining potential linked to a reduced charge transfer that is scaling as 1 / x . This scenario is also confirmed by a self-consistent Poisson-Schrödinger model and ab initio calculations. These compelling evidences support an intrinsic origin to the formation of the 2DEL in the LAO/STO system.

  10. LETTER TO THE EDITOR: The quasi-coherent signature of enhanced Dα H-mode in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; La Bombard, B.; Greenwald, M.; Hutchinson, I. H.; Irby, J.; Lin, Y.; Mazurenko, A.; Porkolab, M.

    2001-04-01

    The steady-state H-mode regime found at moderate to high density in Alcator C-Mod, known as enhanced Dα (EDA) H-mode, appears to be maintained by a continuous quasi-coherent (QC) mode in the steep edge gradient region. Large amplitude density and magnetic fluctuations with typical frequencies of about 100 kHz are driven by the QC mode. These fluctuations are measured in the steep edge gradient region by inserting a fast-scanning probe containing two poloidally separated Langmuir probes and a poloidal field pick-up coil. As the probe approaches the plasma edge, clear magnetic fluctuations were measured within about 2 cm of the last-closed flux surface (LCFS). The mode amplitude falls off rapidly with distance from the plasma centre with an exponential decay length of kr≈1.5 cm-1, measured 10 cm above the outboard midplane. The root-mean-square amplitude of the fluctuation extrapolated to the LCFS was θ≈5 G. The density fluctuations, on the other hand, were visible on the Langmuir probe only when it was within a few millimetres of the LCFS. The potential and density fluctuations were sufficiently in phase to enhance particle transport at the QC mode frequency. These results show that the QC signature of the EDA H-mode is an electromagnetic mode that appears to be responsible for the enhanced particle transport in the plasma edge.

  11. W7-AS: One step of the Wendelstein stellarator linea)

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Bäumel, S.; Baldzuhn, J.; Basse, N.; Brakel, R.; Burhenn, R.; Dinklage, A.; Dorst, D.; Ehmler, H.; Endler, M.; Erckmann, V.; Feng, Y.; Gadelmeier, F.; Geiger, J.; Giannone, L.; Grigull, P.; Hartfuss, H.-J.; Hartmann, D.; Hildebrandt, D.; Hirsch, M.; Holzhauer, E.; Igitkhanov, Y.; Jänicke, R.; Kick, M.; Kislyakov, A.; Kisslinger, J.; Klinger, T.; Klose, S.; Knauer, J. P.; König, R.; Kühner, G.; Laqua, H. P.; Maassberg, H.; McCormick, K.; Niedermeyer, H.; Nührenberg, C.; Pasch, E.; Ramasubramanian, N.; Ruhs, N.; Rust, N.; Sallander, E.; Sardei, F.; Schubert, M.; Speth, E.; Thomsen, H.; Volpe, F.; Weller, A.; Werner, A.; Wobig, H.; Würsching, E.; Zarnstorff, M.; Zoletnik, S.

    2005-07-01

    This paper is a summary of some of the major results from the Wendelstein 7-AS stellarator (W7-AS). W7-AS [G. Grieger et al., Phys. Fluids B 4, 2081 (1992)] has demonstrated the feasibility of modular coils and has pioneered the island divertor and the modeling of its three-dimensional characteristics with the EMC3/EIRENE code [Y. Feng, F. Sardei et al., Plasma Phys. Controlled Fusion 44, 611 (2002)]. It has extended the operational range to high density (4×1020m-3 at 2.5T) and high ⟨β⟩ (3.4% at 0.9T); it has demonstrated successfully the application of electron cyclotron resonance heating (ECRH) beyond cutoff via electron Bernstein wave heating, and it has utilized the toroidal variation of the magnetic field strength for ion cyclotron resonance frequency beach-wave heating. In preparation of W7-X [J. Nührenberg et al., Trans. Fusion Technol. 27, 71 (1995)], aspects of the optimization concept of the magnetic design have been successfully tested. W7-AS has accessed the H-mode, the first time in a "non-tokamak" and has extended H-mode operation toward high density by the discovery of the high-density H-mode (HDH), characterized by H-mode energy and L-mode-level impurity confinement. In the HDH-mode quasisteady state operation is possible close to operational limits without noticeable degradation in the plasma properties. High-β phases up to tpulse/τE=65 have been achieved, which can already be taken as an indication of the intrinsic stellarator capability of steady-state operation. Confinement issues will be discussed with emphasis on the similarities to tokamak confinement (general transport properties, H-mode transition physics) but also with respect to distinct differences (no confinement degradation toward operational boundaries, positive density scaling, lack of profile resilience, no distinct isotope effect, H-mode operational window). W7-AS turned out to be an important step in the development of the Wendelstein stellarator line towards an

  12. L-H transitions driven by ion heating in scrape-off layer turbulence (SOLT) model simulations

    NASA Astrophysics Data System (ADS)

    Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.

    2015-11-01

    The original SOLT model now includes the evolution of ion pressure consistent with drift-ordering. It is a two-dimensional, electrostatic reduced model wherein closure relations, obtained by integrating the equations along the B-field, model parallel physics that includes sheath-mediated current and heat flux in the scrape-off-layer and electron drift waves inside the separatrix. Low (L) and high (H) confinement regimes are observed in SOLT simulations, depending on the strength of an ion pressure (i.e., ion heating) source localized inside the separatrix: With increasing heating, particle and energy confinement times at first decrease in the L-mode then rise in the H-mode. The L-H transition is marked by distinct changes in sheared-flow profiles. The addition of ion pressure dynamics enables modeling the self-consistent interaction between the ion diamagnetic drift and the radial electric field (mean and zonal flows). The roles of these sheared flows in mediating the L-H transition are explored. A new diagnostic, based on the density correlation function, is applied to study blob velocities in different regimes. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-97ER54392.

  13. Erratum: Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices (2015 Plasma Phys. Control. Fusion 57 123001)

    DOE PAGES

    Evans, T. E.

    2016-03-01

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  14. Erratum: Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices (2015 Plasma Phys. Control. Fusion 57 123001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T. E.

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less

  15. Application of the H-Mode, a Design and Interaction Concept for Highly Automated Vehicles, to Aircraft

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Flemisch, Frank O.; Schutte, Paul C.; Williams, Ralph A.

    2006-01-01

    Driven by increased safety, efficiency, and airspace capacity, automation is playing an increasing role in aircraft operations. As aircraft become increasingly able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help us understand their use and guide their design using new forms of automation and interaction. We propose a novel design metaphor to aid the conceptualization, design, and operation of highly-automated aircraft. Design metaphors transfer meaning from common experiences to less familiar applications or functions. A notable example is the "Desktop metaphor" for manipulating files on a computer. This paper describes a metaphor for highly automated vehicles known as the H-metaphor and a specific embodiment of the metaphor known as the H-mode as applied to aircraft. The fundamentals of the H-metaphor are reviewed followed by an overview of an exploratory usability study investigating human-automation interaction issues for a simple H-mode implementation. The envisioned application of the H-mode concept to aircraft is then described as are two planned evaluations.

  16. Somersault of Paramecium in extremely confined environments

    PubMed Central

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-01-01

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young’s modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces. PMID:26286234

  17. Somersault of Paramecium in extremely confined environments

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Eddins, Aja; Spoon, Corrie; Jung, Sunghwan

    2015-08-01

    We investigate various swimming modes of Paramecium in geometric confinements and a non-swimming self-bending behavior like a somersault, which is quite different from the previously reported behaviors. We observe that Paramecia execute directional sinusoidal trajectories in thick fluid films, whereas Paramecia meander around a localized region and execute frequent turns due to collisions with adjacent walls in thin fluid films. When Paramecia are further constrained in rectangular channels narrower than the length of the cell body, a fraction of meandering Paramecia buckle their body by pushing on the channel walls. The bucking (self-bending) of the cell body allows the Paramecium to reorient its anterior end and explore a completely new direction in extremely confined spaces. Using force deflection method, we quantify the Young’s modulus of the cell and estimate the swimming and bending powers exerted by Paramecium. The analysis shows that Paramecia can utilize a fraction of its swimming power to execute the self-bending maneuver within the confined channel and no extra power may be required for this new kind of self-bending behavior. This investigation sheds light on how micro-organisms can use the flexibility of the body to actively navigate within confined spaces.

  18. Dephasing dynamics in confined myoglobin

    NASA Astrophysics Data System (ADS)

    Goj, Anne; Loring, Roger F.

    2007-11-01

    Confinement of a solution can slow solvent dynamics and in turn influence the reactivity and structure of the solute. Encapsulating a protein in an aqueous pore affects its binding properties, stability to degradation, interconversion between conformational states, and energy relaxation. We perform molecular dynamics simulations of H64V-CO mutant myoglobin solvated by varying amounts of liquid water, and in turn enclosed by a matrix of immobilized solvent, to mimic differing degrees of confinement of H64V-CO in a glass. We calculate the three-pulse vibrational echo signal of the CO ligand from the autocorrelation function of fluctuations in the CO vibrational frequency. When the first solvation layer alone is free to relax, the correlation function displays only fast relaxation reminiscent of the case of a protein in a fixed, immobilized solvent matrix. However the vibrational echo signal in this case decays significantly more rapidly than for a static solvent. With two solvation layers mobile, the correlation function displays long time relaxation characteristic of the unconfined protein and the echo signal decays rapidly. The echo signal of the protein with two mobile solvation layers is nearly identical to that of the unconfined protein, despite the substantially constrained solvent dynamics in the confined case.

  19. The effect of a metal wall on confinement in JET and ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Schweinzer, J.; Angioni, C.; Burckhart, A.; Challis, C. D.; Chapman, I.; Fischer, R.; Flanagan, J.; Frassinetti, L.; Giroud, C.; Hobirk, J.; Joffrin, E.; Kallenbach, A.; Kempenaars, M.; Leyland, M.; Lomas, P.; Maddison, G.; Maslov, M.; McDermott, R.; Neu, R.; Nunes, I.; Osborne, T.; Ryter, F.; Saarelma, S.; Schneider, P. A.; Snyder, P.; Tardini, G.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team; Contributors, JET-EFDA

    2013-12-01

    In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H98 ˜ 1 at high Greenwald density fraction of fGW ˜ 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H98 ˜ 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure βN > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Zeff profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this

  20. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  1. Confinement dynamics of a semiflexible chain inside nano-spheres

    NASA Astrophysics Data System (ADS)

    Fathizadeh, A.; Heidari, Maziar; Eslami-Mossallam, B.; Ejtehadi, M. R.

    2013-07-01

    We study the conformations of a semiflexible chain, confined in nano-scaled spherical cavities, under two distinct processes of confinement. Radial contraction and packaging are employed as two confining procedures. The former method is performed by gradually decreasing the diameter of a spherical shell which envelopes a confined chain. The latter procedure is carried out by injecting the chain inside a spherical shell through a hole on the shell surface. The chain is modeled with a rigid body molecular dynamics simulation and its parameters are adjusted to DNA base-pair elasticity. Directional order parameter is employed to analyze and compare the confined chain and the conformations of the chain for two different sizes of the spheres are studied in both procedures. It is shown that for the confined chains in the sphere sizes of our study, they appear in spiral or tennis-ball structures, and the tennis-ball structure is more likely to be observed in more compact confinements. Our results also show that the dynamical procedure of confinement and the rate of the confinement are influential parameters of the structure of the chain inside spherical cavities.

  2. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioslowski, Jerzy

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits.more » In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.« less

  3. Detecting atmospheric normal modes with periods less than 6 h by barometric observations

    NASA Astrophysics Data System (ADS)

    Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.

    2018-04-01

    The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.

  4. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    NASA Astrophysics Data System (ADS)

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  5. Numerical Simulations of Vortical Mode Stirring: Effects of Large Scale Shear and Strain

    DTIC Science & Technology

    2015-09-30

    Numerical Simulations of Vortical Mode Stirring: Effects of Large-Scale Shear and Strain M.-Pascale Lelong NorthWest Research Associates...can be implemented in larger-scale ocean models. These parameterizations will incorporate the effects of local ambient conditions including latitude...talk at the 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Nonlinear Effects in Internal Waves Conference held

  6. Gate-defined quantum confinement in suspended bilayer graphene

    NASA Astrophysics Data System (ADS)

    Allen, M. T.; Martin, J.; Yacoby, A.

    2012-07-01

    Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall ν=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.

  7. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB

  8. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling

    NASA Astrophysics Data System (ADS)

    Abrams, T.; Ding, R.; Guo, H. Y.; Thomas, D. M.; Chrobak, C. P.; Rudakov, D. L.; McLean, A. G.; Unterberg, E. A.; Briesemeister, A. R.; Stangeby, P. C.; Elder, J. D.; Wampler, W. R.; Watkins, J. G.

    2017-05-01

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but diverge at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. It is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.

  9. Dual mode warhead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obrsky, J.; Alexander, A.A.; Griffen, O.H.

    1980-12-31

    A dual mode warhead is provided for use against both soft and hard targets and capable of sensing which type of target has been struck comprising a casing made of a ductile material containing an explosive charge and a fuze assembly. The ductile warhead casing will mushroom and later split upon striking a hard target while still confining the explosive. Proper ductility and confinement are necessary for fuze sensing. The fuze assembly contains a pair of parallel firing trains, one initiated only by high and one by low impact deceleration. The firing train actuated by low impact deceleration contains amore » pyrotechnic delay to allow penetration of soft targets.« less

  10. Small-scale Pressure-balanced Structures Driven by Oblique Slow Mode Waves Measured in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  11. Structural and mechanical properties of glassy water in nanoscale confinement.

    PubMed

    Lombardo, Thomas G; Giovambattista, Nicolás; Debenedetti, Pablo G

    2009-01-01

    We investigate the structure and mechanical properties of glassy water confined between silica-based surfaces with continuously tunable hydrophobicity and hydrophilicity by computing and analyzing minimum energy, mechanically stable configurations (inherent structures). The structured silica substrate imposes long-range order on the first layer of water molecules under hydrophobic confinement at high density (p > or = 1.0 g cm(-3)). This proximal layer is also structured in hydrophilic confinement at very low density (p approximately 0.4 g cm(-3)). The ordering of water next to the hydrophobic surface greatly enhances the mechanical strength of thin films (0.8 nm). This leads to a substantial stress anisotropy; the transverse strength of the film exceeds the normal strength by 500 MPa. The large transverse strength results in a minimum in the equation of state of the energy landscape that does not correspond to a mechanical instability, but represents disruption of the ordered layer of water next to the wall. In addition, we find that the mode of mechanical failure is dependent on the type of confinement. Under large lateral strain, water confined by hydrophilic surfaces preferentially forms voids in the middle of the film and fails cohesively. In contrast, water under hydrophobic confinement tends to form voids near the walls and fails by loss of adhesion.

  12. The oxidation mode of pyranose 2-oxidase is controlled by pH

    PubMed Central

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A.; Chaiyen, Pimchai

    2013-01-01

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of D-glucose and other aldopyranose sugars at the C2 position by using O2 as an electron acceptor to form the corresponding 2-keto-sugars and H2O2. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O2 to form a C4a-hydroperoxy-flavin intermediate, leading to elimination of H2O2. At pH 8.0 and higher, the majority of the reduced P2O reacts with O2 via a pathway which does not allow detection of the C4a-hydroperoxy-flavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pKa of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s-1. PMID:23356577

  13. Highly confined surface plasmon polaritons in the ultraviolet region

    NASA Astrophysics Data System (ADS)

    Chubchev, E. D.; Nechepurenko, I. A.; Dorofeenko, A. V.; Vinogradov, A. P.; Lisyansky, A. A.

    2018-04-01

    We study a surface plasmon polariton mode that is strongly confined in the transverse direction and propagates along a periodically nanostructured metal-dielectric interface. We show that the wavelength of this mode is determined by the period of the structure, and may therefore, be orders of magnitude smaller than the wavelength of a plasmon-polariton propagating along a flat surface. This plasmon polariton exists in the frequency region in which the sum of the real parts of the permittivities of the metal and dielectric is positive, a frequency region in which surface plasmon polaritons do not exist on a flat surface. The propagation length of the new mode can reach a several dozen wavelengths. This mode can be observed in materials that are uncommon in plasmonics, such as aluminum or sodium.

  14. Effect of surface tension on global modes of confined wake flows

    NASA Astrophysics Data System (ADS)

    Tammisola, Outi; Lundell, Fredrik; Söderberg, L. Daniel

    2011-01-01

    Many wake flows are susceptible to self-sustained oscillations, such as the well-known von Kármán vortex street behind a cylinder that makes a rope beat against a flagpole at a distinct frequency on a windy day. One appropriate method to study these global instabilities numerically is to look at the growth rates of the linear temporal global modes. If all growth rates for all modes are negative for a certain flow field then a self-sustained oscillation should not occur. On the other hand, if one growth rate for one mode is slightly positive, the oscillation will approximately obtain the frequency and shape of this global mode. In our study, we first introduce surface tension between two fluids to the wake-flow problem. Then we investigate its effects on the global linear instability of a spatially developing wake with two co-flowing immiscible fluids. The inlet profile consists of two uniform layers, which makes the problem easily parametrizable. The fluids are assumed to have the same density and viscosity, with the result that the interface position becomes dynamically important solely through the action of surface tension. Two wakes with different parameter values and surface tension are studied in detail. The results show that surface tension has a strong influence on the oscillation frequency, growth rate, and shape of the global mode(s). Finally, we make an attempt to confirm and explain the surface-tension effect based on a local stability analysis of the same flow field in the streamwise position of maximum reverse flow.

  15. Fabrication and performance of tuneable single-mode VCSELs emitting in the 750- to 1000-nm range

    NASA Astrophysics Data System (ADS)

    Grabherr, Martin; Wiedenmann, Dieter; Jaeger, Roland; King, Roger

    2005-03-01

    The growing demand on low cost high spectral purity laser sources at specific wavelengths for applications like tuneable diode laser absorption spectroscopy (TDLAS) and optical pumping of atomic clocks can be met by sophisticated single-mode VCSELs in the 760 to 980 nm wavelength range. Equipped with micro thermo electrical cooler (TEC) and thermistor inside a small standard TO46 package, the resulting wavelength tuning range is larger than +/- 2.5 nm. U-L-M photonics presents manufacturing aspects, device performance and reliability data on tuneable single-mode VCSELs at 760, 780, 794, 852, and 948 nm lately introduced to the market. According applications are O2 sensing, Rb pumping, Cs pumping, and moisture sensing, respectively. The first part of the paper dealing with manufacturing aspects focuses on control of resonance wavelength during epitaxial growth and process control during selective oxidation for current confinement. Acceptable resonance wavelength tolerance is as small as +/- 1nm and typical aperture size of oxide confined single-mode VCSELs is 3 &mum with only few hundred nm tolerance. Both of these major production steps significantly contribute to yield on wafer values. Key performance data for the presented single-mode VCSELs are: >0.5 mW of optical output power, >30 dB side mode suppression ratio, and extrapolated 10E7 h MTTF at room temperature based on several millions of real test hours. Finally, appropriate fiber coupling solutions will be presented and discussed.

  16. Experimental study of the effect of 2/1 classical tearing mode on (intermediate, small)-scale microturbulence in the core of an EAST L mode plasma

    NASA Astrophysics Data System (ADS)

    Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Lyu, B.; Shi, T. H.; Xu, L. Q.; Wang, F. D.; Li, Q.; Zhang, J. Z.; Hu, L. Q.; Li, J. G.; the EAST Team

    2018-02-01

    In this paper, we report an experimental study of the effect of a m/n = -2/-1 (m, n being poloidal and toroidal mode number, separately) classical tearing mode on (intermediate, small)-scale microturbulence (see the definition in section 1) in the core of an EAST L mode plasma discharge. The microturbulence at different scales k ⊥ = 10, 18 and 26 cm-1 (i.e., {k}\\perp {ρ }i˜ 2, 3.6 and 5.2, respectively. Here, {ρ }i is the ion gyroradius and k ⊥ is the perpendicular wavenumber) were measured simultaneously by the EAST multi-channel tangential CO2 laser collective scattering diagnostics. Experimental results confirm that the decrease of microturbulent Doppler shift ({f}{{Doppler}}={k}t{v}t/2π ), inversely correlated to the increase of microturbulent mean frequency (defined in equation (1)), is due to the 2/1 tearing mode. Temporal evolution of frequency-integrated spectral power S tot of microturbulence, found to be correlated with the width of 2/1 magnetic island, suggests the modulation effect on microturbulence by the tearing mode beyond Doppler shift effect. Modulation effects on microturbulence by the tearing mode are further demonstrated by the correlation between microturbulent envelope and magnetic fluctuations.

  17. Effect of Isotope Mass in Simulations of JET H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Snyder, S. E.; Onjun, T.; Kritz, A. H.; Bateman, G.; Parail, V.

    2004-11-01

    In JET type-I ELMy H-mode discharges, it is found that the height of the pressure pedestal increases and the frequency of the ELMs decreases with increasing isotope mass. These experimentally observed trends are obtained in these simulations only if the pedestal width increases with isotope mass. Simulations are carried out using the JETTO integrated modeling code with a dynamic model for the H-mode pedestal and the ELMs.(T. Onjun et al, Phys. Plasmas 11 (2004) 1469 and 3006.) The HELENA and MISHKA stability codes are applied to calibrate the stability criteria used to trigger ELM crashes in the JETTO code and to explore possible access to second stability in the pedestal. In the simulations, transport in the pedestal is given by the ion thermal neoclassical diffusivity, which increases with isotope mass. Consequently, as the isotope mass is increased, the pressure gradient and the bootstrap current in the pedestal rebuild more slowly after each ELM crash. Several models are explored in which the pedestal width increases with isotope mass.

  18. Reynolds-number-dependent dynamical transitions on hydrodynamic synchronization modes of externally driven colloids

    NASA Astrophysics Data System (ADS)

    Oyama, Norihiro; Teshigawara, Kosuke; Molina, John Jairo; Yamamoto, Ryoichi; Taniguchi, Takashi

    2018-03-01

    The collective dynamics of externally driven Np-colloidal systems (1 ≤Np≤4 ) in a confined viscous fluid have been investigated using three-dimensional direct numerical simulations with fully resolved hydrodynamics. The dynamical modes of collective particle motion are studied by changing the particle Reynolds number as determined by the strength of the external driving force and the confining wall distance. For a system with Np=3 , we found that at a critical Reynolds number a dynamical mode transition occurs from the doublet-singlet mode to the triplet mode, which has not been reported experimentally. The dynamical mode transition was analyzed in detail from the following two viewpoints: (1) spectrum analysis of the time evolution of a tagged particle velocity and (2) the relative acceleration of the doublet cluster with respect to the singlet particle. For a system with Np=4 , we found similar dynamical mode transitions from the doublet-singlet-singlet mode to the triplet-singlet mode and further to the quartet mode.

  19. Studies of single-mode injection lasers and of quaternary materials. Volume 1: Single-mode constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1982-01-01

    Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.

  20. Electronic quantum confinement in cylindrical potential well

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2016-04-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  1. Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes

    DOEpatents

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2005-07-12

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  2. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides

    NASA Astrophysics Data System (ADS)

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-01

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  3. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides.

    PubMed

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-05

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW's propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  4. High Confinement and High Density with Stationary Plasma Energy and Strong Edge Radiation Cooling in Textor-94

    NASA Astrophysics Data System (ADS)

    Messiaen, A. M.

    1996-11-01

    A new discharge regime has been observed on the pumped limiter tokamak TEXTOR-94 in the presence of strong radiation cooling and for different scenarii of additional hearing. The radiated power fraction (up to 90%) is feedback controlled by the amount of Ne seeded in the edge. This regime meets many of the necessary conditions for a future fusion reactor. Energy confinement increases with increasing densities (reminiscent of the Z-mode obtained at ISX-B) and as good as ELM-free H-mode confinement (enhancement factor verus ITERH93-P up to 1.2) is obtained at high densities (up to 1.2 times the Greenwald limit) with peaked density profiles showing a peaking factor of about 2 and central density values around 10^14cm-3. In experiments where the energy content of the discharges is kept constant with an energy feedback loop acting on the amount of ICRH power, stable and stationary discharges are obtained for intervals of more than 5s, i.e. 100 times the energy confinement time or about equal to the skin resistive time, even with the cylindrical q_α as low as 2.8 β-values up to the β-limits of TEXTOR-94 are achieved (i.e. β n ≈ 2 of and β p ≈ 1.5) and the figure of merit for ignition margin f_Hqa in these discharges can be as high as 0.7. No detrimental effects of the seeded impurity on the reactivity of the plasma are observed. He removal in these discharges has also been investigated. [1] Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association "EURATOM-Belgian State", Ecole Royale Militaire-Koninklijke Militaire School, Brussels, Belgium [2] Institut für Plasmaphysik, Forschungszentrum Jülich, GmbH, Association "EURATOM-KFA", Jülich, Germany [3] Fusion Energy Research Program, Mechanical Engineering Division, University of California at San Diego, La Jolla, USA [4] FOM Institüt voor Plasmafysica Rijnhuizen, Associatie "FOM-EURATOM", Nieuwegein, The Netherlands [*] Researcher at NFSR, Belgium itemize

  5. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    PubMed

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  6. Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2016-10-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.

  7. Density scaling on n  =  1 error field penetration in ohmically heated discharges in EAST

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST

    2018-05-01

    Density scaling of error field penetration in EAST is investigated with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.

  8. Structure and dynamics of a silica melt in neutral confinement

    NASA Astrophysics Data System (ADS)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2017-04-01

    We analyze the effects of spatial confinement on viscous silica using molecular dynamics simulations. For this purpose, we prepare a silica melt in a cylindrical pore, which is produced by pinning appropriate fractions of silicon and oxygen atoms in a bulk system after an equilibration period. In this way, the structure of the confined silica melt remains unaffected, while the confinement has a strong impact on the dynamics. We find that the structural relaxation of viscous silica is slowed down according to a double exponential law when approaching the pore wall. Moreover, we observe that static density correlations exist in the vicinity of the pore wall. Based on these effects, we determine dynamical and structural length scales of the silica melt. Both length scales show a similar increase upon cooling, with values on the order of the next-neighbor distances in the studied temperature range. Interestingly, we find no evidence that the growth of the length scales is affected by a fragile-to-strong transition of the silica melt. This observation casts serious doubts on the relevance of these length scales for the structural relaxation, at least for the studied glass former.

  9. Structure and dynamics of a silica melt in neutral confinement.

    PubMed

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2017-04-07

    We analyze the effects of spatial confinement on viscous silica using molecular dynamics simulations. For this purpose, we prepare a silica melt in a cylindrical pore, which is produced by pinning appropriate fractions of silicon and oxygen atoms in a bulk system after an equilibration period. In this way, the structure of the confined silica melt remains unaffected, while the confinement has a strong impact on the dynamics. We find that the structural relaxation of viscous silica is slowed down according to a double exponential law when approaching the pore wall. Moreover, we observe that static density correlations exist in the vicinity of the pore wall. Based on these effects, we determine dynamical and structural length scales of the silica melt. Both length scales show a similar increase upon cooling, with values on the order of the next-neighbor distances in the studied temperature range. Interestingly, we find no evidence that the growth of the length scales is affected by a fragile-to-strong transition of the silica melt. This observation casts serious doubts on the relevance of these length scales for the structural relaxation, at least for the studied glass former.

  10. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; Dendy, R. O.; Chapman, S. C.; Cook, J. W. S.

    2017-03-01

    Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity PICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, nα/ni, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  11. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission.

    PubMed

    Carbajal, L; Dendy, R O; Chapman, S C; Cook, J W S

    2017-03-10

    Ion cyclotron emission (ICE) offers a unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P_{ICE} scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n_{α}/n_{i}, of fusion born alpha particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a long-standing question in the physics of fusion alpha-particle confinement and stability in magnetic confinement fusion plasmas. It confirms the magnetoacoustic cyclotron instability as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.

  12. H2@Scale Laboratory CRADA Call | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    research and development agreement (CRADA) projects with the Hydrogen at Scale (H2@Scale) national CRADA Call H2@Scale CRADA Agreement Template Responses to CRADA Call Questions: Part 1 (includes

  13. Confinement effects on thin polymer films

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Karoly J. T.

    scanning tunneling microscope tip. For both types of holes, we observe exponential growth of the hole radius, corresponding to the viscous regime of hole formation, and a decrease in the film viscosity with decreasing film thickness h for h < 250 nm. In the last project the thermal stability of freely-standing films was enhanced by symmetrically confining the films between thin layers of silicon oxide to form SiOx/PS/SiOx trilayer films. Aggressive annealing of the films produced a novel morphology consisting of long, parallel domains with a well-defined periodicity. A simple model is presented which describes the scaling behavior of the morphology. We discuss the direct control of the morphology through manipulation of the individual film thicknesses and the long-range Van der Waals or dispersion interactions.

  14. Confinement of gigahertz sound and light in Tamm plasmon resonators

    NASA Astrophysics Data System (ADS)

    Villafañe, V.; Bruchhausen, A. E.; Jusserand, B.; Senellart, P.; Lemaître, A.; Fainstein, A.

    2015-10-01

    We demonstrate theoretically and by pump-probe picosecond acoustics experiments the simultaneous confinement of light and gigahertz sound in Tamm plasmon resonators, formed by depositing a thin layer of Au onto a GaAs/AlGaAs Bragg reflector. The cavity has InGaAs quantum dots (QDs) embedded at the maximum of the confined optical field in the first GaAs layer. The different sound generation and detection mechanisms are theoretically analyzed. It is shown that the Au layer absorption and the resonant excitation of the QDs are the more efficient light-sound transducers for the coupling of near-infrared light with the confined acoustic modes, while the displacement of the interfaces is the main back-action mechanism at these energies. The prospects for the compact realization of optomechanical resonators based on Tamm plasmon cavities are discussed.

  15. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    PubMed

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  16. PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    NASA Astrophysics Data System (ADS)

    Takizuka, Tomonori

    2008-07-01

    This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in

  17. Confined NaAlH4 nanoparticles inside CeO2 hollow nanotubes towards enhanced hydrogen storage.

    PubMed

    Gao, Qili; Xia, Guanglin; Yu, Xuebin

    2017-10-05

    NaAlH 4 has been widely regarded as a potential hydrogen storage material due to its favorable thermodynamics and high energy density. The high activation energy barrier and high dehydrogenation temperature, however, significantly hinder its practical application. In this paper, CeO 2 hollow nanotubes (HNTs) prepared by a simple electrospinning technique are adopted as functional scaffolds to support NaAlH 4 nanoparticles (NPs) towards advanced hydrogen storage performance. The nanoconfined NaAlH 4 inside CeO 2 HNTs, synthesized via the infiltration of molten NaAlH 4 into the CeO 2 HNTs under high hydrogen pressure, exhibited significantly improved dehydrogenation properties compared with both bulk and ball-milled CeO 2 HNTs-catalyzed NaAlH 4 . The onset dehydrogenation temperature of the NaAlH 4 @CeO 2 composite was reduced to below 100 °C, with only one main dehydrogenation peak appearing at 130 °C, which is 120 °C and 50 °C lower than for its bulk counterpart and for the ball-milled CeO 2 HNTs-catalyzed NaAlH 4 , respectively. Moreover, ∼5.09 wt% hydrogen could be released within 30 min at 180 °C, while only 1.6 wt% hydrogen was desorbed from the ball-milled NaAlH 4 under the same conditions. This significant improvement is mainly attributed to the synergistic effects contributed by the CeO 2 HNTs, which could act as not only a structural scaffold to fabricate and confine the NaAlH 4 NPs, but also as an effective catalyst to enhance the hydrogen storage performance of NaAlH 4 .

  18. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls.

  19. Insights into drying of non-circular sessile nanofluid droplet towards multi-scale surface patterning using a wall-less confinement architecture.

    PubMed

    Kabi, Prasenjit; Chaudhuri, Swetaprovo; Basu, Saptarshi

    2016-10-04

    Surface patterning with functional colloids is an important research area due to its widespread applicability in domains ranging from nano-electronics, pharmaceutics, semi-conductors, photovoltaics among others. To this endeavour, we propose a low-cost patterning technique that aspires to eliminate the more expensive methodologies presently in practise. Using a simple document stamp on which patterns of any geometry can be embossed, we are able to print two-dimensional mm-scale "wall-less confinement" using ink based hydrophobic fence on any plasma treated superhydrophilic surface. The confinement is subsequently filled with nanocolloidal liquid(s). Using the confinement geometry, we are able to control the 3D shape of the droplet to exhibit multiple interfacial curvatures. The droplet in the "wall-less confinements" evaporates naturally exhibiting unique geometry (curvature) induced flow structures which induce the nanoparticles to self-assemble into functional patterns. We have also shown that by modifying the geometry of the pattern, evaporation, flow and particle deposition dynamics get altered leading to precipitate topologies from macro to microscales. We, present two such geometrical designs which demonstrate the capability of modifying both the macroscopic as well as the microscopic features of the final precipitate. We have also provided a description of the physical mechanisms of the drying process by resolving the unique flow pattern using a combination of imaging and μPIV (micro particle image velocimetry). These provide insights into the coupled dynamics of evaporation and flow responsible for the evolution of particle deposition pattern. Precipitate characterization using SEM and dark-field microscopy highlight the transformation in the deposit morphology.

  20. Robot flow, clogging and jamming in confined spaces

    NASA Astrophysics Data System (ADS)

    Monaenkova, Daria; Linevich, Vadim; Goodisman, Michael A. D.; Goldman, Daniel I.

    We hypothesized that when a collection of robots operate in confined space, maximization of individual effort could negatively affect the collective performance by impeding the mobility of the individuals. To test our hypothesis, we built and programmed groups of 1-4 autonomous robotic diggers to construct a tunnel in a model cohesive soil. The robots' mobility, defined in terms of the residence time (T) required for a robot to move one body-length within the tunnel, was compared between groups of maximally active robots (mode 1), groups with different levels of activity between individuals (mode 2), and maximally active robots with a ``giving up'' behavior (mode 3), in which the robot ceased the attempt to excavate in a crowded tunnel. In small groups of two robots, T was ~3 sec and did not depend on the mode of operation. However, an increase in the number of robots caused an increase in T which depended upon mode. The residence time in groups of four robots in mode 1 (~9 sec) significantly exceeded the residence time in mode 2 and 3 (~4 sec), indicating that crowding was causing slower movement of individuals, particularly under maximum effort (mode 1). We will use our robophysical studies to discover principles of collective construction in subterranean social animals.

  1. Characteristics of inhomogeneous jets in confined swirling air flows

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1984-01-01

    An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.

  2. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D.; Kiem, A. S.

    2008-10-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  3. Constraining primordial vector mode from B-mode polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke, E-mail: saga.shohei@nagoya-u.jp, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: ichiki@a.phys.nagoya-u.ac.jp

    The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum,more » from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ΛCDM model including the vector mode fits the data better than the model including the tensor mode. The difference in χ{sup 2} between the vector and tensor models is Δχ{sup 2} = 3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.« less

  4. Low Speed Wind Tunnel Tests on a One-Seventh Scale Model of the H.126 Jet Flap Aircraft

    NASA Technical Reports Server (NTRS)

    Laub, G. H.

    1975-01-01

    Low speed wind tunnel tests were performed on a one-seventh scale model of the British H.126 jet flap research aircraft over a range of jet momentum coefficients. The primary objective was to compare model aerodynamic characteristics with those of the aircraft, with the intent to provide preliminary data needed towards establishing small-to-full scale correlating techniques on jet flap V/STOL aircraft configurations. Lift and drag coefficients from the model and aircraft tests were found to be in reasonable agreement. The pitching moment coefficient and trim condition correlation was poor. A secondary objective was to evaluate a modified thrust nozzle having thrust reversal capability. The results showed there was a considerable loss of lift in the reverse thrust operational mode because of increased nozzle-wing flow interference. A comparison between the model simulated H.126 wing jet efflux and the model uniform pressure distribution wing jet efflux indicated no more than 5% loss in weight flow rate.

  5. Electron critical gradient scale length measurements of ICRF heated L-mode plasmas at Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.

    2018-04-01

    A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.

  6. Reynolds-number-dependent dynamical transitions on hydrodynamic synchronization modes of externally driven colloids.

    PubMed

    Oyama, Norihiro; Teshigawara, Kosuke; Molina, John Jairo; Yamamoto, Ryoichi; Taniguchi, Takashi

    2018-03-01

    The collective dynamics of externally driven N_{p}-colloidal systems (1≤N_{p}≤4) in a confined viscous fluid have been investigated using three-dimensional direct numerical simulations with fully resolved hydrodynamics. The dynamical modes of collective particle motion are studied by changing the particle Reynolds number as determined by the strength of the external driving force and the confining wall distance. For a system with N_{p}=3, we found that at a critical Reynolds number a dynamical mode transition occurs from the doublet-singlet mode to the triplet mode, which has not been reported experimentally. The dynamical mode transition was analyzed in detail from the following two viewpoints: (1) spectrum analysis of the time evolution of a tagged particle velocity and (2) the relative acceleration of the doublet cluster with respect to the singlet particle. For a system with N_{p}=4, we found similar dynamical mode transitions from the doublet-singlet-singlet mode to the triplet-singlet mode and further to the quartet mode.

  7. Small-scale Pressure-balanced Structures Driven by Mirror-mode Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-10-01

    Recently, small-scale pressure-balanced structures (PBSs) have been studied with regard to their dependence on the direction of the local mean magnetic field B0 . The present work continues these studies by investigating the compressive wave mode forming small PBSs, here for B0 quasi-perpendicular to the x-axis of Geocentric Solar Ecliptic coordinates (GSE-x). All the data used were measured by WIND in the quiet solar wind. From the distribution of PBSs on the plane determined by the temporal scale and angle θxB between the GSE-x and B0 , we notice that at θxB = 115° the PBSs appear at temporal scales ranging from 700 s to 60 s. In the corresponding temporal segment, the correlations between the plasma thermal pressure P th and the magnetic pressure P B, as well as that between the proton density N p and the magnetic field strength B, are investigated. In addition, we use the proton velocity distribution functions to calculate the proton temperatures T and T ∥. Minimum Variance Analysis is applied to find the magnetic field minimum variance vector BN . We also study the time variation of the cross-helicity σc and the compressibility C p and compare these with values from numerical predictions for the mirror mode. In this way, we finally identify a short segment that has T > T ∥, proton β ~= 1, both pairs of P th-P B and N p-B showing anti-correlation, and σc ≈ 0 with C p > 0. Although the examination of σc and C p is not conclusive, it provides helpful additional information for the wave mode identification. Additionally, BN is found to be highly oblique to B0 . Thus, this work suggests that a candidate mechanism for forming small-scale PBSs in the quiet solar wind is due to mirror-mode waves.

  8. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability.

    PubMed

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R; Batstone, Damien J

    2016-01-04

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.

  9. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability

    PubMed Central

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.

    2016-01-01

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895

  10. The Enskog Equation for Confined Elastic Hard Spheres

    NASA Astrophysics Data System (ADS)

    Maynar, P.; García de Soria, M. I.; Brey, J. Javier

    2018-03-01

    A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.

  11. Effect of molecular shape on rotation under severe confinement

    DOE PAGES

    Dhiman, Indu; Bhowmik, Debsindhu; Shrestha, Utsab R.; ...

    2018-01-31

    Orientational structure and dynamics of molecules is known to be affected by confinement in space comparable in size to the molecule itself. ZSM-5 with porous channels of ≈0.55 nm is such a porous medium, which offers a strict spatial confinement on low molecular weight hydrocarbons. An important factor that determines these properties is the shape of the confined molecules. In this work, we employed molecular dynamics simulation to study the orientational structure and dynamics of four molecules that differ in shape but have similar kinetic diameters and moments of inertia, confined in ZSM-5. The effect of molecular shape on themore » orientational structure and dynamics of propane, acetonitrile, acetaldehyde and acetone in ZSM-5 is studied by means of probing the differences in the orientational distribution of molecules in the ZSM-5 channels, and extracting time scales of the decay of correlation functions related to rotational motion. Orientational correlation functions of all the four molecules exhibit two regimes of rotational motion. While the short time regime represents free rotation of the molecules before they collide with the pore walls, the long time orientational jumps driven by inter-channel migrations give rise to a very slow varying second regime. Of the molecules studied, orientational structure and dynamics of propane is found to be least affected by confinement under ZSM-5, whereas charge and shape asymmetry of other molecules makes their interchannel migration-driven rotation slow. The time scales involved in the rotational motion for the molecules studied are compared with similar studies reported in literature. Lastly, this study reveals the important role that molecular shape plays in the behavior of confined molecules.« less

  12. Effect of molecular shape on rotation under severe confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhiman, Indu; Bhowmik, Debsindhu; Shrestha, Utsab R.

    Orientational structure and dynamics of molecules is known to be affected by confinement in space comparable in size to the molecule itself. ZSM-5 with porous channels of ≈0.55 nm is such a porous medium, which offers a strict spatial confinement on low molecular weight hydrocarbons. An important factor that determines these properties is the shape of the confined molecules. In this work, we employed molecular dynamics simulation to study the orientational structure and dynamics of four molecules that differ in shape but have similar kinetic diameters and moments of inertia, confined in ZSM-5. The effect of molecular shape on themore » orientational structure and dynamics of propane, acetonitrile, acetaldehyde and acetone in ZSM-5 is studied by means of probing the differences in the orientational distribution of molecules in the ZSM-5 channels, and extracting time scales of the decay of correlation functions related to rotational motion. Orientational correlation functions of all the four molecules exhibit two regimes of rotational motion. While the short time regime represents free rotation of the molecules before they collide with the pore walls, the long time orientational jumps driven by inter-channel migrations give rise to a very slow varying second regime. Of the molecules studied, orientational structure and dynamics of propane is found to be least affected by confinement under ZSM-5, whereas charge and shape asymmetry of other molecules makes their interchannel migration-driven rotation slow. The time scales involved in the rotational motion for the molecules studied are compared with similar studies reported in literature. Lastly, this study reveals the important role that molecular shape plays in the behavior of confined molecules.« less

  13. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent ofmore » dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is

  14. Time-Dependent Simulations of Fast-Wave Heated High-Non-Inductive-Fraction H-Mode Plasmas in the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger

    2017-10-01

    30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.

  15. Static and Dynamic Properties of DNA Confined in Nanochannels

    NASA Astrophysics Data System (ADS)

    Gupta, Damini

    Next-generation sequencing (NGS) techniques have considerably reduced the cost of high-throughput DNA sequencing. However, it is challenging to detect large-scale genomic variations by NGS due to short read lengths. Genome mapping can easily detect large-scale structural variations because it operates on extremely large intact molecules of DNA with adequate resolution. One of the promising methods of genome mapping is based on confining large DNA molecules inside a nanochannel whose cross-sectional dimensions are approximately 50 nm. Even though this genome mapping technology has been commercialized, the current understanding of the polymer physics of DNA in nanochannel confinement is based on theories and lacks much needed experimental support. The results of this dissertation are aimed at providing a detailed experimental understanding of equilibrium properties of nanochannel-confined DNA molecules. The results are divided into three parts. In first part, we evaluate the role of channel shape on thermodynamic properties of channel confined DNA molecules using a combination of fluorescence microscopy and simulations. Specifically, we show that high aspect ratio of rectangular channels significantly alters the chain statistics as compared to an equivalent square channel with same cross-sectional area. In the second part, we present experimental evidence that weak excluded volume effects arise in DNA nanochannel confinement, which form the physical basis for the extended de Gennes regime. We also show how confinement spectroscopy and simulations can be combined to reduce molecular weight dispersity effects arising from shearing, photo-cleavage, and nonuniform staining of DNA. Finally, the third part of the thesis concerns the dynamic properties of nanochannel confined DNA. We directly measure the center-of-mass diffusivity of single DNA molecules in confinement and show that that it is necessary to modify the classical results of de Gennes to account for local chain

  16. Determination of broken KAM surfaces for particle orbits in toroidal confinement systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.

    2015-10-05

    Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.

  17. Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.

    PubMed

    Kumar, Pradeep; Han, Sungho

    2012-09-21

    We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.

  18. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  19. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE PAGES

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.; ...

    2016-06-21

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  20. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less

  1. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    DOE PAGES

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; ...

    2015-09-12

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less

  2. Dynamical vanishing of the order parameter in a confined Bardeen-Cooper-Schrieffer Fermi gas after an interaction quench

    NASA Astrophysics Data System (ADS)

    Hannibal, S.; Kettmann, P.; Croitoru, M. D.; Axt, V. M.; Kuhn, T.

    2018-01-01

    We present a numerical study of the Higgs mode in an ultracold confined Fermi gas after an interaction quench and find a dynamical vanishing of the superfluid order parameter. Our calculations are done within a microscopic density-matrix approach in the Bogoliubov-de Gennes framework which takes the three-dimensional cigar-shaped confinement explicitly into account. In this framework, we study the amplitude mode of the order parameter after interaction quenches starting on the BCS side of the BEC-BCS crossover close to the transition and ending in the BCS regime. We demonstrate the emergence of a dynamically vanishing superfluid order parameter in the spatiotemporal dynamics in a three-dimensional trap. Further, we show that the signal averaged over the whole trap mirrors the spatiotemporal behavior and allows us to systematically study the effects of the system size and aspect ratio on the observed dynamics. Our analysis enables us to connect the confinement-induced modifications of the dynamics to the pairing properties of the system. Finally, we demonstrate that the signature of the Higgs mode is contained in the dynamical signal of the condensate fraction, which, therefore, might provide a new experimental access to the nonadiabatic regime of the Higgs mode.

  3. Global-scale modes of surface temperature variability on interannual to century timescales

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Park, Jeffrey

    1994-01-01

    Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.

  4. Dark plasmonic breathing modes in silver nanodisks.

    PubMed

    Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenester, Ulrich; Hohenau, Andreas; Hofer, Ferdinand; Krenn, Joachim R

    2012-11-14

    We map the complete plasmonic spectrum of silver nanodisks by electron energy loss spectroscopy and show that the mode which couples strongest to the electron beam has radial symmetry with no net dipole moment. Therefore, this mode does not couple to light and has escaped from observation in optical experiments. This radial breathing mode has the character of an extended two-dimensional surface plasmon with a wavenumber determined by the circular disk confinement. Its strong near fields can impact the hybridization in coupled plasmonic nanoparticles as well as couplings with nearby quantum emitters.

  5. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Snyder, P. B.; Chang, C. S.

    2017-06-01

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] is used in carrying out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. Simulations with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new

  6. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE PAGES

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; ...

    2017-06-08

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new

  7. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new

  8. Search for the decay modes B ±→h ±τl

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2012-07-16

    We present a search for the lepton flavor violating decay modes B ±→h ±τl (h=K, π; l=e, μ) using the BABAR data sample, which corresponds to 472×10⁶ BB¯¯¯ pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the τ four-momentum. The resulting τ candidate mass is our main discriminant against combinatorial background. We see no evidence for B ±→h ±τl decays and set a 90% confidence level upper limit on each branching fractionmore » at the level of a few times 10⁻⁵.« less

  9. Influence of Constraining and Confinement in the Molecular Mobility of Low Molecular Weight Materials

    NASA Astrophysics Data System (ADS)

    Bras, Ana Rita Elias

    Despite the importance that the glassy state has nowadays, the transition from liquid to the glass, glass transition, still remains a matter of debate which constitutes one of the great condensed matter physics challenges. Since this fact is closely related to the cooperativity dynamics, the study of this phenomenon in glass-forming liquids under confinement in the nanometer scale, has recently emerged as a strategy to clarify factors such as the existence of an inherent length scale of the cooperative dynamics that determines the glass transition temperature. In this context, this thesis represents an additional contribution to the study of molecular dynamics of glass-forming liquids under confinement in nanoporous inorganic materials. As target compounds the liquid crystal E7 and the drug Ibuprofen were selected. Since the first exhibit various transitions makes it more sensitive to perturbations and thus appears as the ideal candidate to evaluate confinement effects. The study of ibuprofen is of particular interest because confinement emerges as a method of stabilizing the amorphous phase that is mostly important in pharmaceutical applications. Dielectric Relaxation Spectroscopy (DRS) is the main technique used to obtain detailed information about the molecular mobility in a wide range of frequencies (10-2-109Hz) (Chapter I and II). The first part of the thesis is devoted to the characterization of the two target compounds in the bulk state. The combination of DRS with the specific heat spectroscopy allowed to determine which of the E7 observed relaxation processes (a process in the isotropic phase and two processes in the nematic phase: delta and tumbling) is responsible for the glass transition temperature Tg (tumbling process). Detailed studies of ibuprofen molecular mobility in the liquid, supercooled liquid and glassy states are also presented in this chapter, where four relaxation processes are detected: two secondary processes (gamma and beta), the

  10. Observation of roton mode population in a dipolar quantum gas

    NASA Astrophysics Data System (ADS)

    Chomaz, L.; van Bijnen, R. M. W.; Petter, D.; Faraoni, G.; Baier, S.; Becher, J. H.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.

    2018-05-01

    The concept of a roton, a special kind of elementary excitation forming a minimum of energy at finite momentum, has been essential for the understanding of the properties of superfluid 4He (ref. 1). In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains debated2. In the realm of highly controllable quantum gases, a roton mode has been predicted to emerge due to magnetic dipole-dipole interactions despite their weakly interacting character3. This prospect has raised considerable interest4-12; yet roton modes in dipolar quantum gases have remained elusive to observations. Here we report experimental and theoretical studies of the momentum distribution in Bose-Einstein condensates of highly magnetic erbium atoms, revealing the existence of the long-sought roton mode. Following an interaction quench, the roton mode manifests itself with the appearance of symmetric peaks at well-defined finite momentum. The roton momentum follows the predicted geometrical scaling with the inverse of the confinement length along the magnetization axis. From the growth of the roton population, we probe the roton softening of the excitation spectrum in time and extract the corresponding imaginary roton gap. Our results provide a further step in the quest towards supersolidity in dipolar quantum gases13.

  11. CFD Growth of 3C-SiC on 4H/6H Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Huang, XianRong; Dudley, Michael

    2006-01-01

    This article describes growth and characterization of the highest quality reproducible 3C-SiC heteroepitaxial films ever reported. By properly nucleating 3C-SiC growth on top of perfectly on-axis (0001) 4H-SiC mesa surfaces completely free of atomic scale steps and extended defects, growth of 3C-SiC mesa heterofilms completely free of extended crystal defects can be achieved. In contrast, nucleation and growth of 3C-SiC mesa heterofilms on top of 4H-SiC mesas with atomic-scale steps always results in numerous observable dislocations threading through the 3C-SiC epilayer. High-resolution X-ray diffraction and transmission electron microscopy measurements indicate non-trivial in-plane lattice mismatch between the 3C and 4H layers. This mismatch is somewhat relieved in the step-free mesa case via misfit dislocations confined to the 3C/4H interfacial region without dislocations threading into the overlying 3C-SiC layer. These results indicate that the presence or absence of steps at the 3C/4H heteroepitaxial interface critically impacts the quality, defect structure, and relaxation mechanisms of single-crystal heteroepitaxial 3C-SiC films.

  12. Dynamic studies of nano-confined polymer thin films

    NASA Astrophysics Data System (ADS)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  13. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation lengthmore » of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.« less

  14. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  15. DecouplingModes: Passive modes amplitudes

    NASA Astrophysics Data System (ADS)

    Shaw, J. Richard; Lewis, Antony

    2018-01-01

    DecouplingModes calculates the amplitude of the passive modes, which requires solving the Einstein equations on superhorizon scales sourced by the anisotropic stress from the magnetic fields (prior to neutrino decoupling), and the magnetic and neutrino stress (after decoupling). The code is available as a Mathematica notebook.

  16. A double-layer based model of ion confinement in electron cyclotron resonance ion source.

    PubMed

    Mascali, D; Neri, L; Celona, L; Castro, G; Torrisi, G; Gammino, S; Sorbello, G; Ciavola, G

    2014-02-01

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this "barrier" confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  17. Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor.

    PubMed

    Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2018-05-09

    Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.

  18. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R.F.; Fowler, T.K.; Bulmer, R.

    2005-01-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employedmore » a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the

  19. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R F; Fowler, T K; Bulmer, R

    2004-07-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies havemore » employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions

  20. Low-Frequency Raman Modes of 2H-TaSe2 in the Charge Density Wave Phase

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sugata; Simpson, J.; Einstein, T. L.; Hight Walker, A. R.; Theoretical Collaboration

    With changes in temperatures, tantalum diselenide (2H-TaSe2) , a layered, transition metal chalcogenides (TMD) exhibits unique super-lattice structures. The metallic ground state changes to an incommensurate charge density wave (CDW) state at 122?K followed by a commensurate CDW state at 90?K, and eventually a superconducting state 0.14 K. These phase transitions are driven by strong electron-phonon coupling and favored by the particular form of the Fermi surface of these systems. Here we theoretically studied the structural origin of low-frequency Raman modes of bulk 2H-TaSe2\\ in the CDW phases. Our calculations reveal that changes observed in the Raman modes are associated with the thermal expansion in the basal plane of 2H-TaSe2. The Grüneisen parameters of these two Raman modes increase in the CDW phases. Changes in the lattice parameter ``a'' are large compared to ``c'' which induces strain along the a-axis. We compared our results with experimental data which show low-frequency Raman phonon modes are very sensitive to temperature and are not observed in the metallic room-temperature state. In addition, we found that cation displacement is more than anion in CDW phase. Our results may shed more light on exact nature of the CDW instability and optical properties in this system.

  1. Using Multiple Youth Programming Delivery Modes to Drive the Development of Social Capital in 4-H Participants

    ERIC Educational Resources Information Center

    Kinsey, Sharon

    2013-01-01

    This article focuses on how 4-H youth participants are building social capital, or connections among individuals and community members, through their 4-H experiences. These experiences can be seen through the lens of such 4-H delivery modes as the traditional 4-H club, after-school programs, and school enrichment programs. In addition, other…

  2. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.

    2016-07-01

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n  ⩽  5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E  ×  B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.

  3. Exact solution for the hydrogen atom confined by a dielectric continuum and the correct basis set to study many-electron atoms under similar confinements

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge

    2017-12-01

    The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.

  4. Causal impact of magnetic fluctuations in slow and fast L–H transitions at TJ-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligen, B. Ph. van; Estrada, T.; Ascasíbar, E.

    2016-07-15

    This work focuses on the relationship between L–H (or L–I) transitions and MHD activity in the low magnetic shear TJ-II stellarator. It is shown that the presence of a low order rational surface in the plasma edge (gradient) region lowers the threshold density for H-mode access. MHD activity is systematically suppressed near the confinement transition. We apply a causality detection technique (based on the Transfer Entropy) to study the relation between magnetic oscillations and locally measured plasma rotation velocity (related to Zonal Flows). For this purpose, we study a large number of discharges in two magnetic configurations, corresponding to “fast”more » and “slow” transitions. With the “slow” transitions, the developing Zonal Flow prior to the transition is associated with the gradual reduction of magnetic oscillations. The transition itself is marked by a strong spike of “information transfer” from magnetic to velocity oscillations, suggesting that the magnetic drive may play a role in setting up the final sheared flow responsible for the H-mode transport barrier. Similar observations were made for the “fast” transitions. Thus, it is shown that magnetic oscillations associated with rational surfaces play an important and active role in confinement transitions, so that electromagnetic effects should be included in any complete transition model.« less

  5. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  6. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  7. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: Experimental evidences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorite, I., E-mail: lorite@physik.uni-leipzig.de; Division of Superconductivity and Magnetism, Faculty of Physics and Earth Sciences, Linnestrasse 5, D-04103 Leipzig; Romero, J. J.

    2015-03-15

    The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error.

  8. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  9. Nano-confined water in the interlayers of hydrocalumite: Reorientational dynamics probed by neutron spectroscopy and molecular dynamics computer simulations

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Faraone, A.; Udovic, T.; Kolesnikov, A. I.; de Souza, N. R.; Reinholdt, M. X.; Kirkpatrick, R.

    2008-12-01

    Layered double hydroxides (LDHs, anionic clays) represent excellent model systems for detailed molecular- level studies of the structure, dynamics, and energetics of nano-confined water in mineral interlayers and nano-pores, because LDH interlayers can have a well-defined structures and contain H2O molecules and a wide variety of anions in structurally well-defined positions and coordinations. [Ca2Al(OH)6]Cl·2H2O, also known as hydrocalumite or Friedel's salt, has a well- ordered Ca,Al distribution in the hydroxide layer and a very high degree of H2O,Cl ordering in the interlayer. It is also one of the only LDH phase for which a single crystal structure refinement is available. Thus, it is currently the best model compound for understanding the structure and dynamical behavior of interlayer and surface species in other, less-ordered, LDHs. We investigated the structural and dynamic behavior of water in the interlayers of hydrocalumite using inelastic (INS) and quasielastic (QENS) neutron scattering and molecular dynamics computer simulations. The comperehensive neutron scattering studies were performed for one fully hydrated and one dehydrated sample of hydrocalumite using several complementary instruments (HFBS, DCS and FANS at NCNR; HRMECS and QENS at IPNS) at temperatures above and below the previously discovered order-disorder interlayer phase transition. Together the experimental and molecular modeling results capture the important details of the dynamics of nano-confined water and the effects of the orientational ordering of H2O molecules above and below the phase transition. They provide otherwise unobtainable experimental information about the transformation of H2O librational and diffusional modes across the order-disorder phase transition and significantly add to our current understanding of the structure and dynamics of water in LDH phases based on the earlier NMR, IR, X-ray, and calorimetric measurements. The approach can now be extended to probe the

  10. BICEP2/Keck Array VIII: Measurement of Gravitational Lensing from Large-scale B-mode Polarization

    NASA Astrophysics Data System (ADS)

    BICEP2 Collaboration; Keck Array Collaboration; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bowens-Rubin, R.; Brevik, J. A.; Buder, I.; Bullock, E.; Buza, V.; Connors, J.; Crill, B. P.; Duband, L.; Dvorkin, C.; Filippini, J. P.; Fliescher, S.; Grayson, J.; Halpern, M.; Harrison, S.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J.; Karkare, K. S.; Karpel, E.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Megerian, K. G.; Namikawa, T.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W., IV; Orlando, A.; Pryke, C.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Steinbach, B.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Tucker, C.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wiebe, D. V.; Willmert, J.; Wong, C. L.; Wu, W. L. K.; Yoon, K. W.

    2016-12-01

    We present measurements of polarization lensing using the 150 GHz maps, which include all data taken by the BICEP2 and Keck Array Cosmic Microwave Background polarization experiments up to and including the 2014 observing season (BK14). Despite their modest angular resolution (˜ 0.5°), the excellent sensitivity (˜3μK-arcmin) of these maps makes it possible to directly reconstruct the lensing potential using only information at larger angular scales ({ℓ}≤700). From the auto-spectrum of the reconstructed potential, we measure an amplitude of the spectrum to be ALφ φ=1.15+/- 0.36 (Planck ΛCDM prediction corresponds to ALφ φ =1) and reject the no-lensing hypothesis at 5.8σ , which is the highest significance achieved to date using an EB lensing estimator. Taking the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields ALφ φ =1.13+/- 0.20. These direct measurements of ALφ φ are consistent with the ΛCDM cosmology and with that derived from the previously reported BK14 B-mode auto-spectrum (AL{BB}=1.20+/- 0.17). We perform a series of null tests and consistency checks to show that these results are robust against systematics and are insensitive to analysis choices. These results unambiguously demonstrate that the B modes previously reported by BICEP/Keck at intermediate angular scales (150≲ ℓ ≲ 350) are dominated by gravitational lensing. The good agreement between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place constraints on any alternative cosmological sources of B modes at these angular scales.

  11. Predictions of high QDT in ITER H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Budny, Robert

    2009-05-01

    Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP code (see R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 075005, and F. Halpern, A. Kritz, G. Bateman, R.V. Budny, and D. McCune, Phys. Plasmas 15 062505) is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT.

  12. Complex networks in confined comminution

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Tordesillas, Antoinette; Einav, Itai; Small, Michael

    2011-08-01

    The physical process of confined comminution is investigated within the framework of complex networks. We first characterize the topology of the unweighted contact networks as generated by the confined comminution process. We find this process gives rise to an ultimate contact network which exhibits a scale-free degree distribution and small world properties. In particular, if viewed in the context of networks through which information travels along shortest paths, we find that the global average of the node vulnerability decreases as the comminution process continues, with individual node vulnerability correlating with grain size. A possible application to the design of synthetic networks (e.g., sensor networks) is highlighted. Next we turn our attention to the physics of the granular comminution process and examine force transmission with respect to the weighted contact networks, where each link is weighted by the inverse magnitude of the normal force acting at the associated contact. We find that the strong forces (i.e., force chains) are transmitted along pathways in the network which are mainly following shortest-path routing protocols, as typically found, for example, in communication systems. Motivated by our earlier studies of the building blocks for self-organization in dense granular systems, we also explore the properties of the minimal contact cycles. The distribution of the contact strain energy intensity of 4-cycle motifs in the ultimate state of the confined comminution process is shown to be consistent with a scale-free distribution with infinite variance, thereby suggesting that 4-cycle arrangements of grains are capable of storing vast amounts of energy in their contacts without breaking.

  13. Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess.

    PubMed

    Craven, Stephen; Shirsat, Nishikant; Whelan, Jessica; Glennon, Brian

    2013-01-01

    A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  14. Fisher information in confined hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Mukherjee, Neetik; Majumdar, Sangita; Roy, Amlan K.

    2018-01-01

    Fisher information (I) is investigated for confined hydrogen atom (CHA)-like systems in conjugate r and p spaces. A comparative study between CHA and free H atom (with respect to I) is pursued. A detailed systematic result of I with respect to variation of confinement radius rc is presented, with particular emphasis on non-zero- (l, m) states. In certain respect, inferences in CHA are significantly different from free counterpart, such as (i) dependence on n, l quantum numbers (ii) appearance of maxima in Ip plots for | m | ≠ 0 . The role of atomic number and atomic radius is discussed.

  15. Various complexity measures in confined hydrogen atom

    NASA Astrophysics Data System (ADS)

    Majumdar, Sangita; Mukherjee, Neetik; Roy, Amlan K.

    2017-11-01

    Several well-known statistical measures similar to LMC and Fisher-Shannon complexity have been computed for confined hydrogen atom in both position (r) and momentum (p) spaces. Further, a more generalized form of these quantities with Rényi entropy (R) is explored here. The role of scaling parameter in the exponential part is also pursued. R is evaluated taking order of entropic moments α, β as (2/3, 3) in r and p spaces. Detailed systematic results of these measures with respect to variation of confinement radius rc is presented for low-lying states such as, 1 s - 3 d, 4 f and 5 g . For nodal states, such as 2 s, 3 s and 3 p , as rc progresses there appears a maximum followed by a minimum in r space, having certain values of the scaling parameter. However, the corresponding p-space results lack such distinct patterns. This study reveals many other interesting features.

  16. Multi-scale characterization of nanostructured sodium aluminum hydride

    NASA Astrophysics Data System (ADS)

    NaraseGowda, Shathabish

    instruments were utilized for this work and their data collection and analysis are reported. Quasielastic neutron scattering experiments were conducted at NIST Center for Neutron Research to characterize atomic hydrogen diffusion in bulk and nano-confined NaAlH4. It was observed that upon confinement of NaAlH4, a significantly higher fraction of hydrogen atoms were involved in diffusive motion on the pico-second to nano-second timescales. However, the confinement had no impact on the lattice diffusivities (jump/hopping rates) of atomic hydrogen, indicating that the improved hydrogen release rates were not due to any kinetic destabilization effects. Instead, the investigation strongly suggested thermodynamic destabilization as the major effect of nano-confinement. The local interaction of the metal sites in metal organic frameworks with the infiltrated hydride was studied using extended x-ray absorption spectroscopy technique. The experiments were conducted at Center for Advanced Microstructures and Devices at Louisiana State University. The metal sites were found to be chemically un-altered, hence ruling out any catalytic role in the dehydrogenation at room temperatures. The fractal morphology of NaAlH4 was characterized by ultra-small angle x-ray scattering experiments performed at Argonne National Lab. The studies quantitatively estimated the extent of densification in the course of one desorption cycle. The particle sizes were found to increase two-fold during heat treatment. Also, the nano-confinement procedure was shown to produce dense mass fractals as opposed to pristine NaAlH4, exhibiting a surface fractal morphology. Based on this finding, a new method to identify confined material from un-confined material in nano-composites was developed and is presented. Preliminary results of modeling and correlating multi-scale phenomena using a phase-field approach are also presented as the foundation for future work.

  17. Helicon modes in uniform plasmas. I. Low m modes

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2015-09-01

    Helicons are whistler modes with azimuthal wave numbers. They arise in bounded gaseous and solid state plasmas, but the present work shows that very similar modes also exist in unbounded uniform plasmas. The antenna properties determine the mode structure. A simple antenna is a magnetic loop with dipole moment aligned either along or across the ambient background magnetic field B0. For such configurations, the wave magnetic field has been measured in space and time in a large and uniform laboratory plasma. The observed wave topology for a dipole along B0 is similar to that of an m = 0 helicon mode. It consists of a sequence of alternating whistler vortices. For a dipole across B0, an m = 1 mode is excited which can be considered as a transverse vortex which rotates around B0. In m = 0 modes, the field lines are confined to each half-wavelength vortex while for m = 1 modes they pass through the entire wave train. A subset of m = 1 field lines forms two nested helices which rotate in space and time like corkscrews. Depending on the type of the antenna, both m = + 1 and m = -1 modes can be excited. Helicons in unbounded plasmas also propagate transverse to B0. The transverse and parallel wave numbers are about equal and form oblique phase fronts as in whistler Gendrin modes. By superimposing small amplitude fields of several loop antennas, various antenna combinations have been created. These include rotating field antennas, helical antennas, and directional antennas. The radiation efficiency is quantified by the radiation resistance. Since helicons exist in unbounded laboratory plasmas, they can also arise in space plasmas.

  18. Effect of anomalous transport on kinetic simulations of the H-mode pedestal

    NASA Astrophysics Data System (ADS)

    Bateman, G.; Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.

    2009-11-01

    The MMM08 and MMM95 Multi-Mode transport models [1,2], are used to investigate the effect of anomalous transport in XGC0 gyrokinetic simulations [3] of tokamak H-mode pedestal growth. Transport models are implemented in XGC0 using the Framework for Modernization and Componentization of Fusion Modules (FMCFM). Anomalous transport is driven by steep temperature and density gradients and is suppressed by high values of flow shear in the pedestal. The radial electric field, used to calculate the flow shear rate, is computed self-consistently in the XGC0 code with the anomalous transport, Lagrangian charged particle dynamics and neutral particle effects. XGC0 simulations are used to provide insight into how thermal and particle transport, together with the sources of heat and charged particles, determine the shape and growth rate of the temperature and density profiles. [1] F.D. Halpern et al., Phys. Plasmas 15 (2008) 065033; J.Weiland et al., Nucl. Fusion 49 (2009) 965933; A.Kritz et al., EPS (2009) [2] G. Bateman, et al, Phys. Plasmas 5 (1998) 1793 [3] C.S. Chang, S. Ku, H. Weitzner, Phys. Plasmas 11 (2004) 2649

  19. E-H heating mode transition in inductive discharges with different antenna sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: flower4507@hanyang.ac.kr; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr

    The spatial distribution of plasma density and the transition power for capacitive (E) to inductive (H) mode transition are studied in planar type inductively coupled plasmas with different antenna sizes. The spatial plasma distribution has a relatively flat profile at a low gas pressure, while the plasma profile is affected by the antenna size at higher gas pressure. The transition power for the E to H mode transition is shown to be critically affected by the antenna size. When the discharge is sustained by a small one-turn antenna coil, the transition power has a minimum value at Ar gas ofmore » 20 mTorr. However, the minimum transition power is shown at a relatively high gas pressure (40–60 mTorr) in the case of a large one-turn antenna coil. This change in the transition power can be understood by the thermal transport of the energetic electrons with non-local kinetics to the chamber wall. This non-local kinetic effect indicates that the transition power can also increase even for a small antenna if the antenna is placed near the wall.« less

  20. Determining the confined optical length of high index vertical Si nanoforest arrays for photonic applications

    NASA Astrophysics Data System (ADS)

    Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2018-06-01

    The structural and the optical properties of different Si nanostructures have been compared. Detailed optical properties of Si nanowires arrays of different optical lengths, fabricated by facile electroless etching technique, have been reported. The theoretical calculation of exponential sine profile at constant λ = 600 nm shows a better explanation in terms of gradient index with optical length for vertical nanowires. The observations signify the possibility of strong light trapping due to an exponential gradient towards the high index along the nanowires and the existence of dense subwavelength features. The optical admittance (Ƶ) shows a strong impact on optical distance (Z) for Z < H, owing to the electromagnetic wave interaction with the nanowires that perceive a different Ƶ at the oblique angle of incidence (AOI). In addition, the experimental reflectance data and the theoretical model for transverse electric and transverse magnetic modes predict that an optical length of 5 μm can exhibit a very low reflectance value. This indicates that the Si nanowires are polarization insensitive over a wide range of AOI (0°-80°). Moreover, Raman spectra showed a very strong light confinement effect in the first order transverse optical band with increasing etching depths. The morphological dependent resonance theory predicts a strong localized light field confinement in the lower wavelength regime for SiNWs. The effect on the strong resonant absorption modes was further correlated with the simulation results obtained by using COMSOL. The obtained results are likely to enhance the maximum absorption of SiNWs for various photonic applications.

  1. Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Lilley, D. G.

    1985-01-01

    The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.

  2. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode.

    PubMed

    Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-01-01

    Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.

  3. Gap-Mode Surface-Plasmon-Enhanced Photoluminescence and Photoresponse of MoS2.

    PubMed

    Wu, Zhi-Qian; Yang, Jing-Liang; Manjunath, Nallappagar K; Zhang, Yue-Jiao; Feng, Si-Rui; Lu, Yang-Hua; Wu, Jiang-Hong; Zhao, Wei-Wei; Qiu, Cai-Yu; Li, Jian-Feng; Lin, Shi-Sheng

    2018-05-22

    2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS 2 can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical-to-electrical conversion efficiency. To overcome this shortcoming, a "gap-mode" plasmon-enhanced monolayer MoS 2 fluorescent emitter and photodetector is designed by squeezing the light-field into Ag shell-isolated nanoparticles-Au film gap, where the confined electromagnetic field can interact with monolayer MoS 2 . With this gap-mode plasmon-enhanced configuration, a 110-fold enhancement of photoluminescence intensity is achieved, exceeding values reached by other plasmon-enhanced MoS 2 fluorescent emitters. In addition, a gap-mode plasmon-enhanced monolayer MoS 2 photodetector with an 880% enhancement in photocurrent and a responsivity of 287.5 A W -1 is demonstrated, exceeding previously reported plasmon-enhanced monolayer MoS 2 photodetectors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A compliant mechanism for inspecting extremely confined spaces

    NASA Astrophysics Data System (ADS)

    Mascareñas, David; Moreu, Fernando; Cantu, Precious; Shields, Daniel; Wadden, Jack; El Hadedy, Mohamed; Farrar, Charles

    2017-11-01

    We present a novel, compliant mechanism that provides the capability to navigate extremely confined spaces for the purpose of infrastructure inspection. Extremely confined spaces are commonly encountered during infrastructure inspection. Examples of such spaces can include pipes, conduits, and ventilation ducts. Often these infrastructure features go uninspected simply because there is no viable way to access their interior. In addition, it is not uncommon for extremely confined spaces to possess a maze-like architecture that must be selectively navigated in order to properly perform an inspection. Efforts by the imaging sensor community have resulted in the development of imaging sensors on the millimeter length scale. Due to their compact size, they are able to inspect many extremely confined spaces of interest, however, the means to deliver these sensors to the proper location to obtain the desired images are lacking. To address this problem, we draw inspiration from the field of endoscopic surgery. Specifically we consider the work that has already been done to create long flexible needles that are capable of being steered through the human body. These devices are typically referred to as ‘steerable needles.’ Steerable needle technology is not directly applicable to the problem of navigating maze-like arrangements of extremely confined spaces, but it does provide guidance on how this problem should be approached. Specifically, the super-elastic nitinol tubing material that allows steerable needles to operate is also appropriate for the problem of navigating maze-like arrangements of extremely confined spaces. Furthermore, the portion of the mechanism that enters the extremely confined space is completely mechanical in nature. The mechanical nature of the device is an advantage when the extremely confined space features environmental hazards such as radiation that could degrade an electromechanically operated mechanism. Here, we present a compliant mechanism

  5. FANNING OUT OF THE SOLAR f-MODE IN THE PRESENCE OF NON-UNIFORM MAGNETIC FIELDS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nishant K.; Brandenburg, Axel; Rheinhardt, Matthias, E-mail: nishant@nordita.org

    2014-11-01

    We show that in the presence of a magnetic field that is varying harmonically in space, the fundamental mode, or f-mode, in a stratified layer is altered in such a way that it fans out in the diagnostic kω diagram, with mode power also within the fan. In our simulations, the surface is defined by a temperature and density jump in a piecewise isothermal layer. Unlike our previous work (Singh et al. 2014), where a uniform magnetic field was considered, here we employ a non-uniform magnetic field together with hydromagnetic turbulence at length scales much smaller than those of themore » magnetic field. The expansion of the f-mode is stronger for fields confined to the layer below the surface. In some of those cases, the kω diagram also reveals a new class of low-frequency vertical stripes at multiples of twice the horizontal wavenumber of the background magnetic field. We argue that the study of the f-mode expansion might be a new and sensitive tool to determine subsurface magnetic fields with azimuthal or other horizontal periodicity.« less

  6. Quantifying Fusion Born Ion Populations in Magnetically Confined Plasmas using Ion Cyclotron Emission

    DOE PAGES

    Carbajal, L.; Warwick Univ., Coventry; Dendy, R. O.; ...

    2017-03-07

    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity P ICE scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, n /n i , of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha particle confinement and stability in MCF plasmas. It confirms the MCI as the likely emissionmore » mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas.« less

  7. Storm-tracks interannual variability and large-scale climate modes

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2013-04-01

    In this study we focus on the interannual variability and observed changes in northern hemisphere mid-latitude storm-tracks and relate them to large scale atmospheric circulation variability modes. Extratropical storminess, cyclones dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of storm characteristics and historical trends presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al. 1999) and recently extended to a larger Euro-Atlantic region (Trigo 2006). The objective methodology, which identifies and follows individual lows as minima in SLP fields, fulfilling a set of conditions regarding the central pressure and the pressure gradient, is applied to the northern hemisphere 6-hourly geopotential data at 1000 hPa from the 20th Century Reanalyses (20CRv2) project and from reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA Interim reanalyses. First, we assess the interannual variability and cyclone frequency trends for each of the datasets, for the 20th century and for the period between 1958 and 2002 using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 data. Results show that winter variability of storm paths, cyclone frequency and travel times is in agreement with the reported variability in a number of large-scale climate patterns (including the North Atlantic Oscillation, the East Atlantic Pattern and the Scandinavian Pattern). In addition, three storm-track databases are built spanning the common available extended winter seasons from October 1979 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions. This exercise is mostly focused on the key areas of cyclogenesis and cyclolysis and main cyclone characteristics over the northern

  8. Non-inductive improved H-mode operation at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bock, A.; Fable, E.; Fischer, R.; Reich, M.; Rittich, D.; Stober, J.; Bernert, M.; Burckhart, A.; Doerk, H.; Dunne, M.; Geiger, B.; Giannone, L.; Igochine, V.; Kappatou, A.; McDermott, R.; Mlynek, A.; Odstrčil, T.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team

    2017-12-01

    Recent improvements to the heating and diagnostic systems on the ASDEX Upgrade tokamak allow renewed investigations into non-inductive operation scenarios with improved confinement in a full-metal device. Motivated by this, a scenario with \

  9. The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1993-01-01

    An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.

  10. Single-Mode, Distributed Feedback Interband Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)

    2016-01-01

    Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.

  11. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  12. Coupled Modes over Indian Ocean at Sub-seasonal time Scales and its Prediction

    NASA Astrophysics Data System (ADS)

    Jung, E.; Kirtman, B. P.

    2014-12-01

    Sub-seasonal variability over the Indian Ocean, such as Madden-Julian Oscillation impacts weather and climate globally. However, the prediction of tropical sub-seasonal variability (TSV) remains a challenge, and understanding air-sea interactions on TSV time-scales is likely to be an important part of the prediction problem. The purpose of this paper is to examine the predictability of sub-seasonal variability in the tropical Indo-Pacific region. The analysis emphasizes on variability associated with coupled air-sea interactions in observational estimates, and how well these coupled modes are simulated and predicted within the context of a 30-year retrospective forecast experiment with a state-of-the-art atmosphere-ocean coupled model. The analysis shows that Sea Surface Temperature anomalies (SSTA) over the Indian Ocean tend to precede precipitation anomalies by 7-11 days with maximum amplitude over the Arabian Sea and the Bay of Bengal for summer and along the Seychelles-Chagos Thermocline Ridge (SCTR) region for winter. Though these coupled modes are captured by the models, the forecasts fail to predict its evolution. Based on the diagnosis of these coupled modes, we introduce a SCTR-SST index and an index that measures the modulation of the low-frequency amplitude (LFAM) of sub-seasonal SSTA variability over SCTR as a way to predict the coupled modes. Based on correlation with the observed variability, SCTR-SST has forecast skill of about 45 days over the Indian Ocean. However the sub-seasonal SSTAs in the predictions and the observational estimates do not have any direct ENSO tele-connection. In contrast, the LFAM of the sub-seasonal SSTA variance over SCTR is strongly correlated with ENSO, suggesting enhanced sub-seasonal variance on seasonal time-scales is potentially predictable.

  13. Behavior of turbulent gas jets in an axisymmetric confinement

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1985-01-01

    The understanding of the mixing of confined turbulent jets of different densities with air is of great importance to many industrial applications, such as gas turbine and Ramjet combustors. Although there have been numerous studies on the characteristics of free gas jets, little is known of the behavior of gas jets in a confinement. The jet, with a diameter of 8.73 mm, is aligned concentrically in a tube of 125 mm diameter, thus giving a confinement ratio of approximately 205. The arrangement forms part of the test section of an open-jet wind tunnel. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made with a one-color, one-component laser Doppler velocimeter operating in the forward scatter mode. Measurements show that the jets are highly dissipative. Consequently, equilibrium jet characteristics similar to those found in free air jets are observed in the first two diameters downstream of the jet. These results are independent of the fluid densities and velocities. Decay of the jet, on the other hand, is a function of both the jet fluid density and momentum. In all the cases studied, the jet is found to be completely dissipated in approximately 30 jet diameters, thus giving rise to a uniform flow with a very high but constant turbulence field across the confinement.

  14. Confining standing waves in optical corrals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babayan, Y.; McMahon, J. M.; Li, S.

    2009-03-01

    Near-field scanning optical microscopy images of solid wall, circular, and elliptical microscale corrals show standing wave patterns confined inside the structures with a wavelength close to that of the incident light. The patterns inside the corrals can be tuned by changing the size and material of the walls, the wavelength of incident light, and polarization direction for elliptical corrals. Finite-difference time-domain calculations of the corral structures agree with the experimental observations and reveal that the electric and magnetic field intensities are out of phase inside the corral. A theoretical modal analysis indicates that the fields inside the corrals can bemore » attributed to p- and s-polarized waveguide modes, and that the superposition of the propagating and evanescent modes can explain the phase differences between the fields. These experimental and theoretical results demonstrate that electromagnetic fields on a dielectric surface can be controlled in a predictable manner.« less

  15. Dynamics of confined reactive water in smectite clay-zeolite composites.

    PubMed

    Pitman, Michael C; van Duin, Adri C T

    2012-02-15

    The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.

  16. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  17. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE PAGES

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-12

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  18. Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.

    2015-11-01

    In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.

  19. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    NASA Astrophysics Data System (ADS)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-09-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  20. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    PubMed Central

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-01-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. PMID:27687693

  1. Complex mode indication function and its applications to spatial domain parameter estimation

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    This paper introduces the concept of the Complex Mode Indication Function (CMIF) and its application in spatial domain parameter estimation. The concept of CMIF is developed by performing singular value decomposition (SVD) of the Frequency Response Function (FRF) matrix at each spectral line. The CMIF is defined as the eigenvalues, which are the square of the singular values, solved from the normal matrix formed from the FRF matrix, [ H( jω)] H[ H( jω)], at each spectral line. The CMIF appears to be a simple and efficient method for identifying the modes of the complex system. The CMIF identifies modes by showing the physical magnitude of each mode and the damped natural frequency for each root. Since multiple reference data is applied in CMIF, repeated roots can be detected. The CMIF also gives global modal parameters, such as damped natural frequencies, mode shapes and modal participation vectors. Since CMIF works in the spatial domain, uneven frequency spacing data such as data from spatial sine testing can be used. A second-stage procedure for accurate damped natural frequency and damping estimation as well as mode shape scaling is also discussed in this paper.

  2. Micro X-ray CT Imaging of Sediments under Confining Pressure

    NASA Astrophysics Data System (ADS)

    Schindler, M.; Prasad, M.

    2016-12-01

    We developed a pressure and temperature control system for use inside the micro X-ray CT scanner Xradia 400. We succeeded in building a pressure vessel that can be pressurized to 34.5 MPa (5000 psi) while being transparent to X-rays. The setup can currently be cooled to -5°C and heated to 40°C. We were able to observe grain damage and porosity reduction due to applied confining pressure in clean quartz sand samples and quartz sand and bentonite samples. By comparing micro CT images at atmospheric pressure and 13.8 MPa (2000 psi) confining pressure, we observed compaction of the samples resulting in grain damage and fracturing of sediment grains (Figure 1). When the confining pressure was decreased some grains experienced further fracturing. The grain damage appears irreversible. Further fracturing of grains in pre-compacted sediment was observed upon repeated confining pressure cycling. We are currently working on feed-throughs for fluid lines and electric wiring to use ultrasonic transducers and pressure control in combination. Further we plan to include pore pressure in addition to confining pressure into the system. The pressure control system in combination with ultrasonic transducers will allow us to visually observe pore scale changes in rock samples while simultaneously identifying their influence on ultrasonic velocities. Such pore-scale changes are usually not taken into account by rock physics models and could help to identify why laboratory data diverges from theoretical models. Further, it is possible to compute compressibility from mCT images at different stress states by image correlation

  3. Confinement-Induced Glassy Dynamics in a Model for Chromosome Organization

    NASA Astrophysics Data System (ADS)

    Kang, Hongsuk; Yoon, Young-Gui; Thirumalai, D.; Hyeon, Changbong

    2015-11-01

    Recent experiments showing scaling of the intrachromosomal contact probability, P (s )˜s-1 with the genomic distance s , are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of P (s ) varies across organisms, requiring an explanation. We illustrate dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosomes inside a nucleus as a homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction (ϕ ) inside the confinement approaches a critical value ϕc. The universal value of ϕc∞≈0.44 for a sufficiently long polymer (N ≫1 ) allows us to discuss genome dynamics using ϕ as the sole parameter. Our study shows that the onset of glassy dynamics is the reason for the segregated chromosome organization in humans (N ≈3 ×109, ϕ ≳ϕc∞), whereas chromosomes of budding yeast (N ≈108, ϕ <ϕc∞) are equilibrated with no clear signature of such organization.

  4. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang

    2016-08-20

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, whichmore » is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.« less

  5. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    NASA Astrophysics Data System (ADS)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  6. Equilibrium properties of DNA and other semiflexible polymers confined in nanochannels

    NASA Astrophysics Data System (ADS)

    Muralidhar, Abhiram

    Recent developments in next-generation sequencing (NGS) techniques have opened the door for low-cost, high-throughput sequencing of genomes. However, these developments have also exposed the inability of NGS to track large scale genomic information, which are extremely important to understand the relationship between genotype and phenotype. Genome mapping offers a reliable way to obtain information about large-scale structural variations in a given genome. A promising variant of genome mapping involves confining single DNA molecules in nanochannels whose cross-sectional dimensions are approximately 50 nm. Despite the development and commercialization of nanochannel-based genome mapping technology, the polymer physics of DNA in confinement is only beginning to be understood. Apart from its biological relevance, DNA is also used as a model polymer in experiments by polymer physicists. Indeed, the seminal experiments by Reisner et al. (2005) of DNA confined in nanochannels of different widths revealed discrepancies with the classical theories of Odijk and de Gennes for polymer confinement. Picking up from the conclusions of the dissertation of Tree (2014), this dissertation addresses a number of key outstanding problems in the area of nanoconfined DNA. Adopting a Monte Carlo chain growth technique known as the pruned-enriched Rosenbluth method, we examine the equilibrium and near-equilibrium properties of DNA and other semiflexible polymers in nanochannel confinement. We begin by analyzing the dependence of molecular weight on various thermodynamic properties of confined semiflexible polymers. This allows us to point out the finite size effects that can occur when using low molecular weight DNA in experiments. We then analyze the statistics of backfolding and hairpin formation in the context of existing theories and discuss how our results can be used to engineer better conditions for genome mapping. Finally, we elucidate the diffusion behavior of confined

  7. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Treesearch

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  8. Multi-scale phenomena of rotation-modified mode-2 internal waves

    NASA Astrophysics Data System (ADS)

    Deepwell, David; Stastna, Marek; Coutino, Aaron

    2018-03-01

    We present high-resolution, three-dimensional simulations of rotation-modified mode-2 internal solitary waves at various rotation rates and Schmidt numbers. Rotation is seen to change the internal solitary-like waves observed in the absence of rotation into a leading Kelvin wave followed by Poincaré waves. Mass and energy is found to be advected towards the right-most side wall (for a Northern Hemisphere rotation), leading to increased amplitude of the leading Kelvin wave and the formation of Kelvin-Helmholtz (K-H) instabilities on the upper and lower edges of the deformed pycnocline. These fundamentally three-dimensional instabilities are localized within a region near the side wall and intensify in vigour with increasing rotation rate. Secondary Kelvin waves form further behind the wave from either resonance with radiating Poincaré waves or the remnants of the K-H instability. The first of these mechanisms is in accord with published work on mode-1 Kelvin waves; the second is, to the best of our knowledge, novel to the present study. Both types of secondary Kelvin waves form on the same side of the channel as the leading Kelvin wave. Comparisons of equivalent cases with different Schmidt numbers indicate that while adopting a numerically advantageous low Schmidt number results in the correct general characteristics of the Kelvin waves, excessive diffusion of the pycnocline and various density features precludes accurate representation of both the trailing Poincaré wave field and the intensity and duration of the Kelvin-Helmholtz instabilities.

  9. Comparative evaluation of H&H and WFNS grading scales with modified H&H (sans systemic disease): A study on 1000 patients with subarachnoid hemorrhage.

    PubMed

    Aggarwal, Ashish; Dhandapani, Sivashanmugam; Praneeth, Kokkula; Sodhi, Harsimrat Bir Singh; Pal, Sudhir Singh; Gaudihalli, Sachin; Khandelwal, N; Mukherjee, Kanchan K; Tewari, M K; Gupta, Sunil Kumar; Mathuriya, S N

    2018-01-01

    The comparative studies on grading in subarachnoid hemorrhage (SAH) had several limitations such as the unclear grading of Glasgow Coma Scale 15 with neurological deficits in World Federation of Neurosurgical Societies (WFNS), and the inclusion of systemic disease in Hunt and Hess (H&H) scales. Their differential incremental impacts and optimum cut-off values for unfavourable outcome are unsettled. This is a prospective comparison of prognostic impacts of grading schemes to address these issues. SAH patients were assessed using WFNS, H&H (including systemic disease), modified H&H (sans systemic disease) and followed up with Glasgow Outcome Score (GOS) at 3 months. Their performance characteristics were analysed as incremental ordinal variables and different grading scale dichotomies using rank-order correlation, sensitivity, specificity, positive predictive value, negative predictive value, Youden's J and multivariate analyses. A total of 1016 patients were studied. As univariate incremental variable, H&H sans systemic disease had the best negative rank-order correlation coefficient (-0.453) with respect to lower GOS (p < 0.001). As univariate dichotomized category, WFNS grades 3-5 had the best performance index of 0.39 to suggest unfavourable GOS with a specificity of 89% and sensitivity of 51%. In multivariate incremental analysis, H&H sans systemic disease had the greatest adjusted incremental impact of 0.72 (95% confidence interval (CI) 0.54-0.91) against a lower GOS as compared to 0.6 (95% CI 0.45-0.74) and 0.55 (95% CI 0.42-0.68) for H&H and WFNS grades, respectively. In multivariate categorical analysis, H&H grades 4-5 sans systemic disease had the greatest impact on unfavourable GOS with an adjusted odds ratio of 6.06 (95% CI 3.94-9.32). To conclude, H&H grading sans systemic disease had the greatest impact on unfavourable GOS. Though systemic disease is an important prognostic factor, it should be considered distinctly from grading. Appropriate cut

  10. Graphene quantum blisters: A tunable system to confine charge carriers

    NASA Astrophysics Data System (ADS)

    Abdullah, H. M.; Van der Donck, M.; Bahlouli, H.; Peeters, F. M.; Van Duppen, B.

    2018-05-01

    Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene.

  11. Testing an H-mode Pedestal Model Using DIII-D Data

    NASA Astrophysics Data System (ADS)

    Kritz, A. H.; Onjun, T.; Bateman, G.; Guzdar, P. N.; Mahajan, S. M.; Osborne, T.

    2004-11-01

    Tests against experimental data are carried out for a model of the pedestal at the edge of H-mode plasmas based on double-Beltrami solutions of the two-fluid Hall-MHD equations for the interaction of the magnetic and velocity fields.(S.M. Mahajan and Z. Yoshida, PRL 81 (1998) 4863, Phys. Plasmas 7 (2000) 635.) The width and height of the pedestal predicted by the model are tested against experimental data from the DIII-D tokamak. The model for the pedestal width, which has a particularly simple form, namely, inversely proportional to the square root of the density, does not appear to capture the parameter dependence of the experimental data. When the model for the pedestal temperature is rescaled to optimize agreement with data, the RMS error is found to be comparable with the RMS error found using other pedestal models.(T. Onjun, G. Bateman, A.H. Kritz, G. Hammett, Phys. Plasmas 9 (2002) 5018.)

  12. Properties of immobile hydrogen confined in microporous carbon

    DOE PAGES

    Bahadur, Jitendra; Bhabha Atomic Research Centre; Contescu, Cristian I.; ...

    2017-03-06

    The mobility of H2 confined in microporous carbon was studied as a function of temperature and pressure using inelastic neutron scattering, and the translational and rotational motion of H2 molecules has been probed. At low loading, rotation of H2 molecules adsorbed in the smallest carbon pores (~6 ) is severely hindered, suggesting that the interaction between H2 and the host matrix is anisotropic. At higher loading, H2 molecules behave as nearly free rotor, implying lower anisotropic interactions with adsorption sites. At supercritical temperatures where bulk H2 is a gas, the inelastic spectrum of confined H2 provides evidence of a significantmore » fraction of immobile, solid-like hydrogen. The onset temperature for molecular mobility depends strongly on the loaded amount. The fraction of immobile molecules increases with pressure and attains a plateau at high pressures. Surprisingly, immobile H2 is present even at temperatures as high as ~110 K. This research at ORNL s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. CIC and NCG acknowledge support from the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy.« less

  13. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches aremore » connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.« less

  14. W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER

    NASA Astrophysics Data System (ADS)

    Köchl, F.; Loarte, A.; de la Luna, E.; Parail, V.; Corrigan, G.; Harting, D.; Nunes, I.; Reux, C.; Rimini, F. G.; Polevoi, A.; Romanelli, M.; Contributors, JET

    2018-07-01

    Tokamak operation with W PFCs is associated with specific challenges for impurity control, which may be particularly demanding in the transition from stationary H-mode to L-mode. To address W control issues in this phase, dedicated experiments have been performed at JET including the variation of the decrease of the power and current, gas fuelling and central ion cyclotron heating (ICRH), and applying active ELM control by vertical kicks. The experimental results obtained demonstrate the key role of maintaining ELM control to control the W concentration in the exit phase of H-modes with slow (ITER-like) ramp-down of the neutral beam injection power in JET. For these experiments, integrated fully predictive core+edge+SOL transport modelling studies applying discrete models for the description of transients such as sawteeth and ELMs have been performed for the first time with the JINTRAC suite of codes for the entire transition from stationary H-mode until the time when the plasma would return to L-mode focusing on the W transport behaviour. Simulations have shown that the existing models can appropriately reproduce the plasma profile evolution in the core, edge and SOL as well as W accumulation trends in the termination phase of JET H-mode discharges as function of the applied ICRH and ELM control schemes, substantiating the ambivalent effect of ELMs on W sputtering on one side and on edge transport affecting core W accumulation on the other side. The sensitivity with respect to NB particle and momentum sources has also been analysed and their impact on neoclassical W transport has been found to be crucial to reproduce the observed W accumulation characteristics in JET discharges. In this paper the results of the JET experiments, the comparison with JINTRAC modelling and the adequacy of the models to reproduce the experimental results are described and conclusions are drawn regarding the applicability of these models for the extrapolation of the applied W

  15. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrova, I. V.; Koresheva, E. R., E-mail: elena.koresheva@gmail.com; Krokhin, O. N.

    2016-12-15

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain sizemore » should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.« less

  16. Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2008-01-01

    As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.

  17. Fill-Tube-Induced Mass Perturbations on X-Ray-Driven, Ignition-Scale, Inertial-Confinement-Fusion Capsule Shells and the Implications for Ignition Experiments

    DOE PAGES

    Bennett, G. R.; Herrmann, M. C.; Edwards, M. J.; ...

    2007-11-13

    We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO 2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.

  18. Physics of thermal transport and increased electron temperature turbulence in the edge pedestal of ELM-free, H-mode regimes on DIII-D

    NASA Astrophysics Data System (ADS)

    Sung, Choongki

    2017-10-01

    It has been observed, for the first time, that suppression of Edge Localized Modes (ELMs) in tokamak plasmas is accompanied by an increase in electron temperature turbulence. A correlation electron cyclotron emission technique has been utilized to quantify the observed increase: 40% increase in Quiescent H-mode (QH-mode) and 70% increase in 3D field ELM suppressed H-mode. Since reliable ELM-free H-mode operation is essential for future burning plasma experiments, it is crucial to develop a validated predictive capability for these plasmas. Linear stability analysis using TGLF has provided an explanation for the observations and has indicated that the underlying physical mechanisms are different in the two regimes. In QH-mode, profile gradients and the associated linear growth rate are decreased compared to ELMing H-mode. However, the ExB shearing rate is reduced by an even greater factor such that turbulent transport is no longer suppressed by flow shear. In contrast, during 3D field ELM suppressed H-mode, gradients are increased and TGLF predicts that a large increase in linear growth rate is primarily responsible for the increased turbulence. Power balance analysis using ONETWO is also consistent with the changes in electron thermal transport being due to the increased turbulence. These new findings are significant since they i) provide a physics explanation of these changes via TGLF analysis and enable validation of the model in the key pedestal region, and ii) support the hypothesis that turbulent transport partially replaces ELM-dominated transport during ELM-free operation. These results form a basis to develop a predictive understanding of pedestal regulation in ELM suppressed regimes. Supported by the US DOE under DE-FG02-08ER54984, DE-FC02-04ER54698.

  19. BMP4 density gradient in disk-shaped confinement

    NASA Astrophysics Data System (ADS)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.

  20. Short wavelength turbulence generated by shear in the quiescent H-mode edge on DIII–D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rost, J. C.; Porkolab, M.; Dorris, J.

    2014-06-15

    A region of turbulence with large radial wavenumber (k{sub r}ρ{sub s}>1) is found in the high-shear portion of the plasma edge in Quiescent H-mode (QH-mode) on DIII–D using the Phase Contrast Imaging (PCI) diagnostic. At its peak outside the minimum of the E{sub r} well, the turbulence exhibits large amplitude n{sup ~}/n∼40%, with large radial wavenumber |k{sup ¯}{sub r}/k{sup ¯}{sub θ}|∼11 and short radial correlation length L{sub r}/ρ{sub i}∼0.2. The turbulence inside the E{sub r} well minimum is characterized by the opposite sign in radial wavenumber from that of turbulence outside the minimum, consistent with the expected effects of velocitymore » shear. The PCI diagnostic provides a line-integrated measurement of density fluctuations, so data are taken during a scan of plasma position at constant parameters to allow the PCI to sample a range in k{sub r}/k{sub θ}. Analysis of the Doppler shift and plasma geometry allows the turbulence to be localized to a narrow region 3 mm inside the last closed flux surface, outside the minimum of the E{sub r} well. The turbulence amplitude and radial wavenumber and correlation length are determined by fitting the PCI results with a simple non-isotropic turbulence model with two regions of turbulence. These PCI observations, made in QH-mode, are qualitatively similar to those made in standard edge localized modes (ELM)-free H-mode and between ELMs, suggesting a similar role for large k{sub r} turbulence there.« less