Sample records for h-mode inductive scenario

  1. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Asunta, O.; Kurki-Suonio, T.; Tala, T.; Sipilä, S.; Salomaa, R.; contributors, JET-EFDA

    2008-12-01

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger (~16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  2. Non-inductive improved H-mode operation at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bock, A.; Fable, E.; Fischer, R.; Reich, M.; Rittich, D.; Stober, J.; Bernert, M.; Burckhart, A.; Doerk, H.; Dunne, M.; Geiger, B.; Giannone, L.; Igochine, V.; Kappatou, A.; McDermott, R.; Mlynek, A.; Odstrčil, T.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team

    2017-12-01

    Recent improvements to the heating and diagnostic systems on the ASDEX Upgrade tokamak allow renewed investigations into non-inductive operation scenarios with improved confinement in a full-metal device. Motivated by this, a scenario with \

  3. The transition mechanisms of the E to H mode and the H to E mode in an inductively coupled argon-mercury mixture discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu

    2015-10-15

    In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less

  4. E-H heating mode transition in inductive discharges with different antenna sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: flower4507@hanyang.ac.kr; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr

    The spatial distribution of plasma density and the transition power for capacitive (E) to inductive (H) mode transition are studied in planar type inductively coupled plasmas with different antenna sizes. The spatial plasma distribution has a relatively flat profile at a low gas pressure, while the plasma profile is affected by the antenna size at higher gas pressure. The transition power for the E to H mode transition is shown to be critically affected by the antenna size. When the discharge is sustained by a small one-turn antenna coil, the transition power has a minimum value at Ar gas ofmore » 20 mTorr. However, the minimum transition power is shown at a relatively high gas pressure (40–60 mTorr) in the case of a large one-turn antenna coil. This change in the transition power can be understood by the thermal transport of the energetic electrons with non-local kinetics to the chamber wall. This non-local kinetic effect indicates that the transition power can also increase even for a small antenna if the antenna is placed near the wall.« less

  5. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng

    2018-03-01

    Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.

  6. E-H mode transition of a high-power inductively coupled plasma torch at atmospheric pressure with a metallic confinement tube

    NASA Astrophysics Data System (ADS)

    Altenberend, Jochen; Chichignoud, Guy; Delannoy, Yves

    2012-08-01

    Inductively coupled plasma torches need high ignition voltages for the E-H mode transition and are therefore difficult to operate. In order to reduce the ignition voltage of an RF plasma torch with a metallic confinement tube the E-H mode transition was studied. A Tesla coil was used to create a spark discharge and the E-H mode transition of the plasma was then filmed using a high-speed camera. The electrical potential of the metallic confinement tube was measured using a high-voltage probe. It was found that an arc between the grounded injector and the metallic confinement tube is maintained by the electric field (E-mode). The transition to H-mode occurred at high magnetic fields when the arc formed a loop. The ignition voltage could be reduced by connecting the metallic confinement tube with a capacitor to the RF generator.

  7. Analysis of JT-60SA operational scenarios

    NASA Astrophysics Data System (ADS)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  8. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE PAGES

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  9. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  10. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinsker, R. I.; Austin, M. E.; Diem, S. J.

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less

  11. Overview of long pulse H-mode operation on EAST

    NASA Astrophysics Data System (ADS)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  12. Numerical optimization of actuator trajectories for ITER hybrid scenario profile evolution

    NASA Astrophysics Data System (ADS)

    van Dongen, J.; Felici, F.; Hogeweij, G. M. D.; Geelen, P.; Maljaars, E.

    2014-12-01

    Optimal actuator trajectories for an ITER hybrid scenario ramp-up are computed using a numerical optimization method. For both L-mode and H-mode scenarios, the time trajectory of plasma current, EC heating and current drive distribution is determined that minimizes a chosen cost function, while satisfying constraints. The cost function is formulated to reflect two desired properties of the plasma q profile at the end of the ramp-up. The first objective is to maximize the ITG turbulence threshold by maximizing the volume-averaged s/q ratio. The second objective is to achieve a stationary q profile by having a flat loop voltage profile. Actuator and physics-derived constraints are included, imposing limits on plasma current, ramp rates, internal inductance and q profile. This numerical method uses the fast control-oriented plasma profile evolution code RAPTOR, which is successfully benchmarked against more complete CRONOS simulations for L-mode and H-mode mode ITER hybrid scenarios. It is shown that the optimized trajectories computed using RAPTOR also result in an improved ramp-up scenario for CRONOS simulations using the same input trajectories. Furthermore, the optimal trajectories are shown to vary depending on the precise timing of the L-H transition.

  13. Minority heating scenarios in ^4He(H) and ^3He(H) SST-1 plasmas

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Asim Kumar

    2018-01-01

    A numerical analysis of ion cyclotron resonance heating scenarios in two species of low ion temperature plasma has been done to elucidate the physics and possibility to achieve H-mode in tokamak plasma. The analysis is done in the steady-state superconducting tokamak, SST-1, using phase-I plasma parameters which is basically L-mode plasma parameters having low ion temperature and magnetic field with the help of the ion cyclotron heating code TORIC combined with `steady state Fokker-Planck quasilinear' (SSFPQL) solver. As a minority species hydrogen has been used in ^3He and ^4He plasmas to make two species ^3He(H) and ^4He(H) plasmas to study the ion cyclotron wave absorption scenarios. The minority heating is predominant in ^3He(H) and ^4He(H) plasmas as minority resonance layers are not shielded by ion-ion resonance and cut-off layers in both cases, and it is better in ^4He(H) plasma due to the smooth penetration of wave through plasma-vacuum surface. In minority concentration up to 15%, it has been observed that minority ion heating is the principal heating mechanism compared to electron heating and heating due to mode conversion phenomena. Numerical analysis with the help of SSFPQL solver shows that the tail of the distribution function of the minority ion is more energetic than that of the majority ion and therefore, more anisotropic. Due to good coupling of the wave and predominance of the minority heating regime, producing energetic ions in the tail region of the distribution function, the ^4He(H) and ^3He(H) plasmas could be studied in-depth to achieve H-mode in two species of low-temperature plasma.

  14. Time-Dependent Simulations of Fast-Wave Heated High-Non-Inductive-Fraction H-Mode Plasmas in the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger

    2017-10-01

    30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.

  15. Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; ...

    2018-02-20

    The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and Hmode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supportedmore » the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (βN/βN-nowall > 1) compared to NSTX discharges for Ip ≤ 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.« less

  16. Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.

    The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and Hmode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supportedmore » the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (βN/βN-nowall > 1) compared to NSTX discharges for Ip ≤ 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.« less

  17. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE PAGES

    Ding, Siye; Garofalo, A. M.; Qian, J.; ...

    2017-05-03

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  18. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Siye; Garofalo, A. M.; Qian, J.

    Systematic experimental and modeling investigations on DIII-D and EAST show attractive transport properties of fully non-inductive high β p plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high β p regime, is maintained when the scenario is extended from q 95 ~ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyro fluid modeling showing dominant neoclassical ion energy transport even without E B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift,more » which is essential and sets a β p threshold for large-radius ITB formation in the high β p scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for β N scan and the other for q 95 scan. They both give the same p threshold at 1.9 in the experiment. Furthermore, the experiment trend of increasing thermal transport with decreasing β p is consistent with transport modeling. The very first step of extending high β p scenario on DIII-D to long pulse on EAST is to establish long pulse H-mode with ITB on EAST. Our paper shows the first 61 sec fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave (LWH) as a key tool to optimize current profile in EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability is also used to develop advanced scenarios for CFETR. These results provide encouragement that the high β p regime can be extended to lower safety factor and very low rotation, providing a potential path to high performance steady state operation in future devices.« less

  19. Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; Mueller, D.; Myers, C. E.; Guttenfelder, W.; Menard, J. E.; Sabbagh, S. A.; Scotti, F.; Bedoya, F.; Bell, R. E.; Berkery, J. W.; Diallo, A.; Ferraro, N.; Kaye, S. M.; Jaworski, M. A.; LeBlanc, B. P.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Soukhanovskii, V.; NSTX-U Research, the; Operations; Engineering Team

    2018-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal fields (1 T) and plasma currents (1.0-2.0 MA) in a low aspect ratio geometry (A  =  1.6-1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes the progress in the development of L- and H-mode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supported the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (B T0  =  0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (t pulse  >  1.8 s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (I p). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2  >  1) and stability (β N/β N-nowall  >  1) compared to NSTX discharges for I p  ⩽  1 MA. High-performance H-mode scenarios require an L-H transition early in the I p ramp-up phase in order to obtain low internal inductance (l i) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ  >  2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.

  20. Overview of EAST experiments on the development of high-performance steady-state scenario

    NASA Astrophysics Data System (ADS)

    Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2  >  1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5  ×  1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n  =  1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.

  1. Confinement improvement in the high poloidal beta regime on DIII-D and application to steady-state H-mode on EAST

    NASA Astrophysics Data System (ADS)

    Ding, S.; Garofalo, A. M.; Qian, J.; Cui, L.; McClenaghan, J. T.; Pan, C.; Chen, J.; Zhai, X.; McKee, G.; Ren, Q.; Gong, X.; Holcomb, C. T.; Guo, W.; Lao, L.; Ferron, J.; Hyatt, A.; Staebler, G.; Solomon, W.; Du, H.; Zang, Q.; Huang, J.; Wan, B.

    2017-05-01

    Systematic experimental and modeling investigations on DIII-D show attractive transport properties of fully non-inductive high βp plasmas. Experiments on DIII-D show that the large-radius internal transport barrier (ITB), a key feature providing excellent confinement in the high βp regime, is maintained when the scenario is extended from q95 ˜ 12 to 7 and from rapid to near-zero toroidal rotation. The robustness of confinement versus rotation was predicted by gyrofluid modeling showing dominant neoclassical ion energy transport even without the E × B shear effect. The physics mechanism of turbulence suppression, we found, is the Shafranov shift, which is essential and sets a βp threshold for large-radius ITB formation in the high βp scenario on DIII-D. This is confirmed by two different parameter-scan experiments, one for a βN scan and the other for a q95 scan. They both give the same βp threshold at 1.9 in the experiment. The experimental trend of increasing thermal transport with decreasing βp is consistent with transport modeling. The progress toward the high βp scenario on Experimental Advanced Superconducting Tokamak (EAST) is reported. The very first step of extending the high βp scenario on DIII-D to long pulse on EAST is to establish a long pulse H-mode with ITB on EAST. This paper shows the first 61 s fully non-inductive H-mode with stationary ITB feature and actively cooled ITER-like tungsten divertor in the very recent EAST experiment. The successful use of lower hybrid wave as a key tool to optimize the current profile in the EAST experiment is also introduced. Results show that as the electron density is increased, the fully non-inductive current profile broadens on EAST. The improved understanding and modeling capability are also used to develop advanced scenarios for the China Fusion Engineering Test Reactor. Overall, these results provide encouragement that the high βp regime can be extended to a lower safety factor and very low rotation

  2. R modes and neutron star recycling scenario

    NASA Astrophysics Data System (ADS)

    Chugunov, A. I.; Gusakov, M. E.; Kantor, E. M.

    2017-06-01

    To put new constraints on the r-mode instability window, we analyse the formation of millisecond pulsars (MSPs) within the recycling scenario, making use of three sets of observations: (a) X-ray observations of neutron stars (NSs) in low-mass X-ray binaries; (b) timing of MSPs and (c) X-ray and UV observations of MSPs. As shown in previous works, r-mode dissipation by shear viscosity is not sufficient to explain observational set (a), and enhanced r-mode dissipation at the redshifted internal temperatures T ∞ ˜ 108 K is required to stabilize the observed NSs. Here, we argue that models with enhanced bulk viscosity can hardly lead to a self-consistent explanation of observational set (a) due to strong neutrino emission, which is typical for these models (unrealistically powerful energy source is required to keep NSs at the observed temperatures.). We also demonstrate that the observational set (b), combined with the theory of internal heating and NS cooling, provides evidence of enhanced r-mode dissipation at low temperatures, T ∞ ˜ 2 × 107 K. Observational set (c) allows us to set an upper limit on the internal temperatures of MSPs, T ∞ < 2 × 107 K (assuming a canonical NS with the accreted crust). Recycling scenario can produce MSPs at these temperatures only if r-mode instability is suppressed in the whole MSP spin frequency range (ν ≲ 750 Hz) at temperatures 2 × 107 ≲ T ∞ ≲ 3 × 107 K, providing thus a new constraint on the r-mode instability window. These observational constraints are analysed in more details in application to the resonance uplift scenario of Gusakov et al.

  3. Observation of the inductive to helicon mode transition in a weakly magnetized solenoidal inductive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min-Hyong; Chung, Chin-Wook

    2008-10-13

    A mode transition from an inductive mode to a helicon mode is observed in a solenoidal inductive discharge immersed in a weak dc magnetic field. The measured electron temperature and the plasma density at the reactor radial boundary show a sudden increase when the magnetic field strength reaches the critical value and the electron cyclotron frequency exceeds the rf driving frequency. These increases are due to the electron heating by the helicon wave. Such increases in the temperature and the density are not observed at the plasma center because the helicon wave cannot propagate to the center of the solenoidalmore » type reactor unless the magnetic field is very high. These results show that the transition of the discharge from the inductive to the helicon mode occurs at the critical magnetic field strength.« less

  4. Modelling of transitions between L- and H-mode in JET high plasma current plasmas and application to ITER scenarios including tungsten behaviour

    NASA Astrophysics Data System (ADS)

    Koechl, F.; Loarte, A.; Parail, V.; Belo, P.; Brix, M.; Corrigan, G.; Harting, D.; Koskela, T.; Kukushkin, A. S.; Polevoi, A. R.; Romanelli, M.; Saibene, G.; Sartori, R.; Eich, T.; Contributors, JET

    2017-08-01

    separatrix remains unchanged (or even slightly decreases) following the H-mode transition. JINTRAC modelling of H-mode transitions for the ITER 15 MA / 5.3 T high Q DT scenarios with the same modelling assumptions as those being derived from JET experiments has been carried out. The modelling finds that it is possible to access high Q DT conditions robustly for additional heating power levels of P AUX  ⩾  53 MW by optimising core and edge plasma fuelling in the transition from L-mode to high Q DT H-mode. An initial period of low plasma density, in which the plasma accesses the H-mode regime and the alpha heating power increases, needs to be considered after the start of the additional heating, which is then followed by a slow density ramp. Both the duration of the low density phase and the density ramp-rate depend on boundary and operational conditions and can be optimised to minimise the resistive flux consumption in this transition phase. The modelling also shows that fuelling schemes optimised for a robust access to high Q DT H-mode in ITER are also optimum for the prevention of the contamination of the core plasma by tungsten during this phase.

  5. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti

    PubMed Central

    Matko, Vojko; Milanović, Miro

    2014-01-01

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 μH to 2–560 kHz. PMID:25325334

  6. The low density type III ELMy H-mode regime on JET-ILW: a low density H-mode compatible with a tungsten divertor?

    NASA Astrophysics Data System (ADS)

    Delabie, E.; Hillesheim, J. C.; Mailloux, J.; Maggi, C. F.; Rimini, F.; Solano, E. R.; JET contributors Team

    2016-10-01

    The threshold power to access H-mode on JET-ILW has a minimum as function of density. Power ramps in the low and high density branch show qualitatively very different behavior above threshold. In the high density branch, edge density and temperature abruptly increase after the L-H transition, and the plasma evolves into a type I ELMy H-mode. Transitions in the low density branch are gradual and lead to the formation of a temperature pedestal, without increase in edge density. These characteristics are reminiscent of the I-mode regime, but with high frequency ELM activity. The small ELMs allow stable H-mode operation with tolerable tungsten contamination, as long as both density and power stay below the type I ELM boundary. The density range in which the low density branch can be accessed scales favourably with toroidal field but unfavourably with isotope mass. At BT=3.4T, a stable H-mode has been obtained at = 2.9 1019 m-3 with up to 15 MW of heating power at H98y 0.9. Better knowledge of the operational boundaries of this high frequency ELM regime could provide insight in how to sustain it at higher heating power for high temperature scenarios. Work supported, in part, by the US DOE under Contract No. DE-AC05-00OR22725.

  7. CORSICA modelling of ITER hybrid operation scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  8. Initial exploration of scenarios with Internal Transport Barrier in the first NBI-heated L-mode TCV plasmas

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Sauter, Olivier; Coda, Stefano; Merle, Antoine; Karpushov, Alexander; Pigatto, Leonardo; Bolzonella, Tommaso; Piovesan, Paolo; Vianello, Nicola; TCV Team; EUROfusion MST1 Team

    2016-10-01

    Fully non-inductive operation of high performance plasmas is one of the main objectives of contemporary Tokamak research. In this perspective, plasmas with Internal Transport Barriers (ITBs) are an attractive scenario, since they can attain a high fraction of bootstrap current. In this work we start exploring ITB scenarios on the Tokamak à Configuration Variable (TCV) heated by a newly available 1MW Neutral Beam Injector (NBI). Here we investigate for the first time in this device the impact of the additional NBI power on the performance and stability of L-mode plasmas with ITBs. Results of both experimental data analyses and ASTRA transport simulations are presented. The work examines also the Magneto Hydro-Dynamics (MHD) activity and stability of the explored plasmas. In particular, the role of plasma magnetic equilibrium parameters, such as plasma elongation and triangularity, on the sustainment of these NBI-heated ITB scenarios is discussed.

  9. H-mode achievement and edge features in RFX-mod tokamak operation

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Cavazzana, R.; Marrelli, L.; Carraro, L.; Franz, P.; Spagnolo, S.; Zaniol, B.; Zuin, M.; Cordaro, L.; Dal Bello, S.; De Masi, G.; Ferro, A.; Finotti, C.; Grando, L.; Grenfell, G.; Innocente, P.; Kudlacek, O.; Marchiori, G.; Martines, E.; Momo, B.; Paccagnella, R.; Piovesan, P.; Piron, C.; Puiatti, M. E.; Recchia, M.; Scarin, P.; Taliercio, C.; Vianello, N.; Zanotto, L.

    2017-11-01

    The RFX-mod experiment is a fusion device designed to operate as a reversed field pinch (RFP), with a major radius R = 2 m and a minor radius a = 0.459 m. Its high versatility recently allowed operating it also as an ohmic tokamak, allowing comparative studies between the two configurations in the same device. The device is equipped with a state of the art MHD mode feedback control system providing a magnetic boundary effective control, by applying resonant or non-resonant magnetic perturbations (MP), both in RFP and in tokamak configurations. In the fusion community the application of MPs is widely studied as a promising tool to limit the impact of plasma filaments and ELMs (edge localized modes) on plasma facing components. An important new research line is the exploitation of the RFX-mod active control system for ELM mitigation studies. As a first step in this direction, this paper presents the most recent achievements in term of RFX-mod tokamak explored scenarios, which allowed the first investigation of the ohmic and edge biasing induced H-mode. The production of D-shaped tokamak discharges and the design and deployment of an insertable polarized electrode were accomplished. Reproducible H-mode phases were obtained with insertable electrode negative biasing in single null discharges, representing an unexplored scenario with this technique. Important modifications of the edge plasma density and flow properties are observed. During the achieved H-mode ELM-like electromagnetic composite filamentary structures are observed. They are characterized by clear vorticity and parallel current density patterns.

  10. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    NASA Astrophysics Data System (ADS)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  11. Improved H mode with flat central q profile on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Haiqing; Yang, Yao; Gao, Xiang; Zeng, Long; Qian, Jinping; Gong, Xianzu; Wan, Baonian; Ding, Weixing; Brower, David Lyn; EAST Team

    2017-10-01

    High betaN ( 1.8) plasma with good confinement (H98y2 1.1) on EAST tokamak has been reported recently. These ELMy H-mode plasmas with Bt = 1.6T, Ip = 400 kA and q95 4.5 were heated by lower hybrid wave and neutral beam injection. The internal transport barrier (ITB) and edge transport barrier (ETB) are both observed with m/n =1/1 fishbone, which were identified to clamp central q at values close to unity. Implying an improved H-mode with flat central q profile and absence of sawteeth, like other devices. Accurate q profile, key profile for developing scenarios aim at high performance H mode, were derived by Polarimeter-interferometer (POINT) measurement as constraint. Base on the optimized current profile, better confinement (H98y2 1.4) with an electron ITB was obtained also with flat central q profile and absence of sawteeth at high betaP ( 2) regime with Bt = 2.5T, Ip = 400 kA. Both high betaN regime and high betaP regime H mode, are characterized by a stationary flat central q profile q0 >=1, but typically close to 1, absence of sawteeth, H98(y,2) >1 and simultaneously, with ITB. This work is supported by the National Magnetic Confinement Fusion Program of China with Contract No. 2014GB106002 and partly supported by the US D.O.E. contract DESC0010469.

  12. Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Giruzzi, G.; Ide, S.; Kessel, C.; Luce, T. C.; Snipes, J. A.; Stober, J. K.

    2015-02-01

    The development of operating scenarios is one of the key issues in the research for ITER which aims to achieve a fusion gain (Q) of ˜10, while producing 500 MW of fusion power for ≥300 s. The ITER Research plan proposes a success oriented schedule starting in hydrogen and helium, to be followed by a nuclear operation phase with a rapid development towards Q ˜ 10 in deuterium/tritium. The Integrated Operation Scenarios Topical Group of the International Tokamak Physics Activity initiates joint activities among worldwide institutions and experiments to prepare ITER operation. Plasma formation studies report robust plasma breakdown in devices with metal walls over a wide range of conditions, while other experiments use an inclined EC launch angle at plasma formation to mimic the conditions in ITER. Simulations of the plasma burn-through predict that at least 4 MW of Electron Cyclotron heating (EC) assist would be required in ITER. For H-modes at q95 ˜ 3, many experiments have demonstrated operation with scaled parameters for the ITER baseline scenario at ne/nGW ˜ 0.85. Most experiments, however, obtain stable discharges at H98(y,2) ˜ 1.0 only for βN = 2.0-2.2. For the rampup in ITER, early X-point formation is recommended, allowing auxiliary heating to reduce the flux consumption. A range of plasma inductance (li(3)) can be obtained from 0.65 to 1.0, with the lowest values obtained in H-mode operation. For the rampdown, the plasma should stay diverted maintaining H-mode together with a reduction of the elongation from 1.85 to 1.4. Simulations show that the proposed rampup and rampdown schemes developed since 2007 are compatible with the present ITER design for the poloidal field coils. At 13-15 MA and densities down to ne/nGW ˜ 0.5, long pulse operation (>1000 s) in ITER is possible at Q ˜ 5, useful to provide neutron fluence for Test Blanket Module assessments. ITER scenario preparation in hydrogen and helium requires high input power (>50 MW). H-mode

  13. Multi-machine analysis of termination scenarios with comparison to simulations of controlled shutdown of ITER discharges

    DOE PAGES

    de Vries, Peter C.; Luce, Timothy C.; Bae, Young-soon; ...

    2017-11-22

    To improve our understanding of the dynamics and control of ITER terminations, a study has been carried out on data from existing tokamaks. The aim of this joint analysis is to compare the assumptions for ITER terminations with the present experience basis. The study examined the parameter ranges in which present day devices operated during their terminations, as well as the dynamics of these parameters. The analysis of a database, built using a selected set of experimental termination cases, showed that, the H-mode density decays slower than the plasma current ramp-down. The consequential increase in fGW limits the duration ofmore » the H-mode phase or result in disruptions. The lower temperatures after the drop out of H-mode will allow the plasma internal inductance to increase. But vertical stability control remains manageable in ITER at high internal inductance when accompanied by a strong elongation reduction. This will result in ITER terminations remaining longer at low q (q95~3) than most present-day devices during the current ramp-down. A fast power ramp-down leads to a larger change in βp at the H-L transition, but the experimental data showed that these are manageable for the ITER radial position control. The analysis of JET data shows that radiation and impurity levels significantly alter the H-L transition dynamics. Self-consistent calculations of the impurity content and resulting radiation should be taken into account when modelling ITER termination scenarios. Here, the results from this analysis can be used to better prescribe the inputs for the detailed modelling and preparation of ITER termination scenarios.« less

  14. Multi-machine analysis of termination scenarios with comparison to simulations of controlled shutdown of ITER discharges

    NASA Astrophysics Data System (ADS)

    de Vries, P. C.; Luce, T. C.; Bae, Y. S.; Gerhardt, S.; Gong, X.; Gribov, Y.; Humphreys, D.; Kavin, A.; Khayrutdinov, R. R.; Kessel, C.; Kim, S. H.; Loarte, A.; Lukash, V. E.; de la Luna, E.; Nunes, I.; Poli, F.; Qian, J.; Reinke, M.; Sauter, O.; Sips, A. C. C.; Snipes, J. A.; Stober, J.; Treutterer, W.; Teplukhina, A. A.; Voitsekhovitch, I.; Woo, M. H.; Wolfe, S.; Zabeo, L.; the Alcator C-MOD Team; the ASDEX Upgrade Team; the DIII-D Team; the EAST Team; contributors, JET; the KSTAR Team; the NSTX-U Team; the TCV Team; IOS members, ITPA; experts

    2018-02-01

    To improve our understanding of the dynamics and control of ITER terminations, a study has been carried out on data from existing tokamaks. The aim of this joint analysis is to compare the assumptions for ITER terminations with the present experience basis. The study examined the parameter ranges in which present day devices operated during their terminations, as well as the dynamics of these parameters. The analysis of a database, built using a selected set of experimental termination cases, showed that, the H-mode density decays slower than the plasma current ramp-down. The consequential increase in f GW limits the duration of the H-mode phase or result in disruptions. The lower temperatures after the drop out of H-mode will allow the plasma internal inductance to increase. But vertical stability control remains manageable in ITER at high internal inductance when accompanied by a strong elongation reduction. This will result in ITER terminations remaining longer at low q (q 95 ~ 3) than most present-day devices during the current ramp-down. A fast power ramp-down leads to a larger change in β p at the H-L transition, but the experimental data showed that these are manageable for the ITER radial position control. The analysis of JET data shows that radiation and impurity levels significantly alter the H-L transition dynamics. Self-consistent calculations of the impurity content and resulting radiation should be taken into account when modelling ITER termination scenarios. The results from this analysis can be used to better prescribe the inputs for the detailed modelling and preparation of ITER termination scenarios.

  15. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    DOE PAGES

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; ...

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$ e ≈ 7 × 10 19 m ₋3) and normalized Greenwald fraction ($$\\bar{n}$$ e/n G > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q 95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less

  16. A Practical English Teaching Mode of Vocational Education: Induction-Interaction Learning Community

    ERIC Educational Resources Information Center

    Zhang, Yonglong

    2008-01-01

    Secondary Vocational School Students are characterized by the awkward fact "congenital malnutrition" and "acquired development deficiency", continuously adopting of the current teaching methods and modes of General Education is completely impossible. In this report, a new English Teaching Mode of Induction-Interaction Learning…

  17. Impact of perturbative, non-axisymmetric impurity fueling on Alcator C-Mod H-modes

    NASA Astrophysics Data System (ADS)

    Reinke, M. L.; Lore, J. D.; Terry, J.; Brunner, D.; LaBombard, B.; Lipschultz, B.; Hubbard, A.; Hughes, J. W.; Mumgaard, R.; Pitts, R. A.

    2017-12-01

    Experiments on Alcator C-Mod have been performed to investigate the impact of toroidally localized impurity injection on H-mode exhaust scenarios. Results help to inform sub-divertor gas injector designs, in particular that of the ITER machine, for which this work was primarily undertaken. In repeated EDA H-modes, the amount of N2 injected into the private flux region was scanned up to levels which strongly impacted normalized energy confinement, H98, and led to an H/L back-transition. Repeated scans increased the toroidal peaking of the gas injection, reducing from five equally spaced locations to a single toroidal and poloidal injector. Results show the impact on the pedestal and core plasma is similar between all cases as long as the total gas injection rate is held constant. An influence on toroidally localized impurity spectroscopy is shown, demonstrating a complication in using such data in interpreting experiments and supporting boundary modeling in cases where there are localized extrinsic or intrinsic impurity sources. These results, along with prior work in this area on Alcator C-Mod, form a comprehensive set of L-mode and H-mode data to be used for validation of 3D boundary physics codes.

  18. Fluorescence quenching and the "ring-mode" to "red-mode" transition in alkali inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bazurto, R.; Camparo, J.

    2018-01-01

    The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.

  19. Mode conversion in three ion species ICRF heating scenario

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Edlund, E.; Ennever, P.; Porkolab, M.; Wright, J.; Wukitch, S.

    2016-10-01

    Three-ion species ICRF heating has been studied on Alcator C-Mod and on JET. It has been shown to heat the plasma and generate energetic particles. In a typical three-ion scenario, the plasma consists of 60-70% D, 30-40% H and a trace level (1% or less) of 3He. This species mixture creates two hybrid resonances (D-3He and 3He-H) in the plasma, in the vicinity of the 3He IC resonance (on both sides). The fast wave can undergo mode conversion (MC) to ion Bernstein waves and ion cyclotron waves at the two hybrid resonances. A phase contrast imaging (PCI) system has been used to measure the RF waves in the three-ion heating experiment. The experimentally measured MC locations and the separating distance between the two MC regions help to determine the concentration of the three species. The PCI signal amplitudes for the RF waves are found to be sensitive to RF and plasma parameters, including PRF, Te, ne and also the species mix concentration. The parameter dependences found in the experiment will be compared with ICRF code simulations. Supported by USDoE Awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  20. Semiempirical models of H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, C.E.; Redi, M.; Boyd, D.

    1985-05-01

    The H-mode transition can lead to a rapid increase in tokamak plasma confinement. A semiempirical transport model was derived from global OH and L-mode confinement scalings and then applied to simulation of H-mode discharges. The radial diffusivities in the model also depend on local density and pressure gradients and satisfy an appropriate dimensional constraint. Examples are shown of the application of this and similar models to the detailed simulation of two discharges which exhibit an H-mode transition. The models reproduce essential features of plasma confinement in the ohmic heating, low and high confinement phases of these discharges. In particular, themore » evolution of plasma energy content through the H-mode transition can be reproduced without any sudden or ad hoc modification of the plasma transport formulation.« less

  1. Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation

    DTIC Science & Technology

    2009-07-01

    induction sensor and the fluxgate magnetometer . ......................................... 2 Figure 3.1 - Impulse response of a 4” long coil (#6...Block diagram of the Year 2, Task 2 fluxgate magnetometer . ................................... 6 Figure 3.3 - FIS-prototype magnetic-field...and demonstrated an innovative dual-mode, fluxgate -induction sensor (FIS) that combines a fluxgate magnetometer and an electromagnetic (EM) induction

  2. Edge Stability and Performance of the ELM-Free Quiescent H-Mode and the Quiescent Double Barrier Mode on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, W P; Burrell, K H; Casper, T A

    2004-12-03

    The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary.more » At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.« less

  3. Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios

    NASA Astrophysics Data System (ADS)

    Goniche, M.; Dumont, R. J.; Bobkov, V.; Buratti, P.; Brezinsek, S.; Challis, C.; Colas, L.; Czarnecka, A.; Drewelow, P.; Fedorczak, N.; Garcia, J.; Giroud, C.; Graham, M.; Graves, J. P.; Hobirk, J.; Jacquet, P.; Lerche, E.; Mantica, P.; Monakhov, I.; Monier-Garbet, P.; Nave, M. F. F.; Noble, C.; Nunes, I.; Pütterich, T.; Rimini, F.; Sertoli, M.; Valisa, M.; Van Eester, D.; Contributors, JET

    2017-05-01

    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (˜10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.

  4. Advanced ST plasma scenario simulations for NSTX

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Synakowski, E. J.; Bell, M. E.; Gates, D. A.; Harvey, R. W.; Kaye, S. M.; Mau, T. K.; Menard, J.; Phillips, C. K.; Taylor, G.; Wilson, R.; NSTX Research Team

    2005-08-01

    Integrated scenario simulations are done for NSTX that address four primary objectives for developing advanced spherical torus (ST) configurations: high β and high βN inductive discharges to study all aspects of ST physics in the high β regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX and non-solenoidal startup and plasma current rampup. The simulations done here use the tokamak simulation code and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam deposition profile and other characteristics. CURRAY is used to calculate the high harmonic fast wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with βT ap 40% at βN's of 7.7-9, IP = 1.0 MA and BT = 0.35 T. The plasma is 100% non-inductive and has a flattop of four skin times. The resulting global energy confinement corresponds to a multiplier of H98(y),2 = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control and early heating/H-mode transition for producing and optimizing these plasma configurations.

  5. Identification of significant intrinsic mode functions for the diagnosis of induction motor fault.

    PubMed

    Cho, Sangjin; Shahriar, Md Rifat; Chong, Uipil

    2014-08-01

    For the analysis of non-stationary signals generated by a non-linear process like fault of an induction motor, empirical mode decomposition (EMD) is the best choice as it decomposes the signal into its natural oscillatory modes known as intrinsic mode functions (IMFs). However, some of these oscillatory modes obtained from a fault signal are not significant as they do not bear any fault signature and can cause misclassification of the fault instance. To solve this issue, a novel IMF selection algorithm is proposed in this work.

  6. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V A; Bell, M G; Bell, R E

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphitemore » Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi

  7. Processing Mode Causally Influences Emotional Reactivity

    PubMed Central

    Watkins, Ed; Moberly, Nicholas J.; Moulds, Michelle L.

    2008-01-01

    Three studies are reported showing that emotional responses to stress can be modified by systematic prior practice in adopting particular processing modes. Participants were induced to think about positive and negative scenarios in a mode either characteristic of or inconsistent with the abstract-evaluative mind-set observed in depressive rumination, via explicit instructions (Experiments 1 and 2) and via implicit induction of interpretative biases (Experiment 3), before being exposed to a failure experience. In all three studies, participants trained into the mode antithetical to depressive rumination demonstrated less emotional reactivity following failure than participants trained into the mode consistent with depressive rumination. These findings provide evidence consistent with the hypothesis that processing mode modifies emotional reactivity and support the processing-mode theory of rumination. PMID:18540752

  8. Characteristics of hybrid scenarios in KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Youngho; Byun, Cheol-Sik; Na, Yong-Su; Kstar Team

    2017-10-01

    We report the characteristics of hybrid scenarios under development in KSTAR. Firstly, detailed definition of the hybrid scenario in KSTAR is described and categorized according to the MHD activities. The discharges exhibiting H89 >1.9, betaN >2.2 sustained more than 5*tauE at q95 <6.5 without or mild sawtooth are classified into the hybrid regime. Fishbones and neoclassical tearing modes are usually observed in this regime. Improved confinement in this regime is also confirmed with comparing general H-mode in KSTAR. Secondly, several experimental approaches are presented to access the hybrid regime. Here, four different recipes are described. Thirdly, the origin of the confinement enhancement is discussed. The role of the plasma rotation is found to be small in experiments where electron cyclotron heating is applied to reduce the toroidal rotation. The pedestal enhancement is thought to be the main reason for the confinement improvement in KSTAR hybrid scenarios.

  9. VEHICLE AND MODE OF ADMINISTRATION EFFECTS ON THE INDUCTION OF ABERRANT CRYPT FOCI IN THE COLONS OF MALE F344/N RATS EXPOSED TO BROMODICHLOROMETHANE

    EPA Science Inventory

    Vehicle and Mode of Administration Effects on the Induction of Aberrant Crypt Foci in the Colons of Male F344/N Rats Exposed to Bromodichloromethane.

    David R. Geter, Michael H. George, Tanya M. Moore, Steve Kilburn, Gloria Huggins-Clark, and Anthony B. DeAngelo. Submited ...

  10. Prospects for steady-state scenarios on JET

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Bizarro, J. P. S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Lomas, P.; Rimini, F. G.; Tala, T. J. J.; Akers, R.; Andrew, Y.; Arnoux, G.; Artaud, J. F.; Baranov, Yu F.; Beurskens, M.; Brix, M.; Cesario, R.; DeLa Luna, E.; Fundamenski, W.; Giroud, C.; Hawkes, N. C.; Huber, A.; Joffrin, E.; Pitts, R. A.; Rachlew, E.; Reyes-Cortes, S. D. A.; Sharapov, S. E.; Zastrow, K. D.; Zimmermann, O.; JET EFDA contributors, the

    2007-09-01

    In the 2006 experimental campaign, progress has been made on JET to operate non-inductive scenarios at higher applied powers (31 MW) and density (nl ~ 4 × 1019 m-3), with ITER-relevant safety factor (q95 ~ 5) and plasma shaping, taking advantage of the new divertor capabilities. The extrapolation of the performance using transport modelling benchmarked on the experimental database indicates that the foreseen power upgrade (~45 MW) will allow the development of non-inductive scenarios where the bootstrap current is maximized together with the fusion yield and not, as in present-day experiments, at its expense. The tools for the long-term JET programme are the new ITER-like ICRH antenna (~15 MW), an upgrade of the NB power (35 MW/20 s or 17.5 MW/40 s), a new ITER-like first wall, a new pellet injector for edge localized mode control together with improved diagnostic and control capability. Operation with the new wall will set new constraints on non-inductive scenarios that are already addressed experimentally and in the modelling. The fusion performance and driven current that could be reached at high density and power have been estimated using either 0D or 1-1/2D validated transport models. In the high power case (45 MW), the calculations indicate the potential for the operational space of the non-inductive regime to be extended in terms of current (~2.5 MA) and density (nl > 5 × 1019 m-3), with high βN (βN > 3.0) and a fraction of the bootstrap current within 60-70% at high toroidal field (~3.5 T).

  11. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  12. SDO Delta H Mode Design and Analysis

    NASA Technical Reports Server (NTRS)

    Mason, Paul A.; Starin, Scott R.

    2007-01-01

    While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.

  13. Progress in understanding the enhanced pedestal H-mode in NSTX

    DOE PAGES

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; ...

    2014-08-01

    The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from themore » plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.« less

  14. Initiatives in Non-Solenoidal Startup and H-mode Physics at Near-Unity A

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.; Thome, K. E.; Winz, G. R.

    2014-10-01

    Research on the A ~ 1 Pegasus ST is advancing the physics of non-solenoidal tokamak startup and the H-mode confinement regime. Local helicity injection (LHI) uses current sources in the plasma edge to initiate and drive Ip via DC helicity injection, subject to constraints from helicity conservation and Taylor relaxation. To date, Ip ~ 0 . 18 MA has been initiated with Iinj ~ 6 kA. A predictive 0-D power balance model of LHI Ip (t) evolution matches present discharges with strong PF induction. It projects Ip ~ 0 . 3 MA operation in Pegasus will achieve the LHI-dominated physics regime expected for 1 MA NSTX-U startup. Ohmic H-mode plasmas are routinely attained, due to the low Pth at the low BT of A --> 1 plasmas. However, both limited and favorable ∇B SN plasmas have Pth ~ 11 times higher than expected from high- A scalings. They have improved τe (H98 ~ 1) and a quiescent Jedge pedestal between edge localized modes (ELMs). Unique Jedge (t) measurements through a single Type I ELM show a complex, multimodal pedestal collapse and filament ejection. A proposed Pegasus-U initiative will upgrade the centerstack assembly and LHI injector systems, increasing BT to 1 T, Ohmic V-s by × 6 , and pulse length to 100 ms at A = 1 . 2 . This allows the physics and technology of LHI to be validated at NSTX-U relevant parameters, supports studies of nonlinear ELM dynamics, and will test high-βT tokamak stability. Work supported by US DOE Grant DE-FG02-96ER54375.

  15. The effect of the isotope on the H-mode density limit

    NASA Astrophysics Data System (ADS)

    Huber, A.; Wiesen, S.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Abreu, P.; Boboc, A.; Brix, M.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Guillemaut, C.; Jachmich, S.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph.; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; contributors, JET; ASDEX Upgrade Team

    2017-08-01

    In order to understand the mechanisms for the H-mode density limit in machines with fully metallic walls, systematic investigations of H-mode density limit plasmas in experiments with deuterium and hydrogen external gas fuelling have been performed on JET-ILW. The observed H-mode density limit on JET in D- as well as in H-plasmas demonstrates similar operation phases: the stable H-mode phase, degrading H-mode, breakdown of the H-mode with energy confinement deterioration accompanied by a dithering cycling phase, followed by the L-mode phase. The density limit is not related to an inward collapse of the hot core plasma due to an overcooling of the plasma periphery by radiation. Indeed, independently of the isotopic effect, the total radiated power stay almost constant during the H-mode phase until the H-L back transition. It was observed in D- and H-plasmas that neither detachment, nor the X-point MARFE itself do trigger the H-L transition and that they thus do not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the H-mode DL. By comparing similar discharges but fuelled with either deuterium or hydrogen, we have found that the H-mode density limit exhibits a dependence on the isotope mass: the density limit is up to 35% lower in hydrogen compared to similar deuterium plasma conditions (the obtained density limit is in agreement with the Greenwald limit for D-plasma). In addition, the density limit is nearly independent of the applied power both in deuterium or hydrogen fuelling conditions. The measured Greenwald fractions are consistent with the predictions from a theoretical model based on an MHD instability theory in the near-SOL. The JET operational domains are significantly broadened when increasing the plasma effective mass (e.g. tritium or deuterium-tritium operation), i.e. the L to H power threshold is reduced whereas the density limit for the L-mode back

  16. High-beta, steady-state hybrid scenario on DIII-D

    DOE PAGES

    Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...

    2015-12-17

    Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q fus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less

  17. Self-consistent modeling of CFETR baseline scenarios for steady-state operation

    NASA Astrophysics Data System (ADS)

    Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team

    2017-07-01

    Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.

  18. Axisymmetric oscillations at L-H transitions in JET: M-mode

    NASA Astrophysics Data System (ADS)

    Solano, Emilia R.; Vianello, N.; Delabie, E.; Hillesheim, J. C.; Buratti, P.; Réfy, D.; Balboa, I.; Boboc, A.; Coelho, R.; Sieglin, B.; Silburn, S.; Drewelow, P.; Devaux, S.; Dodt, D.; Figueiredo, A.; Frassinetti, L.; Marsen, S.; Meneses, L.; Maggi, C. F.; Morris, J.; Gerasimov, S.; Baruzzo, M.; Stamp, M.; Grist, D.; Nunes, I.; Rimini, F.; Schmuck, S.; Lupelli, I.; Silva, C.; contributors, JET

    2017-02-01

    L to H transition studies at JET have revealed an n  =  0, m  =  1 magnetic oscillation starting immediately at the L to H transition (called M-mode for brevity). While the magnetic oscillation is present a weak ELM-less H-mode regime is obtained, with a clear increase of density and a weak electron temperature pedestal. It is an intermediate state between L and H-mode. In ICRH heated plasmas or low density NBI plasmas the magnetic mode and the pedestal can remain steady (with small oscillations) for the duration of the heating phase, of order 10 s or more. The axisymmetric magnetic oscillation has period ~0.5-2 ms, and poloidal mode number m  =  1: it looks like a pedestal localised up/down oscillation, although it is clearly a natural oscillation of the plasma, not driven by the position control system. Electron cyclotron emission, interferometry, reflectometry and fast Li beam measurements locate the mode in the pedestal region. D α , fast infrared camera and Langmuir probe measurements show that the mode modulates heat and particle fluxes to the target. The mode frequency appears to scale with the poloidal Alfvén velocity, and not with sound speed (i.e. it is not a geodesic acoustic mode). A heuristic model is proposed for the frequency scaling of the mode. We discuss the relationship between the M-mode and other related observations near the L-H transition.

  19. ELM Dynamics in TCV H-modes

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Martin, Y. R.; Lister, J. B.; Llobet, X.; Bak, P. E.

    2003-06-01

    TCV (Tokamak à Configuration Variable, R = 0.88 m, a < 0.25 m, BT < 1.54 T) is a highly elongated tokamak, capable of producing limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma — wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock.

  20. Multi-Phonon Relaxation of H^- Local Modes in CaF_2

    NASA Astrophysics Data System (ADS)

    Davison, C. P.; Happek, U.; Campbell, J. A.; Engholm, J. R.; Schwettman, H. A.

    1998-03-01

    Local modes play an important role in the relaxation of vibrational modes of small molecules in solids (J.R. Engholm, C.W. Rella, H.A. Schwettman, and U. Happek; Phys. Rev. Lett. 77), 1302 (1996)., but only few attempts have been reported to study the relaxation of these local modes. Here we report on experiments to investigate the non-radiative relaxation of H^- local modes in CaF_2. Using a pump-probe technique, saturation experiments on the H^- local modes, both interstitial and substitutional, were performed at the Stanford Free Electron Laser Center. At low temperature we find a relaxation time T1 of 45 psec for the substitutional H^- local mode, and a more rapid relaxation for the interstitial H^- local modes next to La^3+ and Lu^3+ impurities. Information on the decay channels of the local modes are obtained from the characteristic temperature dependence of the relaxation rates. This work is supported in part by the ONR, Grant No. N00014-94-1024.

  1. The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011) The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011)

    NASA Astrophysics Data System (ADS)

    Saibene, G.

    2012-11-01

    as to stimulate and lead the open discussion. Poster sessions were also organized to present specialist papers and provide a venue for continued discussion. The topics selected for this edition of the workshop were: 1. Integrated plasma scenarios for ITER and a reactor: experimental and theoretical studies, including the self-stabilizing transport approach. 2. Edge transport barrier control and plasma performance: physics of 3D stochastic magnetic fields for ELM suppression. 3. H-mode transition physics and H-mode pedestal structure: pedestal dynamics near transitions and requirements for high-confinement access and sustainment. 4. Energetic particle driven instabilities and related physics: H-mode and the transport barrier. 5. Role of and evidence for non-diffusive particle and toroidal momentum transport and impact of fuelling: experiments, theory and modelling. 6. Long-range correlation of plasma turbulence and interaction between edge and core transport. The choice of topics, and the amount of progress in the understanding of the complexity of transport barriers physics reflect the drive in the fusion community towards the preparation for the ITER tokamak operation. More than 100 scientists (including students) attended the three-day workshop, coming from all over the world to present their newest results, discuss with colleagues and enjoy the atmosphere of the beautiful Lady Margaret Hall. The preparation work of the International Advisory Committee (G. Saibene (EU - Chair), R. Groebner (US), T. S Hahm (KO), A. Hubbard (US), K. Ida (Japan), S. Lebedev (RF), N. Oyama (Japan), E Wolfrum (EU)) has been rewarded by the enthusiastic participation of scientists, experimentalist, modellers and theoreticians, and by the high level of the scientific discussion throughout the workshop, during lunch breaks and even at the conference dinner. The Committee is also grateful to EFDA for the support in the organization of the workshop and to the Local Organizing Committee (E

  2. Evolution of two-dimensional plasma parameters in the plane of the wafer during the E- to H- and H- to E-mode transition in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Park, Il-Seo; Kim, Kyung-Hyun; Kim, Tae-Woo; Kim, Kwan-Youg; Moon, Ho-Jun; Chung, Chin-Wook

    2018-05-01

    The evolution of plasma parameters during the transition from E- to H- and from H- to E-mode is measured at the wafer level two-dimensionally at low and high pressures. The plasma parameters, such as electron density and electron temperature, are obtained through a floating harmonic sideband method. During the E- to H-mode transition, while the electron kinetics remains in the non-local regime at low pressure, the electron kinetics is changed from the non-local to the local regime at high pressure. The two-dimensional profiles of the electron density at two different pressures have similar convex shape despite different electron kinetics. However, in the case of the electron temperature, at high pressure, the profiles of the electron temperature are changed from flat to convex shape. These results can be understood by the diffusion of the plasma to the wafer-level probe. Moreover, between the transition of E to H and reverse H to E, hysteresis is observed even at the wafer level. The hysteresis is clearly shown at high pressure compared to low pressure. This can be explained by a variation of collisional energy loss including effects of electron energy distribution function (bi-Maxwellian, Maxwellian, Druyvesteyn distribution) on the rate constant and multistep ionization of excited state atoms. During the E- to H-mode transition, Maxwellization is caused by increased electron‑electron collisions, which reduces the collisional energy loss at high pressure (Druyvesteyn distribution) and increases it at low pressure (bi-Maxwellian distribution). Thus, the hysteresis is intensified at high pressure because the reduced collisional energy loss leads to higher ionization efficiency.

  3. Magnetohydrodynamic modes analysis and control of Fusion Advanced Studies Torus high-current scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villone, F.; Mastrostefano, S.; Calabrò, G.

    2014-08-15

    One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FASTmore » could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.« less

  4. Stability analysis of the high poloidal bet scenario on DIII-Dtowards operation athigher plasma current

    NASA Astrophysics Data System (ADS)

    Guo, W. F.; Gong, X. Z.; Huang, J.; Ren, Q. L.; Qian, J. P.; Ding, S. Y.; Pan, C. K.; Li, G. Q.; Xia, T. Y.; Garofalo, A. M.; Lao, L.; Hyatt, A.; Ferron, J.; Meneghini, O.; Liu, Y. Q.; McClenaghan, J.; Holcomb, C. T.

    2017-10-01

    The high poloidal beta scenario with plasma current IP 600 kA and large-radius internal transport barrier (ITB) on DIII-D is subject to n =1 MHD kink modes when the current profile becomes very broad at internal inductance values li 0.5-0.6. It is desirable to extend this scenario to higer plasma current ( 1 MA) for highernormalized fusionperformance. However, higher current at constant normalized beta, ?N 3, would reducethe poloidal bet, ?P, below the threshold for ITB sustainment, observed at ?P 1.9. Thus, to avoid loss of the IT, ?N?? must be increased together with IP while avoiding the kink instability. MHD analysis is presented that explains possible paths to high ?N stability limit for the kink mode in tis scenario. Work supported by National Magnetic Confinement Fusion Program of Chin under 2015GB110001 and 2015GB102000 - National Natural Science Foundation of China under Grant No. 1147521 and by US DOE under DE-FC02-04ER54698.

  5. Discriminant analysis to predict the occurrence of ELMS in H-mode discharges

    NASA Astrophysics Data System (ADS)

    Kardaun, O. J. W. F.; Itoh, S.-I.; Itoh, K.; Kardaun, J. W. P. F.

    1993-08-01

    After an exposition of its theoretical background, discriminant analysis is applied to the H-mode confinement database to find the region in plasma parameter space in which H-mode with small ELM's (Edge Localized Modes) is likely to occur. The boundary of this region is determined by the condition that the probability of appearance of such a type of H-mode, as a function of the plasma parameters, should be larger than some threshold value and larger than the corresponding probability for other types of H-mode (i.e., H-mode without ELM's or with giant ELM's). In practice, the discrimination has been performed for the ASDEX, JET and JFT-2M tokamaks using four instantaneous plasma parameters (injected power Pinj, magnetic field Bt, plasma current Ip and line averaged electron density ne) and taking also memory effects of the plasma and the distance between the plasma and the wall into account, while using variables that are normalized with respect to machine size. Generally speaking, it is found that there is a substantial overlap between the region of H-mode with small ELM's and the region of the two other types of H-mode. However, the ELM-free and the giant ELM H-modes relatively rarely appear in the region, that, according to the analysis, is allocated to small ELM's. A reliable production of H-mode with only small ELM's seems well possible by choosing this regime in parameter space. In the present study, it was not attempted to arrive at a unified discrimination across the machines. So, projection from one machine to another remains difficult, and a reliable determination of the region where small ELM's occur still requires a training sample from the device under consideration.

  6. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [The quiescent H-mode regime for high performance ELM-stable operation in future burning plasmas

    DOE PAGES

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...

    2015-05-26

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  7. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Bush, Brian; Penev, Michael

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  8. Strongly coupled modes of M and H for perpendicular resonance

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Saslow, Wayne M.

    2018-05-01

    We apply the equations for the magnetization M ⃗ and field H ⃗ to study their coupled modes for a semi-infinite ferromagnet, conductor, or insulator with magnetization M0 and field H0 normal to the plane (perpendicular resonance) and wave vector normal to the plane, which makes the modes doubly degenerate. With dimensionless damping constant α and dimensionless transverse susceptibility χ⊥=M0/He(He≡H0-M0) , we derive an analytic expression for the wave vector squared, showing that M ⃗ and H ⃗ are nearly decoupled only if α ≫χ⊥ . This is violated in the ferromagnetic regime, although a first correction is found to give good agreement away from resonance. Emphasizing the conductor permalloy as a function of H0 we study the eigenvalues and eigenmodes and the dissipation rate due to absorption both from the total effective field and from the Joule heating. (We include the contribution of the nonuniform exchange energy term, needed for energy conservation.) Using these modes we then apply, for a semi-infinite ferromagnet, a range of boundary conditions (i.e., surface anisotropies) on M⊥ to find the reflection coefficient R and the reflectivity |R| 2. As a function of H0, absorption is dominated by the the skin depth mode (primarily H ⃗) except near the resonance and at a higher-field Hd associated with a dip in the reflectivity, whose position above the main resonance varies quadratically with the surface anisotropy Ks. The dip is driven by the boundary condition on M ⃗; the coefficient of the (primarily) M ⃗ mode becomes very small at the dip, being compensated by an increase in the amplitude of the M ⃗ mode, which has a Lorentzian line shape of height ˜α-1 and width ˜α .

  9. Azimuthal Directivity of Fan Tones Containing Multiple Modes

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Sutliff, Daniel L.; Nallasamy, M.

    1997-01-01

    The directivity of fan tone noise is generally measured and plotted in the sideline or flyover plane and it is assumed that this curve is the same for all azimuthal angles. When two or more circumferential (m-order) modes of the same tone are present in the fan duct, an interference pattern develops in the azimuthal direction both in the duct and in the farfield. In this investigation two m-order modes of similar power were generated in a large low speed fan. Farfield measurements and a finite element propagation code both show substantial variations in the azimuthal direction. Induct mode measurement were made and used as input to the code. Although these tests may represent a worst case scenario, the validity of the current practice of assuming axisymmetry should be questioned.

  10. Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation

    NASA Astrophysics Data System (ADS)

    Romanelli, M.; Zocco, A.; Crisanti, F.; Contributors, JET-EFDA

    2010-04-01

    Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, nH,fast/nD,thermal up to 10%, TH,fast/TD,thermal up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E × B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.

  11. Transport properties of NSTX-U L- and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, Stanley; Guttenfelder, Walter; Bell, Ron; Diallo, Ahmed; Leblanc, Ben; Podesta, Mario

    2016-10-01

    The confinement and transport properties of L- and H-mode plasmas in NSTX-U has been studied using the TRANSP code. A dedicated series of L-mode discharges was obtained to study the dependence of confinement and transport on power level and beam aiming angle. The latter is made possible by having two beamlines with 3 sources each, capable of injecting with tangency radii from Rtan = 50 to 130 cm (Rgeo = 92 cm). L-mode plasmas typically have confinement enhancement factors with H98y,2 =0.6 to 0.65, exhibiting a 25% decrease in confinement time as the beam power is raised from 1 to 3 MW. Associated with this is an increase in the electron thermal diffusivity in the core of the plasma from 3.5 to 10 m2/s. Electron thermal transport is the dominant energy loss channel in these plasmas. H-mode plasmas exhibit improved confinement, with H98y,2 =1 or above, and core electron thermal diffusivity values <1 m2/s. Details of these studies will be presented, along with the results of the beam tangency radius scan in L-mode plasmas. This research was supported by the U.S. Department of Energy contract # DE-AC02-09CH11466.

  12. Vibrational mode frequencies of H2S and H2O adsorbed on Ge(0 0 1)-(2 × 1) surfaces

    NASA Astrophysics Data System (ADS)

    Hartnett, M.; Fahy, S.

    2015-02-01

    The equilibrium geometry and vibrational modes of H2S and H2O-terminated Ge(0 0 1)-(2 × 1) surfaces are calculated in a supercell approach using first-principles density functional theory in the local density (LDA), generalized gradient (GGA) approximations and van der Waals (vdW) interactions. Mode frequencies are found using the frozen phonon method. For the H2S-passivated surface, the calculated frequencies in LDA (GGA) are 2429 cm-1 (2490) for the Hsbnd S stretch mode, 712 cm-1 (706) for the Hsbnd S bond bending mode, 377 cm-1 (36) for the Gesbnd S stretch mode and 328 cm-1 (337) for Hsbnd S wag mode. Frequencies for the H2O passivated surface are 3590 cm-1 (3600) for the Hsbnd O stretch mode, 921 cm-1 (947) for the bending mode, 609 cm-1 (559) for the Gesbnd O stretch, 1995 cm-1 (1991) for the Gesbnd H stretch mode, 498 cm-1 (478) for the Gesbnd H bending mode and 342 cm-1 (336) for the Hsbnd O wag mode. The differences between the functionals including vdW terms and the LDA or GGA are less than the differences between LDA and GGA for the vibrational mode frequencies.

  13. Scenarios of Mentor Education in Romania--Towards Improving Teacher Induction

    ERIC Educational Resources Information Center

    Stîngu, Mihaela; Eisenschmidt, Eve; Iucu, Romi?a

    2016-01-01

    The aim of this paper is to examine the induction programme for newly qualified teachers and mentor education in Estonia, providing a comparative analysis of existing Estonian and possible Romanian models of mentoring. While the Estonian induction programme has been in place for more than ten years, induction in Romania is a relatively new and has…

  14. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures.

    PubMed

    Brar, Victor W; Jang, Min Seok; Sherrott, Michelle; Kim, Seyoon; Lopez, Josue J; Kim, Laura B; Choi, Mansoo; Atwater, Harry

    2014-07-09

    Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.

  15. BOUT++ simulations of edge turbulence in Alcator C-Mod's EDA H-mode

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.; MIT PSFC Team; Atomics Team, General; LLNL Team

    2013-10-01

    Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.

  16. BOUT++ Simulations of Edge Turbulence in Alcator C-Mod's EDA H-Mode

    NASA Astrophysics Data System (ADS)

    Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.

    2013-10-01

    Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.

  17. Infrared spectrum of NH4+(H2O): Evidence for mode specific fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankewitz, Tobias; Lagutschenkov, Anita; Niedner-schatteburg, Gereon

    2007-02-21

    The gas phase infrared spectrum (3250 to 3810 cm1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by consequence spectroscopy of mass selected and isolated ions. The obtained four bands are assigned to N-H stretching modes and O-H stretching modes, respectively. The observed N-H stretching modes are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The observed O-H stretching modes are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicularmore » transitions. The K-type equidistant rotational spacings of 11.1(2) cm1 (NH4+) and 29(3) cm1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The recorded relative band intensities compare favorably with predictions of high level ab initio calculations except for the 3(H2O) band for which the observed value is about 20 times weaker than the calculated one. This long standing puzzle motivated us to examine the a 3(H2O)/1(H2O) intensity ratios from other published action spectra in other cationic complexes. These suggest that the 3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggested that the coupling of the 3(H2O) and 1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings altogether render the picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high-level electronic structure calculations at the coupled-cluster single and double with perturbative treatment of triple

  18. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  19. Long-pulse stability limits of the ITER baseline scenario

    DOE PAGES

    Jackson, G. L.; Luce, T. C.; Solomon, W. M.; ...

    2015-01-14

    DIII-D has made significant progress in developing the techniques required to operate ITER, and in understanding their impact on performance when integrated into operational scenarios at ITER relevant parameters. We demonstrated long duration plasmas, stable to m/n =2/1 tearing modes (TMs), with an ITER similar shape and I p/aB T, in DIII-D, that evolve to stationary conditions. The operating region most likely to reach stable conditions has normalized pressure, B N≈1.9–2.1 (compared to the ITER baseline design of 1.6 – 1.8), and a Greenwald normalized density fraction, f GW 0.42 – 0.70 (the ITER design is f GW ≈ 0.8).more » The evolution of the current profile, using internal inductance (l i) as an indicator, is found to produce a smaller fraction of stable pulses when l i is increased above ≈ 1.1 at the beginning of β N flattop. Stable discharges with co-neutral beam injection (NBI) are generally accompanied with a benign n=2 MHD mode. However if this mode exceeds ≈ 10 G, the onset of a m/n=2/1 tearing mode occurs with a loss of confinement. In addition, stable operation with low applied external torque, at or below the extrapolated value expected for ITER has also been demonstrated. With electron cyclotron (EC) injection, the operating region of stable discharges has been further extended at ITER equivalent levels of torque and to ELM free discharges at higher torque but with the addition of an n=3 magnetic perturbation from the DIII-D internal coil set. Lastly, the characterization of the ITER baseline scenario evolution for long pulse duration, extension to more ITER relevant values of torque and electron heating, and suppression of ELMs have significantly advanced the physics basis of this scenario, although significant effort remains in the simultaneous integration of all these requirements.« less

  20. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Andre, R. G.; Gates, D. A.

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control schememore » that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.« less

  1. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    DOE PAGES

    Boyer, M. D.; Andre, R. G.; Gates, D. A.; ...

    2017-04-24

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control schememore » that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.« less

  2. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Andre, R. G.; Gates, D. A.; Gerhardt, S. P.; Menard, J. E.; Poli, F. M.

    2017-06-01

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control scheme that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.

  3. Disruption avoidance and fast ramp-down techniques for the DIII-D experimental scenarios

    NASA Astrophysics Data System (ADS)

    Barr, Jayson; Eidietis, N. W.; Humphreys, D. A.; Sammuli, B.; Luce, T.

    2017-10-01

    Plasma current ramp-down in ITER will continue in H-mode from 15 MA to 10 MA, and will keep a diverted shape until termination. This is in contrast to the limited ramp-down scenarios typically used in DIII-D operations. Additionally, fast emergency ramp-down scenarios for ITER and future reactors are a priority for disruption avoidance. New experiments in DIII-D use the ramp-down phase of a variety of experiments including in the ITER baseline scenario to survey and identify optimized ramp-down scenarios for both scheduled terminations and terminations triggered by off-normal event detection. Systematic scans in current ramp-rate (1-5 MA/s), neutral beam power (including βN feedback) and ramp-down shaping (limited versus continued diverted) have identified fast ramp-down scenarios for Lower Single Null (LSN) and Double Null (DN) plasmas. Scenario-specific methods and their rates of successful termination will be presented and compared relative to a historical data-set of ramp-down programming in the limiter configuration. Locked modes are found to be the most significant challenge to disruption avoidance in diverted ramp-downs. Results for LSN diverted discharges that begin the rampdown with large locked-modes will also be presented. If available, results of similar experiments on EAST will be presented. Work supported by US DOE under DE-FC02-04ER54698 and DE-SC0010685.

  4. H-mode pedestal stability and ELMs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mossessian, Dmitri

    2002-11-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity accumulation. The major relaxation mechanism seen on most of the existing tokamaks - large type I ELMs - drive high particle and energy fluxes that present a significant power load on the divertor plates. On Alcator C-Mod, however, type I ELMs are not observed. Instead, more benign mechanisms - EDA and small grassy ELMs - appear to drive enhanced particle transport at the edge of H-mode plasmas. Both have good energy confinement, no impurity accumulation, and are steady state. In EDA the edge relaxation mechanism is provided by a quasicoherent electromagnetic mode localized in the outer part of the pedestal. Non-linear gyrofluid and linear gyrokinetic simulations, as well as real geometry fluctuation modeling based on fluid equations show the presence of a coherent mode. Based on those results the observed mode is tentatively identified as resistive ballooning. At higher edge pressure gradient the mode is replaced by broadband fluctuations and small irregular ELMs are observed. Based on ideal MHD calculations that include effects of bootstrap current, these ELMs are identified as medium n coupled ideal peeling/ballooning modes. The stability threshold and modes structure of these modes are studied with recently developed linear MHD stability code ELITE and the results are compared with the observed dependence of the ELMs' character on pedestal parameters and plasma shape.

  5. Design and simulation of control algorithms for stored energy and plasma current in non-inductive scenarios on NSTX-U

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca

    2015-11-01

    One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.

  6. Investigation of key parameters for the development of reliable ITER baseline operation scenarios using CORSICA

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Casper, T. A.; Snipes, J. A.

    2018-05-01

    ITER will demonstrate the feasibility of burning plasma operation by operating DT plasmas in the ELMy H-mode regime with a high ratio of fusion power gain Q ~ 10. 15 MA ITER baseline operation scenario has been studied using CORSICA, focusing on the entry to burn, flat-top burning plasma operation and exit from burn. The burning plasma operation for about 400 s of the current flat-top was achieved in H-mode within the various engineering constraints imposed by the poloidal field coil and power supply systems. The target fusion gain (Q ~ 10) was achievable in the 15 MA ITER baseline operation with a moderate amount of the total auxiliary heating power (~50 MW). It has been observed that the tungsten (W) concentration needs to be maintained low level (n w/n e up to the order of 1.0  ×  10-5) to avoid the radiative collapse and uncontrolled early termination of the discharge. The dynamic evolution of the density can modify the H-mode access unless the applied auxiliary heating power is significantly higher than the H-mode threshold power. Several qualitative sensitivity studies have been performed to provide guidance for further optimizing the plasma operation and performance. Increasing the density profile peaking factor was quite effective in increasing the alpha particle self-heating power and fusion power multiplication factor. Varying the combination of auxiliary heating power has shown that the fusion power multiplication factor can be reduced along with the increase in the total auxiliary heating power. As the 15 MA ITER baseline operation scenario requires full capacity of the coil and power supply systems, the operation window for H-mode access and shape modification was narrow. The updated ITER baseline operation scenarios developed in this work will become a basis for further optimization studies necessary along with the improvement in understanding the burning plasma physics.

  7. Steady state scenario development with elevated minimum safety factor on DIII-D

    DOE PAGES

    Holcomb, Christopher T.; Ferron, John R.; Luce, Timothy C.; ...

    2014-08-15

    On DIII-D, a high β scenario with minimum safety factor (q min) near 1.4 has been optimized with new tools and shown to be a favourable candidate for long pulse or steady state operation in future devices. Furthermore, the new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q min with a less peaked pressure profile. The observed changes increase the ideal magnetohydrodynamics (MHD) n = 1 mode β N limit thus providing a path forward for increasing the noninductive current drive fraction by operating atmore » high β N. Quasi-stationary discharges free of tearing modes have been sustained at βN = 3.5 and β T = 3.6% for two current profile diffusion timescales (about 3 s) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain Q ≈ 5 in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q min remains elevated near 1.4. Our observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising β N. Similar discharges with q min = 1.5–2 were susceptible to tearing modes and off-axis fishbones, and with q min > 2 lower normalized global energy confinement time is observed.« less

  8. Advances in the steady-state hybrid regime in DIII-D—a fully non-inductive, ELM-suppressed scenario for ITER

    NASA Astrophysics Data System (ADS)

    Petty, C. C.; Nazikian, R.; Park, J. M.; Turco, F.; Chen, Xi; Cui, L.; Evans, T. E.; Ferraro, N. M.; Ferron, J. R.; Garofalo, A. M.; Grierson, B. A.; Holcomb, C. T.; Hyatt, A. W.; Kolemen, E.; La Haye, R. J.; Lasnier, C.; Logan, N.; Luce, T. C.; McKee, G. R.; Orlov, D.; Osborne, T. H.; Pace, D. C.; Paz-Soldan, C.; Petrie, T. W.; Snyder, P. B.; Solomon, W. M.; Taylor, N. Z.; Thome, K. E.; Van Zeeland, M. A.; Zhu, Y.

    2017-11-01

    The hybrid regime with beta, collisionality, safety factor and plasma shape relevant to the ITER steady-state mission has been successfully integrated with ELM suppression by applying an odd parity n  =  3 resonant magnetic perturbation (RMP). Fully non-inductive hybrids in the DIII-D tokamak with high beta (≤ft< β \\right>   ⩽  2.8%) and high confinement (H98y2  ⩽  1.4) in the ITER similar shape have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. The n  =  3 RMP causes surprisingly little increase in thermal transport during ELM suppression. Poloidal magnetic flux pumping in hybrid plasmas maintains q above 1 without loss of current drive efficiency, except that experiments show that extremely peaked ECCD profiles can create sawteeth. During ECCD, Alfvén eigenmode (AE) activity is replaced by a more benign fishbone-like mode, reducing anomalous beam ion diffusion by a factor of 2. While the electron and ion thermal diffusivities substantially increase with higher ECCD power, the loss of confinement can be offset by the decreased fast ion transport resulting from AE suppression. Extrapolations from DIII-D along a dimensionless parameter scaling path as well as those using self-consistent theory-based modeling show that these ELM-suppressed, fully non-inductive hybrids can achieve the Q fus  =  5 ITER steady-state mission.

  9. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, B.; Penev, M.; Melaina, M.

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  10. Enhancing Induction Coil Reliability

    NASA Astrophysics Data System (ADS)

    Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.

    2014-12-01

    In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.

  11. The high-βN hybrid scenario for ITER and FNSF steady-state missions

    DOE PAGES

    Turco, Francesca; Petty, Clinton C.; Luce, Timothy C.; ...

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and βN up to 3.7 sustained for ~3 s (~1.5 current diffusion time, τ R, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H 98y2~1.6) without performance limiting tearing modes. Furthermore, the hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficientmore » current drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ R when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β N~4-4.5. Off-axis NBI power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ', as calculated by the DCON and PEST3 codes. Our results are based on measured profiles that predict ideal limits at βN>4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, βN and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q=5 mission and the FNSF 6.7 MA scenario with Q=3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-βN hybrid represents an attractive high performance option for the steady-state missions of these devices.« less

  12. ECE-imaging of the H-mode pedestal (invited).

    PubMed

    Tobias, B J; Austin, M E; Boom, J E; Burrell, K H; Classen, I G J; Domier, C W; Luhmann, N C; Nazikian, R; Snyder, P B

    2012-10-01

    A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T(e) and n(e) contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.

  13. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    NASA Astrophysics Data System (ADS)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  14. Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.

    2017-02-01

    Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.

  15. ITER Baseline Scenario with ECCD Applied to Neoclassical Tearing Modes in DIII-D

    NASA Astrophysics Data System (ADS)

    Welander, A. G.; La Haye, R. J.; Lohr, J. M.; Humphreys, D. A.; Prater, R.; Paz-Soldan, C.; Kolemen, E.; Turco, F.; Olofsson, E.

    2015-11-01

    The neoclassical tearing mode (NTM) is a magnetic island that can occur on flux surfaces where the safety factor q is a rational number. Both m/n=3/2 and 2/1 NTM's degrade confinement, and the 2/1 mode often locks to the wall and disrupts the plasma. An NTM can be suppressed by depositing electron cyclotron current drive (ECCD) on the q-surface by injecting microwave beams into the plasma from gyrotrons. Recent DIII-D experiments have studied the application of ECCD/ECRH in the ITER Baseline Scenario. The power required from the gyrotrons can be significant enough to impact the fusion gain, Q in ITER. However, if gyrotron power could be minimized or turned off in ITER when not needed, this impact would be small. In fact, tearing-stable operation at low torque has been achieved previously in DIII-D without EC power. A vision for NTM control in ITER will be described together with results obtained from simulations and experiments in DIII-D under ITER like conditions. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54761.

  16. 29. INDUCTION MOTOR (6600 VOLTS, 5750 H.P.) DRIVES THE 21INCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. INDUCTION MOTOR (6600 VOLTS, 5750 H.P.) DRIVES THE 21-INCH AND 18-INCH BILLET MILLS. MOTOR WAS MANUFACTURED BY THE GENERAL ELECTRIC COMPANY, SCHENECTADY, NEW YORK. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  17. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  18. H-localized mode in chains of hydrogen-bonded amide groups

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Kellouai, Hassan; Page, Gabriel; Moret, Jacques; Johnson, Susanna W.; Eckert, Juergen

    1993-09-01

    New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary results of structural data obtained by neutron diffraction at low temperature are also described. Besides the well-known anomalous amide-1 mode (1650 cm -1), it is shown that the NH out-of-plane bend (770 cm -1) and the “H-bond strain” (at about 105 cm -1) exhibit an anomalous increase of intensity proportional to the law exp(- T2/ Θ2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H - localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy at 15 K. Considering these new results, the theoretical model of a self-trapped “polaronic” state seems to be the most consistent with the whole set of observed anomalies in this family of crystals.

  19. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    DOE PAGES

    Solomon, W. M.; Snyder, P. B.; Bortolon, A.; ...

    2016-03-25

    In a new high pedestal regime ("Super H-mode") we predicted and accessed DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. And while elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER canmore » benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. In similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.« less

  20. Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Osborne, T.; Snyder, P. B.; Alper, B.; Angioni, C.; Bourdelle, C.; Buratti, P.; Crisanti, F.; Giovannozzi, E.; Giroud, C.; Groebner, R.; Hobirk, J.; Jenkins, I.; Joffrin, E.; Leyland, M. J.; Lomas, P.; Mantica, P.; McDonald, D.; Nunes, I.; Rimini, F.; Saarelma, S.; Voitsekhovitch, I.; de Vries, P.; Zarzoso, D.; Contributors, JET-EFDA

    2013-01-01

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ˜ 1.5-2, H98 ˜ 1, whereas the hybrid plasmas have βN ˜ 2.5-3, H98 < 1.5. The database study contains both low- (δ ˜ 0.2-0.25) and high-triangularity (δ ˜ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as Mach_A^{0.41+/- 0.07} and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ˜ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No

  1. Evolution of E × B shear and coherent fluctuations prior to H-L transitions in DIII-D and control strategies for H-L transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldon, David; Boivin, Rejean L.; Chrystal, Colin

    While operating a magnetic fusion device in H-mode has many advantages, care must be taken to understand and control the release of energy during the H-L back transition, as the extra energy stored within the H-mode transport barrier will have the potential to cause damage to material components of a large future tokamak such as ITER. Examining a scenario where the H-L back transition sequence begins before the E × B shearing layer decays on its own, we identify a long-lived precursor mode that is tied to the events of the H-L sequence and we develop a robust control strategymore » for ensuring gradual release of energy during the transition sequence. Back transitions in this scenario commonly begin with a rapid relaxation of the pedestal, which was previously shown to be inconsistent with ideal peeling-ballooning instability as the trigger, despite being otherwise similar to a large type-I Edge Localized Mode (ELM). Here, this so-called transient occurs when the E × B shearing rate ω E×B is significantly larger than the turbulence decorrelation rate ωT, indicating that this is not the result of runaway turbulence recovery. The transient is always synchronous with amplitude and propagation velocity modulations of the precursor mode, which has been dubbed the Modulating Pedestal Mode (MPM).The MPM is a coherent density fluctuation, which, in our scenario at least, reliably appears in the steep gradient region with f ≈ 70 kHz, k θ ≈ 0.3 cm –1, and it exists for ≳100 ms before the onset of back transitions. The transient may be reliably eliminated by reducing toroidal rotation in the co-current direction by the application of torque from counter-injecting neutral beams. The transient in these “soft” H-L transitions is then replaced by a small type-III ELM, which is also always synchronous with the MPM, and MPM shows the same behavior in both hard and soft cases.« less

  2. Evolution of E × B shear and coherent fluctuations prior to H-L transitions in DIII-D and control strategies for H-L transitions

    DOE PAGES

    Eldon, David; Boivin, Rejean L.; Chrystal, Colin; ...

    2015-11-19

    While operating a magnetic fusion device in H-mode has many advantages, care must be taken to understand and control the release of energy during the H-L back transition, as the extra energy stored within the H-mode transport barrier will have the potential to cause damage to material components of a large future tokamak such as ITER. Examining a scenario where the H-L back transition sequence begins before the E × B shearing layer decays on its own, we identify a long-lived precursor mode that is tied to the events of the H-L sequence and we develop a robust control strategymore » for ensuring gradual release of energy during the transition sequence. Back transitions in this scenario commonly begin with a rapid relaxation of the pedestal, which was previously shown to be inconsistent with ideal peeling-ballooning instability as the trigger, despite being otherwise similar to a large type-I Edge Localized Mode (ELM). Here, this so-called transient occurs when the E × B shearing rate ω E×B is significantly larger than the turbulence decorrelation rate ωT, indicating that this is not the result of runaway turbulence recovery. The transient is always synchronous with amplitude and propagation velocity modulations of the precursor mode, which has been dubbed the Modulating Pedestal Mode (MPM).The MPM is a coherent density fluctuation, which, in our scenario at least, reliably appears in the steep gradient region with f ≈ 70 kHz, k θ ≈ 0.3 cm –1, and it exists for ≳100 ms before the onset of back transitions. The transient may be reliably eliminated by reducing toroidal rotation in the co-current direction by the application of torque from counter-injecting neutral beams. The transient in these “soft” H-L transitions is then replaced by a small type-III ELM, which is also always synchronous with the MPM, and MPM shows the same behavior in both hard and soft cases.« less

  3. Expanded Capabilities for the Hydrogen Financial Analysis Scenario Tool (H2FAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian; Melaina, Marc; Penev, Michael

    This presentation describes how NREL expanded the capabilities for the Hydrogen Financial Analysis Scenario Tool (H2FAST) in FY16. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Meeting on June 8, 2016, in Washington, D.C.

  4. A relevance theory of induction.

    PubMed

    Medin, Douglas L; Coley, John D; Storms, Gert; Hayes, Brett K

    2003-09-01

    A framework theory, organized around the principle of relevance, is proposed for category-based reasoning. According to the relevance principle, people assume that premises are informative with respect to conclusions. This idea leads to the prediction that people will use causal scenarios and property reinforcement strategies in inductive reasoning. These predictions are contrasted with both existing models and normative logic. Judgments of argument strength were gathered in three different countries, and the results showed the importance of both causal scenarios and property reinforcement in category-based inferences. The relation between the relevance framework and existing models of category-based inductive reasoning is discussed in the light of these findings.

  5. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×10 7 s -1.« less

  6. Discovering H-bonding rules in crystals with inductive logic programming.

    PubMed

    Ando, Howard Y; Dehaspe, Luc; Luyten, Walter; Van Craenenbroeck, Elke; Vandecasteele, Henk; Van Meervelt, Luc

    2006-01-01

    In the domain of crystal engineering, various schemes have been proposed for the classification of hydrogen bonding (H-bonding) patterns observed in 3D crystal structures. In this study, the aim is to complement these schemes with rules that predict H-bonding in crystals from 2D structural information only. Modern computational power and the advances in inductive logic programming (ILP) can now provide computational chemistry with the opportunity for extracting structure-specific rules from large databases that can be incorporated into expert systems. ILP technology is here applied to H-bonding in crystals to develop a self-extracting expert system utilizing data in the Cambridge Structural Database of small molecule crystal structures. A clear increase in performance was observed when the ILP system DMax was allowed to refer to the local structural environment of the possible H-bond donor/acceptor pairs. This ability distinguishes ILP from more traditional approaches that build rules on the basis of global molecular properties.

  7. Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.

    PubMed

    Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M

    2009-04-17

    For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.

  8. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  9. Divertor heat flux simulations in ELMy H-mode discharges of EAST

    NASA Astrophysics Data System (ADS)

    Xia, T. Y.; Xu, X. Q.; Wu, Y. B.; Huang, Y. Q.; Wang, L.; Zheng, Z.; Liu, J. B.; Zang, Q.; Li, Y. Y.; Zhao, D.; EAST Team

    2017-11-01

    This paper presents heat flux simulations for the ELMy H-mode on the Experimental Advanced Superconducting Tokamak (EAST) using a six-field two-fluid model in BOUT++. Three EAST ELMy H-mode discharges with different plasma currents I p and geometries are studied. The trend of the scrape-off layer width λq with I p is reproduced by the simulation. The simulated width is only half of that derived from the EAST scaling law, but agrees well with the international multi-machine scaling law. Note that there is no radio-frequency (RF) heating scheme in the simulations, and RF heating can change the boundary topology and increase the flux expansion. Anomalous electron transport is found to contribute to the divertor heat fluxes. A coherent mode is found in the edge region in simulations. The frequency and poloidal wave number kθ are in the range of the edge coherent mode in EAST. The magnetic fluctuations of the mode are smaller than the electric field fluctuations. Statistical analysis of the type of turbulence shows that the turbulence transport type (blobby or turbulent) does not influence the heat flux width scaling. The two-point model differs from the simulation results but the drift-based model shows good agreement with simulations.

  10. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.

    PubMed

    Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori

    2017-11-04

    (1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  11. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yue; Zhang, Shunfen; Zhou, Tianyan

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expressionmore » of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.« less

  12. Induction of a Torpor-Like State by 5’-AMP Does Not Depend on H2S Production

    PubMed Central

    Dugbartey, George J.; Bouma, Hjalmar R.; Strijkstra, Arjen M.; Boerema, Ate S.; Henning, Robert H.

    2015-01-01

    Background Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called ‘torpor’ without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5’-Adenosine monophosphate (5’-AMP). The mechanism by which 5’-AMP leads to the induction of a torpor-like state, and the role of H2S herein, remains to be unraveled. Therefore, we investigated whether induction of a torpor-like state by 5-AMP depends on H2S production. Methods To study the role of H2S on the induction of torpor, amino-oxyacetic acid (AOAA), a non-specific inhibitor of H2S, was administered before injection with 5'-AMP to block endogenous H2S production in Syrian hamster. To assess the role of H2S on maintenance of torpor induced by 5’-AMP, additional animals were injected with AOAA during torpor. Key Results During the torpor-like state induced by 5’-AMP, the expression of H2S- synthesizing enzymes in the kidneys and plasma levels of H2S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H2S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H2S production was associated with increased renal injury. Conclusions Induction of a torpor-like state by 5’-AMP does not depend on H2S, although production of H2S seems to attenuate renal injury. Unraveling the mechanisms by which 5’-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery. PMID:26295351

  13. Hydrological projections of climate change scenarios over the 3H region of China: A VIC model assessment

    NASA Astrophysics Data System (ADS)

    Dan, Li; Ji, Jinjun; Xie, Zhenghui; Chen, Feng; Wen, Gang; Richey, Jeffrey E.

    2012-06-01

    To examine the potential sensitivity of the Huang-Huai-Hai Plain (3H) region of China to potential changes in future precipitation and temperature, a hydrological evaluation using the VIC hydrological model under different climate scenarios was carried out. The broader perspective is providing a scientific background for the adaptation in water resource management and rural development to climate change. Twelve climate scenarios were designed to account for possible variations in the future with respect to the baseline of historic climate patterns. Results from the six representative types of climate scenarios (+2°C and +5°C warming, and 0%, +15%, -15% change in precipitation) show that rising temperatures for normal precipitation and for wet scenarios (+15% precipitation) yield greater increased evapotranspiration in the south than in the north, which is confirmed by the remaining six scenarios described below. For a 15% change in precipitation, the largest increase or decrease of evapotranspiration occurs between 33 and 36°N and west of 118°E, a region where evapotranspiration is sensitive to precipitation variation and is affected by the amount of water available for evaporation. Rising temperatures can lead to a south-to-north decreasing gradient of surface runoff. The six scenarios yield a large variation of runoff in the southern end of the 3H, which means that this zone is sensitive to climate change through surface runoff change. The Jiangsu province in the southeastern part of the 3H region shows an obvious sensitivity in soil moisture to climate change. On a regional mean scale, the hydrological change induced by the increasing precipitation from 15% to 30% is more obvious than that induced by greater warming of +5°C relative to +2°C. These simulations identify key regions of sensitivity in hydrological variation to climate change in the provinces of 3H, which can be used as guides in implementing adaptation.

  14. Lattice gauge action suppressing near-zero modes of H{sub W}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi

    2006-11-01

    We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less

  15. The Alternative Epac/cAMP Pathway and the MAPK Pathway Mediate hCG Induction of Leptin in Placental Cells

    PubMed Central

    Maymó, Julieta Lorena; Pérez Pérez, Antonio; Maskin, Bernardo; Dueñas, José Luis; Calvo, Juan Carlos; Sánchez Margalet, Víctor; Varone, Cecilia Laura

    2012-01-01

    Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with (Bu)2cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression, whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe) stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in placenta is mediated not only by activation of the MAPK signaling pathway but also by the

  16. The high-β{sub N} hybrid scenario for ITER and FNSF steady-state missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turco, F.; Petty, C. C.; Luce, T. C.

    2015-05-15

    New experiments on DIII-D have demonstrated the steady-state potential of the hybrid scenario, with 1 MA of plasma current driven fully non-inductively and β{sub N} up to 3.7 sustained for ∼3 s (∼1.5 current diffusion time, τ{sub R}, in DIII-D), providing the basis for an attractive option for steady-state operation in ITER and FNSF. Excellent confinement is achieved (H{sub 98y2} ∼ 1.6) without performance limiting tearing modes. The hybrid regime overcomes the need for off-axis current drive efficiency, taking advantage of poloidal magnetic flux pumping that is believed to be the result of a saturated 3/2 tearing mode. This allows for efficient currentmore » drive close to the axis, without deleterious sawtooth instabilities. In these experiments, the edge surface loop voltage is driven down to zero for >1 τ{sub R} when the poloidal β is increased above 1.9 at a plasma current of 1.0 MA and the ECH power is increased to 3.2 MW. Stationary operation of hybrid plasmas with all on-axis current drive is sustained at pressures slightly above the ideal no-wall limit, while the calculated ideal with-wall MHD limit is β{sub N} ∼ 4–4.5. Off-axis Neutral Beam Injection (NBI) power has been used to broaden the pressure and current profiles in this scenario, seeking to take advantage of higher predicted kink stability limits and lower values of the tearing stability index Δ′, as calculated by the DCON and PEST3 codes. Results based on measured profiles predict ideal limits at β{sub N} > 4.5, 10% higher than the cases with on-axis NBI. A 0-D model, based on the present confinement, β{sub N} and shape values of the DIII-D hybrid scenario, shows that these plasmas are consistent with the ITER 9 MA, Q = 5 mission and the FNSF 6.7 MA scenario with Q = 3.5. With collisionality and edge safety factor values comparable to those envisioned for ITER and FNSF, the high-β{sub N} hybrid represents an attractive high performance option for the

  17. Investigation of physical processes limiting plasma density in H-mode on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, R.; Mahdavi, M.A.; Jernigan, T.C.

    1996-12-01

    A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmasmore » was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.« less

  18. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines.

    PubMed

    Ebrahimkhani, Sadegh

    2016-07-01

    Wind power plants have nonlinear dynamics and contain many uncertainties such as unknown nonlinear disturbances and parameter uncertainties. Thus, it is a difficult task to design a robust reliable controller for this system. This paper proposes a novel robust fractional-order sliding mode (FOSM) controller for maximum power point tracking (MPPT) control of doubly fed induction generator (DFIG)-based wind energy conversion system. In order to enhance the robustness of the control system, uncertainties and disturbances are estimated using a fractional order uncertainty estimator. In the proposed method a continuous control strategy is developed to achieve the chattering free fractional order sliding-mode control, and also no knowledge of the uncertainties and disturbances or their bound is assumed. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov׳s stability theory. Simulation results in the presence of various uncertainties were carried out to evaluate the effectiveness and robustness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Modelling Of Chlorine Inductive Discharges

    NASA Astrophysics Data System (ADS)

    Chabert P.; Despiau-Pujo, E.

    2010-07-01

    III-V compounds such as GaAs, InP or GaN-based materials are increasingly important for their use in optoelectronic applications, especially in the telecommunications and light detection industries. Photonic devices including lasers, photodetectors or LEDs, require reliable etching processes characterized by high etch rate, profile control and low damage. Although many problems remain to be understood, inductively coupled discharges seem to be promising to etch such materials, using Cl2/Ar, Cl2/N2 and Cl2/H2 gas chemistries. Inductively coupled plasma (ICP) sources meet most of the requirements for efficient plasma processing such as high etch rates, high ion densities and low controllable ion energies. However, the presence of a negative ion population in the plasma alters the positive ion flux, reduces the electron density, changes the electron temperature, modifies the spatial structure of the discharge and can cause unstable operation. Several experimental studies and numerical simulation results have been published on inductively coupled Cl2/Ar plasmas but relatively few systematic comparisons of model predictions and experimental data have been reported in given reactor geometries under a wide range of op- erating conditions. Validation of numerical predictions is essential for chemically complex plasma processing and there is a need to benchmark the models with as many measurements as possible. In this paper, comparisons of 2D fluid simulations with experimental measurements of Ar/Cl2 plasmas in a low pressure ICP reactor are reported (Corr et al. 2008). The electron density, negative ion fraction and Cl atom density are investigated for various conditions of Ar/Cl2 ratio, gas pressure and applied RF power in H mode. Simulations show that the wall recombination coefficient of Cl atom (?) is a key parameter of the model and that neutral densities are very sensitive to its variations. The best agreement between model and experiment is obtained for ? = 0

  20. First experiments with e-/H- plasmas: Enhanced centrifugal separation from diocotron mode damping

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Thompson, K. A.; Driscoll, C. F.

    2018-01-01

    Negative hydrogen ions are produced and contained within a room-temperature electron plasma, by dissociative electron attachment onto exited H2 neutrals. We observe a strongly enhanced centrifugal separation of electrons and ions when a diocotron mode is present. The outward ion transport rate is proportional to the diocotron mode amplitude, with concurrent diocotron mode damping. This is not yet understood theoretically.

  1. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    PubMed

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  2. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-01

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.

  3. Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D

    DOE PAGES

    Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...

    2015-09-04

    In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less

  4. Plasma core power exhaust in ELMy H-Mode in JET with ITER-Like Wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Metzger, C.; Appel, L.; Drewelow, P.; Horvath, L.; Matthews, G. F.; Szepesi, G.; Solano, E. R.; contributors, JET

    2018-07-01

    The mitigation of target heat load in future steady state fusion devices will require dissipation of a significant amount of power through radiation. Plasma operations relying on ELMy H-modes could be problematic since ELMs may transport substantial amounts of power to the target without significant dissipation. Therefore, estimation of the average ELM power exhaust from the plasma core is crucial to evaluate the potential limitation on the power dissipation in ELMy H-mode regime. A series of more than 50 Type-I ELMy H-mode discharges in JET with ITER-Like Wall (JET-ILW) with a wide range of conditions has been used here to compare the average ELM power to the average input power. The effect of input power, ELM frequency, plasma current, confinement and radiation on ELM power exhaust has been studied and reported in this paper. Good agreement has been found here with previous studies made in carbon machines. This work suggests that it should not be possible to dissipate more than 70%–80% of the input power in Type-I ELMy H-modes in JET-ILW which is consistent with the maximum radiative fraction found experimentally.

  5. Inductance position sensor for pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  6. Scenario development for high β p low torque plasma with q min above 2 and large-radius internal transport barrier in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S.; Xu, G. S.; Wang, Q.

    A recent experiment on DIII-D, which was conducted by the joint research team from DIII-D and EAST, has extended the previous high β p, high q min regime, which has been tested in the 2013 DIII-D/EAST joint experiment, to inductive operation at higher plasma current (I p=0.8 MA) and significantly higher normalized fusion performance (G = H 89β N/=qmore » $$2\\atop{95}$$ = 0.16). The experiment aims at exploring high performance scenario with q min > 2 and reduced torque for long pulse operation, which can be potentially extrapolated to EAST. The effort was largely motivated by the interest in developing a feasible scenario for long-pulse high performance operation with low torque on EAST. Very high confinement, H 89 = 3.5 or H 98,y2 = 2.1 with β N ~ 3.0, has been achieved transiently in this experiment together with q min > 2 and reduced NBI torque (3~5 N-m). The excellent confinement is associated with the spontaneous formation of an internal transport barrier (ITB) in plasmas with I p=0.8 MA at large minor radius (normalized p ~ 0.7) in all channels (n e, T e, T i, V Φ, especially strong in the T e channel). Fluctuation measurements show a significant reduction in the fluctuation levels, including AE modes and broadband turbulence, at the location where an ITB forms. Linear gyrokinetic simulations also support the decrease of the growth rate of the most unstable mode during strong ITB formation. The simulation implies that strong suppression of turbulence and a positive feedback loop may be active in this process and is responsible for the spontaneous formation of large-radius ITB. Finally, in an unstable ITB phase, an ELM crash is observed to have a positive effect on transient formation of large-radius ITB. The formation of this kind of ITB is found to have a shielding (protecting) effect on the core plasma while isolating the perturbation due to ELM crash.« less

  7. Scenario development for high β p low torque plasma with q min above 2 and large-radius internal transport barrier in DIII-D

    DOE PAGES

    Ding, S.; Xu, G. S.; Wang, Q.; ...

    2016-09-30

    A recent experiment on DIII-D, which was conducted by the joint research team from DIII-D and EAST, has extended the previous high β p, high q min regime, which has been tested in the 2013 DIII-D/EAST joint experiment, to inductive operation at higher plasma current (I p=0.8 MA) and significantly higher normalized fusion performance (G = H 89β N/=qmore » $$2\\atop{95}$$ = 0.16). The experiment aims at exploring high performance scenario with q min > 2 and reduced torque for long pulse operation, which can be potentially extrapolated to EAST. The effort was largely motivated by the interest in developing a feasible scenario for long-pulse high performance operation with low torque on EAST. Very high confinement, H 89 = 3.5 or H 98,y2 = 2.1 with β N ~ 3.0, has been achieved transiently in this experiment together with q min > 2 and reduced NBI torque (3~5 N-m). The excellent confinement is associated with the spontaneous formation of an internal transport barrier (ITB) in plasmas with I p=0.8 MA at large minor radius (normalized p ~ 0.7) in all channels (n e, T e, T i, V Φ, especially strong in the T e channel). Fluctuation measurements show a significant reduction in the fluctuation levels, including AE modes and broadband turbulence, at the location where an ITB forms. Linear gyrokinetic simulations also support the decrease of the growth rate of the most unstable mode during strong ITB formation. The simulation implies that strong suppression of turbulence and a positive feedback loop may be active in this process and is responsible for the spontaneous formation of large-radius ITB. Finally, in an unstable ITB phase, an ELM crash is observed to have a positive effect on transient formation of large-radius ITB. The formation of this kind of ITB is found to have a shielding (protecting) effect on the core plasma while isolating the perturbation due to ELM crash.« less

  8. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH 3 in promoting H + NH 3 → H 2 + NH 2 reaction

    DOE PAGES

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-07

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-ofthe- art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH 3 → H 2 + NH 2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH 3 stretching modes, ismore » demonstrated. In conclusion, it is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH 3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.« less

  9. L to H mode transition: Parametric dependencies of the temperature threshold

    DOE PAGES

    Bourdelle, C.; Chone, L.; Fedorczak, N.; ...

    2015-06-15

    The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T th). They are based on the stabilization of the underlying turbulence by a mean radialmore » electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T th are tested versus magnetic field, density, effective charge. Furthermore, various robust experimental observations are reproduced, in particular T th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.« less

  10. High internal inductance for steady-state operation in ITER and a reactor

    DOE PAGES

    Ferron, John R.; Holcomb, Christopher T.; Luce, Timothy C.; ...

    2015-06-26

    Increased confinement and ideal stability limits at relatively high values of the internal inductance (more » $${{\\ell}_{i}}$$ ) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with $${{\\beta}_{\\text{N}}}\\approx 5$$ at $${{\\ell}_{i}}\\approx 1.3$$ , near the ideal $n=1$ kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at $${{\\beta}_{\\text{N}}}>5.5$$ . Confinement is above the H-mode level with $${{H}_{98\\left(\\text{y},2\\right)}}\\approx 1.8$$ . At $${{q}_{95}}\\approx 7.5$$ , the current is overdriven, with bootstrap current fraction $${{f}_{\\text{BS}}}\\approx 0.8$$ , noninductive current fraction $${{f}_{\\text{NI}}}>1$$ and negative surface voltage. For ITER (which has a single-null divertor shape), operation at $${{\\ell}_{i}}\\approx 1$$ is a promising option with $${{f}_{\\text{BS}}}\\approx 0.5$$ and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at $${{q}_{95}}=4.8$$ , so far reaching $${{f}_{\\text{NI}}}=0.7$$ and $${{f}_{\\text{BS}}}=0.4$$ at $${{\\beta}_{\\text{N}}}\\approx 3.5$$ with performance appropriate for the ITER Q=5 mission, $${{H}_{89}}{{\\beta}_{\\text{N}}}/q_{95}^{2}\\approx 0.3$$ . Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high $${{\\ell}_{i}}$$ discharge. Lastly, stable solutions in the double-null shape are found without the vacuum vessel wall at $${{\\beta}_{\\text{N}}}=4$$ , $${{\\ell}_{i}}=1.07$$ and $${{f}_{\\text{BS}}}=0.5$$ , and at $${{\\beta}_{\\text{N}}}=5$$ with the vacuum vessel wall.« less

  11. Edge simulations in ELMy H-mode discharges of EAST tokamak

    NASA Astrophysics Data System (ADS)

    Xia, T. Y.; Huang, Y. Q.; Xu, X. Q.; Wu, Y. B.; Wang, L.; Zheng, Z.; Liu, J. B.; Zang, Q.; Li, Y. Y.; Zhao, D.

    2017-10-01

    Simulations of ELM crash followed by a coherent mode, leading to transient divertor heat flux on EAST are achieved by the six-field two-fluid model in BOUT + + . Three EAST ELMy H-mode discharges with different pedestal structure, geometry and plasma current Ip are studied. The ELM-driven crash of the profiles in pedestal is reproduced, and the footprints of ELM filaments on targets are comparable with the measurements from divertor probes. A coherent mode is also found in the edge region in all the simulations after the ELM crash. The frequency and poloidal wave number are in the range of the edge coherent mode (ECM) on EAST. The magnetic fluctuations of the mode are smaller than the electric field fluctuations. The detailed comparisons between simulated mode structures with measurements will be reported. Statistical analysis on the simulated turbulent fluctuations shows that both the turbulent and blobby electron anomalous transport can pump the pedestal energy out into SOL, and then flow to divertors. The similar trend of the heat flux width with Ip is obtained in the simulations. The effects of the SOL current driven by LHW on ELMs will be discussed in this paper. This work was performed under the auspices of the US DOE by LLNL under contract DE-AC52-07NA27344. It was supported by the China NSF 11405215 and 11675217.

  12. Predictions of H-mode performance in ITER

    NASA Astrophysics Data System (ADS)

    Budny, Robert

    2008-11-01

    Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP [1] code is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT. [0pt] [1] R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 (2008) 075005.

  13. Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times

    NASA Technical Reports Server (NTRS)

    Slack, M. W.

    1977-01-01

    Shock tube experiments measured hydrogen-air induction times near the second explosion limit. By matching these experimental results with numerically predicted induction times, the rate coefficient for the reaction H + O2 + M = HO2 + M was evaluated as k-sub 4,N2 = 3.3 (plus or minus .6) x 10 to the 15 cm to the 6th/sq mole/s.

  14. Raman investigation of ro-vibrational modes of interstitial H2 in Si

    NASA Astrophysics Data System (ADS)

    Koch, S. G.; Lavrov, E. V.; Weber, J.

    2012-08-01

    A Raman scattering study of ro-vibrational transitions Q(J) of the interstitial H2 in Si is presented. It is shown that the Q(2) mode of para hydrogen is coupled to the TAX phonon of Si. The mode appears in the spectra at temperatures above 200 K. The results presented also suggest that the Q(3) transition of ortho hydrogen is resonantly coupled to the OΓ phonon.

  15. A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis.

    PubMed

    Huang, Xiwei; Yu, Hao; Liu, Xu; Jiang, Yu; Yan, Mei; Wu, Dongping

    2015-09-01

    The existing ISFET-based DNA sequencing detects hydrogen ions released during the polymerization of DNA strands on microbeads, which are scattered into microwell array above the ISFET sensor with unknown distribution. However, false pH detection happens at empty microwells due to crosstalk from neighboring microbeads. In this paper, a dual-mode CMOS ISFET sensor is proposed to have accurate pH detection toward DNA sequencing. Dual-mode sensing, optical and chemical modes, is realized by integrating a CMOS image sensor (CIS) with ISFET pH sensor, and is fabricated in a standard 0.18-μm CIS process. With accurate determination of microbead physical locations with CIS pixel by contact imaging, the dual-mode sensor can correlate local pH for one DNA slice at one location-determined microbead, which can result in improved pH detection accuracy. Moreover, toward a high-throughput DNA sequencing, a correlated-double-sampling readout that supports large array for both modes is deployed to reduce pixel-to-pixel nonuniformity such as threshold voltage mismatch. The proposed CMOS dual-mode sensor is experimentally examined to show a well correlated pH map and optical image for microbeads with a pH sensitivity of 26.2 mV/pH, a fixed pattern noise (FPN) reduction from 4% to 0.3%, and a readout speed of 1200 frames/s. A dual-mode CMOS ISFET sensor with suppressed FPN for accurate large-arrayed pH sensing is proposed and demonstrated with state-of-the-art measured results toward accurate and high-throughput DNA sequencing. The developed dual-mode CMOS ISFET sensor has great potential for future personal genome diagnostics with high accuracy and low cost.

  16. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios.

    PubMed

    Byrne, Maria; Ho, Melanie; Selvakumaraswamy, Paulina; Nguyen, Hong D; Dworjanyn, Symon A; Davis, Andy R

    2009-05-22

    Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20-26 degrees C, pH 7.6-8.2) were tested in all combinations for the 'business-as-usual' scenario, with 20 degrees C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4 degrees C reduced cleavage by 40 per cent and +6 degrees C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6 degrees C. At 26 degrees C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.

  17. Development of ITER non-activation phase operation scenarios

    DOE PAGES

    Kim, S. H.; Poli, F. M.; Koechl, F.; ...

    2017-06-29

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  18. Development of ITER non-activation phase operation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S. H.; Poli, F. M.; Koechl, F.

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  19. Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials

    NASA Astrophysics Data System (ADS)

    Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.

    2017-05-01

    The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.

  20. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    PubMed

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  1. The use of altrenogest to avoid hyperestrogenism after eCG-hCG ovulation induction in southern tigrina (Leopardus guttulus).

    PubMed

    Micheletti, Tatiane; Brown, Janine L; Walker, Susan L; Cubas, Zalmir S; Furtado, Priscila V; Putman, Sarah B; de Moraes, Wanderlei; de Oliveira, Marcos J; de Oliveira, Claudio A; Moreira, Nei

    2015-09-01

    The goal of this study was to optimize an ovulation induction protocol for use with artificial insemination in the southern tigrina (Leopardus guttulus). The specific aims were to report the efficacy of using altrenogest, an oral progestin (Regumate, MSD Animal Health, Merck Animal Health), to suppress ovarian activity and prevent follicular hyperstimulation and hyperestrogenism after the administration of exogenous eCG and hCG. To monitor ovarian responses, fecal estrogen and progestogen metabolites were quantified by enzyme immunoassay in females before and after intramuscular administration of 200-IU eCG and 150-IU hCG in two trials, 4 months apart. During the first trial, there was no use of altrenogest, only the eCG-hCG ovulation induction protocol. In the second trial, the ovulation induction protocol was preceded by the administration of oral altrenogest for 14 days (minimum of 0.192 mg per kg per day). Altrenogest administration resulted in a suppression of follicular activity in three out of six females before eCG-hCG administration on the basis of lower mean estrogen concentrations (P < 0.05). It also resulted in four out of six females presenting lower fecal estrogen metabolite concentrations (P < 0.05) after ovulation induction, and two out of six individuals showed a reduction (P < 0.05) in postovulatory fecal progestogen metabolite concentrations, all when compared to the same female's cycles without the progestin. Fecal estrogen metabolite concentrations were closer to baseline in 50% of these individuals after altrenogest and eCG-hCG treatments when compared to basal concentrations before gonadotropins without the use of altrenogest. This study reported that use of altrenogest in southern tigrina can suppress ovarian activity and avoid hyperestrogenism after administration of eCG and hCG treatment. However, not all females responded uniformly, so more studies are needed to increase the efficacy of ovulation induction for use with artificial

  2. Use of alemtuzumab (Campath-1H) as induction therapy in pediatric kidney transplantation.

    PubMed

    Ona, E T; Danguilan, R A; Africa, J; Cabanayan-Casasola, C B; Antonio, Z L; Gutierrez-Marbella, M A; dela Cruz, R; Bumanglag, N; Espedilla, M E

    2008-09-01

    Alemtuzumab (Campath-1H) is a monoclonal antibody directed against CD52-positive B and T lymphocytes. Initial results of its use as an induction agent in adult renal transplantation have been encouraging. We report a case series of four low-risk pediatric renal transplantation patients who received 20 to 40 mg of alemtuzumab as induction followed by a steroid-free regimen consisting of a calcineurin inhibitor and mycophenolate mofetil. No infusion-related reactions occurred. Patients were aged 9 to 14 years with a mean creatinine of 1.2 mg/dL (range = 0.5-2.3 mg/dL) at a mean follow-up of 10 months (range = 4-16 months). One patient experienced biopsy-proven acute cellular rejections at 4 and 12 months posttransplantation, which were steroid sensitive. Lymphopenia post-alemtuzumab induction started to improve at 3 months posttransplantation. Two patients who received 40 mg of alemtuzumab experienced repeated infections that responded to 7-day courses of antibiotics. There was no cytomegalovirus disease detected. From these preliminary results, alemtuzumab seems to show a promising role to achieve adequate graft function with a steroid-free regimen among low-risk pediatric patients.

  3. Nonylphenol-mediated CYP induction is PXR-dependent: The use of humanized mice and human hepatocytes suggests that hPXR is less sensitive than mouse PXR to nonylphenol treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, Linda C.; Barfield, Christina; Hernandez, Juan P.

    2011-05-01

    Nonylphenol (NP), a by-product of alkylphenol ethoxylates, is a pervasive surfactant that activates the xenosensing nuclear receptor, the pregnane X-receptor (PXR) in transactivation assays in vitro. We are interested in determining if NP activates PXR in vivo, determining if hPXR and mPXR act similarly, and investigating the role of PXR in protecting individuals from NP. Wild-type (WT), PXR-null, and humanized PXR (hPXR) mice were treated with NP at 0, 50 or 75 mg/kg/day for one week, and cytochrome P450 (CYP) induction, liver histopathology, and serum NP concentrations were examined. WT mice treated with NP showed induction of Cyp2b, and male-specificmore » induction of Cyp2c and Cyp3a. CYPs were not induced in PXR-null mice, demonstrating that PXR is necessary for NP-mediated CYP induction. CAR-mediated CYP induction was not observed in the PXR-null mice despite previous data demonstrating that NP is also a CAR activator. hPXR mice only showed moderate Cyp induction, suggesting that hPXR is not as sensitive to NP as mPXR in vivo. NP-mediated Cyp3a induction from three human hepatocyte donors was not significant, confirming that hPXR is not very sensitive to NP-mediated CYP induction. Lastly, mice with PXR (mPXR and hPXR) showed lower NP serum concentrations than PXR-null mice treated with NP suggesting that PXR plays a role in decreasing liver toxicity by basally regulating phase I-III detoxification enzymes that promote the metabolism and elimination of NP. In summary, PXR is required for NP-mediated CYP-induction, mPXR mediates greater CYP induction than hPXR in vivo, and the presence of PXR, especially mPXR, is associated with altered histopathology and increased clearance of NP.« less

  4. Nonylphenol-mediated CYP induction is PXR-dependent: The use of humanized mice and human hepatocytes suggests that hPXR is less sensitive than mouse PXR to nonylphenol treatment

    PubMed Central

    Mota, Linda C; Barfield, Christina; Hernandez, Juan P; Baldwin, William S.

    2011-01-01

    Nonylphenol (NP), a by-product of alkylphenol ethoxylates, is a pervasive surfactant that activates the xenosensing nuclear receptor, the pregnane X-receptor (PXR) in transactivation assays in vitro. We are interested in determining if NP activates PXR in vivo, determining if hPXR and mPXR act similarly, and investigating the role of PXR in protecting individuals from NP. Wild-type (WT), PXR-null, and humanized PXR (hPXR) mice were treated with NP at 0, 50 or 75 mg/kg/day for one week, and cytochrome P450 (CYP) induction, liver histopathology, and serum NP concentrations were examined. WT mice treated with NP showed induction of Cyp2b, and male-specific induction of Cyp2c and Cyp3a. CYPs were not induced in PXR-null mice, demonstrating that PXR is necessary for NP-mediated CYP induction. CAR-mediated CYP induction was not observed in the PXR-null mice despite previous data demonstrating NP is also a CAR activator. hPXR mice only showed moderate Cyp induction, suggesting that hPXR is not as sensitive to NP as mPXR in vivo. NP-mediated Cyp3a induction from three human hepatocyte donors was not significant, confirming that hPXR is not very sensitive to NP-mediated CYP induction. Lastly, mice with PXR (mPXR and hPXR) showed lower NP serum concentrations than PXR-null mice treated with NP suggesting that PXR plays a role in decreasing liver toxicity by basally regulating Phase I-III detoxification enzymes that promote the metabolism and elimination of NP. In summary, PXR is required for NP-mediated CYP-induction, and mPXR mediates greater CYP induction than hPXR in vivo, and the presence of PXR, especially mPXR, is associated with altered histopathology and increased clearance of NP. PMID:21376070

  5. Heating and current drive requirements for ideal MHD stability and ITB sustainment in ITER steady state scenarios

    NASA Astrophysics Data System (ADS)

    Poli, Francesca

    2012-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.

  6. Recent progress towards a physics-based understanding of the H-mode transition

    DOE PAGES

    Tynan, G. R.; Cziegler, I.; Diamond, P. H.; ...

    2016-01-22

    Results from recent experiment and numerical simulation point towards a picture of the L-H transition in which edge shear flows interacting with edge turbulence create the conditions needed to produce a non-zero turbulent Reynolds stress at and just inside the LCFS during L-mode discharges. This stress acts to reinforce the shear flow at this location and the flow drive gets stronger as heating is increased. The L-H transition ensues when the rate of work done by this stress is strong enough to drive the shear flow to large values, which then grows at the expense of the turbulence intensity. Themore » drop in turbulence intensity momentarily reduces the heat flux across the magnetic flux surface, which then allows the edge plasma pressure gradient to build. A sufficiently strong ion pressure gradient then locks in the H-mode state. The results are in general agreement with previously published reduced 0D and 1D predator prey models. An extended predator–prey model including separate ion and electron heat channels yields a non-monotonic power threshold dependence on plasma density provided that the fraction of heat deposited on the ions increases with plasma density. Possible mechanisms to explain other macroscopic transition threshold criteria are identified. A number of open questions and unexplained observations are identified, and must be addressed and resolved in order to build a physics-based model that can yield predictions of the macroscopic conditions needed for accessing H-mode.« less

  7. Oxidation mode of pyranose 2-oxidase is controlled by pH.

    PubMed

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A; Chaiyen, Pimchai

    2013-02-26

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O₂ as an electron acceptor to form the corresponding 2-keto-sugars and H₂O₂. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O₂ to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H₂O₂. At pH 8.0 and higher, the majority of the reduced P2O reacts with O₂ via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.

  8. Study of Conical Pulsed Inductive Thruster with Multiple Modes of Operation

    NASA Technical Reports Server (NTRS)

    Miller, Robert; Eskridge, Richard; Martin, Adam; Rose, Frank

    2008-01-01

    An electrodeless, pulsed, inductively coupled thruster has several advantages over current electric propulsion designs. The efficiency of a pulsed inductive thruster is dependent upon the pulse characteristics of the device. Therefore, these thrusters are throttleable over a wide range of thrust levels by varying the pulse rate without affecting the thruster efficiency. In addition, by controlling the pulse energy and the mass bit together, the ISP of the thruster can also be varied with minimal efficiency loss over a wide range of ISP levels. Pulsed inductive thrusters will work with a multitude of propellants, including ammonia. Thus, a single pulsed inductive thruster could be used to handle a multitude of mission needs from high thrust to high ISP with one propulsion solution that would be variable in flight. A conical pulsed inductive lab thruster has been built to study this form of electric propulsion in detail. This thruster incorporates many advantages that are meant to enable this technology as a viable space propulsion technology. These advantages include incorporation of solid state switch technology for all switching needs of the thruster and pre-ionization of the propellant gas prior to acceleration. Pre-ionizing will significantly improve coupling efficiency between drive and bias fields and the plasma. This enables lower pulse energy levels without efficiency reduction. Pre-ionization can be accomplished at a small fraction of the drive pulse energy.

  9. Mode-dependent templates and scan order for H.264/AVC-based intra lossless coding.

    PubMed

    Gu, Zhouye; Lin, Weisi; Lee, Bu-Sung; Lau, Chiew Tong; Sun, Ming-Ting

    2012-09-01

    In H.264/advanced video coding (AVC), lossless coding and lossy coding share the same entropy coding module. However, the entropy coders in the H.264/AVC standard were original designed for lossy video coding and do not yield adequate performance for lossless video coding. In this paper, we analyze the problem with the current lossless coding scheme and propose a mode-dependent template (MD-template) based method for intra lossless coding. By exploring the statistical redundancy of the prediction residual in the H.264/AVC intra prediction modes, more zero coefficients are generated. By designing a new scan order for each MD-template, the scanned coefficients sequence fits the H.264/AVC entropy coders better. A fast implementation algorithm is also designed. With little computation increase, experimental results confirm that the proposed fast algorithm achieves about 7.2% bit saving compared with the current H.264/AVC fidelity range extensions high profile.

  10. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, S. K.; Chang, H. Y.

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less

  11. LETTER TO THE EDITOR: The quasi-coherent signature of enhanced Dα H-mode in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.; La Bombard, B.; Greenwald, M.; Hutchinson, I. H.; Irby, J.; Lin, Y.; Mazurenko, A.; Porkolab, M.

    2001-04-01

    The steady-state H-mode regime found at moderate to high density in Alcator C-Mod, known as enhanced Dα (EDA) H-mode, appears to be maintained by a continuous quasi-coherent (QC) mode in the steep edge gradient region. Large amplitude density and magnetic fluctuations with typical frequencies of about 100 kHz are driven by the QC mode. These fluctuations are measured in the steep edge gradient region by inserting a fast-scanning probe containing two poloidally separated Langmuir probes and a poloidal field pick-up coil. As the probe approaches the plasma edge, clear magnetic fluctuations were measured within about 2 cm of the last-closed flux surface (LCFS). The mode amplitude falls off rapidly with distance from the plasma centre with an exponential decay length of kr≈1.5 cm-1, measured 10 cm above the outboard midplane. The root-mean-square amplitude of the fluctuation extrapolated to the LCFS was θ≈5 G. The density fluctuations, on the other hand, were visible on the Langmuir probe only when it was within a few millimetres of the LCFS. The potential and density fluctuations were sufficiently in phase to enhance particle transport at the QC mode frequency. These results show that the QC signature of the EDA H-mode is an electromagnetic mode that appears to be responsible for the enhanced particle transport in the plasma edge.

  12. Super H-mode: theoretical prediction and initial observations of a new high performance regime for tokamak operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Philip B.; Solomon, Wayne M.; Burrell, Keith H.

    2015-07-21

    A new “Super H-mode” regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (“H-mode”) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard “Hmode” solution, and a “Super H-Mode” solution at substantially larger pedestal height and width. The Supermore » H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. Finally, the very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.« less

  13. Measurements of collisionless heating effects in the H-mode of an inductively coupled plasma system

    NASA Astrophysics Data System (ADS)

    Zaka-Ul-Islam, Mujahid; Graham, Bill; Gans, Timo; Niemi, Kari; O'Connell, Deborah

    2013-09-01

    Inductively coupled plasma systems (ICPs) for processing applications are often operated at low pressures, in the near-collisionless regime. In this regime, the electron mean free path is comparable or larger than the plasma dimensions. The electron dynamics in such ICPs has been investigated here, using phase and space resolved optical emission spectroscopy (PROES) and Langmuir probe measurements. The PROES measurements are also used to calculate the Fourier harmonics components of the 2D excitation (in the radial axial plane). The experimental system is a standard GEC cell with the axial gap of ~4 cm, powered by 13.56 MHz RF power supply. The gas pressure was varied between 0.5 - 2 Pa. The PROES measurements and Fourier harmonics components confirm many of the previous simulation results in comparable operational regimes. The results show that in the 2D (radial-axial) plane, the plasma power is deposited in a spatially non-uniform and non-linear manner, with axial layers of positive and negative power absorption. The contribution of these nonlinear effects decreases with an increase in the pressure, as observed in previous experimental and simulation results.

  14. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolon, A.; Maingi, R.; Mansfield, D. K.

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3–0.9mm, speed of 50–120 m s -1 and average injection rates up to 100 Hz for 0.9mm granules and up to 700 Hz for 0.3mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas formore » the entire shot length, at ELM frequencies 3–5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Altogether, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is need« less

  15. High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2016-04-08

    A newly installed Lithium Granule Injector (LGI) was used to pace edge localized modes (ELM) in DIII-D. ELM pacing efficiency was studied injecting lithium granules of nominal diameter 0.3–0.9mm, speed of 50–120 m s -1 and average injection rates up to 100 Hz for 0.9mm granules and up to 700 Hz for 0.3mm granules. The efficiency of ELM triggering was found to depend strongly on size of the injected granules, with triggering efficiency close to 100% obtained with 0.9mm diameter granules, lower with smaller sizes, and weakly depending on granule velocity. Robust ELM pacing was demonstrated in ITER-like plasmas formore » the entire shot length, at ELM frequencies 3–5 times larger than the ‘natural’ ELM frequency observed in reference discharges. Within the range of ELM frequencies obtained, the peak ELM heat flux at the outer strike point was reduced with increasing pacing frequency. The peak heat flux reduction at the inner strike point appears to saturate at high pacing frequency. Lithium was found in the plasma core, with a concurrent reduction of metallic impurities and carbon. Altogether, high frequency ELM pacing using the lithium granule injection appears to be compatible with both H-mode energy confinement and attractive H-mode pedestal characteristics, but further assessment is need« less

  16. Application of the H-Mode, a Design and Interaction Concept for Highly Automated Vehicles, to Aircraft

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Flemisch, Frank O.; Schutte, Paul C.; Williams, Ralph A.

    2006-01-01

    Driven by increased safety, efficiency, and airspace capacity, automation is playing an increasing role in aircraft operations. As aircraft become increasingly able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help us understand their use and guide their design using new forms of automation and interaction. We propose a novel design metaphor to aid the conceptualization, design, and operation of highly-automated aircraft. Design metaphors transfer meaning from common experiences to less familiar applications or functions. A notable example is the "Desktop metaphor" for manipulating files on a computer. This paper describes a metaphor for highly automated vehicles known as the H-metaphor and a specific embodiment of the metaphor known as the H-mode as applied to aircraft. The fundamentals of the H-metaphor are reviewed followed by an overview of an exploratory usability study investigating human-automation interaction issues for a simple H-mode implementation. The envisioned application of the H-mode concept to aircraft is then described as are two planned evaluations.

  17. Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2016-10-01

    The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.

  18. Comparative study of titrated oral misoprostol solution and vaginal dinoprostone for labor induction at term pregnancy.

    PubMed

    Wang, Xiu; Yang, Aijun; Ma, Qingyong; Li, Xuelan; Qin, Li; He, Tongqiang

    2016-09-01

    To evaluate effectiveness and safety of titrated oral misoprostol solution (OMS) in comparison with vaginal dinoprostone for cervix ripening and labor induction in term pregnant women. A multicenter randomized controlled trial of women with term singleton pregnancy with indications for labor induction; 481 participants were allocated to receive titrated OMS with different doses by hourly administration according to the procedure or insert vaginal dinoprostone for cervix ripening and labor induction to compare maternal outcomes including indication of labor induction, mode of outcome of delivery, maternal morbidity, and neonatal outcomes between two groups for evaluating the efficacy and safety of titrated oral misoprostol induction. Proportion of delivery within 12 h of titrated oral misoprostol is significantly less than vaginal dinoprostone (p = 0.03), but no difference of total vaginal delivery rate (p = 0.93); the mean time of first treatment to vaginal delivery was longer in OMS group (21.3 ± 14.5 h) compared with the vaginal dinoprostone group (15.7 ± 9.6 h). Although the proportion of cesarean section between the two groups showed no statistically significant difference, OMS group showed significantly lower frequency of uterine hyperstimulation, hypertonus, partus precipitatus and non-reassuring fetal heart rate than dinoprostone group. Neonatal outcomes were similar evaluating from Apgar score and NICU admission. Our study also showed that labor induction of women with cervix Bishop score ≤3 needed increased dosage of misoprostol solution. Titrated OMS is as effective as vaginal dinoprostone in labor induction for term pregnant women, with safer effect for its lower rate of adverse effect for women.

  19. Development of steady-state scenarios compatible with ITER-like wall conditions

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Arnoux, G.; Beurskens, M.; Brezinsek, S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Giroud, C.; Pitts, R. A.; Rimini, F. G.; Andrew, Y.; Ariola, M.; Baranov, Yu F.; Brix, M.; Buratti, P.; Cesario, R.; Corre, Y.; DeLa Luna, E.; Fundamenski, W.; Giovannozzi, E.; Gryaznevich, M. P.; Hawkes, N. C.; Hobirk, J.; Huber, A.; Jachmich, S.; Joffrin, E.; Koslowski, H. R.; Liang, Y.; Loarer, Th; Lomas, P.; Luce, T.; Mailloux, J.; Matthews, G. F.; Mazon, D.; McCormick, K.; Moreau, D.; Pericoli, V.; Philipps, V.; Rachlew, E.; Reyes-Cortes, S. D. A.; Saibene, G.; Sharapov, S. E.; Voitsekovitch, I.; Zabeo, L.; Zimmermann, O.; Zastrow, K. D.; JET-EFDA Contributors, the

    2007-12-01

    A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q95 ~ 5 and high triangularity, δ (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching βN ~ 2 at Bo ~ 3.1 T. Operating at higher δ has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At

  20. Modes of mechanical ventilation for the operating room.

    PubMed

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h

  1. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    NASA Astrophysics Data System (ADS)

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  2. Induction and quantification of gammma-H2AX foci following cx- and gamma-irradiaton

    NASA Technical Reports Server (NTRS)

    Leatherbarrow, E. L.; Cucinotta, F. A.; O'Neill, Peter

    2004-01-01

    Following DNA damage the histone H2AX becomes phosphorylated and can be visualised by immunofluorescence as an indicator of DSBs in individual cells. Using a wild type hamster cell line (V79-4) exposed to either a-particles or to Co-60 gamma-rays to induce DNA DSBs at different doses (20-200OmGy), the dose dependent induction of gamma-H2AX foci were scored both manually (by eye) and using image analysis. A linearly dependence on dose was found for both radiations. The number of DSBs determined by image analysis after a post-irradiation period of 30 minutes at 37 C, is 16.6 foci/cell/Gy for alpha-irradiation and 12.2 foci/cell/Gy for gamma-irradiation; the latter being 3-4 times the levels observed by eye and comparable to gamma-radiation-induced levels of prompt DSBs more recently reported using pulse field gel electrophoresis (approx. 16 DSBs/Gy). The average size of the gamma-H2AX foci induced by alpha-irradiation (0.30 square micrometers) is approximately 1.5 times larger than those induced by gamma-irradiation (0.19 square micrometers). The timescale of induction and removal of DSBs up to 24 hours post-irradiation, was investigated with gamma-H2AX foci levels found to remain significantly higher than controls for 4 or 6 hours in gamma-irradiated samples or alpha irradiated samples, respectively. These results demonstrate that not only gamma radiation but also alpha-radiation induce phosphorylation of the H2AX histone in response to DSBs even at low doses (20mGy for gamma-rays, 1 track/cell on average for alpha-particles) and the variation in size and dephosphorylation of the induced foci is dependent on radiation quality (LET).

  3. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaoka, Yuki; Kawamoto, Seiji, E-mail: skawa@hiroshima-u.ac.jp; Katayama, Akiko

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Heremore » we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.« less

  4. Fe-H/D stretching and bending modes in nuclear resonant vibrational, Raman and infrared spectroscopies: Comparisons of density functional theory and experiment

    PubMed Central

    Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Cramer, Stephen P.; Case, David A.

    2010-01-01

    Infrared, Raman, and nuclear resonant vibrational (NRVS) spectroscopies have been used to address the Fe-H bonding in trans-Fe(H)(CO) iron hydride compound, Fe(H)(CO)(dppe)2, dppe = 1,2-bis(diphenylphosphino)ethane. H and D isotopomers of the compound, with the selective substitution at the metal-coordinated hydrogen, have been considered in order to address the Fe-H/D stretching and bending modes. Experimental results are compared to the normal mode analysis by the density functional theory (DFT). The results are that (i) the IR spectrum does not clearly show Fe–H stretching or bending modes; (ii) Fe–H stretching modes are clear but weak in the Raman spectrum, and Fe–H bending modes are weak; (iii) NRVS 57Fe spectroscopy resolves Fe-H bending clearly, but Fe–H or Fe–D stretching is above its experimentally resolved frequency range. DFT caclulations (with no scaling of frequencies) show intensities and peak locations that allow unambigous correlations between observed and calculated features, with frequency errors generally less than 15 cm−1. Prospects for using these techniques to unravel vibrational modes of protein active sites are discussed. PMID:21322496

  5. The oxidation mode of pyranose 2-oxidase is controlled by pH

    PubMed Central

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A.; Chaiyen, Pimchai

    2013-01-01

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of D-glucose and other aldopyranose sugars at the C2 position by using O2 as an electron acceptor to form the corresponding 2-keto-sugars and H2O2. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O2 to form a C4a-hydroperoxy-flavin intermediate, leading to elimination of H2O2. At pH 8.0 and higher, the majority of the reduced P2O reacts with O2 via a pathway which does not allow detection of the C4a-hydroperoxy-flavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pKa of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s-1. PMID:23356577

  6. Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.

    PubMed

    Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G

    2012-04-13

    Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

  7. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, D.; Figini, L.; Henderson, M.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less

  8. Effect of Isotope Mass in Simulations of JET H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Snyder, S. E.; Onjun, T.; Kritz, A. H.; Bateman, G.; Parail, V.

    2004-11-01

    In JET type-I ELMy H-mode discharges, it is found that the height of the pressure pedestal increases and the frequency of the ELMs decreases with increasing isotope mass. These experimentally observed trends are obtained in these simulations only if the pedestal width increases with isotope mass. Simulations are carried out using the JETTO integrated modeling code with a dynamic model for the H-mode pedestal and the ELMs.(T. Onjun et al, Phys. Plasmas 11 (2004) 1469 and 3006.) The HELENA and MISHKA stability codes are applied to calibrate the stability criteria used to trigger ELM crashes in the JETTO code and to explore possible access to second stability in the pedestal. In the simulations, transport in the pedestal is given by the ion thermal neoclassical diffusivity, which increases with isotope mass. Consequently, as the isotope mass is increased, the pressure gradient and the bootstrap current in the pedestal rebuild more slowly after each ELM crash. Several models are explored in which the pedestal width increases with isotope mass.

  9. H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment

    DOE PAGES

    Thome, Kathleen E.; Bongard, Michael W.; Barr, Jayson L.; ...

    2016-09-30

    H-mode is obtained atmore » $$A\\sim 1.2$$ in the Pegasus Toroidal Experiment via Ohmic heating, high-field-side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to $${{H}_{98y,2}}\\sim 1$$ . The L–H power threshold $${{P}_{\\text{LH}}}$$ increases with density, and there is no $${{P}_{\\text{LH}}}$$ minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured $${{P}_{\\text{LH}}}$$ is $$\\sim 15\\,\\,\\times $$ higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and $${{P}_{\\text{LH}}}/{{P}_{\\text{ITPA}08}}$$ increases as $$A\\to 1$$ . Small ELMs are present at low input power $${{P}_{\\text{IN}}}\\sim {{P}_{\\text{LH}}}$$ , with toroidal mode number $$n\\leqslant 4$$ . At $${{P}_{\\text{IN}}}\\gg {{P}_{\\text{LH}}}$$ , they transition to large ELMs with intermediate 5 < n < 15. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.« less

  10. Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.

    2006-03-01

    Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.

  11. Acoustic imaging of a duct spinning mode by the use of an in-duct circular microphone array.

    PubMed

    Wei, Qingkai; Huang, Xun; Peers, Edward

    2013-06-01

    An imaging method of acoustic spinning modes propagating within a circular duct simply with surface pressure information is introduced in this paper. The proposed method is developed in a theoretical way and is demonstrated by a numerical simulation case. Nowadays, the measurements within a duct have to be conducted using in-duct microphone array, which is unable to provide information of complete acoustic solutions across the test section. The proposed method can estimate immeasurable information by forming a so-called observer. The fundamental idea behind the testing method was originally developed in control theory for ordinary differential equations. Spinning mode propagation, however, is formulated in partial differential equations. A finite difference technique is used to reduce the associated partial differential equations to a classical form in control. The observer method can thereafter be applied straightforwardly. The algorithm is recursive and, thus, could be operated in real-time. A numerical simulation for a straight circular duct is conducted. The acoustic solutions on the test section can be reconstructed with good agreement to analytical solutions. The results suggest the potential and applications of the proposed method.

  12. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    PubMed

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  13. The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress

    NASA Astrophysics Data System (ADS)

    Schmitz, L.

    2017-02-01

    Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E   ×   B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E   ×   B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.

  14. Observations of a mode transition in a hydrogen hollow cathode discharge using phase resolved optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dixon, Sam; Charles, Christine; Dedrick, James; Gans, Timo; O'Connell, Deborah; Boswell, Rod

    2014-07-01

    Two distinct operational modes are observed in a radio frequency (rf) low pressure hydrogen hollow cathode discharge. The mode transition is characterised by a change in total light emission and differing expansion structures. An intensified CCD camera is used to make phase resolved images of Balmer α emission from the discharge. The low emission mode is consistent with a typical γ discharge, and appears to be driven by secondary electrons ejected from the cathode surface. The bright mode displays characteristics common to an inductive discharge, including increased optical emission, power factor, and temperature of the H2 gas. The bright mode precipitates the formation of a stationary shock in the expansion, observed as a dark region adjacent to the source-chamber interface.

  15. Dark matter scenarios with multiple spin-2 fields

    NASA Astrophysics Data System (ADS)

    González Albornoz, N. L.; Schmidt-May, Angnis; von Strauss, Mikael

    2018-01-01

    We study ghost-free multimetric theories for (N+1) tensor fields with a coupling to matter and maximal global symmetry group SN×(Z2)N. Their mass spectra contain a massless mode, the graviton, and N massive spin-2 modes. One of the massive modes is distinct by being the heaviest, the remaining (N‑1) massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case N=2. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.

  16. Demonstrating the Physics Basis for the ITER 15 MA Inductive Discharge on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Wolfe, S. M.; Hutchinson, I. H.; Hughes, J. W.; Lin, Y.; Ma, Y.; Mikkelsen, D. R.; Poli, F.; Reinke, M. L.; Wukitch, S. J.

    2012-10-01

    Rampup discharges in C-Mod, matching ITE's current diffusion times show ICRF heating can save V-s but results in only weak effects on the current profile, despite strong modifications of the central electron temperature. Simulation of these discharges with TSC, and TORIC for ICRF, using multiple transport models, do not reproduce the temperature profile evolution, or the experimental internal self-inductance li, by sufficiently large amounts to be unacceptable for projections to ITER operation. For the flattop phase experiments EDA H-modes approach the ITER parameter targets of q95=3, H98=1, n/nGr=0.85, betaN=1.7, and k=1.8, and sustain them similar to a normalized ITER flattop time. The discharges show a degradation of energy confinement at higher densities, but increasing H98 with increasing net power to the plasma. For these discharges intrinsic impurities (B, Mo) provided radiated power fractions of 25-37%. Experiments show the plasma can remain in H-mode in rampdown with ICRF injection, the density will decrease with Ip while in the H-mode, and the back transition occurs when the net power reaches about half the L-H transition power. C-Mod indicates that faster rampdowns are preferable. Work supported by US Dept of Energy under DE-AC02-CH0911466 and DE-FC02-99ER54512.

  17. Assessing oral bioaccessibility of trace elements in soils under worst-case scenarios by automated in-line dynamic extraction as a front end to inductively coupled plasma atomic emission spectrometry.

    PubMed

    Rosende, María; Magalhães, Luis M; Segundo, Marcela A; Miró, Manuel

    2014-09-09

    A novel biomimetic extraction procedure that allows for the in-line handing of ≥400 mg solid substrates is herein proposed for automatic ascertainment of trace element (TE) bioaccessibility in soils under worst-case conditions as per recommendations of ISO norms. A unified bioaccessibility/BARGE method (UBM)-like physiological-based extraction test is evaluated for the first time in a dynamic format for accurate assessment of in-vitro bioaccessibility of Cr, Cu, Ni, Pb and Zn in forest and residential-garden soils by on-line coupling of a hybrid flow set-up to inductively coupled plasma atomic emission spectrometry. Three biologically relevant operational extraction modes mimicking: (i) gastric juice extraction alone; (ii) saliva and gastric juice composite in unidirectional flow extraction format and (iii) saliva and gastric juice composite in a recirculation mode were thoroughly investigated. The extraction profiles of the three configurations using digestive fluids were proven to fit a first order reaction kinetic model for estimating the maximum TE bioaccessibility, that is, the actual worst-case scenario in human risk assessment protocols. A full factorial design, in which the sample amount (400-800 mg), the extractant flow rate (0.5-1.5 mL min(-1)) and the extraction temperature (27-37°C) were selected as variables for the multivariate optimization studies in order to obtain the maximum TE extractability. Two soils of varied physicochemical properties were analysed and no significant differences were found at the 0.05 significance level between the summation of leached concentrations of TE in gastric juice plus the residual fraction and the total concentration of the overall assayed metals determined by microwave digestion. These results showed the reliability and lack of bias (trueness) of the automatic biomimetic extraction approach using digestive juices. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    PubMed

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  19. TRANSP-based Trajectory Optimization of the Current Profile Evolution to Facilitate Robust Non-inductive Ramp-up in NSTX-U

    NASA Astrophysics Data System (ADS)

    Wehner, William; Schuster, Eugenio; Poli, Francesca

    2016-10-01

    Initial progress towards the design of non-inductive current ramp-up scenarios in the National Spherical Torus Experiment Upgrade (NSTX-U) has been made through the use of TRANSP predictive simulations. The strategy involves, first, ramping the plasma current with high harmonic fast waves (HHFW) to about 400 kA, and then further ramping to 900 kA with neutral beam injection (NBI). However, the early ramping of neutral beams and application of HHFW leads to an undesirably peaked current profile making the plasma unstable to ballooning modes. We present an optimization-based control approach to improve on the non-inductive ramp-up strategy. We combine the TRANSP code with an optimization algorithm based on sequential quadratic programming to search for time evolutions of the NBI powers, the HHFW powers, and the line averaged density that define an open-loop actuator strategy that maximizes the non-inductive current while satisfying constraints associated with the current profile evolution for MHD stable plasmas. This technique has the potential of playing a critical role in achieving robustly stable non-inductive ramp-up, which will ultimately be necessary to demonstrate applicability of the spherical torus concept to larger devices without sufficient room for a central coil. Supported by the US DOE under the SCGSR Program.

  20. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  1. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldon, David; Boivin, Rejean L.; Groebner, Richard J.

    Here, the H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized bymore » significant (up to ~50%) reduction of pedestal height on short (~1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important for planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports 2 those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.« less

  2. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldon, D., E-mail: deldon@princeton.edu; Princeton University, Princeton, New Jersey 08543; Boivin, R. L.

    The H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized by significantmore » (up to ∼50%) reduction of pedestal height on short (∼1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important of planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.« less

  3. Investigation of peeling-ballooning stability prior to transient outbursts accompanying transitions out of H-mode in DIII-D

    DOE PAGES

    Eldon, David; Boivin, Rejean L.; Groebner, Richard J.; ...

    2015-05-14

    Here, the H-mode transport barrier allows confinement of roughly twice as much energy as in an L-mode plasma. Termination of H-mode necessarily requires release of this energy, and the timescale of that release is of critical importance for the lifetimes of plasma facing components in next step tokamaks such as ITER. H-L transition sequences in modern tokamaks often begin with a transient outburst which appears to be superficially similar to and has sometimes been referred to as a type-I edge localized mode (ELM). Type-I ELMs have been shown to be consistent with ideal peeling ballooning instability and are characterized bymore » significant (up to ~50%) reduction of pedestal height on short (~1 ms) timescales. Knowing whether or not this type of instability is present during H-L back transitions will be important for planning for plasma ramp-down in ITER. This paper presents tests of pre-transition experimental data against ideal peeling-ballooning stability calculations with the ELITE code and supports 2 those results with secondary experiments that together show that the transient associated with the H-L transition is not triggered by the same physics as are type-I ELMs.« less

  4. EDGE2D-EIRENE modelling of near SOL E r: possible impact on the H-mode power threshold

    NASA Astrophysics Data System (ADS)

    Chankin, A. V.; Delabie, E.; Corrigan, G.; Harting, D.; Maggi, C. F.; Meyer, H.; Contributors, JET

    2017-04-01

    Recent EDGE2D-EIRENE simulations of JET plasmas showed a significant difference between radial electric field (E r) profiles across the separatrix in two divertor configurations, with the outer strike point on the horizontal target (HT) and vertical target (VT) (Chankin et al 2016 Nucl. Mater. Energy, doi: 10.1016/j.nme.2016.10.004). Under conditions (input power, plasma density) where the HT plasma went into the H-mode, a large positive E r spike in the near scrape-off layer (SOL) was seen in the code output, leading to a very large E × B shear across the separatrix over a narrow region of a fraction of a cm width. No such E r feature was obtained in the code solution for the VT configuration, where the H-mode power threshold was found to be twice as high as in the HT configuration. It was hypothesised that the large E × B shear across the separatrix in the HT configuration could be responsible for the turbulence suppression leading to an earlier (at lower input power) L-H transition compared to the VT configuration. In the present work these ideas are extended to cover some other experimental observations on the H-mode power threshold variation with parameters which typically are not included in the multi-machine H-mode power threshold scalings, namely: ion mass dependence (isotope H-D-T exchange), dependence on the ion ∇B drift direction, and dependence on the wall material composition (ITER-like wall versus carbon wall in JET). In all these cases EDGE2D-EIRENE modelling shows larger positive E r spikes in the near SOL under conditions where the H-mode power threshold is lower, at least in the HT configuration.

  5. Biomethane production system: Energetic analysis of various scenarios.

    PubMed

    Wu, Bin; Zhang, Xiangping; Bao, Di; Xu, Yajing; Zhang, Suojiang; Deng, Liyuan

    2016-04-01

    The energy consumption models of biomethane production system were established, which are more rigorous and universal than the empirical data reported by previous biomethane system energetic assessment work. The energy efficiencies of different scenarios considering factors such as two digestion modes, two heating modes of digester, with or without heat exchange between slurry and feedstock, and four crude biogas upgrading technologies were evaluated. Results showed the scenario employing thermophilic digestion and high pressure water scrubbing technology, with heat exchange between feedstock and slurry, and heat demand of digester supplied by the energy source outside the system has the highest energy efficiency (46.5%) and lowest energy consumption (13.46 MJth/Nm(3) CH4), while scenario employing mesophilic digestion and pressure swing adsorption technology, without heat exchange and heat demand of digester supplied by combusting the biogas produced inside the system has the lowest energy efficiency (15.8%) and highest energy consumption (34.90 MJth/Nm(3) CH4). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Extrapolation of the DIII-D high poloidal beta scenario to ITER steady-state using transport modeling

    NASA Astrophysics Data System (ADS)

    McClenaghan, J.; Garofalo, A. M.; Meneghini, O.; Smith, S. P.

    2016-10-01

    Transport modeling of a proposed ITER steady-state scenario based on DIII-D high βP discharges finds that the core confinement may be improved with either sufficient rotation or a negative central shear q-profile. The high poloidal beta scenario is characterized by a large bootstrap current fraction( 80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with improved normalized confinement. Typical temperature and density profiles from the non-inductive high poloidal beta scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving Q=5 steady state performance in ITER with ``day one'' H&CD capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. Either strong negative central magnetic shear or rotation are found to successfully provide the turbulence suppression required to maintain the temperature and density profiles. This work supported by the US Department of Energy under DE-FC02-04ER54698.

  7. Integrated Scenario Modeling of NSTX Advanced Plasma Configurations

    NASA Astrophysics Data System (ADS)

    Kessel, Charles; Synakowski, Edward

    2003-10-01

    The Spherical Torus will provide an attractive fusion energy source if it can demonstrate the following major features: high elongation and triangularity, 100% non-inductive current with a credible path to high bootstrap fractions, non-solenoidal startup and current rampup, high beta with stabilization of RWM instabilities, and sufficiently high energy confinement. NSTX has specific experimental milestones to examine these features, and integrated scenario modeling is helping to understand how these configurations might be produced and what tools are needed to access this operating space. Simulations with the Tokamak Simulation Code (TSC), CURRAY, and JSOLVER/BALMSC/PEST2 have identified fully non-inductively sustained, high beta plasmas that rely on strong plasma shaping accomplished with a PF coil modification, off-axis current drive from Electron Bernstein Waves (EBW), flexible on-axis heating and CD from High Harmonic Fast Wave (HHFW) and Neutral Beam Injection (NBI), and density control. Ideal MHD stability shows that with wall stabilization through plasma rotation and/or RWM feedback coils, a beta of 40% is achievable, with 100% non-inductive current sustained for 4 current diffusion times. Experimental data and theory are combined to produce a best extrapolation to these regimes, which is continuously improved as the discharges approach these parameters, and theoretical/computational methods expand. Further investigations and development for integrated scenario modeling on NSTX is discussed.

  8. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability.

    PubMed

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R; Batstone, Damien J

    2016-01-04

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.

  9. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability

    PubMed Central

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.

    2016-01-01

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895

  10. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    NASA Astrophysics Data System (ADS)

    Ali Asgarian, M.; Abbasi, M.

    2018-04-01

    Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  11. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  12. Influence of high magnetic field on access to stationary H-modes and pedestal characteristics in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Tolman, E. A.; Hughes, J. W.; Wolfe, S. M.; Wukitch, S. J.; LaBombard, B.; Hubbard, A. E.; Marmar, E. S.; Snyder, P. B.; Schmidtmayr, M.

    2018-04-01

    Recent Alcator C-Mod experiments have explored access to and characteristics of H-modes at magnetic fields approaching 8 T, the highest field achieved to date in a diverted tokamak. The H-modes originated from L-mode densities ranging from 1.1 × 1020~m-3 to 2.8 × 1020~m-3 , allowing insight into the density dependence of the H-mode power threshold at high magnetic field. This dependence is compared to predictions from the ITPA scaling law ([1]), finding that the law is approximately accurate at 7.8 T. However, the law underpredicted the high density H-mode threshold at lower magnetic field in previous C-Mod experiments ([2]), suggesting that the overall dependence of the threshold on magnetic field is weaker than predicted by the scaling law. The threshold data at 7.8 T also indicates that the onset of a low density branch at this magnetic field on C-Mod occurs below 1.4 × 1020~m-3 , which is lower than predicted by an existing model for low density branch onset. The H-modes achieved steady-state densities ranging from 2.3 × 1020 ~m-3 to 4.4 × 1020 ~m-3 , and higher transient densities, and had values of q 95 from 3.3 to 6.0. This parameter range allowed the achievement of all three types of H-mode routinely observed at lower magnetic field on C-Mod: the stationary, ELM-suppressed Enhanced D α (EDA) regime, seen at high densities and high values of q 95; the nonstationary ELM-free regime, seen at lower densities and values of q 95; and the ELMy regime, seen at low density, moderate q 95, and specialized plasma shape. The parameter space in which these regimes occur at 7.8 T is consistent with lower magnetic field experience. Pressure pedestal height at 7.8 T is compared to EPED [3, 4] predictions, and a scaling law for EDA density pedestal height developed between 4.5 T and 6.0 T is updated to include fields from 2.7 T to 7.8 T. Overall, this analysis increases confidence in the use of low magnetic field experience to predict some elements of high magnetic

  13. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  14. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE PAGES

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.; ...

    2016-06-21

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  15. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Snyder, P. B.; Chang, C. S.

    2017-06-01

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] is used in carrying out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. Simulations with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new

  16. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE PAGES

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; ...

    2017-06-08

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new

  17. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new

  18. Search for the decay modes B ±→h ±τl

    DOE PAGES

    Lees, J. P.; Poireau, V.; Tisserand, V.; ...

    2012-07-16

    We present a search for the lepton flavor violating decay modes B ±→h ±τl (h=K, π; l=e, μ) using the BABAR data sample, which corresponds to 472×10⁶ BB¯¯¯ pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the τ four-momentum. The resulting τ candidate mass is our main discriminant against combinatorial background. We see no evidence for B ±→h ±τl decays and set a 90% confidence level upper limit on each branching fractionmore » at the level of a few times 10⁻⁵.« less

  19. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  20. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  1. Development of fully non-inductive plasmas heated by medium and high-harmonic fast waves in the national spherical torus experiment upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Poli, F.; Bertelli, N.; Harvey, R. W.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Phillips, C. K.; Raman, R.

    2015-12-01

    A major challenge for spherical tokamak development is to start-up and ramp-up the plasma current (Ip) without using a central solenoid. Experiments in the National Spherical Torus eXperiment (NSTX) demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a non-inductive Ip fraction, fNI ˜ 0.7. The discharge had an axial toroidal magnetic field (BT(0)) of 0.55 T, the maximum BT(0) available on NSTX. NSTX has undergone a major upgrade (NSTX-U), that will eventually allow the generation of BT(0) ≤ 1 T and Ip ≤ 2 MA plasmas. Full wave simulations of 30 MHz HHFW and medium harmonic fast wave (MHFW) heating in NSTX-U predict significantly reduced FW power loss in the plasma edge at the higher BT(0) achievable in NSTX-U. HHFW experiments will aim to generate stable, fNI ˜ 1, Ip = 300 kA H-mode plasmas and to ramp Ip from 250 to 400 kA with FW power. Time-dependent TRANSP simulations are used to develop non-inductive Ip ramp-up and sustainment using 30 MHz FW power. This paper presents results from these RF simulations and plans for developing non-inductive plasmas heated by FW power.

  2. Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor.

    PubMed

    Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2018-05-09

    Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.

  3. Transport modeling of L- and H-mode discharges with LHCD on EAST

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.

    2013-04-01

    High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.

  4. Low-Frequency Raman Modes of 2H-TaSe2 in the Charge Density Wave Phase

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sugata; Simpson, J.; Einstein, T. L.; Hight Walker, A. R.; Theoretical Collaboration

    With changes in temperatures, tantalum diselenide (2H-TaSe2) , a layered, transition metal chalcogenides (TMD) exhibits unique super-lattice structures. The metallic ground state changes to an incommensurate charge density wave (CDW) state at 122?K followed by a commensurate CDW state at 90?K, and eventually a superconducting state 0.14 K. These phase transitions are driven by strong electron-phonon coupling and favored by the particular form of the Fermi surface of these systems. Here we theoretically studied the structural origin of low-frequency Raman modes of bulk 2H-TaSe2\\ in the CDW phases. Our calculations reveal that changes observed in the Raman modes are associated with the thermal expansion in the basal plane of 2H-TaSe2. The Grüneisen parameters of these two Raman modes increase in the CDW phases. Changes in the lattice parameter ``a'' are large compared to ``c'' which induces strain along the a-axis. We compared our results with experimental data which show low-frequency Raman phonon modes are very sensitive to temperature and are not observed in the metallic room-temperature state. In addition, we found that cation displacement is more than anion in CDW phase. Our results may shed more light on exact nature of the CDW instability and optical properties in this system.

  5. Complementary induction of immunogenic cell death by oncolytic parvovirus H-1PV and gemcitabine in pancreatic cancer.

    PubMed

    Angelova, Assia L; Grekova, Svitlana P; Heller, Anette; Kuhlmann, Olga; Soyka, Esther; Giese, Thomas; Aprahamian, Marc; Bour, Gaétan; Rüffer, Sven; Cziepluch, Celina; Daeffler, Laurent; Rommelaere, Jean; Werner, Jens; Raykov, Zahari; Giese, Nathalia A

    2014-05-01

    Novel therapies employing oncolytic viruses have emerged as promising anticancer modalities. The cure of particularly aggressive malignancies requires induction of immunogenic cell death (ICD), coupling oncolysis with immune responses via calreticulin, ATP, and high-mobility group box protein B1 (HMGB1) release from dying tumor cells. The present study shows that in human pancreatic cancer cells (pancreatic ductal adenocarcinoma [PDAC] cells n=4), oncolytic parvovirus H-1 (H-1PV) activated multiple interconnected death pathways but failed to induce calreticulin exposure or ATP release. In contrast, H-1PV elevated extracellular HMGB1 levels by 4.0±0.5 times (58%±9% of total content; up to 100 ng/ml) in all infected cultures, whether nondying, necrotic, or apoptotic. An alternative secretory route allowed H-1PV to overcome the failure of gemcitabine to trigger HMGB1 release, without impeding cytotoxicity or other ICD activities of the standard PDAC medication. Such broad resistance of H-1PV-induced HMGB1 release to apoptotic blockage coincided with but was uncoupled from an autocrine interleukin-1β (IL-1β) loop. That and the pattern of viral determinants maintained in gemcitabine-treated cells suggested the activation of an inflammasome/caspase 1 (CASP1) platform alongside DNA detachment and/or nuclear exclusion of HMGB1 during early stages of the viral life cycle. We concluded that H-1PV infection of PDAC cells is signaled through secretion of the alarmin HMGB1 and, besides its own oncolytic effect, might convert drug-induced apoptosis into an ICD process. A transient arrest of cells in the cyclin A1-rich S phase would suffice to support compatibility of proliferation-dependent H-1PV with cytotoxic regimens. These properties warrant incorporation of the oncolytic virus H-1PV, which is not pathogenic in humans, into multimodal anticancer treatments. The current therapeutic concepts targeting aggressive malignancies require an induction of immunogenic cell death

  6. Complementary Induction of Immunogenic Cell Death by Oncolytic Parvovirus H-1PV and Gemcitabine in Pancreatic Cancer

    PubMed Central

    Angelova, Assia L.; Grekova, Svitlana P.; Heller, Anette; Kuhlmann, Olga; Soyka, Esther; Giese, Thomas; Aprahamian, Marc; Bour, Gaétan; Rüffer, Sven; Cziepluch, Celina; Daeffler, Laurent; Rommelaere, Jean; Werner, Jens; Raykov, Zahari

    2014-01-01

    ABSTRACT Novel therapies employing oncolytic viruses have emerged as promising anticancer modalities. The cure of particularly aggressive malignancies requires induction of immunogenic cell death (ICD), coupling oncolysis with immune responses via calreticulin, ATP, and high-mobility group box protein B1 (HMGB1) release from dying tumor cells. The present study shows that in human pancreatic cancer cells (pancreatic ductal adenocarcinoma [PDAC] cells; n = 4), oncolytic parvovirus H-1 (H-1PV) activated multiple interconnected death pathways but failed to induce calreticulin exposure or ATP release. In contrast, H-1PV elevated extracellular HMGB1 levels by 4.0 ± 0.5 times (58% ± 9% of total content; up to 100 ng/ml) in all infected cultures, whether nondying, necrotic, or apoptotic. An alternative secretory route allowed H-1PV to overcome the failure of gemcitabine to trigger HMGB1 release, without impeding cytotoxicity or other ICD activities of the standard PDAC medication. Such broad resistance of H-1PV-induced HMGB1 release to apoptotic blockage coincided with but was uncoupled from an autocrine interleukin-1β (IL-1β) loop. That and the pattern of viral determinants maintained in gemcitabine-treated cells suggested the activation of an inflammasome/caspase 1 (CASP1) platform alongside DNA detachment and/or nuclear exclusion of HMGB1 during early stages of the viral life cycle. We concluded that H-1PV infection of PDAC cells is signaled through secretion of the alarmin HMGB1 and, besides its own oncolytic effect, might convert drug-induced apoptosis into an ICD process. A transient arrest of cells in the cyclin A1-rich S phase would suffice to support compatibility of proliferation-dependent H-1PV with cytotoxic regimens. These properties warrant incorporation of the oncolytic virus H-1PV, which is not pathogenic in humans, into multimodal anticancer treatments. IMPORTANCE The current therapeutic concepts targeting aggressive malignancies require an induction

  7. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  8. Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.

    2009-11-01

    The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.

  9. Using Multiple Youth Programming Delivery Modes to Drive the Development of Social Capital in 4-H Participants

    ERIC Educational Resources Information Center

    Kinsey, Sharon

    2013-01-01

    This article focuses on how 4-H youth participants are building social capital, or connections among individuals and community members, through their 4-H experiences. These experiences can be seen through the lens of such 4-H delivery modes as the traditional 4-H club, after-school programs, and school enrichment programs. In addition, other…

  10. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.

    2016-07-01

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n  ⩽  5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E  ×  B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.

  11. Streamer formation and transport for parameters characteristic of H-mode pedestals

    NASA Astrophysics Data System (ADS)

    Blackmon, Austin; Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Hazeltine, R. D.

    2017-10-01

    We investigate, through gyrokinetic simulations, the formation of streamers as a consequence of electron temperature gradient driven, electron scale instabilities. We also study the interaction of velocity shear with streamers for parameters typical of H-mode pedestals, exploring both the higher as well as lower temperature gradient regions. Without ExB shear, the streamers form at the pedestal top causing large heat fluxes; the modes, however, did not saturate. When ExB shear was turned on, the streamers dissipated, and heat flux was lowered, though still of significant magnitude. In the middle of the pedestal, with high temperature gradient, heat flux was insignificant. There was no evidence of streamers in this region, leading to a conclusion that streamers have a strong influence on heat flux. Work supported by US DOE under DE-FG02-04ER54742.

  12. Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.

    1973-01-01

    Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.

  13. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    PubMed Central

    Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  14. Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.

    PubMed

    Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.

  15. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  16. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    NASA Astrophysics Data System (ADS)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  17. A mode of action for induction of liver tumors by Pyrethrins in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Roger J.; Walters, David G.; Finch, John M.

    2007-01-15

    High doses of Pyrethrins produce liver tumors in female rats. To elucidate the mode of action for tumor formation, the hepatic effects of Pyrethrins have been investigated. Male Sprague-Dawley CD rats were fed diets containing 0 (control) and 8000 ppm Pyrethrins and female rats' diets containing 0, 100, 3000 and 8000 ppm Pyrethrins for periods of 7, 14 and 42 days and 42 days followed by 42 days of reversal. As a positive control, rats were also fed diets containing 1200-1558 ppm sodium Phenobarbital (NaPB) for 7 and 14 days. The treatment of male rats with 8000 ppm Pyrethrins, femalemore » rats with 3000 and 8000 ppm Pyrethrins and both sexes with NaPB resulted in increased liver weights, which were associated with hepatocyte hypertrophy. Hepatocyte replicative DNA synthesis was also increased by treatment with Pyrethrins and NaPB. The treatment of male and female rats with Pyrethrins and NaPB produced significant increases in hepatic microsomal cytochrome P450 (CYP) content and a marked induction of CYP2B-dependent 7-pentoxyresorufin O-depentylase and testosterone 16{beta}-hydroxylase activities. Significant increases were also observed in CYP3A-dependent testosterone 6{beta}-hydroxylase activity. The hepatic effects of Pyrethrins were dose-dependent in female rats with 100 ppm being a no effect level and on cessation of treatment were reversible in both sexes. This study demonstrates that Pyrethrins are mitogenic CYP2B form inducers in rat liver. The mode of action for Pyrethrins-induced rat liver tumor formation appears to be similar to that of NaPB and some other non-genotoxic CYP2B inducers of hepatic xenobiotic metabolism.« less

  18. Predictions of high QDT in ITER H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Budny, Robert

    2009-05-01

    Time-dependent integrated predictions of performance metrics such as the fusion power PDT, QDT≡ PDT/Pext, and alpha profiles are presented. The PTRANSP code (see R.V. Budny, R. Andre, G. Bateman, F. Halpern, C.E. Kessel, A. Kritz, and D. McCune, Nuclear Fusion 48 075005, and F. Halpern, A. Kritz, G. Bateman, R.V. Budny, and D. McCune, Phys. Plasmas 15 062505) is used, along with GLF23 to predict plasma profiles, NUBEAM for NNBI and alpha heating, TORIC for ICRH, and TORAY for ECRH. Effects of sawteeth mixing, beam steering, beam shine-through, radiation loss, ash accumulation, and toroidal rotation are included. A total heating of Pext=73MW is assumed to achieve H-mode during the density and current ramp-up phase. Various mixes of NNBI, ICRH, and ECRH heating schemes are compared. After steady state conditions are achieved, Pext is stepped down to lower values to explore high QDT. Physics and computation uncertainties lead to ranges in predictions for PDT and QDT. Physics uncertainties include the L->H and H->L threshold powers, pedestal height, impurity and ash transport, and recycling. There are considerably more uncertainties predicting the peak value for QDT than for PDT.

  19. H-mode and Edge Physics on the Pegasus ST: Progress and Future Directions

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Bodner, G. M.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Kriete, D. M.; Lewicki, B. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.; Thome, K. E.; Winz, G. R.

    2015-11-01

    Ohmic H-modes are routinely attained on the Pegasus ST, in part due to the low L-H power threshold PLH arising from low-BT operation at A ~ 1 . Characteristics of H-mode include: improved τe, consistent with H98 ~ 1 edge current and pressure pedestal formation; and the occurrence of ELMs. Experiments in the past year have examined magnetic topology and density dependencies of PLH in detail. PLH exceeds ITER L-H scaling values by 10-20 ×, with PLH /PITPA 08 increasing sharply as A --> 1 . No PLH-minimizing density has been found. Unlike at high- A, PLH is insensitive to limited or diverted magnetic topologies to date. The low BT and modest pedestal values at A ~ 1 afford unique edge diagnostic accessibility to investigate ELMs and their nonlinear dynamics. Jedge (R , t) measured through a Type I ELM shows a complex pedestal collapse and filament ejection. These studies are being extended to higher Ip and longer pulse length with LHI startup to conserve Ohmic V-s and improve MHD stability. A modest-cost upgrade to the facility will enable detailed validation studies of nonlinear ELM dynamics and ELM control. This initiative will upgrade the centerstack, increasing BT by × 3 , Ohmic V-s by × 4 , and pulse lengths to 100 ms at A < 1 . 3 , as well as deploy a comprehensive 3D magnetic perturbation coil system with full poloidal coverage from frame coils and helical centerstack windings. Work supported by US DOE grant DE-FG02-96ER54375.

  20. First Experiments with e-e-H- H- Plasmas: Enhanced Mode Damping and Transport

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Thompson, K. A.; Driscoll, C. F.

    2017-10-01

    Negative Hydrogen ions are produced and confined in a room-temperature electron plasma, causing enhanced mode damping and particle transport effects. We accumulate an H- charge fraction nH-nH-ne 20 % ne 20 % in about 200 seconds, as externally excited H2 molecules undergo dissociative electron attachment in the plasma. The accumulated H- fraction causes a novel algebraic damping of diocotron mode amplitude A(t) , and the damping is coincident with an enhanced outward drift υr of the H- ions. That is, dA dA dt = - α dt = - α , with α nH- *υr . We observe that heating the e-e-H- H- plasma terminates the enhanced damping and enhanced centrifugal separation, both of which resume when plasma re-cools by cyclotron radiation at B = 1.2T. Other interesting observations include: (1) enhanced e- cooling from collisions with H- cooled by neutrals; (2) enhanced damping of plasma waves due to e-e-H- H- collisional drag; (3) strong exponential damping of diocotron modes in a ``floppy'' nearly-pure H- plasma, created by rapid axial ejection of the electrons. Additional novel drift modes and instabilities are predicted theoretically in such a plasma. Supported by NSF/DoE Partnership Grants PHY-1414570 and DE-SC0008693.

  1. Advances in the steady-state hybrid regime in DIII-D – a fully non-inductive, ELM-suppressed scenario for ITER

    DOE PAGES

    Petty, Craig C.; Nazikian, Raffi; Park, Jin Myung; ...

    2017-07-19

    Here, the hybrid regime with beta, collisionality, safety factor and plasma shape relevant to the ITER steady-state mission has been successfully integrated with ELM suppression by applying an odd parity n=3 resonant magnetic perturbation (RMP). Fully non-inductive hybrids in the DIII-D tokamak with high beta (β ≤ 2.8%) and high confinement (98y2 ≤ 1.4) in the ITER similar shape have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. The n=3 RMP causes surprisingly little increase in thermal transport during ELM suppression. Poloidal magnetic flux pumping in hybridmore » plasmas maintains q above 1 without loss of current drive efficiency, except that experiments show that extremely peaked ECCD profiles can create sawteeth. During ECCD, Alfvén eigenmode (AE) activity is replaced by a more benign fishbone-like mode, reducing anomalous beam ion diffusion by a factor of 2. While the electron and ion thermal diffusivities substantially increase with higher ECCD power, the loss of confinement can be offset by the decreased fast ion transport resulting from AE suppression. Extrapolations from DIII-D along a dimensionless parameter scaling path as well as those using self-consistent theory-based modeling show that these ELM-suppressed, fully non-inductive hybrids can achieve the Q = 5 ITER steady-state mission.« less

  2. Access to a new plasma edge state with high density and pressures using the quiescent H mode

    DOE PAGES

    Solomon, Wayne M.; Snyder, Philip B.; Burrell, Keith H.; ...

    2014-09-24

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. As a result, calculations of themore » pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  3. Effect of anomalous transport on kinetic simulations of the H-mode pedestal

    NASA Astrophysics Data System (ADS)

    Bateman, G.; Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.

    2009-11-01

    The MMM08 and MMM95 Multi-Mode transport models [1,2], are used to investigate the effect of anomalous transport in XGC0 gyrokinetic simulations [3] of tokamak H-mode pedestal growth. Transport models are implemented in XGC0 using the Framework for Modernization and Componentization of Fusion Modules (FMCFM). Anomalous transport is driven by steep temperature and density gradients and is suppressed by high values of flow shear in the pedestal. The radial electric field, used to calculate the flow shear rate, is computed self-consistently in the XGC0 code with the anomalous transport, Lagrangian charged particle dynamics and neutral particle effects. XGC0 simulations are used to provide insight into how thermal and particle transport, together with the sources of heat and charged particles, determine the shape and growth rate of the temperature and density profiles. [1] F.D. Halpern et al., Phys. Plasmas 15 (2008) 065033; J.Weiland et al., Nucl. Fusion 49 (2009) 965933; A.Kritz et al., EPS (2009) [2] G. Bateman, et al, Phys. Plasmas 5 (1998) 1793 [3] C.S. Chang, S. Ku, H. Weitzner, Phys. Plasmas 11 (2004) 2649

  4. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode.

    PubMed

    Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-01-01

    Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.

  5. Higher order mode couplers for normal conducting DORIS 5-cell cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewersteg, B.; Seesselberg, E.; Zolfaghari, A.

    1985-10-01

    The beam intensity of the DORIS e -e storage ring is limited to about 100 mA average circulation current as a result of instabilities driven by higher order rf cavity modes. Thus an investigation has been made of the higher order mode impedances of the DORIS rf accelerator cavities. These cavities are the same as the normally conducting inductively coupled 500 MHz 5-cell structures used in PETRA. The results of the investigation were applied for the construction of inductive and capacitive attenuation antennae corresponding to specific mode spectra and mode impedances. The antennae must fit into the existing 35 mmmore » pick up flanges of the cavities and in spite of these size and position limitations they must be efficient in reducing the shunt impedances of the dangerous modes.« less

  6. Modes of interannual variability in northern hemisphere winter atmospheric circulation in CMIP5 models: evaluation, projection and role of external forcing

    NASA Astrophysics Data System (ADS)

    Frederiksen, Carsten S.; Ying, Kairan; Grainger, Simon; Zheng, Xiaogu

    2018-04-01

    Models from the coupled model intercomparison project phase 5 (CMIP5) dataset are evaluated for their ability to simulate the dominant slow modes of interannual variability in the Northern Hemisphere atmospheric circulation 500 hPa geopotential height in the twentieth century. A multi-model ensemble of the best 13 models has then been used to identify the leading modes of interannual variability in components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. Modes in the intraseasonal component are related to intraseasonal variability in the North Atlantic, North Pacific and North American, and Eurasian regions and are little affected by the larger radiative forcing of the Representative Concentration Pathways 8.5 (RCP8.5) scenario. The leading modes in the slow-internal component are related to the El Niño-Southern Oscillation, Pacific North American or Tropical Northern Hemisphere teleconnection, the North Atlantic Oscillation, and the Western Pacific teleconnection pattern. While the structure of these slow-internal modes is little affected by the larger radiative forcing of the RCP8.5 scenario, their explained variance increases in the warmer climate. The leading mode in the slow-external component has a significant trend and is shown to be related predominantly to the climate change trend in the well mixed greenhouse gas concentration during the historical period. This mode is associated with increasing height in the 500 hPa pressure level. A secondary influence on this mode is the radiative forcing due to stratospheric aerosols associated with volcanic eruptions. The second slow-external mode is shown to be also related to radiative forcing due to stratospheric aerosols. Under RCP8.5 there is only one slow-external mode related to greenhouse gas forcing with a trend over four times the historical trend.

  7. Steady-state inductive spheromak operation

    DOEpatents

    Janos, Alan C.; Jardin, Stephen C.; Yamada, Masaaki

    1987-01-01

    The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.

  8. Towards estimation of respiratory muscle effort with respiratory inductance plethysmography signals and complementary ensemble empirical mode decomposition.

    PubMed

    Chen, Ya-Chen; Hsiao, Tzu-Chien

    2018-07-01

    Respiratory inductance plethysmography (RIP) sensor is an inexpensive, non-invasive, easy-to-use transducer for collecting respiratory movement data. Studies have reported that the RIP signal's amplitude and frequency can be used to discriminate respiratory diseases. However, with the conventional approach of RIP data analysis, respiratory muscle effort cannot be estimated. In this paper, the estimation of the respiratory muscle effort through RIP signal was proposed. A complementary ensemble empirical mode decomposition method was used, to extract hidden signals from the RIP signals based on the frequency bands of the activities of different respiratory muscles. To validate the proposed method, an experiment to collect subjects' RIP signal under thoracic breathing (TB) and abdominal breathing (AB) was conducted. The experimental results for both the TB and AB indicate that the proposed method can be used to loosely estimate the activities of thoracic muscles, abdominal muscles, and diaphragm. Graphical abstract ᅟ.

  9. Multiresonance modes in sine–Gordon brane models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, W.T., E-mail: wilamicruz@gmail.com; Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br; Dantas, D.M., E-mail: davi@fisica.ufc.br

    2016-12-15

    In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge fieldmore » is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.« less

  10. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    PubMed

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  11. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    PubMed Central

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively. PMID:21267082

  12. Startup and mode competition in a 420 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Qixiang Zhao, A.; Sheng Yu, B.; Tianzhong Zhang, C.

    2017-09-01

    In the experiments of a 420 GHz second-harmonic gyrotron, it is found that the electron beam voltage and current ranges for single mode operation of TE17.4 are slightly narrower than those in the simulation. To explain this phenomenon, the startup scenario has been investigated with special emphasis on mode competition. The calculations indicate that the decreases of the operating ranges are caused by the voltage overshoot in the startup scenario.

  13. Is the Bishop-score significant in predicting the success of labor induction in multiparous women?

    PubMed

    Navve, D; Orenstein, N; Ribak, R; Daykan, Y; Shechter-Maor, G; Biron-Shental, T

    2017-05-01

    To determine whether the Bishop-score upon admission effects mode of delivery, maternal or neonatal outcomes of labor induction in multiparous women. A retrospective study including 600 multiparous women with a singleton pregnancy, 34 gestational weeks and above who underwent labor induction for maternal, fetal or combined indications. Induction was performed with one of three methods- oxytocin, a slow release vaginal prostaglandin E2 insert (10 mg dinoprostone) or a transcervical double balloon catheter. The women were divided into two groups-Bishop-score <6 and Bishop-score ⩾6. We evaluated labor course, maternal complications (postpartum hemorrhage, manual lysis, uterine revision, perineal tear grade 3-4, need for blood transfusions, relaparotomy, prolonged hospitalization) and neonatal outcomes (Apgar score, cord pH, hospitalization in the neonatal intensive care unit, prolonged hospitalization). Both groups had a high rate of vaginal deliveries-93.7% and 94.9%, respectively. There was no difference between the two groups in terms of maternal or neonatal outcomes. Labor induction in multiparous women is safe and successful regardless of the initial Bishop-score. In multiparous women the Bishop-score is not a good predictor for the success of labor induction, nor is it a predictor for maternal of neonatal adverse outcomes and complications.

  14. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  15. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE PAGES

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-12

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  16. Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.

    2015-11-01

    In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.

  17. Multi-scale gyrokinetic simulations of an Alcator C-Mod, ELM-y H-mode plasma

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Rodriguez-Fernandez, P.; Candy, J.; Creely, A. J.

    2018-01-01

    High fidelity, multi-scale gyrokinetic simulations capable of capturing both ion ({k}θ {ρ }s∼ { O }(1.0)) and electron-scale ({k}θ {ρ }e∼ { O }(1.0)) turbulence were performed in the core of an Alcator C-Mod ELM-y H-mode discharge which exhibits reactor-relevant characteristics. These simulations, performed with all experimental inputs and realistic ion to electron mass ratio ({({m}i/{m}e)}1/2=60.0) provide insight into the physics fidelity that may be needed for accurate simulation of the core of fusion reactor discharges. Three multi-scale simulations and series of separate ion and electron-scale simulations performed using the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) are presented. As with earlier multi-scale results in L-mode conditions (Howard et al 2016 Nucl. Fusion 56 014004), both ion and multi-scale simulations results are compared with experimentally inferred ion and electron heat fluxes, as well as the measured values of electron incremental thermal diffusivities—indicative of the experimental electron temperature profile stiffness. Consistent with the L-mode results, cross-scale coupling is found to play an important role in the simulation of these H-mode conditions. Extremely stiff ion-scale transport is observed in these high-performance conditions which is shown to likely play and important role in the reproduction of measurements of perturbative transport. These results provide important insight into the role of multi-scale plasma turbulence in the core of reactor-relevant plasmas and establish important constraints on the the fidelity of models needed for predictive simulations.

  18. Testing an H-mode Pedestal Model Using DIII-D Data

    NASA Astrophysics Data System (ADS)

    Kritz, A. H.; Onjun, T.; Bateman, G.; Guzdar, P. N.; Mahajan, S. M.; Osborne, T.

    2004-11-01

    Tests against experimental data are carried out for a model of the pedestal at the edge of H-mode plasmas based on double-Beltrami solutions of the two-fluid Hall-MHD equations for the interaction of the magnetic and velocity fields.(S.M. Mahajan and Z. Yoshida, PRL 81 (1998) 4863, Phys. Plasmas 7 (2000) 635.) The width and height of the pedestal predicted by the model are tested against experimental data from the DIII-D tokamak. The model for the pedestal width, which has a particularly simple form, namely, inversely proportional to the square root of the density, does not appear to capture the parameter dependence of the experimental data. When the model for the pedestal temperature is rescaled to optimize agreement with data, the RMS error is found to be comparable with the RMS error found using other pedestal models.(T. Onjun, G. Bateman, A.H. Kritz, G. Hammett, Phys. Plasmas 9 (2002) 5018.)

  19. Direct-reading inductance meter

    NASA Technical Reports Server (NTRS)

    Kolbly, R. B.

    1977-01-01

    Meter indicates from 30 nH to 3 micro H. Reference inductor of 15 micro H is made by winding 50 turns of Number 26 Formvar wire on Micrometal type 50-2 (or equivalent) core. Circuit eliminates requirement for complex instrument compensation prior to taking coil inductance measurement and thus is as easy to operate as common ohmmeter.

  20. Optimizing the current ramp-up phase for the hybrid ITER scenario

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Artaud, J.-F.; Casper, T. A.; Citrin, J.; Imbeaux, F.; Köchl, F.; Litaudon, X.; Voitsekhovitch, I.; the ITM-TF ITER Scenario Modelling Group

    2013-01-01

    The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current ramp-up. A reference ramp-up scenario is reached by a combination of NBI, ECCD (UPL) and LHCD. A heating scheme with only NBI and ECCD can also reach the target q profile; however, LHCD can play a crucial role in reducing the flux consumption during the ramp-up phase. The optimum heating scheme depends on the chosen transport model, and on assumptions of parameters like ne peaking, edge Te,i and Zeff. The sensitivity of the current diffusion on parameters that are not easily controlled, shows that development of real-time control is important to reach the target q profile. A first step in that direction has been indicated in this paper. Minimizing resistive flux consumption and optimizing the q profile turn out to be conflicting requirements. A trade-off between these two requirements has to be made. In this paper it is shown that fast current ramp with L-mode current overshoot is at the one extreme, i.e. the optimum q profile at the cost of increased resistive flux consumption, whereas early H-mode transition is at the other extreme.

  1. W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER

    NASA Astrophysics Data System (ADS)

    Köchl, F.; Loarte, A.; de la Luna, E.; Parail, V.; Corrigan, G.; Harting, D.; Nunes, I.; Reux, C.; Rimini, F. G.; Polevoi, A.; Romanelli, M.; Contributors, JET

    2018-07-01

    Tokamak operation with W PFCs is associated with specific challenges for impurity control, which may be particularly demanding in the transition from stationary H-mode to L-mode. To address W control issues in this phase, dedicated experiments have been performed at JET including the variation of the decrease of the power and current, gas fuelling and central ion cyclotron heating (ICRH), and applying active ELM control by vertical kicks. The experimental results obtained demonstrate the key role of maintaining ELM control to control the W concentration in the exit phase of H-modes with slow (ITER-like) ramp-down of the neutral beam injection power in JET. For these experiments, integrated fully predictive core+edge+SOL transport modelling studies applying discrete models for the description of transients such as sawteeth and ELMs have been performed for the first time with the JINTRAC suite of codes for the entire transition from stationary H-mode until the time when the plasma would return to L-mode focusing on the W transport behaviour. Simulations have shown that the existing models can appropriately reproduce the plasma profile evolution in the core, edge and SOL as well as W accumulation trends in the termination phase of JET H-mode discharges as function of the applied ICRH and ELM control schemes, substantiating the ambivalent effect of ELMs on W sputtering on one side and on edge transport affecting core W accumulation on the other side. The sensitivity with respect to NB particle and momentum sources has also been analysed and their impact on neoclassical W transport has been found to be crucial to reproduce the observed W accumulation characteristics in JET discharges. In this paper the results of the JET experiments, the comparison with JINTRAC modelling and the adequacy of the models to reproduce the experimental results are described and conclusions are drawn regarding the applicability of these models for the extrapolation of the applied W

  2. Piloted Evaluation of the H-Mode, a Variable Autonomy Control System, in Motion-Based Simulation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2008-01-01

    As aircraft become able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help understand their use and guide the design of new, more effective forms of automation and interaction. The "H-mode" is one such method and is based on the metaphor of a well-trained horse. The concept allows the pilot to manage a broad range of control automation functionality, from augmented manual control to FMS-like coupling and automation initiated actions, using a common interface system and easily learned set of interaction skills. The interface leverages familiar manual control interfaces (e.g., the control stick) and flight displays through the addition of contextually dependent haptic-multimodal elements. The concept is relevant to manned and remotely piloted vehicles. This paper provides an overview of the H-mode concept followed by a presentation of the results from a recent evaluation conducted in a motion-based simulator. The evaluation focused on assessing the overall usability and flying qualities of the concept with an emphasis on the effects of turbulence and cockpit motion. Because the H-mode results in interactions between traditional flying qualities and management of higher-level flight path automation, these effects are of particular interest. The results indicate that the concept may provide a useful complement or replacement to conventional interfaces, and retains the usefulness in the presence of turbulence and motion.

  3. Improving induction of labour - a quality improvement project addressing Caesarean section rates and length of process in women undergoing induction of labour

    PubMed Central

    O'Dwyer, Sabrina; Raniolo, Caterina; Roper, Janice; Gupta, Manish

    2015-01-01

    Induction of labour (IOL) in maternity care is often not an area of priority in maternity services, which often results in protracted delays, a poor patient experience, and patient complaints. Caesarean section (CS) rates among women undergoing IOL at this inner city district general hospital were noted to be higher than other units nationwide. We collected pre and post-intervention data of the following outcome measures: time taken to administer prostaglandin after arrival, time taken to achieve established labour, mode of delivery, and user satisfaction scores. Our introduction of a dedicated IOL Suite, promotion of out-patient IOL, use of a single administration prostaglandin (as opposed to traditional six hourly prostaglandin), widespread staff engagement and rolling audit has resulted in positive change in the maternity unit. CS rates for women undergoing IOL have been reduced from 29% to 22% (p=0.05), time taken to administer the induction medication has decreased from 6.3h to 2.7h (p=0.0001), and out-patient induction rates have increased from 3% to 33% (p=0.001). We have achieved a reduction in the overall length of in-patient stay. We have also received positive feedback from both staff and patients. We used a bottom-up approach, engaging frontline staff in problem identification and pathway design. Our staff engagement questionnaire showed other benefits such as increased staff morale as a result. Collection of simple performance data and sharing of this in real time with staff acts as a valuable tool for acceptance of change and continuous improvement. Communicating plans to a large body of people is important in ensuring the success of an intervention. Staff showing disengagement may require specific detailed information to allay their concerns. Following initial successes, ongoing vigilance, and collection of audit data is key to sustaining any improvement. PMID:26734422

  4. Induction of labor or serial antenatal fetal monitoring in postterm pregnancy: a randomized controlled trial.

    PubMed

    Heimstad, Runa; Skogvoll, Eirik; Mattsson, Lars-Ake; Johansen, Ole Jakob; Eik-Nes, Sturla H; Salvesen, Kjell A

    2007-03-01

    To compare induction of labor at gestational age 41 weeks with expectant management in regard to neonatal morbidity. Secondary aims were to assess the effect of these managements on mode of delivery and maternal complications. Between September 2002 and July 2004, postterm women with singleton cephalic presentation and no prelabor rupture of membranes were randomly assigned to induction of labor at 289 days or antenatal fetal surveillance every third day until spontaneous labor. Main outcome measures were neonatal morbidity, operative delivery rates, and maternal complications. Five hundred eight women were randomly assigned, 254 in each group. No differences of clinical importance were observed in women in whom labor was induced compared with women who were expectantly managed with regard to the following outcomes: neonates whose 5-minute Apgar score was less than 7 (three neonates in the induction group compared with four in the monitoring group, P=.72); neonates whose umbilical cord pH was less than 7 (three compared with two, P=.69); prevalence of cesarean delivery (28 compared with 33, P=.50); or prevalence of operative vaginal delivery (32 compared with 27, P=.49). In the induction group more women had precipitate labors (33 compared with 12, P<.01; number needed to treat was 13), and the duration of second stage of labor was more often less than 15 minutes (94 compared with 56, P<.01; number needed to treat was 7). No differences were found between the induced and monitored groups regarding neonatal morbidity or mode of delivery, and the outcomes were generally good. ClinicalTrials.gov, www.clinicaltrials.gov, NCT00385229. I.

  5. Physics of thermal transport and increased electron temperature turbulence in the edge pedestal of ELM-free, H-mode regimes on DIII-D

    NASA Astrophysics Data System (ADS)

    Sung, Choongki

    2017-10-01

    It has been observed, for the first time, that suppression of Edge Localized Modes (ELMs) in tokamak plasmas is accompanied by an increase in electron temperature turbulence. A correlation electron cyclotron emission technique has been utilized to quantify the observed increase: 40% increase in Quiescent H-mode (QH-mode) and 70% increase in 3D field ELM suppressed H-mode. Since reliable ELM-free H-mode operation is essential for future burning plasma experiments, it is crucial to develop a validated predictive capability for these plasmas. Linear stability analysis using TGLF has provided an explanation for the observations and has indicated that the underlying physical mechanisms are different in the two regimes. In QH-mode, profile gradients and the associated linear growth rate are decreased compared to ELMing H-mode. However, the ExB shearing rate is reduced by an even greater factor such that turbulent transport is no longer suppressed by flow shear. In contrast, during 3D field ELM suppressed H-mode, gradients are increased and TGLF predicts that a large increase in linear growth rate is primarily responsible for the increased turbulence. Power balance analysis using ONETWO is also consistent with the changes in electron thermal transport being due to the increased turbulence. These new findings are significant since they i) provide a physics explanation of these changes via TGLF analysis and enable validation of the model in the key pedestal region, and ii) support the hypothesis that turbulent transport partially replaces ELM-dominated transport during ELM-free operation. These results form a basis to develop a predictive understanding of pedestal regulation in ELM suppressed regimes. Supported by the US DOE under DE-FG02-08ER54984, DE-FC02-04ER54698.

  6. Short wavelength turbulence generated by shear in the quiescent H-mode edge on DIII–D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rost, J. C.; Porkolab, M.; Dorris, J.

    2014-06-15

    A region of turbulence with large radial wavenumber (k{sub r}ρ{sub s}>1) is found in the high-shear portion of the plasma edge in Quiescent H-mode (QH-mode) on DIII–D using the Phase Contrast Imaging (PCI) diagnostic. At its peak outside the minimum of the E{sub r} well, the turbulence exhibits large amplitude n{sup ~}/n∼40%, with large radial wavenumber |k{sup ¯}{sub r}/k{sup ¯}{sub θ}|∼11 and short radial correlation length L{sub r}/ρ{sub i}∼0.2. The turbulence inside the E{sub r} well minimum is characterized by the opposite sign in radial wavenumber from that of turbulence outside the minimum, consistent with the expected effects of velocitymore » shear. The PCI diagnostic provides a line-integrated measurement of density fluctuations, so data are taken during a scan of plasma position at constant parameters to allow the PCI to sample a range in k{sub r}/k{sub θ}. Analysis of the Doppler shift and plasma geometry allows the turbulence to be localized to a narrow region 3 mm inside the last closed flux surface, outside the minimum of the E{sub r} well. The turbulence amplitude and radial wavenumber and correlation length are determined by fitting the PCI results with a simple non-isotropic turbulence model with two regions of turbulence. These PCI observations, made in QH-mode, are qualitatively similar to those made in standard edge localized modes (ELM)-free H-mode and between ELMs, suggesting a similar role for large k{sub r} turbulence there.« less

  7. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in themore » freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.« less

  8. Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, Wayne G.

    2013-10-01

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  9. Soil pH mapping with an on-the-go sensor.

    PubMed

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r(2)) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.

  10. Soil pH Mapping with an On-The-Go Sensor

    PubMed Central

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany. PMID:22346591

  11. Real-time reflectometry measurement validation in H-mode regimes for plasma position control.

    PubMed

    Santos, J; Guimarais, L; Manso, M

    2010-10-01

    It has been shown that in H-mode regimes, reflectometry electron density profiles and an estimate for the density at the separatrix can be jointly used to track the separatrix within the precision required for plasma position control on ITER. We present a method to automatically remove, from the position estimation procedure, measurements performed during collapse and recovery phases of edge localized modes (ELMs). Based on the rejection mechanism, the method also produces an estimate confidence value to be fed to the position feedback controller. Preliminary results show that the method improves the real-time experimental separatrix tracking capabilities and has the potential to eliminate the need for an external online source of ELM event signaling during control feedback operation.

  12. Search for an additional, heavy Higgs boson in the $$H\\rightarrow ZZ$$ H decay channel at $$\\sqrt{s} = 8\\;\\text{ TeV }$$ in $pp$ collision data with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-01-25

    A search is presented for a high-mass Higgs boson in the H → ZZ → ℓ + ℓ - ℓ + ℓ - , (Formula Presented), (Formula Presented), and (Formula Presented) decay modes using the ATLAS detector at the CERN Large Hadron Collider. The search uses proton–proton collision data at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3fb -1 . The results of the search are interpreted in the scenario of a heavy Higgs boson with a width that is small compared with the experimental mass resolution. The Higgs boson mass range considered extends up tomore » 1 TeV for all four decay modes and down to as low as 140 GeV, depending on the decay mode. No significant excess of events over the Standard Model prediction is found. A simultaneous fit to the four decay modes yields upper limits on the production cross-section of a heavy Higgs boson times the branching ratio to Z boson pairs. 95% confidence level upper limits range from 0.53 pb at m H =195 GeV to 0.008 pb at m H =950GeV for the gluon-fusion production mode and from 0.31pb at m H =195GeV to 0.009pb at m H =950GeV for the vector-boson-fusion production mode. The results are also interpreted in the context of Type-I and Type-II two-Higgs-doublet models.« less

  13. A TE-mode accelerator

    NASA Astrophysics Data System (ADS)

    Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.

    1987-04-01

    An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.

  14. Studies on biogas-fuelled compression ignition engine under dual fuel mode.

    PubMed

    Mahla, Sunil Kumar; Singla, Varun; Sandhu, Sarbjot Singh; Dhir, Amit

    2018-04-01

    Experimental investigation has been carried out to utilize biogas as an alternative source of energy in compression ignition (CI) engine under dual fuel operational mode. Biogas was inducted into the inlet manifold at different flow rates along with fresh air through inlet manifold and diesel was injected as a pilot fuel to initiate combustion under dual fuel mode. The engine performance and emission characteristics of dual fuel operational mode were analyzed at different biogas flow rates and compared with baseline conventional diesel fuel. Based upon the improved performance and lower emission characteristics under the dual fuel operation, the optimum flow rate of biogas was observed to be 2.2 kg/h. The lower brake thermal efficiency (BTE) and higher brake-specific energy consumption (BSEC) were noticed with biogas-diesel fuel under dual fuel mode when compared with neat diesel operation. Test results showed reduced NO x emissions and smoke opacity level in the exhaust tailpipe emissions. However, higher hydrocarbon (HC) and carbon monoxide (CO) emissions were noticed under dual fuel mode at entire engine loads when compared with baseline fossil petro-diesel. Hence, the use of low-cost gaseous fuel such as biogas would be an economically viable proposition to address the current and future problems of energy scarcity and associated environmental concerns.

  15. Status of the LIA-2. Double-pulse mode

    NASA Astrophysics Data System (ADS)

    Starostenko, D. A.; Akimov, A. V.; Bak, P. A.; Batazova, M. A.; Batrakov, A. M.; Boimelshtein, Yu. M.; Bolkhovityanov, D. Yu.; Eliseev, A. A.; Korepanov, A. A.; Kuznetsov, G. I.; Kulenko, Ya. V.; Logatchev, P. V.; Ottmar, A. V.; Pavlenko, A. V.; Pavlov, O. A.; Panov, A. N.; Pachkov, A. A.; Fatkin, G. A.; Akhmetov, A. R.; Kolesnikov, P. A.; Nikitin, O. A.; Petrov, D. V.

    2016-12-01

    The LIA-2 linear induction accelerator has been designed in the Budker Institute of Nuclear Physics as an electron-beam injector for a promising 20-MeV induction accelerator intended for tomography. Owing to the results of the first tests, it was decided to use the injector as an independent X-ray installation [1]. In 2014, the high-voltage power supply system of the LIA-2 was upgraded and tuned. The accelerator operates stably in the one-pulse mode at energies of up to 1.7 MeV; in the double-pulse mode it operates at energies of up to 1.5 MeV. The inhomogeneity in energy in each pulse does not exceed ±0.5%.

  16. Fracture toughness of the IEA heat of F82H ferritic/martensitic stainless steel as a function of loading mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaxin; Gelles, D.S.; Hirth, J.P.

    1997-04-01

    Mode I and mixed-mode I/III fracture toughness tests were performed for the IEA heat of the reduced activation ferritic/martensitic stainless steel F82H at ambient temperature in order to provide comparison with previous measurements on a small heat given a different heat treatment. The results showed that heat to heat variations and heat treatment had negligible consequences on Mode I fracture toughness, but behavior during mixed-mode testing showed unexpected instabilities.

  17. Parametric resonance energy exchange and induction phenomenon in a one-dimensional nonlinear oscillator chain

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    2000-11-01

    We study analytically the induction phenomenon in the Fermi-Pasta-Ulam β oscillator chain under initial conditions consisting of single mode excitation. Our study is based on the analytical computation of the largest characteristic exponent of an approximate version of the variational equation. The main results can be summarized as follows: (1) the energy density ɛ scaling of the induction time T is given by T~ɛ-1, and T becomes smaller for higher-frequency mode excitation; (2) there is a threshold energy density ɛc such that the induction time diverges when ɛ<ɛc=π2/6βN2, where N is the system size and β the nonlinearity parameter, and this expression for ɛc is correct in the limit N-->∞ (3) the threshold ɛc vanishes as ɛc~N-2 in the limit N-->∞ (4) the threshold ɛc does not depend on the mode number k that is excited in the initial condition; (5) the two modes k+/-m have the largest exponential growth rate, and m increases with increasing ɛ as m/N=3βɛ/π. The above analytical results are thoroughly verified in numerical experiments. Moreover, we discuss the energy exchange process after the induction period in some energy density regimes, based on the numerical results.

  18. Conciliatory Inductive Model Explaining the Origin of Changes in the η(2)-SiH Bond Length Caused by Presence of Strongly Electronegative Atoms X (X = F, Cl) in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] (n = 0-3) Complexes.

    PubMed

    Jabłoński, Mirosław

    2016-06-23

    Using three theoretical methods, QTAIM, IQA, and NCI, we analyze an influence of halogen atoms X (X = F, Cl) substituted at various positions in the -SiH3-nXn group on the charge density distribution within the η(2)-SiH bond and on the SiH bond energies in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes and isolated HSiH3-nXn molecules. It is shown that shortening of the η(2)-SiH bond in Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes should be considered as a normal inductive result of halogenation. This η(2)-SiH bond's compression may, however, be overcome by a predominant elongation resulting from a contingent presence of a halogen atom at position trans to the η(2)-SiH bond. This trans effect is particularly large for bulky and highly polarizable chlorine. Moreover, peculiar properties of the trans chlorine atom are manifested in several ways. To explain the origin of all the observed changes in both the length and the electron charge distribution of the η(2)-SiH bond in investigated Cp(OC)2Mn[η(2)-H(SiH3-nXn)] complexes a new model, called the Conciliatory Inductive Model, is being proposed.

  19. Electronic frequency tuning of the acousto-optic mode-locking device of a laser

    NASA Astrophysics Data System (ADS)

    Magdich, L. N.; Balakshy, V. I.; Mantsevich, S. N.

    2017-11-01

    The effect of the electronic tuning of the acoustic resonances in an acousto-optic mode-locking device of a laser is investigated theoretically and experimentally. The problem of the excitation of a Fabry-Perot acoustic resonator by a plate-like piezoelectric transducer (PET) is solved in the approximation of plane acoustic waves taking into consideration the actual parameters of an RF generator and the elements for matching the PET to the generator. Resonances are tuned by changing the matching inductance that was connected in parallel to the transducer of the acousto-optic cell. The cell used in the experiment was manufactured from fused silica and included a lithium niobate PET. Changes in the matching inductance in the range of 0.025 to 0.2 μH provided the acoustic-resonance frequency tuning by 0.19 MHz, which exceeds the acoustic- resonance half-width.

  20. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    PubMed

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  1. Dependence of SOL widths on plasma current and density in NSTX H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Maingi, R.; Boedo, J. A.; Soukhanovskii, V.; NSTX Team

    2009-06-01

    The dependence of various SOL widths on the line-averaged density ( n) and plasma current ( Ip) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ( λq), measured by the IR camera, is virtually insensitive to n and has a strong negative dependence on Ip. This insensitivity of λq to n¯e is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ( λTe, λjsat, λne, and λpe, respectively) measured by the probe showed that λTe and λjsat have strong negative dependence on Ip, whereas λne and λpe revealed only a little or no dependence. The dependence of λTe on Ip is consistent with the scaling law in the literature, while λne and λpe dependence shows a different trend.

  2. H-mode transitions and limit cycle oscillations from mean field transport equations

    DOE PAGES

    Staebler, Gary M.; Groebner, Richard J.

    2014-11-28

    The mean field toroidal and parallel momentum transport equations will be shown to admit both onestep transitions to suppressed transport (L/H) and limit cycle oscillations (LCO). Both types of transitions are driven by the suppression of turbulence by the mean field ExB velocity shear. Using experimental data to evaluate the coefficients of a reduced transport model, the observed frequency of the LCO can be matched. The increase in the H-mode power threshold above and below a minimum density agrees with the trends in the model. Both leading and lagging phase relations between the turbulent density fluctuation amplitude and the ExBmore » velocity shear can occur depending on the evolution of the linear growth rate of the turbulence. As a result, the transport solutions match the initial phase of the L/H transition where the poloidal and ExB velocities are observed to change, and the density fluctuations drop, faster than the diamagnetic velocity.« less

  3. Suppressing interfacial water signals to assist the peak assignment of the N⁺-H stretching mode in sum frequency generation vibrational spectroscopy.

    PubMed

    Nguyen, Khoi Tan; Nguyen, Anh V

    2015-11-21

    Amines are one of the common functional groups of interest due to their abundant presence in natural proteins, surfactants and other chemicals. However, their accurate spectral assignment of vibrational modes, critical to interpreting SFG signals for characterizing various bio-interfaces such as protein-membrane interaction and surfactant adsorption, still remains elusive. Herein we present a systematic study to identify and justify the correct peak assignment of the N(+)-H stretching mode at the air-water interface. We used three special surfactants: hexadecylamine (a primary amine without counterions), dodecylamine hydrochloride (a primary amine with counterions) and hexadecyltrimethylammonium bromide as a control (the N(+)-H stretching mode is absent in this quarternary amine). We suppressed the SFG interfacial water signals using saturated NaCl solutions. Our designed experiments resolved the current controversy and concluded that the 3080 cm(-1) peak is from the N(+)-H vibrations, while the 3330 cm(-1) peak is not due to ammonium species but rather originates from the interfacial water vibrational modes or the backbone amide modes.

  4. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes.

    PubMed

    Wang, Sihong; Xie, Yannan; Niu, Simiao; Lin, Long; Wang, Zhong Lin

    2014-05-01

    For versatile mechanical energy harvesting from arbitrary moving objects such as humans, a new mode of triboelectric nanogenerator is developed based on the sliding of a freestanding triboelectric-layer between two stationary electrodes on the same plane. With two electrodes alternatively approached by the tribo-charges on the sliding layer, electricity is effectively generated due to electrostatic induction. A unique feature of this nanogenerator is that it can operate in non-contact sliding mode, which greatly increases the lifetime and the efficiency of such devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Communication: Reactivity borrowing in the mode selective chemistry of H + CHD3 → H2 + CD3

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Roman; Manthe, Uwe

    2017-12-01

    Quantum state-resolved reaction probabilities for the H + CHD3 → H2 + CD3 reaction are calculated by accurate full-dimensional quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree approach and the quantum transition state concept. Reaction probabilities of various ro-vibrational states of the CHD3 reactant are investigated for vanishing total angular momentum. While the reactivity of the different vibrational states of CHD3 mostly follows intuitive patterns, an unusually large reaction probability is found for CHD3 molecules triply excited in the CD3 umbrella-bending vibration. This surprising reactivity can be explained by a Fermi resonance-type mixing of the single CH-stretch excited and the triple CD3 umbrella-bend excited vibrational states of CHD3. These findings show that resonant energy transfer can significantly affect the mode-selective chemistry of CHD3 and result in counter-intuitive reactivity patterns.

  6. Calibration of piezoelectric RL shunts with explicit residual mode correction

    NASA Astrophysics Data System (ADS)

    Høgsberg, Jan; Krenk, Steen

    2017-01-01

    Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of dominant vibration modes of a flexible structure and their efficiency relies on the precise calibration of the shunt components. In the present paper improved calibration accuracy is attained by an extension of the local piezoelectric transducer displacement by two additional terms, representing the flexibility and inertia contributions from the residual vibration modes not directly addressed by the shunt damping. This results in an augmented dynamic model for the targeted resonant vibration mode, in which the residual contributions, represented by two correction factors, modify both the apparent transducer capacitance and the shunt circuit impedance. Explicit expressions for the correction of the shunt circuit inductance and resistance are presented in a form that is generally applicable to calibration formulae derived on the basis of an assumed single-mode structure, where modal interaction has been neglected. A design procedure is devised and subsequently verified by a numerical example, which demonstrates that effective mitigation can be obtained for an arbitrary vibration mode when the residual mode correction is included in the calibration of the RL shunt.

  7. Outcomes of elective induction of labour compared with expectant management: population based study

    PubMed Central

    Ferguson, Evelyn; Duffy, Andrew; Ford, Ian; Chalmers, James; Norman, Jane E

    2012-01-01

    Objective To determine neonatal outcomes (perinatal mortality and special care unit admission) and maternal outcomes (mode of delivery, delivery complications) of elective induction of labour compared with expectant management. Design Retrospective cohort study using an unselected population database. Setting Consultant and midwife led obstetric units in Scotland 1981-2007. Participants 1 271 549 women with singleton pregnancies of 37 weeks or more gestation. Interventions Outcomes of elective induction of labour (induction of labour with no recognised medical indication) at 37, 38, 39, 40, and 41 weeks’ gestation compared with those of expectant management (continuation of pregnancy to either spontaneous labour, induction of labour or caesarean section at a later gestation). Main outcome measures Extended perinatal mortality, mode of delivery, postpartum haemorrhage, obstetric anal sphincter injury, and admission to a neonatal or special care baby unit. Outcomes were adjusted for age at delivery, parity, year of birth, birth weight, deprivation category, and, where appropriate, mode of delivery. Results At each gestation between 37 and 41 completed weeks, elective induction of labour was associated with a decreased odds of perinatal mortality compared with expectant management (at 40 weeks’ gestation 0.08% (37/44 764) in the induction of labour group versus 0.18% (627/350 643) in the expectant management group; adjusted odds ratio 0.39, 99% confidence interval 0.24 to 0.63), without a reduction in the odds of spontaneous vertex delivery (at 40 weeks’ gestation 79.9% (35 775/44 778) in the induction of labour group versus 73.7% (258 665/350 791) in the expectant management group; adjusted odds ratio 1.26, 1.22 to 1.31). Admission to a neonatal unit was, however, increased in association with elective induction of labour at all gestations before 41 weeks (at 40 weeks’ gestation 8.0% (3605/44 778) in the induction of labour group compared

  8. Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H2 on Ag(111)

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Jiang, Bin; Guo, Hua; Tully, John C.

    2017-06-01

    Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.

  9. Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison; Oak Ridge Associated Universities] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-09-30

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment,' Nucl. Fusion 57, 022018 (2017).

  10. [Induction of NAD(P)H: quinone reductase by anticarcinogenic ingredients of tea].

    PubMed

    Qi, L; Han, C

    1998-09-30

    By assaying the activity of NAD(P)H: quinone reductase (QR) in Hep G2 cells exposed to inducing agents, a variety of ingredients in tea, we compared their abilities on inducing QR and preventing cancer. The results showed that tea polyphenols, tea pigments and mixed tea were all able to induce the activity of QR significantly. The single-component ingredients of tea polyphenols and tea pigments, including thearubigens, EGCG and ECG, also enhanced the activity of QR. But EGC, EC, theaflavins, tea polysaccharide and tea caffeine, showed no apparent induction of QR. We found that among those tea ingredients studied, the multi-component ingredients were more effective than the single-component ones. So we thought that the abilities of antioxidation and cancer prevention of tea depended on the combined effects of several kinds of active ingredients, which mainly include tea polyphenols and tea pigments.

  11. Nonlinear MHD simulations of QH-mode DIII-D plasmas and implications for ITER high Q scenarios

    NASA Astrophysics Data System (ADS)

    Liu, F.; Huijsmans, G. T. A.; Loarte, A.; Garofalo, A. M.; Solomon, W. M.; Hoelzl, M.; Nkonga, B.; Pamela, S.; Becoulet, M.; Orain, F.; Van Vugt, D.

    2018-01-01

    In nonlinear MHD simulations of DIII-D QH-mode plasmas it has been found that low n kink/peeling modes (KPMs) are unstable and grow to a saturated kink-peeling mode. The features of the dominant saturated KPMs, which are localised toroidally by nonlinear coupling of harmonics, such as mode frequencies, density fluctuations and their effect on pedestal particle and energy transport, are in good agreement with the observations of the edge harmonic oscillation typically present in DIII-D QH-mode experiments. The nonlinear evolution of MHD modes including both kink-peeling modes and ballooning modes, is investigated through MHD simulations by varying the pedestal current and pressure relative to the initial conditions of DIII-D QH-mode plasma. The edge current and pressure at the pedestal are key parameters for the plasma either saturating to a QH-mode regime or a ballooning mode dominant regime. The influence of E × B flow and its shear on the QH-mode plasma has been investigated. E × B flow shear has a strong stabilisation effect on the medium to high-n modes but is destabilising for the n = 2 mode. The QH-mode extrapolation results of an ITER Q = 10 plasma show that the pedestal currents are large enough to destabilise n = 1-5 KPMs, leading to a stationary saturated kink-peeling mode.

  12. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing.

    PubMed

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-02-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.

  13. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing

    PubMed Central

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2014-01-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2′, 7′-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12–7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field. PMID:25530670

  14. Non-inductive current drive and transport in high βN plasmas in JET

    NASA Astrophysics Data System (ADS)

    Voitsekhovitch, I.; Alper, B.; Brix, M.; Budny, R. V.; Buratti, P.; Challis, C. D.; Ferron, J.; Giroud, C.; Joffrin, E.; Laborde, L.; Luce, T. C.; McCune, D.; Menard, J.; Murakami, M.; Park, J. M.; JET-EFDA contributors

    2009-05-01

    A route to stationary MHD stable operation at high βN has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.

  15. Observation of collisionless heating of low energy electrons in low pressure inductively coupled argon plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hyong; Lee, Hyo-Chang; Chung, Chin-Wook

    2008-12-01

    Collisionless heating of low energy electrons was observed in low pressure argon rf-biased inductively coupled plasmas (ICPs) by measurement of the electron energy distribution function (EEDF). When only capacitive power (bias) was supplied, the EEDF in the discharge was a bi-Maxwellian distribution with two electron groups. It was found that the low energy electrons were heated up significantly even with a little inductive power (<20 W) even when the discharge was in E mode. Due to the low gas pressure and low temperature of low energy electrons (close to the energy of the Ramsauer minimum), the collisional heating of low energy electrons appears to be negligible. Therefore, this effective heating of the low energy electrons showed a direct experimental evidence of the collisionless heating by inductive field. The significant heating of low energy electrons in E mode indicates that collisionless heating in the skin layer is an important electron heating mechanism of low pressure ICP even when the discharge is in E mode.

  16. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction

    PubMed Central

    Xia, Rongmin; Li, Xu; He, Bin

    2008-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, we have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, we demonstrated 3-dimensional MAT-MI imaging in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and the ability of MAT-MI in imaging electrical conductivity properties of biological tissue. PMID:19169372

  17. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction

    NASA Astrophysics Data System (ADS)

    Xia, Rongmin; Li, Xu; He, Bin

    2007-08-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, the authors have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, they demonstrated a three-dimensional MAT-MI imaging approach in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and the ability of MAT-MI in imaging electrical conductivity properties of biological tissue.

  18. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction.

    PubMed

    Xia, Rongmin; Li, Xu; He, Bin

    2007-08-22

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging tissue electrical impedance properties by integrating magnetic induction and ultrasound measurements. In the present study, we have developed a focused cylindrical scanning mode MAT-MI system and the corresponding reconstruction algorithms. Using this system, we demonstrated 3-dimensional MAT-MI imaging in a physical phantom, with cylindrical scanning combined with ultrasound focusing, and the ability of MAT-MI in imaging electrical conductivity properties of biological tissue.

  19. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  20. Analysis of Particle Transport in DIII-D H-mode Plasma with a Generalized Pinch-Diffusion Model

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Stacey, W. M.; Groebner, R. J.; Callen, J. D.; Bonnin, X.

    2009-11-01

    Interpretative analyses of particle transport in the pedestal region of H-mode plasmas typically yield diffusion coefficients that are very small (<0.1 m^2/s) in the steep gradient region when a purely diffusive particle flux is fitted to the experimental density gradients. Previous evaluation of the particle and momentum balance equations using the experimental data indicated that the pedestal profiles are consistent with transport described by a pinch-diffusion particle flux relation [1]. This type of model is used to calculate the diffusion coefficient and pinch velocity in the core for an inter-ELM H-mode plasma in the DIII-D discharge 98889. Full-plasma SOPLS simulations using neutral beam particle and energy sources from ONETWO calculations and the model transport coefficients show good agreement with the measured density pedestal profile. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 12, 042504 (2005).

  1. Analysis of metallic impurity density profiles in low collisionality Joint European Torus H-mode and L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Valisa, M.; Angioni, C.; Garzotti, L.; Mantica, P.; Mattioli, M.; Carraro, L.; Coffey, I.; Sozzi, C.

    2006-04-01

    This paper describes the behavior of nickel in low confinement (L-mode) and high confinement (H-mode) Joint European Torus (JET) discharges [P. J. Lomas, Plasma Phys. Control. Fusion 31, 1481 (1989)] characterized by the application of radio-frequency (rf) power heating and featuring ITER (International Thermonuclear Experimental Reactor) relevant collisionality. The impurity transport is analyzed on the basis of perturbative experiments (laser blow off injection) and is compared with electron heat and deuterium transport. In the JET plasmas analyzed here, ion cyclotron resonance heating (ICRH) is applied either in mode conversion (MC) to heat the electrons or in minority heating (MH) to heat the ions. The two heating schemes have systematically different effects on nickel transport, yielding flat or slightly hollow nickel density profiles in the case of ICRH in MC and peaked nickel density profiles in the case of rf applied in MH. Accordingly, both diffusion coefficients and pinch velocities of nickel are found to be systematically different. Linear gyrokinetic calculations by means of the code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995)] provide a possible explanation of such different behavior by exploring the effects produced by the different microinstabilities present in these plasmas. In particular, trapped electron modes driven by the stronger electron temperature gradients measured in the MC cases, although subdominant, produce a contribution to the impurity pinch directed outwards that is qualitatively in agreement with the pinch reversal found in the experiment. Particle and heat diffusivities appear to be decoupled in MH shots, with χe and DD≫DNi, and are instead quite similar in the MC ones. In the latter case, nickel transport appears to be driven by the same turbulence that drives the electron heat transport and is sensitive to the value of the electron temperature gradient length. These findings give

  2. Enhanced H-mode pedestals with lithium injection in DIII-D

    DOE PAGES

    Osborne, Thomas H.; Jackson, Gary L.; Yan, Zheng; ...

    2015-05-08

    Periods of edge localized mode (ELM)-free H-mode with increased pedestal pressure and width were observed in the DIII-D tokamak when density fluctuations localized to the region near the separatrix were present. Injection of a powder of 45 μm diameter lithium particles increased the duration of the enhanced pedestal phases to up to 350 ms, and also increased the likelihood of a transition to the enhanced phase. Lithium injection at a level sufficient for triggering the extended enhanced phases resulted in significant lithium in the plasma core, but carbon and other higher Z impurities as well as radiated power levels weremore » reduced. Recycling of the working deuterium gas appeared unaffected by this level of lithium injection. The ion scale, k θ ρ s ~ 0.1–0.2, density fluctuations propagated in the electron drift direction with f ~ 80 kHz and occurred in bursts every ~1 ms. The fluctuation bursts correlated with plasma loss resulting in a flattening of the pressure profile in a region near the separatrix. This localized flattening 2 allowed higher overall pedestal pressure at the peeling-ballooning stability limit and higher pressure than expected under the EPED model due to reduction of the pressure gradient below the “ballooning critical profile”. Furthermore, reduction of the ion pressure by lithium dilution may contribute to the long ELM-free periods.« less

  3. Experiment-theory comparison for low frequency BAE modes in the strongly shaped H-1NF stellarator

    DOE PAGES

    Haskey, S. R.; Blackwell, B. D.; Nuhrenberg, C.; ...

    2015-08-12

    Here, recent advances in the modeling, analysis, and measurement of fluctuations have significantly improved the diagnosis and understanding of Alfvén eigenmodes in the strongly shaped H-1NF helical axis stellarator. Experimental measurements, including 3D tomographic inversions of high resolution visible light images, are in close agreement with beta-induced Alfvén eigenmodes (BAEs) calculated using the compressible ideal MHD code, CAS3D. This is despite the low β in H-1NF, providing experimental evidence that these modes can exist due to compression that is induced by the strong shaping in stellarators, in addition to high β, as is the case in tokamaks. This is confirmedmore » using the CONTI and CAS3D codes, which show significant gap structures at lower frequencies which contain BAE and beta-acoustic Alfvén eigenmodes (BAAEs). The BAEs are excited in the absence of a well confined energetic particle source, further confirming previous studies that thermal particles, electrons, or even radiation fluctuations can drive these modes. Datamining of magnetic probe data shows the experimentally measured frequency of these modes has a clear dependence on the rotational transform profile, which is consistent with a frequency dependency due to postulated confinement related temperature variations.« less

  4. Burst mode FEL with the ETA-III induction linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasnier, C.J.; Allen, S.L.; Felker, B.

    1993-05-13

    Pulses of 140 GHz microwaves have been produced at a 2 kHz rate using the ETA-III induction linac and IMP wiggler. The accelerator was run in bursts of up to 50 pulses at 6 MeV and greater than 2 kA peak current. A feedback timing control system was used to synchronize acceleration voltage pulses with the electron beam, resulting in sufficient reduction of the corkscrew and energy sweep for efficient FEL operation. Peak microwave power for short bursts was in the range 0.5--1.1 GW, which is comparable to the single-pulse peak power of 0.75--2 GW. FEL bursts of more thanmore » 25 pulses were obtained.« less

  5. Long pulse high performance plasma scenario development for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Bell, R. E.; Bell, M. G.; Gates, D. A.; Kaye, S. M.; LeBlanc, B. P.; Menard, J. E.; Phillips, C. K.; Synakowski, E. J.; Taylor, G.; Wilson, R.; Harvey, R. W.; Mau, T. K.; Ryan, P. M.; Sabbagh, S. A.

    2006-05-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall β limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN⩽5, β⩽15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high β plasmas can be reached at IP=1.0 MA, BT=0.35 T, κ≈2.5, βN⩽9, β⩽43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  6. Research of vibration control based on current mode piezoelectric shunt damping circuit

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Mao, Qibo

    2017-12-01

    The piezoelectric shunt damping circuit using current mode approach is imposed to control the vibration of a cantilever beam. Firstly, the simulated inductance with large values are designed for the corresponding RL series shunt circuits. Moreover, with an example of cantilever beam, the second natural frequency of the beam is targeted to control for experiment. By adjusting the values of the equivalent inductance and equivalent resistance of the shunt circuit, the optimal damping of the shunt circuit is obtained. Meanwhile, the designed piezoelectric shunt damping circuit stability is experimental verified. Experimental results show that the proposed piezoelectric shunt damping circuit based on current mode circuit has good vibration control performance. However, the control performance will be reduced if equivalent inductance and equivalent resistance values deviate from optimal values.

  7. Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C–H Region of DMSO as a Case Study

    DOE PAGES

    Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; ...

    2015-07-29

    Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation (SFG) spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. Here in this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effectsmore » in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes challenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show significant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.« less

  8. Stochastic modeling of mode interactions via linear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  9. The inductive, steady-state sustainment of stable spheromaks

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2016-10-01

    Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.

  10. Investigation of the hydrogen fluxes in the plasma edge of W7-AS during H-mode discharges

    NASA Astrophysics Data System (ADS)

    Langer, U.; Taglauer, E.; Fischer, R.; W7-AS Team

    2001-03-01

    In the stellarator W7-AS the H-mode is characterized by an edge transport barrier which is localized within a few centimeters inside the separatrix. The corresponding L-H transition shows well-known features such as the steepening of the temperature and density profiles in the region of the separatrix. With a so-called sniffer probe the temporal development of the hydrogen and deuterium fluxes has been studied in the plasma edge during different H-mode discharges with deuterium gas puffing. Prior to the transition a significant reduction of the deuterium and also the hydrogen fluxes can be observed. This fact confirms the assumption that the steepening of the density profiles starts at the outermost edge of the plasma. Moreover, sniffer probe measurements in the plasma edge could therefore identify a precursor for the L-H transition. The analysis of the hydrogen neutral gases shows a distinct change of the hydrogen isotope ratio during the transition. This observation is in agreement with the change in the particle fluxes onto the targets and can also be seen in the reduced H α signals from the limiters. It is further demonstrated that significant improvement in the time resolution of the measured data can be obtained by deconvolution of the data with the apparatus function using Bayesian probability theory and the Maximum Entropy method with adaptive kernels.

  11. Numerical study of the inductive plasma coupling to ramp up the plasma density for the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Mattei, S.; Yasumoto, M.; Hatayama, A.; Lettry, J.

    2014-02-01

    In the Linac4 H- ion source, the plasma is generated by an RF antenna operated at 2 MHz. In order to investigate the conditions necessary for ramping up the plasma density of the Linac4 H- ion source in the low plasma density, a numerical study has been performed for a wide range of parameter space of RF coil current and initial pressure from H2 gas injection. We have employed an Electromagnetic Particle in Cell model, in which the collision processes have been calculated by a Monte Carlo method. The results have shown that the range of initial gas pressure from 2 to 3 Pa is suitable for ramping up plasma density via inductive coupling.

  12. NIMROD modeling of quiescent H-mode: reconstruction considerations and saturation mechanism

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Kruger, S. E.; Pankin, A. Y.; Snyder, P. B.

    2017-02-01

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-{{n}φ} perturbations ({{n}φ}≃ 1 -5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad-Shafranov equation and extrapolates profiles to include scrape-off-layer currents. Evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density and temperature profiles.

  13. PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    NASA Astrophysics Data System (ADS)

    Takizuka, Tomonori

    2008-07-01

    This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in

  14. Dancing bunches as Van Kampen modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.; /Fermilab

    2011-03-01

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation [1-3]. Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron [4], RHIC [5] and SPS [6] can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Basedmore » on that, a method of beam stabilization is suggested. Emergence of a discrete van Kampen mode means either loss of Landau damping or instability. Longitudinal bunch stability is analysed in weak head-tail approximation for inductive impedance and single-harmonic RF. The LLD threshold intensities are found to be rather low: for cases under study all of them do not exceed a few percent of the zero-amplitude incoherent synchrotron frequency shift, strongly decreasing for shorter bunches. Because of that, LLD can explain longitudinal instabilities happened at fairly low impedances at Tevatron [4], and possibly for RHIC [5] and SPS [6], being in that sense an alternative to the soliton explanation [5, 20]. Although LLD itself results in many cases in emergence of a mode with zero growth rate, any couple-bunch (and sometimes multi-turn) wake would drive instability for that mode, however small this wake is. LLD is similar to a loss of immune system of a living cell, when any microbe becomes fatal for it. The emerging discrete mode is normally very different from the rigid-bunch motion; thus the rigid-mode model significantly overestimates the LLD threshold. The power low of LLD predicted in Ref. [17] agrees with results of this paper. However, the numerical factor in that scaling low strongly depends on the bunch distribution

  15. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  16. Modes of physiologic H2S signaling in the brain and peripheral tissues.

    PubMed

    Paul, Bindu D; Snyder, Solomon H

    2015-02-10

    Hydrogen sulfide (H2S), once associated with rotten eggs and sewers, is now recognized as a gasotransmitter that is synthesized in vivo in a regulated fashion. This ancient gaseous molecule has been retained throughout evolution to perform various roles in different life forms. H2S modulates important signaling functions in diverse cellular processes ranging from regulation of blood pressure to redox homeostasis. One of the modes by which H2S signals is by post-translational modification of reactive cysteine residues in a process designated as sulfhydration, resulting in conversion of the -SH groups of target cysteine residues to -SSH. Using the modified biotin-switch assay and a fluorescent maleimide-based analysis, sulfhydration of several proteins has been detected in various cell types. Aberrant sulfhydration patterns occur in neurodegenerative conditions such as Parkinson's disease. The exact concentration, source of H2S, and conditions under which various stores of H2S are utilized have not been fully elucidated. Currently, available inhibitors of the biosynthetic enzymes of H2S lack sufficient specificity to shed light on detailed mechanisms of H2S action. Probes with a higher sensitivity that can reliably detect cellular and tissue H2S levels are yet to be developed. Availability of advanced probes and biosynthesis inhibitors would help in the measurement of real-time changes of endogenous H2S levels in an in vivo context. The study of the dynamics of sulfhydration and nitrosylation of critical cysteine residues of regulatory proteins involved in physiology and pathophysiology is an area of interest for the future.

  17. External heating and current drive source requirements towards steady-state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Bonoli, P. T.; Batchelor, D. B.; Harvey, R. W.; Snyder, P. B.

    2014-07-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of heating and current drive (H/CD) sources that sustain reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that a combination of electron cyclotron (EC) and lower hybrid (LH) waves is a promising route towards steady state operation in ITER. The LH forms and sustains expanded barriers and the EC deposition at mid-radius freezes the bootstrap current profile stabilizing the barrier and leading to confinement levels 50% higher than typical H-mode energy confinement times. Using LH spectra with spectrum centred on parallel refractive index of 1.75-1.85, the performance of these plasma scenarios is close to the ITER target of 9 MA non-inductive current, global confinement gain H98 = 1.6 and fusion gain Q = 5.

  18. Edge-localized-modes in tokamaks

    DOE PAGES

    Leonard, Anthony W.

    2014-09-11

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heatmore » flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. As a result, encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.« less

  19. Edge-localized-modes in tokamaksa)

    NASA Astrophysics Data System (ADS)

    Leonard, A. W.

    2014-09-01

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.

  20. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification.

    PubMed

    Wang, Jianye; Zhao, Gang; Zhang, Zhengliang; Xu, Xiaoliang; He, Xiaoming

    2016-03-01

    Cryopreservation by vitrification has been recognized as a promising strategy for long-term banking of living cells. However, the difficulty to generate a fast enough heating rate to minimize devitrification and recrystallization-induced intracellular ice formation during rewarming is one of the major obstacles to successful vitrification. We propose to overcome this hurdle by utilizing magnetic induction heating (MIH) of magnetic nanoparticles to enhance rewarming. In this study, superparamagnetic (SPM) Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method. We successfully applied the MIH of Fe3O4 nanoparticles for rewarming human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs) cryopreserved by vitrification. Our results show that extracellular Fe3O4 nanoparticles with MIH may efficiently suppress devitrification and/or recrystallization during rewarming and significantly improve the survival of vitrified cells. We further optimized the concentration of Fe3O4 nanoparticles and the current of an alternating current (AC) magnetic field for generating the MIH to maximize cell viability. Our results indicate that MIH in an AC magnetic field with 0.05% (w/v) Fe3O4 nanoparticles significantly facilitates rewarming and improves the cryopreservation outcome of hUCM-MSCs by vitrification. The application of MIH of SPM nanoparticles to achieve rapid and spatially homogeneous heating is a promising strategy for enhanced cryopreservation of stem cells by vitrification. Here we report the successful synthesis and application of Fe3O4 nanoparticles for magnetic induction heating (MIH) to enhance rewarming of vitrification-cryopreserved human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs). We found that MIH-enhanced rewarming greatly improves the survival of vitrification-cryopreserved hUCM-MSCs. Moreover, the hUCM-MSCs retain their intact stemness and multilineage potential of differentiation post cryopreservation by vitrification with the

  1. Fabrication and electro-optic characteristics of polymer-stabilized V-mode FLCD and intrinsic H-V-mode FLCD: their application to AM LCDs

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunsuke; Furuta, Hirokazu; Murakami, Yuji; Xu, Jun; Mochizuki, Akihiro

    2003-04-01

    Defect free polymer-stabilized (PS-)V-mode FLCDs and intrinsic half (H-)V-mode FLCDs have been fabricated; they exhibit high contrast ratio over 700:1 and high reliability for a temperature cycling test by using specially developed polyimide alignment materials, RN-1411 series, from Nissan Chem. Ind., and also by adopting special alignment technique such as appropriate rubbing technique, photoalignment, and ion beam irradiation techniques and also particularly developed polymer-stabilization technique. These FLCDs are shown to be useful for implementing a field sequential type full color (FS-FC) LCDs due to their fast response with the response time of τ = 100μs ~ 500μs that is 10 to 100 times faster that those of LCDs using NLCs. We have developed several prototype models of FS-FC LCDs having VGA specifications that exhibit good performance for displaying fast moving video rate images with wide color gamut.

  2. Janus face-like effects of Aurora B inhibition: antitumoral mode of action versus induction of aneuploid progeny.

    PubMed

    Wiedemuth, Ralf; Klink, Barbara; Fujiwara, Mamoru; Schröck, Evelin; Tatsuka, Masaaki; Schackert, Gabriele; Temme, Achim

    2016-10-01

    The mitotic Aurora B kinase is overexpressed in tumors and various inhibitors for Aurora B are currently under clinical assessments. However, when considering Aurora B kinase inhibitors as anticancer drugs, their mode of action and the role of p53 status as a possible predictive factor for response still needs to be investigated. In this study, we analyzed the effects of selective Aurora B inhibition using AZD1152-HQPA/Barasertib (AZD1152) on HCT116 cells, U87-MG, corresponding isogenic p53-deficient cells and a primary glioblastoma cell line. AZD1152 treatment caused polyploidy and non-apoptotic cell death in all cell lines irrespective of p53 status and was accompanied by poly-merotelic kinetochore-microtubule attachments and DNA damage. In p53 wild-type cells a DNA damage response induced an inefficient pseudo-G1 cell cycle arrest, which was not able to halt ongoing endoreplication of cells. Of note, release of tumor cells from AZD1152 resulted in recovery of aneuploid progenies bearing numerical and structural chromosomal aberrations. Yet, AZD1152 treatment enhanced death receptor TRAIL-R2 levels in all tumor cell lines investigated. A concomitant increase of the activating natural killer (NK) cell ligand MIC A/B in p53-deficient cells and an induction of FAS/CD95 in cells containing p53 rendered AZD1152-treated cells more susceptible for NK-cell-mediated lysis. Our study mechanistically explains a p53-independent mode of action of a chemical Aurora B inhibitor and suggests a potential triggering of antitumoral immune responses, following polyploidization of tumor cells, which might constrain recovery of aneuploid tumor cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Short wavelength turbulence generated by shear in the quiescent H-mode edge on DIII–D [Short wavelength turbulence generated by shear in the QH-mode edge on DIII-D

    DOE PAGES

    Rost, Jon C.; Porkolab, Miklos; Dorris, James R.; ...

    2014-06-17

    A region of turbulence with large radial wavenumber (k rρ s > 1) is found in the high-shear portion of the plasma edge in Quiescent H-mode (QH-mode) on DIII{D using the Phase Contrast Imaging (PCI) diagnostic. At its peak outside the minimum of the E r well, the turbulence exhibits large amplitudemore » $$\\tilde{n}$$/n ~ 40%, with large radial wavenumber |$$\\bar{k}$$ r/ $$\\bar{k}$$ θ| ~ 11 and short radial correlation length L r/ρ i ~ 0.2. The turbulence inside the E r well minimum is characterized by the opposite sign in radial wavenumber from that of turbulence outside the minimum, consistent with the expected effects of velocity shear. The PCI diagnostic provides a line-integrated measurement of density uctuations, so data is taken during a scan of plasma position at constant parameters to allow the PCI to sample a range in k r/k θ . Analysis of the Doppler Shift and plasma geometry allows the turbulence to be localized to a narrow region 3 mm inside the last closed flux surface (LCFS), outside the minimum of the E r well. The turbulence amplitude and radial wavenumber and correlation length are determined by fitting the PCI results with a simple non-isotropic turbulence model with two regions of turbulence. Finally, these PCI observations, made in QH-mode, are qualitatively similar to those made in standard ELM-free H-mode and between edge localized modes (ELMs), suggesting a similar role for large k r turbulence there.« less

  4. Sonographical predictive markers of failure of induction of labour in term pregnancy.

    PubMed

    Brik, Maia; Mateos, Silvia; Fernandez-Buhigas, Irene; Garbayo, Paloma; Costa, Gloria; Santacruz, Belen

    2017-02-01

    Predictive markers of failure of induction of labour in term pregnancy were evaluated. A prospective study including 245 women attending induction of labour was performed. The inclusion criteria were singleton pregnancies, gestational age 37-42 weeks and the main outcomes were failure of induction, induction to delivery interval and mode of delivery. Women with a longer cervical length prior to induction (CLpi) had a higher rate of failure of induction (30.9 ± 6.8 vs. 23.9 ± 9.3, p < .001). BMI was higher and maternal height was lower in the group of caesarean section compared to vaginal delivery (33.1 ± 8 vs. 29.3 ± 4.6, 160 ± 5 vs. 164 ± 5, p < .001, respectively). A shorter CLpi correlated with a shorter induction to delivery interval (R Pearson .237, p < .001). In the regression analysis, for failure of induction the only independent predictor was the CL prior to induction. Therefore, the CLpi is an independent factor for prediction of failure of induction of labour.

  5. Bifurcation of quiescent H-mode to a wide pedestal regime in DIII-D and advances in the understanding of edge harmonic oscillations

    DOE PAGES

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...

    2017-06-14

    New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E×B shear required for the EHO decreases linearly with pedestal collisionalitymore » $$\

  6. Control of particle and power exhaust in pellet fuelled ITER DT scenarios employing integrated models

    NASA Astrophysics Data System (ADS)

    Wiesen, S.; Köchl, F.; Belo, P.; Kotov, V.; Loarte, A.; Parail, V.; Corrigan, G.; Garzotti, L.; Harting, D.

    2017-07-01

    The integrated model JINTRAC is employed to assess the dynamic density evolution of the ITER baseline scenario when fuelled by discrete pellets. The consequences on the core confinement properties, α-particle heating due to fusion and the effect on the ITER divertor operation, taking into account the material limitations on the target heat loads, are discussed within the integrated model. Using the model one can observe that stable but cyclical operational regimes can be achieved for a pellet-fuelled ITER ELMy H-mode scenario with Q  =  10 maintaining partially detached conditions in the divertor. It is shown that the level of divertor detachment is inversely correlated with the core plasma density due to α-particle heating, and thus depends on the density evolution cycle imposed by pellet ablations. The power crossing the separatrix to be dissipated depends on the enhancement of the transport in the pedestal region being linked with the pressure gradient evolution after pellet injection. The fuelling efficacy of the deposited pellet material is strongly dependent on the E  ×  B plasmoid drift. It is concluded that integrated models like JINTRAC, if validated and supported by realistic physics constraints, may help to establish suitable control schemes of particle and power exhaust in burning ITER DT-plasma scenarios.

  7. Fast mode decision based on human noticeable luminance difference and rate distortion cost for H.264/AVC

    NASA Astrophysics Data System (ADS)

    Li, Mian-Shiuan; Chen, Mei-Juan; Tai, Kuang-Han; Sue, Kuen-Liang

    2013-12-01

    This article proposes a fast mode decision algorithm based on the correlation of the just-noticeable-difference (JND) and the rate distortion cost (RD cost) to reduce the computational complexity of H.264/AVC. First, the relationship between the average RD cost and the number of JND pixels is established by Gaussian distributions. Thus, the RD cost of the Inter 16 × 16 mode is compared with the predicted thresholds from these models for fast mode selection. In addition, we use the image content, the residual data, and JND visual model for horizontal/vertical detection, and then utilize the result to predict the partition in a macroblock. From the experimental results, a greater time saving can be achieved while the proposed algorithm also maintains performance and quality effectively.

  8. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases aremore » presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.« less

  9. A novel approach for baseline correction in 1H-MRS signals based on ensemble empirical mode decomposition.

    PubMed

    Parto Dezfouli, Mohammad Ali; Dezfouli, Mohsen Parto; Rad, Hamidreza Saligheh

    2014-01-01

    Proton magnetic resonance spectroscopy ((1)H-MRS) is a non-invasive diagnostic tool for measuring biochemical changes in the human body. Acquired (1)H-MRS signals may be corrupted due to a wideband baseline signal generated by macromolecules. Recently, several methods have been developed for the correction of such baseline signals, however most of them are not able to estimate baseline in complex overlapped signal. In this study, a novel automatic baseline correction method is proposed for (1)H-MRS spectra based on ensemble empirical mode decomposition (EEMD). This investigation was applied on both the simulated data and the in-vivo (1)H-MRS of human brain signals. Results justify the efficiency of the proposed method to remove the baseline from (1)H-MRS signals.

  10. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE PAGES

    King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.; ...

    2016-09-30

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less

  11. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less

  12. Intermolecular vibrational modes and H-bond interactions in crystalline urea investigated by terahertz spectroscopy and theoretical calculation

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghong; Li, Zhi; Liu, Jianjun; Hu, Cong; Zhang, Huo; Qin, Binyi; Wu, Yifang

    2018-01-01

    The characteristic absorption spectra of crystalline urea in 0.6-1.8 THz region have been measured by terahertz time-domain spectroscopy at room temperature experimentally. Five broad absorption peaks were observed at 0.69, 1.08, 1.27, 1.47 and 1.64 THz respectively. Moreover, density functional theory (DFT) calculation has been performed for the isolated urea molecule, and there is no infrared intensity in the region below 1.8 THz. This means that single molecule calculations are failure to predict the experimental spectra of urea crystals. To simulate these spectra, calculations on a cluster of seven urea molecules using M06-2X and B3LYP-D3 are performed, and we found that M06-2X perform better. The observed THz vibrational modes are assigned to bending and torsional modes related to the intermolecular H-bond interactions with the help of potential energy distribution (PED) method. Using the reduced-density-gradient (RDG) analysis, the positions and types of intermolecular H-bond interactions in urea crystals are visualized. Therefore, we can confirm that terahertz spectroscopy can be used as an effective means to detect intermolecular H-bond interactions in molecular crystals.

  13. Comparison of a high temperature torch integrated sample introduction system with a desolvation system for the analysis of microsamples through inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sánchez, Raquel; Cañabate, Águeda; Bresson, Carole; Chartier, Frédéric; Isnard, Hélène; Maestre, Salvador; Nonell, Anthony; Todolí, José-Luis

    2017-03-01

    This work describes for the first time the comparison of the analytical performances obtained with a high temperature torch integrated sample introduction system (hTISIS) against those found with a commercially available desolvation system (APEX) associated with inductively coupled plasma mass spectrometry (ICP-MS). A double pass spray chamber was taken as the reference system. Similar detection limits and sensitivities were obtained in continuous injection mode at low liquid flow rates for the APEX and hTISIS operating at high temperatures. In contrast, in the air-segmented injection mode, the detection limits obtained with hTISIS at high temperatures were up to 12 times lower than those found for the APEX. Regarding memory effects, wash out times were shorter in continuous mode and peaks were narrower in air segmented mode for the hTISIS as compared to the APEX. Non spectral interferences (matrix effects) were studied with 10% nitric acid, 2% methanol, for an ICP multielemental solution and a hydro-organic matrix containing 70% (v/v) acetonitrile in water, 15 mmol L- 1 ammonium acetate and 0.5% formic acid containing lanthanide complexes. In all the cases, matrix effects were less severe for the hTISIS operating at 200 °C and the APEX than for the double pass spray chamber. Finally, two spiked reference materials (sea water and Antartic krill) were analyzed. The hTISIS operating at 200 °C gave the best results compared to those obtained with the APEX and the double pass spray chamber. In conclusion, despite the simplicity of the hTISIS, it provided, at low liquid flow rates, results similar to or better than those obtained with the by other sample introduction systems.

  14. H-Mode Behavior Induced by Modulated Toroidal Current on HT-7 and HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Mao, J. S.; Luo, J. R.; Xu, Y. H.; Zhao, J. Y.; Zhang, X. M.; Li, J. G.; Zhang, X. M.; Gao, X.; Li, Y. D.; Jie, Y. X.; Wu, Z. W.; Hu, L. Q.; Liu, S. X.; Zhang, X. D.; Bao, Y.; Yang, K.; Wang, G. X.; Chen, L.; Shi, Y. J.; Qin, P. J.; Gu, X. M.; Cui, N. Z.; Fan, H. Y.; Chen, Y. F.; Xia, C. Y.; Ruan, H. L.; Tong, X. D.; Phillips, P. E.

    2001-10-01

    An improved Ohmic confinement phase (similar to H-mode) has been observed during Modulating Toroidal Current on the Hefei Tokamak-6M (HT-6M) and Hefei super-conducting Tokamak-7 (HT-7). This improved plasma confinement phase is characterized by: (a) an increase in ne and T_e(0); (b) reduced H_α radiation from the edge; (c) steeper density and temperature profiles at the edge; (d) a more negative radial electric field inside the limiter; (e) a deeper electrostatic potential well at the edge; (f) reduced magnetic fluctuations at the edge; (g) MHD suppressing; (h) and by an increase in global energy confinement time, τ _e, by 27%-45%. The well-like structure of the radial electric field E_r, appears at an L-H like transition.

  15. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    NASA Astrophysics Data System (ADS)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  16. Effects of Antibiotics on Shiga Toxin 2 Production and Bacteriophage Induction by Epidemic Escherichia coli O104:H4 Strain

    PubMed Central

    Bielaszewska, Martina; Idelevich, Evgeny A.; Zhang, Wenlan; Bauwens, Andreas; Schaumburg, Frieder; Mellmann, Alexander; Peters, Georg

    2012-01-01

    The role of antibiotics in treatment of enterohemorrhagic Escherichia coli (EHEC) infections is controversial because of concerns about triggering hemolytic-uremic syndrome (HUS) by increasing Shiga toxin (Stx) production. During the recent large EHEC O104:H4 outbreak, antibiotic therapy was indicated for some patients. We tested a diverse panel of antibiotics to which the outbreak strain is susceptible to interrogate the effects of subinhibitory antibiotic concentrations on induction of stx2-harboring bacteriophages, stx2 transcription, and Stx2 production in this emerging pathogen. Ciprofloxacin significantly increased stx2-harboring phage induction and Stx2 production in outbreak isolates (P values of <0.001 to <0.05), while fosfomycin, gentamicin, and kanamycin insignificantly influenced them (P > 0.1) and chloramphenicol, meropenem, azithromycin, rifaximin, and tigecycline significantly decreased them (P ≤ 0.05). Ciprofloxacin and chloramphenicol significantly upregulated and downregulated stx2 transcription, respectively (P < 0.01); the other antibiotics had insignificant effects (P > 0.1). Meropenem, azithromycin, and rifaximin, which were used for necessary therapeutic or prophylactic interventions during the EHEC O104:H4 outbreak, as well as tigecycline, neither induced stx2-harboring phages nor increased stx2 transcription or Stx2 production in the outbreak strain. These antibiotics might represent therapeutic options for patients with EHEC O104:H4 infection if antibiotic treatment is inevitable. We await further analysis of the epidemic to determine if usage of these agents was associated with an altered risk of developing HUS. PMID:22391549

  17. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    NASA Astrophysics Data System (ADS)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-07-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  18. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    NASA Astrophysics Data System (ADS)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-03-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5 and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  19. Observation of internal transport barrier in ELMy H-mode plasmas on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Gao, X.; Liu, H. Q.; Li, G. Q.; Zhang, T.; Zeng, L.; Liu, Y. K.; Wu, M. Q.; Kong, D. F.; Ming, T. F.; Han, X.; Wang, Y. M.; Zang, Q.; Lyu, B.; Li, Y. Y.; Duan, Y. M.; Zhong, F. B.; Li, K.; Xu, L. Q.; Gong, X. Z.; Sun, Y. W.; Qian, J. P.; Ding, B. J.; Liu, Z. X.; Liu, F. K.; Hu, C. D.; Xiang, N.; Liang, Y. F.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Wan, Y. X.; EAST Team

    2017-08-01

    The internal transport barrier (ITB) has been obtained in ELMy H-mode plasmas by neutron beam injection and lower hybrid wave heating on the Experimental Advanced Superconducting Tokamak (EAST). The ITB structure has been observed in profiles of ion temperature, electron temperature, and electron density within ρ < 0.5. It was also observed that the ITB formation is stepwise. Due to the ITB formation, the confinement quality H 98y2 increases from 1 to 1.1 and the normalized beta, β N, increases from 1.5 to near 2. The fishbone activity observed during the ITB phase suggests the central safety factor q(0) ˜ 1. Transport coefficients are calculated by particle balance and power balance analysis, showing an obvious reduction after the ITB formation.

  20. Reduction in resource use with the misoprostol vaginal insert vs the dinoprostone vaginal insert for labour induction: a model-based analysis from a United Kingdom healthcare perspective.

    PubMed

    Draycott, T; van der Nelson, H; Montouchet, C; Ruff, L; Andersson, F

    2016-02-10

    In view of the increasing pressure on the UK's maternity units, new methods of labour induction are required to alleviate the burden on the National Health Service, while maintaining the quality of care for women during delivery. A model was developed to evaluate the resource use associated with misoprostol vaginal inserts (MVIs) and dinoprostone vaginal inserts (DVIs) for the induction of labour at term. The one-year Markov model estimated clinical outcomes in a hypothetical cohort of 1397 pregnant women (parous and nulliparous) induced with either MVI or DVI at Southmead Hospital, Bristol, UK. Efficacy and safety data were based on published and unpublished results from a phase III, double-blind, multicentre, randomised controlled trial. Resource use was modelled using data from labour induction during antenatal admission to patient discharge from Southmead Hospital. The model's sensitivity to key parameters was explored in deterministic multi-way and scenario-based analyses. Over one year, the model results indicated MVI use could lead to a reduction of 10,201 h (28.9%) in the time to vaginal delivery, and an increase of 121% and 52% in the proportion of women achieving vaginal delivery at 12 and 24 h, respectively, compared with DVI use. Inducing women with the MVI could lead to a 25.2% reduction in the number of midwife shifts spent managing labour induction and 451 fewer hospital bed days. These resource utilisation reductions may equate to a potential 27.4% increase in birthing capacity at Southmead Hospital, when using the MVI instead of the DVI. Resource use, in addition to clinical considerations, should be considered when making decisions about labour induction methods. Our model analysis suggests the MVI is an effective method for labour induction, and could lead to a considerable reduction in resource use compared with the DVI, thereby alleviating the increasing burden of labour induction in UK hospitals.

  1. Does ultrasonographic foetal head position prior to induction of labour predict the outcome of delivery?

    PubMed

    Verhoeven, Corine J M; Mulders, Leon G M; Oei, S Guid; Mol, Ben Willem J

    2012-10-01

    To examine the capacity of pre-induction sonographic assessment of occipital position of the foetal head to predict the outcome of delivery, and to assess whether sonographic foetal head position before induction of labour is related to foetal presentation at delivery. A prospective cohort study was conducted in the Máxima Medical Centre, The Netherlands. We included consecutive women in whom labour was induced. Immediately prior to induction a transabdominal ultrasound was performed to determine the position of the foetal occiput. The primary outcome was mode of delivery. We recorded maternal demographics, labour and delivery characteristics, maternal and neonatal outcomes. The association between position of the foetal head before induction of labour and the occurrence of caesarean section was addressed using univariable and logistic regression analysis. From the 50 of the 183 foetuses that started labour in occipitoposterior position, 11 persisted in occipitoposterior position until birth, whereas from the 120 foetuses that were in occipitoanterior position before induction, three children were born in an occipitoposterior position. Although we found a difference in caesarean section rate between OP position and OA position of the foetal head at sonography prior to induction, this was not statistically significant (14% versus 6.7%, OR 2.3, 95% CI 0.78-6.7). Our study demonstrates that OP position prior to labour induction does not affect mode of delivery. Sonographic assessment of the position of the foetal head prior to labour induction should not be introduced in clinical practice. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Perception of Western Musical Modes: A Chinese Study.

    PubMed

    Fang, Lele; Shang, Junchen; Chen, Nan

    2017-01-01

    The major mode conveys positive emotion, whereas the minor mode conveys negative emotion. However, previous studies have primarily focused on the emotions induced by Western music in Western participants. The influence of the musical mode (major or minor) on Chinese individuals' perception of Western music is unclear. In the present experiments, we investigated the effects of musical mode and harmonic complexity on psychological perception among Chinese participants. In Experiment 1, the participants ( N = 30) evaluated 24 musical excerpts in five dimensions (pleasure, arousal, dominance, emotional tension, and liking). In Experiment 2, the participants ( N = 40) evaluated 48 musical excerpts. Perceptions of the musical excerpts differed significantly according to mode, even if the stimuli were Western musical excerpts. The major-mode music induced greater pleasure and arousal and produced higher liking ratings than the minor-mode music, whereas the minor-mode music induced greater tension than the major-mode music. Mode did not influence the dominance rating. Perception of Western music was not influenced by harmonic complexity. Moreover, preference for musical mode was influenced by previous exposure to Western music. These results confirm the cross-cultural emotion induction effects of musical modes in Western music.

  3. Expression analysis of sox3 during testicular development, recrudescence, and after hCG induction in catfish, Clarias batrachus.

    PubMed

    Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian

    2014-01-01

    In teleosts, the expression of steroidogenic enzymes and related transcription factor genes occurs in a stage- and tissue-specific manner causing sexual development. The role of sox3, an evolutionary ancestor of SRY, has not been studied in detail. Therefore, the full-length cDNA of sox3 (1,197 kb) was cloned from catfish testis, and mRNA expression was analyzed during gonadal development, during the seasonal reproductive cycle, and after human chorionic gonadotropin (hCG) induction. Tissue distribution analysis showed that sox3 expression was higher in testis, ovary, and brain compared to other tissues analyzed. Developing and mature testis showed higher sox3 expression than ovary of corresponding stages, and more sox3 transcripts were found during the spawning phase of the seasonal reproductive cycle. Expression of sox3 was upregulated by hCG after in vivo and in vitro induction, suggesting that gonadotropins might stimulate it. In situ hybridization and immunohistochemistry showed the presence of sox3 mRNA and protein in somatic and interstitial cell layers of the testis. Sox3 could also be found in the zona radiata of developing and mature oocytes. Exposure of methyltestosterone (1 µg/l) and ethinylestradiol (1 µg/l) for 21 days during testicular development showed lower sox3 expression levels in the testis and brain, indicating a certain feedback intervention. These results suggest a possible role for Sox3 in the regulation of testicular development and function. © 2014 S. Karger AG, Basel.

  4. Advances in understanding quiescent H-mode plasmas in DIII-Da)

    NASA Astrophysics Data System (ADS)

    Burrell, K. H.; West, W. P.; Doyle, E. J.; Austin, M. E.; Casper, T. A.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Hyatt, A. W.; Jayakumar, R. J.; Kaplan, D. H.; Lao, L. L.; Leonard, A. W.; Makowski, M. A.; McKee, G. R.; Osborne, T. H.; Snyder, P. B.; Solomon, W. M.; Thomas, D. M.; Rhodes, T. L.; Strait, E. J.; Wade, M. R.; Wang, G.; Zeng, L.

    2005-05-01

    Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasing power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce particle

  5. Advances in understanding quiescent H-mode plasmas in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, K.H.; West, W.P.; Gohil, P.

    2005-05-15

    Recent QH-mode research on DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] has used the peeling-ballooning modes model of edge magnetohydrodynamic stability as a working hypothesis to organize the data; several predictions of this theory are consistent with the experimental results. Current ramping results indicate that QH modes operate near the edge current limit set by peeling modes. This operating point explains why QH mode is easier to get at lower plasma currents. Power scans have shown a saturation of edge pressure with increasingmore » power input. This allows QH-mode plasmas to remain stable to edge localized modes (ELMs) to the highest powers used in DIII-D. At present, the mechanism for this saturation is unknown; if the edge harmonic oscillation (EHO) is playing a role here, the physics is not a simple amplitude dependence. The increase in edge stability with plasma triangularity predicted by the peeling-ballooning theory is consistent with the substantial improvement in pedestal pressure achieved by changing the plasma shape from a single null divertor to a high triangularity double null. Detailed ELITE calculations for the high triangularity plasmas have demonstrated that the plasma operating point is marginally stable to peeling-ballooning modes. Comparison of ELMing, coinjected and quiescent, counterinjected discharges with the same shape, current, toroidal field, electron density, and electron temperature indicates that the edge radial electric field or the edge toroidal rotation are also playing a role in edge stability. The EHO produces electron, main ion, and impurity particle transport at the plasma edge which is more rapid than that produced by ELMs under similar conditions. The EHO also decreases the edge rotation while producing little change in the edge electron and ion temperatures. Other edge electromagnetic modes also produce

  6. Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.

    PubMed

    Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E

    2010-09-17

    Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A scenario elicitation methodology to identify the drivers of electricity infrastructure cost in South America

    NASA Astrophysics Data System (ADS)

    Moksnes, Nandi; Taliotis, Constantinos; Broad, Oliver; de Moura, Gustavo; Howells, Mark

    2017-04-01

    Developing a set of scenarios to assess a proposed policy or future development pathways requires a certain level of information, as well as establishing the socio-economic context. As the future is difficult to predict, great care in defining the selected scenarios is needed. Even so it can be difficult to assess if the selected scenario is covering the possible solution space. Instead, this paper's methodology develops a large set of scenarios (324) in OSeMOSYS using the SAMBA 2.0 (South America Model Base) model to assess long-term electricity supply scenarios and applies a scenario-discovery statistical data mining algorithm, Patient Rule Induction Method (PRIM). By creating a multidimensional space, regions related to high and low cost can be identified as well as their key driver. The six key drivers are defined a priori in three (high, medium, low) or two levers (high, low): 1) Demand projected from GDP, population, urbanization and transport, 2) Fossil fuel price, 3) Climate change impact on hydropower, 4) Renewable technology learning rate, 5) Discount rate, 6) CO2 emission targets.

  8. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.

    PubMed

    Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel

    2016-10-01

    The momentum to compose this Leading Opinion on the synergistic induction of bone formation suddenly arose when a simple question was formulated during a discussion session on how to boost the often limited induction of bone formation seen in clinical contexts. Re-examination of morphological and molecular data available on the rapid induction of bone formation by the recombinant human transforming growth factor-β3 (hTGF-β3) shows that hTGF-β3 replicates the synergistic induction of bone formation as invocated by binary applications of hOP-1:hTGF-β1 at 20:1 by weight when implanted in heterotopic sites of the rectus abdominis muscle of the Chacma baboon, Papio ursinus. The rapid induction of bone formation in primates by hTGF-β3 may stem from bursts of cladistic evolution, now redundant in lower animal species but still activated in primates by relatively high doses of hTGF-β3. Contrary to rodents, lagomorphs and canines, the three mammalian TGF-β isoforms induce rapid and substantial bone formation when implanted in heterotopic rectus abdominis muscle sites of P. ursinus, with unprecedented regeneration of full thickness mandibular defects with rapid mineralization and corticalization. Provocatively, thus providing potential molecular and biological rationales for the apparent redundancy of osteogenic molecular signals in primates, binary applications of recombinant human osteogenic protein-1 (hOP-1) with low doses of hTGF-β1 and -β3, synergize to induce massive ossicles in heterotopic rectus abdominis, orthotopic calvarial and mandibular sites of P. ursinus. The synergistic binary application of homologous but molecularly different soluble molecular signals has indicated that per force several secreted molecular signals are required singly, synchronously and synergistically to induce optimal osteogenesis. The morphological hallmark of the synergistic induction of bone formation is the rapid differentiation of large osteoid seams enveloping

  9. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.

    PubMed

    Fang, Yuan; Mercer, Ryan G; McMullen, Lynn M; Gänzle, Michael G

    2017-10-01

    The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δ stx2 :: gfp :: amp r In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H 2 O 2 (2.5 mM) induced the expression of stx 2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H 2 O 2 H 2 O 2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA , and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H 2 O 2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the

  10. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food

    PubMed Central

    Fang, Yuan; Mercer, Ryan G.; McMullen, Lynn M.

    2017-01-01

    ABSTRACT The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr. In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H2O2 (2.5 mM) induced the expression of stx2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H2O2. H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single

  11. Inductive foraging: improving the diagnostic yield of primary care consultations.

    PubMed

    Donner-Banzhoff, Norbert; Hertwig, Ralph

    2014-03-01

    Physicians attempting to make a diagnosis arrive at specific hypotheses early in their encounter with patients. Further data are collected in the light of these early hypotheses. While this hypothetico-deductive model has been accepted as both a description of physicians' data gathering and a norm, little attention has been paid to the preceding stage of the consultation. It is suggested that 'inductive foraging' is a relevant and appropriate mode of data acquisition for the first part of the patient encounter. Research evidence from cognitive psychology and medical reasoning research is discussed. With inductive foraging, 'pattern failure' rather than 'pattern recognition' is the mode of discovery. Largely, guidance should be left to the patient to lead the clinician into areas where departures from normality are to be found. This is in contrast to active and focused 'deductive inquiry,' which should be used only after most aetiologies, but a few have eliminated. Especially when the prevalence of serious disease is low, and a wide range of diagnoses must be evaluated, such as in General Practice, inductive foraging is a rational and efficient diagnostic strategy. Previously, too little attention has been paid to the initial stage of the consultation. Premature closure at this point may result in diagnostic error.

  12. Steady state plasma operation in RF dominated regimes on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or bymore » combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.« less

  13. Extending the validation of multi-mode model for anomalous transport to high beta poloidal tokamak scenario in DIII-D

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Garofalo, A. M.; Holod, I.; Weiland, J.

    2018-05-01

    The Multi-Mode Model (MMM7.1) for anomalous transport is tested in predictive modeling of temperature profiles of a high beta poloidal DIII-D discharge. This new H-mode plasma regime, with high beta poloidal and high bootstrap currents, has been studied in DIII-D tokamak discharges [A. Garofalo et al., Nucl. Fusion 55, 123025 (2015)]. The role of instabilities that can drive the anomalous transport described by MMM7.1 is investigated. The temperature profiles for a high beta poloidal DIII-D discharge are computed using the NCLASS model for the neoclassical transport and the Weiland and Electron Temperature Gradient (ETG) components of the MMM7.1 model for the anomalous transport. The neoclassical transport is found to be the main contributor to the ion thermal transport in the plasma core. The contributions from the ion temperature gradient driven modes are found to be important only outside of the internal transport barrier. The magnitudes of the predicted temperature profiles are found to be in a reasonable agreement with experimental profiles. The simulation results approximately reproduce the internal transport barrier in the ion temperature profile but not in the electron temperature profile due to a weak dependence of the ETG driven transport on the Shafranov shift in the ETG component of MMM7.1. Possible effects that can contribute to stabilization of these modes, for example, effects associated with the large beta poloidal such as the Shafranov shift stabilization in the MMM7.1 model, are discussed. It is demonstrated that the E × B flow shear has a relatively small effect in the formation of the internal transport barrier in the high beta poloidal DIII-D discharge 154406. The Shafranov shift (alpha stabilization) and small or reversed magnetic shear profiles are found to be the primary reasons for quenched anomalous transport in this discharge.

  14. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  15. Determination of hexavalent chromium in traditional Chinese medicines by high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Li, Peng; Li, Li-Min; Xia, Jing; Cao, Shuai; Hu, Xin; Lian, Hong-Zhen; Ji, Shen

    2015-12-01

    An analytical method that combined high-performance liquid chromatography with inductively coupled plasma mass spectrometry has been developed for the determination of hexavalent chromium in traditional Chinese medicines. Hexavalent chromium was extracted using the alkaline solution. The parameters such as the concentration of alkaline and the extraction temperature have been optimized to minimize the interconversion between trivalent chromium and hexavalent chromium. The extracted hexavalent chromium was separated on a weak anion exchange column in isocratic mode, followed by inductively coupled plasma mass spectrometry determination. To obtain a better chromatographic resolution and sensitivity, 75 mM NH4 NO3 at pH 7 was selected as the mobile phase. The linearity of the proposed method was investigated in the range of 0.2-5.0 μg L(-1) (r(2) = 0.9999) for hexavalent chromium. The limits of detection and quantitation are 0.1 and 0.3 μg L(-1) , respectively. The developed method was successfully applied to the determination of hexavalent chromium in Chloriti lapis and Lumbricus with satisfactory recoveries of 95.8-112.8%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inhibition and induction of aromatase (CYP19) activity by brominated flame retardants in H295R human adrenocortical carcinoma cells.

    PubMed

    Cantón, Rocío F; Sanderson, J Thomas; Letcher, Robert J; Bergman, Ake; van den Berg, Martin

    2005-12-01

    Brominated flame retardants (BFRs) are persistent and ubiquitous chemicals in the environment, and they are found at increasing levels in tissues of wildlife and humans. Previous in vitro studies with the BFR class of polybrominated diphenyl ethers (BDEs) have shown endocrine-disrupting properties. Our study assessed the potential effects of nineteen BDEs, five hydroxylated BDEs (OH-BDEs), one methoxylated BDE (CH(3)O-BDE), tetrabromobisphenol-A (TBBPA), its dibromopropane ether derivative (TBBPA-DBPE), and the brominated phenols/anisols 2,4,6-tribromophenol (TBP), 4-bromophenol (4BP) and 2,4,6-tribromoanisole (TBA) on the catalytic activity of the steroidogenic enzyme aromatase (CYP19) in H295R human adrenocortical carcinoma cells. Effects were studied in the concentration range from 0.5 to 7.5 microM; exposures were for 24 h. Both 6-OH-BDE47 and 6-OH-BDE99 showed an inhibitory effect on aromatase activity at concentrations >2.5 microM and >5 microM, respectively. However, 6-OH-BDE47 also caused a statistically significant increase in cytotoxicity (based on mitochondrial MTT reduction and lactate dehydrogenase-leakage [LDH]) at concentrations >2.5 microM that could explain in part the apparent inhibitory effect on aromatase activity. Compared to 6-OH-BDE47, the methoxy analog (6-CH(3)O-BDE47) did not elicit a cytotoxic effect, whereas significant inhibition of aromatase remained. TBP caused a concentration-dependent induction of aromatase activity between 0.5 and 7.5 microM (with a maximum of 3.8-fold induction at 7.5 microM). This induction was not observed when a OH- group replaced the CH(3)O- group or when bromine atoms adjacent to this OH- group were absent. These in vitro results provide a basis for studies of more detailed structure-activity relationships between these brominated compounds and the modulation of aromatase activity.

  17. Ideal MHD stability and characteristics of edge localized modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  18. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    DOE PAGES

    Muratori, Matteo; Smith, Steven J.; Kyle, Page; ...

    2017-02-27

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less

  19. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo; Smith, Steven J.; Kyle, Page

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less

  20. Role of the Freight Sector in Future Climate Change Mitigation Scenarios.

    PubMed

    Muratori, Matteo; Smith, Steven J; Kyle, Page; Link, Robert; Mignone, Bryan K; Kheshgi, Haroon S

    2017-03-21

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.

  1. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  2. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit

  3. Hydrogen Financial Analysis Scenario Tool (H2FAST) Documentation

    Science.gov Websites

    for the web and spreadsheet versions of H2FAST. H2FAST Web Tool User's Manual H2FAST Spreadsheet Tool User's Manual (DRAFT) Technical Support Send questions or feedback about H2FAST to H2FAST@nrel.gov. Home

  4. Mechanism of fever induction in rabbits.

    PubMed Central

    Siegert, R; Philipp-Dormston, W K; Radsak, K; Menzel, H

    1976-01-01

    Three exogenous pyrogens (Escherichia coli lipopolysaccharide, synthetic double-stranded ribonucleic acid. Newcastle disease virus) were compared with respect to their mechanisms of fever induction in rabbits. All inducers stimulated the production of an endogenous pyrogen demonstrated in the blood as well as prostaglandins of the E group, and of cyclic adenosine 3',5'-monophosphate in the cerebrospinal fluid. The concentrations of these compounds were elevated approximately twofold as compared to the controls. Independently of the mode of induction, the fever reaction could be prevented by pretreatment with 5 mg of cycloheximide per kg, although the three fever mediators were induced as in febrile animals. Consequently, at least one additional fever mediator that is sensitive to a 30 to 50% inhibition of protein synthesis by cycloheximide has to be postulated. The comparable reactions of the rabbits after administration of different pyrogens argues for a similar fever mechanism. In contrast to fever induction there was no stimulation of endogenous pyrogen, prostaglandins of the E group, and cyclic adenosine 3',5'-monophosphate in hyperthermia as a consequence of exposure of the animals to exogenous overheating. Furthermore, hyperthermia could not be prevented by cycloheximide. PMID:185148

  5. Using Induction to Refine Information Retrieval Strategies

    NASA Technical Reports Server (NTRS)

    Baudin, Catherine; Pell, Barney; Kedar, Smadar

    1994-01-01

    Conceptual information retrieval systems use structured document indices, domain knowledge and a set of heuristic retrieval strategies to match user queries with a set of indices describing the document's content. Such retrieval strategies increase the set of relevant documents retrieved (increase recall), but at the expense of returning additional irrelevant documents (decrease precision). Usually in conceptual information retrieval systems this tradeoff is managed by hand and with difficulty. This paper discusses ways of managing this tradeoff by the application of standard induction algorithms to refine the retrieval strategies in an engineering design domain. We gathered examples of query/retrieval pairs during the system's operation using feedback from a user on the retrieved information. We then fed these examples to the induction algorithm and generated decision trees that refine the existing set of retrieval strategies. We found that (1) induction improved the precision on a set of queries generated by another user, without a significant loss in recall, and (2) in an interactive mode, the decision trees pointed out flaws in the retrieval and indexing knowledge and suggested ways to refine the retrieval strategies.

  6. Alfvén eigenmode evolution computed with the VENUS and KINX codes for the ITER baseline scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaev, M. Yu., E-mail: isaev-my@nrcki.ru; Medvedev, S. Yu.; Cooper, W. A.

    A new application of the VENUS code is described, which computes alpha particle orbits in the perturbed electromagnetic fields and its resonant interaction with the toroidal Alfvén eigenmodes (TAEs) for the ITER device. The ITER baseline scenario with Q = 10 and the plasma toroidal current of 15 MA is considered as the most important and relevant for the International Tokamak Physics Activity group on energetic particles (ITPA-EP). For this scenario, typical unstable TAE-modes with the toroidal index n = 20 have been predicted that are localized in the plasma core near the surface with safety factor q = 1.more » The spatial structure of ballooning and antiballooning modes has been computed with the ideal MHD code KINX. The linear growth rates and the saturation levels taking into account the damping effects and the different mode frequencies have been calculated with the VENUS code for both ballooning and antiballooning TAE-modes.« less

  7. New insights on boundary plasma turbulence and the Quasi-Coherent Mode in Alcator C-Mod using a Mirror Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Labombard, Brian

    2013-10-01

    A ``Mirror Langmuir Probe'' (MLP) diagnostic has been used to interrogate edge plasma profiles and turbulence in Alcator C-Mod with unprecedented detail, yielding fundamental insights on the Quasi-Coherent Mode (QCM) - a mode that regulates plasma density and impurities in EDA H-modes without ELMs. The MLP employs a fast-switching, self-adapting bias scheme, recording density, electron temperature and plasma potential simultaneously at high bandwidth (~1 MHz) on each of four separate electrodes on a scanning probe. Temporal dynamics are followed in detail; wavenumber-frequency spectra and phase relationships are readily deduced. Poloidal field fluctuations are recorded separately with a two-coil, scanning probe. Results from ohmic L-mode and H-mode plasmas are reported, including key observations of the QCM: The QCM lives in a region of positive radial electric field, with a mode width (~3 mm) that spans open and closed field line regions. Remarkably large amplitude (~30%), sinusoidal bursts in density, electron temperature and plasma potential fluctuations are observed that are in phase; potential lags density by at most 10 degrees. Propagation velocity of the mode corresponds to the sum of local E × B and electron diamagnetic drift velocities - quantities that are deduced directly from time-averaged profiles. Poloidal magnetic field fluctuations project to parallel current densities of ~5 amps/cm2 in the mode layer, with significant parallel electromagnetic induction. Electron force balance is examined, unambiguously identifying the mode type. It is found that fluctuations in parallel electron pressure gradient are roughly balanced by the sum of electrostatic and electromotive forces. Thus the primary mode structure of the QCM is that of a drift-Alfven wave. Work supported by US DoE award DE-FC02-99ER54512.

  8. Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations.

    PubMed

    De Simone, Giuseppina; Langella, Emma; Esposito, Davide; Supuran, Claudiu T; Monti, Simona Maria; Winum, Jean-Yves; Alterio, Vincenzo

    2017-12-01

    Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.

  9. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  10. Integrated modeling of high βN steady state scenario on DIII-D

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.

    2018-01-01

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.

  11. Broadband rectangular TEn0 mode exciter with H-plane power dividers for 100 GHz confocal gyro-devices.

    PubMed

    Yao, Yelei; Wang, Jianxun; Li, Hao; Liu, Guo; Luo, Yong

    2017-07-01

    A generic approach to excite TE n0 (n ≥ 1) modes in a rectangular waveguide for confocal gyro-devices is proposed. The exciter consists of a 3 dB H-plane power divider (n ≥ 3) and a mode-converting section. The injection power is split into two in-phase signals with equal amplitudes which simultaneously excite the secondary waveguide via two sets of multiple slots. Both the position and width of the slot are symmetrically distributed with respect to the center line for each set of slots. The slot width complies with a geometry sequence, with adjacent slots being spaced a quarter wavelength apart to cancel the backward wave out. A TE 40 mode exciter at 100 GHz is numerically simulated and optimized, achieving a 1 dB and a 3 dB transmission bandwidth of 18.2 and 21 GHz, respectively. The prototype is fabricated and measured. The cold test is carried out utilizing two identical back-to-back connected mode exciters, and the measured performances are in good agreement with the numerical simulation results when taking into account the wall loss and assembly tolerance.

  12. Analysis of plasma termination in the JET hybrid scenario

    NASA Astrophysics Data System (ADS)

    Hobirk, J.; Bernert, M.; Buratti, P.; Challis, C. D.; Coffey, I.; Drewelow, P.; Joffrin, E.; Mailloux, J.; Nunes, I.; Pucella, G.; Pütterich, T.; de Vries, P. C.; Contributors, JET

    2018-07-01

    This paper analyses the final phase of hybrid scenario discharges at JET, the reduction of auxiliary heating towards finally the Ohmic phase. The here considered Ohmic phase is mostly still in the current flattop but may also be in the current ramp down. For this purpose a database is created of 54 parameters in 7 phases distributed in time of the discharge. It is found that the occurrence of a locked mode is in most cases preceded by a radiation peaking after the main heating phase either in a low power phase and/or in the Ohmic phase. To gain insight on the importance of different parameters in this process a correlation analysis to the radiation peaking in the Ohmic phase is done. The first finding is that the further away in time the analysed phases are the less the correlation is. This means in the end that a good termination scenario might also be able to terminate unhealthy plasmas safely. The second finding is that remaining impurities in the plasma after reducing the heating power in the termination phase are the most important reason for generating a locked mode which can lead to a disruption.

  13. Association between gestational age and induction-to-abortion interval in mid-trimester pregnancy termination using misoprostol.

    PubMed

    Vitner, Dana; Deutsch, Michael; Paz, Yuri; Khatib, Nizar; Baltiter, Tania; Rosenberg, Shiran; Lowenstein, Lior

    2011-06-01

    The study was aimed to evaluate the effectiveness, outcome, and pain intensity of the vaginal administration of misoprostol for the induction of abortion between 13 and 24 gestational weeks. A retrospective study was conducted at our tertiary medical center from January 2006 to December 2009 on 122 consecutive women who underwent termination of pregnancy (TOP) in the mid-trimester. They were given 400 mcg of vaginal misoprostol every 6h, up to four doses. The induction-to-abortion interval and the level of pain experienced during the process were assessed. Success was defined by the fetus being expelled within 48 h. Vaginal misoprostol was effective in 84% (98/122) of patients. The median duration of the induction-to-abortion interval was 16 (5-48)h. The induction-to-abortion interval was correlated with gestational age, while inversely correlated with parity. A correlation was also found between gestational age and pain intensity at 12h from induction. Misoprostol is safe and effective in mid-trimester abortion induction. The induction-to-abortion interval is shorter and abortion less painful with lower gestational age. Higher parity is also associated with shorter induction to abortion interval. Copyright © 2011. Published by Elsevier Ireland Ltd.

  14. Induction of Programmed Cell Death by Parvovirus H-1 in U937 Cells: Connection with the Tumor Necrosis Factor Alpha Signalling Pathway

    PubMed Central

    Rayet, Béatrice; Lopez-Guerrero, José-Antonio; Rommelaere, Jean; Dinsart, Christiane

    1998-01-01

    The human promonocytic cell line U937 undergoes apoptosis upon treatment with tumor necrosis factor alpha (TNF-α). This cell line has previously been shown to be very sensitive to the lytic effect of the autonomous parvovirus H-1. Parvovirus infection leads to the activation of the CPP32 ICE-like cysteine protease which cleaves the enzyme poly(ADP-ribose)polymerase and induces morphologic changes that are characteristic of apoptosis in a way that is similar to TNF-α treatment. This effect is also observed when the U937 cells are infected with a recombinant H-1 virus which expresses the nonstructural (NS) proteins but in which the capsid genes are replaced by a reporter gene, indicating that the induction of apoptosis can be assigned to the cytotoxic nonstructural proteins in this cell system. The c-Myc protein, which is overexpressed in U937 cells, is rapidly downregulated during infection, in keeping with a possible role of this product in mediating the apoptotic cell death induced by H-1 virus infection. Interestingly, four clones (designated RU) derived from the U937 cell line and selected for their resistance to H-1 virus (J. A. Lopez-Guerrero et al., Blood 89:1642–1653, 1997) failed to decrease c-Myc expression upon treatment with differentiation agents and also resisted the induction of cell death after TNF-α treatment. Our data suggest that the RU clones have developed defense strategies against apoptosis, either by their failure to downregulate c-Myc and/or by activating antiapoptotic factors. PMID:9765434

  15. Detection of Gait Modes Using an Artificial Neural Network during Walking with a Powered Ankle-Foot Orthosis

    PubMed Central

    2016-01-01

    This paper presents an algorithm, for use with a Portable Powered Ankle-Foot Orthosis (i.e., PPAFO) that can automatically detect changes in gait modes (level ground, ascent and descent of stairs or ramps), thus allowing for appropriate ankle actuation control during swing phase. An artificial neural network (ANN) algorithm used input signals from an inertial measurement unit and foot switches, that is, vertical velocity and segment angle of the foot. Output from the ANN was filtered and adjusted to generate a final data set used to classify different gait modes. Five healthy male subjects walked with the PPAFO on the right leg for two test scenarios (walking over level ground and up and down stairs or a ramp; three trials per scenario). Success rate was quantified by the number of correctly classified steps with respect to the total number of steps. The results indicated that the proposed algorithm's success rate was high (99.3%, 100%, and 98.3% for level, ascent, and descent modes in the stairs scenario, respectively; 98.9%, 97.8%, and 100% in the ramp scenario). The proposed algorithm continuously detected each step's gait mode with faster timing and higher accuracy compared to a previous algorithm that used a decision tree based on maximizing the reliability of the mode recognition. PMID:28070188

  16. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Yan, Zhimiao

    2017-03-01

    The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.

  17. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling [The inter-ELM W erosion profile in DIII-D H-mode discharges and benchmarking with OEDGE+ERO modeling

    DOE PAGES

    Abrams, Tyler; Ding, Rui; Guo, Houyang Y.; ...

    2017-04-03

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and TZM molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but divergemore » at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. As a result, it is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.« less

  18. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling [The inter-ELM W erosion profile in DIII-D H-mode discharges and benchmarking with OEDGE+ERO modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, Tyler; Ding, Rui; Guo, Houyang Y.

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and TZM molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but divergemore » at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. As a result, it is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.« less

  19. ELM Suppression and Pedestal Structure in I-Mode Plasmas

    NASA Astrophysics Data System (ADS)

    Walk, John

    2013-10-01

    The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.

  20. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  1. pH-control modes in a 5-L stirred-tank bioreactor for cell biomass and exopolysaccharide production by Tremella fuciformis spore.

    PubMed

    Zhu, Hu; Cao, Chunxu; Zhang, Shuaishuai; Zhang, Yan; Zou, Weisheng

    2011-10-01

    The effect of pH-control modes on cell growth and exopolysaccharide production by Tremella fuciformis was evaluated in a 5-L bioreactor. The results show that the maximal dry cell weight (DCW) and exopolysaccharide production were 23.57 and 4.48 g L⁻¹ in pH-stat fermentation, where the maximal specific growth rate (μ(max)) and specific production rate of exopolysaccharide (P(P/X)) were 1.03 and 0.24 d⁻¹, respectively; under pH-shift cultivation, the maximal DCW and exopolysaccharide production were 30.57 and 3.90 g L⁻¹, where the μ(max) and P(P/X) were 1.21 and 0.06 d⁻¹. Unlike batch fermentation, maximal DCW and exopolysaccharide production merely reached 15.04 and 2.0 g L⁻¹, where the μ(max) and P(P/X) were 0.86 and 0.05 d⁻¹, respectively. These results suggest that a pH-stat strategy is a more efficient way of performing the fermentation process to increase exopolysaccharide production. Furthermore, this research has also proved that the three-stage pH-control mode is effective for cell growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Influence of coil current modulation on polycrystalline diamond film deposition by irradiation of Ar/CH4/H2 inductively coupled thermal plasmas

    NASA Astrophysics Data System (ADS)

    Betsuin, Toshiki; Tanaka, Yasunori; Arai, T.; Uesugi, Y.; Ishijima, T.

    2018-03-01

    This paper describes the application of an Ar/CH4/H2 inductively coupled thermal plasma with and without coil current modulation to synthesise diamond films. Induction thermal plasma with coil current modulation is referred to as modulated induction thermal plasma (M-ITP), while that without modulation is referred to as non-modulated ITP (NM-ITP). First, spectroscopic observations of NM-ITP and M-ITP with different modulation waveforms were made to estimate the composition in flux from the thermal plasma by measuring the time evolution in the spectral intensity from the species. Secondly, we studied polycrystalline diamond film deposition tests on a Si substrate, and we studied monocrystalline diamond film growth tests using the irradiation of NM-ITP and M-ITP. From these tests, diamond nucleation effects by M-ITP were found. Finally, following the irradiation results, we attempted to use a time-series irradiation of M-ITP and NM-ITP for polycrystalline diamond film deposition on a Si substrate. The results indicated that numerous larger diamond particles were deposited with a high population density on the Si substrate by time-series irradiation.

  3. Mechanism of oxidative DNA damage induction in a strict anaerobe, Prevotella melaninogenica.

    PubMed

    Takeuchi, T; Kato, N; Watanabe, K; Morimoto, K

    2000-11-01

    We investigated the mechanism of the oxidative DNA damage induction by exposure to O(2) in Prevotella melaninogenica, a strict anaerobe. Flow cytometry with hydroethidine and dichlorofluorescein diacetate showed that O(2) exposure generated O(2)*-) and H(2)O(2). Results of electron spin resonance with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and ethanol showed that O(2) exposure also induced *OH radical generation in P. melaninogenica loaded with FeCl(2) but not in samples without FeCl(2) loading. In P. melaninogenica, O(2) exposure increased 8-hydroxydeoxyguanosine (8OHdG), typical of oxidative DNA damage. Catalase inhibited the increase, but the *OH radical scavengers did not. Phenanthroline, a membrane-permeable Fe and Cu chelator, increased the 8OHdG induction. In FeCl(2)-loaded samples, induction of 8OHdG decreased. Addition of H(2)O(2) markedly increased 8OHdG levels. These results indicate that in P. melaninogenica, exposure to O(2) generated and accumulated O(2)* and H(2)O(2), and that a crypto-OH radical generated through H(2)O(2) was the active species in the 8OHdG induction.

  4. Global two-fluid turbulence simulations of L-H transitions and edge localized mode dynamics in the COMPASS-D tokamak

    NASA Astrophysics Data System (ADS)

    Thyagaraja, A.; Valovič, M.; Knight, P. J.

    2010-04-01

    It is shown that the transition from L-mode to H-mode regimes in tokamaks can be reproduced using a two-fluid, fully electromagnetic, plasma model when a suitable particle sink is added at the edge. Such a model is implemented in the CUTIE code [A. Thyagaraja et al., Eur. J. Mech. B/Fluids 23, 475 (2004)] and is illustrated on plasma parameters that mimic those in the COMPASS-D tokamak with electron cyclotron resonance heating [Fielding et al., Plasma Phys. Contr. Fusion 42, A191 (2000)]. In particular, it is shown that holding the heating power, current, and magnetic field constant and increasing the fuelling rate to raise the plasma density leads spontaneously to the formation of an edge transport barrier (ETB) which occurs going from low to higher density experimentally. In the following quiescent period in which the stored energy of the plasma rises linearly with time, a dynamical transition occurs in the simulation with the appearance of features resembling strong edge localized modes. The simulation qualitatively reproduces many features observed in the experiment. Its relative robustness suggests that some, at least of the observed characteristics of ETBs and L-H transitions, can be captured in the global electromagnetic turbulence model.

  5. Differential cross sections in a thick brane world scenario

    NASA Astrophysics Data System (ADS)

    Pedraza, Omar; Arceo, R.; López, L. A.; Cerón, V. E.

    2018-04-01

    The elastic differential cross section is calculated at low energies for the elements He and Ne using an effective 4D electromagnetic potential coming from the contribution of the massive Kaluza-Klein modes of the 5D vector field in a thick brane scenario. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model.

  6. Long-lived Eccentric modes in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit; Dempsey, Adam M.; Lithwick, Yoram

    2018-04-01

    A theory is developed to understand global eccentric modes that are slowly precessing in protoplanetary disks. Using the typical self-similar density profiles, we found that these modes are trapped in the disk and are not sensitive to the uncertain boundary condition at the disk edge. This is contrary to common wisdom that the modes can only exist in disks with very sharp outer edge. Because of their discrete spectrum, once excited, a perturbed disk can stay eccentric for a long time until the mode is viscously damped. The physics behind the mode trapping depends ultimately on the relative importance of gas pressure and self-gravity, which is characterized by g = 1/ (Q h), where h is the disk aspect ratio and Q is the Toomre stability parameter. A very low mass disk (g ≪ 1) is pressure-dominated and supports pressure modes, in which the eccentricity is highest at the disk edge. The modes are trapped by a turning point due to the density drop in the outer disk. For a more massive disk with g of order of unity (Q~1/h~10-100), prograde modes are supported. Unlike the pressure modes, these modes are trapped by Q-barriers and result in a bump in the radial eccentricity profile. As the mode trapping is a generic phenomenon for typical disk profiles, the free linear eccentric modes are likely to be present in protoplanetary disks with a wide range of disk mass.

  7. Labor induction and cesarean delivery: A prospective cohort study of first births in Pennsylvania, USA.

    PubMed

    Kjerulff, Kristen H; Attanasio, Laura B; Edmonds, Joyce K; Kozhimannil, Katy B; Repke, John T

    2017-09-01

    Mode of delivery at first childbirth largely determines mode of delivery at subsequent births, so it is particularly important to understand risk factors for cesarean delivery at first childbirth. In this study, we investigated risk factors for cesarean delivery among nulliparous women, with focus on the association between labor induction and cesarean delivery. A prospective cohort study of 2851 nulliparous women with singleton pregnancies who attempted vaginal delivery at hospitals in Pennsylvania, 2009-2011, was conducted. We used nested logistic regression models and multiple mediational analyses to investigate the role of three groups of variables in explaining the association between labor induction and unplanned cesarean delivery-the confounders of maternal characteristics and indications for induction, and the mediating (intrapartum) factors-including cervical dilatation, labor augmentation, epidural analgesia, dysfunctional labor, dystocia, fetal intolerance of labor, and maternal request of cesarean during labor. More than a third of the women were induced (34.3%) and 24.8% underwent cesarean delivery. Induced women were more likely to deliver by cesarean (35.9%) than women in spontaneous labor (18.9%), unadjusted OR 2.35 (95% CI 1.97-2.79). The intrapartum factors significantly mediated the association between labor induction and cesarean delivery (explaining 76.7% of this association), particularly cervical dilatation <3 cm at hospital admission, fetal intolerance of labor, and dystocia. The indications for labor induction only explained 6.2%. Increased risk of cesarean delivery after labor induction among nulliparous women is attributable mainly to lower cervical dilatation at hospital admission and higher rates of labor complications. © 2017 Wiley Periodicals, Inc.

  8. High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak.

    PubMed

    Thome, K E; Bongard, M W; Barr, J L; Bodner, G M; Burke, M G; Fonck, R J; Kriete, D M; Perry, J M; Schlossberg, D J

    2016-04-29

    Tokamak experiments at near-unity aspect ratio A≲1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A∼3 plasmas, the L-H power threshold P_{LH} is ∼15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. These ultralow-A operations enable heretofore inaccessible J_{edge}(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  9. High confinement mode and edge localized mode characteristics in a near-unity aspect ratio tokamak

    DOE PAGES

    Thome, Kathreen E.; Bongard, Michael W.; Barr, Jayson L.; ...

    2016-04-27

    Tokamak experiments at near-unity aspect ratio A ≲ 1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A ~ 3 plasmas, the L–H power threshold P LH is ~15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. Furthermore, these ultralow-A operations enable heretofore inaccessible J edge(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  10. Inductance parameter design based seamless transfer strategy for three-phase converter in microgrid

    NASA Astrophysics Data System (ADS)

    Zhao, Guopeng; Zhou, Xinwei; Jiang, Chao; Lu, Yi; Wang, Yanjie

    2018-06-01

    During the operation of microgrid, especially when the unplanned islanding occurs, the voltage of the point of common coupling (PCC) needs to be maintained within a certain range, otherwise it would affect the operation of loads in microgrid. This paper proposes a seamless transfer strategy based on the inductance parameter design for three-phase converter in microgrid, which considers both the fundamental component of voltage on the inductance and the ripple current in the inductance. In grid-connected mode, the PCC voltage is supported by the grid. When the unplanned islanding occurs, the PCC voltage is affected by the output voltage of converter and the voltage on the inductance. According to the single phase equivalent circuit, analyzing the phasor diagram of voltage and current vector, considering the prescribed range of PCC voltage and satisfying the requirement of the magnitude of ripple current, the inductance parameter is designed. At last, the simulation result shows that the designed inductance can ensure the PCC voltage does not exceed the prescribed range and restrain the ripple current.

  11. Observations of highly sheared turbulence in the H-mode pedestal using Phase Contrast Imaging on DIII-D

    NASA Astrophysics Data System (ADS)

    Rost, J. C.; Marinoni, A.; Davis, E. M.; Porkolab, M.; Burrell, K. H.

    2017-10-01

    Highly sheared turbulence with short radial correlation lengths has been measured near the top of the H-mode pedestal, in addition to the previously measured highly-sheared turbulence measured in the Er well. Turbulence in regions of large velocity shear is characterized by radial correlation lengths shorter than the poloidal wavelength (L < λ 2 cm) and large Doppler-shifted frequencies (f > 200 kHz). The phase contrast imaging (PCI) diagnostic on DIII-D is ideally suited to measuring this density turbulence due to the measurement geometry and high frequency bandwidth. Radial localization is achieved by optical filtering, varying the ExB profile, and shifting the plasma position. Reconfiguration of the Er well, such as at the L-H transition or the transition to wide pedestal QH-mode, shows a near-instantaneous change (t < 1 ms) to the sheared turbulence in the Er well ( 1 cm inside the separatrix). In contrast, the sheared turbulence near the top of the pedestal ( 2 cm inside the separatrix) varies over times scales of tens of ms, consistent with pedestal evolution. Work supported by the US Department of Energy under DE-FG02-94ER54235 and DE-FC02-04ER54698.

  12. Synthesis of Silicon Nanoparticles in Inductively Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Le Picard, Romain; Girshick, Steven L.; Kushner, Mark J.

    2016-09-01

    The synthesis of silicon nanoparticles (Si-NPs) is being investigated for their use in photo-emitting electronics, photovoltaics, and biotechnology. The ability to control the size and mono-disperse nature of Si-NPs is important to optimizing these applications. In this paper we discuss results from a computational investigation of Si-NP formation and growth in an inductively coupled plasma (ICP) reactor with the goal of achieving this control. We use a two dimensional numerical model where the algorithms for the kinetics of NP formation are self-consistently coupled with a plasma hydrodynamics simulation. The reactor modeled here resembles a GEC reference cell through which, for the base case, a mixture of Ar/SiH4 = 70/30 flows at 150 sccm at a pressure of 100 mTorr. In continuous wave mode, three coils located on top of the reactor deliver 150 W. The electric plasma potential confines negatively charged particles at the center of the discharge, increasing the residence time of negative NPs, which enables the NPs to potentially grow to large and controllable sizes of many to 100s nm. We discuss methods of controlling NP growth rates by varying the mole fraction and flow rate of SiH4, and using a pulsed plasma by varying the pulse period and duty cycle. Work supported by DOE Office of Fusion Energy Science and National Science Foundation.

  13. Evaluation of oxygen species during E-H transition in inductively coupled RF plasmas: combination of experimental results with global model

    NASA Astrophysics Data System (ADS)

    Meichsner, Jürgen; Wegner, Thomas

    2018-05-01

    Inductively coupled RF plasmas (ICP) in oxygen at low pressure have been intensively studied as a molecular and electronegative model system in the last funding period of the Collaborative Research Centre 24 "Fundamentals of Complex Plasmas". The ICP configuration consists of a planar coil inside a quartz cylinder as dielectric barrier which is immersed in a large stainless steel vacuum chamber. In particular, the E-H mode transition has been investigated, combining experimental results from comprehensive plasma diagnostics as input for analytical rate equation calculation of a volume averaged global model. The averaged density was determined for electrons, negative ions O-, molecular oxygen ground state O2(X3 Σg-) and singlet metastable state O2(a1 Δg) from line-integrated measurements using 160 GHz Gaussian beam microwave interferometry coupled with laser photodetachment experiment and VUV absorption spectroscopy, respectively. Taking into account the relevant elementary processes and rate coefficients from literature together with the measured temperatures and averaged density of electrons, O2(X3 Σg-) and O2(a1 Δg) the steady state density was calculated for O(3P), O2(b1 Σg+), O(1D), O(1S), O3, O-, O2-, and O3-, respectively. The averaged density of negative ions O- from the rate equation calculation is compared with the measured one. The normalized source and loss rates are discussed for O(3P), O2(b1 Σg+) and O-. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  14. Phase locking of multi-helicity neoclassical tearing modes in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Richard

    2015-04-15

    The attractive “hybrid” tokamak scenario combines comparatively high q{sub 95} operation with improved confinement compared with the conventional H{sub 98,y2} scaling law. Somewhat unusually, hybrid discharges often exhibit multiple neoclassical tearing modes (NTMs) possessing different mode numbers. The various NTMs are eventually observed to phase lock to one another, giving rise to a significant flattening, or even an inversion, of the core toroidal plasma rotation profile. This behavior is highly undesirable because the loss of core plasma rotation is known to have a deleterious effect on plasma stability. This paper presents a simple, single-fluid, cylindrical model of the phase lockingmore » of two NTMs with different poloidal and toroidal mode numbers in a tokamak plasma. Such locking takes place via a combination of nonlinear three-wave coupling and conventional toroidal coupling. In accordance with experimental observations, the model predicts that there is a bifurcation to a phase-locked state when the frequency mismatch between the modes is reduced to one half of its original value. In further accordance, the phase-locked state is characterized by the permanent alignment of one of the X-points of NTM island chains on the outboard mid-plane of the plasma, and a modified toroidal angular velocity profile, interior to the outermost coupled rational surface, which is such that the core rotation is flattened, or even inverted.« less

  15. Extending Mode Areas of Single-mode All-solid Photonic Bandgap Fibers

    DTIC Science & Technology

    2015-04-02

    T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal ...Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). 10. L. Dong, T. Wu, H. McKay, L. Fu...progress in mode area scaling of optical fibers. One notable area is in photonic crystal fibers (PCF) [3–5, 8, 9]. The short straight PCF rods used in

  16. Campath-1H (alemtuzumab) as an induction agent for the prevention of graft rejection and preservation of renal function in kidney transplant patients: Philippine 3-year follow-up.

    PubMed

    Muñoz, A S; Cabanayan-Casasola, C B; Danguilan, R A; Padua, F B; Ona, E T

    2008-09-01

    The purpose of this study was to evaluate the safety and efficacy of induction with Campath-1H with low-dose cyclosporine (CsA) monotherapy using outcome measures of acute rejection episodes (ARE), chronic allograft nephropathy (CAN), graft and patient survivals, as well as malignancies and infections. Fourteen kidney transplant recipients were randomized to receive either Campath 1H induction with CsA monotherapy (9 patients) or immunosuppression with CsA, azathioprine, and steroids (5 patients). Campath (20 mg IV) was administered within 6 hours after the anastomosis and repeated 24 hours later. Cyclosporine was started 72 hours after the first Campath dose (10 mg/kg on the first day, then 4 mg/kg/d), seeking to achieve target trough CsA levels of 90 to 110 ng/mL. This is a 3-year follow-up of the 9 patients who received Campath-1H induction. Six of 9 (67%) patients developed ARE (borderline ARE to Banff IB) in the Campath group compared with 1 of 5 (20%) in the other group (ARE Banff IIA). They all received methylprednisolone for 3 days with good responses. One of the 6 patients in the Campath group with ARE also displayed CAN and was converted to sirolimus; 2 others had mycophenolate mofetil and steroids added to their immunosuppression after the ARE. Creatinine levels ranged from 1 to 1.7 mg/dL at 24 to 36 months posttransplantation in both groups. Among the Campath group, 1 patient died 6 months posttransplantation with sepsis secondary to infectious diarrhea. Upper respiratory tract infections comprised the majority of infections at 24 to 36 months. No malignancies were observed. Three years posttransplantation, patients given Campath induction with CsA monotherapy showed a greater incidence of ARE, although renal function remained comparable to CsA-azathioprine-prednisone therapy. AREs were easily reversed with steriods. Infections were minor.

  17. Capital requirements for the transportation of energy materials based on PIES Scenario estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gezen, A.; Kendrick, M.J.; Khan, S.S.

    In May 1978, Transportation and Economic Research Associates (TERA), Inc. completed a study in which information and methodologies were developed for the determination of capital requirements in the transportation of energy materials. This work was designed to aid EIA in the analysis of PIES solutions. The work consisted of the development of five algorithms which are used to estimate transportation-investment requirements associated with energy commodities and transportation modes. For the purpose of this analysis, TERA was provided with three PIES-solution scenarios for 1985. These are: Scenario A which assumes a high domestic economic rate of growth along with its correspondingmore » high demand for petroleum, as well as a high domestic supply of petroleum; Scenario C which assumes a medium level of economic growth and petroleum demand and supply; and Scenario E which assumes a low level of economic growth and domestic demand and supply for petroleum. Two PIES-related outputs used in TERA's analysis are the ''COOKIE'' reports which present activity summaries by region and ''PERUSE'' printouts of solution files which give interregional flows by energy material. Only the transportation of four energy materials, crude oil, petroleum products, natural gas, and coal is considered. In estimating the capital costs of new or expanded capacity for the transportation of these materials, three transportation modes were examined: pipelines, water carriers (inland barge and deep draft vessels), and railroads. (MCW)« less

  18. Induction of laccases in Trametes versicolor by aqueous wood extracts.

    PubMed

    Bertrand, Brandt; Martínez-Morales, Fernando; Tinoco, Raunel; Rojas-Trejo, Sonia; Serrano-Carreón, Leobardo; Trejo-Hernández, María R

    2014-01-01

    The induction of laccase isoforms in Trametes versicolor HEMIM-9 by aqueous extracts (AE) from softwood and hardwood was studied. Samples of sawdust of Pinus sp., Cedrela sp., and Quercus sp. were boiled in water to obtain AE. Different volumes of each AE were added to fungal cultures to determine the amount of AE needed for the induction experiments. Laccase activity was assayed every 24 h for 15 days. The addition of each AE (50 to 150 μl) to the fungal cultures increased laccase production compared to the control (0.42 ± 0.01 U ml(-1)). The highest laccase activities detected were 1.92 ± 0.15 U ml(-1) (pine), 1.87 ± 0.26 U ml(-1) (cedar), and 1.56 ± 0.34 U ml(-1) (oak); laccase productivities were also significantly increased. Larger volumes of any AE inhibited mycelial growth. Electrophoretic analysis revealed two laccase bands (lcc1 and lcc2) for all the treatments. However, when lcc2 was analyzed by isoelectric focusing, inducer-dependent isoform patterns composed of three (pine AE), four (oak AE), and six laccase bands (cedar AE) were observed. Thus, AE from softwood and hardwood had induction effects in T. versicolor HEMIM-9, as indicated by the increase in laccase activity and different isoform patterns. All of the enzymatic extracts were able to decolorize the dye Orange II. Dye decolorization was mainly influenced by pH. The optimum pH for decolorization was pH 5 (85%), followed by pH 7 (50%) and pH 3 (15%). No significant differences in the dye decolorizing capacity were detected between the control and the differentially induced laccase extracts (oak, pine and cedar). This could be due to the catalytic activities of isoforms with pI 5.4 and 5.8, which were detected under all induction conditions.

  19. Integrated modeling of high βN steady state scenario on DIII-D

    DOE PAGES

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.; ...

    2018-01-10

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  20. Integrated modeling of high βN steady state scenario on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  1. Improvements on high-precision measurement of bromine isotope ratios by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Zhu, Zhi-Yong; Yang, Tao; Yang, Jing-Hong; Yan, Xiong; Wu, He-Pin; Yang, Tang-Li

    2015-10-01

    A new, feasible procedure for high-precision bromine isotope analysis using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is described. With a combination of HR mass resolution mode and accurate optimization of the Zoom Optics parameters (Focus Quad: -1.30; Zoom Quad: 0.00), the challenging problem of the isobaric interferences ((40)Ar(38)ArH(+) and (40)Ar(40)ArH(+)) in the measurement of bromine isotopes ((79)Br(+), (81)Br(+)) has been effectively solved. The external reproducibility of the measured (81)Br/(79)Br ratios in the selected standard reference materials ranged from ±0.03‰ to ±0.14‰, which is superior to or equivalent to the best results from previous contributions. The effect of counter cations on the Br(+) signal intensity and the instrumental-induced mass bias was evaluated as the loss of HBr aerosol in nebulizer and potential diffusive isotope fractionations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Induction and Processing of the Radiation-Induced Gamma-H2AX Signal and Its Link to the Underlying Pattern of DSB: A Combined Experimental and Modelling Study

    PubMed Central

    Tommasino, Francesco; Friedrich, Thomas; Jakob, Burkhard; Meyer, Barbara; Durante, Marco; Scholz, Michael

    2015-01-01

    We present here an analysis of DSB induction and processing after irradiation with X-rays in an extended dose range based on the use of the γH2AX assay. The study was performed by quantitative flow cytometry measurements, since the use of foci counting would result in reasonable accuracy only in a limited dose range of a few Gy. The experimental data are complemented by a theoretical analysis based on the GLOBLE model. In fact, original aim of the study was to test GLOBLE predictions against new experimental data, in order to contribute to the validation of the model. Specifically, the γH2AX signal kinetics has been investigated up to 24 h after exposure to increasing photon doses between 2 and 500 Gy. The prolonged persistence of the signal at high doses strongly suggests dose dependence in DSB processing after low LET irradiation. Importantly, in the framework of our modelling analysis, this is related to a gradually increased fraction of DSB clustering at the micrometre scale. The parallel study of γH2AX dose response curves shows the onset of a pronounced saturation in two cell lines at a dose of about 20 Gy. This dose is much lower than expected according to model predictions based on the values usually adopted for the DSB induction yield (≈ 30 DSB/Gy) and for the γH2AX foci extension of approximately 2 Mbp around the DSB. We show and discuss how theoretical predictions and experimental findings can be in principle reconciled by combining an increased DSB induction yield with the assumption of a larger genomic extension for the single phosphorylated regions. As an alternative approach, we also considered in our model the possibility of a 3D spreading-mechanism of the H2AX phosphorylation around the induced DSB, and applied it to the analysis of both the aspects considered. Our results are found to be supportive for the basic assumptions on which GLOBLE is built. Apart from giving new insights into the H2AX phosphorylation process, experiments performed

  3. Being While Doing: An Inductive Model of Mindfulness at Work

    PubMed Central

    Lyddy, Christopher J.; Good, Darren J.

    2017-01-01

    Mindfulness at work has drawn growing interest as empirical evidence increasingly supports its positive workplace impacts. Yet theory also suggests that mindfulness is a cognitive mode of “Being” that may be incompatible with the cognitive mode of “Doing” that undergirds workplace functioning. Therefore, mindfulness at work has been theorized as “being while doing,” but little is known regarding how people experience these two modes in combination, nor the influences or outcomes of this interaction. Drawing on a sample of 39 semi-structured interviews, this study explores how professionals experience being mindful at work. The relationship between Being and Doing modes demonstrated changing compatibility across individuals and experience, with two basic types of experiences and three types of transitions. We labeled experiences when informants were unable to activate Being mode while engaging Doing mode as Entanglement, and those when informants reported simultaneous co-activation of Being and Doing modes as Disentanglement. This combination was a valuable resource for offsetting important limitations of the typical reliance on the Doing cognitive mode. Overall our results have yielded an inductive model of mindfulness at work, with the core experience, outcomes, and antecedent factors unified into one system that may inform future research and practice. PMID:28270775

  4. Being While Doing: An Inductive Model of Mindfulness at Work.

    PubMed

    Lyddy, Christopher J; Good, Darren J

    2016-01-01

    Mindfulness at work has drawn growing interest as empirical evidence increasingly supports its positive workplace impacts. Yet theory also suggests that mindfulness is a cognitive mode of "Being" that may be incompatible with the cognitive mode of "Doing" that undergirds workplace functioning. Therefore, mindfulness at work has been theorized as "being while doing," but little is known regarding how people experience these two modes in combination, nor the influences or outcomes of this interaction. Drawing on a sample of 39 semi-structured interviews, this study explores how professionals experience being mindful at work. The relationship between Being and Doing modes demonstrated changing compatibility across individuals and experience, with two basic types of experiences and three types of transitions. We labeled experiences when informants were unable to activate Being mode while engaging Doing mode as Entanglement, and those when informants reported simultaneous co-activation of Being and Doing modes as Disentanglement. This combination was a valuable resource for offsetting important limitations of the typical reliance on the Doing cognitive mode. Overall our results have yielded an inductive model of mindfulness at work, with the core experience, outcomes, and antecedent factors unified into one system that may inform future research and practice.

  5. Light Regulation of the Arabidopsis Respiratory Chain. Multiple Discrete Photoreceptor Responses Contribute to Induction of Type II NAD(P)H Dehydrogenase Genes1

    PubMed Central

    Escobar, Matthew A.; Franklin, Keara A.; Svensson, Å. Staffan; Salter, Michael G.; Whitelam, Garry C.; Rasmusson, Allan G.

    2004-01-01

    Controlled oxidation reactions catalyzed by the large, proton-pumping complexes of the respiratory chain generate an electrochemical gradient across the mitochondrial inner membrane that is harnessed for ATP production. However, several alternative respiratory pathways in plants allow the maintenance of substrate oxidation while minimizing the production of ATP. We have investigated the role of light in the regulation of these energy-dissipating pathways by transcriptional profiling of the alternative oxidase, uncoupling protein, and type II NAD(P)H dehydrogenase gene families in etiolated Arabidopsis seedlings. Expression of the nda1 and ndc1 NAD(P)H dehydrogenase genes was rapidly up-regulated by a broad range of light intensities and qualities. For both genes, light induction appears to be a direct transcriptional effect that is independent of carbon status. Mutant analyses demonstrated the involvement of two separate photoreceptor families in nda1 and ndc1 light regulation: the phytochromes (phyA and phyB) and an undetermined blue light photoreceptor. In the case of the nda1 gene, the different photoreceptor systems generate distinct kinetic induction profiles that are integrated in white light response. Primary transcriptional control of light response was localized to a 99-bp region of the nda1 promoter, which contains an I-box flanked by two GT-1 elements, an arrangement prevalent in the promoters of photosynthesis-associated genes. Light induction was specific to nda1 and ndc1. The only other substantial light effect observed was a decrease in aox2 expression. Overall, these results suggest that light directly influences the respiratory electron transport chain via photoreceptor-mediated transcriptional control, likely for supporting photosynthetic metabolism. PMID:15333756

  6. Outcome of misoprostol and oxytocin in induction of labour

    PubMed Central

    Acharya, Trishna; Devkota, Ramesh; Bhattarai, Bimbishar; Acharya, Radha

    2017-01-01

    Background: Induction of labour is the process of initiating the labour by artificial means from 24 weeks of gestation. The main aim of this study is to find out the maternal and foetal outcomes after induction of labour with misoprostol and oxytocin beyond 37 weeks of gestation. Methods: This was a hospital-based observational study carried out at Paropakar Maternity and Women’s Hospital, Nepal. Misoprostol of 25 µg was inserted in posterior fornix of vagina or oxytocin infusion was started from 2.5 units on whom induction was decided. Maternal and foetal/neonatal outcomes were observed. Collected data were analysed using SPSS and MS Excel. Results: General induction rate was found to be 7.2%. In this study, post-term pregnancy was found to be the most common reason for induction of labour. Analysis of onset of labour led to the finding that mean onset of labour was much rapid in oxytocin (6.6 h) than misoprostol (13.6 h). However, there is similarity in induction–delivery interval in both groups. Overall, the rate of normal delivery and caesarean section was found to be 64.9% and 33.2%, respectively. Similarly, normal delivery within 12 h was seen in 18.4% of the patients given with misoprostol and 43.5% in oxytocin group. Foetal distress was found as the most common reason for caesarean section. The overall occurrence of maternal complication was found to be similar in misoprostol and oxytocin groups, nausea/vomiting being the most common (36.7%) complication followed by fever (24.1%). Besides this, the most common neonatal complication found in overall cases was meconium stained liquor (49.2%). Conclusion: It was found that misoprostol was used most frequently for induction of labour compared to oxytocin. The onset of labour was found to be rapid in oxytocin than misoprostol. However, the occurrence of side effects was found to be similar in both misoprostol and oxytocin groups. PMID:28540049

  7. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    NASA Astrophysics Data System (ADS)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  8. Change Ahead: Transient Scenarios for Long-term Water Management

    NASA Astrophysics Data System (ADS)

    Haasnoot, Marjolijn; Beersma, Jules; Schellekens, Jaap

    2013-04-01

    While the use of an ensemble of transient scenarios is common in climate change studies, they are rarely used in water management studies. Present planning studies on long-term water management often use a few plausible futures for one or two projection years, ignoring the dynamic aspect of adaptation through the interaction between the water system and society. Over the course of time society experiences, learns and adapts to changes and events, making policy responses part of a plausible future, and thus the success of a water management strategy. Exploring transient scenarios and policy options over time can support decision making on water management strategies in an uncertain and changing environment. We have developed and applied such a method, called exploring adaptation pathways (Haasnoot et al., 2012; Haasnoot et al., 2011). This method uses multiple realisations of transient scenarios to assess the efficacy of policy actions over time. In case specified objectives are not achieved anymore, an adaptation tipping point (Kwadijk et al., 2010) is reached. After reaching a tipping point, additional actions are needed to reach the objectives. As a result, a pathway emerges. In this presentation we describe the development of transient scenarios for long term water management, and how these scenarios can be used for long term water management under uncertainty. We illustrate this with thought experiments, and results from computational modeling experiment for exploring adaptation pathways in the lower Rhine delta. The results and the thought experiments show, among others, that climate variability is at least just as important as climate change for taking decisions in water management. References Haasnoot, M., Middelkoop, H., Offermans, A., Beek, E., Deursen, W.A.v. (2012) Exploring pathways for sustainable water management in river deltas in a changing environment. Climatic Change 115, 795-819. Haasnoot, M., Middelkoop, H., van Beek, E., van Deursen, W

  9. Dynamic mode decomposition for plasma diagnostics and validation.

    PubMed

    Taylor, Roy; Kutz, J Nathan; Morgan, Kyle; Nelson, Brian A

    2018-05-01

    We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system with high fidelity. This allows for a reduction in the computational cost and, at the same time, accurate approximations of the problem, even if the data are sparsely sampled. We demonstrate the use of the method on both numerical and experimental data, showing that it is a successful mathematical architecture for characterizing the helicity injected torus with steady inductive (HIT-SI) magnetohydrodynamics. Importantly, the DMD produces interpretable, dominant mode structures, including a stationary mode consistent with our understanding of a HIT-SI spheromak accompanied by a pair of injector-driven modes. In combination, the 3-mode DMD model produces excellent dynamic reconstructions across the domain of analyzed data.

  10. Dynamic mode decomposition for plasma diagnostics and validation

    NASA Astrophysics Data System (ADS)

    Taylor, Roy; Kutz, J. Nathan; Morgan, Kyle; Nelson, Brian A.

    2018-05-01

    We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system with high fidelity. This allows for a reduction in the computational cost and, at the same time, accurate approximations of the problem, even if the data are sparsely sampled. We demonstrate the use of the method on both numerical and experimental data, showing that it is a successful mathematical architecture for characterizing the helicity injected torus with steady inductive (HIT-SI) magnetohydrodynamics. Importantly, the DMD produces interpretable, dominant mode structures, including a stationary mode consistent with our understanding of a HIT-SI spheromak accompanied by a pair of injector-driven modes. In combination, the 3-mode DMD model produces excellent dynamic reconstructions across the domain of analyzed data.

  11. TRIDEC Cloud - a Web-based Platform for Tsunami Early Warning tested with NEAMWave14 Scenarios

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven; Necmioglu, Ocal; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Carrilho, Fernando; Wächter, Joachim

    2015-04-01

    In times of cloud computing and ubiquitous computing the use of concepts and paradigms introduced by information and communications technology (ICT) have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in research projects new technologies are exploited to implement a cloud-based and web-based platform - the TRIDEC Cloud - to open up new prospects for EWS. The platform in its current version addresses tsunami early warning and mitigation. It merges several complementary external and in-house cloud-based services for instant tsunami propagation calculations and automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The TRIDEC Cloud can be accessed in two different modes, the monitoring mode and the exercise-and-training mode. The monitoring mode provides important functionality required to act in a real event. So far, the monitoring mode integrates historic and real-time sea level data and latest earthquake information. The integration of sources is supported by a simple and secure interface. The exercise and training mode enables training and exercises with virtual scenarios. This mode disconnects real world systems and connects with a virtual environment that receives virtual earthquake information and virtual sea level data re-played by a scenario player. Thus operators and other stakeholders are able to train skills and prepare for real events and large exercises. The GFZ German Research Centre for Geosciences (GFZ), the Kandilli Observatory and Earthquake Research Institute (KOERI), and the Portuguese Institute for the Sea and Atmosphere (IPMA) have used the opportunity provided by NEAMWave14 to test the TRIDEC Cloud as a collaborative activity based on previous partnership and commitments at

  12. Dark scenarios

    NASA Astrophysics Data System (ADS)

    Ahonen, Pasi; Alahuhta, Petteri; Daskala, Barbara; Delaitre, Sabine; Hert, Paul De; Lindner, Ralf; Maghiros, Ioannis; Moscibroda, Anna; Schreurs, Wim; Verlinden, Michiel

    In this chapter, we present four "dark scenarios" that highlight the key socio-economic, legal, technological and ethical risks to privacy, identity, trust, security and inclusiveness posed by new AmI technologies. We call them dark scenarios, because they show things that could go wrong in an AmI world, because they present visions of the future that we do not want to become reality. The scenarios expose threats and vulnerabilities as a way to inform policy-makers and planners about issues they need to take into account in developing new policies or updating existing legislation. Before presenting the four scenarios and our analysis of each, we describe the process of how we created the scenarios as well as the elements in our methodology for analysing the scenarios.

  13. Impact of energetic-particle-driven geodesic acoustic modes on turbulence.

    PubMed

    Zarzoso, D; Sarazin, Y; Garbet, X; Dumont, R; Strugarek, A; Abiteboul, J; Cartier-Michaud, T; Dif-Pradalier, G; Ghendrih, Ph; Grandgirard, V; Latu, G; Passeron, C; Thomine, O

    2013-03-22

    The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs, with the subsequent destruction of the transport barrier. This scenario could be particularly critical in those plasmas, such as burning plasmas, exhibiting a rich population of suprathermal particles capable of exciting energetic modes.

  14. Cracking induction in health libraries: is there a right way?

    PubMed

    Forgham-Healey, Nicola

    2017-06-01

    In most instances, inductions are the first time that users will be introduced to health library services. The time available in which to deliver library orientation sessions within a broader, Trust induction programme is often limited, and this can present challenges for health librarians. Inductions are a great marketing tool, and it is important that induction sessions make the right impact. Within a brief window of opportunity, the health librarian must impart key information to the inductees whilst ensuring the session is relevant and memorable. In this article, guest writer Nicola Healey, Library Manager of North Somerset Healthcare Library, discusses the range of approaches she and her colleagues have explored in delivering library inductions, explaining what worked, what did not and what areas still remain for development. H. S. © 2017 Health Libraries Group.

  15. Effect of different methods of pulse width modulation on power losses in an induction motor

    NASA Astrophysics Data System (ADS)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  16. Obstetric outcomes of pre-induction of labor with a 200 μg misoprostol vaginal insert.

    PubMed

    Jagielska, Iwona; Kazdepka-Ziemińska, Anita; Tyloch, Małgorzata; Sopońska-Brzoszczyk, Paulina; Nowak, Karina; Dziedzic, Dawid; Dzikowska, Ewa; Grabiec, Marek

    2017-01-01

    Labor induction is indicated in 20% to 40% of pregnancies. Over half of pregnancies qualified for the induction of labor require stimulation of the cervix to ripen. The drug used increasingly more often in pre-induction is the PGE-1 pros-taglandin analog - misoprostol 200 μg. The study includes a total of 100 patients qualified for labor pre-induction with Misodel® (miso-prostol 200 μg vaginal insert). The study group comprises two subgroups: primigravidas and multiparas. Assessments included: indications for labor pre-induction, time from Misodel application to delivery, caesarean section rate and indica-tions, duration of first and second stage of labor, rate of vaginal deliveries, need for oxytocin or fenoterol administration side effects and newborn condition. The most common indication for labor induction was gestational diabetes and pregnancy past term. The average time to vaginal delivery was 14 h 45 min, time to the onset of active phase of labor - 11 h 45 min, time to membranes' rupture - 15 h, time to vaginal delivery - 14 h 18 min. The times of multiparas were significantly shorter. The rate of vaginal deliveries within 12 hours amounted to 42.42%, while within 24 hours it reached 83.33%. The overall caesarean section rate was 33%. The most common indication for caesarean section was the risk of intrauterine hypoxia. Tachysystole and hyperstimulation was observed in 4% of cases, while abnormalities in the cardiotocographic tracing in 43%. Misodel is an effective method for labor pre-induction, without affecting the caesarean section rate and has no adverse effect on the newborn condition.

  17. On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels.

    PubMed

    Li, Yanbo; Ren, Yukun; Liu, Weiyu; Chen, Xiaoming; Tao, Ye; Jiang, Hongyuan

    2017-04-01

    In this study, we develop a nondimensional physical model to demonstrate fluid flow at the micrometer dimension driven by traveling-wave induction electrohydrodynamics (EHD) through direct numerical simulation. In order to realize an enhancement in the pump flow rate as well as a flexible adjustment of anisotropy of flow behavior generated by induction EHD in microchannels, while not adding the risk of causing dielectric breakdown of working solution and material for insulation, a pair of synchronized traveling-wave voltage signals are imposed on double-sided electrode arrays that are mounted on the top and bottom insulating substrate, respectively. Accordingly, we present a model evidence, that not only the pump performance is improved evidently, but a variety of flow profiles, including the symmetrical and parabolic curve, plug-like shape and even biased flow behavior of quite high anisotropy are produced by the device design of "mix-type", "superimposition-type" and "adjustable-type" proposed herein as well, with the resulting controllable fluid motion being able to greatly facilitate an on-demand transportation mode of on-chip bio-microfluidic samples. Besides, automatic conversion in the direction of pump flow is achievable by switching on and off a second voltage wave. Our results provide utilitarian guidelines for constructing flexible electrokinetic framework useful in controllable transportation of particle and fluid samples in modern microfluidic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X. Z.; Qian, J.; Chen, J.; Li, G.; Li, K.; Li, M. H.; Zhai, X.; Bonoli, P.; Brower, D.; Cao, L.; Cui, L.; Ding, S.; Ding, W. X.; Guo, W.; Holcomb, C.; Huang, J.; Hyatt, A.; Lanctot, M.; Lao, L. L.; Liu, H.; Lyu, B.; McClenaghan, J.; Peysson, Y.; Ren, Q.; Shiraiwa, S.; Solomon, W.; Zang, Q.; Wan, B.

    2017-07-01

    Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2 ~ 1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drive (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.

  19. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

    DOE PAGES

    Garofalo, Andrea M.; Gong, X. Z.; Qian, J.; ...

    2017-06-07

    Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2~1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drivemore » (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.« less

  20. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  1. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    DOE PAGES

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; ...

    2016-09-26

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less

  2. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    PubMed

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  3. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less

  4. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  5. Detailed study of spontaneous rotation generation in diverted H-mode plasma using the full-f gyrokinetic code XGC1

    NASA Astrophysics Data System (ADS)

    Seo, Janghoon; Chang, C. S.; Ku, S.; Kwon, J. M.; Yoon, E. S.

    2013-10-01

    The Full-f gyrokinetic code XGC1 is used to study the details of toroidal momentum generation in H-mode plasma. Diverted DIII-D geometry is used, with Monte Carlo neutral particles that are recycled at the limiter wall. Nonlinear Coulomb collisions conserve particle, momentum, and energy. Gyrokinetic ions and adiabatic electrons are used in the present simulation to include the effects from ion gyrokinetic turbulence and neoclassical physics, under self-consistent radial electric field generation. Ion orbit loss physics is automatically included. Simulations show a strong co-Ip flow in the H-mode layer at outside midplane, similarly to the experimental observation from DIII-D and ASDEX-U. The co-Ip flow in the edge propagates inward into core. It is found that the strong co-Ip flow generation is mostly from neoclassical physics. On the other hand, the inward momentum transport is from turbulence physics, consistently with the theory of residual stress from symmetry breaking. Therefore, interaction between the neoclassical and turbulence physics is a key factor in the spontaneous momentum generation.

  6. Foraging mode of the grey reef shark, Carcharhinus amblyrhynchos, under two different scenarios

    NASA Astrophysics Data System (ADS)

    Robbins, W. D.; Renaud, P.

    2016-03-01

    Knowledge of an animal's predatory interactions provides insight into its ecological role. Until now, investigation of reef shark predation has relied on artificial stimuli to facilitate feeding events, with few sightings of natural predation events. Here we document two different foraging modes of the grey reef shark, Carcharhinus amblyrhynchos (f. Carcharhinidae), recorded without the influence of baits or burley. The first mode saw an aggregation of sharks targeting a morning mass spawning event of marbled grouper (f. Serranidae). We observed 120 separate grouper spawns over a 104-min period. Detailed analysis of 52 spawns showed an average of five groupers and 2.7 sharks involved in each spawn, with sharks usually on site within 1.29 s of spawn initiation. The success rate of investigating sharks was relatively low (8.1 %), and conspecific competition, rather than cooperative behaviour, was repeatedly observed among sharks. The second foraging mode documented was the nocturnal predation of individual fishes in the same reef pass 2 weeks later. Here, 128 separate fish pursuits were observed, with fusiliers (f. Caesionidae) comprising 88 % of targeted individuals. Multiple sharks usually investigated each fish, with over 300 interaction events recorded. Over 100 bite attempts were observed, and again the rate of predation was low, with fish taken in only 5.3 % of investigations (16 % of attempted bites). Our findings show that grey reef sharks naturally prey on species across a range of trophic levels, employing foraging techniques optimised for prey species and circumstance. Although a high-order mesopredator, the low rates of predation success observed suggest that grey reef sharks may have limited direct impact on lower-trophic-order species; however, this remains to be verified.

  7. High-voltage, low-inductance gas switch

    DOEpatents

    Gruner, Frederick R.; Stygar, William A.

    2016-03-22

    A low-inductance, air-insulated gas switch uses a de-enhanced annular trigger ring disposed between two opposing high voltage electrodes. The switch is DC chargeable to 200 kilovolts or more, triggerable, has low jitter (5 ns or less), has pre-fire and no-fire rates of no more than one in 10,000 shots, and has a lifetime of greater than 100,000 shots. Importantly, the switch also has a low inductance (less than 60 nH) and the ability to conduct currents with less than 100 ns rise times. The switch can be used with linear transformer drives or other pulsed-power systems.

  8. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition.

    PubMed

    Tamayo, Joel V; Teramoto, Takamasa; Chatterjee, Seema; Hall, Traci M Tanaka; Gavis, Elizabeth R

    2017-04-04

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo's RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo's functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. The Drosophila hnRNP F/H homolog glorund uses two distinct RNA-binding modes to diversify target recognition

    DOE PAGES

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema; ...

    2017-04-04

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subsetmore » of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Lastly, our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.« less

  10. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subsetmore » of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.« less

  11. The Drosophila hnRNP F/H homolog glorund uses two distinct RNA-binding modes to diversify target recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subsetmore » of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Lastly, our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.« less

  12. Scenario planning.

    PubMed

    Enzmann, Dieter R; Beauchamp, Norman J; Norbash, Alexander

    2011-03-01

    In facing future developments in health care, scenario planning offers a complementary approach to traditional strategic planning. Whereas traditional strategic planning typically consists of predicting the future at a single point on a chosen time horizon and mapping the preferred plans to address such a future, scenario planning creates stories about multiple likely potential futures on a given time horizon and maps the preferred plans to address the multiple described potential futures. Each scenario is purposefully different and specifically not a consensus worst-case, average, or best-case forecast; nor is scenario planning a process in probabilistic prediction. Scenario planning focuses on high-impact, uncertain driving forces that in the authors' example affect the field of radiology. Uncertainty is the key concept as these forces are mapped onto axes of uncertainty, the poles of which have opposed effects on radiology. One chosen axis was "market focus," with poles of centralized health care (government control) vs a decentralized private market. Another axis was "radiology's business model," with one pole being a unified, single specialty vs a splintered, disaggregated subspecialty. The third axis was "technology and science," with one pole representing technology enabling to radiology vs technology threatening to radiology. Selected poles of these axes were then combined to create 3 scenarios. One scenario, termed "entrepreneurialism," consisted of a decentralized private market, a disaggregated business model, and threatening technology and science. A second scenario, termed "socialized medicine," had a centralized market focus, a unified specialty business model, and enabling technology and science. A third scenario, termed "freefall," had a centralized market focus, a disaggregated business model, and threatening technology and science. These scenarios provide a range of futures that ultimately allow the identification of defined "signposts" that can

  13. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.

    PubMed

    Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris

    2011-12-08

    The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.

  14. Scenario management and automated scenario generation

    NASA Astrophysics Data System (ADS)

    McKeever, William; Gilmour, Duane; Lehman, Lynn; Stirtzinger, Anthony; Krause, Lee

    2006-05-01

    The military planning process utilizes simulation to determine the appropriate course of action (COA) that will achieve a campaign end state. However, due to the difficulty in developing and generating simulation level COAs, only a few COAs are simulated. This may have been appropriate for traditional conflicts but the evolution of warfare from attrition based to effects based strategies, as well as the complexities of 4 th generation warfare and asymmetric adversaries have placed additional demands on military planners and simulation. To keep pace with this dynamic, changing environment, planners must be able to perform continuous, multiple, "what-if" COA analysis. Scenario management and generation are critical elements to achieving this goal. An effects based scenario generation research project demonstrated the feasibility of automated scenario generation techniques which support multiple stove-pipe and emerging broad scope simulations. This paper will discuss a case study in which the scenario generation capability was employed to support COA simulations to identify plan effectiveness. The study demonstrated the effectiveness of using multiple simulation runs to evaluate the effectiveness of alternate COAs in achieving the overall campaign (metrics-based) objectives. The paper will discuss how scenario generation technology can be employed to allow military commanders and mission planning staff to understand the impact of command decisions on the battlespace of tomorrow.

  15. Starting time for induction of labor and the risk for night-time delivery.

    PubMed

    Thorsell, M; Lyrenäs, S; Andolf, E; Kaijser, M

    2011-08-01

    To analyze if starting time for labor induction affected the risk of night-time delivery, and to evaluate to what extent the risk was influenced by Bishop score at start of induction, mode of induction, and parity. A retrospective cohort study of women who delivered at Danderyd Hospital, Stockholm, Sweden, 2002-2006, comprising 1940 women induced by Dinoprostone (PGE(2)) or transcervical balloon catheter (BARD). Risks for night-time delivery were calculated as absolute risk and Odds Ratios by unconditional logistic regression using induction of labor in the morning as reference. For nulliparae with Bishop score 0-3 induced by BARD, odds ratios for night-time delivery were 0.42 (95% C.I. 0.19-0.93) and 0.09 (95% C.I. 0.02-0.47) when inductions started in the afternoon and evening, respectively, compared to inductions starting in the morning For multiparae, however, the risk of night-time delivery was highest if induction started in the evening. Compared to inductions started in the morning, odds ratios for night-time delivery were 3.53 (95% C.I. 2.57-4.83) and 8.49 (95% C.I. 4.45-16.19) for induction starting in the afternoon and evening, respectively. Starting time of labor induction affects the risk of giving birth at night. For nulliparae induced by BARD, starting the induction in the evening instead of during the day may reduce the number of night-time deliveries substantially. For multiparae, however, our data suggest that induction of labor should take place in the morning. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.

  17. f-Mode Secular Instabilities in Deleptonizing Fizzlers

    NASA Astrophysics Data System (ADS)

    Imamura, James N.; Durisen, Richard H.

    2004-12-01

    Fizzlers are intermediate states that may form between white dwarf and neutron star densities during the collapse of massive rotating stars. This paper studies the gravitational radiation reaction (GRR) driven f-mode secular instabilities of fizzlers with angular momentum distributions h(mc) appropriate to the core collapse of massive rotating stars, where h is the specific angular momentum and mc is the cylindrical mass fraction. For core collapses that maintain axial symmetry, the h(mc) of the remnant reflects the conditions in the precollapse stellar core, and, thus, the h(mc) will resemble that of a uniformly rotating star supported by the pressure of relativistically degenerate electrons. Such an h(mc) concentrates most angular momentum toward the equatorial region of the object. The onset of f-mode secular instabilities in such fizzlers is affected strongly by the h(mc), whereas instability depends only weakly on compressibility. For a broad range of fizzler equations of state and the core h(mc), the f-mode secular instability thresholds drop to T/W~0.034-0.042, 0.019-0.021, and 0.012-0.0135, for m=2, 3, and 4, respectively. These same thresholds with the Maclaurin spheroid h(mc) are T/W=0.13-0.15, 0.10-0.11, and 0.08-0.09, respectively. The growth times τgw for GRR-driven m=2 modes are long. For fizzlers with specific angular momentum J/M~1.5×1016 cm2 s-1 and T/W<~0.24 (ρc<~1014 g cm-3), τgw>400 s. For these fizzlers, τgw>>τde, the deleptonization timescale, and GRR-driven secular instabilities will not grow along a deleptonizing fizzler sequence except, possibly, at T/W near the dynamic bar mode instability threshold, T/W~0.27.

  18. Methanol induction optimization for scFv antibody fragment production in Pichia pastoris.

    PubMed

    Cunha, A E; Clemente, J J; Gomes, R; Pinto, F; Thomaz, M; Miranda, S; Pinto, R; Moosmayer, D; Donner, P; Carrondo, M J T

    2004-05-20

    Fibronectin splice variant ED B (extracellular domain B) is a promising marker for angiogenesis in growing solid tumors. Currently, recombinant antibodies against ED B are being investigated concerning their potential use, for either therapeutic or diagnostic purposes. Single-chain antibody fragments directed against the ED B can be efficiently expressed in Pichia pastoris; thus, a recombinant strain of the methylotropic yeast P. pastoris was used for this work. Three different forms of scFv antibody fragment are found in the supernatant from this fermentation: covalent homodimer, associative homodimer, and monomer. Both homodimeric forms can be converted to the monomeric form (under reducing conditions) and be efficiently radiolabeled, whereas the monomeric form of scFv already present in the supernatant cannot. It was also found that the fraction of protein in the monomeric form is highly dependent on the mode of induction rather than scFv concentration. This suggests that the monomeric form of the scFv present in the supernatant might be a result of events occurring at the expression, secretion, or folding level. A high cell density fermentation protocol was developed by optimizing methanol induction, yielding the highest scFv antibody fragment production rate and product quality; cell concentration at the induction point and specific methanol uptake rate were found to be the most important control variables. A decrease in specific methanol uptake rate led to a higher specific production rate for the scFv antibody fragment (5.4 microg g(cell) h(-1)). Product quality, i.e., percentage of product in a homodimeric form, also increased with the decrease in methanol uptake rate. Furthermore, the volumetric productivity depended on cell concentration at the induction point, increasing with the increase of cell concentration up to 320 g L(-1) wet cell weight (WCW). The reduction of the methanol feeding rate for induction, and consequently of the oxygen uptake rate

  19. Developing a database for pedestrians' earthquake emergency evacuation in indoor scenarios.

    PubMed

    Zhou, Junxue; Li, Sha; Nie, Gaozhong; Fan, Xiwei; Tan, Jinxian; Li, Huayue; Pang, Xiaoke

    2018-01-01

    With the booming development of evacuation simulation software, developing an extensive database in indoor scenarios for evacuation models is imperative. In this paper, we conduct a qualitative and quantitative analysis of the collected videotapes and aim to provide a complete and unitary database of pedestrians' earthquake emergency response behaviors in indoor scenarios, including human-environment interactions. Using the qualitative analysis method, we extract keyword groups and keywords that code the response modes of pedestrians and construct a general decision flowchart using chronological organization. Using the quantitative analysis method, we analyze data on the delay time, evacuation speed, evacuation route and emergency exit choices. Furthermore, we study the effect of classroom layout on emergency evacuation. The database for indoor scenarios provides reliable input parameters and allows the construction of real and effective constraints for use in software and mathematical models. The database can also be used to validate the accuracy of evacuation models.

  20. Investigation on the mode of AC discharge in H2O affected by temperature

    NASA Astrophysics Data System (ADS)

    Siyuan, DONG; Shaomeng, GUO; Dan, WEN; Xiaoliang, TANG; Gao, QIU

    2018-04-01

    In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.

  1. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    PubMed Central

    Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula

    2010-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431

  2. Magneto-inductive skin sensor for robot collision avoidance: A new development

    NASA Technical Reports Server (NTRS)

    Chauhan, D. S.; Dehoff, Paul H.

    1989-01-01

    Safety is a primary concern for robots operating in space. The tri-mode sensor addresses that concern by employing a collision avoidance/management skin around the robot arms. This rf-based skin sensor is at present a dual mode (proximity and tactile). The third mode, pyroelectric, will complement the other two. The proximity mode permits the robot to sense an intruding object, to range the object, and to detect the edges of the object. The tactile mode permits the robot to sense when it has contacted an object, where on the arm it has made contact, and provides a three-dimensional image of the shape of the contact impression. The pyroelectric mode will be added to permit the robot arm to detect the proximity of a hot object and to add sensing redundancy to the two other modes. The rf-modes of the sensing skin are presented. These modes employ a highly efficient magnetic material (amorphous metal) in a sensing technique. This results in a flexible sensor array which uses a primarily inductive configuration to permit both capacitive and magnetoinductive sensing of object; thus optimizing performance in both proximity and tactile modes with the same sensing skin. The fundamental operating principles, design particulars, and theoretical models are provided to aid in the description and understanding of this sensor. Test results are also given.

  3. Induction of labor in women with a history of fast labor.

    PubMed

    Kenny, Tiffany H; Fenton, Bradford W; Melrose, Erica L; McCarroll, Michele L; von Gruenigen, Vivian E

    2016-01-01

    History of fast labor is currently subjectively defined and inductions for non-medical indications are becoming restricted. We hypothesized that women induced for a history of fast labor do not have faster previous labors and do not deliver more quickly. A retrospective case-control cohort design studied multiparas undergoing elective induction at one high risk center. Outcomes of dyads electively induced for a history of previous fast labor indication (PFast) were compared to controls with a psychosocial indication. A total of 612 elective inductions with 1074 previous deliveries were evaluated: 81 (13%) PFast and 531 (87%) control. PFast had faster previous labors (median 5.5 h, IQR: 4.5-6) versus. control (10 h, IQR: 9-10.5; p < 0.001). Subsequent delivery time from start to expulsion was shorter for PFast (median 7 h, IQR: 5-9, p < 0.001) than controls with and without a previous labor <5.5 h (8.6 h, IQR: 6-14 and 9.5 h, IQR: 7-15, respectively). PFast were less likely to have a serious maternal complication. Neonatal complications were similar. Patients induced for a history of fast labor do have faster previous labors, suggesting a significant history of fast labor can be defined as <5.5 h. These women deliver more quickly and with lower morbidity than controls when subsequently induced, therefore the benefit may warrant the risk for a select number of women with a history of a prior labor length <5.5 h.

  4. Multimodal charge-induction chromatography for antibody purification.

    PubMed

    Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing

    2016-01-15

    Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Inductive reasoning.

    PubMed

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  6. Electron cyclotron power management for control of neoclassical tearing modes in the ITER baseline scenario

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Fredrickson, E. D.; Henderson, M. A.; Kim, S.-H.; Bertelli, N.; Poli, E.; Farina, D.; Figini, L.

    2018-01-01

    Time-dependent simulations are used to evolve plasma discharges in combination with a modified Rutherford equation for calculation of neoclassical tearing mode (NTM) stability in response to electron cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. Simulations indicate that it is critical to detect the island as soon as possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2, 1) . A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2, 1)- NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the upper launcher during the entire flattop phase. Assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10 .

  7. Electron Cyclotron power management for control of Neoclassical Tearing Modes in the ITER baseline scenario

    DOE PAGES

    Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.; ...

    2017-09-21

    Time-dependent simulations are used to evolve plasma discharges in combination with a Modified Rutherford equation (MRE) for calculation of Neoclassical Tearing Mode (NTM) stability in response to Electron Cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. These simulations indicate that it is critical to detect the island as soon asmore » possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2,1). A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2,1)-NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the Upper Launcher during the entire flattop phase. By assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10.« less

  8. Electron Cyclotron power management for control of Neoclassical Tearing Modes in the ITER baseline scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.

    Time-dependent simulations are used to evolve plasma discharges in combination with a Modified Rutherford equation (MRE) for calculation of Neoclassical Tearing Mode (NTM) stability in response to Electron Cyclotron (EC) feedback control in ITER. The main application of this integrated approach is to support the development of control algorithms by analyzing the plasma response with physics-based models and to assess how uncertainties in the detection of the magnetic island and in the EC alignment affect the ability of the ITER EC system to fulfill its purpose. These simulations indicate that it is critical to detect the island as soon asmore » possible, before its size exceeds the EC deposition width, and that maintaining alignment with the rational surface within half of the EC deposition width is needed for stabilization and suppression of the modes, especially in the case of modes with helicity (2,1). A broadening of the deposition profile, for example due to wave scattering by turbulence fluctuations or not well aligned beams, could even be favorable in the case of the (2,1)-NTM, by relaxing an over-focussing of the EC beam and improving the stabilization at the mode onset. Pre-emptive control reduces the power needed for suppression and stabilization in the ITER baseline discharge to a maximum of 5 MW, which should be reserved and available to the Upper Launcher during the entire flattop phase. By assuming continuous triggering of NTMs, with pre-emptive control ITER would be still able to demonstrate a fusion gain of Q=10.« less

  9. Open Scenario Study: IDA Open Scenario Repository User’s Manual

    DTIC Science & Technology

    2010-01-01

    Thomason, Study Co-Lead Zachary S. Rabold, Sub-Task Lead Ylli Bajraktari Rachel D. Dubin Mary Catherine Flythe Open Scenario Study: IDA Open Scenario... Bajraktari Rachel D. Dubin Mary Catherine Flythe Open Scenario Study: IDA Open Scenario Repository User’s Manual iii Preface This document reports the...vii Appendices A. Identifying Scenario Components...........................................................A-1 B . Acronyms

  10. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    PubMed Central

    Kenmoku, Hiroyuki

    2017-01-01

    ABSTRACT Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. PMID:28250052

  11. Simulations of particle and heat fluxes in an ELMy H-mode discharge on EAST using BOUT++ code

    NASA Astrophysics Data System (ADS)

    Wu, Y. B.; Xia, T. Y.; Zhong, F. C.; Zheng, Z.; Liu, J. B.; team3, EAST

    2018-05-01

    In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts on the Experimental Advanced Superconducting Tokamak (EAST), the BOUT++ six-field two-fluid model is used to simulate the pedestal collapse. The profiles from the EAST H-mode discharge #56129 are used as the initial conditions. Linear analysis shows that the resistive ballooning mode and drift-Alfven wave are two dominant instabilities for the equilibrium, and play important roles in driving ELMs. The evolution of the density profile and the growing process of the heat flux at divertor targets during the burst of ELMs are reproduced. The time evolution of the poloidal structures of T e is well simulated, and the dominant mode in each stage of the ELM crash process is found. The studies show that during the nonlinear phase, the dominant mode is 5, and it changes to 0 when the nonlinear phase goes to saturation after the ELM crash. The time evolution of the radial electron heat flux, ion heat flux, and particle density flux at the outer midplane (OMP) are obtained, and the corresponding transport coefficients D r, χ ir, and χ er reach maximum around 0.3 ∼ 0.5 m2 s‑1 at ΨN = 0.9. The heat fluxes at outer target plates are several times larger than that at inner target plates, which is consistent with the experimental observations. The simulated profiles of ion saturation current density (j s) at the lower outboard (LO) divertor target are compared to those of experiments by Langmuir probes. The profiles near the strike point are similar, and the peak values of j s from simulation are very close to the measurements.

  12. Successful pregnancy following low-dose hCG administration in addition to hMG in a patient with hypothalamic amenorrhea due to weight loss.

    PubMed

    Tsutsumi, Ryo; Fujimoto, Akihisa; Osuga, Yutaka; Harada, Miyuki; Takemura, Yuri; Koizumi, Minako; Yano, Tetsu; Taketani, Yuji

    2012-06-01

    We describe successful ovulation induction with low-dose hCG administration in addition to hMG in a patient with refractory hypothalamic amenorrhea. A 24-year-old woman with weight loss-related amenorrhea underwent ovulation induction and intracytoplasmic sperm injection (ICSI). Administration of exogenous gonadotropins was ineffective in ovulation induction. Supplementation with low-dose hCG in order to increase luteinizing hormone (LH) activity in the late follicular phase produced late folliculogenesis and steroidogenesis, and ovulation was then successfully induced. This report reacknowledges the critical role that LH plays cooperatively with follicle-stimulating hormone in both folliculogenesis and steroidogenesis.

  13. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.

    PubMed

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-28

    The prototypical multi-channel reaction H + H 2 S → H 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  14. Induction of the nuclear factor HIF-1{alpha} in acetaminophen toxicity: Evidence for oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Laura P.; Donahower, Brian; Burke, Angela S.

    2006-04-28

    Hypoxia inducible factor (HIF) controls the transcription of genes involved in angiogenesis, erythropoiesis, glycolysis, and cell survival. HIF-1{alpha} levels are a critical determinant of HIF activity. The induction of HIF-1{alpha} was examined in the livers of mice treated with a toxic dose of APAP (300 mg/kg IP) and sacrificed at 1, 2, 4, 8, and 12 h. HIF-1{alpha} was induced at 1-12 h and induction occurred prior to the onset of toxicity. Pre-treatment of mice with N-acetylcysteine (1200 mg/kg IP) prevented toxicity and HIF-1{alpha} induction. In further studies, hepatocyte suspensions were incubated with APAP (1 mM) in the presence ofmore » an oxygen atmosphere. HIF-1{alpha} was induced at 1 h, prior to the onset of toxicity. Inclusion of cyclosporine A (10 {mu}M), an inhibitor of mitochondrial permeability transition, oxidative stress, and toxicity, prevented the induction of HIF-1{alpha}. Thus, HIF-1{alpha} is induced before APAP toxicity and can occur under non-hypoxic conditions. The data suggest a role for oxidative stress in the induction of HIF-1{alpha} in APAP toxicity.« less

  15. Further Development of Rotating Rake Mode Measurement Data Analysis

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.

    2013-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.

  16. New Instability Mode in A Driven Granular Gas: Athermal and Thermal Convection

    NASA Astrophysics Data System (ADS)

    Shukla, Priyanka; Alam, Meheboob

    2017-11-01

    For a thermally-driven granular gas confined between two plates under gravity, we report a new instability mode which is found to be active at very small values of the heat-loss parameter. We show that the origin of this new mode is tied to the ``thermal'' mode of the well-studied Rayleigh-Benard convection. This is dubbed purely elastic instability since it survives even for perfectly elastic collisions (en = 1). The distinction of this new instability mode from its dissipative/athermal counterpart is clarified for the first time. Furthermore, a weakly nonlinear analysis using Stuart-Landau equation has been carried out for both instability modes, and the underlying bifurcation scenario (supercritical/subcritical) from each mode is elucidated. The resulting linear and nonlinear patterns with respect to inelasticity and gravity are compared.

  17. Various Indices for Diagnosis of Air-gap Eccentricity Fault in Induction Motor-A Review

    NASA Astrophysics Data System (ADS)

    Nikhil; Mathew, Lini, Dr.; Sharma, Amandeep

    2018-03-01

    From the past few years, research has gained an ardent pace in the field of fault detection and diagnosis in induction motors. In the current scenario, software is being introduced with diagnostic features to improve stability and reliability in fault diagnostic techniques. Human involvement in decision making for fault detection is slowly being replaced by Artificial Intelligence techniques. In this paper, a brief introduction of eccentricity fault is presented along with their causes and effects on the health of induction motors. Various indices used to detect eccentricity are being introduced along with their boundary conditions and their future scope of research. At last, merits and demerits of all indices are discussed and a comparison is made between them.

  18. The inter-ELM tungsten erosion profile in DIII-D H-mode discharges and benchmarking with ERO+OEDGE modeling

    NASA Astrophysics Data System (ADS)

    Abrams, T.; Ding, R.; Guo, H. Y.; Thomas, D. M.; Chrobak, C. P.; Rudakov, D. L.; McLean, A. G.; Unterberg, E. A.; Briesemeister, A. R.; Stangeby, P. C.; Elder, J. D.; Wampler, W. R.; Watkins, J. G.

    2017-05-01

    It is important to develop a predictive capability for the tungsten source rate near the strike points during H-mode operation in ITER and beyond. H-mode deuterium plasma exposures were performed on W-coated graphite and molybdenum substrates in the DIII-D divertor using DiMES. The W-I 400.9 nm spectral line was monitored by fast filtered diagnostics cross calibrated via a high-resolution spectrometer to resolve inter-ELM W erosion. The effective ionization/photon (S/XB) was calibrated using a unique method developed on DIII-D based on surface analysis. Inferred S/XB values agree with an existing empirical scaling at low electron density (n e) but diverge at higher densities, consistent with recent ADAS atomic physics modeling results. Edge modeling of the inter-ELM phase is conducted via OEDGE utilizing the new capability for charge-state resolved carbon impurity fluxes. ERO modeling is performed with the calculated main ion and impurity plasma background from OEDGE. ERO results demonstrate the importance a mixed-material surface model in the interpretation of W sourcing measurements. It is demonstrated that measured inter-ELM W erosion rates can be well explained by C→W sputtering only if a realistic mixed material model is incorporated.

  19. Immunoglobulin class switch DNA recombination: induction, targeting and beyond

    PubMed Central

    Xu, Zhenming; Zan, Hong; Pone, Egest J.; Mai, Thach; Casali, Paolo

    2012-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus is central to the maturation of the antibody response and critically requires the AID cytidine deaminase. CSR entails changes of the chromatin state and transcriptional activation of the IgH locus upstream and downstream switch (S) regions that are to undergo S-S DNA recombination, induction of AID, and targeting of CSR factors to S regions by 14-3-3 adaptors and as enabled by the transcription machinery and histone modifications. In this Review, we focus on recent advances in CSR induction and targeting. We also outline an integrated model of the assembly of macromolecular complexes that transduce critical epigenetic information to enzymatic effectors of the CSR machinery. PMID:22728528

  20. Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction.

    PubMed

    Madore, Kevin P; Jing, Helen G; Schacter, Daniel L

    2016-08-01

    Recent research has suggested that an episodic specificity induction-brief training in recollecting the details of a past experience-enhances divergent creative thinking on the alternate uses task (AUT) in young adults, without affecting performance on tasks thought to involve little divergent thinking; however, the generalizability of these results to other populations and tasks is unknown. In the present experiments, we examined whether the effects of an episodic specificity induction would extend to older adults and a different index of divergent thinking, the consequences task. In Experiment 1, the specificity induction significantly enhanced divergent thinking on the AUT in both young and older adults, as compared with a control induction not requiring specific episodic retrieval; performance on a task involving little divergent thinking (generating associates for common objects) did not vary as a function of induction. No overall age-related differences were observed on either task. In Experiment 2, the specificity induction significantly enhanced divergent thinking (in terms of generating consequences of novel scenarios) in young adults, relative to another control induction not requiring episodic retrieval. To examine the types of creative ideas affected by the induction, the participants in both experiments also labeled each of their divergent-thinking responses as an "old idea" from memory or a "new idea" from imagination. New, and to some extent old, ideas were significantly boosted following the specificity induction relative to the control. These experiments provide novel evidence that an episodic specificity induction can boost divergent thinking in young and older adults, and indicate that episodic memory is involved in multiple divergent-thinking tasks.

  1. Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction

    PubMed Central

    Madore, Kevin P.; Jing, Helen G.; Schacter, Daniel L.

    2016-01-01

    Recent research has suggested that an episodic specificity induction- brief training in recollecting the details of a past experience- enhances divergent creative thinking on the Alternate Uses Task (AUT) in young adults without affecting performance on tasks thought to involve little divergent thinking, but the generalizability of these results to other populations and tasks is unknown. The present experiments examined whether effects of an episodic specificity induction extend to older adults and a different index of divergent thinking, the Consequences Task. In Experiment 1, the specificity induction significantly enhanced divergent thinking on the AUT in both young and older adults compared with a control induction not requiring specific episodic retrieval; performance on a task involving little divergent thinking did not vary as a function of induction (generating associates for common objects). No overall age-related differences were observed on either task. In Experiment 2, the specificity induction significantly enhanced divergent thinking (generating consequences of novel scenarios) in young adults compared with another control induction not requiring episodic retrieval. To examine the types of creative ideas affected by the induction, participants in both experiments also labeled each of their divergent thinking responses as an old idea from memory or new idea from imagination. New and to some extent old ideas were significantly boosted following the specificity induction compared with the control. These experiments provide novel evidence that an episodic specificity induction can boost divergent thinking in young and older adults, and indicate that episodic memory is involved in multiple divergent thinking tasks. PMID:27001170

  2. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  3. Annular mode changes in the CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Gillett, N. P.; Fyfe, J. C.

    2013-03-01

    We investigate simulated changes in the annular modes in historical and RCP 4.5 scenario simulations of 37 models from the fifth Coupled Model Intercomparison Project (CMIP5), a much larger ensemble of models than has previously been used to investigate annular mode trends, with improved resolution and forcings. The CMIP5 models on average simulate increases in the Northern Annular Mode (NAM) and Southern Annular Mode (SAM) in every season by 2100, and no CMIP5 model simulates a significant decrease in either the NAM or SAM in any season. No significant increase in the NAM or North Atlantic Oscillation (NAO) is simulated in response to volcanic aerosol, and no significant NAM or NAO response to solar irradiance variations is simulated. The CMIP5 models simulate a significant negative SAM response to volcanic aerosol in MAM and JJA, and a significant positive SAM response to solar irradiance variations in MAM, JJA and DJF.

  4. Advanced Tokamak Investigations in Full-Tungsten ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bock, Alexander

    2017-10-01

    The tailoring of the q-profile is the foundation of Advanced Tokamak (AT) scenarios. It depends on low collisionality ν* which permits efficient external current drive and high amounts of intrinsic bootstrap current. At constant pressure, lowering ne leads to a strong decrease of ν* Te - 3 . After the conversion of ASDEX Upgrade to fully W-coated plasma facing components, radiative collapses of H-modes with little gas puffing due to central W accumulation could only be avoided partially with central ECRH. Also, operation at high β with low ne presented a challenge for the divertor. Together, these issues prevented meaningful AT investigations. To overcome this, several major feats have been accomplished: Access to lower ne was achieved through a better understanding of the changes to recycling and pumping, and optionally the density pump-out phenomenon due to RMPs. ECRH capacities were substantially expanded for both heating and current drive, and a solid W divertor capable of withstanding the power loads was installed. A major overhaul improved the reliability of the current profile diagnostics. This contribution will detail the efforts needed to re-access AT scenarios and report on the development of candidate steady state scenarios for ITER/DEMO. Starting from the `hybrid scenario,' a non-inductive scenario (q95 = 5.3 , βN = 2.7 , fbs > 40 %) was developed. It can be sustained for many τE, limited only by technical boundaries, and is also independent of the ramp-up scenario. The β-limit is set by ideal modes that convert into NTMs. The Ti-profiles are steeper than predicted by TGLF, but nonlinear electromagnetic gyro-kinetic analyses with GENE including fast particle effects matched the experimental heat fluxes. We will also report on scenarios at higher q95, similar to the EAST/DIII-D steady state scenario. The extrapolation of these scenarios to ITER/DEMO will be discussed.

  5. Functional recombinant protein is present in the pre-induction phases of Pichia pastoris cultures when grown in bioreactors, but not shake-flasks.

    PubMed

    Bawa, Zharain; Routledge, Sarah J; Jamshad, Mohammed; Clare, Michelle; Sarkar, Debasmita; Dickerson, Ian; Ganzlin, Markus; Poyner, David R; Bill, Roslyn M

    2014-09-04

    Pichia pastoris is a widely-used host for recombinant protein production; expression is typically driven by methanol-inducible alcohol oxidase (AOX) promoters. Recently this system has become an important source of recombinant G protein-coupled receptors (GPCRs) for structural biology and drug discovery. The influence of diverse culture parameters (such as pH, dissolved oxygen concentration, medium composition, antifoam concentration and culture temperature) on productivity has been investigated for a wide range of recombinant proteins in P. pastoris. In contrast, the impact of the pre-induction phases on yield has not been as closely studied. In this study, we examined the pre-induction phases of P. pastoris bioreactor cultivations producing three different recombinant proteins: the GPCR, human A(2a) adenosine receptor (hA(2a)R), green fluorescent protein (GFP) and human calcitonin gene-related peptide receptor component protein (as a GFP fusion protein; hCGRP-RCP-GFP). Functional hA(2a)R was detected in the pre-induction phases of a 1 L bioreactor cultivation of glycerol-grown P. pastoris. In a separate experiment, a glycerol-grown P. pastoris strain secreted soluble GFP prior to methanol addition. When glucose, which has been shown to repress AOX expression, was the pre-induction carbon source, hA(2a)R and GFP were still produced in the pre-induction phases. Both hA(2a)R and GFP were also produced in methanol-free cultivations; functional protein yields were maintained or increased after depletion of the carbon source. Analysis of the pre-induction phases of 10 L pilot scale cultivations also demonstrated that pre-induction yields were at least maintained after methanol induction, even in the presence of cytotoxic concentrations of methanol. Additional bioreactor data for hCGRP-RCP-GFP and shake-flask data for GFP, horseradish peroxidase (HRP), the human tetraspanins hCD81 and CD82, and the tight-junction protein human claudin-1, demonstrated that bioreactor but

  6. Local vibrational modes of the water dimer - Comparison of theory and experiment

    NASA Astrophysics Data System (ADS)

    Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.

    2012-12-01

    Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.

  7. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    PubMed

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A multiple-scenario assessment of the effect of a continuous-care, guideline-based decision support system on clinicians' compliance to clinical guidelines.

    PubMed

    Shalom, Erez; Shahar, Yuval; Parmet, Yisrael; Lunenfeld, Eitan

    2015-04-01

    To quantify the effect of a new continuous-care guideline (GL)-application engine, the Picard decision support system (DSS) engine, on the correctness and completeness of clinicians' decisions relative to an established clinical GL, and to assess the clinicians' attitudes towards a specific DSS. Thirty-six clinicians, including residents at different training levels and board-certified specialists at an academic OB/GYN department that handles around 15,000 deliveries annually, agreed to evaluate our continuous-care guideline-based DSS and to perform a cross-over assessment of the effects of using our guideline-based DSS. We generated electronic patient records that realistically simulated the longitudinal course of six different clinical scenarios of the preeclampsia/eclampsia/toxemia (PET) GL, encompassing 60 different decision points in total. Each clinician managed three scenarios manually without the Picard DSS engine (Non-DSS mode) and three scenarios when assisted by the Picard DSS engine (DSS mode). The main measures in both modes were correctness and completeness of actions relative to the PET GL. Correctness was further decomposed into necessary and redundant actions, relative to the guideline and the actual patient data. At the end of the assessment, a questionnaire was administered to the clinicians to assess their perceptions regarding use of the DSS. With respect to completeness, the clinicians applied approximately 41% of the GL's recommended actions in the non-DSS mode. Completeness increased to the performance of approximately 93% of the guideline's recommended actions, when using the DSS mode. With respect to correctness, approximately 94.5% of the clinicians' decisions in the non-DSS mode were correct. However, these included 68% of the actions that were correct but redundant, given the patient's data (e.g., repeating tests that had been performed), and 27% of the actions, which were necessary in the context of the GL and of the given scenario

  9. Fine-tuned regulation of the K+ /H+ antiporter KEA3 is required to optimize photosynthesis during induction.

    PubMed

    Wang, Caijuan; Yamamoto, Hiroshi; Narumiya, Fumika; Munekage, Yuri Nakajima; Finazzi, Giovanni; Szabo, Ildiko; Shikanai, Toshiharu

    2017-02-01

    KEA3 is a thylakoid membrane localized K + /H + antiporter that regulates photosynthesis by modulating two components of proton motive force (pmf), the proton gradient (∆pH) and the electric potential (∆ψ). We identified a mutant allele of KEA3, disturbed proton gradient regulation (dpgr) based on its reduced non-photochemical quenching (NPQ) in artificial (CO 2 -free with low O 2 ) air. This phenotype was enhanced in the mutant backgrounds of PSI cyclic electron transport (pgr5 and crr2-1). In ambient air, reduced NPQ was observed during induction of photosynthesis in dpgr, the phenotype that was enhanced after overnight dark adaptation. In contrast, the knockout allele of kea3-1 exhibited a high-NPQ phenotype during steady state in ambient air. Consistent with this kea3-1 phenotype in ambient air, the membrane topology of KEA3 indicated a proton efflux from the thylakoid lumen to the stroma. The dpgr heterozygotes showed a semidominant and dominant phenotype in artificial and ambient air, respectively. In dpgr, the protein level of KEA3 was unaffected but the downregulation of its activity was probably disturbed. Our findings suggest that fine regulation of KEA3 activity is necessary for optimizing photosynthesis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. A novel mode of induction of the humoral innate immune response in Drosophila larvae.

    PubMed

    Kenmoku, Hiroyuki; Hori, Aki; Kuraishi, Takayuki; Kurata, Shoichiro

    2017-03-01

    Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin ; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer. © 2017. Published by The Company of Biologists Ltd.

  11. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    DOE PAGES

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; ...

    2016-09-28

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. Here, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide rangemore » of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. Furthermore, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. In order to serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit

  12. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.

    2016-01-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate amore » wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially

  13. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.

    2016-09-01

    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit

  14. Gyrokinetic modeling of impurity peaking in JET H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Manas, P.; Camenen, Y.; Benkadda, S.; Weisen, H.; Angioni, C.; Casson, F. J.; Giroud, C.; Gelfusa, M.; Maslov, M.

    2017-06-01

    Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating and hence high values of toroidal rotation and corresponding gradient. Furthermore, the carbon profiles present particularly interesting shapes for fusion devices, i.e., hollow in the core and peaked near the edge. Dependencies of the experimental carbon peaking factor ( R / L nC ) on plasma parameters are investigated via multilinear regressions. A marked correlation between R / L nC and the normalised toroidal rotation gradient is observed in the core, which suggests an important role of the rotation in establishing hollow carbon profiles. The carbon peaking factor is then computed with the gyrokinetic code GKW, using a quasi-linear approach, supported by a few non-linear simulations. The comparison of the quasi-linear predictions to the experimental values at mid-radius reveals two main regimes. At low normalised collisionality, ν * , and T e / T i < 1 , the gyrokinetic simulations quantitatively recover experimental carbon density profiles, provided that rotodiffusion is taken into account. In contrast, at higher ν * and T e / T i > 1 , the very hollow experimental carbon density profiles are never predicted by the simulations and the carbon density peaking is systematically over estimated. This points to a possible missing ingredient in this regime.

  15. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  16. Brain pattern of histone H3 phosphorylation after acute amphetamine administration: its relationship to brain c-fos induction is strongly dependent on the particular brain area.

    PubMed

    Rotllant, David; Armario, Antonio

    2012-02-01

    Recent evidence strongly suggests a critical role of chromatin remodelling in the acute and chronic effects of addictive drugs. We reasoned that Immunohistochemical detection of certain histone modifications may be a more specific tool than induction of immediate early genes (i.e. c-fos) to detect brain areas and neurons that are critical for the action of addictive drugs. Thus, in the present work we studied in adult male rats the effects of a high dose of amphetamine on brain pattern of histone H3 phosphorylation in serine 10 (pH3S(10)) and c-fos expression. We firstly observed that amphetamine-induced an increase in the number of pH3S(10) positive neurons in a restricted number of brain areas, with maximum levels at 30 min after the drug administration that declined at 90 min in most areas. In a second experiment we studied colocalization of pH3S(10) immunoreactivity (pH3S(10)-IR) and c-fos expression. Amphetamine increased c-fos expression in medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens (Acb), major Island of Calleja (ICjM), central amygdala (CeA), bed nucleus of stria terminalis lateral dorsal (BSTld) and paraventricular nucleus of the hypothalamus (PVN). Whereas no evidence for increase in pH3S(10) positive neurons was found in the mPFC and the PVN, in the striatum and the Acb basically all pH3S(10) positive neurons showed colocalization with c-fos. In ICjM, CeA and BSTld a notable degree of colocalization was found, but an important number of neurons expressing c-fos were negative for pH3S(10). The present results give support to the hypothesis that amphetamine-induced pH3S(10)-IR showed a more restricted pattern than brain c-fos induction, being this difference strongly dependent on the particular brain area studied. It is likely that those nuclei and neurons showing pH3S(10)-IR are more specifically associated to important effects of the drug, including neural plasticity. This article is part of a Special Issue entitled 'Post

  17. Superconductivity induced by flexural modes in non-σh-symmetric Dirac-like two-dimensional materials: A theoretical study for silicene and germanene

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo V.; Polley, Arup

    2018-04-01

    In two-dimensional crystals that lack symmetry under reflections on the horizontal plane of the lattice (non-σh-symmetric), electrons can couple to flexural modes (ZA phonons) at first order. We show that in materials of this type that also exhibit a Dirac-like electron dispersion, the strong coupling can result in electron pairing mediated by these phonons, as long as the flexural modes are not damped or suppressed by additional interactions with a supporting substrate or gate insulator. We consider several models: The weak-coupling limit, which is applicable only in the case of gapped and parabolic materials, like stanene and HfSe2, thanks to the weak coupling; the full gap-equation, solved using the constant-gap approximation and considering statically screened interactions; its extensions to energy-dependent gap and to dynamic screening. We argue that in the case of silicene and germanene superconductivity mediated by this process can exhibit a critical temperature of a few degrees K, or even a few tens of degrees K when accounting for the effect of a high-dielectric-constant environment. We conclude that the electron/flexural-modes coupling should be included in studies of possible superconductivity in non-σh-symmetric two-dimensional crystals, even if alternative forms of coupling are considered.

  18. Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen

    2018-05-01

    Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.

  19. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devicesmore » is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.« less

  20. Edge-localized mode avoidance and pedestal structure in I-mode plasmasa)

    NASA Astrophysics Data System (ADS)

    Walk, J. R.; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A.; Cziegler, I.

    2014-05-01

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle Pnet/n ¯e, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of Pnet/n ¯e. This is consistent with targets for increased performance in I-mode, elevating pedestal βp and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of

  1. EDITORIAL: Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.

    2010-06-01

    The 12th International Workshop on H-mode Physics and Transport Barriers was held at the Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA between September 30 and October 2, 2009. This meeting was the continuation of a series of previous meetings which was initiated in 1987 and has been held bi-annually since then. Following the recent tradition at the last few meetings, the program was sub- divided into six sessions. At each session, an overview talk was presented, followed by two or three shorter oral presentations which supplemented the coverage of important issues. These talks were followed by discussion periods and poster sessions of contributed papers. The sessions were: Physics of Transition to/from Enhanced Confinement Regimes, Pedestal and Edge Localized Mode Dynamics, Plasma Rotation and Momentum Transport, Role of 3D Physics in Transport Barriers, Transport Barriers: Theory and Simulations and High Priority ITER Issues on Transport Barriers. The diversity of the 90 registered participants was remarkable, with 22 different nationalities. US participants were in the majority (36), followed by Japan (14), South Korea (7), and China (6). This special issue of Nuclear Fusion consists of a cluster of 18 accepted papers from submitted manuscripts based on overview talks and poster presentations. The paper selection procedure followed the guidelines of Nuclear Fusion which are essentially the same as for regular articles with an additional requirement on timeliness of submission, review and revision. One overview paper and five contributed papers report on the H-mode pedestal related results which reflect the importance of this issue concerning the successful operation of ITER. Four papers address the rotation and momentum transport which play a crucial role in transport barrier physics. The transport barrier transition condition is the main focus of other four papers. Finally, four additional papers are devoted to the behaviour and control of

  2. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    DOE PAGES

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less

  3. Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges

    NASA Astrophysics Data System (ADS)

    Park, J. M.

    2013-10-01

    Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at βN > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at βN as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable βN (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.

  4. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    PubMed

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  5. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles

    NASA Technical Reports Server (NTRS)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.

    2015-01-01

    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  6. Dying scenarios improve recall as much as survival scenarios.

    PubMed

    Burns, Daniel J; Hart, Joshua; Kramer, Melanie E

    2014-01-01

    Merely contemplating one's death improves retention for entirely unrelated material learned subsequently. This "dying to remember" effect seems conceptually related to the survival processing effect, whereby processing items for their relevance to being stranded in the grasslands leads to recall superior to that of other deep processing control conditions. The present experiments directly compared survival processing scenarios with "death processing" scenarios. Results showed that when the survival and dying scenarios are closely matched on key dimensions, and possible congruency effects are controlled, the dying and survival scenarios produced equivalently high recall levels. We conclude that the available evidence (cf. Bell, Roer, & Buchner, 2013; Klein, 2012), while not definitive, is consistent with the possibility of overlapping mechanisms.

  7. Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.

    PubMed

    Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean

    2017-07-01

    Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.

  8. Inductive electronegativity scale. Iterative calculation of inductive partial charges.

    PubMed

    Cherkasov, Artem

    2003-01-01

    A number of novel QSAR descriptors have been introduced on the basis of the previously elaborated models for steric and inductive effects. The developed "inductive" parameters include absolute and effective electronegativity, atomic partial charges, and local and global chemical hardness and softness. Being based on traditional inductive and steric substituent constants these 3D descriptors provide a valuable insight into intramolecular steric and electronic interactions and can find broad application in structure-activity studies. Possible interpretation of physical meaning of the inductive descriptors has been suggested by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres. This approximation relates inductive chemical softness and hardness of bound atom(s) with the total area of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule. The derived full electronegativity equalization scheme allows iterative calculation of inductive partial charges on the basis of atomic electronegativities, covalent radii, and intramolecular distances. A range of inductive descriptors has been computed for a variety of organic compounds. The calculated inductive charges in the studied molecules have been validated by experimental C-1s Electron Core Binding Energies and molecular dipole moments. Several semiempirical chemical rules, such as equalized electronegativity's arithmetic mean, principle of maximum hardness, and principle of hardness borrowing could be explicitly illustrated in the framework of the developed approach.

  9. Full-dimensional quantum dynamics study of the H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} reaction on an ab initio potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liuyang; University of Chinese Academy of Sciences, Beijing 100049; Shao, Kejie

    2016-05-21

    This work performs a time-dependent wavepacket study of the H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H{sub 2} + C{sub 2}H↔H + C{sub 2}H{sub 2}, H + C{sub 2}H{sub 2} → HCCH{sub 2}, and HCCH{sub 2} radial isomerization reaction regions. The reaction dynamics of H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} are investigated using full-dimensional quantum dynamics method. The initial-state selected reactionmore » probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H{sub 2} vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C{sub 2}H slightly inhibits the reaction. The excitations of two stretching modes of C{sub 2}H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.« less

  10. High-Q lattice mode matched structural resonances in terahertz metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ningning; Zhang, Weili, E-mail: weili.zhang@okstate.edu; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg

    2016-07-11

    The quality (Q) factor of metamaterial resonances is limited by the radiative and non-radiative losses. At terahertz frequencies, the dominant loss channel is radiative in nature since the non-radiative losses are low due to high conductivity of metals. Radiative losses could be suppressed by engineering the meta-atom structure. However, such suppression usually occurs at the fundamental resonance mode which is typically a closed mode resonance such as an inductive-capacitive resonance or a Fano resonance. Here, we report an order of magnitude enhancement in Q factor of all the structural eigenresonances of a split-ring resonator fueled by the lattice mode matching.more » We match the fundamental order diffractive mode to each of the odd and even eigenresonances, thus leading to a tremendous line-narrowing of all the resonances. Such precise tailoring and control of the structural resonances in a metasurface lattice could have potential applications in low-loss devices, sensing, and design of high-Q metamaterial cavities.« less

  11. Bifurcation of quiescent H-mode to a wide pedestal regime in DIII-D and advances in the understanding of edge harmonic oscillations

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; Barada, K.; Ferraro, N. M.; Garofalo, A. M.; Groebner, R. J.; McKee, G. R.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Solomon, W. M.; Yan, Z.; The DIII-D Team

    2017-08-01

    New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E  ×  B shear required for the EHO decreases linearly with pedestal collisionality ν \\text{e}\\ast , which is favorable for operating QH-mode in machines with low collisionality and low rotation such as ITER. In addition, the QH-mode regime in DIII-D has recently been found to bifurcate into a new ‘wide-pedestal’ state at low torque in double-null shaped plasmas, characterized by increased pedestal height, width and thermal energy confinement (Burrell 2016 Phys. Plasmas 23 056103, Chen 2017 Nucl. Fusion 57 022007). This potentially provides an alternate path for achieving high performance ELM-stable operation at low torque, in addition to the low-torque QH-mode sustained with applied 3D fields. Multi-branch low-k and intermediate-k turbulences are observed in the ‘wide-pedestal’. New experiments support the hypothesis that the decreased edge E  ×  B shear enables destabilization of broadband turbulence, which relaxes edge pressure gradients, improves peeling-ballooning stability and allows a wider and thus higher pedestal. The ability to accurately predict the critical E  ×  B shear for EHO and maintain high performance QH-mode at low torque is an essential requirement for projecting QH-mode operation to ITER and future machines.

  12. Circuit Models for Inductive Strips in Fin-Line

    DTIC Science & Technology

    1989-12-01

    9875 SE523 35.9875 Ma6 12S.9075 12.0 .7975 120.1500 . 6034 30.1500 . 6034 30.1500 .7975 120.1SO0 13 9.~~~- - M II I I’ IT I II f j a I ; a ~ ~ ~ ~ ~ I I...42.553.1 .8174 132.55371 34 Table 12. Touchstone data file containing the computed scattering coefficients of anl inductive strip of length T= 200 mnils...6283 45.0422 .628H 45.0422 .7780 13S.0422 42 Table 20. Touchstone data file containing the computed scattering coefficients of anl inductive strip of

  13. Relative biological effectiveness of tritium for induction of myeloid leukemia in CBA/H mice.

    PubMed

    Johnson, J R; Myers, D K; Jackson, J S; Dunford, D W; Gragtmans, N J; Wyatt, H M; Jones, A R; Percy, D H

    1995-10-01

    To help resolve uncertainties as to the most appropriate weighting factor for tritium beta rays, a large experiment was carried out to measure the relative biological effectiveness (RBE) of tritiated water compared to X rays for the induction of myeloid leukemia in male mice of the CBA/H strain. The study was designed to estimate the lifetime incidence of myeloid leukemia in seven groups of about 750 mice each; radiation exposures were approximately 0, 1, 2 and 3 Gy both for tritiated water and for X rays. The lifetime incidence of leukemia in these mice increased from 0.13% in the control group to 6-8% in groups exposed to higher radiation doses. The results were fitted to various equations relating leukemia incidence to radiation dose, using both the raw data and data corrected for cumulative mouse-days at risk. The calculated RBE values for tritium beta rays compared to X rays ranged from 1.0 +/- 0.5 to 1.3 +/- 0.3. A best estimate of the RBE for this experiment was about 1.2 +/- 0.3. A wR value of 1 would thus appear to be more appropriate than a wR of 2 for tritium beta rays.

  14. Induction magnetometer using a high-Tc superconductor coil

    NASA Astrophysics Data System (ADS)

    Sasada, Ichiro

    2010-05-01

    An induction magnetometer consisting of a search coil and an inverting operational amplifier is simple in structure and in signal transferring mechanism from the magnetic field input to the voltage output. Because this magnetometer is based on Faraday's law of induction, it has a lower cutoff frequency r/(2πL), where r is the resistance of the coil and L is its inductance. An attempt has been made to lower the cutoff frequency of the induction magnetometer by using a high-Tc superconductor coil. With a pancake coil (inner diameter ≈18 cm and outer diameter ≈23 cm, 92 turns, 3.23 mH) made of a Bismuth strontium calcium copper oxide (BSCCO) superconductor tape of 5 mm in width and 0.23 mm in thickness, the cutoff frequency achieved was 1.7 Hz which is much lower than that obtained with a bulky copper search coil which is typically in the range of 10-20 Hz. In the experiment, an inverting amplifier was made with a complementary metal-oxide semiconductor operational amplifier and was immersed in liquid nitrogen together with a BSCCO high-Tc superconducting coil. Discussion is made on the resolution of the induction magnetometer using a high-Tc superconductor search coil.

  15. Robust integer and fractional helical modes in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir

    2018-04-01

    Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.

  16. Determination of avian influenza A (H9N2) virions by inductively coupled plasma mass spectrometry based magnetic immunoassay with gold nanoparticles labeling

    NASA Astrophysics Data System (ADS)

    Xiao, Guangyang; Chen, Beibei; He, Man; Shi, Kaiwen; Zhang, Xing; Li, Xiaoting; Wu, Qiumei; Pang, Daiwen; Hu, Bin

    2017-12-01

    Avian influenza viruses are the pathogens of global poultry epidemics, and may even cause the human infections. Here, we proposed a novel inductively coupled plasma mass spectrometry (ICP-MS) based immunoassay with gold nanoparticles (Au NPs) labeling for the determination of H9N2 virions. Magnetic-beads modified with anti-influenza A H9N2 hemagglutinin mono-antibody (mAb-HA) were utilized for the capture of H9N2 virions in complex matrix; and Au NPs conjugated with mAb-HA were employed for the specific labeling of H9N2 virions for subsequent ICP-MS detection. With a sandwich immunoassay strategy, this method exhibited a high specificity for H9N2 among other influenza A virions such as H1N1 and H3N2. Under the optimized conditions, this method could detect as low as 0.63 ng mL- 1 H9N2 virions with the linear range of 2-400 ng mL- 1, the relative standard deviation for seven replicate detections of H9N2 virions was 7.2% (c = 10 ng mL- 1). The developed method was applied for the detection of H9N2 virions in real-world chicken dung samples, and the recovery for the spiking samples was 91.4-116.9%. This method is simple, rapid, sensitive, selective, reliable and has a good application potential for virions detection in real-world samples.

  17. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    Scenarios have become a standard tool in the portfolio of techniques that scientists and policy-makers use to envision and plan for the future. Defined as plausible, challenging and relevant stories about how the future might unfold that integrate quantitative models with qualitative assessments of social and political trends, scenarios are a central component in assessment processes for a range of global issues, including climate change, biodiversity, agriculture, and energy. Yet, despite their prevalence, systematic analysis of scenarios is in its beginning stages. Fundamental questions remain about both the epistemology and scientific credibility of scenarios and their roles in policymaking and social change. Answers to these questions have the potential to determine the future of scenario analyses. Is scenario analysis moving in the direction of earth system governance informed by global scenarios generated through increasingly complex and comprehensive models integrating socio-economic and earth systems? Or will global environmental scenario analyses lose favour compared to more focused, policy-driven, regionally specific modelling? These questions come at an important time for the climate change issue, given that the scenario community, catalyzed by the Intergovernmental Panel on Climate Change (IPCC), is currently preparing to embark on a new round of scenario development processes aimed at coordinating research and assessment, and informing policy, over the next five to ten years. These and related questions about where next to go with global environmental scenarios animated a workshop held at Brown University (Note1) that brought together leading practitioners and scholars of global environmental change scenarios from research, policy-making, advocacy, and business settings. The workshop aimed to provide an overview of current practices/best practices in scenario production and scenario use across a range of global environmental change arenas. Participants

  18. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D [Discovery of stationary operation of quiescent H-mode plasmas with Net-Zero NBI torque and high energy confinement on DIII-D

    DOE PAGES

    Burrell, Keith H.; Barada, Kshitish; Chen, Xi; ...

    2016-03-11

    Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good

  19. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D [Discovery of stationary operation of quiescent H-mode plasmas with Net-Zero NBI torque and high energy confinement on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Keith H.; Barada, Kshitish; Chen, Xi

    Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good

  20. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  1. Induction Based on Circumscription

    NASA Astrophysics Data System (ADS)

    Saito, Haruka; Inoue, Katsumi

    We investigate induction from the viewpoint of nonmonotonic reasoning. Induction we consider in this paper is descriptive induction. Hypotheses from descriptive induction have the weak property that they only describe rules with respect to the observations and do not realize an inductive leap. In this paper, we define a new form of descriptive induction with circumscription and the idea of explanation and show two procedures for computing it. The new descriptive induction is called circumscriptive induction. By deciding the roles of predicates in circumscription, we can intentionally minimize models of a given inductive problem. By adopting the idea of explanation, we can distinguish between background knowledge and observations. Additionally, we consider the relationship between the way of choosing the roles of predicates in computing circumscription and the property of hypotheses obtained by circumscriptive induction. It is shown that hypotheses from circumscriptive induction reflect a difference between background knowledge and observations and do not realize an inductive leap. We also investigate revision of hypotheses which is as important as generation of hypotheses. In a process of hypothesis revision, a difference between previous induction and circumscriptive induction is clearly characterised.

  2. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H.

    PubMed

    Yang, Fengyuan; Zheng, Guoxun; Fu, Tingting; Li, Xiaofeng; Tu, Gao; Li, Ying Hong; Yao, Xiaojun; Xue, Weiwei; Zhu, Feng

    2018-06-27

    The rapid emergence of drug-resistant variants is one of the most common causes of highly active antiretroviral therapeutic (HAART) failure in patients infected with HIV-1. Compared with the existing HAART, the recently developed pyrrolyl diketo acid scaffold targeting both HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) is an efficient approach to counteract the failure of anti-HIV treatment due to drug resistance. However, the binding mode and potential resistance profile of these inhibitors with important mechanistic principles remain poorly understood. To address this issue, an integrated computational method was employed to investigate the binding mode of inhibitor JMC6F with HIV-1 IN and RNase H. By using per-residue binding free energy decomposition analysis, the following residues: Asp64, Thr66, Leu68, Asp116, Tyr143, Gln148 and Glu152 in IN, Asp443, Glu478, Trp536, Lys541 and Asp549 in RNase H were identified as key residues for JMC6F binding. And then computational alanine scanning was carried to further verify the key residues. Moreover, the resistance profile of the currently known major mutations in HIV-1 IN and 2 mutations in RNase H against JMC6F was predicted by in silico mutagenesis studies. The results demonstrated that only three mutations in HIV-1 IN (Y143C, Q148R and N155H) and two mutations in HIV-1 RNase H (Y501R and Y501W) resulted in a reduction of JMC6F potency, thus indicating their potential role in providing resistance to JMC6F. These data provided important insights into the binding mode and resistance profile of the inhibitors with a pyrrolyl diketo acid scaffold in HIV-1 IN and RNase H, which would be helpful for the development of more effective dual HIV-1 IN and RNase H inhibitors.

  3. Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team

    2017-10-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).

  4. N-H stretching modes of adenosine monomer in solution studied by ultrafast nonlinear infrared spectroscopy and ab initio calculations.

    PubMed

    Greve, Christian; Preketes, Nicholas K; Costard, Rene; Koeppe, Benjamin; Fidder, Henk; Nibbering, Erik T J; Temps, Friedrich; Mukamel, Shaul; Elsaesser, Thomas

    2012-07-26

    The N-H stretching vibrations of adenine, one of the building blocks of DNA, are studied by combining infrared absorption and nonlinear two-dimensional infrared spectroscopy with ab initio calculations. We determine diagonal and off-diagonal anharmonicities of N-H stretching vibrations in chemically modified adenosine monomer dissolved in chloroform. For the single-quantum excitation manifold, the normal mode picture with symmetric and asymmetric NH(2) stretching vibrations is fully appropriate. For the two-quantum excitation manifold, however, the interplay between intermode coupling and frequency shifts due to a large diagonal anharmonicity leads to a situation where strong mixing does not occur. We compare our findings with previously reported values obtained on overtone spectroscopy of coupled hydrogen stretching oscillators.

  5. Running of the spectral index in deformed matter bounce scenarios with Hubble-rate-dependent dark energy

    NASA Astrophysics Data System (ADS)

    Arab, M.; Khodam-Mohammadi, A.

    2018-03-01

    As a deformed matter bounce scenario with a dark energy component, we propose a deformed one with running vacuum model (RVM) in which the dark energy density ρ _{Λ } is written as a power series of H^2 and \\dot{H} with a constant equation of state parameter, same as the cosmological constant, w=-1. Our results in analytical and numerical point of views show that in some cases same as Λ CDM bounce scenario, although the spectral index may achieve a good consistency with observations, a positive value of running of spectral index (α _s) is obtained which is not compatible with inflationary paradigm where it predicts a small negative value for α _s. However, by extending the power series up to H^4, ρ _{Λ }=n_0+n_2 H^2+n_4 H^4, and estimating a set of consistent parameters, we obtain the spectral index n_s, a small negative value of running α _s and tensor to scalar ratio r, which these reveal a degeneracy between deformed matter bounce scenario with RVM-DE and inflationary cosmology.

  6. Detecting atmospheric normal modes with periods less than 6 h by barometric observations

    NASA Astrophysics Data System (ADS)

    Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.

    2018-04-01

    The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.

  7. DIII-D research to address key challenges for ITER and fusion energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttery, Richard J.

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelengthmore » turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with β N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a β N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free

  8. DIII-D research to address key challenges for ITER and fusion energy

    DOE PAGES

    Buttery, Richard J.

    2015-07-29

    DIII-D has made significant advances in the scientific basis for fusion energy. The physics mechanism of resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression is revealed as field penetration at the pedestal top, and reduced coil set operation was demonstrated. Disruption runaway electrons were effectively quenched by shattered pellets; runaway dissipation is explained by pitch angle scattering. Modest thermal quench radiation asymmetries are well described NIMROD modeling. With good pedestal regulation and error field correction, low torque ITER baselines have been demonstrated and shown to be compatible with an ITER test blanket module simulator. However performance and long wavelengthmore » turbulence degrade as low rotation and electron heating are approached. The alternative QH mode scenario is shown to be compatible with high Greenwald density fraction, with an edge harmonic oscillation demonstrating good impurity flushing. Discharge optimization guided by the EPED model has discovered a new super H-mode with doubled pedestal height. Lithium injection also led to wider, higher pedestals. On the path to steady state, 1 MA has been sustained fully non inductively with β N = 4 and RMP ELM suppression, while a peaked current profile scenario provides attractive options for ITER and a β N = 5 future reactor. Energetic particle transport is found to exhibit a critical gradient behavior. Scenarios are shown to be compatible with radiative and snowflake diverter techniques. Physics studies reveal that the transition to H mode is locked in by a rise in ion diamagnetic flows. Intrinsic rotation in the plasma edge is demonstrated to arise from kinetic losses. New 3D magnetic sensors validate linear ideal MHD, but identify issues in nonlinear simulations. Detachment, characterized in 2D with sub-eV resolution, reveals a radiation shortfall in simulations. As a result, future facility development targets burning plasma physics with torque free

  9. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media.

    PubMed

    Chang, Chia-Chieh; Chang, Kai-Chun; Tsai, Shang-Jye; Chang, Hao-Hueng; Lin, Chun-Pin

    2014-12-01

    Dental pulp stem cells (DPSCs) have been proposed as a promising source of stem cells in nerve regeneration due to their close embryonic origin and ease of harvest. The aim of this study was to evaluate the efficacy of dopaminergic and motor neuronal inductive media on transdifferentiation of human DPSCs (hDPSCs) into neuron-like cells. Isolation, cultivation, and identification of hDPSCs were performed with morphological analyses and flow cytometry. The proliferation potential of DPSCs was evaluated with an XTT [(2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide)] assay. Media for the induction of dopaminergic and spinal motor neuronal differentiation were prepared. The efficacy of neural induction was evaluated by detecting the expression of neuron cell-specific cell markers in DPSCs by immunocytochemistry and quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). In the XTT assay, there was a 2.6- or 2-fold decrease in DPSCs cultured in dopaminergic or motor neuronal inductive media, respectively. The proportions of βIII-tubulin (βIII-tub), glial fibrillary acidic protein (GFAP), and oligodendrocyte (O1)-positive cells were significantly higher in DPSCs cultured in both neuronal inductive media compared with those cultured in control media. Furthermore, hDPSC-derived dopaminergic and spinal motor neuron cells after induction expressed a higher density of neuron cell markers than those before induction. These findings suggest that in response to the neuronal inductive stimuli, a greater proportion of DPSCs stop proliferation and acquire a phenotype resembling mature neurons. Such neural crest-derived adult DPSCs may provide an alternative stem cell source for therapy-based treatments of neuronal disorders and injury. Copyright © 2014. Published by Elsevier B.V.

  10. Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital.

    PubMed

    Hariparsad, Niresh; Nallani, Srikanth C; Sane, Rucha S; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B

    2004-11-01

    The antiretroviral agent efavirenz enhances the systemic clearance of coadministered drugs that are cytochrome P450 (CYP) 3A4 substrates. The mechanism of the apparent increase in CYP3A4 activity by efavirenz and the magnitude of change relative to other known inducers are not known. The authors tested the hypothesis that increased enzymatic activity by efavirenz entails CYP3A4 induction and activation of the human pregnane X receptor (hPXR), a key transcriptional regulator of CYP3A4. Employing primary cultures of human hepatocytes, they compared the CYP3A4 inductive effects of efavirenz (1-10 microM) to rifampin (10 microM) and phenobarbital (2 mM). A cell-based reporter assay was employed to assess hPXR activation. The authors observed that efavirenz caused a concentration-dependent CYP3A4 induction and hPXR activation. Based on the CYP3A4 activity assay, the average magnitude of induction by efavirenz (5-10 microM) was approximately 3- to 4-fold. In comparison, phenobarbital (2 mM) and rifampin (10 microM) caused a 5- and 6-fold induction, respectively.

  11. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids.

    PubMed

    Colman, E; Khafipour, E; Vlaeminck, B; De Baets, B; Plaizier, J C; Fievez, V

    2013-07-01

    Subacute ruminal acidosis (SARA) is one of the most important metabolic disorders, traditionally characterized by low rumen pH, which might be induced by an increase in the dietary proportion of grains as well as by a reduction of structural fiber. Both approaches were used in earlier published experiments in which SARA was induced by replacing part of the ration by a grain mixture or alfalfa hay by alfalfa pellets. The main differences between both experiments were the presence of blood lipopolysaccharide and Escherichia coli and associated effects on the rumen microbial population in the rumen of grain-based induced SARA animals as well as a great amount of quickly fermentable carbohydrates in the grain-based SARA induction experiment. Both induction approaches changed rumen pH although the pH decrease was more substantial in the alfalfa-based SARA induction protocol. The goal of the current analysis was to assess whether both acidosis induction approaches provoked similar shifts in the milk fatty acid (FA) profile. Similar changes of the odd- and branched-chain FA and the C18 biohydrogenation intermediates were observed in the alfalfa-based SARA induction experiment and the grain-based SARA induction experiment, although they were more pronounced in the former. The proportion of trans-10 C18:1 in the last week of the alfalfa-based induction experiment was 6 times higher than the proportion measured during the control week. The main difference between both induction experiments under similar rumen pH changes was the decreasing sum of iso FA during the grain-based SARA induction experiment whereas the sum of iso FA remained stable during the alfalfa-based SARA induction experiment. The cellulolytic bacterial community seemed to be negatively affected by either the presence of E. coli and the associated lipopolysaccharide accumulation in the rumen or by the amount of starch and quickly fermentable carbohydrates in the diet. In general, changes in the milk FA

  12. Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tae; Romanelli, M.; Voitsekhovitch, I.; Koskela, T.; Conboy, J.; Giroud, C.; Maddison, G.; Joffrin, E.; contributors, JET

    2015-06-01

    A consistent deterioration of global confinement in H-mode experiments has been observed in JET [1] following the replacement of all carbon plasma facing components (PFCs) with an all metal (‘ITER-like’) wall (ILW). This has been correlated to the observed degradation of the pedestal confinement, as lower electron temperature (Te) values are routinely measured at the top of the edge barrier region. A comparative investigation of core heat transport in JET-ILW and JET-CW (carbon wall) discharges has been performed, to assess whether core confinement has also been affected by the wall change. The results presented here have been obtained by analysing a set of discharges consisting of high density JET-ILW H-mode plasmas and comparing them against their counterpart discharges in JET-CW having similar global operational parameters. The set contains 10 baseline ({βN}=1.5∼ 2 ) discharge-pairs with 2.7 T toroidal magnetic field, 2.5 MA plasma current, and 14 to 17 MW of neutral beam injection (NBI) heating. Based on a Te profile analysis using high resolution Thomson scattering (HRTS) data, the Te profile peaking (i.e. core Te (ρ = 0.3) / edge Te (ρ = 0.7)) is found to be similar, and weakly dependent on edge Te, for both JET-ILW and JET-CW discharges. When ILW discharges are seeded with N2, core and edge Te both increase to maintain a similar peaking factor. The change in core confinement is addressed with interpretative TRANSP simulations. It is found that JET-ILW H-mode plasmas have higher NBI power deposition to electrons and lower NBI power deposition to ions as compared to the JET-CW counterparts. This is an effect of the lower electron temperature at the top of the pedestal. As a result, the core electron energy confinement time is reduced in JET-ILW discharges, but the core ion energy confinement time is not decreased. Overall, the core energy confinement is found to be the same in the JET-ILW discharges compared to the JET-CW counterparts.

  13. New stressed and continuously annealed low μ nanocrystalline FeCuNbSiB cores for watt-hour-metering or differential mode inductance applications

    NASA Astrophysics Data System (ADS)

    Waeckerle, T.; Save, T.; Demier, A.

    A new stress annealing device applied to Fe base nanocrystalline ribbon is presented. It is based on three stages of very different tensile stress level, able to produce continuously a low and well-controlled μr ribbon, with surprisingly reduced brittleness allowing further winding into core for application such as watt-hour-metering or inductance coil. For such applications we have paid attention to the B-H linearity which may be optimized with the help of process parameters such as stress and annealing temperature, their role being described by an additional interphase magnetoelastic term. The stress participates also to the nucleation and is thought to be the cause of brittleness improvement in troubling SiFe ordering and promoting nucleation rather than growth.

  14. Tracking the energy flow in the hydrogen exchange reaction OH + H2O → H2O + OH.

    PubMed

    Zhu, Yongfa; Ping, Leilei; Bai, Mengna; Liu, Yang; Song, Hongwei; Li, Jun; Yang, Minghui

    2018-05-09

    The prototypical hydrogen exchange reaction OH + H2O → H2O + OH has attracted considerable interest due to its importance in a wide range of chemically active environments. In this work, an accurate global potential energy surface (PES) for the ground electronic state was developed based on ∼44 000 ab initio points at the level of UCCSD(T)-F12a/aug-cc-pVTZ. The PES was fitted using the fundamental invariant-neural network method with a root mean squared error of 4.37 meV. The mode specific dynamics was then studied by the quasi-classical trajectory method on the PES. Furthermore, the normal mode analysis approach was employed to calculate the final vibrational state distribution of the product H2O, in which a new scheme to acquire the Cartesian coordinates and momenta of each atom in the product molecule from the trajectories was proposed. It was found that, on one hand, excitation of either the symmetric stretching mode or the asymmetric stretching mode of the reactant H2O promotes the reaction more than the translational energy, which can be rationalized by the sudden vector projection model. On the other hand, the relatively higher efficacy of exciting the symmetric stretching mode than that of the asymmetric stretching mode is caused by the prevalence of the indirect mechanism at low collision energies and the stripping mechanism at high collision energies. In addition, the initial collision energy turns ineffectively into the vibrational energy of the products H2O and OH while a fraction of the energy transforms into the rotational energy of the product H2O. Fundamental excitation of the stretching modes of H2O results in the product H2O having the highest population in the fundamental state of the asymmetric stretching mode, followed by the ground state and the fundamental state of the symmetric stretching mode.

  15. Supersymmetry and fermionic modes in an oscillon background

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; Ospedal, L. P. R.; de Paula, W.; Helayël-Neto, J. A.

    2018-05-01

    The excitations referred to as oscillons are long-lived time-dependent field configurations which emerge dynamically from non-linear field theories. Such long-lived solutions are of interest in applications that include systems of Condensed Matter Physics, the Standard Model of Particle Physics, Lorentz-symmetry violating scenarios and Cosmology. In this work, we show how oscillons may be accommodated in a supersymmetric scenario. We adopt as our framework simple (N = 1) supersymmetry in D = 1 + 1 dimensions. We focus on the bosonic sector with oscillon configurations and their (classical) effects on the corresponding fermionic modes, (supersymmetric) partners of the oscillons. The particular model we adopt to pursue our investigation displays cubic superfield which, in the physical scalar sector, corresponds to the usual quartic self-coupling.

  16. Economic impacts of the SAFRR tsunami scenario in California: Chapter H in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Wein, Anne; Rose, Adam; Sue Wing, Ian; Wei, Dan

    2013-01-01

    This study evaluates the hypothetical economic impacts of the SAFRR (Science Application for Risk Reduction) tsunami scenario to the California economy. The SAFRR scenario simulates a tsunami generated by a hypothetical magnitude 9.1 earthquake that occurs offshore of the Alaska Peninsula (Kirby and others, 2013). Economic impacts are measured by the estimated reduction in California’s gross domestic product (GDP), the standard economic measure of the total value of goods and services produced. Economic impacts are derived from the physical damages from the tsunami as described by Porter and others (2013). The principal physical damages that result in disruption of the California economy are (1) about $100 million in damages to the twin Ports of Los Angeles (POLA) and Long Beach (POLB), (2) about $700 million in damages to marinas, and (3) about $2.5 billion in damages to buildings and contents (properties) in the tsunami inundation zone on the California coast. The study of economic impacts does not include the impacts from damages to roads, bridges, railroads, and agricultural production or fires in fuel storage facilities because these damages will be minimal with respect to the California economy. The economic impacts of damage to other California ports are not included in this study because detailed evaluation of the physical damage to these ports was not available in time for this report. The analysis of economic impacts is accomplished in several steps. First, estimates are made for the direct economic impacts that result in immediate business interruption losses in individual sectors of the economy due to physical damage to facilities or to disruption of the flow of production units (commodities necessary for production). Second, the total economic impacts (consisting of both direct and indirect effects) are measured by including the general equilibrium (essentially quantity and price multiplier effects) of lost production in other sectors by ripple

  17. Obstetrical Mode of Delivery and Childhood Behavior and Psychological Development in a British Cohort

    ERIC Educational Resources Information Center

    Curran, Eileen A.; Cryan, John F.; Kenny, Louise C.; Dinan, Timothy G.; Kearney, Patricia M.; Khashan, Ali S.

    2016-01-01

    The association between mode of delivery [specifically birth by Cesarean section (CS)] and induction of labor (IOL) psychological development at age 7 was assessed [including autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and behavioral difficulties]. The Millennium cohort study, a nationally representative UK…

  18. Effect of Circuit Inductance on Ceramics Joining by Titanium Foil Explosion

    NASA Astrophysics Data System (ADS)

    Takada, Yoshihiro; Takaki, Koichi; Itagaki, Minoru; Mukaigawa, Seiji; Fujiwara, Tamiya; Ohshima, Shuzo; Takahashi, Ikuo; Kuwashima, Takayuki

    This article describes the influences of circuit inductance on alumina (Al2O3) tile joining using explosive titanium foil. Several kAs pulse current was supplied from 8.28 µF storage capacitor to the 50 µm thickness titanium foil which was sandwiched between the Al2O3 tiles with pressure of 8.3 MPa. The temperature of the foil was rapidly increased owing to ohmic heating with the large current, and then the foil was liquefied and vaporized. The Al2O3 tiles were successfully bonded when the input energy to the titanium foil was higher than the energy required for the foil vaporization. The bonding strength increases with increasing the energy input to the foil. However, the foil explosion cracked the tiles when the input energy exceeds a critical value. Increasing the circuit inductance from 1.13 µH to 64.8 µH, the critical energy of tile cracking increase from 160 J to 507 J, respectively. the maximum bonding strength of 330 kg was obtained when the circuit inductance was 21.8 µH. An investigation of the interfacial structure of the joints using electron probe micro-analysis revealed that distinct reaction areas existed in the interlayer.

  19. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to themore » structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  20. Generalised ballooning theory of two-dimensional tokamak modes

    NASA Astrophysics Data System (ADS)

    Abdoul, P. A.; Dickinson, D.; Roach, C. M.; Wilson, H. R.

    2018-02-01

    In this work, using solutions from a local gyrokinetic flux-tube code combined with higher order ballooning theory, a new analytical approach is developed to reconstruct the global linear mode structure with associated global mode frequency. In addition to the isolated mode (IM), which usually peaks on the outboard mid-plane, the higher order ballooning theory has also captured other types of less unstable global modes: (a) the weakly asymmetric ballooning theory (WABT) predicts a mixed mode (MM) that undergoes a small poloidal shift away from the outboard mid-plane, (b) a relatively more stable general mode (GM) balloons on the top (or bottom) of the tokamak plasma. In this paper, an analytic approach is developed to combine these disconnected analytical limits into a single generalised ballooning theory. This is used to investigate how an IM behaves under the effect of sheared toroidal flow. For small values of flow an IM initially converts into a MM where the results of WABT are recaptured, and eventually, as the flow increases, the mode asymptotically becomes a GM on the top (or bottom) of the plasma. This may be an ingredient in models for understanding why in some experimental scenarios, instead of large edge localised modes (ELMs), small ELMs are observed. Finally, our theory can have other important consequences, especially for calculations involving Reynolds stress driven intrinsic rotation through the radial asymmetry in the global mode structures. Understanding the intrinsic rotation is significant because external torque in a plasma the size of ITER is expected to be relatively low.